WO2014187263A1 - 一种光分支组件、无源光网络及光传输方法 - Google Patents

一种光分支组件、无源光网络及光传输方法 Download PDF

Info

Publication number
WO2014187263A1
WO2014187263A1 PCT/CN2014/077576 CN2014077576W WO2014187263A1 WO 2014187263 A1 WO2014187263 A1 WO 2014187263A1 CN 2014077576 W CN2014077576 W CN 2014077576W WO 2014187263 A1 WO2014187263 A1 WO 2014187263A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
waveguide
signal
optical signal
power
Prior art date
Application number
PCT/CN2014/077576
Other languages
English (en)
French (fr)
Inventor
祁彪
赵峻
刘西社
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020157025004A priority Critical patent/KR101712900B1/ko
Priority to EP14800778.4A priority patent/EP2950464A4/en
Priority to JP2016503533A priority patent/JP2016516218A/ja
Priority to AU2014270975A priority patent/AU2014270975B2/en
Priority to CA2901437A priority patent/CA2901437A1/en
Publication of WO2014187263A1 publication Critical patent/WO2014187263A1/zh
Priority to US14/943,902 priority patent/US9791628B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Definitions

  • the present invention relates to the field of communications, and in particular, to an optical branching component, a passive optical network, and an optical transmission method. Background technique
  • the passive optical network includes: an Optical Line Terminal (OMT), a splitter, and a plurality of Optical Network Units (ONU).
  • ONT Optical Line Terminal
  • ONU Optical Network Units
  • the optical splitter is connected to the optical line terminal through a trunk optical fiber, and the optical splitter is connected to the plurality of optical network units through the branch optical fiber.
  • the optical splitter is an important passive component in the 0DN (Optical Distribution Network) link.
  • the optical splitter can receive the optical signal transmitted by the optical path terminal through the trunk optical fiber, and transmit the optical signal to each optical network unit through the branch optical fiber. It is also possible to receive the optical signals transmitted by the respective optical network units through the branch optical fibers, and transmit the optical signals to the optical line terminals through the trunk optical fibers.
  • the optical splitter function is realized more simply.
  • Embodiments of the present invention provide an optical branching component, a passive optical network, and an optical transmission method for implementing functions of the optical branching component.
  • an embodiment of the present invention provides an optical branching assembly, including: a substrate and an optical power distribution area disposed on a surface of the substrate; the optical power distribution area is coupled to the first optical waveguide, and the second An optical waveguide and at least one third optical waveguide for using the first The optical power of the optical signal transmitted by the optical waveguide is distributed to each of the second optical waveguide and the third optical waveguide; the third optical waveguide is coupled to the first optical waveguide, wherein the third optical waveguide is coupled with the reflective material And reflecting the optical signal from the optical power distribution area and transmitting the optical signal to the first optical waveguide through the third optical waveguide.
  • the optical power distribution region comprises a Y-type optical power branching waveguide component or Arrayed waveguide grating.
  • the method further includes: a detecting device, where the detecting device is disposed at a side of the optical distribution network connected to the optical line terminal, where the detecting device is used Receiving an optical signal reflected by the optical branching component; detecting the returned optical signal.
  • an embodiment of the present invention provides an optical branching component, including: the optical branching component includes a processor, and the performing, by the processor, the signal processing comprises: receiving a first optical signal transmitted from a trunk optical fiber; Dividing the first optical signal transmitted by the trunk optical fiber into a plurality of second optical signals and at least one third optical signal; reflecting the third optical signal to a trunk optical fiber; and transmitting the respective second optical signals to each User terminal.
  • the optical power of the third optical signal is less than the foregoing The optical power of a second optical signal.
  • an embodiment of the present invention provides an optical transmission method, including: receiving a first optical signal transmitted from a backbone optical fiber; dividing the first optical signal transmitted by the trunk optical fiber into a plurality of second optical signals and at least one a third optical signal; reflecting the third optical signal to a backbone optical fiber; and transmitting the respective second optical signal to respective user terminals.
  • the optical power of the second optical signal is different from the optical power of the third optical signal.
  • the optical power of the third optical signal is smaller than that of the any one of the second optical signals Optical power.
  • Embodiments of the present invention provide an optical branching component, a passive optical network, and an optical transmission method.
  • the optical branching component includes: a substrate, an optical power distribution area, a first optical waveguide, a plurality of second optical waveguides, and at least one third optical waveguide.
  • the third optical waveguide is coupled with a reflective material. In this way, after the first optical waveguide transmits the optical signal to the optical power distribution area, the optical power distribution area distributes the optical signal of one power to the at least one third optical waveguide, so that the at least one third optical waveguide passes the optical signal through the reflective material. Transfer to the first optical waveguide.
  • the optical signal is transmitted to the optical fiber unit through the second optical waveguide, and then transmitted to the optical network unit to ensure normal transmission of the service.
  • the optical branching component is compact in structure, and can not only transmit optical signals, but also reflect part of the optical signals, so that the system processes the reflected optical signals accordingly, thereby realizing the functional diversity of the optical branching components.
  • FIG. 1 is a schematic structural diagram of an optical branching component according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of another optical branching component according to an embodiment of the present invention
  • 4 is a schematic structural diagram of a passive optical network according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of another passive optical network according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart diagram of an optical transmission method according to an embodiment of the present invention. detailed description
  • An embodiment of the present invention provides an optical branching assembly, as shown in FIG. 1, comprising: a substrate, an optical power distribution region disposed on a surface of the substrate, a first optical waveguide 01, a second optical waveguide 102, and a first Three optical waveguides 03.
  • the optical power distribution area is coupled to the first optical waveguide 101, the plurality of second optical waveguides 102, and the at least one third optical waveguide 103 for transmitting the optical signal of the first optical waveguide 101.
  • the optical power is distributed to each of the second optical waveguide 102 and the third optical waveguide 103.
  • the third optical waveguide 101 is coupled to the first optical waveguide 101.
  • the third optical waveguide 103 is coupled to the reflective material, and reflects the optical signal from the optical power distribution area and transmits the optical signal to the first optical waveguide 110 through the third optical waveguide 103.
  • the optical signal coupled from the optical power distribution region is reflected by the third optical waveguide of the optical branching component, and then transmitted to the first optical waveguide through the third optical waveguide, thereby being able to pass through the first optical waveguide.
  • the optical signal is transmitted to the central office detection device for implementing optical link monitoring without affecting normal link communication, thereby improving monitoring efficiency.
  • optical power of the optical signal transmitted by any one of the second optical waveguides is different from the optical power of the optical signal of the third optical waveguide.
  • the optical power of the third optical signal is smaller than the optical power of the any one of the second optical signals.
  • the optical power distribution area may transmit the optical signal transmitted by the first optical waveguide 01
  • the optical signal of the partial optical power is distributed into the third optical waveguide 103, and the optical signals of the remaining power are equally distributed into the plurality of second optical waveguides 102.
  • the optical power distribution area distributes an optical signal of 5% optical power from the optical signal transmitted in the first optical waveguide 101 to the third optical waveguide 103, and averages the optical signal of the remaining 95% of the optical power. It is distributed into a plurality of second optical waveguides 102.
  • the optical branching assembly there are eight second optical waveguides 102, and an optical signal of 95% of the optical power is evenly distributed to the eight second optical waveguides 102.
  • the third optical waveguide 103 transmits the received 5% optical signal through the reflective material to the first optical waveguide 101, so that the first optical waveguide 101 transmits the 5% optical signal to the central end detecting device.
  • the second optical waveguide 102 transmits the received 95% of the optical signal to the service receiving end.
  • the optical power distribution area may allocate an optical signal of 5%-20% of optical power to the third optical waveguide for reflection, or may allocate optical signals of other proportions of optical power to the third optical waveguide.
  • the ratio can be arbitrarily set, as long as the reflected optical signal can be detected by the detecting device disposed at the central office, thereby enabling the detecting device to detect the optical fiber according to the reflected optical signal, and the present invention This is not a limitation.
  • the optical power distribution area distributes the optical signal of the partial optical power into the third optical waveguide. If there are at least two third optical waveguides, the optical power distribution area can evenly distribute the optical signals of the partial optical power to the at least two third optical waveguides. Wherein, the optical signal assigned to each of the third optical waveguides can be detected by the detecting device provided at the central office.
  • the number of the second optical waveguides may be eight second optical waveguides, or may be 16 or 32, and may be other numbers, which is not limited in the present invention.
  • first optical waveguide 101, the second optical waveguide 102, and the third optical waveguide 103 may be single mode optical fibers.
  • the third optical waveguide 103 to which the reflective material is coupled may be a Bragg grating (FBG), or a reflective film may be plated on one end surface of the optical fiber. A situation is shown in the illustration.
  • FBG Bragg grating
  • the reflective film may be a dielectric film, a metal film, or other reflective film, which is not limited in the present invention.
  • the end surface of the third optical waveguide may be polished and polished to have a reflection function.
  • the third optical waveguide has a reflection function and reflects the optical signal to the first optical waveguide through the third optical waveguide, the invention is protected by the scope of the present invention.
  • the method of reflection function is not limited.
  • the emissive material coupled to the third optical waveguide 103 may be a reflective material that totally reflects the optical signal, or a reflective material that partially reflects the optical signal, which is not limited in the present invention.
  • the third optical waveguide 103 is disposed on a surface of the substrate, and the third optical waveguide 103 is coupled to the first optical waveguide 110 in a fusion manner.
  • the third optical waveguide 103 is disposed on the surface of the substrate to facilitate fixing the third optical fluctuation 103.
  • the third optical waveguide may be coupled to the first optical waveguide by other means, which is not limited in the present invention.
  • the second optical waveguide 102 is coupled to the first optical waveguide 101 for transmitting the optical signal transmitted by the first optical waveguide.
  • the second optical waveguide 102 may also be disposed on the surface of the substrate, and the second optical waveguide 102 may be coupled to the first optical waveguide 110 in a fusion manner.
  • the optical power distribution area includes a Y-type optical power branching waveguide element or an arrayed waveguide grating, thereby distributing the optical signal transmitted by the first optical waveguide 101 to the plurality of second optical waveguides 102 and at least one third light.
  • optical power distribution area may further include other types of optical power branching waveguide elements or arrayed waveguide gratings, which is not limited in the present invention.
  • the substrate may be a silicon dioxide substrate, which is also a silicon substrate, and may be other substrates, which is not limited in the present invention.
  • Embodiments of the present invention provide an optical branching component, including: a substrate, optical power distribution a region, a first optical waveguide, a plurality of second optical waveguides, and at least one third optical waveguide.
  • the third optical waveguide is coupled with a reflective material.
  • the optical power distribution area distributes the optical signal of one power to the at least one third optical waveguide, so that the at least one third optical waveguide passes the optical signal through the reflective material. Transfer to the first optical waveguide.
  • the optical signal is transmitted to the optical fiber unit through the second optical waveguide, and then transmitted to the optical network unit, thereby ensuring normal transmission of the service.
  • the optical branching component is compact in structure, and can not only transmit optical signals, but also reflect part of the optical signals, so that the system processes the reflected optical signals accordingly, thereby realizing the functional diversity of the optical branching components.
  • the second optical fiber array 105 further includes: a V-groove 1051 and a cover 1052.
  • the third optical waveguide 103 is located between the V-groove 1051 and the cover 1052.
  • the third optical waveguide 103 is located outside the V-groove 1051 and the cover 1052.
  • An embodiment of the present invention provides an optical branching component. After the optical waveguide transmits the optical signal to the optical power distribution area, the optical power distribution area distributes a power optical signal to the at least one third optical waveguide, so that at least one The third optical waveguide transmits the optical signal to the first optical waveguide through the reflective material. At the same time, the optical signal is transmitted to the optical fiber through the second optical waveguide, and then transmitted to the optical network unit, thereby ensuring normal transmission of the service.
  • the optical branching component is compact in structure, and can not only transmit optical signals, but also reflect part of the optical signals, so that the system processes the reflected optical signals accordingly, thereby realizing the functional diversity of the optical branching components.
  • FIG. 4 it is a schematic structural diagram of a passive optical network to which an optical power detection scheme provided by an embodiment of the present invention is applicable.
  • the passive optical network includes: an optical line terminal 401, Optical distribution network 402 and at least one optical network unit 403.
  • the optical line terminal 401 is connected to the optical distribution network 402 via a backbone optical fiber 404, and the optical distribution network 402 is connected to the at least one optical network unit 403 via a branch optical fiber 405.
  • the optical distribution network 402 includes an optical branching assembly.
  • the optical branching component is the optical branching component described in the above embodiment.
  • the optical line terminal 401 (op t i ca l L i ne Te rm ina l , OLT ) is used for connecting the terminal equipment of the optical fiber trunk.
  • the optical network unit 403 ( Op t i ca l Ne twork Un i t , 0NU ) is a terminal device for optical fiber access and is used for providing a user side interface.
  • the backbone fiber 404 is used to connect the optical line terminal 401 and the optical distribution network 402.
  • optical line terminal 401 is connected to the plurality of optical network units 403 in a point-to-multipoint manner through the optical distribution network 402.
  • the direction from the optical line terminal 401 to the optical network unit 403 is defined as a downlink direction, and the direction from the optical network unit 403 to the optical line terminal 401 is an uplink direction.
  • the passive optical network may be a communication network that does not require any active devices to implement data distribution between the optical line terminal 401 and the optical network unit 403.
  • the optical branching component is a passive optical device such as a beam splitter.
  • the optical branching assembly includes: a substrate and an optical power distribution area disposed on a surface of the substrate.
  • the optical power distribution region is coupled to the first optical waveguide, the plurality of second optical waveguides, and the at least one third optical waveguide for distributing optical power of the optical signal transmitted by the first optical waveguide to each of the second optical waveguides And a third optical waveguide.
  • the third optical waveguide is coupled to the first optical waveguide.
  • the third optical waveguide is coupled with a reflective material, and reflects an optical signal from the optical power distribution region and transmits the optical signal to the first optical waveguide through the third optical waveguide.
  • optical power of the optical signal transmitted by any one of the second optical waveguides is different from the optical power of the optical signal of the third optical waveguide.
  • the third optical waveguide is disposed on a surface of the substrate, and the third optical waveguide is coupled to the first optical waveguide in a fusion manner.
  • the optical power distribution area includes a Y-type optical power branching waveguide component or Arrayed waveguide grating.
  • the optical branching component further includes: a first optical fiber array, a second optical fiber array, and a fiber ribbon.
  • the first fiber array is configured to align the first optical waveguide with the plurality of second optical waveguides and at least one third optical waveguide.
  • a second fiber array for aligning the second optical waveguide with the ribbon.
  • a fiber ribbon for transmitting an optical signal transmitted by the second optical waveguide.
  • the optical distribution network 402 is connected to the branch fiber 405 by the fiber of the optical branching component and to the at least one optical network unit 403 via the branch fiber 405.
  • optical distribution network 402 is connected to the branch fiber 405 by using the fiber of the optical branching component.
  • the plurality of fiber ribbons of the optical branching component are respectively connected to the branch fiber 405. That is, the fiber of the optical branching component corresponds to the branch fiber 405.
  • optical branching components may be included, and one optical branching component may be included, which is not limited by the present invention.
  • the passive optical network further includes: 406.
  • the detecting device 406 is disposed on a side of the optical distribution network 402 connected to the optical line terminal 401, and the detecting device is configured to receive an optical signal reflected by the optical branching component; The light signal is detected.
  • the detecting device is disposed on a side of the optical distribution network connected to the optical line terminal, which means that the detecting device can be disposed between the optical line terminal and the optical distribution network, or the detecting device can be set. At the optical line terminal. Only one case is shown in the illustration.
  • the WDM (wave l eng th divisi on mu ltipl ex) device can be connected in the passive optical network.
  • the detecting device may be an Opti-Calm Dom in Ref ec tome t er (OTDR).
  • Embodiments of the present invention provide a passive optical network, where an optical line terminal transmits an optical signal to a optical distribution network through a trunk optical fiber, and an optical branching component in the optical distribution network couples a part of the power optical signal through the third optical waveguide.
  • the reflective material is reflected to the backbone fiber such that the backbone fiber transmits the optical signal to the central office detection device.
  • the optical branching component in the optical distribution network transmits the remaining part of the optical signal to the fiber through the second optical waveguide, and then transmits the fiber to the branch fiber through the fiber and transmits it to the optical network unit through the branch fiber.
  • An embodiment of the present invention provides an optical branching component, where the optical branching component includes a processor, and the processor performs signal processing operations, as shown in FIG. 6, including:
  • the first optical signal transmitted by the trunk optical fiber is divided into a plurality of second optical signals and at least one third optical signal.
  • the processor After receiving the first optical signal from the trunk optical fiber, the processor divides the first optical signal into at least one third optical signal, and multiple second optical signals. Wherein, the power of each second optical signal is equal.
  • the processor may allocate an optical signal of 5%-20% of optical power as at least one third optical signal for performing reflection, or may allocate optical signals of other proportions of optical power to at least one A three-light signal used for reflection.
  • the ratio can be arbitrarily set, as long as the reflected optical signal can be detected by the detecting device disposed at the central office, thereby enabling the detecting device to detect the optical fiber according to the reflected optical signal, which is not limited by the present invention.
  • the processor After dividing the first optical signal into the at least one third optical signal and the plurality of second optical signals, the processor reflects the at least one third optical signal to the trunk optical fiber, so that the trunk optical fiber transmits the third optical signal to the The central office detects the device so that the detecting device can detect the optical fiber according to the reflected third optical signal.
  • the third optical signal is reflected to the main fiber, and the third optical signal can be transmitted to the central office detecting device through the main fiber, thereby implementing optical link monitoring without affecting normal link communication, and improving monitoring. effectiveness.
  • optical branching component of the embodiment of the present invention may be a passive optical device such as a beam splitter.
  • An embodiment of the present invention provides an optical branching component, which divides a first optical signal transmitted by a received backbone optical fiber into at least one third optical signal and a plurality of second optical signals, and reflects at least one third optical signal to a backbone.
  • the optical fiber transmits each of the second optical signals to the user terminal.
  • the processor splits the first optical signal into a third optical signal and reflects the third optical signal to the backbone optical fiber.
  • the second optical signal is transmitted to each user terminal.
  • Optical branching component The compact structure not only transmits optical signals, but also reflects part of the optical signals, so that the system processes the reflected optical signals accordingly, thereby realizing the functional diversity of the optical branching components.
  • An embodiment of the present invention provides an optical transmission method. As shown in FIG. 7, the method includes: 101. Receive a first optical signal transmitted from a trunk optical fiber.
  • the first optical signal transmitted by the trunk optical fiber is divided into a plurality of second optical signals and at least one third optical signal.
  • the optical power of the second optical signal is different from the optical power of the third optical signal.
  • optical power of the third optical signal is smaller than the optical power of the any one of the second optical signals.
  • the optical branching component divides the first optical signal into at least one third optical signal and a plurality of second optical signals. Wherein, the power of each second optical signal is equal.
  • the optical branching component determines an optical signal corresponding to 5% of the optical power of the first optical signal as the at least one third optical signal.
  • the first optical signal of the remaining 95% of the optical power is determined as a plurality of second optical signals.
  • the optical branching component may allocate an optical signal of 5%-20% optical power as at least one third optical signal for performing reflection, or may allocate optical signals of other proportions of optical power to at least one.
  • the third optical signal is used for reflection.
  • the ratio can be arbitrarily set as long as the reflected optical signal can be detected by the detecting device disposed at the central office, thereby enabling the detecting device to detect the optical fiber based on the reflected optical signal, which is not limited in the present invention.
  • the at least one third optical signal is reflected to the trunk optical fiber, so that the trunk optical fiber transmits the third optical signal.
  • the device is detected at the central office so that the detecting device can detect the optical fiber according to the reflected third optical signal.
  • the third optical signal is reflected to the main fiber, and the third optical signal can be passed through the main fiber.
  • the optical signal is transmitted to the central office detection device for implementing optical link monitoring without affecting normal link communication, thereby improving monitoring efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明实施例提供了一种光分支组件、无源光网络及光传输方法,涉及通信领域,用以实现光分支组件的功能多样化。所述光分支组件包括:基底和设置于所述基底的表面的光功率分配区;所述光功率分配区耦合于第一光波导、多个第二光波导和至少一个第三光波导,用于将所述第一光波导传送的光信号的光功率分配到各个第二光波导和第三光波导;所述第三光波导,耦合于所述第一光波导,其中,所述第三光波导上耦合反射材料,将来自所述光功率分配区的光信号反射后通过所述第三光波导传送到第一光波导。本发明实施例适用于光信号的反射场景。

Description

一种光分支组件、 无源光网络及光传输方法 本申请要求于 2013 年 5 月 24 日提交中国专利局、 申请号为 201310198671. 9 , 发明名称为"光分支组件、 无源光网络及光传输方 法"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域, 尤其涉及一种光分支组件、 无源光网络及 光传输方法。 背景技术
在现有技术中, 无源光网络包括: 光线路终端 ( Optical Line Terminal, 0LT)、 分光器、 多个光网络单元 ( Optical Network Unit, 0NU)。 所述分光器通过主干光纤与光线路终端连接, 所述分光器通过 分支光纤与多个光网络单元连接。
其中, 分光器是 0DN ( Optical Distribution Network, 光西己线 网)链路中重要的无源器件。 分光器在无源光网络中, 可以接收光线 路终端通过主干光纤传输的光信号,并将光信号通过分支光纤传输至 各个光网络单元。也可以接收各个光网络单元通过分支光纤传输的光 信号, 并将光信号通过主干光纤传输至光线路终端。
在无源光网络中, 由于分光器的功能是完成无源光网络中的光线 路终端与光网络单元之间的光信号的传输,使得分光器功能实现较单
发明内容
本发明的实施例提供一种光分支组件、 无源光网络及光传输方 法, 用以实现光分支组件的功能多样化。
为达到上述目的, 本发明的实施例釆用如下技术方案:
第一方面, 本发明实施例提供了一种光分支组件, 包括: 基底和 设置于所述基底的表面的光功率分配区; 所述光功率分配区耦合于第 一光波导、 多个第二光波导和至少一个第三光波导, 用于将所述第一 光波导传送的光信号的光功率分配到各个第二光波导和第三光波导; 所述第三光波导, 耦合于所述第一光波导, 其中, 所述第三光波导上 耦合反射材料,将来自所述光功率分配区的光信号反射后通过所述第 三光波导传送到第一光波导。
在第一方面的第一种可能的实现方式中, 所述任一个第二光波导 传送的光信号的光功率和所述第三光波导的光信号的光功率不同。
结合第一方面或第一方面的第一种可能的实现方式, 在第一方面 的第二种可能的实现方式中, 所述第三光波导设置于所述基底的表 面, 所述第三光波导的以熔接方式耦合于所述第一光波导。
结合第一方面或第一方面的第一或第二种可能的实现方式, 在第 一方面的第三种可能的实现方式中,所述光功率分配区包含 Y型的光 功率分支波导元件或阵列波导光栅。
第二方面, 本发明实施例提供了一种无源光网络, 所述无源光网 络包括: 光线路终端、 光分配网和至少一个光网络单元, 所述光线路 终端通过主干光纤与所述光分配网连接,所述光分配网通过分支光纤 与所述至少一个光网络单元连接, 其特征在于, 所述光分配网包括上 述实施例所述光分支组件。
在第二方面的第一种可能的实现方式中, 还包括: 检测设备; 其 中, 所述检测设备设置在所述光分配网与所述光线路终端连接的一 侧, 所述检测设备用于接收所述光分支组件反射回的光信号; 对所述 返回的光信号进行检测。
第三方面, 本发明实施例提供了一种光分支组件, 包括: 所述光 分支组件包括一个处理器, 所述处理器执行信号处理的动作包括: 接 收从主干光纤传送的第一光信号;将所述主干光纤传送的第一光信号 分成多个第二光信号和至少一个第三光信号;将所述第三光信号反射 到主干光纤; 以及将所述各个第二光信号传送到各个用户终端。
在第三方面的第一种可能的实现方式中, 所述第二光信号的光功 率与所述第三光信号的光功率不同。
结合第三方面或第三方面的第一种可能的实现方式, 在第三方面 的第二种可能的实现方式中,所述第三光信号的光功率小于所述任意 一第二光信号的光功率。
第四方面, 本发明实施例提供了一种光传输方法, 包括: 接收从 主干光纤传送的第一光信号;将所述主干光纤传送的第一光信号分成 多个第二光信号和至少一个第三光信号;将所述第三光信号反射到主 干光纤; 以及将所述各个第二光信号传送到各个用户终端。
在第四方面的第一种可能的实现方式中, 所述第二光信号的光功 率与所述第三光信号的光功率不同。
结合第四方面或第四方面的第一种可能的实现方式, 在第四方面 的第二种可能的实现方式中,所述第三光信号的光功率小于所述任意 一第二光信号的光功率。
本发明实施例提供了一种光分支组件、 无源光网络及光传输方 法, 光分支组件包括: 基底, 光功率分配区, 第一光波导, 多个第二 光波导及至少一个第三光波导。其中,第三光波导中耦合有反射材料。 这样, 在第一光波导传输光信号至光功率分配区后, 光功率分配区将 一部功率的光信号分配到至少一个第三光波导,使得至少一个第三光 波导通过反射材料将光信号传输至第一光波导。 同时, 通过第二光波 导, 将光信号传输至带纤, 进而传送至光网络单元, 保证了业务正常 传输。 光分支组件的结构紧凑, 不仅能够传输光信号, 还可反射部分 光信号, 使得系统对反射的光信号进行相应处理, 从而实现了光分支 组件的功能多样性。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面 将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而 易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域 普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些 附图获得其他的附图。
图 1为本发明实施例提供的一种光分支组件的结构示意图; 图 2为本发明实施例提供的另一种光分支组件的结构示意图; 图 3为本发明实施例提供的另一种光分支组件的结构示意图; 图 4为本发明实施例提供的一种无源光网络的结构示意图; 图 5为本发明实施例提供的另一种无源光网络的结构示意图; 图 6为本发明实施例提供的一种光分支组件的处理器的执行步骤 示意图;
图 7为本发明实施例提供的一种光传输方法的流程示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方 案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部 分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普 通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供了一种光分支组件, 如图 1所示, 包括: 基底、 设置与所述基底的表面的光功率分配区, 第一光波导 1 01 , 第二光波 导 1 02和第三光波导 1 03。
其中, 所述光功率分配区耦合于第一光波导 1 01、 多个第二光波 导 1 02和至少一个第三光波导 1 03 , 用于将所述第一光波导 1 01传送 的光信号的光功率分配到各个第二光波导 1 02和第三光波导 1 03。
所述第三光波导 1 03 , 耦合于所述第一光波导 1 01。 其中, 所述 第三光波导 1 03上耦合反射材料,将来自所述光功率分配区的光信号 反射后通过所述第三光波导 1 03传送到第一光波导 1 01。
这样, 通过光分支组件的第三光波导耦合的发射材料, 将自所述 光功率分配区的光信号反射后通过所述第三光波导传送到第一光波 导, 从而可以通过第一光波导将光信号传输至局端检测设备, 用于在 不影响正常链路通信的情况下, 实现光链路监测, 提高了监测效率。
进一步的, 所述任一个第二光波导传送的光信号的光功率和所述 第三光波导的光信号的光功率不同。
优选的, 所述第三光信号的光功率小于所述任意一第二光信号的 光功率。
具体的, 光功率分配区可以将第一光波导 1 01传输的光信号, 将 部分光功率的光信号分配至第三光波导 103中,将剩余功率的光信号 平均分配至多个第二光波导 102中。
示例性的, 光功率分配区从第一光波导 101中传送的光信号中, 将 5%的光功率的光信号分配至第三光波导 103, 将剩余的 95%的光功 率的光信号平均分配至多个第二光波导 102中。 例如, 在光分支组件 中, 有 8个第二光波导 102, 则将 95%的光功率的光信号平均分配至 8个第二光波导 102。 这样, 第三光波导 103将接收的 5%的光信号通 过反射材料, 反射至第一光波导 101 中, 可以使得第一光波导 101将 此 5%的光信号传输至局端的检测设备。第二光波导 102将接收的 95% 的光信号传输至业务接收端。
需要说明的是,光功率分配区可以将 5%-20%的光功率的光信号分 配至第三光波导, 用来进行反射, 也可分配其他比例的光功率的光信 号至第三光波导中, 用来进行反射, 该比例可以任意设定, 只要使得 反射的光信号能够被设置在局端的检测设备检测到,进而使得该检测 设备能够根据反射的光信号对光纤进行检测, 本发明对此不做限制。
需要说明的是, 在光分支组件中, 若有一个第三光波导, 则将光 功率分配区将部分光功率的光信号分配至此第三光波导中。若有至少 两个第三光波导,则可以将光功率分配区将部分光功率的光信号平均 分配至至少两个第三光波导。 其中, 分配至每个第三光波导的光信号 能够被设置在局端的检测设备检测到。
需要说明的是, 在光分支组件中, 第二光波导的个数可以是 8根 第二光波导, 也可有 16或 32根, 还可是其他数量, 本发明对此不做 限制。
进一步的, 第一光波导 101、 第二光波导 102及第三光波导 103 可以是单模光纤。
进一步的, 耦合了反射材料的第三光波导 103可以是布拉格光栅 ( Fiber Bragg Grating, FBG ), 也可是在光纤的一端端面上镀上反 射膜。 在图示中表示出一种情况。
需要说明的是, 反射膜可以是介质膜, 也可是金属膜, 还可是其 他反射膜, 本发明对此不做限制。 需要说明的是, 实现第三光波导具有反射功能的方法, 除了在第 三光波导中耦合反射材料外, 还可将第三光波导的端面研磨抛光, 使 其具有反射功能。在本发明实施例中,只要第三光波导具有反射功能, 并通过第三光波导反射光信号至第一光波导,都属于本发明所保护的 范围, 本发明对第三光波导如何实现具有反射功能的方法不做限制。
需要说明的是, 第三光波导 1 03耦合的发射材料, 可以是将光信 号进行全反射的反射材料, 也可是将光信号进行部分反射的反射材 料, 本发明对此不做限制。
进一步的, 所述第三光波导 1 03设置于所述基底的表面, 所述第 三光波导 1 03的以熔接方式耦合于所述第一光波导 1 01。
具体的, 将第三光波导 1 03设置在基底的表面上, 有利于固定第 三光波动 1 03。
需要说明的是, 第三光波导还可通过其他方式与第一光波导耦 合, 本发明对此不做限制。
进一步的, 第二光波导 1 02 , 耦合于第一光波导 1 01 , 用于传输 第一光波导传输的光信号。
进一步的, 第二光波导 1 02也可设置在基底的表面上, 所述第二 光波导 1 02可以以熔接方式耦合于所述第一光波导 1 01。
需要说明的是, 第二光波导还可通过其他方式与第一光波导耦 合, 本发明对此不做限制。
进一步的, 所述光功率分配区包含 Y型的光功率分支波导元件或 阵列波导光栅,从而将第一光波导 1 01传输的光信号分配至多个第二 光波导 1 02及至少一个第三光波导 1 03。
需要说明的是, 光功率分配区还可包含其他类型的光功率分支波 导元件或阵列波导光栅, 本发明对此不做限制。
进一步的, 基底可以是二氧化硅基底, 也是硅基底, 还可是其他 基底, 本发明对此不做限制。
进一步的, 本发明实施例的光分支组件可以是无源光器件例如分 光器。
本发明实施例提供了一种光分支组件, 包括: 基底, 光功率分配 区, 第一光波导, 多个第二光波导及至少一个第三光波导。 其中, 第 三光波导中耦合有反射材料。 这样, 在第一光波导传输光信号至光功 率分配区后,光功率分配区将一部功率的光信号分配到至少一个第三 光波导,使得至少一个第三光波导通过反射材料将光信号传输至第一 光波导。 同时, 通过第二光波导, 将光信号传输至带纤, 进而传送至 光网络单元, 保证了业务正常传输。 光分支组件的结构紧凑, 不仅能 够传输光信号, 还可反射部分光信号, 使得系统对反射的光信号进行 相应处理, 从而实现了光分支组件的功能多样性。
上述光分支组件, 如图 2所示, 还包括: 第一光纤阵列 104, 第 二光纤阵列 105, 及带纤 106。
其中, 第一光纤阵列 104, 用于将第一光波导 101与多个第二光 波导 102及至少一个第三光波导 103对准。
第二光纤阵列 105, 用于将第二光波导 102与带纤 106对准。 带纤 106, 用于传送第二光波导传输的光信号。
进一步的,带纤 106的数量与第二光波导 102的数量相同, 即为, 每个第二光波导 102都有一条与其对应的带纤 106。
进一步的, 如图 3所示, 所述第二光纤阵列 105, 还包括: V槽 1051和盖板 1052。
更进一步的,所述第三光波导 103位于所述 V槽 1051及盖板 1052 之间。
或者,所述第三光波导 103位于所述 V槽 1051及盖板 1052之外。 本发明实施例提供了一种光分支组件, 在第一光波导传输光信号 至光功率分配区后,光功率分配区将一部功率的光信号分配到至少一 个第三光波导,使得至少一个第三光波导通过反射材料将光信号传输 至第一光波导。 同时, 通过第二光波导, 将光信号传输至带纤, 进而 传送至光网络单元, 保证了业务正常传输。 光分支组件的结构紧凑, 不仅能够传输光信号, 还可反射部分光信号, 使得系统对反射的光信 号进行相应处理, 从而实现了光分支组件的功能多样性。
如图 4所示, 其为本发明实施例提供的光功率检测方案可以适用 的无源光网络的结构示意图。所述无源光网络包括: 光线路终端 401、 光分配网 402和至少一个光网络单元 403。
所述光线路终端 401通过主干光纤 404与所述光分配网 402连接, 所述光分配网 402通过分支光纤 405与所述至少一个光网络单元 403 连接。 所述光分配网 402包括光分支组件。 其中, 所述光分支组件为 上述实施例所述的光分支组件。
具体的, 光线路终端 401 ( Op t i ca l L i ne Te rm ina l , OLT ), 用于 连接光纤干线的终端设备。
光网络单元 403 ( Op t i ca l Ne twork Un i t , 0NU ), 为光纤接入的 终端设备, 用于提供用户侧接口。
主干光纤 404 , 用于连接光线路终端 401及光分配网 402。
进一步的, 所述光线路终端 401通过所述光分配网络 402以点到 多点的形式连接到所述多个光网络单元 403。 其中, 从所述光线路终 端 401到所述光网络单元 403的方向定义为下行方向, 而从所述光网 络单元 403到所述光线路终端 401的方向为上行方向。
需要说明的是, 所述无源光网络可以是不需要任何有源器件来实 现所述光线路终端 401与所述光网络单元 403之间的数据分发的通信 网络。
进一步的, 所述光分支组件为无源光器件例如分光器。
进一步的, 所述光分支组件, 包括: 基底和设置于所述基底的表 面的光功率分配区。 所述光功率分配区耦合于第一光波导、 多个第二 光波导和至少一个第三光波导,用于将所述第一光波导传送的光信号 的光功率分配到各个第二光波导和第三光波导。 所述第三光波导, 耦 合于所述第一光波导。
其中, 所述第三光波导上耦合反射材料, 将来自所述光功率分配 区的光信号反射后通过所述第三光波导传送到第一光波导。
进一步的, 所述任一个第二光波导传送的光信号的光功率和所述 第三光波导的光信号的光功率不同。
进一步的, 所述第三光波导设置于所述基底的表面, 所述第三光 波导的以熔接方式耦合于所述第一光波导。
进一步的, 所述光功率分配区包含 Y型的光功率分支波导元件或 阵列波导光栅。
进一步的, 所述光分支组件, 还包括: 第一光纤阵列, 第二光纤 阵列, 及带纤。
其中, 第一光纤阵列, 用于将第一光波导与多个第二光波导及至 少一个第三光波导对准。 第二光纤阵列, 用于将第二光波导与带纤对 准。 带纤, 用于传送第二光波导传输的光信号。
进一步的, 所述光分配网 402通过分支光纤 405与所述至少一个 光网络单元 403连接包括:
光分配网 402利用光分支组件的带纤与分支光纤 405连接, 并通 过分支光纤 405与所述至少一个光网络单元 403连接。
需要说明的是, 光分配网 402利用光分支组件的带纤与分支光纤 405连接, 其中, 光分支组件中多条带纤分别与分支光纤 405连接。 即为, 光分支组件的带纤与分支光纤 405—一对应。
需要说明的是, 在光分配网络中, 可以包括多个光分支组件, 也 可包括一个光分支组件, 本发明对此不做限制。
这样, 在无源光网络中, 通过光分配网中的光分支组件, 可以将 部分光信号反射至主干光纤,从而可以通过反射的光信号进行相关处 理,从而实现了光分支组件的功能多样化,提高光分支组件的利用率。
进一步的, 如图 5所示, 所述无源光网络还包括:, 406。
其中, 所述检测设备 406设置在所述光分配网 402与所述光线路 终端 401连接的一侧, 所述检测设备用于接收所述光分支组件反射回 的光信号; 对所述返回的光信号进行检测。
需要说明的是, 所述检测设备设置在所述光分配网与所述光线路 终端连接的一侧是指可以将检测设备设置在光线路终端与光分配网 之间, 也可以将检测设备设置在光线路终端处。 在图示中只表示出一 种情况。
进一步的, 所述检测设备 402 , 还用于根据检测结果, 获知光链 路是否有异常。
需要说明的是,在本发明实施例中,在无源光网络中可以通过 WDM ( wave l eng th d i v i s i on mu l t i p l ex , 波分复用器) ^夺检测设备连接 至无源光网络中, 参考图 5 所示, 该检测设备可以为光时域反射仪 ( Op t i ca l T ime Doma i n Ref l ec tome t er , OTDR )。
在无源光网络中, 通过光分配网络中的光分支组件, 可以将部分 光信号反射至主干光纤,从而通过主干光纤可以将此部分光信号传输 至检测设备, 使得检测设备接收此光信号, 进而可以进行相关监测。 这样, 由于反射至主干光纤的光信号的功率较小, 并不影响主干光纤 进行正常业务通信, 从而可以实现监测光分支组件之前的光链路, 进 而在光链路出现异常时, 可以通过检测设备监测出, 使得无源光网络 结构紧凑。 进一步的, 在本发明实施例中, 检测设备对光信号进行检 测, 并不占用光网络单元出的业务端口资源, 从而可以减小无源光网 络的监测成本, 提高监测效率。
本发明实施例提供了一种无源光网络, 光线路终端将光信号通过 主干光纤传输至光分配网中,光分配网中的光分支组件将部分功率的 光信号通过第三光波导耦合的反射材料反射至主干光纤,使得主干光 纤将此光信号传输至局端检测设备。光分配网中的光分支组件将剩余 部分功率的光信号通过第二光波导传输至带纤,进而通过带纤传输至 分支光纤, 并通过分支光纤传输至光网络单元。 这样, 光分配网的光 分支组件将一部功率的光信号分配到至少一个第三光波导,使得至少 一个第三光波导通过反射材料将光信号传输至主干光纤。 同时, 通过 第二光波导, 将光信号传输至带纤, 进而传送至光网络单元, 保证了 业务正常传输。 光分支组件的结构紧凑, 不仅能够传输光信号, 还可 反射部分光信号, 使得系统对反射的光信号进行相应处理, 从而实现 了光分支组件的功能多样性。
本发明实施例提供了一种光分支组件, 所述光分支组件包括一个 处理器, 所述处理器执行信号处理的动作, 如图 6所示, 包括:
6 01、 接收从主干光纤传送的第一光信号。
6 02、 将所述主干光纤传送的第一光信号分成多个第二光信号和 至少一个第三光信号。
其中, 所述第二光信号的光功率与所述第三光信号的光功率不 同。 进一步的, 所述第三光信号的光功率小于所述任意一第二光信号 的光功率。
具体的, 处理器从主干光纤接收到第一光信号后, 将第一光信号 分为至少一个第三光信号, 及多个第二光信号。 其中, 每个第二光信 号的功率相等。
示例性的, 处理器将第一光信号的光功率的 5% 对应的光信号确 定为至少一个第三光信号。 将剩余的 95%光功率的第一光信号确定为 多个第二光信号。
需要说明的是,处理器可以将 5%-2 0%的光功率的光信号分配为至 少一个第三光信号, 用来进行反射, 也可分配其他比例的光功率的光 信号为至少一个第三光信号, 用来进行反射。 该比例可以任意设定, 只要使得反射的光信号能够被设置在局端的检测设备检测到,进而使 得该检测设备能够根据反射的光信号对光纤进行检测,本发明对此不 做限制。
6 03、 将所述第三光信号反射到主干光纤; 以及将所述各个第二 光信号传送到各个用户终端。
具体的, 处理器将第一光信号分为至少一个第三光信号及多个第 二光信号后, 将至少一个第三光信号反射到主干光纤, 以使得主干光 纤将第三光信号传输至局端检测设备, 以便检测设备能够根据反射的 第三光信号对光纤进行检测。
这样, 将第三光信号反射到主干光纤, 可以通过主干光纤将第三 光信号传输至局端检测设备, 用于在不影响正常链路通信的情况下, 实现光链路监测, 提高了监测效率。
进一步的, 本发明实施例的光分支组件可以是无源光器件例如分 光器。
本发明实施例提供了一种光分支组件, 将接收的主干光纤传输的 第一光信号分为至少一个第三光信号及多个第二光信号,并将至少一 个第三光信号反射至主干光纤, 将各个第二光信号传输至用户终端。 这样, 处理器将第一光信号分为第三光信号, 并将第三光信号反射至 主干光纤。 同时, 通过第二光信号传输至各个用户终端。 光分支组件 的结构紧凑, 不仅能够传输光信号, 还可反射部分光信号, 使得系统 对反射的光信号进行相应处理, 从而实现了光分支组件的功能多样 性。
本发明实施例提供了一种光传输方法, 如图 7所示, 包括: 7 01、 接收从主干光纤传送的第一光信号。
7 02、 将所述主干光纤传送的第一光信号分成多个第二光信号和 至少一个第三光信号。
其中, 所述第二光信号的光功率与所述第三光信号的光功率不 同。
进一步的, 所述第三光信号的光功率小于所述任意一第二光信号 的光功率。
具体的, 光分支组件从主干光纤接收到第一光信号后, 将第一光 信号分为至少一个第三光信号, 及多个第二光信号。 其中, 每个第二 光信号的功率相等。
示例性的, 光分支组件将第一光信号的光功率的 5% 对应的光信 号确定为至少一个第三光信号。 将剩余的 95 %光功率的第一光信号确 定为多个第二光信号。
需要说明的是,光分支组件可以将 5%- 2 0%的光功率的光信号分配 为至少一个第三光信号, 用来进行反射, 也可分配其他比例的光功率 的光信号为至少一个第三光信号, 用来进行反射。 该比例可以任意设 定, 只要使得反射的光信号能够被设置在局端的检测设备检测到, 进 而使得该检测设备能够根据反射的光信号对光纤进行检测,本发明对 此不做限制。
7 0 3、 将所述第三光信号反射到主干光纤; 以及将所述各个第二 光信号传送到各个用户终端。
具体的, 光分支组件将第一光信号分为至少一个第三光信号及多 个第二光信号后, 将至少一个第三光信号反射到主干光纤, 以使得主 干光纤将第三光信号传输至局端检测设备, 以便检测设备能够根据反 射的第三光信号对光纤进行检测。
这样, 将第三光信号反射到主干光纤, 可以通过主干光纤将第三 光信号传输至局端检测设备, 用于在不影响正常链路通信的情况下, 实现光链路监测, 提高了监测效率。
本发明实施例提供了一种光传输方法, 将接收的主干光纤传输的 第一光信号分为至少一个第三光信号及多个第二光信号,并将至少一 个第三光信号反射至主干光纤, 将各个第二光信号传输至用户终端。 这样, 光分支组件将第一光信号分为第三光信号, 并将第三光信号反 射至主干光纤。 同时, 通过第二光信号传输至各个用户终端, 保证了 业务正常传输。 实现上述光传输方法的光分支组件的结构紧凑, 不仅 能够传输光信号, 还可反射部分光信号, 使得系统对反射的光信号进 行相应处理, 从而实现了光分支组件的功能多样性。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并 不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范 围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种光分支组件, 其特征在于, 包括:
基底和设置于所述基底的表面的光功率分配区;
所述光功率分配区耦合于第一光波导、多个第二光波导和至少一 个第三光波导,用于将所述第一光波导传送的光信号的光功率分配到 各个第二光波导和第三光波导;
所述第三光波导, 耦合于所述第一光波导, 其中, 所述第三光波 导上耦合反射材料,将来自所述光功率分配区的光信号反射后通过所 述第三光波导传送到第一光波导。
2、 根据权利要求 1 所述的光分支组件, 其特征在于, 所述任一 个第二光波导传送的光信号的光功率和所述第三光波导的光信号的 光功率不同。
3、 根据权利要求 1或 2所述的光分支组件, 其特征在于, 所述 第三光波导设置于所述基底的表面, 所述第三光波导的以熔接方式耦 合于所述第一光波导。
4、 根据权利要求 1 - 3任一项所述的光分支组件, 其特征在于, 所述光功率分配区包含 Y型的光功率分支波导元件或阵列波导光栅。
5、 一种无源光网络, 所述无源光网络包括: 光线路终端、 光分 配网和至少一个光网络单元, 所述光线路终端通过主干光纤与所述光 分配网连接, 所述光分配网通过分支光纤与所述至少一个光网络单元 连接, 其特征在于, 所述光分配网包括如权利要求 1 -4所述的任意一 光分支组件。
6、 根据权利要求 5 所述的无源光网络, 其特征在于, 还包括: 检测设备; 其中, 所述检测设备设置在所述光分配网与所述光线路终 端连接的一侧, 所述检测设备用于接收所述光分支组件反射回的光信 号; 对所述返回的光信号进行检测。
7、 一种光分支组件, 其特征在于, 所述光分支组件包括一个处 理器, 所述处理器执行信号处理的动作包括:
接收从主干光纤传送的第一光信号;
将所述主干光纤传送的第一光信号分成多个第二光信号和至少 一个第三光信号;
将所述第三光信号反射到主干光纤; 以及将所述各个第二光信号 传送到各个用户终端。
8、 根据权利要求 7 所述的光分支组件, 其特征在于, 所述第二 光信号的光功率与所述第三光信号的光功率不同。
9、 根据权利要求 7或 8所述的光分支组件, 其特征在于, 所述 第三光信号的光功率小于所述任意一第二光信号的光功率。
1 0、 一种光传输方法, 其特征在于, 所述方法包括:
接收从主干光纤传送的第一光信号;
将所述主干光纤传送的第一光信号分成多个第二光信号和至少 一个第三光信号;
将所述第三光信号反射到主干光纤; 以及将所述各个第二光信号 传送到各个用户终端。
1 1、 根据权利要求 1 0所述的光传输方法, 其特征在于, 所述第 二光信号的光功率与所述第三光信号的光功率不同。
1 2、 根据权利要求 1 0或 1 1所述的光传输方法, 其特征在于, 所述第三光信号的光功率小于所述任意一第二光信号的光功率。
PCT/CN2014/077576 2013-05-24 2014-05-15 一种光分支组件、无源光网络及光传输方法 WO2014187263A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157025004A KR101712900B1 (ko) 2013-05-24 2014-05-15 광 분기 어셈블리, 수동 광 네트워크 및 광 전송 방법
EP14800778.4A EP2950464A4 (en) 2013-05-24 2014-05-15 BRANCHED OPTICAL ARRANGEMENT, PASSIVE OPTICAL NETWORK AND OPTICAL TRANSMISSION PROCESS
JP2016503533A JP2016516218A (ja) 2013-05-24 2014-05-15 光分岐アセンブリ、受動光ネットワーク、および光送信方法
AU2014270975A AU2014270975B2 (en) 2013-05-24 2014-05-15 Optical branch assembly, passive optical network and optical transmission method
CA2901437A CA2901437A1 (en) 2013-05-24 2014-05-15 Optical branching assembly, passive optical network, and optical transmission method
US14/943,902 US9791628B2 (en) 2013-05-24 2015-11-17 Optical branching assembly, passive optical network, and optical transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310198671.9 2013-05-24
CN201310198671.9A CN104184520A (zh) 2013-05-24 2013-05-24 一种光分支组件、无源光网络及光传输方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/943,902 Continuation US9791628B2 (en) 2013-05-24 2015-11-17 Optical branching assembly, passive optical network, and optical transmission method

Publications (1)

Publication Number Publication Date
WO2014187263A1 true WO2014187263A1 (zh) 2014-11-27

Family

ID=51932840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077576 WO2014187263A1 (zh) 2013-05-24 2014-05-15 一种光分支组件、无源光网络及光传输方法

Country Status (8)

Country Link
US (1) US9791628B2 (zh)
EP (1) EP2950464A4 (zh)
JP (1) JP2016516218A (zh)
KR (1) KR101712900B1 (zh)
CN (1) CN104184520A (zh)
AU (1) AU2014270975B2 (zh)
CA (1) CA2901437A1 (zh)
WO (1) WO2014187263A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3475743A1 (en) * 2016-06-28 2019-05-01 Corning Optical Communications LLC Fiber optic connection device with an in-line splitter
WO2018058624A1 (zh) * 2016-09-30 2018-04-05 华为技术有限公司 一种光网络单元接入光网络的方法、认证设备和系统
CN106646784A (zh) * 2017-02-20 2017-05-10 众瑞速联(武汉)科技有限公司 一种基于阵列波导光栅的波分复用光发射器件
US11349567B2 (en) 2019-03-13 2022-05-31 Telefonaktiebolaget Lm Ericsson (Publ) Use of waveguides and lenses to improve light communication reception in devices
US10958340B2 (en) 2019-05-09 2021-03-23 Telefonaktiebolaget Lm Ericsson (Publ) Multi-channel light communications via waveguides
CN110456449B (zh) * 2019-09-12 2024-03-15 珠海市光辰科技有限公司 一种阵列单模器件和光纤光栅解调仪
US10895701B1 (en) * 2019-09-17 2021-01-19 Telefonaktiebolaget Lm Ericsson (Publ) Light guide structure with multiple entrances
CN115576114B (zh) * 2021-10-29 2023-07-14 华为技术有限公司 一种分光方法以及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203823A (ja) * 2005-01-24 2006-08-03 Ntt Electornics Corp 光スプリッタ及び光スプリッタ監視システム
CN102790644A (zh) * 2012-08-14 2012-11-21 深圳市华为安捷信电气有限公司 光纤检测系统、光纤检测装置及其方法
CN103227677A (zh) * 2013-04-28 2013-07-31 桂林聚联科技有限公司 一种光纤反射器及利用该器件实现pon网络监测的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164924A (ja) * 1991-12-11 1993-06-29 Nippon Sheet Glass Co Ltd 波長平坦化モニタ付導波型デバイス
JP3250766B2 (ja) * 1993-09-16 2002-01-28 日本電信電話株式会社 光分岐線路監視システム
JP3539660B2 (ja) * 1997-07-03 2004-07-07 日本電信電話株式会社 分岐光線路試験装置
US7171085B2 (en) 2003-07-29 2007-01-30 Jds Uniphase Corporation Polarization compensated optical tap
JP2006065163A (ja) 2004-08-30 2006-03-09 Omron Corp 光導波路装置
KR100608946B1 (ko) * 2004-10-20 2006-08-03 광주과학기술원 자체잠김된 페브리-페롯 레이저 다이오드를 이용한 파장분할다중 방식의 수동형 광통신망과, 이에 사용되는 지역 기지국 및 그 제어 방법
KR100687710B1 (ko) * 2004-11-20 2007-02-27 한국전자통신연구원 수동형 광가입자망 시스템에서의 광선로 감시 방법 및 장치
JP3110637U (ja) * 2005-02-23 2005-06-30 三菱電線工業株式会社 光反射素子
US7715718B2 (en) * 2006-08-01 2010-05-11 Alcatel Lucent Passive optical network optical time-domain reflectometry
KR20080093756A (ko) * 2007-04-18 2008-10-22 삼성전자주식회사 광가입자 선로 감시 시스템 및 그 방법
US7391954B1 (en) * 2007-05-30 2008-06-24 Corning Cable Systems Llc Attenuated optical splitter module
US20080298748A1 (en) * 2007-05-31 2008-12-04 Terry Dean Cox Direct-connect optical splitter module
US7555176B2 (en) * 2007-08-22 2009-06-30 Ccs Technology, Inc. Method for producing an optical splitter, and optical splitter
JP5458515B2 (ja) * 2008-06-25 2014-04-02 横河電機株式会社 光線路監視装置
GB0823688D0 (en) * 2008-12-31 2009-02-04 Tyco Electronics Raychem Nv Unidirectional absolute optical attenuation measurement with OTDR
EP2264420A1 (en) * 2009-06-19 2010-12-22 Acterna, LLC Optical reflective marker adaptor for a patch cord in OTDR applications
ES2599164T3 (es) * 2012-10-25 2017-01-31 3M Innovative Properties Company Red de fibra que comprende sensores
US8917992B1 (en) * 2013-01-02 2014-12-23 Google Inc. Optical network remote node for WDM-PON and TDM-PON

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203823A (ja) * 2005-01-24 2006-08-03 Ntt Electornics Corp 光スプリッタ及び光スプリッタ監視システム
CN102790644A (zh) * 2012-08-14 2012-11-21 深圳市华为安捷信电气有限公司 光纤检测系统、光纤检测装置及其方法
CN103227677A (zh) * 2013-04-28 2013-07-31 桂林聚联科技有限公司 一种光纤反射器及利用该器件实现pon网络监测的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2950464A4

Also Published As

Publication number Publication date
CN104184520A (zh) 2014-12-03
JP2016516218A (ja) 2016-06-02
KR101712900B1 (ko) 2017-03-07
EP2950464A1 (en) 2015-12-02
KR20150119239A (ko) 2015-10-23
US20160070065A1 (en) 2016-03-10
AU2014270975A1 (en) 2015-09-17
US9791628B2 (en) 2017-10-17
AU2014270975B2 (en) 2016-09-15
EP2950464A4 (en) 2015-12-23
CA2901437A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
WO2014187263A1 (zh) 一种光分支组件、无源光网络及光传输方法
US10389472B2 (en) Optical line terminal communication method and device with data structure
US8948589B2 (en) Apparatus and method for testing fibers in a PON
CN101355387B (zh) 光网络单元接入网络的方法、设备及系统
US8774623B2 (en) Passive optical network system and method for detecting fault in optical network terminal
JP5040695B2 (ja) Pon局側装置、pon上り回線通信方法、pon上り回線通信プログラムおよびプログラム記録媒体
CN106576000B (zh) 分光器、信号传输方法和无源光网络
US10153842B2 (en) Emulating rogue optical network unit behavior in a passive optical network
US20090016722A1 (en) Ont discovery in a dwdm hybrid pon lt configuration
EP1193895A2 (en) Pasive optical network architecture
CN112738659A (zh) 一种基于无源光网络的通信方法、相关设备以及系统
JP4732493B2 (ja) 光アクセスシステム、光通信路切替装置及び光回線装置
CN112104927B (zh) 一种无源光网络的波长切换、配置方法及装置
JP3222407B2 (ja) 加入者宅内光通信システム
CN113228539B (zh) 向光通信网络的用户模块分配点对点信道的方法、存储介质和对应设备
WO2022222618A1 (zh) 测量链路状态的方法、装置、系统及存储介质
KR20040101173A (ko) 파장 분할 다중화 수동형 광 가입자 망의 보호 복구 장치및 그 방법
JP2000295234A (ja) 通信ネットワークシステムおよびその利用方法
JP5290917B2 (ja) 光通信システム及び光通信方法
JP2012142713A (ja) Ponシステム
KR100633462B1 (ko) 수동 광 통신 시스템, 광 통신 방법 및 광 가입자 접속장치
CN111903079A (zh) 可重新配置的点对多点连接
KR20170058297A (ko) Onu의 광 트랜시버의 파장 출력 특성에 따라 onu의 파장을 조절하는 등록 방법
CN103297872A (zh) 多波长无源光网络系统
CN103281610A (zh) 多波长无源光网络系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2901437

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2014800778

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157025004

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014270975

Country of ref document: AU

Date of ref document: 20140515

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016503533

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE