WO2014188510A1 - 信号伝送回路、信号伝送回路を備えた半導体集積回路用パッケージ、及び、半導体集積回路用パッケージの試験方法 - Google Patents

信号伝送回路、信号伝送回路を備えた半導体集積回路用パッケージ、及び、半導体集積回路用パッケージの試験方法 Download PDF

Info

Publication number
WO2014188510A1
WO2014188510A1 PCT/JP2013/064066 JP2013064066W WO2014188510A1 WO 2014188510 A1 WO2014188510 A1 WO 2014188510A1 JP 2013064066 W JP2013064066 W JP 2013064066W WO 2014188510 A1 WO2014188510 A1 WO 2014188510A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
test
package
signal transmission
coupling capacitor
Prior art date
Application number
PCT/JP2013/064066
Other languages
English (en)
French (fr)
Inventor
規雄 中島
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/064066 priority Critical patent/WO2014188510A1/ja
Publication of WO2014188510A1 publication Critical patent/WO2014188510A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2884Testing of integrated circuits [IC] using dedicated test connectors, test elements or test circuits on the IC under test
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/642Capacitive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/62Protection against overvoltage, e.g. fuses, shunts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Definitions

  • the present invention relates to a signal transmission circuit including an AC coupling capacitor for high-speed signals, a package for a semiconductor integrated circuit on which the signal transmission circuit is mounted, and sealing of the package for the semiconductor integrated circuit or printing the package for the semiconductor integrated circuit
  • the present invention relates to a semiconductor integrated circuit package testing method that enables a DC test of the semiconductor integrated circuit package even after being mounted on a substrate.
  • a method of transmitting signals using a positive signal and a negative signal as one high-speed differential signal pair is used.
  • a capacitor AC coupling capacitor
  • AC coupling capacitors are required for the number of positive and negative signals.
  • an AC coupling capacitor has been mounted on a printed circuit board, but if an AC coupling capacitor is provided in a package for a semiconductor integrated circuit, which is an electronic device mounted on the printed circuit board, the AC coupling capacitor is mounted on the printed circuit board. Is unnecessary, and the degree of freedom of wiring on the printed circuit board is increased, which is preferable.
  • Japanese Patent Laid-Open No. 2006-180336 discloses a high-frequency module in which an AC coupling capacitor is formed on the inner layer of a semiconductor package.
  • Japanese Patent Application Laid-Open No. 2010-166276 discloses a high frequency substrate in which an AC coupling capacitor mounted on a semiconductor package is matched with the impedance of the wiring and the package.
  • an object of the present invention is to provide a transmission circuit including an AC coupling capacitor, which enables a DC test. Further, according to the present invention, a semiconductor integrated circuit package on which a transmission circuit including an AC coupling capacitor is mounted can be sealed, or a DC test can be performed even after the semiconductor integrated circuit package is mounted on a printed circuit board. It is an object of the present invention to provide a semiconductor integrated circuit package and a test method for the semiconductor integrated circuit package.
  • the present invention provides a signal transmission circuit including an AC coupling capacitor, a DC test circuit connected in parallel to the AC coupling capacitor, a control circuit for the DC test circuit, And the control circuit cuts off the DC test circuit by supplying the control DC current after the DC test DC current is supplied to the DC test circuit.
  • the DC test of the signal transmission circuit is performed via the DC test circuit parallel to the AC coupling capacitor. After the DC test is completed, the DC test circuit is shut off by the control circuit, and thereafter In addition, an AC test of a signal transmission circuit and a coupling effect of an AC coupling capacitor can be exhibited.
  • another invention is a package for a semiconductor integrated circuit on which a signal transmission circuit including an AC coupling capacitor is mounted, and the signal transmission circuit is connected in parallel to the AC coupling capacitor.
  • a DC test circuit ; and a control circuit for the DC test circuit, wherein the control circuit supplies the control DC current after the DC test DC current is supplied to the DC test circuit.
  • the DC test circuit is cut off.
  • still another invention includes a signal transmission circuit including an AC coupling capacitor, the signal transmission circuit including a DC test circuit connected in parallel to the AC coupling capacitor and the DC test.
  • a test method for a package for a semiconductor integrated circuit comprising a control circuit for a circuit for a circuit, wherein the control circuit is controlled such that a direct current for direct current test is supplied to the direct current test circuit, and the direct current of the signal transmission circuit is controlled After performing the test, the control circuit supplies a control DC current to the DC test circuit to shut off the DC test circuit, and then supplies an AC signal to the signal transmission circuit. It is characterized in that an AC test can be performed.
  • a transmission circuit including an AC coupling capacitor which enables a DC test. Furthermore, a semiconductor integrated circuit in which a transmission circuit including an AC coupling capacitor is mounted, and a semiconductor integrated circuit package can be sealed or a DC test can be performed even after the semiconductor integrated circuit package is mounted on a printed circuit board. Package and a method for testing the semiconductor integrated circuit package can be provided.
  • FIG. 3 is a plan view of a semiconductor integrated circuit package on which the circuit according to FIG.
  • FIG. 4 is a plan view of the semiconductor integrated circuit package according to FIG. 3. It is the top view to which the via
  • FIG. 4 is a cross-sectional view of FIG. 3.
  • FIG. 3 is a plan view showing the positional relationship among the AC coupling capacitor, fuse, and diode of FIG. 2. It is sectional drawing of FIG. FIG.
  • FIG. 5 is a plan view of a package in which a circuit configuration in which a fuse is disposed not adjacent to an AC coupling capacitor but adjacent to the AC coupling capacitor is seen through the semiconductor integrated circuit package.
  • FIG. 10 is a plan view of a surface layer of the package for a semiconductor integrated circuit according to FIG. 9. 3 is a circuit configuration of another embodiment different from the circuit configuration according to FIG. 2 of a transmission circuit including an AC coupling capacitor.
  • the semiconductor integrated circuit 800 is mounted on a semiconductor integrated circuit package 801, and the semiconductor integrated circuit package 801 is mounted on a printed circuit board 802.
  • the present invention relates to an improvement in a signal transmission circuit having an AC coupling capacitor mounted thereon, and the AC coupling capacitor can be used after sealing a package for a semiconductor integrated circuit or after mounting a package for a semiconductor integrated circuit on a printed circuit board. Enables DC testing of signal transmission circuits equipped with “Semiconductor integrated circuit package” is hereinafter abbreviated as “package”.
  • Fig. 2 is a circuit for enabling a DC test on a package equipped with an AC coupling capacitor. This circuit allows DC testing with the package mounted on a printed circuit board. Furthermore, this circuit makes it possible for the capacitor to exhibit normal function operation (DC cutoff) after a DC test.
  • Numeral 100 is a wiring inside the semiconductor integrated circuit, and is a code 101 input / output circuit.
  • Reference numeral 102 denotes a wiring in the semiconductor package.
  • An AC coupling capacitor 103 is connected to the wiring 102, and a fuse 104 is connected in parallel to the AC coupling capacitor.
  • Reference numeral 105 denotes a diode connected to the upstream side of the connection point of the wiring 102 of the fuse 104.
  • the fuse 104 and the diode 105 are provided for each AC coupling capacitor 103 of the signal line.
  • Reference numerals 106-1 to 106-n denote pads appearing on the surface layer of the semiconductor package.
  • Reference numeral 107 denotes a control pad of each diode 105, which is connected to each diode 103 and appears on the surface layer of the package.
  • the number of reference numerals 101 to 106-1 needs to be the same as the number of signals on the semiconductor package. However, since the pad 107 is common to the diodes 105 in each signal line, only one pad 107 is required on the semiconductor package.
  • the cathode of the diode 105 is connected to the signal line 102, and the anode of the diode 105 is connected to the pad 107.
  • the diode 105, the pads 106-1 to 106-n, and the pad 107 are an example of a control circuit that controls the fuse 104 as an example of a DC test circuit. Since the pads 106-1 ... 106-n and the pads 107 appear on the surface layer of the package, the DC test of the package can be performed even after the package is sealed or after the package is mounted on the printed circuit board. Become.
  • the package is first subjected to a direct current test and then an alternating current test.
  • the pad 107 is maintained at 0V to -1V and the diode 105 is controlled in the reverse direction to open the diode.
  • the DC current at the time of the DC test advances through the package through the wiring 100, the input / output circuit 101, the wiring 102, and the fuse 104, thereby checking the continuity and impedance in the package.
  • the fuse 104 is blown and cut off. Thereafter, since the direct current does not flow through the wiring 102 by the alternating current coupling capacitor 103, only the alternating current test of the package becomes possible. As a result, the DC test can be performed prior to the AC test at the final stage of the package on which the AC coupling capacitor is mounted. The package exhibits the function of the semiconductor integrated circuit through an AC test after the DC test. In the course of the DC test, if there is a concern about damage to the semiconductor integrated circuit, such as when the voltage of the wiring 102 is too high, the pads 106-1 to 106-n may not be connected to 0V at the same time. Instead, after only the pad 106-1 is connected to 0V and the fuse 104 is cut off, the plurality of fuses 104 may be cut off in order, such as only 106-2 is connected to 0V.
  • FIG. 3 is a plan view of a package on which the circuit according to FIG. 2 is mounted.
  • FIG. 3 shows the package from the front surface to the back surface.
  • FIG. 4 (plan view) shows only the part visible from the surface of the package in FIG.
  • Reference numeral 200 denotes a semiconductor integrated circuit.
  • the fuse 104 is stacked immediately above the AC coupling capacitor 103.
  • the diode 105 is disposed perpendicular to the package while adjacent to one electrode of the AC coupling capacitor 103. This is to make the stub length from the AC coupling capacitor 103 as short as possible after the fuse 104 is cut off.
  • the diode 105 and the AC coupling capacitor are arranged in the package, even if the package is normally used after the fuse 104 is cut off, the reflection of the signal wave from the fuse 104 and the diode 105 is minimized. Suppressed to the limit.
  • reference numeral 201 denotes a layer switching region from the front surface layer to the back surface layer of the package. An enlarged view of this region is shown in FIG. 5 (a plan view showing the positional relationship between vias, pads, and wirings of the front surface layer, inner layer, and back layer of the package).
  • FIG. 6 is a cross-sectional view of the package cut in the vertical direction. The package is composed of four layers.
  • Reference numeral 300 denotes a pad formed on the surface layer (first layer) of the package, and reference numeral 301 denotes a via that connects the surface layer pad 300 and the second layer pads 302 and 304.
  • Reference numeral 303 denotes a second layer wiring pattern.
  • the second layer pads 302 and 304 are connected to the third layer pads 306 and 308 by vias 305 connecting the second layer and the third layer.
  • Reference numeral 307 denotes a third layer wiring pattern.
  • Reference numeral 309 denotes a via connecting the third layer pad and the back surface layer of the package.
  • a back layer pad 310 is provided on the back surface of the package.
  • Reference numeral 311 denotes a wiring pattern on the back surface layer of the package, and reference numeral 312 denotes a pad on the back surface layer of the package, which is a connection portion with the printed circuit board.
  • Each layer of the package is insulated by insulators 400, 401, 402.
  • the AC capacitor 103 is mounted on the component mounting pad on the surface layer of the package on the mounting 500, and the diode 105 is mounted on the component mounting pads 501 and 502.
  • the component mounting pad 502 and the surface layer pad 300 are connected by a pad surface layer wiring 503. 5 and 6, the wiring length of each layer is shown as the shortest, but it is not limited to this.
  • the number of package layers is not limited to four, and an optimal number of layers is appropriately selected according to the package configuration. As for the pad or via diameter of each layer of the package, an optimum value is selected according to the package configuration.
  • FIG. 7 is a plan view of the package in which the portions of the AC coupling capacitor 103 (fuse 104) and the diode (105) in FIG. 3 are enlarged
  • FIG. 8 is a cross-sectional view of FIG. 7 cut in the vertical direction of the package.
  • Reference numerals 500 to 502 denote component mounting pads on the package surface layer as described above.
  • a fuse 104 is mounted immediately above the AC coupling capacitor 103, and the diode 105 is disposed adjacent to the AC coupling capacitor 103.
  • the pads 106-1 to 106-n and the pad 107 are formed so as to be connected to the wiring 503 on the package surface layer.
  • FIG. 9 is a plan view of the package according to this embodiment.
  • FIG. 9 is shown as a perspective view from the surface layer portion to the back surface portion of the package.
  • FIG. 10 is a plan view showing the plane of the package without making FIG. 9 a perspective view.
  • the circuit configuration enabling the DC test of the package is the same as that of FIG. 2 except that the position of the fuse 104 is different.
  • FIG. 9 shows the fuse 104 and the like as a plan view seen through the package.
  • FIG. 10 is a plan view of the surface layer of the package according to FIG. Although it is desirable that the capacitor 103, the fuse 104, and the diode 105 be arranged as close as possible to each other, due to the arrangement space, in the embodiment of FIG. 9, the pair of the capacitor 103 and the adjacent fuse pair is aligned in a straight line. Arranged on the package. Compared with the embodiment of FIG.
  • the distance between the vias 202 and 203 adjacent to each other is reduced, so that crosstalk may increase between adjacent vias, but the fuse 104 is placed directly above the capacitor 103. This is effective when it cannot be placed.
  • FIG. 11 shows another embodiment of a circuit that enables a DC test of a package.
  • the diode 105 of the circuit shown in FIG. The gate and drain of the NMOS transistor 108 are connected to the pad 107, and the source thereof is connected to the wiring 102.
  • the DC test is performed on the package prior to the AC test.
  • the pad 107 is fixed at 0 V so that no current flows through the NMOS transistor 108.
  • all pads other than the pads 106-1 to 106-n and 107 in the package are opened, and the pads 106-1 to 106-n are connected to 0V.
  • a voltage of about 1 to 3 V is applied to the pad 107, and the NMOS transistor 108 is turned on.
  • the voltage applied to the pad 107 may be appropriately set according to the characteristics of the NMOS transistor 108.
  • the fuse 104 is cut off. Similar to the embodiment according to FIG. 2, only the AC test of the package is possible after the fuse 104 is cut off.
  • the semiconductor integrated circuit of the package may be operated normally.
  • a PMOS transistor may be used instead of the NMOS transistor 108.
  • the pad 107 is fixed to about 1 to 3 V as a setting at the time of the DC test for the NMOS transistor.
  • the pads 106-1 to 106-n are fixed to about 1 to 3V, and the pad 107 is fixed to 0V, whereby the fuse 104 is cut off.
  • the NMOS transistor 108 is mounted instead of the diode 105 according to FIG. 2 or 7.
  • the signal transmission circuit according to the above-described embodiment can be applied to transmission of high-speed interface signals such as PCI-Express and Fiber Channel.
  • the semiconductor integrated circuit package according to the above-described embodiment can be subjected to a direct current test when it is mounted on a computer such as a PC printed board, a server printed board, or a storage printed board.
  • a computer such as a PC printed board, a server printed board, or a storage printed board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】交流結合コンデンサを備える伝送回路であって、直流試験を可能にする伝送回路を提供する。 【解決手段】本発明は、交流結合コンデンサを備える信号伝送回路であって、前記交流結合コンデンサに並列に接続された直流試験用回路と、前記直流試験用回路の制御回路と、を備え、前記制御回路は、前記直流試験用回路に直流試験用直流電流が供給された後制御用直流電流を供給して当該直流試験用回路を遮断することを特徴とする。

Description

信号伝送回路、信号伝送回路を備えた半導体集積回路用パッケージ、及び、半導体集積回路用パッケージの試験方法
 本発明は、高速信号用交流結合コンデンサを備える信号伝送回路、当該信号伝送回路が搭載された半導体集積回路用パッケージ、及び、半導体集積回路用パッケージの封止、あるいは、半導体集積回路用パッケージをプリント基板に実装した後でも、当該半導体集積回路用パッケージの直流試験を可能とする半導体集積回路用パッケージの試験方法に関するものである。
 数Gbps以上の高速信号の伝送には、正極信号と負極信号とを一つの高速差動信号ペアとして信号を伝送する方式が用いられている。各信号の直流成分を除去するため、正極、負極それぞれの信号配線上に直列にコンデンサ(交流結合コンデンサ)が接続されている。交流結合コンデンサは、正極及び負極の信号の数だけ必要である。
 従来、交流結合コンデンサはプリント基板上に搭載されてきたが、交流結合コンデンサをプリント基板に搭載される側の電子装置である半導体集積回路用パッケージに設ければプリント基板への交流結合コンデンサの搭載が不要となり、プリント基板上の配線の自由度が増すことになって好ましいとされている。
 例えば、特開2006-180336号公報は、交流結合コンデンサが半導体パッケージの内層で形成された高周波モジュールを開示している。さらに、特開2010-166276号公報は、半導体パッケージ上に搭載した交流結合コンデンサと配線のインピーダンスとを整合させた高周波用基板とそのパッケージを開示している。
特開2006-180336号公報 特開2010-166276号公報
 ところで、半導体集積回路用パッケージが交流結合コンデンサを搭載する場合、交流結合コンデンサは直流を遮断するために、半導体集積回路用パッケージの直流試験は不可能である。そこで、プローブを使用して半導体集積回路と交流結合コンデンサ間、交流結合コンデンサと半導体パッケージのパッド間に分けて別々に直流試験を行ったり、または、交流結合コンデンサ搭載部分を最初、0オームに近い抵抗等で短絡し、直流試験終了後に交流結合コンデンサに交換する等が行われていた。
 しかし、いずれの方法も、半導体集積回路用パッケージの封止前に直流試験を実施する必要があり、半導体集積回路用パッケージのエンドユーザの側で直流試験を行うことはできなかった。特開2006-180336号公報のように、半導体パッケージの内層でコンデンサを形成した場合はそもそも直流試験自体が不可能でもあった。
 そこで、本発明は、交流結合コンデンサを備える伝送回路であって、直流試験を可能にする伝送回路を提供することを目的とする。さらに、本発明は、交流結合コンデンサを備える伝送回路が搭載された、半導体集積回路用パッケージの封止、あるいは、当該半導体集積回路用パッケージがプリント基板に実装された後でも、直流試験が可能となる半導体集積回路用パッケージ、及び、当該半導体集積回路用パッケージの試験方法を提供することを目的とするものである。
 前記目的を達成するために、本発明は、交流結合コンデンサを備える信号伝送回路であって、前記交流結合コンデンサに並列に接続された直流試験用回路と、前記直流試験用回路の制御回路と、を備え、前記制御回路は、前記直流試験用回路に直流試験用直流電流が供給された後制御用直流電流を供給して当該直流試験用回路を遮断することを特徴とする。
 本発明によれば、信号伝送回路の直流試験は、交流結合コンデンサに並列された直流試験用回路を介して実行し、直流試験終了後には、制御回路によって直流試験用回路が遮断されて、以後、信号伝送回路の交流試験や交流結合コンデンサのカップリング効果を発揮させることができる。
 前記目的を達成するために、他の発明は、交流結合コンデンサを備える信号伝送回路が搭載された半導体集積回路用パッケージであって、前記信号伝送回路は、前記交流結合コンデンサに並列に接続された直流試験用回路と、前記直流試験用回路の制御回路と、を備え、前記制御回路は、前記直流試験用回路に直流試験用直流電流が供給された後、制御用直流電流を供給して当該直流試験用回路を遮断することを特徴とする。
 前記目的を達成するために、さらに他の発明は、交流結合コンデンサを備える信号伝送回路が搭載され、当該信号伝送回路は、前記交流結合コンデンサに並列に接続された直流試験用回路と前記直流試験用回路の制御回路とを備える半導体集積回路用パッケージの試験方法であって、前記直流試験用回路に直流試験用直流電流が供給されるように前記制御回路を制御して前記信号伝送回路の直流試験を行った後、前記制御回路が御用直流電流を前記直流試験用回路に供給して当該直流試験用回路を遮断し、次いで、前記信号伝送回路に交流信号を供給して当該信号伝送回路の交流試験を行い得るようにしたことを特徴とする。
 以上説明したように、本発明によれば、交流結合コンデンサを備える伝送回路であって、直流試験を可能にする伝送回路を提供することができる。さらに、交流結合コンデンサを備える伝送回路が搭載された、半導体集積回路用パッケージの封止、あるいは、当該半導体集積回路用パッケージがプリント基板に実装された後でも、直流試験が可能となる半導体集積回路用パッケージ、及び、当該半導体集積回路用パッケージの試験方法を提供することができる。
半導体集積回路、半導体集積回路用パッケージ、及び、プリント基板の関係を示した模式図(平面図)である。 交流結合コンデンサを搭載したパッケージに対して直流試験を可能にするための回路である。 図2に係る回路が搭載された半導体集積回路用パッケージの表面から裏面までを透視させた平面図である。 図3に係る半導体集積回路用パッケージの平面図である。 半導体集積回路用パッケージ内の、ビア及びパッド部分を拡大した平面図である。 図3の断面図である。 図2の交流結合コンデンサ、ヒューズ、ダイオードの位置関係を示した平面図である。 図7の断面図である。 ヒューズを交流結合コンデンサの直上ではなく交流結合コンデンサに隣接して配置した回路構成を、半導体集積回路用パッケージ内を透視するようした、当該パッケージの平面図である。 図9に係る半導体集積回路用パッケージの表面層の平面図である。 交流結合コンデンサを備える伝送回路の図2に係る回路構成とは異なる他の実施形態の回路構成である。
 以下、本発明の実施形態を、図面を用いて説明する。先ず、半導体集積回路、半導体パッケージ、及び、プリント基板の関係を図1に基づいて説明する。半導体集積回路800は半導体集積回路用パッケージ801に搭載され、半導体集積回路用パッケージ801はプリント基板802に搭載されている。本発明は、交流結合コンデンサを搭載した信号伝送回路の改良に係るものであり、半導体集積回路用パッケージの封止後、或いは、半導体集積回路用パッケージをプリント基板に実装した後でも、交流結合コンデンサを搭載した信号伝送回路の直流試験を可能とするものである。“半導体集積回路用パッケージ”を以後“パッケージ”と略して記載する。
 図2は、交流結合コンデンサを搭載したパッケージに対して直流試験を可能にするための回路である。この回路は、パッケージがプリント基板に実装された状態で、直流試験を可能にする。さらに、この回路は、直流試験後にコンデンサに通常機能の動作(直流遮断)を発揮させることを可能にする。
 符号100は半導体集積回路内部の配線であり、符号101入出力回路である。符号102は半導体パッケージ内の配線である。配線102には交流結合コンデンサ103が接続され、交流結合コンデンサにヒューズ104が並列に接続されている。符号105はヒューズ104の配線102の接続点の上流側に接続するダイオードである。ヒューズ104、ダイオード105は、信号線の交流結合コンデンサ103毎に設けられている。106-1~106-nは半導体パッケージの表面層に現れるパッドである。
 符号107は、夫々のダイオード105の制御パッドであり、各ダイオード103に接続され、かつ、パッケージの表面層に現われている。符号101~106-1の構成は半導体パッケージ上の信号本数と同数必要であるが、パッド107は各信号線におけるダイオード105に対して共通であるため、半導体パッケージ上に1つあればよい。ダイオード105のカソードは信号線102に接続され、ダイオード105のアノードがパッド107に接続されている。ダイオード105とパッド106-1~106-nとパッド107は、直流試験用回路の一例としてのヒューズ104を制御する制御回路の一例である。パッド106-1・・・106-n、パッド107がパッケージの表面層に現われているために、パッケージの封止後、あるいは、パッケージをプリント基板に実装した後でも、パッケージの直流試験が可能になる。
 次に、パッケージの試験の手順について説明する。パッケージに対して、最初に直流試験が行なわれた後に交流試験が行われる。直流試験において、パッド107を0V~-1Vに維持してダイオード105を逆方向に制御してダイオードをオープンにする。直流試験時の直流電流は配線100、入出力回路101、配線102、ヒューズ104を経てパッケージ内を進むことによって、パッケージ内での導通やインピーダンスのチェックが行われる。
 直流試験終了後、パッケージ内の106-1~106-n及び107以外のパッドは全てオープンとされ、パッド106-1~106-nは0Vに接続される。パッド107から数百mA程度の直流定電流(数十~数百mV程度の電圧印加)が供給されることによってダイオード105が順方向に制御されてダイオードが導通状態に維持される。直流定電流はダイオード105、配線102を経て、交流結合コンデンサ103を流れることなくヒューズ104を経てパッド106-1(106-2・・・・106-n)を流れる。
 この過程でヒューズ104は溶断されて遮断される。この後、交流結合コンデンサ103によって、配線102に直流が流れないために、パッケージの交流試験のみが可能となる。この結果、交流結合コンデンサを搭載したパッケージの最終形態の段階で交流試験に先立ち直流試験が可能となる。パッケージは、直流試験後の交流試験を経て、半導体集積回路の機能を発揮するようになる。なお、直流試験の過程で、配線102の電圧が高すぎた場合等などで半導体集積回路の破損が懸念される場合には、パッド106-1~106-nが同時に0Vに接続されるのではなく、パッド106-1のみを0Vに接続してヒューズ104を遮断後、以後、106-2のみを0V接続、の如く、複数のヒューズ104を順番に遮断すればよい。
 図3は、図2に係る回路が搭載されたパッケージの平面図である。図3はパッケージ表面から裏面までを透視させて示されている。図3のうち、パッケージの表面から見える部分のみを示したのが図4(平面図)である。符号200は半導体集積回路である。ヒューズ104は交流結合コンデンサ103の直上に積まれている。ダイオード105は交流結合コンデンサ103の一方の電極に隣接しながらパッケージに対して垂直に配置されている。これはヒューズ104を遮断後、交流結合コンデンサ103からのスタブ長をできるだけ短くするためである。このようにして、ダイオード105と交流結合コンデンサとがパッケージに配置されると、ヒューズ104が遮断された後でパッケージが普通に使用されても、ヒューズ104及びダイオード105からの信号波の反射が最低限に抑制される。
 図3において、符号201はパッケージの表面層から裏面層までの層切り替えの領域である。この領域の拡大図を図5(パッケージの表面層、内層、裏面層のビア、パッド、及び配線の位置関係を示す平面図)に示す。図6はパッケージを垂直方向に切断した断面図である。パッケージは4層から構成されている。符号300はパッケージの表面層(第1層)に形成されたパッドであり、符号301は表面層のパッド300と第2層のパッド302,304とを接続するビアである。符号303は第2層の配線パターンである。
 第2層のパッド302,304は、第2層と第3層を接続するビア305によって、第3層のパッド306,308に接続されている。符号307は第3層の配線パターンである。符号309は第3層のパッドとパッケージの裏面層を接続するビアである。パッケージの裏面には裏面層のパッド310が設けられている。符号311はパッケージの裏面層の配線パターンであり、符号312はパッケージの裏面層のパッドで、プリント基板との接続部分である。パッケージの各層は絶縁体400,401,402によって絶縁されている。交流コンデンサ103はパッケージの表面層の部品搭載用パッド上に搭載500の上に搭載され、ダイオード105は部品搭載用パッド501及び502の上に搭載されている。部品搭載用パッド502と表面層のパッド300は、パッド表面層の配線503によって接続されている。図5、6では、各層の配線長が最短に示されているが、これに限られない。パッケージの層数も4層に限られず、パッケージの構成に応じて適宜最適な層数が選択される。パッケージの各層のパッドまたはビアの直径についても、パッケージの構成に応じて最適な値が選択される。
 図7は、図3の交流結合コンデンサ103(ヒューズ104)、ダイオード(105)の部分を拡大した、パッケージの平面図であり、図8は図7をパッケージの垂直方向に切断した断面図である。符号500~502は、既述のとおり、パッケージ表面層にある部品搭載用のパッドである。交流結合コンデンサ103の直上にヒューズ104が搭載されており、そして、ダイオード105は交流結合コンデンサ103に隣接して配置されている。パッド106-1~106-n、パッド107は、パッケージ表面層の配線503に接続して形成されている。
 パッケージにおけるヒューズの配置を変更した実施形態について説明する。図9は、この実施形態に係るパッケージの平面図である。図9は、パッケージの表層部から裏面部への透視図として示されている。図10は、図9を透視図とすることなく、パッケージの平面を示した平面図である。パッケージの直流試験を可能にする回路の構成は、ヒューズ104の位置が異なる他は図2のものと同じである。
 図9において、当該回路は、ヒューズ104を、交流結合コンデンサ103の直上ではなく交流結合コンデンサに隣接して配置している。図9は、パッケージを透視した平面図として、ヒューズ104等を示している。図10は図9に係るパッケージの表面層の平面図である。コンデンサ103、ヒューズ104、ダイオード105は互いにできるだけ隣接して配置することが望まれるものの、配置スペースの関係から、図9の実施形態では、コンデンサ103とこれ隣接するヒューズのペアの一対を一直線状でパッケージ上に配置されている。図3の実施形態と比較すると、互いに隣接するビア202とビア203との間の距離が小さくなるため、隣接ビア間でクロストークが増加する可能性はあるが、ヒューズ104をコンデンサ103の直上に配置できない場合に有効である。交流結合コンデンサ103、ヒューズ104等の各部品を隣接して配置することにより、各部品間の距離を最小として、スタブによる反射の影響を最小限に抑制することができる。
 パッケージの直流試験を可能にする回路の他の実施形態を図11に示す。図11に係る当該回路は、図2に示した回路のダイオード105をNMOSトランジスタ108に変更した。NMOSトランジスタ108のゲート及びドレインをパッド107に接続し、そのソースを配線102に接続している。
 パッケージについて、交流試験に先立ち直流試験が行われる。直流試験に際して、パッド107は0Vに固定されて、NMOSトランジスタ108に電流が流れないようにする。直流試験終了後、パッケージ内のパッド106-1~106-n及び107以外のパッドは全てオープンにされ、パッド106-1~106-nが0Vに接続される。この後、パッド107に1~3V程度の電圧が印加されて、NMOSトランジスタ108がオンされる。パッド107に印加する電圧は、NMOSトランジスタ108の特性に応じて適宜設定されることでよい。次いで、NMOSトランジスタ108、配線102、ヒューズ104、パッド106-1(・・・106-n)の経路を直流電流が流れた後、ヒューズ104が遮断される。図2に係る実施形態と同様に、ヒューズ104の遮断後は、パッケージの交流試験のみが可能となる。パッケージの交流試験終了後は、パッケージの半導体集積回路を通常に動作させればよい。
 NMOSトランジスタ108に代えてPMOSトランジスタでもよい。後者では、NMOSトランジスタに対する直流試験時の設定として、パッド107を1~3V程度に固定する。パッケージの直流試験終了後、パッド106-1~106-nは1~3V程度に固定され、パッド107が0Vに固定されることにより、ヒューズ104が遮断される。図11に係る回路が搭載されたパッケージでは、図2または図7に係るダイオード105の代わりにNMOSトランジスタ108が搭載されていることが視認される。
 既述の実施形態に係る信号伝送回路は、PCI-Express、Fibre Channel等、高速インタフェース信号の伝送用に適用することができる。また、既述の実施形態に係る半導体集積回路用パッケージは、パソコン用プリント基板、サーバ用プリント基板、ストレージ用プリント基板等計算機に実装される段階で、直流試験を実施することができる。既述の実施形態は、本発明の範囲内で当業者によって適宜変更可能である。
100 半導体集積回路内の配線
101 半導体集積回路内の入出力回路
102 半導体集積回路または半導体パッケージ内の配線
103 交流結合コンデンサ
104 ヒューズ
105 ダイオード
106-1~106-n 半導体パッケージ上の信号パッド
107 ダイオード105の制御用パッド
108 NMOSトランジスタ
202、203 互いに隣接するビア
200 半導体集積回路
300 表面層のパッド
301 表面層~第2層を接続するビア
302、304 第2層のパッド
303 第2層の配線
305 第2層~第3層を接続するビア
306、308 第3層のパッド
307 第3層の配線
309 第3層~裏面層を接続するビア
310 裏面層のパッド
311 裏面層の配線
312 裏面層のパッドで、プリント基板との接続部分
400~402 半導体パッケージ断面の、絶縁体部分
500~502 部品搭載用パッド
503 表面層の配線
800 半導体集積回路
801 半導体パッケージ
802 プリント基板
 

Claims (8)

  1.  交流結合コンデンサを備える信号伝送回路であって、
     前記交流結合コンデンサに並列に接続された直流試験用回路と、
     前記直流試験用回路の制御回路と、
     を備え、
     前記制御回路は、前記直流試験用回路に直流試験用直流電流が供給された後制御用直流電流を供給して当該直流試験用回路を遮断することを特徴とする信号伝送回路。
  2.  前記直流試験用回路はヒューズを有し、
     前記制御回路はダイオードを有し、
     当該制御回路は、前記直流試験用回路に直流試験用直流電流が供給されるように前記ダイオードを逆方向に制御し、次いで、当該ダイオードを順方向に制御して、前記制御用直流電流を前記ヒューズに供給して当該ヒューズを遮断する、請求項1記載の信号伝送回路。
  3.  前記交流結合用コンデンサが複数あり、
     各交流結合用コンデンサに前記直流試験用回路が接続され、
     前記制御回路は、各直流試験用回路に前記制御用直流電流を供給する分岐配線を有し、当該分岐配線を介して、前記各直流試験用回路に前記制御用直流電流を同時に供給する、請求項1記載の信号伝送回路。
  4.  前記交流結合用コンデンサが複数あり、
     各交流結合用コンデンサに前記直流試験用回路が接続され、
     前記制御回路は、当該直流試験用回路の複数に前記制御用直流電流を順番に供給する、請求項1記載の信号伝送回路。
  5.  前記交流結合コンデンサに隣接して前記ヒューズが設けられ、前記制御回路が当該ヒューズを遮断した後でのスタブ長と前記ヒューズ搭載用の面積とが削減された、請求項2記載の信号伝送回路。
  6.  前記交流結合用コンデンサの直上に前記ヒューズが搭載されている、請求項5記載の信号伝送回路。
  7.  交流結合コンデンサを備える信号伝送回路が搭載された半導体集積回路用パッケージであって、
     前記信号伝送回路は、
     前記交流結合コンデンサに並列に接続された直流試験用回路と、
     前記直流試験用回路の制御回路と、
     を備え、
     前記制御回路は、前記直流試験用回路に直流試験用直流電流が供給された後、制御用直流電流を供給して当該直流試験用回路を遮断することを特徴とする半導体集積回路用パッケージ。
  8.  交流結合コンデンサを備える信号伝送回路が搭載され、当該信号伝送回路は、前記交流結合コンデンサに並列に接続された直流試験用回路と前記直流試験用回路の制御回路とを備える半導体集積回路用パッケージの試験方法であって、
     前記直流試験用回路に直流試験用直流電流が供給されるように前記制御回路を制御して前記信号伝送回路の直流試験を行った後、前記制御回路が御用直流電流を前記直流試験用回路に供給して当該直流試験用回路を遮断し、次いで、前記信号伝送回路に交流信号を供給して当該信号伝送回路の交流試験を行い得るようにしたことを特徴とする半導体集積回路用パッケージの試験方法。
     
PCT/JP2013/064066 2013-05-21 2013-05-21 信号伝送回路、信号伝送回路を備えた半導体集積回路用パッケージ、及び、半導体集積回路用パッケージの試験方法 WO2014188510A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/064066 WO2014188510A1 (ja) 2013-05-21 2013-05-21 信号伝送回路、信号伝送回路を備えた半導体集積回路用パッケージ、及び、半導体集積回路用パッケージの試験方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/064066 WO2014188510A1 (ja) 2013-05-21 2013-05-21 信号伝送回路、信号伝送回路を備えた半導体集積回路用パッケージ、及び、半導体集積回路用パッケージの試験方法

Publications (1)

Publication Number Publication Date
WO2014188510A1 true WO2014188510A1 (ja) 2014-11-27

Family

ID=51933100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064066 WO2014188510A1 (ja) 2013-05-21 2013-05-21 信号伝送回路、信号伝送回路を備えた半導体集積回路用パッケージ、及び、半導体集積回路用パッケージの試験方法

Country Status (1)

Country Link
WO (1) WO2014188510A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11275126B2 (en) * 2019-07-12 2022-03-15 Realtek Semiconductor Corporation Test system, transmitting device, and receiving device capable of performing multiple tests in AC coupling mode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008985A1 (fr) * 2001-07-17 2003-01-30 Advantest Corporation Circuit d'e/s et appareil de controle
JP2006191791A (ja) * 2005-01-06 2006-07-20 Lg Electronics Inc モーターの電源遮断装置
JP2012053069A (ja) * 2000-08-14 2012-03-15 Teradyne Inc スマートカードおよび識別装置のための検出システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012053069A (ja) * 2000-08-14 2012-03-15 Teradyne Inc スマートカードおよび識別装置のための検出システム
WO2003008985A1 (fr) * 2001-07-17 2003-01-30 Advantest Corporation Circuit d'e/s et appareil de controle
JP2006191791A (ja) * 2005-01-06 2006-07-20 Lg Electronics Inc モーターの電源遮断装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11275126B2 (en) * 2019-07-12 2022-03-15 Realtek Semiconductor Corporation Test system, transmitting device, and receiving device capable of performing multiple tests in AC coupling mode

Similar Documents

Publication Publication Date Title
US7441222B2 (en) Differential pair connection arrangement, and method and computer program product for making same
US20180098415A1 (en) Electronic assemblies and method for manufacturing the same
TWI496257B (zh) 具有焊墊的半導體記憶體裝置
US10483182B2 (en) Intermediate connector, semiconductor device including intermediate connector, and method of manufacturing intermediate connector
WO2014188510A1 (ja) 信号伝送回路、信号伝送回路を備えた半導体集積回路用パッケージ、及び、半導体集積回路用パッケージの試験方法
CN104143820A (zh) 静电放电保护电路及方法
TW202105789A (zh) 顯示面板及其製造方法
JP2017201680A (ja) 伝送路のインピーダンス整合構造
TW202118364A (zh) 電路板及應用其的電子裝置
US20160276091A1 (en) Inductors for circuit board through hole structures
US8604351B2 (en) Printed circuit board with circuit topology
TWI586231B (zh) 電源及訊號延伸器及電路板
TWI518868B (zh) 積體電路
TWI756860B (zh) 訊號傳輸之通道結構
JP2008010469A (ja) 電子装置
US20100103636A1 (en) Substrate device and its manufacturing method
US20120234590A1 (en) Printed circuit board
US8389978B2 (en) Two-shelf interconnect
KR101952440B1 (ko) 프로브 카드
TWI413777B (zh) Multi - power circuit board and its application probe card
JP6519630B1 (ja) 電流検出装置
US11411290B2 (en) Hybrid transmission line
KR20080071447A (ko) 연성인쇄회로기판
US20100007374A1 (en) On-die thevenin termination for high speed i/o interface
TWI399035B (zh) 阻抗設計方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP