WO2014188538A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2014188538A1
WO2014188538A1 PCT/JP2013/064254 JP2013064254W WO2014188538A1 WO 2014188538 A1 WO2014188538 A1 WO 2014188538A1 JP 2013064254 W JP2013064254 W JP 2013064254W WO 2014188538 A1 WO2014188538 A1 WO 2014188538A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuse
negative electrode
arm element
lower arm
circuit
Prior art date
Application number
PCT/JP2013/064254
Other languages
English (en)
French (fr)
Inventor
悠季生 大西
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/783,312 priority Critical patent/US9627957B2/en
Priority to DE112013007105.3T priority patent/DE112013007105B4/de
Priority to PCT/JP2013/064254 priority patent/WO2014188538A1/ja
Priority to JP2015517984A priority patent/JP6061029B2/ja
Priority to CN201380076700.2A priority patent/CN105229910B/zh
Publication of WO2014188538A1 publication Critical patent/WO2014188538A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/62Protection against overvoltage, e.g. fuses, shunts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/025Disconnection after limiting, e.g. when limiting is not sufficient or for facilitating disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1225Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to internal faults, e.g. shoot-through
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08148Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters

Definitions

  • the present invention relates to a power converter, and more particularly, to a power converter suitable for quickly cutting off an electric circuit when a lower arm element constituting a pair of power semiconductor elements is short-circuited.
  • the present invention has been made in view of the above points, and provides a power conversion device capable of realizing electric circuit interruption only at the time of short-circuiting of a power semiconductor element and at an earlier timing than fusing of a battery fuse.
  • the purpose is to do.
  • the object is to provide a pair of power semiconductor elements that are an upper arm element and a lower arm element connected in series between a positive electrode and a negative electrode, a short circuit detection circuit that detects a short circuit of the lower arm element, It is interposed between the positive terminal on the positive electrode side of the arm element and the negative terminal on the negative electrode side of the lower arm element, and the positive terminal and the negative terminal are connected when the short circuit is detected.
  • a power conversion device that includes a switching element for a fuse that is driven in such a manner and a blocking portion that is formed of a thin metal wire that connects the negative electrode side terminal and the negative electrode.
  • the electric circuit can be interrupted only when the power semiconductor element is short-circuited, and at an earlier timing than the battery fuse is blown.
  • FIG. 1 shows a circuit configuration diagram of a power conversion apparatus 10 according to an embodiment of the present invention.
  • FIG. 2 is a structural diagram of a power module provided in the power conversion apparatus 10 of the present embodiment.
  • 2A is a top view of the power module
  • FIG. 2B is a cross-sectional view of the power module shown in FIG. 2A
  • FIG. The expanded sectional view of the principal part of the power module shown to 2 (B) is each shown.
  • the power conversion device 10 is mounted on, for example, an electric vehicle or a hybrid vehicle, and is a device that converts the power of the in-vehicle battery and supplies it to a drive motor or the like. As shown in FIG. 1, the power conversion device 10 includes an in-vehicle battery 12, a booster circuit 14, and an inverter circuit 16.
  • the in-vehicle battery 12 is a chargeable / dischargeable lithium ion battery, a nickel metal hydride battery or the like, and is a high voltage battery capable of outputting a DC voltage of 240 volts, for example.
  • a battery fuse 18 is connected to the output of the in-vehicle battery 12.
  • the battery fuse 18 is a fuse that does not melt in the normal use range of the power converter 10 and has a melting characteristic that melts by self-heating when a current exceeding a specified level flows.
  • the booster circuit 14 is connected to the in-vehicle battery 12 via the battery fuse 18, and is a circuit that boosts the input voltage supplied from the in-vehicle battery 12 to a predetermined DC voltage (for example, 650 volts).
  • the inverter circuit 16 is connected to the booster circuit 14 and converts the DC voltage supplied from the booster circuit 14 into an AC voltage.
  • a load such as a drive motor is connected to the inverter circuit 16. This load is operated by AC power supplied from the inverter circuit 16.
  • the load such as the drive motor described above also functions as a generator.
  • the inverter circuit 16 converts the AC voltage supplied from the load side into a DC voltage and supplies the DC voltage to the booster circuit 14.
  • the booster circuit 14 receives the DC voltage supplied from the inverter circuit 16. Is reduced to a predetermined DC voltage (a voltage that matches the voltage of the vehicle-mounted battery 12).
  • the in-vehicle battery 12 can store the electric power generated by the load.
  • the booster circuit 14 includes a filter capacitor 20, a reactor 22, a pair of power semiconductor elements 24 and 26, and a smoothing capacitor 28.
  • the filter capacitor 20 is connected in parallel to the in-vehicle battery 12 and is a capacitor that stabilizes the input voltage supplied from the in-vehicle battery 12 to the booster circuit 14.
  • Reactor 22 is configured such that one end is connected to the positive terminal of in-vehicle battery 12 and the other end is connected to a common connection point CL between the pair of power semiconductor elements 24 and 26.
  • the reactor 22 has a function of discharging and storing electric power when performing voltage conversion between the in-vehicle battery 12 side and the inverter circuit 16 side.
  • the pair of power semiconductor elements 24 and 26 are an upper arm element and a lower arm element connected in series between the positive electrode P and the negative electrode N.
  • the power semiconductor element 24 that is an upper arm element connected to the positive electrode P includes an insulated gate bipolar transistor (IBGT) 24a that is a switching element that performs a switching operation, a diode 24b that is connected in parallel between the collector and emitter of the IGBT 24a, Consists of.
  • IBGT insulated gate bipolar transistor
  • the diode 24b allows current to flow from the emitter E to the collector C of the IGBT 24a.
  • the power semiconductor element 26 which is a lower arm element connected to the negative electrode N, includes an insulated gate bipolar transistor (IBGT) 26a that is a switching element that performs a switching operation, and a diode 26b that is connected in parallel between the collector and emitter of the IGBT 26a. And consist of The diode 26b allows current to flow from the emitter E to the collector C of the IGBT 26a.
  • the other end of the reactor 22 is connected to the emitter of the IGBT 24a and the collector of the IGBT 26a.
  • the smoothing capacitor 28 is connected between the positive electrode P and the negative electrode N, and is a capacitor that smoothes the voltage between the positive electrode P and the negative electrode N, that is, the output of the booster circuit 14.
  • the positive electrode P and the negative electrode N are connected to the inverter circuit 16.
  • the inverter circuit 16 converts a DC voltage between the positive electrode P and the negative electrode N into an AC voltage and supplies it to a load such as a drive motor.
  • the power conversion device 10 includes the positive terminal on the positive electrode P side of the upper arm element 24 (that is, the collector C of the IGBT 24a) and the negative terminal on the negative electrode N side of the lower arm element 26 (that is, the emitter E of the IGBT 26a). And a switching element 30 interposed between them.
  • the switching element 30 is a fuse element that is turned on when the lower arm element 26 is short-circuited to cut off the electric circuit.
  • the switching element 30 is referred to as a fuse switching element 30.
  • the fuse switching element 30 is an insulated gate bipolar transistor (IBGT) having a high withstand voltage and a small capacity capable of withstanding a voltage (for example, 650 volts) generated between the positive electrode P and the negative electrode N.
  • the fuse switching element 30 has a collector C connected to the positive terminal of the upper arm element 24 (that is, the collector C and the positive electrode P of the IGBT 24a), and an emitter E connected to the negative terminal (that is, the lower arm element 26). It is configured to be connected to the emitter E) of the IGBT 26a.
  • the emitter E of the fuse switching element 30 is connected to the negative terminal of the lower arm element 26 and to the negative electrode N.
  • the emitter E of the fuse switching element 30 and the negative terminal of the lower arm element 26 are connected by a bonding wire 32 which is a thin metal wire.
  • the emitter E and the negative electrode N of the fuse switching element 30 are connected by a bonding wire 34 which is a thin metal wire.
  • the bonding wires 32 and 34 are made of, for example, aluminum, copper, or gold.
  • the upper arm element 24, the lower arm element 26, and the fuse switching element 30 of the booster circuit 14 are semiconductor elements mounted on a power module 40 molded with resin as shown in FIG. 2, and are formed in a thin rectangular shape. It is comprised by the manufactured semiconductor chip.
  • the IGBT 24a and the diode 24b of the upper arm element 24 are placed on a lead frame 42 that is a metal plate, and the IGBT 26a and the diode 26b of the lower arm element 26 are placed on a lead frame 44 that is a metal plate. It is a module that is resin-sealed in the placed state.
  • the power module 40 has a resin portion 46 made of a resin such as an epoxy resin, and is formed in a substantially rectangular shape.
  • a part of the positive electrode P connected to the positive terminal of the upper arm element 24 protrudes to the outside, and a part of the negative terminal of the lower arm element 26 (
  • the negative electrode protrusion 52 is protruded to the outside, and a part of the connection electrode which is the common connection point CL of the upper arm element 24 and the lower arm element 26 (hereinafter referred to as the connection protrusion 54). Is mounted to protrude outward.
  • control protrusion 56 a part of the control electrode for driving and controlling the IGBT 24a of the upper arm element 24 and the IGBT 26a of the lower arm element 26 or performing current detection is externally provided. It is mounted to protrude.
  • the positive electrode protruding portion 50 and the negative electrode protruding portion 52 are adjacently disposed adjacent to each other.
  • the positive electrode protrusion 50 includes a main body 50a and a protrusion 50b that protrudes further from the main body 50a.
  • the protrusion 50 b is disposed outside the tip of the negative electrode protrusion 52 so as to be adjacent to the tip of the negative electrode protrusion 52.
  • the fuse switching element 30 is placed on the protrusion 50b.
  • the fuse switching element 30 is fixed to the protrusion 50b with solder or the like so that the collector is in contact with the surface of the protrusion 50b and the emitter is exposed on the surface.
  • the negative electrode protrusion 52 and the emitter of the switching element for fuse 30 are connected by a bonding wire 32.
  • the negative electrode N is arranged outside the protrusion 50b of the positive electrode protrusion 50 so as to be adjacent to the protrusion 50b.
  • the negative electrode N and the emitter of the fuse switching element 30 are connected by a bonding wire 34.
  • the negative electrode protrusion 52, the protrusion 50b of the positive electrode protrusion 50, and the negative electrode N are molded by a housing 58 made of a resin such as an epoxy resin.
  • the fuse switching element 30 and the bonding wires 32 and 34 are protected by a gel-like member 60 inserted into the housing 58.
  • the power conversion device 10 includes an upper arm drive IC 70 that drives and controls the IGBT 24a of the upper arm element 24, and a lower arm drive IC 72 that performs PWM drive control of the IGBT 26a of the lower arm element 26.
  • the upper arm drive IC 70 outputs a gate signal to the gate of the IGBT 24a so as to PWM-control the drive of the IGBT 24a.
  • the lower arm driving IC 72 outputs a gate signal to the gate of the IGBT 26a so as to PWM-control the driving of the IGBT 26a.
  • the IGBT 26a of the lower arm element 26 is turned off, the current is changed to the positive terminal of the in-vehicle battery 12 ⁇ the reactor 22 ⁇ the diode 24b of the upper arm element 24 ⁇ the positive electrode P ⁇ the load side ⁇ the negative electrode N ⁇ the in-vehicle battery 12
  • the amount of current decreases linearly as time passes, and the reactor 22 is discharged as the amount of current decreases.
  • the output voltage of the booster circuit 14 becomes higher than the output voltage of the in-vehicle battery 12, and the smoothing capacitor 28 is charged to such a voltage and the power supply to the load side is maintained. Thereafter, the ON / OFF of the IGBT 26a of the lower arm element 26 is repeated, so that the booster circuit 14 continuously outputs a voltage higher than the output voltage of the in-vehicle battery 12 toward the load side.
  • the inverter circuit 16 converts the AC voltage supplied from the load side as a generator into a DC voltage
  • the IGBT 24a of the upper arm element 24 is turned on by the gate signal from the upper arm driving IC 70
  • the reactor 22 is charged with a difference voltage between the DC voltage by the inverter circuit 16 and the voltage of the filter capacitor 20.
  • the current flows in the order of the inverter circuit 16 side ⁇ the positive electrode P ⁇ the IGBT 24a of the upper arm element 24 ⁇ the reactor 22 ⁇ the filter capacitor 20 and the vehicle-mounted battery 12, and the current amount increases linearly with the passage of time. To do.
  • the reactor 22 is discharged with the voltage of the filter capacitor 20 connected in parallel.
  • the current flows in the order of the reactor 22 ⁇ the filter capacitor 20 and the vehicle battery 12 ⁇ the negative electrode N ⁇ the bonding wire 34 ⁇ the emitter of the switching element 30 for the fuse ⁇ the bonding wire 32 ⁇ the diode 26b of the lower arm element 26.
  • the amount decreases linearly over time.
  • the output voltage of the booster circuit 14 becomes lower than the DC voltage by the inverter circuit 16, and the filter capacitor 20 and the vehicle-mounted battery 12 are charged to such voltage. Thereafter, the ON / OFF of the IGBT 24a of the upper arm element 24 is repeated, so that the booster circuit 14 continuously outputs a voltage lower than the DC voltage by the inverter circuit 16 toward the in-vehicle battery 12 side.
  • FIG. 3 shows a flowchart of an example of a control routine executed in the power conversion apparatus 10 of the present embodiment.
  • the IGBT 24a of the upper arm element 24 has a sense emitter SE that shunts the collector current.
  • the sense emitter SE has a function of dividing the collector current into a very small current (for example, a current that is one thousandth of the total emitter current).
  • a current sense resistor 74 is connected to the sense emitter SE.
  • the current sense resistor 74 has a resistance value Rs, and has a function of converting a sense current flowing through the sense emitter SE into a sense voltage Vs, that is, a function of extracting it as an emitter voltage.
  • the sense voltage Vs obtained by converting the sense current by the current sense resistor 74 is supplied to the comparator 76. Based on the sense voltage Vs, the comparator 76 determines whether or not a predetermined current or more (that is, an overcurrent) flows in the electrical path between the positive electrode P and the negative electrode N, and the positive electrode P and the negative electrode N Is a comparator that detects the presence or absence of a short circuit (specifically, a short circuit that occurs in the IGBT 26a of the lower arm element 26 when the IGBT 24a of the upper arm element 24 is ON-driven).
  • a predetermined current or more that is, an overcurrent
  • the output signal of the comparator 76 is supplied to the upper arm driving IC 70. Based on the signal from the comparator 76, the upper arm drive IC 70 outputs a gate signal for turning on the IGBT 24a of the upper arm element 24 to the IGBT 24a (at the time of an affirmative determination in step 100). It is determined whether or not the current I SE flowing in the electric path between the electrode P and the negative electrode N is greater than or equal to a predetermined threshold value I SH (step 110).
  • the predetermined threshold value I SH is a minimum current value at which it is determined that a short circuit between the positive electrode P and the negative electrode N has occurred and an overcurrent is flowing in the electric circuit.
  • the input side of the photocoupler 78 is connected to the output side of the upper arm driving IC 70.
  • the upper arm drive IC 70 outputs the drive signal generated as described above to the photocoupler 78.
  • a floating power supply 80 is connected to the output side of the photocoupler 78, and the input side of the photocoupler 82 is connected to the output side of the photocoupler 78.
  • the photocoupler 78 is an element that transmits a drive signal from the upper arm drive IC 70 to the photocoupler 82 while being electrically insulated using light.
  • the input side of the lower arm driving IC 72 is connected to the output side of the photocoupler 82.
  • the photocoupler 82 is an element that transmits a transmission signal from the photocoupler 78 to the lower arm driving IC 72 while electrically insulating it using light.
  • the gate of the fuse switching element 30 is connected to the lower arm driving IC 72.
  • the lower arm drive IC 72 detects a short circuit between the positive electrode P and the negative electrode N based on the drive signal from the upper arm drive IC 70 via the photocouplers 78 and 82, and the gate of the fuse switching element 30. Generate a gate signal to be supplied to. Specifically, when the positive electrode P and the negative electrode N are short-circuited and the upper arm drive IC 70 outputs a drive signal for driving the fuse switching element 30 to be turned on, the fuse switching element 30 is driven to be turned on. A gate signal to be generated is generated.
  • FIG. 4 is a diagram illustrating characteristics of the fuse switching element 30 included in the power conversion device 10 of this embodiment.
  • FIG. 5 is a circuit configuration diagram for explaining that the electric circuit is interrupted by turning on the fuse switching element 30 in the power conversion device 10 of the present embodiment.
  • FIG. 6 shows the principal part sectional drawing of the power converter device 10 before and behind the electric circuit interruption
  • the lower arm driving IC 72 when the lower arm driving IC 72 generates a gate signal for driving the fuse switching element 30 to be turned on, the lower arm driving IC 72 outputs the gate signal to the gate of the fuse switching element 30. At this time, the lower arm drive IC 72 drives the fuse switching element 30 in the non-saturated region.
  • the gate-emitter voltage of the fuse switching element 30 is set to 9 volts, which is the unsaturated region.
  • the fuse switching element 30 When the fuse switching element 30 is turned on, the current flows in the order of the positive electrode P ⁇ the collector of the fuse switching element 30 ⁇ the emitter ⁇ the bonding wire 34 ⁇ the negative electrode N as shown by the arrows in FIGS. 5 and 6A. Flows. When the fuse switching element 30 is turned on in the non-saturated region, excessive power loss occurs in the fuse switching element 30 itself, and the fuse switching element 30 is thermally destroyed.
  • the bonding wire 34 that connects the fuse switching element 30 and the negative electrode N is broken by an impact caused by the thermal destruction (FIG. 6B).
  • the bonding wire 34 is broken, the electrical path between the positive electrode P and the negative electrode N is interrupted, so that the short circuit between the positive electrode P and the negative electrode N is eliminated.
  • the negative electrode terminal on the negative electrode N side of the lower arm element 26 that is, the emitter E of the IGBT 26a
  • the negative electrode N It is not necessary to melt the bonding wires 32 and 34 between the two by self-heating, and it is sufficient to drive the fuse switching element 30 in the non-saturated region.
  • the fusing characteristics of the bonding wires 32 and 34 can be reliably avoided from the normal use range in the same manner as the fusing characteristics of the battery fuse 18, so that ripples and transient currents can be obtained during normal use.
  • ripples and transient currents can be obtained during normal use.
  • the short-circuit between the positive electrode P and the negative electrode N is detected, and then the fuse switching element 30 is changed. It is sufficient to drive on in the non-saturated region. If a short circuit occurs in the IGBT 26a of the lower arm element 26 while the IGBT 24a of the upper arm element 24 is ON-driven, the occurrence of the short circuit is detected by the upper arm drive IC 70 and then passes through the photocouplers 78 and 82. Then, the lower arm driving IC 72 drives the fuse switching element 30 on.
  • the electric circuit interruption when the IGBT 26a of the lower arm element 26 is short-circuited is not realized by fusing due to self-heating of the bonding wire 34, and the fuse switching element 30 itself is not saturated. Since this is realized by breaking the bonding wire 34 due to an impact caused by thermal breakage due to the ON driving, the electric circuit can be interrupted quickly with good responsiveness.
  • the electric circuit interruption between the positive electrode P and the negative electrode N is realized only when the IGBT 26a of the lower arm element 26 is short-circuited, and the timing earlier than the melting of the battery fuse 18 is achieved. Can be realized. For this reason, according to the present embodiment, it is possible to avoid that the electric circuit interruption between the positive electrode P and the negative electrode N is caused by a factor other than the short circuit of the IGBT 26a of the lower arm element 26, and the lower arm element It is possible to avoid the battery fuse 18 from being blown when the 26 IGBTs 26a are short-circuited.
  • the fuse switching element 30 is a semiconductor element that is turned on in the non-saturation region when the IGBT 26a of the lower arm element 26 is short-circuited, so that it has a low current capacity in order to perform its function. It is enough. For this reason, according to the power converter device 10 of the present embodiment, it is possible to avoid an increase in the size of the fuse switching element 30 and to reduce the size of the device 10 itself.
  • the bonding wire 34 that cuts off the electric circuit is not a wire that is resin-molded using an epoxy resin or the like on the main body side of the power module 40 but a wire that is protected by the gel-like member 60. Therefore, according to the present embodiment, unlike the configuration in which the bonding wire 34 is resin-molded, it is possible to prevent the electric circuit from being easily broken by the bonding wire 34 due to the resin mold. The battery fuse 18 can be prevented from being blown when the IGBT 26a of the lower arm element 26 is short-circuited.
  • the sense emitter SE, the current sense resistor 74, the comparator 76, and the upper arm drive IC 70 of the IGBT 24a of the upper arm element 24 are bonded to the “short circuit detection circuit” recited in the claims.
  • the wire 34 corresponds to the “blocking portion” described in the claims, and the upper arm drive IC 70 and the lower arm drive IC 72 correspond to the “fuse drive circuit” described in the claims.
  • the current flowing through the sense emitter SE of the IGBT 24a of the upper arm element 24 is used to detect a short circuit of the lower arm element 26.
  • the present invention is not limited to this, and as shown in FIG. 7, in order to detect a short circuit of the lower arm element 26 by newly installing a fuse IC 102 in the power conversion apparatus 100, the collector- An emitter-to-emitter voltage may be used.
  • the fuse IC 102 may detect a short circuit of the lower arm element 26 by a technique such as DESAT after monitoring the collector-emitter voltage of the lower arm element 26. In this case, the fuse IC 102 may drive the fuse switching element 30 on in the non-saturation region when the short circuit of the lower arm element 26 is detected. Also in this modification, it is possible to obtain the same effect as in the above embodiment. In this modification, the fuse IC 102 corresponds to the “short circuit detection circuit” recited in the claims.
  • a short circuit of the lower arm element 26 constituting the booster circuit 14 is detected.
  • the present invention is not limited to this, and may be applied to one that detects a short circuit of an arm element constituting the inverter circuit 16.
  • the IGBTs 24a and 26a are used as the switching elements of the upper arm element 24 and the lower arm element 26, which are power semiconductors.
  • the present invention is not limited to this, and a power MOSFET may be used.
  • the power conversion device 10 is mounted on an electric vehicle or a hybrid vehicle.
  • the present invention is not limited to this, and may be mounted on things other than vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 本発明の電力変換装置は、電路の遮断をパワー半導体素子の短絡時にのみ実現させつつバッテリヒューズの溶断よりも早いタイミングで実現させるうえで、正極電極と負極電極との間に直列接続される上アーム素子及び下アーム素子である一対のパワー半導体素子と、下アーム素子の短絡を検出する短絡検出回路と、上アーム素子の正極電極側の正極側端子と下アーム素子の負極電極側の負極側端子との間に介在し、短絡の検出時に正極側端子と負極側端子とが接続されるように駆動されるヒューズ用スイッチング素子と、負極側端子と負極電極とを接続させる金属細線からなる遮断部と、を備える。

Description

電力変換装置
 本発明は、電力変換装置に係り、特に、一対のパワー半導体素子を構成する下アーム素子の短絡時に電路を速やかに遮断させるうえで好適な電力変換装置に関する。
 従来、パワー半導体素子の短絡時に電路を遮断させる電力変換装置が知られている(例えば、特許文献1参照)。この電力変換装置において、パワー半導体素子は、金属細線を介して正極端子に接続されていると共に、金属細線を介して負極端子に接続されている。かかる構造において、パワー半導体素子が短絡すると、定格電流の数倍から数十倍の過電流が流れ、金属細線がその自己発熱により溶断する。このため、パワー半導体素子の短絡時に電路を速やかに遮断させることができ、過電流の流通を阻止することができる。
特開2008-235502号公報
 ところで、例えば上記した電力変換装置が車両に搭載される場合において、パワー半導体素子の短絡時に、上流側に設けられたバッテリヒューズが溶断すると、その後、バッテリによる走行を継続することができなくなる。そこで、かかる事態の発生を回避するうえでは、パワー半導体素子の短絡時に、金属細線の溶断をバッテリヒューズの溶断よりも早いタイミングで実施させることが要求される。しかし、かかる要求に従って金属細線の溶断特性が定められても、その溶断特性として、通常使用域でリップルや過渡電流が発生した際に金属細線を溶断させないようにすることは困難である。
 本発明は、上述の点に鑑みてなされたものであり、電路の遮断をパワー半導体素子の短絡時にのみ実現させつつバッテリヒューズの溶断よりも早いタイミングで実現させることが可能な電力変換装置を提供することを目的とする。
 上記の目的は、正極電極と負極電極との間に直列接続される上アーム素子及び下アーム素子である一対のパワー半導体素子と、前記下アーム素子の短絡を検出する短絡検出回路と、前記上アーム素子の前記正極電極側の正極側端子と前記下アーム素子の前記負極電極側の負極側端子との間に介在し、前記短絡の検出時に前記正極側端子と前記負極側端子とが接続されるように駆動されるヒューズ用スイッチング素子と、前記負極側端子と前記負極電極とを接続させる金属細線からなる遮断部と、を備える電力変換装置により達成される。
 本発明によれば、電路の遮断をパワー半導体素子の短絡時にのみ実現させつつバッテリヒューズの溶断よりも早いタイミングで実現させることができる。
本発明の一実施例である電力変換装置の回路構成図である。 本実施例の電力変換装置が備えるパワーモジュールの構造図である。 本実施例の電力変換装置において実行される制御ルーチンの一例のフローチャートである。 本実施例の電力変換装置が備えるヒューズ用スイッチング素子の特性を表した図である。 本実施例の電力変換装置においてヒューズ用スイッチング素子のオン駆動により電路が遮断されることを説明するための回路構成図である。 本実施例において電路が遮断される前後における電力変換装置の要部断面図である。 本発明の変形例である電力変換装置の回路構成図である。
 以下、図面を用いて、本発明に係る電力変換装置の具体的な実施の形態について説明する。
 図1は、本発明の一実施例である電力変換装置10の回路構成図を示す。また、図2は、本実施例の電力変換装置10が備えるパワーモジュールの構造図を示す。尚、図2(A)にはパワーモジュールの上面図を、図2(B)には図2(A)に示すパワーモジュールのIII-III断面図を、また、図2(C)には図2(B)に示すパワーモジュールの要部の拡大断面図を、それぞれ示す。
 本実施例の電力変換装置10は、例えば電気自動車やハイブリッド車両に搭載されており、車載バッテリの電力を変換して駆動用モータなどに供給する装置である。図1に示す如く、電力変換装置10は、車載バッテリ12と、昇圧回路14と、インバータ回路16と、を備えている。
 車載バッテリ12は、充放電可能なリチウムイオン電池やニッケル水素電池などであって、例えば240ボルトの直流電圧を出力することが可能な高圧バッテリである。車載バッテリ12の出力にはバッテリヒューズ18が接続されている。バッテリヒューズ18は、電力変換装置10の通常使用域では溶断せず、規定以上の電流が流通した場合に自己発熱により溶断する溶断特性を有するヒューズである。
 昇圧回路14は、バッテリヒューズ18を介して車載バッテリ12に接続されており、車載バッテリ12から供給される入力電圧を所定の直流電圧(例えば、650ボルト)まで昇圧する回路である。また、インバータ回路16は、昇圧回路14に接続されており、昇圧回路14から供給される直流電圧を交流電圧に変換する回路である。インバータ回路16には、駆動用モータなどの負荷が接続されている。この負荷は、インバータ回路16から供給される交流電力により作動する。
 尚、上記した駆動用モータなどの負荷は、発電機としても機能する。負荷が発電機として機能する際、インバータ回路16は、負荷側から供給される交流電圧を直流電圧に変換して昇圧回路14に供給し、昇圧回路14は、インバータ回路16から供給される直流電圧を所定の直流電圧(車載バッテリ12の電圧に合致した電圧)まで降圧する。この場合、車載バッテリ12は、負荷により発電された電力を蓄えることができる。
 昇圧回路14は、フィルタコンデンサ20、リアクトル22、一対のパワー半導体素子24,26、及び平滑コンデンサ28を有している。フィルタコンデンサ20は、車載バッテリ12に並列接続されており、車載バッテリ12から昇圧回路14に供給される入力電圧を安定化させるコンデンサである。リアクトル22は、一端が車載バッテリ12の正極端子に接続され、かつ、他端が一対のパワー半導体素子24,26同士の共通接続点CLに接続されるように構成されている。リアクトル22は、車載バッテリ12側とインバータ回路16側との間で電圧変換を行う際に電力の放出及び蓄積を行う作用を有する。
 一対のパワー半導体素子24,26は、正極電極Pと負極電極Nとの間に直列接続される上アーム素子及び下アーム素子である。正極電極Pに接続する上アーム素子であるパワー半導体素子24は、スイッチ動作するスイッチング素子である絶縁ゲート型バイポーラトランジスタ(IBGT)24aと、IGBT24aのコレクタ-エミッタ間に並列接続されるダイオード24bと、からなる。ダイオード24bは、IGBT24aのエミッタEからコレクタCへの電流の流通を許容する。
 また、負極電極Nに接続する下アーム素子であるパワー半導体素子26は、スイッチ動作するスイッチング素子である絶縁ゲート型バイポーラトランジスタ(IBGT)26aと、IGBT26aのコレクタ-エミッタ間に並列接続されるダイオード26bと、からなる。ダイオード26bは、IGBT26aのエミッタEからコレクタCへの電流の流通を許容する。上記したリアクトル22の他端は、IGBT24aのエミッタ及びIGBT26aのコレクタに接続されている。
 平滑コンデンサ28は、正極電極Pと負極電極Nとの間に接続されており、正極電極Pと負極電極Nとの間の電圧すなわち昇圧回路14の出力を平滑化するコンデンサである。正極電極Pと負極電極Nとは、インバータ回路16に接続されている。インバータ回路16は、正極電極Pと負極電極Nとの間の直流電圧を交流電圧に変換して駆動用モータなどの負荷に供給する。
 また、電力変換装置10は、上アーム素子24の正極電極P側の正極側端子(すなわち、IGBT24aのコレクタC)と下アーム素子26の負極電極N側の負極側端子(すなわち、IGBT26aのエミッタE)との間に介在するスイッチング素子30を備えている。スイッチング素子30は、下アーム素子26の短絡時にオン駆動されることにより電路を遮断させるヒューズ用素子である。以下、スイッチング素子30をヒューズ用スイッチング素子30と称す。
 ヒューズ用スイッチング素子30は、正極電極Pと負極電極Nとの間に生ずる電圧(例えば、650ボルト)に耐え得る高耐圧小容量の絶縁ゲート型バイポーラトランジスタ(IBGT)である。ヒューズ用スイッチング素子30は、コレクタCが上アーム素子24の正極側端子(すなわち、IGBT24aのコレクタC及び正極電極P)に接続され、かつ、エミッタEが下アーム素子26の負極側端子(すなわち、IGBT26aのエミッタE)に接続されるように構成されている。
 ヒューズ用スイッチング素子30のエミッタEは、下アーム素子26の負極側端子に接続されると共に、負極電極Nに接続されている。ヒューズ用スイッチング素子30のエミッタEと下アーム素子26の負極側端子とは、金属細線であるボンディングワイヤ32により接続されている。また、ヒューズ用スイッチング素子30のエミッタEと負極電極Nとは、金属細線であるボンディングワイヤ34により接続されている。ボンディングワイヤ32,34は、例えばアルミニウムや銅,金などからなる。
 昇圧回路14の上アーム素子24及び下アーム素子26並びにヒューズ用スイッチング素子30はそれぞれ、図2に示す如く樹脂モールドされるパワーモジュール40に搭載される半導体素子であって、薄肉の矩形状に形成された半導体チップにより構成されている。パワーモジュール40は、金属板であるリードフレーム42上に上アーム素子24のIGBT24a及びダイオード24bが載置され、かつ、金属板であるリードフレーム44上に下アーム素子26のIGBT26a及びダイオード26bが載置された状態で樹脂封止されるモジュールである。パワーモジュール40は、エポキシ樹脂などの樹脂からなる樹脂部46を有し、略矩形状に形成されている。
 パワーモジュール40は、上アーム素子24の正極側端子に接続する正極電極Pの一部(以下、正極突出部50と称す。)が外部に突出し、下アーム素子26の負極側端子の一部(以下、負極突出部52と称す。)が外部に突出すると共に、上アーム素子24と下アーム素子26との共通接続点CLである接続電極の一部(以下、接続突出部54と称す。)が外部に突出するように実装されている。また、パワーモジュール40は、上アーム素子24のIGBT24a及び下アーム素子26のIGBT26aを駆動制御し或いは電流検出を行うための制御電極の一部(以下、制御突出部56と称す。)が外部に突出するように実装されている。
 パワーモジュール40において、正極突出部50と負極突出部52とは互いに隣接して近接配置されている。正極突出部50は、本体部50aと、その本体部50aから更に突起する突起部50bと、を有している。突起部50bは、負極突出部52の先端の外方においてその負極突出部52の先端と隣接するように配置される。突起部50b上には、ヒューズ用スイッチング素子30が載置される。ヒューズ用スイッチング素子30は、コレクタが突起部50bの表面に接しかつエミッタが表面に露出するように半田などにより突起部50bに固定される。負極突出部52とヒューズ用スイッチング素子30のエミッタとは、ボンディングワイヤ32により接続される。
 負極電極Nは、正極突出部50の突起部50bの外方にその突起部50bと隣接するように配置される。負極電極Nとヒューズ用スイッチング素子30のエミッタとは、ボンディングワイヤ34により接続される。負極突出部52と正極突出部50の突起部50bと負極電極Nとは、エポキシ樹脂などの樹脂からなるハウジング58によりモールドされている。ヒューズ用スイッチング素子30及びボンディングワイヤ32,34は、ハウジング58内に挿入されたゲル状部材60により保護されている。
 電力変換装置10は、上アーム素子24のIGBT24aを駆動制御する上アーム用駆動IC70と、下アーム素子26のIGBT26aをPWM駆動制御する下アーム用駆動IC72と、を備えている。上アーム用駆動IC70は、IGBT24aの駆動をPWM制御するようにIGBT24aのゲートにゲート信号を出力する。また、下アーム用駆動IC72は、IGBT26aの駆動をPWM制御するようにIGBT26aのゲートにゲート信号を出力する。
 上記した電力変換装置10において、リアクトル22に車載バッテリ12からの電圧が入力されると、電流が車載バッテリ12の正極端子→リアクトル22→上アーム素子24のダイオード24b→正極電極P→負荷側→負極電極N→車載バッテリ12の負極端子の順に流通することで、リアクトル22が充電される。
 かかる状態から下アーム用駆動IC72からのゲート信号により下アーム素子26のIGBT26aがオン駆動されると、電流が車載バッテリ12の正極端子→リアクトル22→下アーム素子26のIGBT26a→ボンディングワイヤ32→ヒューズ用スイッチング素子30のエミッタ→ボンディングワイヤ34→負極電極N→車載バッテリ12の負極端子の順に流通することで、その電流量が時間の経過に伴って直線的に増加すると共に、その電流量の増加に伴ってリアクトル22が更に充電される。この際には、平滑コンデンサ28が放電されることで、負荷側への電力供給が維持される。
 次に、下アーム素子26のIGBT26aがオフ駆動されると、電流が車載バッテリ12の正極端子→リアクトル22→上アーム素子24のダイオード24b→正極電極P→負荷側→負極電極N→車載バッテリ12の負極端子の順に流通することで、その電流量が時間の経過に伴って直線的に減少すると共に、その電流量の減少に伴ってリアクトル22が放電される。
 かかる処理が行われると、昇圧回路14の出力電圧が車載バッテリ12の出力電圧よりも高くなり、かかる電圧まで平滑コンデンサ28が充電されると共に、負荷側への電力供給が維持される。以後、下アーム素子26のIGBT26aのオン/オフが繰り返されることで、昇圧回路14は、車載バッテリ12の出力電圧よりも高い電圧を継続して負荷側に向けて出力する。
 また、インバータ回路16が、発電機としての負荷側から供給される交流電圧を直流電圧に変換した場合、上アーム用駆動IC70からのゲート信号により上アーム素子24のIGBT24aがオン駆動されると、リアクトル22、フィルタコンデンサ20、及び車載バッテリ12に電圧が印加されることで、リアクトル22がインバータ回路16による直流電圧とフィルタコンデンサ20の電圧との差分の電圧で充電される。この際、電流がインバータ回路16側→正極電極P→上アーム素子24のIGBT24a→リアクトル22→フィルタコンデンサ20及び車載バッテリ12の順に流通し、その電流量が時間の経過に伴って直線的に増加する。
 次に、上アーム素子24のIGBT24aがオフ駆動されると、リアクトル22が、並列接続するフィルタコンデンサ20の電圧で放電される。この際、電流がリアクトル22→フィルタコンデンサ20及び車載バッテリ12→負極電極N→ボンディングワイヤ34→ヒューズ用スイッチング素子30のエミッタ→ボンディングワイヤ32→下アーム素子26のダイオード26bの順に流通し、その電流量が時間の経過に伴って直線的に減少する。
 かかる処理が行われると、昇圧回路14の出力電圧がインバータ回路16による直流電圧よりも低くなり、かかる電圧までフィルタコンデンサ20及び車載バッテリ12が充電される。以後、上アーム素子24のIGBT24aのオン/オフが繰り返されることで、昇圧回路14は、インバータ回路16による直流電圧よりも低い電圧を継続して車載バッテリ12側に向けて出力する。
 図3は、本実施例の電力変換装置10において実行される制御ルーチンの一例のフローチャートを示す。
 本実施例の電力変換装置10において、上アーム素子24のIGBT24aは、コレクタ電流を分流するセンスエミッタSEを有している。このセンスエミッタSEは、コレクタ電流を極小さな電流(例えば、全エミッタ電流に対する数千分の一の電流)に分流する機能を有する。センスエミッタSEには、電流センス抵抗74が接続されている。電流センス抵抗74は、抵抗値Rsを有し、センスエミッタSEに流れるセンス電流をセンス電圧Vsに変換する機能すなわちエミッタ電圧として抽出する機能を有する。
 電流センス抵抗74でセンス電流を変換したセンス電圧Vsは、コンパレータ76に供給される。コンパレータ76は、センス電圧Vsに基づいて、正極電極Pと負極電極Nとの間の電路に所定以上の電流(すなわち、過電流)が流れるか否かを判別し、正極電極Pと負極電極Nとの短絡(具体的には、上アーム素子24のIGBT24aがオン駆動されているときに下アーム素子26のIGBT26aに生じる短絡)の有無を検出する比較器である。
 コンパレータ76の出力信号は、上アーム用駆動IC70に供給される。上アーム用駆動IC70は、上アーム素子24のIGBT24aをオン駆動させるゲート信号をそのIGBT24aに対して出力している状況(ステップ100の肯定判定時)において、コンパレータ76からの信号に基づいて、正極電極Pと負極電極Nとの間の電路に流れる電流ISEが所定閾値ISH以上であるか否かを判別する(ステップ110)。尚、所定閾値ISHは、正極電極Pと負極電極Nとの短絡が生じて電路に過電流が流れていると判定される最小の電流値である。
 上アーム用駆動IC70は、正極電極Pと負極電極Nとの間の電路に流れる電流ISEが所定閾値ISH以上であると判別した場合は、正極電極Pと負極電極Nとが短絡して、上アーム素子24のIGBT24aがオン駆動されているときに下アーム素子26のIGBT26aに短絡が生じていると判定して(ステップ120)、ヒューズ用スイッチング素子30をオン駆動させる駆動信号を生成する(ステップ130)。
 上アーム用駆動IC70の出力側には、フォトカプラ78の入力側が接続されている。上アーム用駆動IC70は、上記の如く生成した駆動信号をフォトカプラ78に対して出力する。フォトカプラ78の出力側には、フローティング電源80が接続されていると共に、フォトカプラ82の入力側が接続されている。フォトカプラ78は、上アーム用駆動IC70からの駆動信号を、光を利用して電気的に絶縁しつつフォトカプラ82に伝達する素子である。フォトカプラ82の出力側には、下アーム用駆動IC72の入力側が接続されている。フォトカプラ82は、フォトカプラ78からの伝達信号を、光を利用して電気的に絶縁しつつその下アーム用駆動IC72に伝達する素子である。
 下アーム用駆動IC72には、上記したヒューズ用スイッチング素子30のゲートが接続されている。下アーム用駆動IC72は、フォトカプラ78,82を経由した上アーム用駆動IC70からの駆動信号に基づいて、正極電極Pと負極電極Nとの短絡を検出して、ヒューズ用スイッチング素子30のゲートに供給すべきゲート信号を生成する。具体的には、正極電極Pと負極電極Nとが短絡して、上アーム用駆動IC70がヒューズ用スイッチング素子30をオン駆動させる駆動信号を出力する場合に、そのヒューズ用スイッチング素子30をオン駆動させるゲート信号を生成する。
 図4は、本実施例の電力変換装置10が備えるヒューズ用スイッチング素子30の特性を表した図を示す。図5は、本実施例の電力変換装置10においてヒューズ用スイッチング素子30のオン駆動により電路が遮断されることを説明するための回路構成図である。また、図6は、本実施例において電路が遮断される前後における電力変換装置10の要部断面図を示す。
 本実施例において、下アーム用駆動IC72は、ヒューズ用スイッチング素子30をオン駆動させるゲート信号を生成すると、かかるゲート信号をヒューズ用スイッチング素子30のゲートに対して出力する。この際、下アーム用駆動IC72は、ヒューズ用スイッチング素子30を非飽和領域でオン駆動させる。例えば、ヒューズ用スイッチング素子30のゲート-エミッタ間電圧は、その非飽和領域である9ボルトに設定される。
 ヒューズ用スイッチング素子30がオン駆動されると、図5及び図6(A)において矢印で示す如く、正極電極P→ヒューズ用スイッチング素子30のコレクタ→エミッタ→ボンディングワイヤ34→負極電極Nの順に電流が流れる。また、ヒューズ用スイッチング素子30が非飽和領域でオン駆動されると、そのヒューズ用スイッチング素子30自体に過大な電力損失が発生して、そのヒューズ用スイッチング素子30が熱破壊に至る。
 ヒューズ用スイッチング素子30が熱破壊すると、その熱破壊により生ずる衝撃によって、そのヒューズ用スイッチング素子30と負極電極Nとを繋ぐボンディングワイヤ34が破断する(図6(B))。ボンディングワイヤ34が破断すると、正極電極Pと負極電極Nとの間の電路が遮断されるので、正極電極Pと負極電極Nとの短絡が解消される。
 かかる電路遮断の構成においては、下アーム素子26のIGBT26aの短絡時に電路遮断を実現するのに、下アーム素子26の負極電極N側の負極側端子(すなわち、IGBT26aのエミッタE)と負極電極Nとの間のボンディングワイヤ32,34を自己発熱により溶断させることは不要であり、ヒューズ用スイッチング素子30を非飽和領域でオン駆動させることとすれば十分である。
 この点、本実施例によれば、ボンディングワイヤ32,34の溶断特性を、バッテリヒューズ18の溶断特性と同様に通常使用域から確実に回避させることができるので、通常使用時においてリップルや過渡電流が発生した際にボンディングワイヤ32,34が誤って溶断するのを防止することができ、リップルや過渡電流に対するボンディングワイヤ32,34の耐性を確保することが可能である。
 また、上記の電路遮断の構成においては、下アーム素子26のIGBT26aの短絡時に電路遮断を実現するのに、正極電極Pと負極電極Nとの短絡を検出したうえで、ヒューズ用スイッチング素子30を非飽和領域でオン駆動させることとすれば十分である。上アーム素子24のIGBT24aがオン駆動されているときに下アーム素子26のIGBT26aに短絡が生じると、その短絡発生は上アーム用駆動IC70において検出された後に、フォトカプラ78,82を経由して下アーム用駆動IC72に伝達され、そして、その下アーム用駆動IC72がヒューズ用スイッチング素子30をオン駆動させる。
 この点、本実施例によれば、下アーム素子26のIGBT26aの短絡時における電路遮断を、ボンディングワイヤ34の自己発熱による溶断により実現させるものではなく、ヒューズ用スイッチング素子30自体を非飽和領域でのオン駆動によって熱破壊させた衝撃によるボンディングワイヤ34の破断により実現させるものであるので、その電路遮断を応答性よく速やかに行うことが可能である。
 従って、本実施例の電力変換装置10によれば、正極電極Pと負極電極Nとの間の電路遮断を下アーム素子26のIGBT26aの短絡時にのみ実現させつつバッテリヒューズ18の溶断よりも早いタイミングで実現させることができる。このため、本実施例によれば、正極電極Pと負極電極Nとの間の電路遮断が下アーム素子26のIGBT26aの短絡以外の要因で行われるのを回避することができ、その下アーム素子26のIGBT26aの短絡時にバッテリヒューズ18が溶断されるのを回避することができる。
 尚、本実施例において、通常使用時は、下アーム素子26→ボンディングワイヤ32→ヒューズ用スイッチング素子30のエミッタ→ボンディングワイヤ34→負極電極Nの経路で電流が流通するので、電路のインダクタンスが比較的低く、その電路に生ずる損失が抑えられる。従って、本実施例の電力変換装置10によれば、通常使用時の電路損失を低く抑えることが可能である。
 また、本実施例において、ヒューズ用スイッチング素子30は、下アーム素子26のIGBT26aの短絡時に非飽和領域でオン駆動される半導体素子であるので、その機能を果たすうえで低電流容量を有すれば十分である。このため、本実施例の電力変換装置10によれば、ヒューズ用スイッチング素子30の大型化を招くのを回避することができ、その装置10自体の小型化を図ることができる。
 また、本実施例において、電路を遮断するボンディングワイヤ34は、パワーモジュール40の本体側においてエポキシ樹脂などを用いて樹脂モールドされているワイヤではなく、ゲル状部材60により保護されたワイヤである。このため、本実施例によれば、ボンディングワイヤ34が樹脂モールドされる構成とは異なり、樹脂モールドに起因してボンディングワイヤ34で電路が破断し難くなるのを防止することができ、この点でも、下アーム素子26のIGBT26aの短絡時にバッテリヒューズ18が溶断されるのを回避することができる。
 尚、上記の実施例においては、上アーム素子24のIGBT24aのセンスエミッタSE、電流センス抵抗74、コンパレータ76、及び上アーム用駆動IC70が特許請求の範囲に記載した「短絡検出回路」に、ボンディングワイヤ34が特許請求の範囲に記載した「遮断部」に、上アーム用駆動IC70及び下アーム用駆動IC72が特許請求の範囲に記載した「ヒューズ駆動回路」に、それぞれ相当している。
 ところで、上記の実施例においては、下アーム素子26の短絡を検出するのに、上アーム素子24のIGBT24aのセンスエミッタSEに流れる電流を用いることとした。しかし、本発明はこれに限定されるものではなく、図7に示す如く、電力変換装置100にヒューズIC102を新設し、下アーム素子26の短絡を検出するのに、下アーム素子26のコレクタ-エミッタ間電圧を用いることとしてもよい。
 この変形例において、ヒューズIC102は、下アーム素子26のコレクタ-エミッタ間電圧をモニタしたうえで、例えばDESATなどの手法で下アーム素子26の短絡を検出することとすればよい。この場合、ヒューズIC102は、下アーム素子26の短絡検出時にヒューズ用スイッチング素子30を非飽和領域でオン駆動させることとすればよい。かかる変形例においても、上記実施例と同様の効果を得ることが可能である。尚、この変形例において、ヒューズIC102が特許請求の範囲に記載した「短絡検出回路」に相当する。
 また、上記の実施例においては、昇圧回路14を構成する下アーム素子26の短絡を検出するものである。しかし、本発明はこれに限定されるものではなく、インバータ回路16を構成するアーム素子の短絡を検出するものに適用することとしてもよい。
 また、上記の実施例においては、パワー半導体である上アーム素子24及び下アーム素子26が有するスイッチング素子としてIGBT24a,26aを用いることとしている。しかし、本発明はこれに限定されるものではなく、パワーMOSFETを用いることとしてもよい。
 また、上記の実施例においては、電力変換装置10を電気自動車やハイブリッド車両に搭載するものとした。しかし、本発明はこれに限定されるものではなく、車両以外のものに搭載するものとしてもよい。
 10 電力変換装置
 12 車載バッテリ
 14 昇圧回路
 16 インバータ回路
 18 バッテリヒューズ
 24 上アーム素子
 26 下アーム素子
 30 ヒューズ用スイッチング素子
 32,34 ボンディングワイヤ
 40 パワーモジュール
 70 上アーム用駆動IC
 72 下アーム用駆動IC
 P 正極電極
 N 負極電極
 CL 共通接続点

Claims (10)

  1.  正極電極と負極電極との間に直列接続される上アーム素子及び下アーム素子である一対のパワー半導体素子と、
     前記下アーム素子の短絡を検出する短絡検出回路と、
     前記上アーム素子の前記正極電極側の正極側端子と前記下アーム素子の前記負極電極側の負極側端子との間に介在し、前記短絡の検出時に前記正極側端子と前記負極側端子とが接続されるように駆動されるヒューズ用スイッチング素子と、
     前記負極側端子と前記負極電極とを接続させる金属細線からなる遮断部と、
     を備えることを特徴とする電力変換装置。
  2.  前記短絡検出回路により前記短絡が検出された際に前記ヒューズ用スイッチング素子をオン駆動させるヒューズ駆動回路を備えることを特徴とする請求項1記載の電力変換装置。
  3.  前記ヒューズ駆動回路は、前記ヒューズ用スイッチング素子を非飽和領域でオン駆動させることを特徴とする請求項2記載の電力変換装置。
  4.  前記ヒューズ用スイッチング素子は、前記正極電極と前記負極電極との間の電圧に耐え得る高耐圧小容量IGBTであることを特徴とする請求項1乃至3の何れか一項記載の電力変換装置。
  5.  前記ヒューズ用スイッチング素子は、コレクタが前記正極側端子に接続されかつエミッタが前記負極側端子に接続されるように実装されると共に、
     前記遮断部の金属細線は、前記ヒューズ用スイッチング素子のエミッタと前記負極電極との間に介在することを特徴とする請求項4記載の電力変換装置。
  6.  前記負極側端子と前記ヒューズ用スイッチング素子のエミッタとは、金属細線を介して接続されることを特徴とする請求項5記載の電力変換装置。
  7.  前記短絡検出回路は、前記上アーム素子のオン駆動時にセンスエミッタに流れる電流に基づいて、前記下アーム素子の短絡を検出することを特徴とする請求項1乃至6の何れか一項記載の電力変換装置。
  8.  前記短絡検出回路は、前記下アーム素子のコレクタ-エミッタ間電圧に基づいて、該下アーム素子の短絡を検出することを特徴とする請求項1乃至6の何れか一項記載の電力変換装置。
  9.  前記一対のパワー半導体素子は、樹脂モールドされるパワーモジュールに搭載される素子であることを特徴とする請求項1乃至8の何れか一項記載の電力変換装置。
  10.  前記一対のパワー半導体素子は、昇降圧回路又はインバータ回路を構成する素子であることを特徴とする請求項1乃至9の何れか一項記載の電力変換装置。
PCT/JP2013/064254 2013-05-22 2013-05-22 電力変換装置 WO2014188538A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/783,312 US9627957B2 (en) 2013-05-22 2013-05-22 Power conversion device
DE112013007105.3T DE112013007105B4 (de) 2013-05-22 2013-05-22 Leistungsumwandlungsvorrichtung
PCT/JP2013/064254 WO2014188538A1 (ja) 2013-05-22 2013-05-22 電力変換装置
JP2015517984A JP6061029B2 (ja) 2013-05-22 2013-05-22 電力変換装置
CN201380076700.2A CN105229910B (zh) 2013-05-22 2013-05-22 电力转换装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/064254 WO2014188538A1 (ja) 2013-05-22 2013-05-22 電力変換装置

Publications (1)

Publication Number Publication Date
WO2014188538A1 true WO2014188538A1 (ja) 2014-11-27

Family

ID=51933127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064254 WO2014188538A1 (ja) 2013-05-22 2013-05-22 電力変換装置

Country Status (5)

Country Link
US (1) US9627957B2 (ja)
JP (1) JP6061029B2 (ja)
CN (1) CN105229910B (ja)
DE (1) DE112013007105B4 (ja)
WO (1) WO2014188538A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018065398A (ja) * 2016-10-17 2018-04-26 マツダ株式会社 車両の電源供給装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2545236B (en) * 2015-12-10 2017-12-13 Rolls Royce Plc A method of controlling an inverter
JP6800723B2 (ja) * 2016-12-05 2020-12-16 株式会社ミツトヨ エンコーダ及びエンコーダの光源
CN108879904A (zh) * 2018-08-22 2018-11-23 成都信息工程大学 一种车载充电机变流电路
EP3691127A1 (de) * 2019-01-31 2020-08-05 Siemens Aktiengesellschaft Sicherer elektronischer schalter
DE102019218893B4 (de) * 2019-12-04 2021-12-30 Volkswagen Aktiengesellschaft Hochsetzsteller und Verfahren zum Betreiben eines Hochsetzstellers
JP7142751B1 (ja) * 2021-07-05 2022-09-27 三菱電機株式会社 電力変換装置、及び遮断機構

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126304A (ja) * 1994-10-28 1996-05-17 Toshiba Emi Ltd スイッチング電源
JP2008235502A (ja) * 2007-03-20 2008-10-02 Mitsubishi Electric Corp 樹脂封止型半導体装置
JP2010015831A (ja) * 2008-07-03 2010-01-21 Sumitomo Heavy Ind Ltd 充放電システムの異常判定方法及び異常判定装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280014A (ja) 2005-03-25 2006-10-12 Fuji Xerox Co Ltd 電源装置の保護回路
CN101382585B (zh) * 2007-09-07 2011-01-26 比亚迪股份有限公司 一种电机中逆变器的测试方法、装置及电机
WO2010122648A1 (ja) * 2009-04-23 2010-10-28 トヨタ自動車株式会社 電動車両の電源システムおよびその制御方法
JP5315155B2 (ja) * 2009-07-23 2013-10-16 日立オートモティブシステムズ株式会社 半導体素子制御装置、車載用電機システム
JP5618595B2 (ja) * 2010-04-01 2014-11-05 日立オートモティブシステムズ株式会社 パワーモジュール、およびパワーモジュールを備えた電力変換装置
JP5720641B2 (ja) * 2012-08-21 2015-05-20 株式会社デンソー スイッチングモジュール
FR3000322B1 (fr) * 2012-12-21 2016-05-20 Schneider Electric Ind Sas Dispositif de protection contre une surintensite electrique d'au moins une branche electronique de commutation, systeme de conversion comportant un tel dispositif de protection, et procede de pilotage associe
US20150295489A1 (en) * 2012-12-25 2015-10-15 Toyota Jidosha Kabushiki Kaisha Semiconductor device
JP2014166033A (ja) * 2013-02-25 2014-09-08 Toyota Motor Corp 電源装置
KR101756578B1 (ko) * 2013-06-24 2017-07-10 도요타 지도샤(주) 전원 장치
WO2015145679A1 (ja) * 2014-03-27 2015-10-01 株式会社日立製作所 電力変換ユニット、電力変換装置、及び電力変換装置の製造方法
DE102015103247A1 (de) * 2015-03-05 2016-09-08 Ge Energy Power Conversion Technology Limited Schaltmodul mit Kurzschlussschutz und Leistungselektronikmodul mit diesem

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126304A (ja) * 1994-10-28 1996-05-17 Toshiba Emi Ltd スイッチング電源
JP2008235502A (ja) * 2007-03-20 2008-10-02 Mitsubishi Electric Corp 樹脂封止型半導体装置
JP2010015831A (ja) * 2008-07-03 2010-01-21 Sumitomo Heavy Ind Ltd 充放電システムの異常判定方法及び異常判定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018065398A (ja) * 2016-10-17 2018-04-26 マツダ株式会社 車両の電源供給装置

Also Published As

Publication number Publication date
DE112013007105T5 (de) 2016-03-10
US9627957B2 (en) 2017-04-18
US20160072401A1 (en) 2016-03-10
JPWO2014188538A1 (ja) 2017-02-23
CN105229910B (zh) 2017-11-28
DE112013007105B4 (de) 2021-08-05
CN105229910A (zh) 2016-01-06
JP6061029B2 (ja) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6061029B2 (ja) 電力変換装置
CN107887939B (zh) 电池组隔离装置
JP5202528B2 (ja) 電力変換器
KR101756578B1 (ko) 전원 장치
CN110998777B (zh) 功率转换装置
JP5206198B2 (ja) 電力変換回路の駆動回路
JPWO2019043806A1 (ja) 電力変換装置
JP2010075007A (ja) 電力変換回路の駆動回路
EP3722142B1 (en) Electric vehicle power relay assembly and driving method therefor
JP5781185B1 (ja) 樹脂封止型半導体装置
JP6461264B1 (ja) 電力変換装置
KR101904682B1 (ko) 전류 차단 장치
US10877102B2 (en) Voltage detection device
US11183834B2 (en) Semiconductor module and power conversion apparatus having a diode bridge circuit and a protection circuit
JP4194420B2 (ja) 過電流保護回路を備えるパック電池
JP6164788B1 (ja) 車両用電源供給システム、及び車両用電源供給システムの制御方法
CN112701931A (zh) 功率转换装置及功率转换装置一体化旋转电机
JP6794841B2 (ja) 電力変換装置、及びその製造方法
US10599198B2 (en) Load driving device
JP6481593B2 (ja) スイッチング素子の端子接続構造
WO2018193581A1 (ja) 電力変換装置
US20230421056A1 (en) Power conversion device
CN220525956U (zh) 固态断路器故障检测装置和包含其的固态断路器
JP7195386B1 (ja) 電力変換装置
US20210354563A1 (en) Semiconductor unit, battery unit, and vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076700.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015517984

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14783312

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013007105

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885282

Country of ref document: EP

Kind code of ref document: A1