WO2022222618A1 - 测量链路状态的方法、装置、系统及存储介质 - Google Patents

测量链路状态的方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2022222618A1
WO2022222618A1 PCT/CN2022/079342 CN2022079342W WO2022222618A1 WO 2022222618 A1 WO2022222618 A1 WO 2022222618A1 CN 2022079342 W CN2022079342 W CN 2022079342W WO 2022222618 A1 WO2022222618 A1 WO 2022222618A1
Authority
WO
WIPO (PCT)
Prior art keywords
onu
olt
port
pon
measurement
Prior art date
Application number
PCT/CN2022/079342
Other languages
English (en)
French (fr)
Inventor
冯义
李玲
郑刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22790727.6A priority Critical patent/EP4319185A4/en
Publication of WO2022222618A1 publication Critical patent/WO2022222618A1/zh
Priority to US18/490,966 priority patent/US20240048237A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0773Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Definitions

  • the present application relates to the field of communications, and in particular, to a method, apparatus, system and storage medium for measuring link status.
  • a passive optical network includes an optical line terminal (OLT), an optical splitter and multiple optical network units (ONUs).
  • the OLT includes a main port and a standby port. The port communicates with the optical splitter through the first backbone link, the standby port communicates with the optical splitter through the second backbone link, and the optical splitter also communicates with each ONU.
  • the OLT uses the active port to communicate with the ONU on the active link; when the active link fails, the OLT uses the standby port to communicate with the ONU on the standby link. If the standby link cannot meet the optical power requirements, after the active link is switched to the standby link, some ONUs may not be able to go online. Therefore, a detection method is urgently needed to detect the status of the standby link, so as to ensure the normal operation of the service after the link switching.
  • the present application provides a method, device, system and storage medium for measuring link status, so as to ensure that services can be performed normally after link switching.
  • the technical solution is as follows:
  • a passive optical network PON includes a first optical line terminal OLT, the first OLT includes a first port, and the second port is connected to the first optical line terminal OLT.
  • a first PON channel and a second PON channel are carried on the link between the ONUs of the optical network unit.
  • the first ONU is one of at least one ONU included in the PON.
  • the first PON channel is used to transmit measurement signals, and the second PON channel is used to transmit measurement signals. It is used to transmit service signals, and the optical wavelength corresponding to the measurement signal is different from the optical wavelength corresponding to the service signal.
  • the first OLT sends first indication information to the first ONU through the first port, where the first indication information is used to indicate a measurement window for measuring the first ONU.
  • the first ONU sends the measurement signal on the first PON channel within the measurement window, and the first OLT obtains the quality of the signal received by the second port within the measurement window to obtain the signal quality corresponding to the first ONU.
  • the signal received by the second port includes the measurement signal sent by the first ONU.
  • the first OLT determines the status of the backbone link based on the signal quality corresponding to each ONU in the PON, where the backbone link is a common part of the link from the second port to each ONU.
  • the first OLT sends the first indication information to the first ONU through the first port
  • the first indication information is used to indicate a measurement window for measuring the first ONU, so that the first ONU will be on the first PON channel within the measurement window Send measurement signals. Therefore, the second OLT measures the signal quality received by the second port within the measurement window, and obtains the signal quality corresponding to the first ONU.
  • the signal quality corresponding to each ONU in the PON can be obtained. In this way, based on the signal quality corresponding to each ONU, the status of the backbone link can be accurately determined.
  • the status of the backbone link is normal, the The service will be switched to the backbone link, so that the service can be transmitted normally on the backbone link. Therefore, through the link state detection method, it is ensured that services can be normally performed after link switching.
  • the accuracy of measuring the status of the backbone link is improved. Because the measurement window is provided for the first ONU, the signal quality corresponding to the first ONU is measured in the measurement window, so that the signal quality corresponding to the first ONU can be measured in a relatively short time, and the time length of the measurement window can be set shorter. Therefore, although a measurement window is provided for each ONU to obtain the signal quality corresponding to each ONU in the measurement window corresponding to each ONU, the total length of the measurement window corresponding to each ONU is also shorter, which improves the measurement performance. The efficiency of the backbone link state.
  • the link between the second port and the first ONU carries a first PON channel and a second PON channel, the first PON channel is used to transmit measurement signals, the second PON channel is used to transmit service signals, and dual channels are used for transmission Measurement signals and business signals. It is ensured that the service transmission between the OLT and each ONU in the PON will not be affected while the link state is measured.
  • the first indication information includes at least one of a start time of the measurement window and a time length of the measurement window. In this way, it is convenient for the first ONU to quickly determine the measurement window.
  • the first port is a port on the first OLT
  • the second port is a port on the second OLT
  • the first OLT and the second OLT are two different OLT devices
  • the first OLT is directed to
  • the second OLT sends first indication information, where the first indication information is further used to instruct the second OLT to obtain the signal quality received by the second port from the first PON channel within the measurement window. This ensures that the second OLT can determine the measurement window, and measures the signal quality corresponding to the first ONU within the measurement window, thereby ensuring that the status of the backbone link can be successfully measured in the dual-homing protected network.
  • the first OLT receives measurement information sent by the second OLT, where the measurement information includes signal quality corresponding to the first ONU.
  • the state of the backbone link is measured based on the signal quality corresponding to each ONU.
  • the first port and the second port are two different ports on the first OLT.
  • the measurement window includes at least one transmission period, each transmission period includes a first time period and a transmission window corresponding to each ONU, and the transmission window corresponding to the first ONU is a transmission window from the first ONU to the first ONU.
  • a window for the OLT to send the operation and maintenance service, and the first indication information is used to instruct the first ONU to send the measurement signal in the first time period.
  • the signal quality corresponding to the first ONU includes at least one received signal strength indicator RSSI, where the at least one RSSI is the RSSI of the signal received by the second port within the measurement window. Since the RSSI signal is easier to measure, the state of the backbone link can be measured more accurately based on the RSSI corresponding to each ONU.
  • a passive optical network PON includes a first optical line terminal OLT and a second OLT, the first OLT includes a first port, and the second OLT includes a first port.
  • the OLT includes a second port.
  • the link between the second port and the first optical network unit ONU carries a first PON channel and a second PON channel.
  • the first ONU is one of the at least one ONU included in the PON.
  • the PON channel is used to transmit the measurement signal
  • the second PON channel is used to transmit the service signal
  • the optical wavelength corresponding to the measurement signal is different from the optical wavelength corresponding to the service signal.
  • the first OLT sends first indication information to the first ONU and the second OLT, where the first indication information is used to indicate a measurement window for measuring the first ONU.
  • the second OLT receives the first indication information, measures the signal received by the second port from the first PON channel within the measurement window, and obtains the signal quality corresponding to the first ONU.
  • the signal received by the second port includes the first ONU in the The measurement signal sent within this measurement window.
  • the second OLT sends measurement information to the first OLT, where the measurement information includes the signal quality corresponding to each ONU in the PON, so that the first OLT determines the quality of the backbone link based on the signal quality corresponding to each ONU, and the backbone link is Common part of the link of the second port to each ONU.
  • the first indication information is used to indicate the measurement window for measuring the first ONU, so that the first ONU will be on the first PON channel within the measurement window send a signal. Therefore, the second OLT measures the signal quality received by the second port within the measurement window, and obtains the signal quality corresponding to the first ONU.
  • the signal quality corresponding to each ONU in the PON can be obtained, and the signal quality corresponding to each ONU is sent to the first OLT, so that the state of the backbone link can be accurately determined based on the signal quality corresponding to each ONU, Only when the state of the backbone link is in the normal state, the service is switched to the backbone link, so that the service can be normally transmitted on the backbone link. Therefore, through the link state detection method, it is ensured that services can be normally performed after link switching.
  • the accuracy of measuring the status of the backbone link is improved.
  • the signal quality corresponding to the first ONU is measured in the measurement window, so that the signal quality corresponding to the first ONU can be measured in a relatively short time, and the time length of the measurement window can be set shorter. Therefore, although a measurement window is provided for each ONU to obtain the signal quality corresponding to each ONU in the measurement window corresponding to each ONU, the total length of the measurement window corresponding to each ONU is also shorter, which improves the measurement performance. The efficiency of the backbone link state.
  • the link between the second port and the first ONU carries a first PON channel and a second PON channel, the first PON channel is used to transmit measurement signals, the second PON channel is used to transmit service signals, and dual channels are used for transmission Measurement signals and business signals. It is ensured that the service transmission between the OLT and each ONU in the PON will not be affected while the link state is measured.
  • the first indication information includes at least one of a start time of the measurement window and a time length of the measurement window. In this way, it is convenient for the second OLT and the first ONU to quickly determine the measurement window.
  • the measurement window includes at least one communication period, each communication period includes a first time period and a transmission window corresponding to each ONU, and the transmission window corresponding to the first ONU is the transmission window from the first ONU to the first ONU.
  • a window for the OLT to send the operation and maintenance service, and the first indication information is used to instruct the first ONU to send the measurement signal in the first time period.
  • the signal quality corresponding to the first ONU includes at least one received signal strength indicator RSSI, where the at least one RSSI is the RSSI of the signal received by the second port within the measurement window. Since the RSSI signal is easier to measure, the state of the backbone link can be measured more accurately based on the RSSI corresponding to each ONU.
  • the present application provides an apparatus for measuring a link state, which is used to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the apparatus includes a unit for performing the method in the first aspect or any possible implementation manner of the first aspect.
  • the present application provides an apparatus for measuring a link state, which is used to execute the method in the second aspect or any possible implementation manner of the second aspect.
  • the apparatus includes a unit for performing the method in the second aspect or any one possible implementation manner of the second aspect.
  • the present application provides an apparatus for measuring a link state, the apparatus including a processor and a memory.
  • the processor and the memory may be connected through an internal connection.
  • the memory is used for storing a program
  • the processor is used for executing the program in the memory, so that the apparatus performs the method in the first aspect or any possible implementation manner of the first aspect.
  • the present application provides an apparatus for measuring a link state, the apparatus including a processor and a memory.
  • the processor and the memory may be connected through an internal connection.
  • the memory is used for storing a program
  • the processor is used for executing the program in the memory, so that the apparatus performs the method of the second aspect or any possible implementation manner of the second aspect.
  • the present application provides a computer program product, the computer program product includes a computer program stored in a computer-readable storage medium, and the computer program is loaded by a processor to implement the first aspect, the first aspect, and the third aspect.
  • the second aspect any possible implementation manner of the first aspect, or any possible implementation manner of the second aspect.
  • the present application provides a computer-readable storage medium for storing a computer program, and the computer program is loaded by a processor to execute the first aspect, the second aspect, and any possible implementation manner of the first aspect. or any possible implementation of the second aspect.
  • the present application provides a chip, including a memory and a processor, the memory is used to store computer instructions, and the processor is used to call and run the computer instructions from the memory to execute the first aspect, the second aspect, the first A method of any possible implementation of the aspect or any possible implementation of the second aspect.
  • the present application provides a system for measuring a link state, the system includes the device described in the third aspect and the device described in the fourth aspect; or, the system includes the device described in the fifth aspect.
  • FIG. 1 is a schematic diagram of a PON architecture implementing a single-homed protection technology provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a PON architecture for realizing dual-homing protection technology provided by an embodiment of the present application
  • FIG. 3 is a flowchart of a method for measuring a link state provided by an embodiment of the present application.
  • FIG. 4 is a flowchart of another method for measuring a link state provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an apparatus for measuring a link state provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another apparatus for measuring a link state provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another apparatus for measuring a link state provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another apparatus for measuring a link state provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a system for measuring a link state provided by an embodiment of the present application.
  • a PON is a communication network with optical signals as the information transmission carrier.
  • PON is a bidirectional optical access network using a point-to-multipoint structure.
  • the PON includes an OLT at the central office, an optical distribution network (ODN), and an ONU at the user side.
  • the OLT communicates with each ONU through the ODN.
  • the signal sent by the OLT reaches each ONU through the ODN.
  • the signal sent by the ONU reaches the OLT through the ODN.
  • the OLT includes ports, the ports on the OLT are connected to the ODN through a backbone link, and the ODN is connected to each ONU using a branch link.
  • the link between the port on the OLT and the ONU includes a trunk link between the port on the OLT and the ODN and a branch link between the ODN and the ONU.
  • the link between the port on the OLT and the ONU is used to carry the PON channel, and the PON channel is the channel established by the OLT and the ONU on the link.
  • the OLT sends a downstream signal to the ONU through the PON channel, and the ONU sends an upstream signal to the OLT through the PON channel.
  • the PON channel carried on the link includes two types of PON channels, and the two types of PON channels are respectively the first type PON The channel and the second-type PON channel, the optical wavelength corresponding to the signal that can be transmitted on the first-type PON channel is different from the optical wavelength corresponding to the signal that can be transmitted on the second-type PON channel.
  • the optical wavelength corresponding to the signal that can be transmitted on the first type PON channel includes the optical wavelength corresponding to the first upstream signal and the optical wavelength corresponding to the first downstream signal, and the optical wavelength corresponding to the first upstream signal corresponds to the first downstream signal.
  • the optical wavelengths are two different optical signal wavelengths.
  • the optical wavelengths corresponding to the signals that can be transmitted on the second-type PON channel include the optical wavelengths corresponding to the second uplink signals and the optical wavelengths corresponding to the second downlink signals, and the optical wavelengths corresponding to the second uplink signals and the optical wavelengths corresponding to the second downlink signals. Wavelengths are two different wavelengths of optical signals.
  • the difference between the optical wavelength corresponding to the signal that can be transmitted on the first type PON channel and the optical wavelength corresponding to the signal that can be transmitted on the second type PON channel means: the first uplink signal that can be transmitted on the first type PON channel corresponds to The optical wavelength is different from the optical wavelength corresponding to the second upstream signal that can be transmitted on the second type PON channel, and the optical wavelength corresponding to the first downstream signal that can be transmitted on the first type PON channel is different from that on the second type PON channel.
  • Optical wavelengths corresponding to the second downlink signals that can be transmitted on the PON channel are different.
  • the first type of PON channel is used to transmit signals of operation and maintenance services
  • the second type of PON channel is used to transmit signals of data services.
  • the first type of PON channel may be a gigabit-capable passive optical network (GPON) channel
  • the optical wavelength corresponding to the first upstream signal that can be transmitted on the GPON channel may be equal to 1270 nm and the first downstream
  • the optical wavelength corresponding to the signal may be equal to 1577 nm
  • the optical wavelength corresponding to the first upstream signal that can be transmitted on the GPON channel may be equal to 1577 nm and the optical wavelength corresponding to the first downstream signal may be equal to 1270 nm.
  • the second type of PON channel can be a 10G symmetrical passive optical network (10gigabit symmetrical passive optical network, XGS-PON) channel, and the optical wavelength corresponding to the first uplink signal that can be transmitted on the XGS-PON channel can be equal to 1310nm and the first downlink
  • the optical wavelength corresponding to the line signal may be equal to 1490 nm, or the optical wavelength corresponding to the first upstream signal that can be transmitted on the XGS-PON channel may be equal to 1490 nm and the optical wavelength corresponding to the first downstream signal may be equal to 1310 nm.
  • the ODN described above includes one or more optical splitters.
  • the above-mentioned backbone links and branch links include optical fibers and the like.
  • the above-mentioned PON channel is a kind of logical channel.
  • PON protection technology includes single-homing protection technology and dual-homing protection technology.
  • the PON architecture 100 implementing the single-homing protection technology includes an OLT, and the OLT includes two ports, namely a first port and a second port, the first port and the The ODN is connected through the first backbone link, and the second port is connected with the ODN through the second backbone link.
  • one port is the active port and the other port is the standby port.
  • the OLT sends services to or receives services from each ONU through the active port.
  • the OLT switches services to the standby interface, that is, when the backbone link connected to the active port fails, the OLT sends services to each ONU or receives each ONU through the standby port. Services sent by the ONU.
  • the OLT when the OLT uses the active port to transmit services with each ONU, the OLT also measures the quality of the backbone link connected to the standby port, and can notify the administrator to perform maintenance when the fault of the backbone link with the standby port is measured.
  • the OLT switches the service to the standby interface, and the OLT also measures the quality of the trunk link connected to the active port. When it returns to normal, switch services to the active interface.
  • the link between the first port and the ONU is referred to as the first link
  • the first link includes the first backbone link between the first port and the ODN and the ODN and the ONU. branch link between.
  • the link between the second port and the ONU is called the second link
  • the second link includes the second trunk link between the second port and the ODN and the branch link between the ODN and the ONU .
  • the branch link between the ODN and the ONU is that the first link and the second link include a common branch link.
  • the second link between the second port and the ONU carries two types of PON channels, namely a first PON channel and a second PON channel.
  • the first link between the first port and the ONU carries two types of PON channels, namely a third PON channel and a fourth PON channel.
  • the third PON channel carried on the first link and the first PON channel carried on the second link are channels of the same type, and both are PON channels of the first type. That is to say: for the first PON channel carried on the second link and the third PON channel carried on the first link, the optical wavelengths corresponding to the signals that can be transmitted on the first PON channel and those on the third PON channel The optical wavelengths corresponding to the signals that can be transmitted are the same, and they are all used to transmit the signals of operation and maintenance services.
  • the second PON channel on the second link and the fourth PON channel on the first link are channels of the same type, and both are second-type PON channels. That is to say: for the fourth PON channel carried on the second link and the second PON channel carried on the first link, the optical wavelengths corresponding to the signals that can be transmitted on the fourth PON channel are the same as those on the second PON channel. The optical wavelengths corresponding to the signals that can be transmitted are the same, and they are all used to transmit signals of data services.
  • the optical wavelength corresponding to the signal that can be transmitted on the third PON channel is different from the optical wavelength corresponding to the signal that can be transmitted on the fourth PON channel, and the optical wavelength corresponding to the signal that can be transmitted on the first PON channel
  • the optical wavelengths corresponding to the signals that can be transmitted on the PON channel are different.
  • the PON architecture 200 implementing the dual-homing protection technology includes two OLTs, namely a first OLT and a second OLT, the first OLT includes a first port, and the second OLT A second port is included, the first port is connected to the ODN through a first backbone link, and the second port is connected to the ODN through a second backbone link.
  • one OLT is the active OLT
  • the port on the active OLT is the active port
  • the other OLT is the standby OLT
  • the port on the standby OLT is the standby port.
  • the active OLT sends services to each ONU or receives services sent by each ONU through the active port.
  • the active OLT switches services to the standby interface on the standby OLT, that is, the backbone link connected to the active port on the active OLT fails.
  • the standby OLT sends services to or receives services from each ONU through the standby port.
  • the active OLT uses the active port to transmit services with each ONU, it measures the quality of the backbone link connected to the standby port.
  • the administrator can be notified for maintenance. .
  • the link between the first port on the first OLT and the ONU is called the first link
  • the first link includes the link between the first port on the first OLT and the ODN.
  • the link between the second port on the second OLT and the ONU is called the second link
  • the second link includes the second backbone link between the second port on the second OLT and the ODN and the ODN and the ODN.
  • the branch link between the ODN and the ONU is that the first link and the second link include a common branch link.
  • the second link between the second port on the second OLT and the ONU carries two types of PON channels, namely the first PON channel and the second PON channel.
  • the first link between the first port on the first OLT and the ONU carries two types of PON channels, which are a third PON channel and a fourth PON channel, respectively.
  • the third PON channel carried on the first link and the first PON channel carried on the second link are channels of the same type, and both are first-type PON channels. That is to say: for the first PON channel carried on the second link and the third PON channel carried on the first link, the optical wavelengths corresponding to the signals that can be transmitted on the first PON channel and those on the third PON channel The optical wavelengths corresponding to the signals that can be transmitted are the same, and they are all used to transmit the signals of operation and maintenance services.
  • the second PON channel on the second link and the fourth PON channel on the first link are channels of the same type, and both are second-type PON channels. That is to say: for the fourth PON channel carried on the second link and the second PON channel carried on the first link, the optical wavelengths corresponding to the signals that can be transmitted on the fourth PON channel are the same as those on the second PON channel. The optical wavelengths corresponding to the signals that can be transmitted are the same, and they are all used to transmit signals of data services.
  • the optical wavelength corresponding to the signal that can be transmitted on the third PON channel is different from the optical wavelength corresponding to the signal that can be transmitted on the fourth PON channel, and the optical wavelength corresponding to the signal that can be transmitted on the first PON channel
  • the optical wavelengths corresponding to the signals that can be transmitted on the PON channel are different.
  • the port when using the port to transmit services, has the following characteristics: the port sends a signal to any ONU And the port receives the signal sent by any ONU.
  • the other port has the following characteristics: the other port cannot send a signal to any ONU but the other port can receive a signal sent by any ONU.
  • the link between the first port and the ONU carries two PON channels with different optical wavelengths capable of transmitting signals.
  • the link between the second port and the ONU also carries two PON channels with different optical wavelengths capable of transmitting signals.
  • an embodiment of the present application provides a method 300 for measuring a link state.
  • the method 300 is applied to the PON architecture 100 shown in FIG. 1 , and the PON architecture 100 is used to implement a single-homing protection technology.
  • the first port on the OLT is the port currently used by the OLT for service transmission with each ONU in the PON 100. That is, the OLT sends a service to each ONU or receives a service sent by each ONU through the first port.
  • the method 300 includes:
  • Step 301 The OLT sends first indication information to the first ONU through the first port, where the first indication information is used to indicate a measurement window for measuring the first ONU, and the first ONU is any ONU in the PON.
  • the first indication information is used to indicate a measurement window for measuring the first ONU, including: the first indication information is used to indicate the measurement window and instruct the first ONU to send a measurement signal within the measurement window.
  • the OLT includes a first port and a second port, and the first port is a port currently used to transmit services on the OLT, that is, the OLT performs service transmission with the ONU in the PON through the first port.
  • the first port has the following characteristics: the first port sends a signal to the ONU in the PON and the first port receives the signal sent by the ONU in the PON.
  • the second port has the following characteristics: the second port receives the signal sent by the ONU in the PON, but the second port cannot send the signal to the ONU in the PON.
  • the first port may be the active port on the OLT, and the second port may be the standby port on the OLT; or, the first port may be the standby port on the OLT, and the second port may be the active port on the OLT.
  • the first link between the first port and the first ONU carries the third PON channel and the fourth PON channel
  • the second port and the first ONU carry the third PON channel and the fourth PON channel.
  • a first PON channel and a second PON channel are carried on the second link.
  • both the third PON channel and the first PON channel are first type PON channels. Therefore, the OLT sends the operation and maintenance service to the ONU in the PON on the third PON channel through the first port.
  • the OLT receives the operation and maintenance service sent by the ONU in the PON on the third PON channel through the first port.
  • the second port can also receive the operation and maintenance service sent by the ONU in the PON on the first PON channel.
  • Both the second PON channel and the fourth PON channel are second type PON channels. Therefore, the OLT sends data services to the ONU in the PON on the fourth PON channel through the second port.
  • the OLT receives the data service sent by the ONU in the PON on the fourth PON channel through the first port.
  • the second port can receive the data service sent by the ONU in the PON on the second PON channel.
  • the first indication information is used to instruct the first ONU to send the measurement signal within the measurement window, including: the first indication information is used to instruct the first ONU to send the measurement through the first type PON channel within the measurement window Signal.
  • the first type of PON channel includes the above-mentioned first PON channel and third PON channel.
  • step 301 the OLT sends the first indication information to the first ONU on the third PON channel or on the fourth PON channel through the first port.
  • the first indication information includes one or more of a start time and a time length of the measurement window.
  • the first indication information may also not include information such as the start time and time length of the measurement window. That is to say, the first indication information has the following four cases:
  • the first indication information includes the start time and time length of the measurement window.
  • the second case the first indication information includes the start time of the measurement window.
  • both the OLT and the first ONU include the time length of the measurement window.
  • the time length may be the time length pre-agreed by the OLT and the first ONU, or the time length that the OLT and the first ONU receive in advance configured by the technician, or the time length that the OLT and the first ONU pre-receive the time length configured by the control device.
  • the third case the first indication information includes the time length of the measurement window.
  • the time difference between the start time of the measurement window and the time when the first ONU receives the first indication information is a specified time difference value, and the specified time difference value is greater than or equal to 0.
  • the first indication information does not include the start time and time length of the measurement window.
  • the time difference between the start time of the measurement window and the time when the first ONU receives the first indication information is a specified time difference value, and the specified time difference value is greater than or equal to 0.
  • Both the OLT and the first ONU include the time length of the measurement window.
  • the time length may be the time length pre-agreed by the OLT and the first ONU, or the time length that the OLT and the first ONU receive in advance configured by the technician, or the time length that the OLT and the first ONU pre-receive the time length configured by the control device.
  • the time length of the measurement window is a specified time length or a time length configured by the OLT itself.
  • the time length of the measurement window is up to several seconds or tens of seconds.
  • the length of the measurement window is 3 seconds, 5 seconds, 8 seconds, 10 seconds, 20 seconds, or 30 seconds, etc. In this way, there is enough time to measure the first ONU within the measurement window, and the accuracy of measuring the first ONU is improved.
  • the above-mentioned measurement windows are divided into two types, and the two types of measurement windows are as follows:
  • the first type of measurement window within this measurement window, only the first ONU is allowed to send signals to the OLT on the first type of PON channel, and other ONUs in the PON except the first ONU are not allowed to send signals to the OLT.
  • the signals received by the OLT in the measurement window are all sent by the first ONU, which improves link measurement accuracy.
  • the second type of measurement window includes at least one transmission period, each transmission period includes the first time period and the transmission window corresponding to each ONU in the PON, and the transmission window corresponding to the first ONU is the transmission window of the first ONU to the OLT.
  • the window of the maintenance service, and the first indication information is used to instruct the first ONU to send a signal in the first time period.
  • a sending period includes 10 sending windows, a total of 20 microseconds, and the time length of the first time period is 105 seconds.
  • the first time period accounts for most of the entire transmission cycle, so most of the signals received by the OLT in the measurement window are the signals sent by the first ONU. Based on the received signals, the first ONU can be measured to complete the link status analysis. Measurement. In addition, within the measurement window, each ONU transmits the operation and maintenance service with the OLT within the sending window corresponding to each ONU, so as to avoid affecting the operation and maintenance service.
  • the ONU in the PON can send data services to the OLT through the second type PON channel within the measurement window, and/or receive data sent by the OLT Therefore, the transmission process of the data service and the measurement process of the first ONU are isolated, and the transmission of the data service is not affected.
  • Step 302 The first ONU receives the first indication information, and sends a measurement signal to the OLT on the first PON channel within the measurement window indicated by the first indication information.
  • the first link includes the first trunk link between the first port on the OLT and the ODN and the branch link between the ODN and the first ONU
  • the second link includes the second port on the OLT and the ODN
  • the first PON channel is carried on the first link
  • the third PON channel is carried on the second link.
  • the first PON channel and the third PON channel are the same type of PON channels that can transmit signals with the same optical wavelength, so Within the measurement window, the first ONU will simultaneously send measurement signals on the first PON channel and the third PON channel.
  • the measurement signal sent by the first ONU includes one or more of a signal randomly generated by the OLT and a signal stored in the OLT in advance.
  • the first ONU within the measurement window, can also send a service signal on the fourth PON channel carried on the second link and the second PON channel carried on the first link, where the service signal is For the signal of the data service, the optical wavelength corresponding to the measurement signal is different from the optical wavelength corresponding to the service signal. That is to say, the transmission of data services in the PON will not be affected within the measurement window.
  • the first ONU receives the first indication information, determines a measurement window indicated by the first indication information based on the first indication information, and sends a measurement signal to the OLT on the first PON channel within the measurement window.
  • the first indication information includes the first indication information of the above-mentioned first situation, second situation, third situation or fourth situation.
  • first indication information of the four cases the following describes the process of determining the measurement window based on the first indication information of each case. Details are as follows:
  • the first indication information includes the start time and time length of the measurement window.
  • the first ONU acquires the start time and time length of the measurement window from the first indication information, and determines the measurement window based on the start time and time length of the measurement window.
  • the first indication information includes the start time of the measurement window.
  • the first ONU includes the time length of the measurement window. The first ONU acquires the start time of the measurement window from the first indication information, and determines the measurement window based on the start time and time length of the measurement window.
  • the first indication information includes the time length of the measurement window.
  • the first ONU obtains the time length of the measurement window from the first indication information, and obtains the reception time of receiving the first indication information, calculates the start time of the measurement window based on the reception time and the specified time difference, and calculates the start time of the measurement window based on the measurement window. The start time and length of time determine the measurement window.
  • the first indication information does not include the start time and time length of the measurement window.
  • the first ONU includes the time length of the measurement window. The first ONU obtains the reception time of receiving the first indication information, calculates the start time of the measurement window based on the reception time and the specified time difference, and determines the measurement window based on the start time and time length of the measurement window.
  • the determined measurement window is divided into a first type of measurement window and a second type of measurement window.
  • the first ONU sends the measurement signal to the OLT on the first type PON channel within the first type measurement window, that is, the first PON channel and the third PON channel Send measurement signals to the OLT.
  • the first-type measurement window other ONUs in the PON except the first ONU will not send measurement signals to the OLT on the first-type PON channel.
  • the second type of measurement window includes at least one transmission period, and each transmission period includes the first time period and the transmission window corresponding to each ONU in the PON.
  • the first ONU sends the measurement signal to the OLT on the first PON channel and the third PON channel within the first time period, and each ONU in the PON can send the measurement signal within the sending window corresponding to each ONU respectively Operation and maintenance business.
  • Step 303 The OLT obtains the signal quality corresponding to the first ONU, the signal quality is the signal quality received by the second port from the first PON channel within the measurement window, and the signal received by the second port includes the first ONU in the measurement window. measurement signal sent within.
  • step 303 the OLT obtains the signal quality corresponding to the first ONU through the following operations 3031 to 3032.
  • the operations of the 3031 to 3032 are:
  • the OLT determines a measurement window, and receives the measurement signal on the first PON channel through the second port within the measurement window.
  • the first indication information sent by the OLT includes the first indication information of the first case, the second case, the third case or the fourth case.
  • the first indication information of the four cases the following describes the process of determining the measurement window in each case. Details are as follows:
  • the first indication information includes the start time and time length of the measurement window.
  • the OLT determines the measurement window based on the start time and time length of the measurement window.
  • the first indication information includes the start time of the measurement window.
  • the OLT includes the time length of the measurement window. The OLT determines the measurement window based on the start time and time length of the measurement window.
  • the first indication information includes the time length of the measurement window.
  • the OLT includes the signal transmission duration between the first port and the first ONU measured in advance. Based on the signal transmission duration and the transmission time for sending the first indication information, the OLT obtains the reception time for the first ONU to receive the first indication information, based on the The start time of the measurement window is calculated from the difference between the reception time and the specified time, and the measurement window is determined based on the start time and time length of the measurement window.
  • the first indication information does not include the start time and time length of the measurement window.
  • the OLT includes the time length of the measurement window and the previously measured signal transmission time between the first port and the first ONU. Based on the signal transmission duration and the transmission time for sending the first indication information, the OLT obtains the reception time for the first ONU to receive the first indication information, calculates the start time of the measurement window based on the difference between the reception time and the specified time, and based on the measurement The start time and time length of the window determine the measurement window.
  • the measurement window may be the above-mentioned first type measurement window or the second type measurement window.
  • the OLT will receive the measurement signal sent by the first ONU on the third PON channel through the first port, and the OLT will not process the measurement signal received by the first port.
  • the measurement window includes at least one transmission period, and each transmission period includes a transmission window and a first time period corresponding to each ONU in the PON. Therefore, in the sending window corresponding to any ONU, the OLT may receive the operation and maintenance service sent by the ONU on the third PON channel through the first port, and process the operation and maintenance service. However, in the first time period, the measurement signal sent by the first ONU will be received on the third PON channel through the first port, and the OLT will not process the measurement signal received by the first port in the first time period.
  • the OLT measures the signal received by the second port on the first PON channel to obtain the signal quality corresponding to the first ONU.
  • the signal quality corresponding to the first ONU includes at least one received signal strength indicator (received signal strength indication, RSSI), where the at least one RSSI is the RSSI of the signal received by the second port within the measurement window. That is, the OLT performs at least one measurement on the signal received by the second port on the first PON channel to obtain the at least one RSSI.
  • RSSI received signal strength indication
  • the measurement window may be the above-mentioned first type measurement window or the second type measurement window.
  • the measurement window is the first type of measurement window
  • the signals received by the second port on the first PON channel are all measurement signals sent by the first ONU, so the accuracy of measuring the signal quality corresponding to the first ONU is improved.
  • the measurement window is the above-mentioned second type of measurement window, since most of the time of each transmission cycle in the measurement window is the first time period, the first ONU is in the first time period of each transmission cycle for the first PON.
  • the measurement signal is sent on the channel, so most of the signals received by the second port on the first PON channel are the measurement signals sent by the first ONU, ensuring that the signal quality corresponding to the first ONU is close to the quality of the measurement signal received by the OLT and sent by the first ONU. .
  • Step 304 The OLT determines the state of the second backbone link based on the signal quality corresponding to each ONU in the PON, where the second backbone link is a common part of the link from the second port to each ONU.
  • the second backbone link is the backbone link between the second port and the ODN.
  • step 304 the OLT determines whether the signal quality corresponding to each ONU in the PON exceeds the specified quality threshold, and if both exceed the specified quality threshold, determine that the state of the second backbone link is normal; , and determine that the state of the second backbone link is a faulty state.
  • the signal quality corresponding to the first ONU includes at least one RSSI, and when the at least one RSSI exceeds a specified quality threshold, it is determined that the signal quality corresponding to the first ONU exceeds the specified quality threshold; when the at least one RSSI is not uniform When the specified quality threshold is exceeded, it is determined that the signal quality corresponding to the first ONU does not exceed the specified quality threshold.
  • the second port is the standby port.
  • the above-mentioned processes 301-304 may be repeatedly performed to continue to determine the state of the second backbone link.
  • a technician may be notified to perform maintenance.
  • the first backbone link fails, the services with each ONU in the PON are switched to the second port.
  • the second port is the active port. After it is determined that the state of the second backbone link is normal, the services between the OLT and each ONU in the PON can be switched to the second port, and then the above-mentioned processes of 301-304 are repeated to determine the connection to the first port. the status of the first backbone link. After it is determined that the state of the second trunk link is a fault state, a technician may be notified to perform maintenance.
  • the OLT since the OLT sends the first indication information to the first ONU through the first port, the first indication information is used to indicate the measurement window for measuring the first ONU, so the first ONU determines based on the first indication information The measurement window within which the signal is sent to the OLT on the first PON channel.
  • the OLT receives the signal on the first PON channel through the second port, and measures the signal to obtain the signal quality corresponding to the first ONU. Repeating the above process can obtain the signal quality corresponding to each ONU, so that the OLT determines the status of the backbone link based on the signal quality corresponding to each ONU. When the status of the backbone link is normal, the service will be switched to this status.
  • the service can be transmitted normally on the backbone link. Therefore, through the link state detection method, it is ensured that services can be normally performed after link switching. Since the signal quality corresponding to each ONU is obtained, only when the signal quality corresponding to each ONU exceeds the specified quality threshold, the status of the backbone link is determined to be normal, so as to improve the accuracy of determining the status of the backbone link.
  • the signal quality corresponding to each ONU is measured in each measurement window, so that the time length of each measurement window can be configured to be short, only a few seconds or tens of seconds, and the measurement of each The time required for the signal quality corresponding to the ONU is relatively short, so that the signal quality corresponding to each ONU can be obtained in a relatively short period of time, thereby improving the efficiency of measuring the backbone link.
  • the signal quality corresponding to each ONU includes at least one RSSI, and the RSSI can be easily measured, thereby further improving the accuracy of measuring the state of the backbone link based on the at least one RSSI corresponding to each ONU.
  • an embodiment of the present application provides a method 400 for measuring a link state.
  • the method 400 is applied to the PON architecture 200 shown in FIG. 2 , and the PON architecture 200 is used to implement a dual-homing protection technology.
  • the first port on the first OLT is the port currently used by the OLT for service transmission with each ONU in the PON 200. That is, the first OLT sends a service to each ONU or receives a service sent by each ONU through the first port.
  • the method 400 includes:
  • Step 401 The first OLT sends first indication information to the first ONU and the second OLT through the first port, where the first indication information is used to indicate a measurement window for measuring the first ONU, and the first ONU is any one of the PONs ONU.
  • the first indication information is used to indicate a measurement window for measuring the first ONU, including: the first indication information is used to indicate the measurement window and instruct the first ONU to send a measurement signal within the measurement window.
  • the first OLT includes a first port, the first OLT is an OLT currently used to transmit services, and the first OLT currently transmits services through the first port, that is, the first OLT transmits services with ONUs in the PON through the first port.
  • the first OLT and the first port have the following characteristics: the first OLT sends a signal to the ONU in the PON through the first port and receives the signal sent by the ONU in the PON through the first port.
  • the second OLT and the second port have the following characteristics: the second OLT receives the signal sent by the ONU in the PON through the second port, but the second OLT cannot send the signal to the ONU in the PON through the second port.
  • the first OLT may be the active OLT, the first port on the first OLT may be the active port, the second OLT may be the standby OLT, and the second port on the second OLT may be the standby port; or, the first OLT may is the standby OLT, the first port on the first OLT may be the standby port, the second OLT may be the active OLT, and the second port on the second OLT may be the active port.
  • the first link between the first port on the first OLT and the first ONU carries the third PON channel and the fourth PON channel
  • the second OLT carries the third PON channel and the fourth PON channel.
  • the second link between the second port and the first ONU carries the first PON channel and the second PON channel.
  • both the third PON channel and the first PON channel are first type PON channels. Therefore, the first OLT sends the operation and maintenance service to the ONU in the PON on the third PON channel through the first port.
  • the first OLT receives the operation and maintenance service sent by the ONU in the PON through the first port on the third PON channel, and the second OLT can also The operation and maintenance service sent by the ONU in the PON is received on the first PON channel through the second port.
  • Both the second PON channel and the fourth PON channel are second type PON channels. Therefore, the first OLT sends data services to the ONU in the PON on the fourth PON channel through the second port.
  • the first OLT receives the data service sent by the ONU in the PON on the fourth PON channel through the first port, and the second OLT can also pass the data service through the fourth PON channel.
  • the second port receives the data service sent by the ONU in the PON on the second PON channel.
  • the first indication information is used to instruct the first ONU to send the measurement signal within the measurement window, including: the first indication information is used to instruct the first ONU to send the measurement through the first type PON channel within the measurement window Signal.
  • the first type of PON channel includes the above-mentioned first PON channel and third PON channel.
  • step 401 the first OLT sends first indication information to the first ONU on the third PON channel or on the fourth PON channel through the first port.
  • the first indication information includes one or more of a start time and a time length of the measurement window.
  • the first indication information may also not include information such as the start time and time length of the measurement window.
  • the first indication information please refer to the relevant content in step 301 of the method 300 shown in FIG. 3 above, and will not be described in detail here.
  • the above-mentioned measurement windows are divided into two types, and the two types of measurement windows are a first type of measurement window and a second type of measurement window, respectively.
  • first type of measurement window and the second type of measurement window please refer to the relevant content in step 301 of the method 300 shown in FIG. 3 above, and will not be described in detail here.
  • Step 402 The first ONU receives the first indication information, and sends a measurement signal to the second OLT on the first PON channel within the measurement window indicated by the first indication information.
  • the second link includes the second port on the second OLT
  • the first PON channel is carried on the first link
  • the third PON channel is carried on the second link.
  • the first PON channel and the third PON channel are the same type of PON channels with the same wavelength, so within the measurement window , the first ONU will simultaneously send the measurement signal to the second OLT on the first PON channel and to the first OLT on the third PON channel.
  • the first ONU within the measurement window, can also send a service signal on the fourth PON channel carried on the second link and the second PON channel carried on the first link, where the service signal is For the signal of the data service, the optical wavelength corresponding to the measurement signal is different from the optical wavelength corresponding to the service signal. That is to say, the transmission of data services in the PON will not be affected within the measurement window.
  • step 402 for the detailed implementation process of sending the measurement signal to the second OLT by the first ONU, refer to the relevant content in step 302 of the method 300 shown in FIG. 3 above, and will not be described in detail here.
  • Step 403 The second OLT receives the first indication information, and obtains the signal quality corresponding to the first ONU based on the first indication information, and the signal quality is the signal quality received by the second port on the second OLT from the first PON channel within the measurement window.
  • the signal quality received by the second port includes the measurement signal sent by the first ONU within the measurement window.
  • step 403 the OLT obtains the signal quality corresponding to the first ONU through the following operations from 4031 to 4033.
  • the operations of the 4031 to 4033 are:
  • the second OLT receives the first indication information, and determines a measurement window based on the first indication information.
  • the first indication information received by the second OLT includes the first indication information of the first case, the second case, the third case, or the fourth case.
  • the first indication information of the four cases the following describes the process of determining the measurement window in each case. Details are as follows:
  • the first indication information includes the start time and time length of the measurement window.
  • the second OLT acquires the start time and time length of the measurement window from the first indication information, and determines the measurement window based on the start time and time length of the measurement window.
  • the first indication information includes the start time of the measurement window.
  • the second OLT includes the time length of the measurement window. The second OLT acquires the start time of the measurement window from the first indication information, and determines the measurement window based on the start time and time length of the measurement window.
  • the first indication information includes the time length of the measurement window.
  • the second OLT obtains the signal transmission duration between the first port on the first OLT and the first ONU, and obtains the sending time of the first indication information sent by the first OLT.
  • Obtain the time length of the measurement window from the first indication information, obtain the reception time for the first ONU to receive the first indication information based on the signal transmission duration and the transmission time for sending the first indication information, and obtain the reception time for the first ONU to receive the first indication information based on the difference between the reception time and the specified time
  • the value calculates the start time of the measurement window, and based on the start time and time length of the measurement window, the measurement window is determined.
  • the first indication information includes the signal transmission duration and the transmission time, and the signal transmission duration and the transmission time are obtained from the first indication information.
  • the second OLT includes the signal transmission duration, and the signal transmission duration is acquired by the second OLT from the first OLT in advance. For the transmission time, the second OLT requests the transmission time from the first OLT.
  • the first indication information does not include the start time and time length of the measurement window.
  • the second OLT acquires the time length of the measurement window, and acquires the signal transmission duration, where the signal transmission duration is the signal transmission duration between the first port on the first OLT and the first ONU.
  • the second OLT obtains the sending time when the first OLT sends the first indication information, obtains the receiving time when the first ONU receives the first indication information based on the signal transmission duration and the sending time, and calculates the receiving time based on the difference between the receiving time and the specified time.
  • the start time of the measurement window is determined based on the start time and time length of the measurement window.
  • the second OLT includes the time length of the measurement window and the signal transmission time previously obtained from the first OLT. For the transmission time, the second OLT requests the transmission time from the first OLT.
  • the first indication information includes the signal transmission duration and the transmission time, and the signal transmission duration and the transmission time are obtained from the first indication information.
  • the measurement window may be the above-mentioned first type measurement window or the second type measurement window.
  • the first OLT will receive the measurement signal sent by the first ONU on the third PON channel through the first port, and the first OLT will not process the measurement signal received by the first port .
  • the measurement window includes at least one transmission period, and each transmission period includes a transmission window and a first time period corresponding to each ONU in the PON. Therefore, in the sending window corresponding to any ONU, the first OLT may receive the operation and maintenance service sent by the ONU on the third PON channel through the first port, and process the operation and maintenance service. However, the first OLT will receive the measurement signal sent by the first ONU on the third PON channel through the first port during the first time period, and the first OLT will not process the measurement signal received by the first port during the first time period.
  • the second OLT receives a signal on the first PON channel through the second port within the measurement window.
  • the second OLT measures the signal received by the second port on the first PON channel to obtain the signal quality corresponding to the first ONU.
  • the second OLT obtains the signal quality corresponding to each other ONU, obtains the signal quality corresponding to each ONU in the PON, and then The operation of the following step 404 is performed.
  • Step 404 The second OLT sends measurement information to the first OLT, where the measurement information includes the signal quality corresponding to each ONU in the PON.
  • Step 405 The first OLT receives the measurement information, and determines the state of the second backbone link based on the signal quality corresponding to each ONU included in the measurement information, and the second backbone link is the link between the second port and each ONU. common part.
  • the second backbone link is the backbone link between the second port on the second OLT and the ODN.
  • the second OLT determines whether the signal quality corresponding to each ONU in the PON exceeds the specified quality threshold, and if both exceed the specified quality threshold, determine that the state of the second backbone link is normal;
  • the quality threshold is used to determine that the state of the second backbone link is a fault state.
  • the second OLT is the standby OLT
  • the second port on the second OLT is the standby port.
  • the second OLT is the active OLT
  • the second port on the second OLT is the active port.
  • the first indication information is used to indicate the measurement window for measuring the first ONU, so that the first ONU
  • the measurement window is determined based on the first indication information, and a signal is sent to the second OLT on the first PON channel within the measurement window.
  • the second OLT determines the measurement window based on the first indication information, receives the signal on the first PON channel through the second port within the measurement window, and measures the signal to obtain the signal quality corresponding to the first ONU.
  • Repeating the above process can obtain the signal quality corresponding to each ONU, so that the second OLT determines the status of the backbone link based on the signal quality corresponding to each ONU, and only switches the service when the status of the backbone link is normal. to the backbone link, so that services can be normally transmitted on the backbone link. Therefore, through the link state detection method, it is ensured that services can be normally performed after link switching. Since the signal quality corresponding to each ONU is obtained, only when the signal quality corresponding to each ONU exceeds the specified quality threshold, the status of the backbone link is determined to be normal, so as to improve the accuracy of determining the status of the backbone link.
  • the signal quality corresponding to each ONU is measured in each measurement window, so that the time length of each measurement window can be configured to be shorter, only a few seconds or tens of seconds.
  • the time required for the signal quality corresponding to the ONU is relatively short, so that the signal quality corresponding to each ONU can be obtained in a relatively short time, thereby improving the efficiency of measuring the backbone link.
  • the signal quality corresponding to each ONU includes at least one RSSI, and the RSSI can be easily measured, thereby further improving the accuracy of measuring the state of the backbone link based on the at least one RSSI corresponding to each ONU.
  • an embodiment of the present application provides an apparatus 500 for measuring a link state.
  • the apparatus 500 is deployed on the OLT in the PON architecture 100 shown in FIG. 1 .
  • On the OLT on the OLT provided by the method 300 shown in FIG. 3 or on the first OLT provided by the method 400 shown in FIG. 4 , including:
  • the sending unit 501 is used to send the first indication information to the first optical network unit ONU through the first port, the device 500 is a device in the passive optical network PON, and the first ONU is one of the at least one ONU included in the PON , the first indication information is used to indicate a measurement window for measuring the first ONU;
  • the processing unit 502 is configured to acquire the signal quality corresponding to the first ONU, where the signal quality is the signal quality received by the second port from the first PON channel within the measurement window, and the signal received by the second port includes the signal quality received by the first ONU in the measurement window.
  • the first PON channel is used to transmit the measurement signal
  • the second PON channel is used to transmit the service signal.
  • the optical wavelength corresponding to the measurement signal is different from the optical wavelength corresponding to the service signal
  • the first PON channel is used to transmit the measurement signal.
  • the second PON channel is a channel carried on the link between the second port and the first ONU;
  • the processing unit 502 is further configured to determine the status of the backbone link based on the signal quality corresponding to each ONU in the PON, where the backbone link is a common part of the link from the second port to each ONU.
  • step 301 of the method 300 shown in FIG. 3 and step 401 of the method 400 shown in FIG.
  • the first indication information includes at least one of a start time of the measurement window and a time length of the measurement window.
  • the first port is a port on the apparatus 500
  • the second port is a port on the second OLT
  • the apparatus 500 and the second OLT are two different OLT devices
  • the sending unit 501 is further configured to send the The second OLT sends first indication information, where the first indication information is further used to instruct the second OLT to obtain the signal quality received by the second port from the first PON channel within the measurement window.
  • the apparatus 500 further includes: a receiving unit 503,
  • the receiving unit 503 is configured to receive measurement information sent by the second OLT, where the measurement information includes signal quality corresponding to the first ONU.
  • the first port and the second port are two different ports on the device 500 .
  • the measurement window includes at least one sending period, each sending period includes a first time period and a sending window corresponding to each ONU, and the sending window corresponding to the first ONU is the first ONU sending the operation and maintenance to the device 500.
  • the service window, the first indication information is used to instruct the first ONU to send the measurement signal in the first time period.
  • the signal quality corresponding to the first ONU includes at least one received signal strength indicator RSSI, where the at least one RSSI is the RSSI of the signal received by the second port within the measurement window.
  • the sending unit sends first indication information to the first ONU through the first port, where the first indication information is used to indicate a measurement window for measuring the first ONU.
  • the processing unit acquires the signal quality corresponding to the first ONU, and determines the state of the backbone link based on the signal quality corresponding to each ONU in the PON.
  • the sending unit sends the first indication information to the first ONU through the first port, the first indication information is used to indicate the measurement window for measuring the first ONU, so that the first ONU will be in the first PON channel within the measurement window send the signal on. Therefore, the second OLT measures the signal quality received by the second port within the measurement window, and obtains the signal quality corresponding to the first ONU.
  • the signal quality corresponding to each ONU in the PON can be obtained, so that the processing unit can accurately determine the status of the backbone link based on the signal quality corresponding to each ONU, thereby improving the accuracy of measuring the status of the backbone link.
  • the signal quality corresponding to the first ONU is measured in the measurement window, so that the processing unit can measure the signal quality corresponding to the first ONU in a relatively short time, and the time of the measurement window The length can be set shorter.
  • an embodiment of the present application provides an apparatus 600 for measuring a link state.
  • the apparatus 600 is deployed on the second OLT in the PON architecture shown in FIG. 2 , or the second OLT provided by the method 400 shown in FIG. 4 .
  • Two OLTs including:
  • a receiving unit 601 configured to receive first indication information, wherein the first indication information is information sent by the first OLT to the apparatus 600 and the first optical network unit ONU, and the first OLT and the apparatus 600 are passive optical networks Two devices in the PON, the first ONU is one of the at least one ONU included in the PON, and the first indication information is used to indicate a measurement window for measuring the first ONU;
  • the processing unit 602 is used to measure the signal received by the second port from the first PON channel in the measurement window, to obtain the signal quality corresponding to the first ONU, and the signal received by the second port includes the first ONU in the measurement window.
  • the measurement signal sent within the second port is the port on the device 600, the first PON channel is used to transmit the measurement signal, the second PON channel is used to transmit the service signal, the optical wavelength corresponding to the measurement signal and the service signal The corresponding optical wavelengths are different, and the first PON channel and the second PON channel are channels carried on the link between the second port and the first ONU;
  • the sending unit 603 is configured to send measurement information to the first OLT, where the measurement information includes the signal quality corresponding to each ONU in the PON, and the measurement information is used to trigger the first OLT to determine the backbone link based on the signal quality corresponding to each ONU quality, the backbone link is a common part of the link from the second port to each ONU.
  • step 403 of the method 400 shown in FIG. 4 which will not be described in detail here.
  • step 404 of the method 400 shown in FIG. 4 which will not be described in detail here.
  • the first indication information includes at least one of a start time of the measurement window and a time length of the measurement window.
  • the measurement window includes at least one communication cycle, each communication cycle includes a first time period and a sending window corresponding to each ONU, and the sending window corresponding to the first ONU is the first ONU sending the operation and maintenance service to the first OLT. window, the first indication information is used to instruct the first ONU to send the measurement signal in the first time period.
  • the signal quality corresponding to the first ONU includes at least one received signal strength indicator RSSI, where the at least one RSSI is the RSSI of the signal received by the second port within the measurement window.
  • the receiving unit receives the first indication information
  • the processing unit measures the signal received by the second port from the first PON channel within the measurement window, and obtains the signal quality corresponding to the first ONU, and the second port
  • the received signal includes the signal sent by the first ONU within the measurement window, and the second PON channel is used for transmitting data services.
  • the sending unit sends measurement information to the first OLT, where the measurement information includes the signal quality corresponding to each ONU in the PON, so that the first OLT determines the quality of the backbone link based on the signal quality corresponding to each ONU, and the backbone link is the first Common part of the link of the two ports to each ONU.
  • the processing unit measures the signal quality received by the second port within the measurement window, and obtains the signal quality corresponding to the first ONU.
  • the signal quality corresponding to each ONU in the PON can be obtained, and the sending unit sends the signal quality corresponding to each ONU to the first OLT, so that the first OLT can accurately determine the backbone based on the signal quality corresponding to each ONU.
  • the status of the link Only when the status of the backbone link is in the normal state, the service is switched to the backbone link, so that the service can be transmitted normally on the backbone link.
  • the link state detection method it is ensured that services can be normally performed after link switching. Since the signal quality corresponding to each ONU is obtained, the accuracy of measuring the status of the backbone link is improved. In addition, since a measurement window is provided for the first ONU, the signal quality corresponding to the first ONU is measured in the measurement window, so that the processing unit can measure the signal quality corresponding to the first ONU in a relatively short time, and the time of the measurement window The length can be set shorter. Therefore, although a measurement window is provided for each ONU to obtain the signal quality corresponding to each ONU in the measurement window corresponding to each ONU, the total length of the measurement window corresponding to each ONU is also shorter, which improves the measurement performance. The efficiency of the backbone link state.
  • an embodiment of the present application provides a schematic diagram of an apparatus 700 for measuring a link state.
  • the apparatus 700 may be the OLT in the PON architecture 100 shown in FIG. 1 , the first OLT in the PON architecture 200 shown in FIG. 2 , the OLT in the method 300 shown in FIG. 3 or the first OLT in the method 400 shown in FIG. 4 .
  • the apparatus 700 includes at least one processor 701 , internal connections 702 and at least one port 703 .
  • the apparatus 700 is an apparatus with a hardware structure, which can be used to implement the functional modules in the apparatus 500 described in FIG. 5 .
  • the processing unit 502 in the apparatus 500 shown in FIG. 5 can be implemented by the at least one processor 701, and the sending unit 501 and the receiving unit 503 in the apparatus 500 shown in FIG.
  • At least one port 703 is implemented.
  • the apparatus 700 may also be used to implement the functions of the OLT in any of the foregoing embodiments.
  • the apparatus 700 may be the OLT in the PON architecture 100 shown in FIG. 1 or the OLT in the method 400 shown in FIG. 3 .
  • the at least one port 703 includes a first port and a second port on the OLT.
  • the apparatus 700 may be the first OLT in the PON architecture 200 shown in FIG. 2 or the first OLT in the method 400 shown in FIG. 4 .
  • the at least one port 703 includes a first port on the first OLT.
  • the above-mentioned processor 701 may be a hardware circuit, a general-purpose central processing unit (central processing unit, CPU), a network processor (network processor, NP), a microprocessor, an application-specific integrated circuit (application-specific integrated circuit) , ASIC), or one or more integrated circuits used to control the execution of the programs of the present application.
  • CPU central processing unit
  • NP network processor
  • NP network processor
  • ASIC application-specific integrated circuit
  • the apparatus 700 further includes a memory 704, and the processing unit 502 in the apparatus 500 shown in FIG. 5 can use the at least one processor 701
  • the code in memory 704 is invoked to implement.
  • the internal connection 702 described above may include a path to transfer information between the aforementioned components.
  • the internal connection 702 is a single board or a bus or the like.
  • the above at least one port 703 is used to communicate with other devices or communication networks.
  • the above-mentioned memory 704 can be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM) or other types of storage devices that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • Types of dynamic storage devices which can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical storage, CD-ROM storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being accessed by Any other medium accessed by the computer, but not limited to this.
  • the memory can exist independently and be connected to the processor through a bus.
  • the memory can also be integrated with the processor.
  • the memory 704 is used for storing the application program code for executing the solution of the present application, and the execution is controlled by the processor 701 .
  • the processor 701 is configured to execute the application program code stored in the memory 704, and cooperate with at least one port 703, so that the device 700 can realize the functions in the method of the present patent.
  • the processor 701 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 7 .
  • the apparatus 700 may include multiple processors, such as the processor 701 and the processor 707 in FIG. 7 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • an embodiment of the present application provides a schematic diagram of an apparatus 800 for measuring a link state.
  • the apparatus 800 may be the second OLT in the PON architecture 200 shown in FIG. 2 or the second OLT in the method 400 shown in FIG. 4 .
  • the apparatus 800 includes at least one processor 801 , internal connections 802 and at least one port 803 .
  • the apparatus 800 is an apparatus with a hardware structure, and can be used to implement the functional modules in the apparatus 600 described in FIG. 6 .
  • the processing unit 602 in the apparatus 600 shown in FIG. 6 can be implemented by the at least one processor 801, and the sending unit 603 and the receiving unit 601 in the apparatus 600 shown in FIG. At least one port 803 is implemented.
  • the apparatus 800 may also be used to implement the function of the second OLT in any of the foregoing embodiments.
  • the apparatus 800 may be the second OLT in the PON architecture 200 shown in FIG. 2 or the second OLT in the method 400 shown in FIG. 4 .
  • At least one port 803 includes a second port on the second OLT.
  • processor 801 may be a hardware circuit, a general-purpose central processing unit (central processing unit, CPU), a network processor (network processor, NP), a microprocessor, or an application-specific integrated circuit (application-specific integrated circuit). , ASIC), or one or more integrated circuits used to control the execution of the programs of the present application.
  • CPU central processing unit
  • NP network processor
  • NP network processor
  • microprocessor microprocessor
  • application-specific integrated circuit application-specific integrated circuit
  • ASIC application-specific integrated circuit
  • the apparatus 800 further includes a memory 804 , and the processing unit 602 in the apparatus 600 shown in FIG. 6 can use the at least one processor 801
  • the code in memory 804 is invoked to implement.
  • the internal connection 802 described above may include a path to transfer information between the above described components.
  • the internal connection 802 is a single board or a bus or the like.
  • the above at least one port 803 is used to communicate with other devices or communication networks.
  • the above-mentioned memory 804 can be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM) or other types of storage devices that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • Types of dynamic storage devices which can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical storage, CD-ROM storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being accessed by Any other medium accessed by the computer, but not limited to this.
  • the memory can exist independently and be connected to the processor through a bus.
  • the memory can also be integrated with the processor.
  • the memory 804 is used to store the application code for executing the solution of the present application, and the execution is controlled by the processor 801 .
  • the processor 801 is used to execute the application program code stored in the memory 804 and cooperate with at least one port 803, so that the device 800 can realize the functions in the method of the present patent.
  • the processor 801 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 8 .
  • the apparatus 800 may include multiple processors, for example, the processor 801 and the processor 807 in FIG. 8 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • an embodiment of the present application provides a system 900 for measuring link status, where the system 900 includes the apparatus 500 shown in FIG. 5 and the apparatus 600 shown in FIG. 6 , or the system 900 includes The apparatus 700 shown in FIG. 7 and the apparatus 800 shown in FIG. 8 .
  • the apparatus 500 shown in FIG. 5 or the apparatus 900 shown in FIG. 8 may be the first OLT 901
  • the apparatus 600 shown in FIG. 6 or the apparatus 800 shown in FIG. 8 may be the second OLT 902 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种测量链路状态的方法、装置、系统及存储介质,属于通信领域。所述方法包括:第一OLT通过第一端口向第一ONU发送第一指示信息,第一ONU是PON包括的至少一个ONU中的一个,第一指示信息用于指示对第一ONU进行测量的测量窗口。第一OLT获取第一ONU对应的信号质量,该信号质量是第二OLT上的第二端口在测量窗口内从第一PON通道上接收的信号质量,第一PON通道是承载在第二端口与第一ONU之间链路上的通道。第一OLT基于PON中的每个ONU对应的信号质量确定主干链路的状态,主干链路是第二端口到每个ONU的链路的共同部分。本申请能够提高测量主干链路状态的精度。

Description

测量链路状态的方法、装置、系统及存储介质
本申请要求于2021年4月23日提交的申请号为202110444046.2、申请名称为“测量链路状态的方法、装置、系统及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及一种测量链路状态的方法、装置、系统及存储介质。
背景技术
无源光网络(passive optical network,PON)包括光线路终端(optical line terminal,OLT)、分光器和多个光网络单元(optical network unit,ONU),OLT包括主用端口和备用端口,主用端口通过第一主干链路与分光器通信,备用端口通过第二主干链路与分光器通信,分光器还与每个ONU通信。
OLT使用主用端口在主用链路上与ONU进行通信;在主用链路故障时,OLT使用备用端口在备用链路上与ONU进行通信。如果备用链路无法满足光功率要求,则主用链路倒换为备用链路后,可能导致部分ONU无法上线。因此,亟需一种检测方法,对备用链路的状态进行检测,以保证链路倒换后业务的正常进行。
发明内容
本申请提供了一种测量链路状态的方法、装置、系统及存储介质,以保证链路倒换后业务能够正常进行。所述技术方案如下:
第一方面,本申请提供了一种测量链路状态的方法,在所述方法中,无源光网络PON包括第一光线路终端OLT,第一OLT包括第一端口,第二端口与第一光网络单元ONU之间的链路上承载有第一PON通道和第二PON通道,第一ONU是PON包括的至少一个ONU中的一个,第一PON通道用于传输测量信号,第二PON通道用于传输业务信号,测量信号对应的光波长和业务信号对应的光波长不同。第一OLT通过第一端口向第一ONU发送第一指示信息,第一指示信息用于指示对第一ONU进行测量的测量窗口。第一ONU在该测量窗口内在第一PON通道上发送该测量信号,第一OLT获取第二端口在该测量窗口内接收的信号质量,得到第一ONU对应的信号质量。其中,第二端口接收的信号包括第一ONU发送的测量信号。第一OLT基于PON中的每个ONU对应的信号质量确定主干链路的状态,该主干链路是第二端口到每个ONU的链路的共同部分。
由于第一OLT通过第一端口向第一ONU发送第一指示信息,第一指示信息用于指示对第一ONU进行测量的测量窗口,这样第一ONU会在该测量窗口内在第一PON通道上发送 测量信号。从而使得第二OLT测量出第二端口在该测量窗口内接收的信号质量,得到第一ONU对应的信号质量。重复上述过程,可以得到PON中的每个ONU对应的信号质量,这样基于每个ONU对应的信号质量,可以准确地确定主干链路的状态,在该主干链路的状态为正常状态时,才会将业务倒换到该主干链路上,使得业务能够在该主干链路上正常传输。从而通过该链路状态检测方法,保证链路倒换后业务能够正常进行。
另外,由于基于每个ONU对应的信号质量确定主干链路的状态,从而提高测量主干链路状态的精度。又由于为第一ONU提供测量窗口,在该测量窗口内测量第一ONU对应的信号质量,这样可以在较短时间内就可以测量出第一ONU对应的信号质量,该测量窗口的时间长度可以设置的较短。所以虽然分别为每个ONU提供测量窗口,以在每个ONU对应的测量窗口内分别获取每个ONU对应的信号质量,但每个ONU对应的测量窗口的时间总长度也较短,提高了测量主干链路状态的效率。第二端口与第一ONU之间的链路上承载有第一PON通道和第二PON通道,第一PON通道用于传输测量信号,第二PON通道用于传输业务信号,使用双通道来传输测量信号和业务信号。保证了在测量链路状态的同时不会对OLT与PON中的各ONU之间的业务传输产生影响。
在一种可能的实现方式中,第一指示信息包括该测量窗口的起始时间和该测量窗口的时间长度中的至少一个。这样便于第一ONU快速地确定出测量窗口。
在另一种可能的实现方式中,第一端口是第一OLT上的端口,第二端口是第二OLT上端口,第一OLT和第二OLT是两个不同的OLT设备,第一OLT向第二OLT发送第一指示信息,第一指示信息还用于指示第二OLT获取第二端口在该测量窗口内从第一PON通道上接收的信号质量。这样保证第二OLT能够确定出测量窗口,在该测量窗口内测量第一ONU对应的信号质量,保证在双归属保护的组网中,能够成功测量主干链路的状态。
在另一种可能的实现方式中,第一OLT接收所述第二OLT发送的测量信息,该测量信息包括第一ONU对应的信号质量。以便第一OLT得到每个ONU对应的信号质量,从而基于每个ONU对应的信号质量,测量出主干链路的状态。
在另一种可能的实现方式中,第一端口和第二端口是第一OLT上的两个不同端口。
在另一种可能的实现方式中,测量窗口包括至少一个发送周期,每个发送周期包括第一时间段和每个ONU对应的发送窗口,第一ONU对应的发送窗口是第一ONU向第一OLT发送运维业务的窗口,第一指示信息用于指示第一ONU在第一时间段发送该测量信号。这样每个ONU可以分别在每个ONU对应的发送窗口内发送运维业务,避免对运维业务产生影响。
在另一种可能的实现方式中,第一ONU对应的信号质量包括至少一个接收信号强度指示RSSI,该至少一个RSSI是第二端口在该测量窗口内接收的信号的RSSI。由于RSSI信号较容易被测量出,所以基于每个ONU对应的RSSI,可以较精确地测量出主干链路的状态。
第二方面,本申请提供了一种测量链路状态的方法,在所述方法中,无源光网络PON包括第一光线路终端OLT和第二OLT,第一OLT包括第一端口,第二OLT包括第二端口,第二端口与第一光网络单元ONU之间的链路上承载有第一PON通道和第二PON通道,第一ONU是PON包括的至少一个ONU中的一个,第一PON通道用于传输测量信号,第二PON通道用于传输业务信号,该测量信号对应的光波长和该业务信号对应的光波长不同。第一OLT向第一ONU和第二OLT发送第一指示信息,第一指示信息用于指示对第一ONU进行测量的测量窗口。第二OLT接收第一指示信息,对第二端口在该测量窗口内从第一PON通道上接收的信号进行测量,得到第一ONU对应的信号质量,第二端口接收的信号包括第一ONU在该测量窗口内发送的测量信号。第二OLT向第一OLT发送测量信息,该测量信息包括PON中的每个ONU对应的信号质量,这样使得第一OLT基于每个ONU对应的信号质量确定主干链路的质量,主干链路是第二端口到每个ONU的链路的共同部分。
由于第一OLT向第二OLT和第一ONU发送第一指示信息,第一指示信息用于指示对第一ONU进行测量的测量窗口,这样第一ONU会在该测量窗口内在第一PON通道上发送信号。从而使得第二OLT测量出第二端口在该测量窗口内接收的信号质量,得到第一ONU对应的信号质量。重复上述过程,可以得到PON中的每个ONU对应的信号质量,向第一OLT发送每个ONU对应的信号质量,这样基于每个ONU对应的信号质量,可以准确地确定主干链路的状态,在该主干链路的状态为正常状态时,才会将业务倒换到该主干链路上,使得业务能够在该主干链路上正常传输。从而通过该链路状态检测方法,保证链路倒换后业务能够正常进行。
另外,由于基于每个ONU对应的信号质量确定主干链路的状态,从而提高测量主干链路状态的精度。另外,由于为第一ONU提供测量窗口,在该测量窗口测量第一ONU对应的信号质量,这样可以在较短时间内就可以测量出第一ONU对应的信号质量,该测量窗口的时间长度可以设置的较短。所以虽然分别为每个ONU提供测量窗口,以在每个ONU对应的测量窗口内分别获取每个ONU对应的信号质量,但每个ONU对应的测量窗口的时间总长度也较短,提高了测量主干链路状态的效率。第二端口与第一ONU之间的链路上承载有第一PON通道和第二PON通道,第一PON通道用于传输测量信号,第二PON通道用于传输业务信号,使用双通道来传输测量信号和业务信号。保证了在测量链路状态的同时不会对OLT与PON中的各ONU之间的业务传输产生影响。
在一种可能的实现方式中,第一指示信息包括该测量窗口的起始时间和该测量窗口的时间长度中的至少一个。这样便于第二OLT和第一ONU快速地确定出测量窗口。
在另一种可能的实现方式中,该测量窗口包括至少一个通信周期,每个通信周期包括第一时间段和每个ONU对应的发送窗口,第一ONU对应的发送窗口是第一ONU向第一OLT发送运维业务的窗口,第一指示信息用于指示第一ONU在第一时间段发送测量信号。这样每个ONU可以分别在每个ONU对应的发送窗口内发送运维业务,避免对运维业务产生影响。
在另一种可能的实现方式中,第一ONU对应的信号质量包括至少一个接收信号强度指示RSSI,该至少一个RSSI是所述第二端口在该测量窗口内接收的信号的RSSI。由于RSSI信号较容易被测量出,所以基于每个ONU对应的RSSI,可以较精确地测量出主干链路的状态。
第三方面,本申请提供了一种测量链路状态的装置,用于执行第一方面或第一方面的任意一种可能的实现方式中的方法。具体地,所述装置包括用于执行第一方面或第一方面的任意一种可能的实现方式中的方法的单元。
第四方面,本申请提供了一种测量链路状态的装置,用于执行第二方面或第二方面的任意一种可能的实现方式中的方法。具体地,所述装置包括用于执行第二方面或第二方面的任意一种可能的实现方式中的方法的单元。
第五方面,本申请提供了一种测量链路状态的装置,所述装置包括处理器和存储器。其中,所述处理器以及所述存储器之间可以通过内部连接相连。所述存储器用于存储程序,所述处理器用于执行所述存储器中的程序,使得所述装置完成第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,本申请提供了一种测量链路状态的装置,所述装置包括处理器和存储器。其中,所述处理器以及所述存储器之间可以通过内部连接相连。所述存储器用于存储程序,所述处理器用于执行所述存储器中的程序,使得所述装置完成第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,本申请提供了一种计算机程序产品,所述计算机程序产品包括在计算机可读存储介质中存储的计算机程序,并且所述计算程序通过处理器进行加载来实现上述第一方面、第二方面、第一方面任意可能的实现方式或第二方面任意可能的实现方式的方法。
第八方面,本申请提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序通过处理器进行加载来执行上述第一方面、第二方面、第一方面任意可能的实现方式或第二方面任意可能的实现方式的方法。
第九方面,本申请提供了一种芯片,包括存储器和处理器,存储器用于存储计算机指令,处理器用于从存储器中调用并运行该计算机指令,以执行第一方面、第二方面、第一方面任意可能的实现方式或第二方面任意可能的实现方式的方法。
第十方面,本申请提供了一种测量链路状态的系统,所述系统包括前述第三方面所述的装置和第四方面所述的装置;或者,所述系统包括前述第五方面所述的装置和第六方面所述的装置。
附图说明
图1是本申请实施例提供的一种实现单归属保护技术的PON架构示意图;
图2是本申请实施例提供的一种实现双归属保护技术的PON架构示意图;
图3是本申请实施例提供的一种测量链路状态的方法流程图;
图4是本申请实施例提供的另一种测量链路状态的方法流程图;
图5是本申请实施例提供的一种测量链路状态的装置结构示意图;
图6是本申请实施例提供的另一种测量链路状态的装置结构示意图;
图7是本申请实施例提供的另一种测量链路状态的装置结构示意图;
图8是本申请实施例提供的另一种测量链路状态的装置结构示意图;
图9是本申请实施例提供的一种测量链路状态的系统结构示意图。
具体实施方式
下面将结合附图对本申请实施方式作进一步地详细描述。
参见图1,PON是以光信号为信息传播载体的通信网络。PON是一种采用点到多点结构的双向光接入网络。PON包括位于局端的OLT、光分配网络(optical distribution network,ODN)和位于用户侧的ONU,OLT通过ODN与每个ONU通信。在下行方向,OLT发送的信号通过ODN到达每个ONU。对于每个ONU,该ONU发送的信号通过ODN到达OLT。
其中,OLT包括端口,OLT上的端口通过主干链路与ODN相连,ODN与每个ONU之间使用分支链路相连。针对任一个ONU,OLT上的端口与该ONU之间的链路包括OLT上的端口与该ODN之间的主干链路和该ODN与该ONU之间的分支链路。
OLT上的端口与该ONU之间的链路用于承载PON通道,该PON通道是OLT与该ONU在该链路上建立的通道。OLT通过该PON通道向该ONU发送下行信号,该ONU通过该PON通道向OLT发送上行信号。
在一些实施例中,对于OLT上的端口与该ONU之间的链路,在该链路上承载的PON通道包括两种类型的PON通道,该两种类型的PON通道分别为第一类型PON通道和第二类型PON通道,在第一类型PON通道上能够传输的信号对应的光波长与在第二类型PON通道上能够传输的信号对应的光波长不同。
在第一类型PON通道上能够传输的信号对应的光波长包括第一上行信号对应的光波长和第一下行信号对应的光波长,第一上行信号对应的光波长和第一下行信号对应的光波长是两个不同的光信号波长。在第二类型PON通道上能够传输的信号对应的光波长包括第二上行信号对应的光波长和第二下行信号对应的光波长,第二上行信号对应的光波长和第二下行信号对应的光波长是两个不同的光信号波长。
在第一类型PON通道上能够传输的信号对应的光波长与在第二类型PON通道上能够传输的信号对应的光波长不同是指:在第一类型PON通道上能够传输的第一上行信号对应的光波长和在第二类型PON通道上能够传输的第二上行信号对应的光波长不同,以及,在第一类 型PON通道上能够传输的第一下行信号对应的光波长和在第二类型PON通道上能够传输的第二下行信号对应的光波长不同。
第一类型PON通道用于传输运维业务的信号,第二类型PON通道用于传输数据业务的信号。例如,第一类型PON通道可以为吉比特无源光网络(gigabit-capable passive optical networks,GPON)通道,在GPON通道上能够传输的第一上行信号对应的光波长可以等于1270nm以及第一下行信号对应的光波长可以等于1577nm,或者,在GPON通道上能够传输的第一上行信号对应的光波长可以等于1577nm以及第一下行信号对应的光波长可以等于1270nm。第二类型PON通道可以为10G对称无源光网络(10gigabit symmetrical passive optical networks,XGS-PON)通道,在XGS-PON通道上能够传输的第一上行信号对应的光波长可以等于1310nm以及第一下行信号对应的光波长可以等于1490nm,或者,在XGS-PON通道上能够传输的第一上行信号对应的光波长可以等于1490nm以及第一下行信号对应的光波长可以等于1310nm。
在一些实施例中,上述ODN包括一个或多个分光器。上述主干链路和分支链路包括光纤等。上述PON通道是种逻辑通道。
PON保护技术包括单归属保护技术和双归属保护技术。
参见图1所示的实现单归属保护技术的PON架构100,单归属保护技术的PON架构100包括一个OLT,该OLT上包括两个端口,分别为第一端口和第二端口,第一端口与ODN通过第一主干链路相连,第二端口与ODN通过第二主干链路相连。
对于该OLT上的第一端口和第二端口,其中一个端口为主用端口,另一个端口为备用端口。在主用端口相连的主干链路正常时,OLT通过主用端口向每个ONU发送业务或接收每个ONU发送的业务。在与主用端口相连的主干链路故障时,OLT将业务切换到备用接口上,即在与主用端口相连的主干链路故障时,OLT通过备用端口向每个ONU发送业务或接收每个ONU发送的业务。
其中,OLT在使用主用端口与每个ONU传输业务时,OLT还测量与备用端口相连的主干链路的质量,在测量出与备用端口的主干链路故障时,可以通知管理员进行维修。当与主用端口相连的主干链路故障的情况,在OLT将业务切换到备用接口上,OLT还测量与主用端口的主干链路的质量,在测量出与主用端口相连的主干链路恢复正常时,将业务切换到主用接口上。
对于任一个ONU,为了便于说明将第一端口与该ONU之间的链路称为第一链路,第一链路包括第一端口与ODN之间的第一主干链路和ODN与该ONU之间的分支链路。以及,将第二端口与该ONU之间的链路称为第二链路,第二链路包括第二端口与ODN之间的第二主干链路和ODN与该ONU之间的分支链路。ODN与该ONU之间的分支链路是第一链路和第二链路包括共同的分支链路。
在一些实施例中,第二端口与该ONU之间的第二链路承载有两种类型的PON通道,分别为第一PON通道和第二PON通道。第一端口与该ONU之间的第一链路承载有两种类型的PON通道,分别为第三PON通道和第四PON通道。
第一链路上承载的第三PON通道和第二链路上承载的第一PON通道是同类型的通道, 均是第一类型PON通道。也就是说:对于第二链路上承载的第一PON通道和第一链路上承载的第三PON通道,在第一PON通道上能够传输的信号对应的光波长和在第三PON通道上能够传输的信号对应的光波长相同,均用于传输运维业务的信号。
第二链路上的第二PON通道和第一链路上的第四PON通道是同类型的通道,均是第二类型PON通道。也就是说:对于第二链路上承载的第四PON通道和第一链路上承载的第二PON通道,在第四PON通道上能够传输的信号对应的光波长和在第二PON通道上能够传输的信号对应的光波长相同,均用于传输数据业务的信号。但在第三PON通道上能够传输的信号对应的光波长和在第四PON通道上能够传输的信号对应的光波长不同,在第一PON通道上能够传输的信号对应的光波长和在第二PON通道上能够传输的信号对应的光波长不同。
参见图2所示的实现双归属保护技术的PON架构200,双归属保护技术的PON架构200包括两个OLT,分别为第一OLT和第二OLT,第一OLT包括第一端口,第二OLT包括第二端口,第一端口与ODN通过第一主干链路相连,第二端口与ODN通过第二主干链路相连。
对于第一OLT和第二OLT,其中一个OLT为主用OLT,主用OLT上的端口为主用端口,另一个OLT为备用OLT,备用OLT上的端口为备用端口。在与主用OLT上的主用端口相连的主干链路正常时,主用OLT通过主用端口向每个ONU发送业务或接收每个ONU发送的业务。在与主用OLT上的主用端口相连的主干链路故障时,主用OLT将业务切换到备用OLT上的备用接口上,即在与主用OLT上的主用端口相连的主干链路故障时,备用OLT通过备用端口向每个ONU发送业务或接收每个ONU发送的业务。
其中,在主用OLT使用主用端口与每个ONU传输业务时,测量与备用端口相连的主干链路的质量,在测量出与备用端口相连的主干链路故障时,可以通知管理员进行维修。
当与主用OLT上的主用端口相连的主干链路故障时,将业务切换到备用OLT上的备用接口上,测量与主用端口相连的主干链路的质量,在测量出与主用端口相连的主干链路恢复正常时,将业务切换到主用接口上。
对于任一个ONU,为了便于说明将第一OLT上的第一端口与该ONU之间的链路称为第一链路,第一链路包括第一OLT上的第一端口与ODN之间的第一主干链路和ODN与该ONU之间的分支链路。将第二OLT上的第二端口与该ONU之间的链路称为第二链路,第二链路包括第二OLT上的第二端口与ODN之间的第二主干链路和ODN与该ONU之间的分支链路。ODN与该ONU之间的分支链路是第一链路和第二链路包括共同的分支链路。
在一些实施例中,第二OLT上的第二端口与该ONU之间的第二链路承载有两种类型的PON通道,分别为第一PON通道和第二PON通道。第一OLT上的第一端口与该ONU之间的第一链路承载有两种类型的PON通道,分别为第三PON通道和第四PON通道。
第一链路上承载的第三PON通道和第二链路上承载的第一PON通道是同类型的通道,均是第一类型PON通道。也就是说:对于第二链路上承载的第一PON通道和第一链路上承载的第三PON通道,在第一PON通道上能够传输的信号对应的光波长和在第三PON通道上能够传输的信号对应的光波长相同,均用于传输运维业务的信号。
第二链路上的第二PON通道和第一链路上的第四PON通道是同类型的通道,均是第二类型PON通道。也就是说:对于第二链路上承载的第四PON通道和第一链路上承载的第二 PON通道,在第四PON通道上能够传输的信号对应的光波长和在第二PON通道上能够传输的信号对应的光波长相同,均用于传输数据业务的信号。但在第三PON通道上能够传输的信号对应的光波长和在第四PON通道上能够传输的信号对应的光波长不同,在第一PON通道上能够传输的信号对应的光波长和在第二PON通道上能够传输的信号对应的光波长不同。
其中,无论在上述网络架构100还是网络架构200中,对于第一端口和第二端口中的任一个端口,在使用该端口传输业务时,该端口具有以下特点:该端口向任一个ONU发送信号以及该端口接收任一个ONU发送的信号。而另一个端口具有以下特点:该另一个端口不能向任一个ONU发送信号但该另一端口能够接收任一个ONU发送的信号。
在一些实施例中,对于上述第一端口以及任一个ONU,第一端口与该ONU之间的链路上承载能够传输信号的光波长不同的两个PON通道。第二端口与该ONU之间的链路上也承载能够传输信号的光波长不同的两个PON通道。
参见图3,本申请实施例提供了一种测量链路状态的方法300,所述方法300应用于图1所示的PON架构100,所述PON架构100用于实现单归属保护技术。对于所述PON架构100中的OLT,假设,OLT上的第一端口是OLT当前用于与PON100中的各ONU进行业务传输的端口。即OLT通过第一端口向各ONU发送业务或接收各ONU发送的业务。所述方法300包括:
步骤301:OLT通过第一端口向第一ONU发送第一指示信息,第一指示信息用于指示对第一ONU进行测量的测量窗口,第一ONU是PON中的任一个ONU。
在一些实施例中,第一指示信息用于指示对第一ONU进行测量的测量窗口,包括:第一指示信息用于指示该测量窗口以及指示第一ONU在该测量窗口内发送测量信号。
OLT包括第一端口和第二端口,第一端口是OLT上当前用于传输业务的端口,即OLT通过第一端口与PON中的ONU进行业务传输。第一端口具有以下特点:第一端口向PON中的ONU发送信号以及第一端口接收PON中的ONU发送的信号。第二端口具有以下特点:第二端口接收PON中的ONU发送的信号,但第二端口不可以向PON中的ONU发送信号。
第一端口可能是OLT上的主用端口,第二端口可能是OLT上的备用端口;或者,第一端口可能是OLT上的备用端口,第二端口可能是OLT上的主用端口。
对于PON中的任一个ONU,即对于第一ONU,第一端口与第一ONU之间的第一链路上承载有第三PON通道和第四PON通道,第二端口与第一ONU之间的第二链路上承载有第一PON通道和第二PON通道。
其中,第三PON通道和第一PON通道均是第一类型PON通道。所以OLT通过第一端口在第三PON通道上向PON中的ONU发送运维业务。在PON中的ONU向OLT发送运维业务时,OLT通过第一端口在第三PON通道上接收PON中的ONU发送的运维业务。同时第二端口也能够在第一PON通道上接收PON中的ONU发送的运维业务。
第二PON通道和第四PON通道均是第二类型PON通道。所以OLT通过第二端口在第四PON通道上向PON中的ONU发送数据业务。在PON中的ONU向OLT发送数据业务时,OLT通过第一端口在第四PON通道上接收PON中的ONU发送的数据业务。同时第二端口能够在第二PON通道上接收PON中的ONU发送的数据业务。
在一些实施例中,第一指示信息用于指示第一ONU在该测量窗口内发送测量信号,包括:第一指示信息用于指示第一ONU在该测量窗口内通过第一类型PON通道发送测量信号。第一类型PON通道包括上述第一PON通道和第三PON通道。
在步骤301中,OLT通过第一端口在第三PON通道上或在第四PON通道上向第一ONU发送第一指示信息。
在一些实施例中,第一指示信息包括该测量窗口的起始时间和时间长度等中的一个或多个。或者,第一指示信息也可不包括该测量窗口的起始时间和时间长度等信息。也就是说,第一指示信息有如下四种情况:
第一情况:第一指示信息包括该测量窗口的起始时间和时间长度。
第二情况:第一指示信息包括该测量窗口的起始时间。在第二情况中,OLT和第一ONU均包括该测量窗口的时间长度。该时间长度可以为OLT与第一ONU事先约定的时间长度,或者,OLT和第一ONU事先接收技术人员配置的时间长度,或者,OLT和第一ONU事先接收控制设备配置的时间长度等。
第三情况:第一指示信息包括该测量窗口的时间长度。在第三情况中,该测量窗口的起始时间与第一ONU接收第一指示信息的接收时间之间的时间差为指定时间差值,指定时间差值大于或等于0。
第四情况:第一指示信息不包括该测量窗口的起始时间和时间长度。在第四情况中,该测量窗口的起始时间与第一ONU接收第一指示信息的接收时间之间的时间差为指定时间差值,指定时间差值大于或等于0。OLT和第一ONU均包括该测量窗口的时间长度。该时间长度可以为OLT与第一ONU事先约定的时间长度,或者,OLT和第一ONU事先接收技术人员配置的时间长度,或者,OLT和第一ONU事先接收控制设备配置的时间长度等。
在一些实施例中,测量窗口的时间长度为指定时间长度或者为OLT自己配置的时间长度。
在一些实施例中,测量窗口的时间长度达到数秒或数十秒。例如,测量窗口的时间长度为3秒、5秒、8秒、10秒、20秒或30秒等。这样在测量窗口内有足够的时间对第一ONU进行测量,提高测量第一ONU的精度。
在一些实施例中,上述测量窗口分为两类,该两类测量窗口分别如下:
第一类型测量窗口,在该测量窗口内只允许第一ONU在第一类型PON通道上向OLT发送信号,不允许PON中除第一ONU之外的其他ONU向OLT发送信号。
由于该测量窗口内只有第一ONU在第一类型PON通道上发送信号,使得OLT在测量窗口内接收的信号都是第一ONU发送的,提高链路测量精度。
第二类型测量窗口,测量窗口包括至少一个发送周期,每个发送周期包括第一时间段和PON中的每个ONU对应的发送窗口,第一ONU对应的发送窗口是第一ONU向OLT发送运维业务的窗口,第一指示信息用于指示第一ONU在第一时间段发送信号。
例如,假设测量窗口包括100个发送周期,一个发送周期的周期长度为125微秒,PON包括10个ONU,每个ONU对应的发送窗口的时间长度为2微秒。所以一个发送周期包括10个发送窗口,共20微秒,第一时间段的时间长度为105秒。
第一时间段占整个发送周期的大部分时间,所以在OLT在测量窗口中接收的信号大部分是第一ONU发送的信号,基于接收的信号对第一ONU进行测量,可以完成链路状态的测量。 另外,在该测量窗口内,每个ONU分别在每个ONU对应的发送窗口内与OLT进行运维业务传输,这样避免对运维业务产生影响。
该测量窗口无论是上述第一类型测量窗口,还是第二类型测量窗口,在该测量窗口内PON中的ONU可以通过第二类型PON通道向OLT发送数据业务,和/或,接收OLT发送的数据业务,从而隔离了数据业务的传输过程与对第一ONU进行测量过程,不影响数据业务的传输。
步骤302:第一ONU接收第一指示信息,在第一指示信息指示的测量窗口内在第一PON通道上向OLT发送测量信号。
由于第一链路包括OLT上的第一端口与ODN之间的第一主干链路和ODN与第一ONU之间的分支链路,第二链路包括OLT上的第二端口与ODN之间的第二主干链路和ODN与第一ONU之间的分支链路。所以第一链路和第二链路包括共同的分支链路。而第一PON通道上承载在第一链路上,第三PON通道承载在第二链路上,第一PON通道和第三PON通道是能够传输信号的光波长相同的同类型PON通道,所以在该测量窗口内,第一ONU会在第一PON通道和第三PON通道同时发送测量信号。
在一些实施例中,第一ONU发送的测量信号包括OLT随机生成的信号和事先保存在OLT中的信号等中的一个或多个。
在一些实施例中,在该测量窗口内,第一ONU还能够在第二链路上承载的第四PON通道和第一链路上承载的第二PON通道上发送业务信号,该业务信号为数据业务的信号,该测量信号对应的光波长和该业务信号对应的光波长不同。也就是说,在该测量窗口内不会影响PON中的数据业务的传输。
在步骤302中,第一ONU接收第一指示信息,基于第一指示信息确定第一指示信息指示的测量窗口,在该测量窗口内在第一PON通道上向OLT发送测量信号。
第一指示信息包括上述第一情况、第二情况、第三情况或第四情况的第一指示信息。对于该四种情况的第一指示信息,接下来分别说明基于每种情况的第一指示信息确定测量窗口的过程。详细说明如下:
对于上述第一情况的第一指示信息,第一指示信息包括该测量窗口的起始时间和时间长度。第一ONU从第一指示信息中获取该测量窗口的起始时间和时间长度,基于该测量窗口的起始时间和时间长度,确定该测量窗口。
对于上述第二情况的第一指示信息,第一指示信息包括该测量窗口的起始时间。在第二情况中,第一ONU包括该测量窗口的时间长度。第一ONU从第一指示信息中获取该测量窗口的起始时间,基于该测量窗口的起始时间和时间长度,确定该测量窗口。
对于上述第三情况的第一指示信息,第一指示信息包括该测量窗口的时间长度。第一ONU从第一指示信息中获取该测量窗口的时间长度,以及获取接收第一指示信息的接收时间,基于该接收时间和指定时间差值计算该测量窗口的起始时间,基于该测量窗口的起始时间和时间长度,确定该测量窗口。
对于上述第四情况的第一指示信息,第一指示信息不包括该测量窗口的起始时间和时间长度。在第四情况中,第一ONU包括该测量窗口的时间长度。第一ONU获取接收第一指示信息的接收时间,基于该接收时间和指定时间差值计算该测量窗口的起始时间,基于该测量 窗口的起始时间和时间长度,确定该测量窗口。
在一些实施例中,确定的测量窗口分为第一类型测量窗口和第二类型测量窗口。其中,在该测量窗口为第一类型测量窗口的情况下,在第一类型测量窗口内第一ONU在第一类型PON通道上向OLT发送测量信号,即在第一PON通道和第三PON通道上向OLT发送测量信号。在第一类型测量窗口内,PON中除第一ONU之外的其他ONU不会在第一类型PON通道上向OLT发送测量信号。
在该测量窗口为第二类型测量窗口的情况下,第二类型测量窗口包括至少一个发送周期,每个发送周期包括第一时间段和PON中的每个ONU对应的发送窗口。在任一个发送周期内,第一ONU在第一时间段内在第一PON通道和第三PON通道上向OLT发送测量信号,而PON中的每个ONU可以分别在每个ONU对应的发送窗口内发送运维业务。
步骤303:OLT获取第一ONU对应的信号质量,该信号质量是第二端口在该测量窗口内从第一PON通道上接收的信号质量,第二端口接收的信号包括第一ONU在该测量窗口内发送的测量信号。
在步骤303中,OLT通过如下3031至3032的操作,获取第一ONU对应的信号质量。该3031至3032的操作分别为:
3031:OLT确定测量窗口,在该测量窗口内通过第二端口在第一PON通道上接收测量信号。
OLT发送的第一指示信息包括上述第一情况、第二情况、第三情况或第四情况的第一指示信息。对于该四种情况的第一指示信息,接下来说明在每种情况下确定测量窗口的过程。详细说明如下:
对于上述第一情况的第一指示信息,第一指示信息包括该测量窗口的起始时间和时间长度。OLT基于该测量窗口的起始时间和时间长度,确定该测量窗口。
对于上述第二情况的第一指示信息,第一指示信息包括该测量窗口的起始时间。在第二情况中,OLT包括该测量窗口的时间长度。OLT基于该测量窗口的起始时间和时间长度,确定该测量窗口。
对于上述第三情况的第一指示信息,第一指示信息包括该测量窗口的时间长度。OLT包括事先测量的第一端口与第一ONU之间的信号传输时长,OLT基于该信号传输时长和发送第一指示信息的发送时间,获取第一ONU接收第一指示信息的接收时间,基于该接收时间和指定时间差值计算该测量窗口的起始时间,基于该测量窗口的起始时间和时间长度,确定该测量窗口。
对于上述第四情况的第一指示信息,第一指示信息不包括该测量窗口的起始时间和时间长度。在第四情况中,OLT包括该测量窗口的时间长度和事先测量的第一端口与第一ONU之间的信号传输时长。OLT基于该信号传输时长和发送第一指示信息的发送时间,获取第一ONU接收第一指示信息的接收时间,基于该接收时间和指定时间差值计算该测量窗口的起始时间,基于该测量窗口的起始时间和时间长度,确定该测量窗口。
其中,需要说明的是:该测量窗口可能是上述第一类型测量窗口或第二类型测量窗口。当该测量窗口为上述第一类型测量窗口的情况,OLT会通过第一端口在第三PON通道上接收第一ONU发送的测量信号,OLT不会处理第一端口接收的测量信号。
当该测量窗口为上述第二类型测量窗口的情况,该测量窗口包括至少一个发送周期,每个发送周期包括PON中的每个ONU对应的发送窗口和第一时间段。所以在任一个ONU对应的发送窗口,OLT可能通过第一端口在第三PON通道上接收该ONU发送的运维业务,并处理该运维业务。但在第一时间段内会通过第一端口在第三PON通道上接收第一ONU发送的测量信号,OLT不会处理在第一时间段内第一端口接收的测量信号。
3032:OLT对第二端口在第一PON通道上接收的信号进行测量,得到第一ONU对应的信号质量。
第一ONU对应的信号质量包括至少一个接收信号强度指示(received signal strength indication,RSSI),该至少一个RSSI是第二端口在测量窗口内接收的信号的RSSI。也就是说,OLT对第二端口在第一PON通道上接收的信号进行至少一次测量,得到该至少一个RSSI。
其中,需要说明的是:该测量窗口可能是上述第一类型测量窗口或第二类型测量窗口。当该测量窗口为上述第一类型测量窗口的情况,第二端口在第一PON通道上接收的信号均是第一ONU发送的测量信号,所以提高测量第一ONU对应的信号质量的精度。当该测量窗口为上述第二类型测量窗口的情况,由于测量窗口中的每个发送周期的大部分时间为第一时间段,第一ONU在每个发送周期的第一时间段内在第一PON通道上发送测量信号,所以第二端口在第一PON通道上接收的信号大部分是第一ONU发送的测量信号,保证第一ONU对应的信号质量接近于OLT接收第一ONU发送的测量信号质量。
对于PON中除第一ONU之外的其他每个ONU,重复上述步骤301-303的过程,获取其他每个ONU对应的信号质量,得到PON中的每个ONU对应的信号质量,然后执行如下步骤304的操作。
步骤304:OLT基于PON中的每个ONU对应的信号质量确定第二主干链路的状态,第二主干链路是第二端口到每个ONU的链路的共同部分。
第二主干链路为第二端口与ODN之间的主干链路。
在步骤304中,OLT确定PON中的每个ONU对应的信号质量是否均超过指定质量阈值,如果均超过指定质量阈值,确定第二主干链路的状态为正常状态;如果不是均超过指定质量阈值,确定第二主干链路的状态为故障状态。
在一些实施例中,第一ONU对应的信号质量包括至少一个RSSI,在该至少一个RSSI均超过指定质量阈值时,确定第一ONU对应的信号质量超过指定质量阈值;在该至少一个RSSI不是均超过指定质量阈值时,确定第一ONU对应的信号质量未超过指定质量阈值。
在第一端口为主用端口的情况下,第二端口为备用端口。在确定第二主干链路的状态为正常状态后,可以重复执行上述301-304的流程,继续确定第二主干链路的状态。在确定第二主干链路的状态为故障状态后,可以通知技术人员进行维修。其中,当第一主干链路故障时,将与PON中的各ONU之间的业务切换到第二端口上。
在第一端口为备用端口的情况下,第二端口为主用端口。在确定第二主干链路的状态为正常状态后,可以将OLT与PON中的各ONU之间的业务切换到第二端口上,然后重复执行上述301-304的流程,确定与第一端口相连的第一主干链路的状态。在确定第二主干链路的状态为故障状态后,可以通知技术人员进行维修。
在本申请实施例中,由于OLT通过第一端口向第一ONU发送第一指示信息,第一指示 信息用于指示对第一ONU进行测量的测量窗口,这样第一ONU基于第一指示信息确定该测量窗口,在该测量窗口内在第一PON通道上向OLT发送信号。OLT通过第二端口在第一PON通道上接收该信号,对该信号进行测量得到第一ONU对应的信号质量。重复上述过程可以获取到每个ONU对应的信号质量,从而OLT基于每个ONU对应的信号质量确定主干链路的状态,在该主干链路的状态为正常状态时,才会将业务倒换到该主干链路上,使得业务能够在该主干链路上正常传输。从而通过该链路状态检测方法,保证链路倒换后业务能够正常进行。由于获取到每个ONU对应的信号质量,这样在每个ONU对应的信号质量均超过指定质量阈值时,才确定主干链路的状态为正常状态,以提高确定主干链路状态的精度。另外,由于为每个ONU指定测量窗口,在每个测量窗口分别测量每个ONU对应的信号质量,这样每个测量窗口的时间长度可以配置的较短,只有数秒或数十秒,测量每个ONU对应的信号质量所需要的时间较短,从而可以在较短的时间内,获取到每个ONU对应的信号质量,提高测量主干链路的效率。另外,每个ONU对应的信号质量包括至少一个RSSI,RSSI能够被容易地测量出来,从而基于每个ONU对应的至少一个RSSI,进一步提高测量主干链路的状态的精度。
参见图4,本申请实施例提供了一种测量链路状态的方法400,所述方法400应用于图2所示的PON架构200,所述PON架构200用于实现双归属保护技术。对于所述PON架构200中的第一OLT和第二OLT,假设,第一OLT上的第一端口是OLT当前用于与PON200中的各ONU进行业务传输的端口。即第一OLT通过第一端口向各ONU发送业务或接收各ONU发送的业务。所述方法400包括:
步骤401:第一OLT通过第一端口向第一ONU和第二OLT发送第一指示信息,第一指示信息用于指示对第一ONU进行测量的测量窗口,第一ONU是PON中的任一个ONU。
在一些实施例中,第一指示信息用于指示对第一ONU进行测量的测量窗口,包括:第一指示信息用于指示该测量窗口以及指示第一ONU在该测量窗口内发送测量信号。
第一OLT包括第一端口,第一OLT是当前用于传输业务的OLT,且第一OLT当前通过第一端口传输业务,即第一OLT通过第一端口与PON中的ONU进行业务传输。第一OLT上和第一端口具有以下特点:第一OLT通过第一端口向PON中的ONU发送信号以及通过第一端口接收PON中的ONU发送的信号。第二OLT和第二端口具有以下特点:第二OLT通过第二端口接收PON中的ONU发送的信号,但第二OLT不可以通过第二端口向PON中的ONU发送信号。
第一OLT可能是主用OLT,第一OLT上的第一端口可能是主用端口,第二OLT可能是备用OLT,第二OLT上的第二端口可能是备用端口;或者,第一OLT可能是备用OLT,第一OLT上的第一端口可能是备用端口,第二OLT可能是主用OLT,第二OLT上的第二端口可能是主用端口。
对于PON中的任一个ONU,即对于第一ONU,第一OLT上的第一端口与第一ONU之间的第一链路上承载有第三PON通道和第四PON通道,第二OLT上的第二端口与第一ONU之间的第二链路上承载有第一PON通道和第二PON通道。
其中,第三PON通道和第一PON通道均是第一类型PON通道。所以第一OLT通过第 一端口在第三PON通道上向PON中的ONU发送运维业务。在PON中的ONU向第一OLT和第二OLT发送运维业务时,第一OLT通过第一端口在第三PON通道上接收PON中的ONU发送的运维业务,以及,第二OLT也能够通过第二端口在第一PON通道上接收PON中的ONU发送的运维业务。
第二PON通道和第四PON通道均是第二类型PON通道。所以第一OLT通过第二端口在第四PON通道上向PON中的ONU发送数据业务。在PON中的ONU向第一OLT和第二OLT发送数据业务时,第一OLT通过第一端口在第四PON通道上接收PON中的ONU发送的数据业务,以及,第二OLT也能够通过第二端口在第二PON通道上接收PON中的ONU发送的数据业务。
在一些实施例中,第一指示信息用于指示第一ONU在该测量窗口内发送测量信号,包括:第一指示信息用于指示第一ONU在该测量窗口内通过第一类型PON通道发送测量信号。第一类型PON通道包括上述第一PON通道和第三PON通道。
在步骤401中,第一OLT通过第一端口在第三PON通道上或在第四PON通道上向第一ONU发送第一指示信息。
在一些实施例中,第一指示信息包括该测量窗口的起始时间和时间长度等中的一个或多个。或者,第一指示信息也可不包括该测量窗口的起始时间和时间长度等信息。关于第一指示信息的详细说明,参见上述图3所示方法300的步骤301中的相关内容,在此不再详细说明。
在一些实施例中,上述测量窗口分为两类,该两类测量窗口分别为第一类型测量窗口和第二类型测量窗口。关于第一类型测量窗口和第二类型测量窗口的详细说明,参见上述图3所示方法300的步骤301中的相关内容,在此不再详细说明。
步骤402:第一ONU接收第一指示信息,在第一指示信息指示的测量窗口内在第一PON通道上向第二OLT发送测量信号。
由于第一链路包括第一OLT上的第一端口与ODN之间的第一主干链路和ODN与第一ONU之间的分支链路,第二链路包括第二OLT上的第二端口与ODN之间的第二主干链路和ODN与第一ONU之间的分支链路。所以第一链路和第二链路包括共同的分支链路。而第一PON通道上承载在第一链路上,第三PON通道承载在第二链路上,第一PON通道和第三PON通道是波长相同的同类型PON通道,所以在该测量窗口内,第一ONU会同时在第一PON通道向第二OLT和在第三PON通道向第一OLT发送测量信号。
在一些实施例中,在该测量窗口内,第一ONU还能够在第二链路上承载的第四PON通道和第一链路上承载的第二PON通道上发送业务信号,该业务信号为数据业务的信号,该测量信号对应的光波长和该业务信号对应的光波长不同。也就是说,在该测量窗口内不会影响PON中的数据业务的传输。
在步骤402中,第一ONU向第二OLT发送测量信号的详细实现过程,参见上述图3所示方法300的步骤302中的相关内容,在此不再详细说明。
步骤403:第二OLT接收第一指示信息,基于第一指示信息获取第一ONU对应的信号质量,该信号质量是第二OLT上的第二端口在该测量窗口内从第一PON通道上接收的信号质量,第二端口接收的信号包括第一ONU在该测量窗口内发送的测量信号。
在步骤403中,OLT通过如下4031至4033的操作,获取第一ONU对应的信号质量。该4031至4033的操作分别为:
4031:第二OLT接收第一指示信息,基于第一指示信息确定测量窗口。
第二OLT接收的第一指示信息包括上述第一情况、第二情况、第三情况或第四情况的第一指示信息。对于该四种情况的第一指示信息,接下来说明在每种情况下确定测量窗口的过程。详细说明如下:
对于上述第一情况的第一指示信息,第一指示信息包括该测量窗口的起始时间和时间长度。第二OLT从第一指示信息中获取该测量窗口的起始时间和时间长度,基于该测量窗口的起始时间和时间长度,确定该测量窗口。
对于上述第二情况的第一指示信息,第一指示信息包括该测量窗口的起始时间。在第二情况中,第二OLT包括该测量窗口的时间长度。第二OLT从第一指示信息中获取该测量窗口的起始时间,基于该测量窗口的起始时间和时间长度,确定该测量窗口。
对于上述第三情况的第一指示信息,第一指示信息包括该测量窗口的时间长度。第二OLT获取第一OLT上的第一端口与第一ONU之间的信号传输时长,以及获取第一OLT发送第一指示信息的发送时间。从第一指示信息中获取该测量窗口的时间长度,基于该信号传输时长和发送第一指示信息的发送时间,获取第一ONU接收第一指示信息的接收时间,基于该接收时间和指定时间差值计算该测量窗口的起始时间,基于该测量窗口的起始时间和时间长度,确定该测量窗口。
在一些实施例中,第一指示信息包括该信号传输时长和该发送时间,从第一指示信息中获取该信号传输时长和该发送时间。
在一些实施例中,第二OLT包括该信号传输时长,该信号传输时长是第二OLT事先从第一OLT中获取的。对于该发送时间,第二OLT从第一OLT请求提供该发送时间。
对于上述第四情况的第一指示信息,第一指示信息不包括该测量窗口的起始时间和时间长度。在第四情况中,第二OLT获取该测量窗口的时间长度,以及获取信号传输时长,该信号传输时长为第一OLT上的第一端口与第一ONU之间的信号传输时长。第二OLT获取第一OLT发送第一指示信息的发送时间,基于该信号传输时长和该发送时间,获取第一ONU接收第一指示信息的接收时间,基于该接收时间和指定时间差值计算该测量窗口的起始时间,基于该测量窗口的起始时间和时间长度,确定该测量窗口。
在一些实施例中,第二OLT包括该测量窗口的时间长度和事先从第一OLT获取的该信号传输时长。对于该发送时间,第二OLT从第一OLT请求提供该发送时间。
在一些实施例中,第一指示信息包括该信号传输时长和该发送时间,从第一指示信息中获取该信号传输时长和该发送时间。
其中,需要说明的是:该测量窗口可能是上述第一类型测量窗口或第二类型测量窗口。当该测量窗口为上述第一类型测量窗口的情况,第一OLT会通过第一端口在第三PON通道上接收第一ONU发送的测量信号,第一OLT不会处理第一端口接收的测量信号。
当该测量窗口为上述第二类型测量窗口的情况,该测量窗口包括至少一个发送周期,每个发送周期包括PON中的每个ONU对应的发送窗口和第一时间段。所以在任一个ONU对应的发送窗口,第一OLT可能通过第一端口在第三PON通道上接收该ONU发送的运维业务, 并处理该运维业务。但第一OLT在第一时间段内会通过第一端口在第三PON通道上接收第一ONU发送的测量信号,第一OLT不会处理在第一时间段内第一端口接收的测量信号。
4032:第二OLT在该测量窗口内通过第二端口在第一PON通道上接收信号。
4033:第二OLT对第二端口在第一PON通道上接收的信号进行测量,得到第一ONU对应的信号质量。
第二OLT获取第一ONU对应的信号质量的详细实现过程,参见上述图3所示方法300中的3032中的相关内容,在此不再详细说明。
对于PON中除第一ONU之外的其他每个ONU,重复上述步骤401-403的过程,第二OLT获取其他每个ONU对应的信号质量,得到PON中的每个ONU对应的信号质量,然后执行如下步骤404的操作。
步骤404:第二OLT向第一OLT发送测量信息,该测量信息包括PON中的每个ONU对应的信号质量。
步骤405:第一OLT接收该测量信息,基于该测量信息包括的每个ONU对应的信号质量确定第二主干链路的状态,第二主干链路是第二端口到每个ONU的链路的共同部分。
第二主干链路为第二OLT上的第二端口与ODN之间的主干链路。
在步骤405中,第二OLT确定PON中的每个ONU对应的信号质量是否均超过指定质量阈值,如果均超过指定质量阈值,确定第二主干链路的状态为正常状态;如果不是均超过指定质量阈值,确定第二主干链路的状态为故障状态。
在第一OLT为主用OLT,第一OLT上的第一端口为主用端口的情况下,第二OLT为备用OLT,以及第二OLT上的第二端口为备用端口。在确定第二主干链路的状态为正常状态后,可以重复执行上述401-405的流量,继续确定第二主干链路的状态。在确定第二主干链路的状态为故障状态后,可以通知技术人员进行维修。其中,当第一主干链路故障时,将与PON中的各ONU之间的业务切换到第二OLT上的第二端口上。
在第一OLT为备用OLT,第一OLT上的第一端口为备用端口的情况下,第二OLT为主用OLT,第二OLT上的第二端口为主用端口。在确定第二主干链路的状态为正常状态后,可以将第一OLT与PON中的各ONU之间的业务切换到第二OLT上的第二端口上,然后重复执行上述401-405的流程,确定与第一OLT上的第一端口相连的第一主干链路的状态。或者,在确定第二主干链路的状态为故障状态后,可以通知技术人员进行维修。
在本申请实施例中,由于第一OLT通过第一端口向第二OLT和第一ONU发送第一指示信息,第一指示信息用于指示对第一ONU进行测量的测量窗口,这样第一ONU基于第一指示信息确定该测量窗口,在该测量窗口内在第一PON通道上向第二OLT发送信号。第二OLT基于第一指示信息确定该测量窗口,在该测量窗口内通过第二端口在第一PON通道上接收该信号,对该信号进行测量得到第一ONU对应的信号质量。重复上述过程可以获取到每个ONU对应的信号质量,从而第二OLT基于每个ONU对应的信号质量确定主干链路的状态,在该主干链路的状态为正常状态时,才会将业务倒换到该主干链路上,使得业务能够在该主干链路上正常传输。从而通过该链路状态检测方法,保证链路倒换后业务能够正常进行。由于获取到每个ONU对应的信号质量,这样在每个ONU对应的信号质量均超过指定质量阈值时,才确定主干链路的状态为正常状态,以提高确定主干链路状态的精度。另外,由于为每个ONU 指定测量窗口,在每个测量窗口分别测量每个ONU对应的信号质量,这样每个测量窗口的时间长度可以配置的较短,只有数秒或数十秒,测量每个ONU对应的信号质量所需要的时间较短,从而可以在较短的时间内,获取到每个ONU对应的信号质量,提高测量主干链路的效率。另外,每个ONU对应的信号质量包括至少一个RSSI,RSSI能够被容易地测量出来,从而基于每个ONU对应的至少一个RSSI,进一步提高测量主干链路的状态的精度。
参见图5,本申请实施例提供了一种测量链路状态的装置500,所述装置500部署在上述图1所示PON架构100中的OLT上,图2所示PON架构200中的第一OLT上,图3所示方法300提供的OLT上或图4所示方法400提供的第一OLT上,包括:
发送单元501,用于通过第一端口向第一光网络单元ONU发送第一指示信息,所述装置500是无源光网络PON中的设备,第一ONU是PON包括的至少一个ONU中的一个,第一指示信息用于指示对第一ONU进行测量的测量窗口;
处理单元502,用于获取第一ONU对应的信号质量,该信号质量是第二端口在该测量窗口内从第一PON通道上接收的信号质量,第二端口接收的信号包括第一ONU在该测量窗口内发送的测量信号,第一PON通道用于传输该测量信号,第二PON通道用于传输业务信号,该测量信号对应的光波长与该业务信号对应的光波长不同,第一PON通道和第二PON通道是承载在第二端口与第一ONU之间链路上的通道;
处理单元502,还用于基于PON中的每个ONU对应的信号质量确定主干链路的状态,该主干链路是第二端口到每个ONU的链路的共同部分。
可选的,发送单元501发送第一指示信息的详细实现过程,可以参见图3所示方法300的步骤301和图4所示方法400的步骤401中的相关内容,在此不再详细说明。
可选的,处理单元502获取第一ONU对应的信号质量的详细实现过程,可以参见图3所示方法300的步骤303和图4所示方法400的步骤403-405中的相关内容,在此不再详细说明。
可选的,处理单元502确定主干链路的状态的详细实现过程,可以参见图3所示方法300的步骤304和图4所示方法400的步骤405中的相关内容,在此不再详细说明。
可选的,第一指示信息包括该测量窗口的起始时间和该测量窗口的时间长度中的至少一个。
可选的,第一端口是所述装置500上的端口,第二端口是第二OLT上端口,所述装置500和第二OLT是两个不同的OLT设备,发送单元501,还用于向第二OLT发送第一指示信息,第一指示信息还用于指示第二OLT获取第二端口在该测量窗口内从第一PON通道上接收的信号质量。
可选的,所述装置500还包括:接收单元503,
接收单元503,用于接收第二OLT发送的测量信息,该测量信息包括第一ONU对应的信号质量。
可选的,接收单元503接收测量信息的详细实现过程,可以参见图3所示方法300的步骤303和图4所示方法400的步骤405中的相关内容,在此不再详细说明。
可选的,第一端口和第二端口是所述装置500上的两个不同端口。
可选的,该测量窗口包括至少一个发送周期,每个发送周期包括第一时间段和每个ONU对应的发送窗口,第一ONU对应的发送窗口是第一ONU向所述装置500发送运维业务的窗口,第一指示信息用于指示第一ONU在第一时间段发送该测量信号。
可选的,第一ONU对应的信号质量包括至少一个接收信号强度指示RSSI,该至少一个RSSI是第二端口在该测量窗口内接收的信号的RSSI。
在本申请实施例中,发送单元通过第一端口向第一ONU发送第一指示信息,第一指示信息用于指示对第一ONU进行测量的测量窗口。处理单元获取第一ONU对应的信号质量,基于PON中的每个ONU对应的信号质量确定主干链路的状态。其中,由于发送单元通过第一端口向第一ONU发送第一指示信息,第一指示信息用于指示对第一ONU进行测量的测量窗口,这样第一ONU会在该测量窗口内在第一PON通道上发送信号。从而使得第二OLT测量出第二端口在该测量窗口内接收的信号质量,得到第一ONU对应的信号质量。重复上述过程,可以得到PON中的每个ONU对应的信号质量,这样处理单元基于每个ONU对应的信号质量,可以准确地确定主干链路的状态,从而提高测量主干链路状态的精度。另外,由于为第一ONU提供测量窗口,在该测量窗口测量第一ONU对应的信号质量,这样可以处理单元在较短时间内就可以测量出第一ONU对应的信号质量,该测量窗口的时间长度可以设置的较短。所以虽然分别为每个ONU提供测量窗口,以在每个ONU对应的测量窗口内分别获取每个ONU对应的信号质量,但每个ONU对应的测量窗口的时间总长度也较短,提高了测量主干链路状态的效率。
参见图6,本申请实施例提供了一种测量链路状态的装置600,所述装置600部署在上述图2所示PON架构中的第二OLT上,或图4所示方法400提供的第二OLT上,包括:
接收单元601,用于接收第一指示信息,其中第一指示信息是第一OLT向所述装置600和第一光网络单元ONU发送的信息,第一OLT和所述装置600是无源光网络PON中的两个设备,第一ONU是PON包括的至少一个ONU中的一个,第一指示信息用于指示对第一ONU进行测量的测量窗口;
处理单元602,用于对第二端口在该测量窗口内从第一PON通道上接收的信号进行测量,得到第一ONU对应的信号质量,第二端口接收的信号包括第一ONU在该测量窗口内发送的测量信号,第二端口是所述装置600上的端口,第一PON通道用于传输该测量信号,第二PON通道用于传输业务信号,该测量信号对应的光波长和该业务信号对应的光波长不同,第一PON通道和第二PON通道是承载在第二端口与第一ONU之间链路上的通道;
发送单元603,用于向第一OLT发送测量信息,该测量信息包括PON中的每个ONU对应的信号质量,该测量信息用于触发第一OLT基于每个ONU对应的信号质量确定主干链路的质量,该主干链路是第二端口到每个ONU的链路的共同部分。
可选的,接收单元601接收第一指示信息的详细实现过程,可以参见图4所示方法400的步骤403中的相关内容,在此不再详细说明。
可选的,处理单元602对第二端口接收的信号进行测量的详细实现过程,可以参见图4所示方法400的步骤403中的相关内容,在此不再详细说明。
可选的,发送单元603发送测量信息的详细实现过程,可以参见图4所示方法400的步 骤404中的相关内容,在此不再详细说明。
可选的,第一指示信息包括所述测量窗口的起始时间和该测量窗口的时间长度中的至少一个。
可选的,该测量窗口包括至少一个通信周期,每个通信周期包括第一时间段和每个ONU对应的发送窗口,第一ONU对应的发送窗口是第一ONU向第一OLT发送运维业务的窗口,第一指示信息用于指示第一ONU在第一时间段发送测量信号。
可选的,第一ONU对应的信号质量包括至少一个接收信号强度指示RSSI,该至少一个RSSI是第二端口在该测量窗口内接收的信号的RSSI。
在本申请实施例中,接收单元接收第一指示信息,处理单元对第二端口在该测量窗口内从第一PON通道上接收的信号进行测量,得到第一ONU对应的信号质量,第二端口接收的信号包括第一ONU在所述测量窗口内发送的信号,第二PON通道用于传输数据业务。发送单元向第一OLT发送测量信息,该测量信息包括PON中的每个ONU对应的信号质量,这样使得第一OLT基于每个ONU对应的信号质量确定主干链路的质量,主干链路是第二端口到每个ONU的链路的共同部分。其中,由于第一指示信息用于指示对第一ONU进行测量的测量窗口,这样第一ONU会在该测量窗口内在第一PON通道上发送信号。从而使得处理单元测量出第二端口在该测量窗口内接收的信号质量,得到第一ONU对应的信号质量。重复上述过程,可以得到PON中的每个ONU对应的信号质量,发送单元向第一OLT发送每个ONU对应的信号质量,这样第一OLT基于每个ONU对应的信号质量,可以准确地确定主干链路的状态,在该主干链路的状态为正常状态时,才会将业务倒换到该主干链路上,使得业务能够在该主干链路上正常传输。从而通过该链路状态检测方法,保证链路倒换后业务能够正常进行。由于获取到每个ONU对应的信号质量,从而提高测量主干链路状态的精度。另外,由于为第一ONU提供测量窗口,在该测量窗口测量第一ONU对应的信号质量,这样可以处理单元在较短时间内就可以测量出第一ONU对应的信号质量,该测量窗口的时间长度可以设置的较短。所以虽然分别为每个ONU提供测量窗口,以在每个ONU对应的测量窗口内分别获取每个ONU对应的信号质量,但每个ONU对应的测量窗口的时间总长度也较短,提高了测量主干链路状态的效率。
参见图7,本申请实施例提供了一种测量链路状态的装置700示意图。该装置700可以是上述图1所示PON架构100中的OLT,图2所示PON架构200中的第一OLT,图3所示方法300中的OLT或图4所示方法400中的第一OLT。该装置700包括至少一个处理器701,内部连接702以及至少一个端口703。
该装置700是一种硬件结构的装置,可以用于实现图5所述的装置500中的功能模块。例如,本领域技术人员可以想到图5所示的装置500中的处理单元502可以通过该至少一个处理器701来实现,图5所示的装置500中的发送单元501和接收单元503可以通过该至少一个端口703来实现。
可选的,该装置700还可用于实现上述任一实施例中OLT的功能。
可选的,该装置700可以为图1所示PON架构100中的OLT或图3所示方法400中的OLT。至少一个端口703包括该OLT上的第一端口和第二端口。
可选的,该装置700可以为图2所示PON架构200中的第一OLT或图4所示方法400中的第一OLT。至少一个端口703包括第一OLT上的第一端口。
可选的,上述处理器701可以是硬件电路,一个通用中央处理器(central processing unit,CPU),网络处理器(network processor,NP),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
可选的,参见图7,在上述处理器701为CPU或微处理器等情况,该装置700还包括存储器704,图5所示的装置500中的处理单元502可以通过该至少一个处理器701调用存储器704中的代码来实现。
上述内部连接702可包括一通路,在上述组件之间传送信息。可选的,内部连接702为单板或总线等。
上述至少一个端口703,用于与其他设备或通信网络通信。
上述存储器704可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器704用于存储执行本申请方案的应用程序代码,并由处理器701来控制执行。处理器701用于执行存储器704中存储的应用程序代码,以及配合至少一个端口703,从而使得该装置700实现本专利方法中的功能。
在具体实现中,作为一种实施例,处理器701可以包括一个或多个CPU,例如图7中的CPU0和CPU1。
在具体实现中,作为一种实施例,该装置700可以包括多个处理器,例如图7中的处理器701和处理器707。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
参见图8,本申请实施例提供了一种测量链路状态的装置800示意图。该装置800可以是上述图2所示PON架构200中的第二OLT,或图4所示方法400中的第二OLT。该装置800包括至少一个处理器801,内部连接802以及至少一个端口803。
该装置800是一种硬件结构的装置,可以用于实现图6所述的装置600中的功能模块。例如,本领域技术人员可以想到图6所示的装置600中的处理单元602可以通过该至少一个处理器801来实现,图6所示的装置600中的发送单元603和接收单元601可以通过该至少一个端口803来实现。
可选的,该装置800还可用于实现上述任一实施例中第二OLT的功能。
可选的,该装置800可以为图2所示PON架构200中的第二OLT或图4所示方法400 中的第二OLT。至少一个端口803包括第二OLT上的第二端口。
可选的,上述处理器801可以是硬件电路,一个通用中央处理器(central processing unit,CPU),网络处理器(network processor,NP),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
可选的,参见图8,在上述处理器801为CPU或微处理器等情况,该装置800还包括存储器804,图6所示的装置600中的处理单元602可以通过该至少一个处理器801调用存储器804中的代码来实现。
上述内部连接802可包括一通路,在上述组件之间传送信息。可选的,内部连接802为单板或总线等。
上述至少一个端口803,用于与其他设备或通信网络通信。
上述存储器804可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器804用于存储执行本申请方案的应用程序代码,并由处理器801来控制执行。处理器801用于执行存储器804中存储的应用程序代码,以及配合至少一个端口803,从而使得该装置800实现本专利方法中的功能。
在具体实现中,作为一种实施例,处理器801可以包括一个或多个CPU,例如图8中的CPU0和CPU1。
在具体实现中,作为一种实施例,该装置800可以包括多个处理器,例如图8中的处理器801和处理器807。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
参见图9,本申请实施例提供了一种测量链路状态的系统900,所述系统900包括如图5所示的装置500和如图6所示的装置600,或者,所述系统900包括如图7所示的装置700和如图8所示的装置800。
如图5所示的装置500或如图8所示的装置900可以为第一OLT901,如图6所示的装置600或如图8所示的装置800可以为第二OLT902。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的原则之内,所 作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (25)

  1. 一种测量链路状态的方法,其特征在于,所述方法包括:
    第一光线路终端OLT通过第一端口向第一光网络单元ONU发送第一指示信息,所述第一OLT是无源光网络PON中的设备,所述第一ONU是所述PON包括的至少一个ONU中的一个,所述第一指示信息用于指示对所述第一ONU进行测量的测量窗口;
    所述第一OLT获取所述第一ONU对应的信号质量,所述信号质量是第二端口在所述测量窗口内从第一PON通道上接收的信号质量,所述第二端口接收的信号包括所述第一ONU在所述测量窗口内发送的测量信号,所述第一PON通道用于传输所述测量信号,第二PON通道用于传输业务信号,所述测量信号对应的光波长与所述业务信号对应的光波长不同,所述第一PON通道和所述第二PON通道是承载在所述第二端口与所述第一ONU之间链路上的通道;
    所述第一OLT基于所述PON中的每个ONU对应的信号质量确定主干链路的状态,所述主干链路是所述第二端口到所述每个ONU的链路的共同部分。
  2. 如权利要求1所述的方法,其特征在于,所述第一指示信息包括所述测量窗口的起始时间和所述测量窗口的时间长度中的至少一个。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一端口是所述第一OLT上的端口,所述第二端口是第二OLT上端口,所述第一OLT和所述第二OLT是不同的OLT设备,所述方法还包括:
    所述第一OLT向所述第二OLT发送所述第一指示信息,所述第一指示信息还用于指示所述第二OLT获取所述第二端口在所述测量窗口内从所述第一PON通道上接收的信号质量。
  4. 如权利要求3所述的方法,其特征在于,所述第一OLT获取所述第一ONU对应的信号质量,包括:
    所述第一OLT接收所述第二OLT发送的测量信息,所述测量信息包括所述第一ONU对应的信号质量。
  5. 如权利要求1或2所述的方法,其特征在于,所述第一端口和所述第二端口是所述第一OLT上的两个不同端口。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述测量窗口包括至少一个发送周期,每个发送周期包括第一时间段和所述每个ONU对应的发送窗口,所述第一ONU对应的发送窗口是所述第一ONU向所述第一OLT发送运维业务的窗口,所述第一指示信息用于指示所述第一ONU在所述第一时间段发送所述测量信号。
  7. 如权利要求1至6任一项所述的方法,其特征在于,所述第一ONU对应的信号质量包括至少一个接收信号强度指示RSSI,所述至少一个RSSI是所述第二端口在所述测量窗口内接收的信号的RSSI。
  8. 一种测量链路状态的方法,其特征在于,所述方法包括:
    第二光线路终端OLT接收第一指示信息,其中所述第一指示信息是所述第一OLT向所述第二OLT和第一光网络单元ONU发送的信息,所述第一OLT和第二OLT是无源光网络PON中的两个设备,所述第一ONU是所述PON包括的至少一个ONU中的一个,所述第一指示信息用于指示对所述第一ONU进行测量的测量窗口;
    所述第二OLT对第二端口在所述测量窗口内从第一PON通道上接收的信号进行测量,得到所述第一ONU对应的信号质量,所述第二端口接收的信号包括所述第一ONU在所述测量窗口内发送的测量信号,所述第二端口是所述第二OLT上的端口,所述第一PON通道用于传输所述测量信号,第二PON通道用于传输业务信号,所述测量信号对应的光波长和所述业务信号对应的光波长不同,所述第一PON通道和所述第二PON通道是承载在所述第二端口与所述第一ONU之间链路上的通道;
    所述第二OLT向所述第一OLT发送测量信息,所述测量信息包括所述PON中的每个ONU对应的信号质量,所述测量信息用于触发所述第一OLT基于所述每个ONU对应的信号质量确定主干链路的质量,所述主干链路是所述第二端口到所述每个ONU的链路的共同部分。
  9. 如权利要求8所述的方法,其特征在于,所述第一指示信息包括所述测量窗口的起始时间和所述测量窗口的时间长度中的至少一个。
  10. 如权利要求8或9所述的方法,其特征在于,所述测量窗口包括至少一个通信周期,每个通信周期包括第一时间段和所述每个ONU对应的发送窗口,所述第一ONU对应的发送窗口是所述第一ONU向所述第一OLT发送运维业务的窗口,所述第一指示信息用于指示所述第一ONU在所述第一时间段发送所述测量信号。
  11. 如权利要求8至10任一项所述的方法,其特征在于,所述第一ONU对应的信号质量包括至少一个接收信号强度指示RSSI,所述至少一个RSSI是所述第二端口在所述测量窗口内接收的信号的RSSI。
  12. 一种测量链路状态的装置,其特征在于,所述装置包括:
    发送单元,用于通过第一端口向第一光网络单元ONU发送第一指示信息,所述装置是无源光网络PON中的设备,所述第一ONU是所述PON包括的至少一个ONU中的一个,所述第一指示信息用于指示对所述第一ONU进行测量的测量窗口;
    处理单元,用于获取所述第一ONU对应的信号质量,所述信号质量是第二端口在所述测量窗口内从第一PON通道上接收的信号质量,所述第二端口接收的信号包括所述第一ONU在所述测量窗口内发送的测量信号,所述第一PON通道用于传输所述测量信号,第二PON通道用于传输业务信号,所述测量信号对应的光波长与所述业务信号对应的光波长不同,所述第一PON通道和所述第二PON通道是承载在所述第二端口与所述第一ONU之间链路上的通道;
    所述处理单元,还用于基于所述PON中的每个ONU对应的信号质量确定主干链路的状态,所述主干链路是所述第二端口到所述每个ONU的链路的共同部分。
  13. 如权利要求12所述的装置,其特征在于,所述第一指示信息包括所述测量窗口的起始时间和所述测量窗口的时间长度中的至少一个。
  14. 如权利要求12或13所述的装置,其特征在于,所述第一端口是所述装置上的端口,所述第二端口是第二OLT上端口,所述装置和所述第二OLT是不同的OLT设备,所述发送单元,还用于向所述第二OLT发送所述第一指示信息,所述第一指示信息还用于指示所述第二OLT获取所述第二端口在所述测量窗口内从所述第一PON通道上接收的信号质量。
  15. 如权利要求14所述的装置,其特征在于,所述装置还包括:接收单元,
    所述接收单元,用于接收所述第二OLT发送的测量信息,所述测量信息包括所述第一 ONU对应的信号质量。
  16. 如权利要求12或13所述的装置,其特征在于,所述第一端口和所述第二端口是所述装置上的两个不同端口。
  17. 如权利要求12至16任一项所述的装置,其特征在于,所述测量窗口包括至少一个发送周期,每个发送周期包括第一时间段和所述每个ONU对应的发送窗口,所述第一ONU对应的发送窗口是所述第一ONU向所述装置发送运维业务的窗口,所述第一指示信息用于指示所述第一ONU在所述第一时间段发送所述测量信号。
  18. 如权利要求12至17任一项所述的装置,其特征在于,所述第一ONU对应的信号质量包括至少一个接收信号强度指示RSSI,所述至少一个RSSI是所述第二端口在所述测量窗口内接收的信号的RSSI。
  19. 一种测量链路状态的装置,其特征在于,所述装置包括:
    接收单元,用于接收第一指示信息,其中所述第一指示信息是所述第一OLT向所述装置和第一光网络单元ONU发送的信息,所述第一OLT和所述装置是无源光网络PON中的两个设备,所述第一ONU是所述PON包括的至少一个ONU中的一个,所述第一指示信息用于指示对所述第一ONU进行测量的测量窗口;
    处理单元,用于对第二端口在所述测量窗口内从第一PON通道上接收的信号进行测量,得到所述第一ONU对应的信号质量,所述第二端口接收的信号包括所述第一ONU在所述测量窗口内发送的测量信号,所述第二端口是所述装置上的端口,所述第一PON通道用于传输所述测量信号,第二PON通道用于传输业务信号,所述测量信号对应的光波长和所述业务信号对应的光波长不同,所述第一PON通道和所述第二PON通道是承载在所述第二端口与所述第一ONU之间链路上的通道;
    发送单元,用于向所述第一OLT发送测量信息,所述测量信息包括所述PON中的每个ONU对应的信号质量,所述测量信息用于触发所述第一OLT基于所述每个ONU对应的信号质量确定主干链路的质量,所述主干链路是所述第二端口到所述每个ONU的链路的共同部分。
  20. 如权利要求19所述的装置,其特征在于,所述第一指示信息包括所述测量窗口的起始时间和所述测量窗口的时间长度中的至少一个。
  21. 如权利要求19或20所述的装置,其特征在于,所述测量窗口包括至少一个通信周期,每个通信周期包括第一时间段和所述每个ONU对应的发送窗口,所述第一ONU对应的发送窗口是所述第一ONU向所述第一OLT发送运维业务的窗口,所述第一指示信息用于指示所述第一ONU在所述第一时间段发送所述测量信号。
  22. 如权利要求19至21任一项所述的装置,其特征在于,所述第一ONU对应的信号质量包括至少一个接收信号强度指示RSSI,所述至少一个RSSI是所述第二端口在所述测量窗口内接收的信号的RSSI。
  23. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被计算机执行时,实现如权利要求1-11任一项所述的方法。
  24. 一种计算机程序产品,其特征在于,所述计算机程序产品包括在计算机可读存储介质中存储的计算机程序,并且所述计算程序通过处理器进行加载来实现如权利要求1-11任一项所述的方法。
  25. 一种测量链路状态的系统,其特征在于,包括如权利要求12-18任一项所述的装置和如权利要求19-22任一项所述的装置。
PCT/CN2022/079342 2021-04-23 2022-03-04 测量链路状态的方法、装置、系统及存储介质 WO2022222618A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22790727.6A EP4319185A4 (en) 2021-04-23 2022-03-04 METHOD AND DEVICE FOR MEASURING THE CONNECTION STATUS, SYSTEM AND STORAGE MEDIUM
US18/490,966 US20240048237A1 (en) 2021-04-23 2023-10-20 Link status measurement method, apparatus, and system, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110444046.2 2021-04-23
CN202110444046.2A CN115243122A (zh) 2021-04-23 2021-04-23 测量链路状态的方法、装置、系统及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/490,966 Continuation US20240048237A1 (en) 2021-04-23 2023-10-20 Link status measurement method, apparatus, and system, and storage medium

Publications (1)

Publication Number Publication Date
WO2022222618A1 true WO2022222618A1 (zh) 2022-10-27

Family

ID=83666267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079342 WO2022222618A1 (zh) 2021-04-23 2022-03-04 测量链路状态的方法、装置、系统及存储介质

Country Status (4)

Country Link
US (1) US20240048237A1 (zh)
EP (1) EP4319185A4 (zh)
CN (1) CN115243122A (zh)
WO (1) WO2022222618A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651495A (zh) * 2009-09-25 2010-02-17 中兴通讯股份有限公司 一种波分复用无源光网络主干光纤保护的方法及装置
US20100183298A1 (en) * 2009-01-21 2010-07-22 Calix Networks, Inc. Passive optical network protection switching
US20150358076A1 (en) * 2014-06-09 2015-12-10 Ubiquoss Inc. Port-dualized optical line terminal and passive optical network system capable of measuring rssi of standby line in standby port, and method of determining stability of standby line using the same
CN107078793B (zh) * 2014-10-23 2018-12-07 华为技术有限公司 一种光纤故障诊断方法、装置及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854208B (zh) * 2009-03-31 2014-12-03 华为技术有限公司 一种光功率测量的方法、光线路终端和光网络单元
CN102130720B (zh) * 2010-12-03 2014-11-05 华为技术有限公司 无源光网络的光功率检测方法、系统和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100183298A1 (en) * 2009-01-21 2010-07-22 Calix Networks, Inc. Passive optical network protection switching
CN101651495A (zh) * 2009-09-25 2010-02-17 中兴通讯股份有限公司 一种波分复用无源光网络主干光纤保护的方法及装置
US20150358076A1 (en) * 2014-06-09 2015-12-10 Ubiquoss Inc. Port-dualized optical line terminal and passive optical network system capable of measuring rssi of standby line in standby port, and method of determining stability of standby line using the same
CN107078793B (zh) * 2014-10-23 2018-12-07 华为技术有限公司 一种光纤故障诊断方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4319185A4

Also Published As

Publication number Publication date
EP4319185A4 (en) 2024-10-02
CN115243122A (zh) 2022-10-25
EP4319185A1 (en) 2024-02-07
US20240048237A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
US9118982B2 (en) Optical line terminal (OLT) optical module adapted to perform optical unit network (ONU) functionality
KR101751158B1 (ko) 광 네트워크 검출 방법, 장치 및 시스템
US9998214B2 (en) Optical time domain reflectometer implementation apparatus and system
JP2022553365A (ja) ポート検出方法、光ネットワークデバイス、および受動光ネットワークシステム
TWI507669B (zh) 用於光纖設備的光線路終端
WO2013014531A2 (en) Techniques for detecting optical faults in passive optical networks
WO2009124484A1 (zh) 一种光网络发送数据的方法、系统和设备
US11825249B2 (en) Systems and methods for measurement of optical parameters in an optical network
US20150358076A1 (en) Port-dualized optical line terminal and passive optical network system capable of measuring rssi of standby line in standby port, and method of determining stability of standby line using the same
JP2016516218A (ja) 光分岐アセンブリ、受動光ネットワーク、および光送信方法
WO2013107232A1 (zh) 基于pon系统的检测方法和系统
US9806802B2 (en) Method and device for detecting rogue behavior
CN106506069B (zh) 光线路终端、光收发模块、系统以及光纤检测方法
US10348479B2 (en) Signal detection for optical communication network
US9705625B2 (en) Optical network terminal and a method therein for maintenance of the same
CN110945800B (zh) 一种光性能监测装置及方法
WO2022222618A1 (zh) 测量链路状态的方法、装置、系统及存储介质
WO2016061782A1 (zh) 一种光纤故障诊断方法、装置及系统
WO2021035487A1 (zh) 确定光网络终端连接的方法、设备及系统
WO2013082771A1 (zh) 光纤链路检测方法、光线路终端和无源光网络系统
JP2011035738A (ja) 障害onu特定方法及び装置
US20240080095A1 (en) Method and apparatus applied to pon system, system, and storage medium
CN114337806A (zh) 一种光功率检测方法、装置及光网络终端
WO2023098659A1 (zh) 通信方法、装置及系统
CN105981312A (zh) 一种无源光网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790727

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022790727

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022790727

Country of ref document: EP

Effective date: 20231024

NENP Non-entry into the national phase

Ref country code: DE