WO2009124484A1 - 一种光网络发送数据的方法、系统和设备 - Google Patents

一种光网络发送数据的方法、系统和设备 Download PDF

Info

Publication number
WO2009124484A1
WO2009124484A1 PCT/CN2009/071134 CN2009071134W WO2009124484A1 WO 2009124484 A1 WO2009124484 A1 WO 2009124484A1 CN 2009071134 W CN2009071134 W CN 2009071134W WO 2009124484 A1 WO2009124484 A1 WO 2009124484A1
Authority
WO
WIPO (PCT)
Prior art keywords
ranging
value
rtd
rtd value
onu
Prior art date
Application number
PCT/CN2009/071134
Other languages
English (en)
French (fr)
Inventor
杨素林
牛乐宏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2009124484A1 publication Critical patent/WO2009124484A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0641Change of the master or reference, e.g. take-over or failure of the master
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0652Synchronisation among time division multiple access [TDMA] nodes, e.g. time triggered protocol [TTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability

Definitions

  • the present invention relates to the field of optical communications, and in particular, to a method, system and device for transmitting data by an optical network. Background technique
  • PON Passive Optical Network
  • OLT Optical Line
  • OS Optical Splitter
  • 0NU Optical Network Unit
  • the conventional optical splitter OS only realizes the splitting and convergence of optical signals, and has no amplification function of optical signals, so it is called a passive optical network. Since the optical signal is attenuated in the optical fiber, in order to support the long-distance data transmission of 0LT and 0NU, it is necessary to amplify the optical signal in the optical fiber, so it is necessary to add an optical power amplifier to the optical transmission path. After adding an optical power amplifier to the original P0N network, it becomes an active point-to-multipoint optical access network. For the convenience of description, the description of the P0N network is included later in this paper, including the case of active.
  • GP0N Gigabit Passive Optical Network
  • P0N Packet Control Protocol
  • EqD Equalization delay
  • the EqD value is obtained by:
  • the OLT performs a ranging process on the ONUn, obtains a Rtd (Round Trip Delay) value from the 0LT to the ONU, and then calculates an EqD value of the ONU by using the Rtd value, and sends the calculated EqD to the ONU.
  • 0NU completes its own delay time setting after receiving EqD.
  • EqD (n) Teqd - Rtd (n); where Teqd is the equalized round trip delay and takes a constant value.
  • the P0N network can provide the active and standby 0LT protection switching function, and provide the standby 0LT for the primary 0LT to ensure that the P0N network can continue to provide services in the case of 0LT failure or backbone optical fiber failure, and the primary PON LT module is detected.
  • the switch to the standby PON LT module and the standby trunk fiber continue to complete the communication with the ONU, thereby ensuring that the P0N network can continue to provide services.
  • the EqD value of the 0NU will be different after the switchover due to the difference in the length of the primary and backup trunk fibers.
  • the new master after the master/slave switchover With 0LT you need to set a new EqD for all 0NU re-ranging. Taking the fault of the backbone fiber as an example, the process of re-ranging is as follows: After the master-slave switchover, the new master 0LT sends a pending POPUP message to all ONU broadcasts, informing the 0NU to change from the POPUP state to the RANGING state, and start all 0NU ranging.
  • Service interruption time L0S detection time ten switching decision execution time ten NX 0NU ranging time; where N is the number of 0NUs accessed under one PON LT.
  • the inventors have found that the formula of the service interruption time caused by the failure of the backbone fiber can be seen, wherein the time of the 0NU re-ranging directly restricts the service interruption time, since usually in the GP0N standard, each 0NU The ranging time is about 1ms. The more the number of 0NUs accessed by a PON LT, the longer the interruption time of the bearer service after the active and standby 0LT switching occurs. If 128 NU or more is connected to a PON LT, the continuity of the service cannot be guaranteed, resulting in service interruption, resulting in a poor user experience for the user and reducing the user's satisfaction with the service provided by the operator. Summary of the invention
  • a method, system, and method for transmitting data in an optical network are provided to ensure that the OLT of the P0N network performs the active/standby switchover, ensures the continuity of the service, reduces the service interruption time, and meets the delay requirement of the service. device.
  • the technical solution is as follows:
  • a method for transmitting data in an optical network where the optical network unit ONU includes ranging and non-ranging 0NU, The method includes:
  • a system for transmitting data by using an optical network includes: a sending device, a ranging device, and a non-ranging device, where
  • the sending device is configured to acquire a first round trip delay Rtd value of the ranging device and the non-ranging device, and is further configured to send a ranging request to the ranging device, according to the ranging device
  • the ranging response acquires a second round trip delay Rtd value of the ranging device; and obtains a change value of the Rtd value according to the first Rtd value and the second Rtd value of the ranging device; when the change value is obtained Obtaining, according to the change value and the first Rtd value of the non-ranging device, a second Rtd value of the non-ranging device; respectively, according to the obtained second Rtd value of the ranging device and the non- a second Rtd value of the ranging device, acquiring and transmitting an equalization delay EqD value of the ranging device and the non-ranging device;
  • the ranging device is configured to receive a ranging request sent by the sending device, and return a ranging response to the sending device; and further configured to receive an equalization delay EqD value sent by the sending device;
  • the non-ranging device is configured to receive an equalization delay EqD value sent by the sending device.
  • an apparatus for transmitting data by using an optical network where the device includes:
  • An obtaining module configured to acquire a first round trip delay Rtd value of the ranging device and the non-ranging device
  • a ranging module configured to send a ranging request to the ranging device, and obtain a second round trip delay Rtd value of the ranging device according to the ranging response of the ranging device;
  • a difference module configured to obtain a change value of the Rtd value according to the first Rtd value of the ranging device acquired by the acquiring module and the second Rtd value of the ranging device acquired by the ranging module;
  • a processing module configured to acquire a second Rtd value of the non-ranging device according to the change value acquired by the difference module and the first Rtd value of the non-ranging device acquired by the acquiring module;
  • a sending module configured to acquire and send the ranging device and the second Rtd value of the ranging device acquired by the ranging module and a second Rtd value of the non-ranging device acquired by the processing module
  • the equalization delay EqD value of the non-ranging device configured to acquire and send the ranging device and the second Rtd value of the ranging device acquired by the ranging module and a second Rtd value of the non-ranging device acquired by the processing module.
  • a system for transmitting data by using an optical network includes: an optical line terminal OLT, a ranging optical network unit ONU, and a non-ranging optical network unit ONU;
  • the 0LT is configured to acquire a first round trip delay Rtd value of the ranging ONU and the non-ranging ONU, and is further configured to send a ranging request to the ranging ONU, according to the ranging 0NU Obtaining a second round trip delay Rtd value of the ranging 0NU from the response; obtaining a change value of the Rtd value according to the first Rtd value and the second Rtd value of the ranging ONU; after obtaining the change value, Obtaining, according to the change value and the first Rtd value of the non-ranging ONU, a second Rtd value of the non-ranging ONU; respectively, according to the obtained second Rtd value of the ranging ONU and the non-measurement Obtaining and transmitting an equalization delay EqD value of the
  • the ranging 0NU is configured to receive a ranging request sent by the OLT, and return a ranging response to the 0LT; and further configured to receive an equalization delay EqD value sent by the 0LT;
  • the non-ranging 0NU is configured to receive an equalization delay EqD value sent by the 0LT.
  • the active/standby switchover is triggered.
  • the standby OLT performs the ranging process
  • the ranging operation is performed on only one ONU, that is, only the Rtd of one ONU is measured. Value, obtain the difference between the primary and secondary Rtd of the ONU according to the Rtd value, and then calculate the EqD value on the new OLT according to the difference between the primary and secondary Rtd of the ONU and the Rtd value on the original primary OLT, and then set the EqD of the ONU. Therefore, the time of the ranging is saved.
  • the method provided by the embodiment of the present invention can reduce the service interruption time, ensure the continuity of the provided services, and further satisfy the delay of the PON network bearer. Demand for higher TDM services.
  • FIG. 1 is a schematic diagram of a P0N network architecture provided by the prior art
  • FIG. 2 is a schematic diagram of an active/standby switchover according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart of a method for transmitting data by an optical network according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of information interaction of a method for transmitting data by an optical network according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of a system for transmitting data by an optical network according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a system for transmitting data in an optical network according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of an apparatus for transmitting data in an optical network according to Embodiment 3 of the present invention. detailed description
  • the embodiment of the invention provides a method for transmitting data by an optical network, and the method content is as follows: acquiring ranging and non-ranging 0NU a respective first round trip delay Rtd value; obtaining a second round trip delay Rtd value of the ranging 0NU; obtaining a change value of the Rtd value according to the first Rtd value and the second Rtd value of the ranging 0NU; according to the change value and the non
  • the first Rtd value of the ranging 0NU is obtained, and the second Rtd value of the non-ranging 0NU is obtained.
  • the equalization of the ranging and non-ranging 0NU is acquired and transmitted. Delay the EqD value.
  • the step of obtaining the second round trip delay Rtd value of the ranging 0NU further includes: acquiring and transmitting the equalization delay EqD value of the ranging 0NU according to the second Rtd value;
  • the step of acquiring and transmitting the equalization delay EqD value corresponding to the ranging and non-ranging 0NU according to the acquired second Rtd value of the 0NU includes:
  • the equalization delay EqD corresponding to the non-ranging 0NU is acquired and transmitted.
  • the ranging 0NU may also be multiple; correspondingly, the method for transmitting data by the optical network provided by the embodiment of the present invention
  • the step of acquiring the second round trip delay Rtd value of the ranging 0NU, and obtaining the change value of the Rtd value according to the first Rtd value and the second Rtd value of the ranging 0NU include:
  • the step of acquiring the second round trip delay Rtd value of the plurality of ranging 0NUs in sequence includes: acquiring a second round trip delay Rtd value of the current ranging ONU, and acquiring the second Rtd value according to the current ranging ONU Sending the equalization delay EqD value of the current ranging 0NU;
  • the steps of acquiring and transmitting the equalization delay EqD value corresponding to the ranging and non-ranging 0NU are specifically:
  • the equalization delay EqD value corresponding to the non-ranging 0NU is acquired and transmitted.
  • the first round trip delay Rtd value of each of the ONUs when acquiring the first round trip delay Rtd value of each of the ONUs, the first round trip delay Rtd value of each ONU sent by the earth optical line terminal may be obtained. It can also be implemented through pre-system configuration settings.
  • the PON network has a trunk optical fiber failure or the primary OLT fails to perform The active/standby switchover is performed.
  • the ranging operation is performed only for one ONU, that is, only the Rtd value of a 0NU is measured, and the difference between the primary and secondary Rtd of the ONU is obtained according to the Rtd value.
  • the EqD value of each ONU on the standby OLT is obtained, and finally the EqD values obtained by the message are sent to the corresponding ONUs by using the message.
  • Example 1 Since only one of the ONUs of all the accessed ONUs is required to perform the ranging operation, the transmission of the service can be resumed, thereby saving a large amount of ranging time, especially when the number of connected ONUs is large.
  • the method provided by the embodiment of the invention can reduce a large number of service interruption times, and further meet the requirements of the TDM service that is required by the PON network to have a high delay requirement.
  • the P0N network needs to perform an active/standby switchover to switch the data to the standby 0LT.
  • the schematic diagram of the active/standby switchover provided in FIG. 2 is taken as an example.
  • the standby 0LT ie, the new master
  • the standby 0LT is different due to different parameters such as the length of the primary trunk fiber and the backup trunk fiber.
  • the accessed ONU needs to be re-ranged.
  • the embodiment of the present invention provides a method for transmitting data by an optical network.
  • the main optical fiber of the primary 0LT is faulty, and the active/standby switchover needs to be performed as an example. The method is as follows:
  • the primary OLT detects a Lost Of Signal (LOS) alarm, triggers the switching between the active and standby OLTs; the original primary OLT is changed to the standby OLT, and the original standby OLT is changed to the new primary OLT (hereinafter, it is convenient to describe, in the service)
  • the new primary OLT is still referred to as the standby OLT before the transmission is restored.
  • Each ONU detects the LOS alarm and enters the POPUP state.
  • the primary 0LT and each 0NU will detect the signal loss L0S alarm because the other party's signal is not received, and the primary OLT detects the LOS alarm, and the primary trunk fiber fault is known.
  • the active/standby OLT switchover is required: the data flow of the connected ONU is switched to the standby OLT, and the standby backbone fiber provided by the standby OLT is used to communicate with each ONU.
  • the OU device detects the LOS alarm, it runs normally.
  • the OPERATION state is switched to the suspended POPUP state. At this time, the service transmission of the standby OLT and each ONU is in an interrupted state.
  • the primary OLT sends the saved parameters of each ONU to the standby OLT through a communication link, and the standby OLT obtains parameters of each ONU.
  • the standby OLT obtains each ONU parameter in the step 102, which may occur after step 101, or may occur at any time before step 101 (for example, when the PON system is deployed, each ONU to be accessed)
  • the parameters are pre-stored in the primary and backup OLTs.
  • the embodiment of the invention does not limit the specific manner and time for the standby OLT to obtain the parameters of the accessing ONUs. However, it is ensured that the standby OLT has successfully acquired the parameters of the accessed ONUs before the execution of the step 106.
  • the parameters of each ONU include: a round-trip stalk delay Rtd value of the ONU acquired by the primary OLT, and an identifier of each access ONU.
  • Rtd ONU processing delay value ten-branch fiber propagation delay value + backbone fiber propagation delay value ten OLT processing delay value.
  • the Rtd value of the ONU acquired by the primary OLT may be referred to as the primary Rtd of the ONUi, and is represented as Rtd (primary) ONU1 (where ONU1 represents the i-th ONU in the accessed ONU).
  • the standby OLT selects a ranging ONU from each of the accessed ONUs, and performs ranging on the ranging ONU.
  • the number of ONUs accessing the PON network is more than one, and the number of accessing ONUs will increase greatly as the capacity of the OPN network expands.
  • the standby OLT is performing ranging ONUs. When selecting, you can arbitrarily select an ONU as the ranging process, and you can also specify one of the ONUs to be used as the ranging O according to the preset rules. Embodiments of the present invention are not limited to the specific manner and rules for selecting a ranging ONU.
  • the standby OLT sends a ranging request Range Request message to the ranging ONU.
  • the ONU After receiving the ranging request, the ONU returns a ranging response Range Response message to the standby 0LT.
  • the ranging ONU is in the POPUP state before receiving the ranging request Range Request message sent by the standby OLT. After receiving the ranging request Range Request message, the POPUP state is switched to the RANGING ranging state.
  • the standby 0LT receives the ranging response returned by the 0NU, and obtains the round trip delay Rtd value of the ranging 0NU.
  • the standby 0LT obtains a round trip delay Rtd value of the ranging 0NU according to the time interval according to the ranging response Range Response message returned by the received ranging 0NU and the ranging request Range Request message sent to the ranging 0NU.
  • the standby 0LT obtains the primary and secondary backbone fiber propagation according to the obtained Rtd value of the ranging 0NU and the round trip delay Rtd value of the primary OLT of the ranging 0NU (ie, the Rtd (primary) value of the ranging ONU device) Delay difference ⁇ .
  • the round trip delay Rtd value of the primary OLT of the ranging 0NU is specifically that, in step 101, the primary OLT is sent to the standby OLT through the communication link, or is deployed on the standby OLT when the OPN network is deployed.
  • the Rtd value of the ranging 0NU acquired by the standby OLT is represented as Rtd.
  • the Rtd value of the 0NU device is specifically processed by the ONU, and the branch fiber is used.
  • the propagation delay value, the backbone fiber propagation delay value, and the OLT processing delay value are composed of the ONU due to the failure of the backbone fiber.
  • Standby 0LT is based on obtaining the main and standby backbone fiber propagation delay difference and the pre-stored Rtd of each other ONU.
  • the Rtd (primary) value of the other ONUs pre-stored on the standby OLT is obtained in the same manner as the Rtd (primary) value of the ranging ONU obtained in step 107, specifically: the primary OLT communicates The link is sent to the standby OLT, or, when the OPN network is deployed, the settings are deployed on the standby OLT.
  • the difference between the primary and backup backbone fiber lengths is fixed. For all ONUs in the primary and backup PON LTs, one backbone fiber is shared at the same time. Therefore, the propagation delay values of all ONUs in the primary and secondary trunk fiber segments are fixed.
  • the difference ⁇ is also fixed, ie:
  • the standby OLT ranging acquires the difference between the primary and secondary trunk fiber propagation delays of one ONU, and can use the obtained difference ⁇ according to the stored Rtd (primary) value of the other ONUs to the other ONUs.
  • Rtd (main) compensates, so that the Rtd of the other ONUs is acquired accordingly.
  • the standby 0LT obtains the equalization delay time EqD (backup) of each ONU according to the obtained Rtd (standby) of each ONU.
  • the standby 0LT sends the acquired ENUD of each 0NU through the Ranging Time PL0AM message.
  • the standby 0LT device When the standby 0LT device sends the obtained ENUD (reserved) of each ONU through the Ranging Time PL0AM (Physical Layer Operation And Maintenance Cell) message, it can be broadcasted in the specific implementation.
  • the sending may be performed in a unicast manner.
  • the embodiment of the present invention does not limit the specific manner of sending a Ranging Time PL0AM message.
  • each ONU After receiving the Ranging Time PL0AM message from the standby 0LT, each ONU performs the delay time setting according to the EqD carried in it, and triggers the entry into the respective OPERATION state to resume the transmission of the interrupted service. At this point, The standby OLT completes the ranging of all ONUs and implements fast switching between the primary and backup backbone fibers.
  • the number of times the Ranging Time PLOAM message is sent by the standby 0LT may be set, and the number is sent as follows.
  • the standby 0LT may further obtain the EqD value of the ranging ONU device according to the Rtd value, and obtain the EqD value of the ranging ONU device according to the Rtd value, and then obtain the round trip delay Rtd value of the ranging ONU in step 106, and then At any time after the step 106, the standby 0LT can send the EqD of the ranging ONU to the ranging ONU device through the Ranging Time PLOAM message.
  • the embodiment of the present invention provides a method for transmitting data. Schematic diagram of information interaction, as shown in the figure, the process of information interaction is as follows:
  • the main trunk fiber fault occurs, and the active/standby switchover operation is performed. After the L0S alarm is detected, the standby 0LT is switched to the primary 0LT.
  • the 0NUs under the primary 0LT are converted to the POPUP by the normal 0PEARATI0N state because the L0S alarm is detected. Status, service transmission between 0LT and 0NU is interrupted.
  • Standby 0LT selects a 0NU to perform ranging processing. After the ranging is completed, the ranging 0NU is switched from the RANGING state to the OPERATION state, and the interrupt service recovery of the ranging 0NU is resumed.
  • the standby 0LT obtains the difference ⁇ between the main and standby trunk fiber propagation delays according to the ranging 0NU ranging process. Based on the obtained delta value and the Rtd (n) value on the primary 0LT, the EqD (n) value of the remaining 0NU on the alternate 0LT is calculated.
  • Alternate 0LT sets the new EqD (n) to the other 0NU. Accordingly, 0NU changes from the POPUP state to the OPERATION state, and the interrupted service is resumed.
  • 0NU can be set in the POPUP state. If the Ranging request message of the 0LT is received, the POPUP state is converted to the RANGING state, and the ranging process is started. Set 0NU in the POPUP state. If the RLTing time PLOAM message is set to 0LT to set the ONU EqD value, 0NU sets the new EqD value according to the message, that is, the POPUP state is converted to the normal OPERATION state, and the interrupted service transmission is resumed.
  • the number of the ranging 0NUs obtained by the standby OLT is taken as an example.
  • the P0N network may determine, according to requirements, that the service delay requirements are met.
  • the ranging processing of the ranging 0NU is sequentially performed, and then the average value of the difference ⁇ is obtained according to the obtained difference R ⁇ of the ranging NNU of each ranging, thereby ensuring the accuracy of the calculation.
  • the embodiment of the present invention is described by taking the active/standby switchover of the primary trunk fiber in the P0N network as an example.
  • the P0N network triggered by the primary 0LT fault is used for the active/standby switchover, and the processing method is similar. Narration.
  • the method for transmitting data in the optical network provided by the embodiment of the present invention, in the P0N network, the OLT 0LT switching due to the failure of the backbone fiber, the standby 0LT does not need to re-range all the 0NUs, only the ranging is needed.
  • One of the 0N Rtd values according to the RTU value of the 0NU on the primary 0LT, can obtain the difference ⁇ between the active and standby Rtd, and the other 0NUs that are accessed no longer need to perform ranging processing, according to the difference obtained and other 0NU on the original main 0LT
  • the EqD value on the standby OLT corresponding to other ONUs can be calculated. Since only one ranging process is performed, the transmission of the service can be resumed, which greatly saves the time taken for performing ranging for all ONUs, and satisfies The time delay requirement of the P0N network bearer service.
  • an embodiment of the present invention provides a a system for transmitting data by an optical network, the system comprising: a transmitting device, a ranging device, and a non-ranging device, wherein
  • a sending device configured to acquire a first round trip delay Rtd value of the ranging device and the non-ranging device; and configured to send a ranging request to the ranging device, and acquire a second ranging device according to the ranging response of the ranging device a round trip delay Rtd value; obtaining a change value of the Rtd value according to the first Rtd value and the second Rtd value of the ranging device; and obtaining the change value, obtaining the change value according to the first Rtd value of the non-ranging device a second RtD value of the non-ranging device; and acquiring, according to the obtained second Rtd value of the ranging device and the second Rtd value of the non-ranging device, the equalization delay EqD value of the ranging device and the non-ranging device;
  • the ranging device is configured to receive a ranging request sent by the sending device, and return a ranging response to the sending device, and is further configured to receive an equalization delay EqD value sent by the sending device.
  • the non-ranging device is configured to receive an EQD value of the equalization delay sent by the sending device.
  • the sending device is further configured to acquire the second round trip delay Rtd value of the ranging device multiple times, and obtain the second round trip delay Rtd value of the ranging device by taking the average value of the multiple Rtd values, and the ranging device is one or more One.
  • the ranging device is multiple, and correspondingly, the sending device includes:
  • An obtaining module configured to acquire a first round trip delay Rtd value of the ranging device and the non-ranging device
  • a ranging module configured to sequentially acquire a second round trip delay Rtd value of the plurality of ranging devices
  • a difference module configured to obtain a first Rtd value and a second value of each of the ranging devices according to a second Rtd value of the ranging device acquired by the ranging module and a first Rtd value of the ranging device acquired by the acquiring module The difference of the Rtd values; taking the average of the plurality of differences to obtain the change value of the Rtd value;
  • a processing module configured to acquire a second Rtd value of the non-ranging device according to the change value obtained by the difference module and the first Rtd value of the non-ranging device acquired by the acquiring module; respectively, according to the second Rtd of the obtained ranging device
  • the value and the second Rtd value of the non-ranging device acquire and transmit the equalization delay EqD value of the ranging device and the non-ranging device.
  • system further includes:
  • the sending device is embodied as a standby 0LT
  • the ranging device is embodied as a ranging 0NU
  • the non-ranging device is embodied as a non-ranging 0NU
  • the standby 0LT is used to obtain the round trip delay Rtd value of the primary trunk fiber of the ranging 0NU and the non-ranging 0NU (which may be referred to as the first Rtd value); the ranging request is sent to the ranging 0NU, according to the ranging 0NU measurement Obtaining a round trip delay Rtd value corresponding to the ranging 0NU (ie, corresponding to the spare trunk fiber, which may be referred to as a second Rtd value)); obtaining the Rtd value according to the corresponding primary trunk fiber of the ranging ONU
  • the difference ⁇ between the Rtd corresponding to the spare trunk fiber of the ranging 0NU and the Rtd value corresponding to the primary trunk fiber ie, the change value of the first Rtd value and the second Rtd value
  • the non-ranging 0NU obtained according to the difference ⁇
  • the Rtd value corresponding to the primary trunk fiber is obtained, and the Rtd value corresponding to the spare backbone fiber of the
  • Ranging 0NU used to receive the ranging request sent by the standby 0LT, returning the ranging response to the standby 0LT; and receiving the equalization delay EqD value sent by the standby 0LT, and then using the acquired EqD value to complete its own setting.
  • Non-ranging 0NU used to receive the equalization delay EqD sent by the alternate 0LT, and then use the acquired EqD value to complete its own setting.
  • the selection of the ranging ONU may be arbitrarily selecting one or more ONUs as the ranging processing from among the multiple ONUs accessed, and may also specify the access according to a preset rule.
  • One or more ONUs in each ONU are used as ranging ONUs.
  • Embodiments of the present invention are not limited to the specific manner and rules for selecting a ranging ONU.
  • the P0N network may determine the number of the ranging 0NU as required, and sequentially measure the distance according to the requirements of the service delay requirement. The ranging processing of 0NU, and then the average value of the difference ⁇ is obtained according to the obtained difference R ⁇ between the primary and the secondary of each ranging 0NU, thereby ensuring the accuracy of the calculation.
  • the standby 0LT specifically includes: an acquiring module, configured to acquire a first round trip delay Rtd value of the ranging device(s) and the non-ranging device; a ranging module, configured to sequentially acquire a second round trip delay Rtd value of the plurality of ranging devices; a difference module, configured to respectively obtain a second Rtd value of the ranging device acquired by the ranging module and a ranging obtained by the acquiring module
  • the first Rtd value of each device is obtained, and the difference between the first Rtd value and the second Rtd value of the ranging device is obtained; the average value of the plurality of differences is used to obtain the change value of the Rtd value; and the processing module is configured to use the difference value Obtaining a change value obtained by the module and acquiring a first Rtd value of the non-ranging device acquired by the module, acquiring a second Rtd value of the non-ranging device; respectively, according to the obtained second Rt
  • the P0N network may be used to acquire the ranging 0NU multiple times on the premise that the P0N network can meet the service delay requirement as needed.
  • Two The return delay is the Rtd value, and then the average of the multiple Rtd values is obtained to obtain the second round trip delay Rtd value of the ranging 0NU, wherein the ranging 0NU can be one or more specifically, thereby ensuring the accuracy of the ranging calculation. .
  • the system for transmitting data by the optical network may further include a providing device, configured to provide the first round-trip stalk delay Rtd value of the ranging device and the non-ranging device to the sending device.
  • the system for transmitting data in the optical network does not need to re-test all the 0NUs in the P0N network due to the active/standby 0LT switching caused by the backbone optical fiber failure (or the primary 0LT failure, etc.).
  • Distance only need to measure the Rtd value of one of the 0NU, according to the Rtd value of the 0NU on the primary 0LT, the difference ⁇ between the active and standby Rtd can be obtained, and the other 0NUs that are accessed no longer need to perform ranging processing, according to The obtained difference and the Rtd value of other ONUs on the original primary 0LT can calculate the EqD value on the alternate 0LT corresponding to the other ONU. Since only one ranging process is performed, the transmission of the service can be resumed, which greatly saves the economy.
  • the time taken to perform ranging for all ONUs satisfies the time delay requirement of the P0N network bearer service.
  • an embodiment of the present invention provides an apparatus for transmitting data by using an optical network, where the device includes:
  • An obtaining module configured to acquire a first round trip delay Rtd value of the ranging device and the non-ranging device (ie, an Rtd value on the primary 0LT);
  • a ranging module configured to send a ranging request to the ranging device, and obtain a second round trip delay Rtd value of the ranging device according to the ranging response of the ranging device (ie, an Rtd value on the standby 0LT);
  • a difference module configured to obtain a change value of the Rtd value according to the first Rtd value of the ranging device acquired by the acquiring module and the second Rtd value of the ranging device acquired by the ranging module;
  • a processing module configured to obtain a second Rtd value of the non-ranging device according to the change value obtained by the difference module and the first Rtd value of the non-ranging device acquired by the acquiring module;
  • a sending module configured to acquire and send an equalization delay EqD value of the ranging device and the non-ranging device according to the second Rtd value of the ranging device acquired by the ranging module and the second Rtd value of the non-ranging device acquired by the processing module .
  • the ranging module in the device for transmitting data in the optical network is configured to sequentially acquire the second round trip delay Rtd value of the plurality of ranging devices;
  • the difference module in the device for transmitting data in the optical network is configured to respectively adopt a second Rtd value of the ranging device acquired by the ranging module and a first Rtd value of each of the ranging devices acquired by the acquiring module. Obtaining a difference between a first Rtd value and a second Rtd value of each of the ranging devices; and taking a mean value of the plurality of differences to obtain a change value of the Rtd value.
  • the device for transmitting data in the optical network provided by the embodiment of the present invention satisfies P0N in specific implementation.
  • the ranging module of the device is specifically: a ranging unit, which is used to obtain the second round trip delay Rtd value of the ranging device multiple times, and obtains the average value of multiple Rtd values.
  • the second round trip delay Rtd value of the ranging device, wherein the ranging device may specifically be one or more, thereby ensuring the accuracy of the ranging calculation.
  • the actual range of the above-mentioned ranging device is embodied as ranging 0NU, and correspondingly, the non-ranging device is embodied as non-ranging 0NU.
  • optical network sending device provided by the embodiment of the present invention may be implemented as a functional entity, or may be integrated in the 0LT.
  • the active and standby 0LT switches due to the failure of the trunk fiber (or the primary 0LT fault, etc.), as the standby 0LT of the transmitting device does not need to be used for all 0NU re-ranging, only need to measure the Rtd value of one of the 0NU, according to the Rtd value of the 0NU on the primary 0LT, the difference ⁇ between the active and standby Rtd can be obtained, and the other 0NUs that are accessed no longer need to perform ranging.
  • Processing can calculate the EqD value on the alternate ONT corresponding to the other ONU, and then send the obtained EqD value by broadcast or unicast.
  • the transmission of the service can be resumed by performing only one ranging process, which greatly saves the time taken for performing ranging for all 0NUs, and satisfies the time delay requirement of the P0N network bearer service.
  • Some of the steps in the embodiment of the present invention may be implemented by software, and the corresponding software program may be stored in a readable storage medium such as an optical disk or a hard disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Description

说 明 书
一种光网络发送数据的方法、 系统和设备
本申请要求于 2008年 4月 9日提交中国专利局、 申请号为 200810091949.1、 发明名称 为 "一种光网络发送数据的方法、 系统和设备" 的中国专利申请的优先权, 其全部内容通 过引用结合在本申请中。 技术领域
本发明涉及光通信领域, 特别涉及一种光网络发送数据的方法、 系统和设备。 背景技术
在目前的光通信技术领域中, PON (Passive Optical Network, 无源光网络) 技术做 为一种点对多点方式的光接入技术被广泛应用, 参见图 1, P0N网络由 OLT (Optical Line Terminal ,光线路终端)、 OS (Optical Splitter,光分路器)以及 0NU (0ptical Network Unit, 光网络单元) 构成, 0LT作为局端设备, 通过一根主干光纤与 0S连接, 0S通过单独的分支 光纤连接每一个 0NU; 其中, 在下行方向(0LT至 0NU的传输方向, 通常采用 1490纳米波长 承载业务的传输), 0S实现分光功能,通过分支光纤将 0LT的下行光信号发送给所有的 0NU; 在上行方向 (0NU至 0LT的传输方向, 通常采用 1310纳米波长承载业务的传输), 0S实现 光信号汇聚功能, 将所有 0NU发送的光信号汇聚后, 通过主干光纤发送给 0LT。
传统的光分路器 OS只是实现光信号的分光和汇聚, 没有光信号的放大功能, 因此称为 无源光网络。 由于光信号在光纤中传输是有衰减的, 为了支持 0LT与 0NU的长距离数据传 输, 就需要对光纤中的光信号进行放大, 因此就需要在光传输通路上增加光功率放大器。 在原有 P0N网络中增加了光功率放大器后就成为有源的点对多点光接入网络。 为描述方便, 本文后面对 P0N网络的描述, 包括有源的情况。
为了避免上行方向的多个 0NU光信号的传输冲突, 需要在 0LT的控制下, 保证在同一 个时刻只能由一个 0NU上行发送光信号, 并且为了保证对各 0NU业务处理的同步性, 要保 证所有的 0NU发送的光信号到达 0LT的时间是相同的。
其中, GP0N (Gigabit Passive Optical Network, 吉比特无源光网络) 做为 P0N网络 的主流应用技术, 制定了 GP0N标准。 该标准中为了保证所有 0NU发送的光信号到达 0LT的 时间是相同的, 0NU在向 0LT发送上行数据时, 需要根据与 0LT距离的不同, 相应地在发送 数据时延迟不同的时间, 将该发送延迟时间称为 EqD (Equalization delay, 均衡时延), 该 EqD值通过以下方式获取: OLT通过对 ONUn执行测距处理, 获得 0LT到该 0NU的 Rtd ( Round Trip Delay, 往返 程延迟) 值, 然后通过 Rtd值计算出该 0NU的 EqD值, 并将计算获取的 EqD发送到该 0NU 中; 0NU接收到 EqD后完成自身的延迟时间的设置。 其中, 在通过 Rtd值计算出该 0NU的 EqD值时, 具体的参考公式如下:
EqD (n) = Teqd - Rtd (n);其中, Teqd为均衡往返程延迟(Equal ized round trip delay), 取值为常数值。
并且, P0N网络能够提供主备 0LT保护倒换功能, 通过为主用 0LT提供备用的 0LT的方 式, 确保 P0N网络能够在 0LT故障或者主干光纤故障时能够继续提供业务, 在检测到主用 PON LT模块故障或者主用主干光纤故障时, 切换到备用 PON LT模块及备用主干光纤继续完 成与 0NU的通信的目的, 从而保证 P0N网络仍然能够继续提供业务。
当 P0N网络出现由于主干光纤故障 (或 0LT故障), 而进行主备倒换时, 由于, 主备用 主干光纤的长度不同的差异, 切换后 0NU的 EqD值也会不同, 主备切换后新的主用 0LT需 要对所有 0NU重新测距设置新的 EqD。 以出现主干光纤故障为例, 重新测距的过程如下: 主 备切换后新的主用 0LT向所有 0NU广播发送挂起 POPUP消息, 通知 0NU由 POPUP状态转换 为 RANGING状态, 开始所有 0NU的测距处理 (测距原理同上所述)。 由于 0NU的测距处理是 串行的, 0LT完成前一个 0NU的测距处理, 才开始下一个 0NU的测距处理。 0NU测距完成后, 0NU与 0LT之间的业务传输恢复。 因此, 主干光纤故障导致的业务中断时间为:
业务中断时间 = L0S检测时间十倒换决策执行时间十 NX 0NU测距时间; 其中, N为一 个 PON LT下接入的 0NU数目。
发明人在实现本发明时发现, 根据上述主干光纤故障导致的业务中断时间的公式可以 看出, 其中, 0NU重新测距的时间直接制约着业务中断时间, 由于通常在 GP0N标准中, 每 个 0NU的测距时间大概在 1ms左右,一个 PON LT下接入的 0NU的个数的越多,发生主备 0LT 倒换后承载业务的中断时间就会越长。 如果一个 PON LT下接入 128个 0NU或者更多, 将无 法保证业务的连续性, 造成业务的中断, 造成给用户带来较差的用户体验, 降低用户对运 营商提供服务的满意度。 发明内容
为了保证在 P0N网络的 0LT进行主备倒换时, 确保提供的业务的连续性, 减少业务中 断时间, 满足业务的时延要求, 本发明实施例提供了一种光网络发送数据的方法、 系统和 设备。 所述技术方案如下:
一方面, 提供了一种光网络发送数据的方法, 光网络单元 0NU包括测距和非测距 0NU, 所述方法包括:
获取所述测距和非测距 0NU各自的第一往返程延迟 Rtd值;
获取所述测距 0NU的第二往返程延迟 Rtd值;
根据所述测距 0NU的第一 Rtd值和第二 Rtd值, 获取 Rtd值的变化值;
根据所述变化值和非测距 0NU的第一 Rtd值, 获取所述非测距 0NU的第二 Rtd值; 根据获取的所述测距和非测距 0NU各自的第二 Rtd值, 获取并发送所述测距和非测距 0NU对应的均衡延迟 EqD值。
另一方面, 提供了一种光网络发送数据的系统, 所述系统包括: 发送设备、 测距设备、 非测距设备, 其中,
所述发送设备, 用于获取所述测距设备和所述非测距设备的第一往返程延迟 Rtd值; 还用于向所述测距设备发送测距请求, 根据所述测距设备的测距响应获取所述测距设备的 第二往返程延迟 Rtd值; 根据所述测距设备的第一 Rtd值和第二 Rtd值, 获取 Rtd值的变 化值; 当获取到所述变化值后, 根据所述变化值和所述非测距设备的第一 Rtd值, 获取所 述非测距设备的第二 Rtd值; 分别根据获取的所述测距设备的第二 Rtd值和所述非测距设 备的第二 Rtd值, 获取并发送所述测距设备和所述非测距设备的均衡延迟 EqD值;
所述测距设备, 用于接收所述发送设备发送的测距请求, 向所述发送设备返回测距响 应; 还用于接收所述发送设备发送的均衡延迟 EqD值;
所述非测距设备, 用于接收所述发送设备发送的均衡延迟 EqD值。
再一方面, 提供了一种光网络发送数据的设备, 所述设备包括:
获取模块, 用于获取测距设备和非测距设备的第一往返程延迟 Rtd值;
测距模块, 用于向所述测距设备发送测距请求, 根据所述测距设备的测距响应获取所 述测距设备的第二往返程延迟 Rtd值;
差值模块, 用于根据所述获取模块获取的测距设备的第一 Rtd值和所述测距模块获取 的所述测距设备的第二 Rtd值, 获取 Rtd值的变化值;
处理模块, 用于根据所述差值模块获取的变化值和所述获取模块获取的非测距设备的 第一 Rtd值, 获取所述非测距设备的第二 Rtd值;
发送模块, 用于根据所述测距模块获取的所述测距设备的第二 Rtd值和所述处理模块 获取的非测距设备的第二 Rtd值, 获取并发送所述测距设备和所述非测距设备的均衡延迟 EqD值。
再一方面, 还提供了一种光网络发送数据的系统, 所述系统包括: 光线路终端 0LT、 测 距光网络单元 0NU和非测距光网络单元 0NU; 所述 0LT, 用于获取所述测距 ONU和所述非测距 ONU的第一往返程延迟 Rtd值; 还用于 向所述测距 0NU发送测距请求, 根据所述测距 0NU的测距响应获取所述测距 0NU的第二往 返程延迟 Rtd值; 根据所述测距 0NU的第一 Rtd值和第二 Rtd值, 获取 Rtd值的变化值; 当获取到所述变化值后, 根据所述变化值和所述非测距 0NU的第一 Rtd值, 获取所述非测 距 0NU的第二 Rtd值; 分别根据获取的所述测距 0NU的第二 Rtd值和所述非测距 0NU的第 二 Rtd值, 获取并发送所述测距 0NU和所述非测距 0NU的均衡延迟 EqD值;
所述测距 0NU, 用于接收所述 OLT发送的测距请求, 向所述 0LT返回测距响应; 还用于 接收所述 0LT发送的均衡延迟 EqD值;
所述非测距 0NU, 用于接收所述 0LT发送的均衡延迟 EqD值。
本发明实施例提供的技术方案的有益效果是:
当 PON网络出现主用光纤故障或主用 OLT设备故障后触发执行主备倒换,在备用 OLT 执行测距过程处理时, 通过只对一个 ONU的执行测距操作, 即只测距一个 ONU的 Rtd值, 根据 Rtd值获得该 ONU主备 Rtd的差值, 然后根据该 ONU主备 Rtd的差值及在原主 OLT 上的 Rtd值, 计算新的 OLT上的 EqD值, 然后设置完成 ONU的 EqD, 从而节省了测距的 时间,特别是当 ONU个数较多时,利用本发明实施例提供的方法能减少大量业务中断时间, 保证了提供的业务的连续性, 进而满足 PON网络承载的对时延要求较高的 TDM业务的需 求。 附图说明
图 1是现有技术提供的 P0N网络架构示意图;
图 2是本发明实施例 1提供的一种主备倒换的示意图;
图 3是本发明实施例 1提供的光网络发送数据的方法的流程图;
图 4是本发明实施例 1提供的光网络发送数据的方法的信息交互示意图;
图 5是本发明实施例 2提供的光网络发送数据的系统示意图;
图 6是本发明实施例 2提供的光网络发送数据的系统具体示意图;
图 7是本发明实施例 3提供的光网络发送数据的设备示意图。 具体实施方式
为使本发明的 0的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。
本发明实施例提供一种光网络发送数据的方法, 方法内容如下: 获取测距和非测距 0NU 各自的第一往返程延迟 Rtd值; 获取测距 0NU的第二往返程延迟 Rtd值; 根据测距 0NU的 第一 Rtd值和第二 Rtd值, 获取 Rtd值的变化值; 根据变化值和非测距 0NU的第一 Rtd值, 获取非测距 0NU的第二 Rtd值; 根据获取的测距和非测距 0NU各自的第二 Rtd值, 获取并 发送测距和非测距 0NU对应的均衡延迟 EqD值。
其中, 获取测距 0NU的第二往返程延迟 Rtd值的步骤还包括: 根据第二 Rtd值, 获取 并发送测距 0NU的均衡延迟 EqD值;
相应地, 根据获取的 0NU各自的第二 Rtd值, 获取并发送测距和非测距 0NU对应的均 衡延迟 EqD值的步骤, 具体包括:
根据获取的非测距 0NU的各自的第二 Rtd值, 获取并发送非测距 0NU对应的均衡延迟 EqD。
其中, 特别地, 为了在保证系统的时延要求的前提下, 为了保证计算的准确性, 其中, 测距 0NU还可以为多个; 相应地, 本发明实施例提供的光网络发送数据的方法中相应的获 取测距 0NU的第二往返程延迟 Rtd值, 根据测距 0NU的第一 Rtd值和第二 Rtd值, 获取 Rtd 值的变化值的步骤具体包括:
依次获取多个测距 0NU的第二往返程延迟 Rtd值;
分别根据测距 0NU各自的第一 Rtd值和第二 Rtd值,获取到测距 0NU的各自的第一 Rtd 值和第二 Rtd值的差值; 对多个差值取均值获取 Rtd值的变化值。
并且, 上述依次获取多个测距 0NU的第二往返程延迟 Rtd值的步骤, 具体包括: 获取当前测距 0NU的第二往返程延迟 Rtd值, 根据当前测距 0NU的第二 Rtd值获取并 发送当前测距 0NU的均衡延迟 EqD值;
获取当前测距 0NU的下一个测距 0NU的第二往返程延迟 Rtd值, 根据下一个测距 0NU 的第二往返程延迟 Rtd值获取并发送下一个测距 0NU的均衡延迟 EqD值;
直到获取并发送完毕所有测距 0NU的均衡延迟 EqD。
于是, 相应地, 根据获取的测距和非测距 0NU各自的第二 Rtd值, 获取并发送测距和 非测距 0NU对应的均衡延迟 EqD值的步骤, 具体为:
根据获取的非测距 0NU的各自的第二 Rtd值, 获取并发送非测距 0NU对应的均衡延迟 EqD值。
本发明实施例提供的光网络发送数据的方法中,在获取 0NU各自的第一往返程延迟 Rtd 值时, 可以通过获取土用光线路终端发送的 0NU各自的第一往返程延迟 Rtd值实现, 也可 以通过预先系统的配置设置实现。
利用上述本发明实施例提供的方法,当 PON网络出现主干光纤故障或主用 OLT故障执 行主备倒换, 在备用 OLT执行测距过程中, 通过只对一个 ONU的执行测距操作, 即只测 距一个 0NU的 Rtd值, 根据该 Rtd值获得该 0NU的主备 Rtd的差值△, 然后根据该差值 及其余各 ONU的主 OLT上的 Rtd值, 计算获取到各 ONU在备用 OLT上的 EqD值, 最 后通过消息将获取到的各 EqD值下发到各自对应的 ONU中, 由于只需对接入的所有 ONU 中的一个 ONU执行测距操作, 即可恢复业务的传输, 从而节省了了大量的测距的时间, 特 别是当接入的 ONU的数目较大时,利用本发明实施例提供的方法能减少大量业务中断时间, 进而满足 PON网络承载的对时延要求较高的 TDM业务的要求。 本发明实施例提供的技术 方案的描述, 详见下述具体实施例。 实施例 1
当 P0N网络中在主 0LT的主干光纤出现故障(或者主 0LT出现故障)时, P0N网络需要 进行主备倒换, 将数据切换到备用 0LT上。 本实施例以图 2提供的主备倒换的示意图为例 进行说明, 在主备 0LT 切换的过程中, 由于主用主干光纤和备用主干光纤的长度等参数的 不同, 备用 0LT (即新的主用 0LT) 需要对接入的 0NU进行重新测距处理。 为了减少对所有 的接入的 0NU执行测距处理所需要的测距时间, 减少业务中断时间, 本发明实施例提供了 一种光网络发送数据的方法。参见图 3, 本实施例中以主用 0LT的主干光纤出现故障而需要 进行主备倒换为例进行说明, 该方法内容如下:
101: 主用 OLT检测到信号丢失 LOS (Lost Of Signal) 告警, 触发进行主备 OLT的切 换; 原主用 OLT转变为备用 OLT, 原备用 OLT转变为新主用 OLT (下文为描述方便, 在业 务传输恢复前,仍将新的主用 OLT称为备用 OLT)。各 ONU检测到 LOS告警,进入 POPUP 状态。
其中, 当主用 0LT的主干光纤出现故障后, 主用 0LT和各 0NU由于接收不到对方的信 号, 都会检测到信号丢失 L0S告警, 主用 OLT检测到 LOS告警, 获知出现主用主干光纤故 障, 需要进行主备 OLT切换: 将接入的 ONU的数据流切换到备用 OLT上, 利用备用 OLT 提供的备用主干光纤和各 ONU进行通信; 当各 O U设备检测到 LOS告警后, 由正常工作 的运行 OPERATION状态切换到挂起 POPUP状态。此时, 备用 OLT和各 ONU的业务传输 处于中断状态。
102; 主用 OLT将保存的各 ONU的参数, 通过通信链路发送给备用 OLT, 备用 OLT 获取各 ONU的参数。
其中, 该歩骤 102中备用 OLT获取各 ONU参数, 可以发生在步骤 101之后, 也可以 是发生在步骤 101之前的任意时刻 (例如进行 PON系统部署的时候, 将接入的各 ONU的 参数分别在主、 备 OLT 中进行配置预存。 该发明实施例不限制备用 OLT获取到接入的各 ONU的参数的具体的方式和时间, 但要保证在步骤 106执行之前, 备用 OLT已经成功获取 到接入的各 ONU的参数。
其中,各 ONU的参数包括: 主用 OLT获取的 ONU的往返稈延迟 Rtd值、各接入 ONU 的标识等数值。其中, Rtd = ONU处理时延值十分支光纤传播时延值 +主干光纤传播时延值 十 OLT处理时延值。 为了便于表述可以将主用 OLT获取的 ONU的 Rtd值称为 ONUi的主 Rtd, 表示为 Rtd (主) ONUl (其中, ONUl表示接入的 0NU中的第 i个 0NU)。
103: 备用 OLT从接入的各 ONU中选择出测距 ONU, 对该测距 ONU执行测距。 其中, 由于该 PON网络下, 接入的 ONU的个数不只一个, 并且随着 OPN网络的容量 的扩容, 其接入 ONU设备的个数将大量的增加, 备用的 OLT在进行测距 ONU的选择时, 可以从中任意选择出一个做为测距处理的 ONU,还可以根据预设的规则指定接入的各 ONU 中的某一 ONU做为测距 O ;。 本发明实施例不限制在选择测距 ONU的具体方式和规则。
104: 备用 OLT向该测距 ONU发送测距请求 Range Request消息。
105:测距 ONU接收到测距请求 Range Request消息后,向备用 0LT返回测距响应 Range Response消息。
其中, 由于测距 ONU在收到备用 OLT发送的测距请求 Range Request消息之前处于 POPUP状态, 当收到该测距请求 Range Request消息后, 由 POPUP状态转换到 RANGING 测距状态。
106: 备用 0LT收到测距 0NU返回的测距响应 Range Response消息后,获取该测距 0NU 的往返程延迟 Rtd值。
其中, 备用 0LT根据收到测距 0NU返回的测距响应 Range Response消息、 以及向该测 距 0NU发送测距请求 Range Request消息, 根据时间间隔, 获取该测距 0NU的往返程延迟 Rtd值。
107:备用 0LT根据获取的测距 0NU的 Rtd值以及该测距 0NU的主用 OLT的往返程延迟 Rtd值 (即该测距 0NU设备的 Rtd (主) 值), 获取主、 备主干光纤传播时延差值△。
其中, 该测距 0NU的主用 OLT的往返程延迟 Rtd值具体为在步骤 101中, 主用 OLT通 过通信链路发送给备用 OLT的, 或者, 在进行 OPN网络部署时, 在备用 OLT上部署设置 的。
为了便于表述, 相应地, 将备用 0LT获取的测距 0NU的 Rtd值表示为 Rtd (备), 如在 步骤 102中所述的, 0NU设备的 Rtd值具体是由 ONU处理时延值、 分支光纤传播时延值、 主干光纤传播时延值、 OLT处理时延值组成, 由于在发生主干光纤故障导致的 ONU从主用 OLT设备切换到备用 OLT设备时,其在主、备 OLT设备上的 Rtd值中的 ONU处理时延值、 分支光纤传播时延值、 OLT 处理时延值是保持不变的, 而唯一改变的是因为主、 备的主干 光纤长度的不同导致的主干光纤传播时延值发生改变。 因此, ONU在主备 OLT上的 Rtd值 的差值具体为主、 备主干光纤传播时延差值△, 即: Rtd (主) 一 Rtd (备) =△。
108: 备用 0LT根据获取主、 备主干光纤传播时延差值 和预存的其它各 ONU的 Rtd
(主) 值, 计算获取各 ONU设备的 Rtd (备) 值。
其中, 在备用 OLT上预存的其它各 ONU的 Rtd (主)值的获取方式, 与在步骤 107中 获取的测距 ONU的 Rtd (主)值的获取方式相同, 具体为: 主用 OLT通过通信链路发送给备 用 OLT的, 或者, 在进行 OPN网络部署时, 在备用 OLT上部署设置的。
由于主、 备主干光纤长度的差值是固定的, 对于做为主、 备 PON LT下的所有 ONU, 同时共享一根主干光纤, 因此所有 ONU在主、 备主干光纤段的传播时延值的差值△也是固 定的, 即:
△ =Rtd (主) ONU1—Rtd (备) ONU1 =Rtd (主) ONU2—Rtd (备) ONU2 = =Rtd (主)
ONUn" -Rtd (备) ONUn
因此, 备用 OLT测距获取到一个 ONU的主、 备主干光纤传播时延差值△, 则可以根 据保存的其他的 ONU的 Rtd (主)值, 利用获取的差值△, 对其他的 ONU的 Rtd (主)进 行补偿, 从而相应的获取到其他的 ONU的 Rtd (备)。 即:
Rtd (备) ONUi=Rtd (主) ΟΝυί—Δ。
109: 备用 0LT根据获取的各 ONU的 Rtd (备), 获取到各 ONU的均衡延迟时间 EqD (备)。
在根据获取的各 ONU的 Rtd (备), 获取到各 ONU的均衡延迟时间 EqD (备) 时, 具 体的参考公式为:
EqD0NUi= Teqd (备) - RtdONUi = Teqd— (Rtd (主) ΟΝυί— Δ ) ,其中, Teqd (备) 取 值为常数值, 其值可以和 Teqd (主) 相同或不同。
110 :备用 0LT通过 Ranging Time PL0AM消息, 下发获取的各 0NU的 EqD (备)。
其中, 在备用 0LT 设备通过 Ranging Time PL0AM (Physical Layer Operation And Maintenance cell , 物理层操作维护单元)消息, 下发获取的各 0NU的 EqD (备) 时, 在具 体实现时可以采用广播的形式进行下发, 也可以采用单播的形式进行下发, 本发明实施例 不限制发送 Ranging Time PL0AM消息的具体方式。
当各 0NU收到来自备用 0LT发送的 Ranging Time PL0AM消息后,根据其中携带的 EqD (备) 进行延迟时间的设置, 并触发进入各自的 OPERATION状态, 恢复中断的业务的传输。 至此, 备用 OLT完成对所有的 ONU的测距, 实现了主、 备主干光纤的快速切换。
进一步地, 为了确保发送的正确性, 还可以设置备用 0LT下发 Ranging Time PLOAM消 息的次数, 如下发 3次等。
特别地, 针对测距 0NU而言, 备用 0LT还可以在步骤 106中获取到该测距 0NU的往返 程延迟 Rtd值的同时, 根据该 Rtd值计算获取到该测距 0NU设备的 EqD值, 然后在步骤 106 之后的任意时刻, 备用 0LT可以通过 Ranging Time PLOAM消息, 将该测距 0NU的 EqD (备) 下发给该测距 0NU设备,参见图 4,本发明实施例提供了发送数据的方法的信息交互示意图, 如图所示, 该信息交互的过程如下:
1. 出现主用主干光纤故障, 执行主备切换操作, 检测到 L0S告警后, 备用 0LT切换为 主用 0LT;主用 0LT下的各 0NU因为检测到 L0S告警,由正常的 0PEARATI0N状态转换为 POPUP 状态, 0LT与 0NU之间业务传输中断。
2. 备用 0LT选择一个 0NU执行测距处理, 测距完成后, 该测距 0NU由 RANGING状态转 换为 OPERATION状态, 该测距 0NU的中断业务恢复。
3. 备用 0LT根据对测距 0NU测距处理, 获得主、 备主干光纤传播时延差值△。 根据获 取的该△值以及主用 0LT上的 Rtd (n)值, 计算剩余 0NU的在备用 0LT上的 EqD (n)值。
4. 备用 0LT设置新的 EqD (n)到其他 0NU, 相应地, 0NU由 POPUP状态改变为 OPERATION 状态, 恢复中断的业务。
如上述交互示意图 4所示, 可以设定 0NU在 POPUP状态, 如果收到 0LT 的测距请求 Ranging request消息, 即由 POPUP状态转换为 RANGING状态, 开始测距处理。 设定 0NU在 POPUP状态, 如果收到 0LT设置 ONU EqD值的 Ranging time PLOAM消息, 0NU根据消息设 置新的 EqD值, 即由 POPUP状态转换为正常的 OPERATION状态, 恢复中断的业务传输。
上述本发明实施例, 以备用 0LT获取的测距 0NU的个数为一个为例进行的说明, 特别 地, 在具体实现时, P0N 网络可以根据需要在满足业务时延要求的前提下, 确定做为测距 0NU的个数, 依次对测距 0NU的测距处理, 然后根据获取的各测距 0NU的主备 Rtd差值 Δ获 取该差值 Δ的平均值,从而确保了计算的准确性。
上述本发明实施例以 P0N 网络中主用主干光纤故障触发主备倒换为例进行的说明, 同 理, 由于主用 0LT故障等触发的 P0N网络进行主备倒换的情况, 处理方法类似, 不再赘述。
综上所述, 本发明实施例提供的光网络发送数据的方法, 当 P0N 网络中, 由于主干光 纤故障导致的土备 0LT切换, 备用 0LT不需要对所有的 0NU重新测距, 只需要测距其中一 个 0NU的 Rtd值, 根据 0NU在主用 0LT上的 Rtd值, 就可以获得主备 Rtd的差值△, 对于 接入的其他 0NU不再需要执行测距处理, 根据获取的差值 及其它 0NU在原主用 0LT上的 Rtd值, 就可以计算出其它 ONU对应的备用 OLT上的 EqD值, 由于只需执行一次测距处理, 便可恢复业务的传输, 大大节省了对所有 0NU执行测距所耗费的时间, 满足了 P0N网络承 载业务的时延迟要求。 实施例 2
当 P0N网络中, 由于主干光纤故障等导致的主备 0LT切换, 由于主、 备主干光纤长度 等参数的差异, 各 0NU需要重新获取新的 EqD值, 参见图 5, 本发明实施例提供了一种光网 络发送数据的系统, 该系统包括: 发送设备、 测距设备、 非测距设备, 其中,
发送设备, 用于获取测距设备和非测距设备的第一往返程延迟 Rtd值; 还用于向测距 设备发送测距请求, 根据测距设备的测距响应获取测距设备的第二往返程延迟 Rtd值; 根 据测距设备的第一 Rtd值和第二 Rtd值, 获取 Rtd值的变化值; 当获取到变化值后, 根据 变化值和非测距设备的第一 Rtd值, 获取非测距设备的第二 Rtd值; 分别根据获取的测距 设备的第二 Rtd值和非测距设备的第二 Rtd值, 获取并发送测距设备和非测距设备的均衡 延迟 EqD值;
测距设备, 用于接收发送设备发送的测距请求, 向发送设备返回测距响应; 还用于接 收发送设备发送的均衡延迟 EqD值。
非测距设备, 用于接收发送设备发送的均衡延迟 EqD值。
其中, 发送设备还用于多次获取测距设备的第二往返程延迟 Rtd值, 对多次 Rtd值取 均值获取到测距设备的第二往返程延迟 Rtd值, 测距设备为一个或多个。
其中, 测距设备为多个, 相应地, 发送设备包括:
获取模块, 用于获取测距设备和非测距设备的第一往返程延迟 Rtd值;
测距模块, 用于依次获取多个测距设备的第二往返程延迟 Rtd值;
差值模块, 用于分别根据测距模块获取的测距设备的第二 Rtd值和获取模块获取的测 距设备各自的第一 Rtd值, 获取到测距设备各自的第一 Rtd值和第二 Rtd值的差值; 对多 个差值取均值获取 Rtd值的变化值;
处理模块, 用于根据差值模块获取的变化值和获取模块获取的非测距设备的第一 Rtd 值, 获取非测距设备的第二 Rtd值; 分别根据获取的测距设备的第二 Rtd值和非测距设备 的第二 Rtd值, 获取并发送测距设备和非测距设备的均衡延迟 EqD值。
进一步地, 系统还包括:
提供设备, 用于向发送设备提供测距设备和非测距设备的第一往返程延迟 Rtd值。 为了详细说明, 本发明实施例提供的系统在实际光网络中应用时, 参见图 6, 其中, 发 送设备具体体现为备用 0LT、测距设备具体体现为测距 0NU、非测距设备体现为非测距 0NU, 相应地, 其中,
备用 0LT, 用于获取测距 0NU和非测距 0NU的主用主干光纤的往返程延迟 Rtd值(可以 称为第一 Rtd值); 向测距 0NU发送测距请求, 根据测距 0NU的测距响应获取该测距 0NU的 往返程延迟 Rtd值 (即备用主干光纤对应的, 可以称为第二 Rtd值)); 根据该测距 0NU的 对应的主用主干光纤的 Rtd值, 获取到该测距 0NU的备用主干光纤对应的 Rtd和主用主干 光纤对应的 Rtd值的差值 Δ (即第一 Rtd值和第二 Rtd值的变化值); 根据差值 Δ和获取的 非测距 0NU的主用主干光纤对应的 Rtd值, 获取到非测距 0NU的备用主干光纤对应的 Rtd 值; 然后, 根据获取的测距设备和非测距设备的备用主干光纤对应的 Rtd值, 获取并发送 测距设备和非测距设备对应的均衡延迟 EqD值;
测距 0NU, 用于接收备用 0LT发送的测距请求, 向备用 0LT返回测距响应; 并用于接收 备用 0LT发送的均衡延迟 EqD值, 然后利用获取的 EqD值完成自身的设置。
非测距 0NU,用于接收备用 0LT发送的均衡延迟 EqD, 然后利用获取的 EqD值完成自身 的设置。
其中, 本领域技术人员可以获知, 测距 ONU的选择, 可以是从中接入的多个 ONU中 任意选择出一个或多个做为测距处理的 ONU, 还可以根据预设的规则指定接入的各 ONU 中的一个多多个 ONU做为测距 ONU。本发明实施例不限制在选择测距 ONU的具体方式和 规则。
特别地, 本发明实施例提供的光网络发送数据的系统, 在具体实现时, P0N网络可以根 据需要在满足业务时延要求的前提下, 确定做为测距 0NU的个数, 依次对测距 0NU的测距 处理, 然后根据获取的各测距 0NU的主备 Rtd差值 Δ获取该差值 Δ的平均值,从而确保了计 算的准确性。 即当测距设备(测距 0NU)为多个时, 相应地, 备用 0LT具体包括: 获取模块, 用于获取测距设备 (多个) 和非测距设备的第一往返程延迟 Rtd值; 测距模块, 用于依次 获取多个测距设备的第二往返程延迟 Rtd值; 差值模块, 用于分别根据测距模块获取的测 距设备的第二 Rtd值和获取模块获取的测距设备各自的第一 Rtd值, 获取到测距设备各自 的第一 Rtd值和第二 Rtd值的差值; 对多个差值取均值获取 Rtd值的变化值; 处理模块, 用于根据差值模块获取的变化值和获取模块获取的非测距设备的第一 Rtd值, 获取非测距 设备的第二 Rtd值; 分别根据获取的测距设备的第二 Rtd值和非测距设备的第二 Rtd值, 获取并发送测距设备和非测距设备的均衡延迟 EqD值。
进一步地, 本发明实施例提供的光网络发送数据的系统, 在具体实现时, P0N网络可以 根据需要在满足业务时延要求的前提下, 发送设备还可以用于多次获取测距 0NU 的第二往 返程延迟 Rtd值, 然后对多次 Rtd值取均值获取到测距 0NU的第二往返程延迟 Rtd值, 其 中, 上述测距 0NU具体可以为一个或多个, 从而确保了测距计算的准确性。
本发明实施例提供的光网络发送数据的系统, 还可以包括提供设备, 用于向发送设备 提供测距设备和非测距设备的第一往返稈延迟 Rtd值。
综上, 本发明实施例提供的光网络发送数据的系统, 当 P0N 网络中, 由于主干光纤故 障 (或主用 0LT故障等) 导致的主备 0LT切换, 备用 0LT不需要对所有的 0NU重新测距, 只需要测距其中一个 0NU的 Rtd值, 根据 0NU在主用 0LT上的 Rtd值, 就可以获得主备 Rtd 的差值△, 对于接入的其他 0NU不再需要执行测距处理, 根据获取的差值 及其它 0NU在 原主用 0LT上的 Rtd值, 就可以计算出其它 0NU对应的备用 0LT上的 EqD值, 由于只需执 行一次测距处理, 便可恢复业务的传输, 大大节省了对所有 0NU执行测距所耗费的时间, 满足了 P0N网络承载业务的时延迟要求。 实施例 3
参见图 7, 本发明实施例提供了一种光网络发送数据的设备, 该设备包括:
获取模块, 用于获取测距设备和非测距设备的第一往返程延迟 Rtd值 (即主用 0LT上 的 Rtd值);
测距模块, 用于向测距设备发送测距请求, 根据测距设备的测距响应获取测距设备的 第二往返程延迟 Rtd值 (即备用 0LT上的 Rtd值);
差值模块, 用于根据获取模块获取的测距设备的第一 Rtd值和测距模块获取的测距设 备的第二 Rtd值, 获取 Rtd值的变化值;
处理模块, 用于根据差值模块获取的变化值和获取模块获取的非测距设备的第一 Rtd 值, 获取非测距设备的第二 Rtd值;
发送模块, 用于根据测距模块获取的测距设备的第二 Rtd值和处理模块获取的非测距 设备的第二 Rtd值, 获取并发送测距设备和非测距设备的均衡延迟 EqD值。
特别地, 当测距设备为多个, 相应地, 本发明实施例提供的光网络发送数据的设备中 的测距模块, 用于依次获取多个测距设备的第二往返程延迟 Rtd值;
相应地,
本发明实施例提供的光网络发送数据的设备中差值模块, 用于分别根据测距模块获取 的测距设备的各自的第二 Rtd值和获取模块获取的测距设备各自的第一 Rtd值, 获取到测 距设备各自的第一 Rtd值和第二 Rtd值的差值; 并对多个差值取均值获取 Rtd值的变化值。
进一步地, 本发明实施例提供的光网络发送数据的设备, 在具体实现时, 在满足 P0N 网络满足业务时延要求的前提下, 其中该设备的测距模块具体为: 测距单元, 用于多次获 取测距设备的第二往返程延迟 Rtd值, 对多次 Rtd值取均值获取到测距设备的第二往返程 延迟 Rtd值, 其中, 上述测距设备具体可以为一个或多个, 从而确保了测距计算的准确性。
其中, 上述测距设备实际应用时具体体现为测距 0NU,相应地, 非测距设备实际应用时 体现为非测距 0NU.
本领域技术人员可以获知, 本发明实施例提供的光网络发送设备做为功能实体可以单 独以存在, 也可以集成在 0LT中实现。
综上, 本发明实施例提供的光网络发送设备, 当 P0N 网络中, 由于主干光纤故障 (或 主用 0LT故障等) 导致的主备 0LT切换, 做为发送设备的备用 0LT不需要对所有的 0NU重 新测距, 只需要测距其中一个 0NU的 Rtd值, 根据 0NU在主用 0LT上的 Rtd值, 就可以获 得主备 Rtd的差值△, 对于接入的其他 0NU不再需要执行测距处理, 根据获取的差值八及 其它 0NU在原主用 0LT上的 Rtd值, 就可以计算出其它 0NU对应的备用 0LT上的 EqD值, 然后通过广播或单播的形式将获取到的 EqD值发送到各 0NU中, 从而实现只需执行一次测 距处理, 便可恢复业务的传输, 大大节省了对所有 0NU执行测距所耗费的时间, 满足了 P0N 网络承载业务的时延迟要求。
本发明实施例中的部分步骤, 可以利用软件实现, 相应的软件程序可以存储在可读取 的存储介质中, 如光盘或硬盘等。
本领域普通技术人员可以理解, 实现上述实施例方法携带的全部或部分步骤是可以通 过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储介质中, 该程 序在执行时, 包括方法实施例的步骤之一或其组合。 上述提到的存储介质可以是只读存储 器, 磁盘或光盘等。
以上所述仅为本发明的具体实施例, 并不用以限制本发明, 对于本技术领域的普通技 术人员来说, 凡在不脱离本发明原理的前提下, 所作的任何修改、 等同替换、 改进等, 均 应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1.一种光网络发送数据的方法,其特征在于,光网络单元 0NU包括:测距和非测距 0NU, 所述方法包括:
获取所述测距和非测距 0NU各自的第一往返稈延迟 Rtd值;
获取所述测距 0NU的第二往返程延迟 Rtd值;
根据所述测距 0NU的第一 Rtd值和第二 Rtd值, 获取 Rtd值的变化值;
根据所述变化值和非测距 0NU的第一 Rtd值, 获取所述非测距 0NU的第二 Rtd值; 根据获取的所述测距和非测距 0NU各自的第二 Rtd值, 获取并发送所述测距和非测距 0NU对应的均衡延迟 EqD值。
2.如权利要求 1 所述的光网络发送数据的方法, 其特征在于, 所述获取所述测距 0NU 的第二往返程延迟 Rtd值的步骤后, 还包括:
根据所述第二 Rtd值, 获取并发送所述测距 0NU的均衡延迟 EqD值;
相应地, 所述根据获取的所述测距和非测距 0NU各自的第二 Rtd值, 获取并发送所述 测距和非测距 0NU对应的均衡延迟 EqD值的步骤, 具体为:
根据获取的非测距 0NU的各自的第二 Rtd值, 获取并发送所述非测距 0NU对应的均衡 延迟 EqD。
3.如权利要求 1所述的光网络发送数据的方法, 其特征在于, 所述测距 0NU为多个时; 所述获取所述测距 0NU的第二往返程延迟 Rtd值, 根据所述测距 0NU的第一 Rtd值和 第二 Rtd值, 获取 Rtd值的变化值的步骤, 具体包括:
依次获取所述多个测距 0NU的第二往返程延迟 Rtd值;
分别根据所述测距 0NU各自的第一 Rtd值和第二 Rtd值, 获取到所述测距 0NU的各自 的第一 Rtd值和第二 Rtd值的差值; 对所述多个差值取均值获取 Rtd值的变化值。
4. 权利要求 1所述的光网络发送数据的方法, 其特征在于,所述获取所述测距 0NU的 第二往返程延迟 Rtd值的步骤, 具体包括:
多次获取所述测距 0NU的第二往返程延迟 Rtd值, 对多次 Rtd值取均值获取到所述测 距 0NU的第二往返程延迟 Rtd值, 所述测距 0NU为一个或多个。
5. 如权利要求 1 所述的光网络发送数据的方法, 其特征在于,所述获取所述测距和非 测距 0NU各自的第一往返程延迟 Rtd值的步骤, 具体包括:
获取主用光线路终端发送的所述测距和非测距各自的第一往返程延迟 Rtd值。
6. 权利要求 1所述的光网络发送数据的方法, 其特征在于,所述往返程延迟 Rtd值包 括: 光网络单元 ONU处理时延值、 分支光纤传播时延值、 主干光纤传播时延值、 光线路终 端 0LT处理时延值。
7. 一种光网络发送数据的系统, 其特征在于, 所述系统包括: 发送设备、 测距设备、 非测距设备, 其中,
所述发送设备, 用于获取所述测距设备和所述非测距设备的第一往返程延迟 Rtd值; 还用于向所述测距设备发送测距请求, 根据所述测距设备的测距响应获取所述测距设备的 第二往返程延迟 Rtd值; 根据所述测距设备的第一 Rtd值和第二 Rtd值, 获取 Rtd值的变 化值; 当获取到所述变化值后, 根据所述变化值和所述非测距设备的第一 Rtd值, 获取所 述非测距设备的第二 Rtd值; 分别根据获取的所述测距设备的第二 Rtd值和所述非测距设 备的第二 Rtd值, 获取并发送所述测距设备和所述非测距设备的均衡延迟 EqD值;
所述测距设备, 用于接收所述发送设备发送的测距请求, 向所述发送设备返回测距响 应; 还用于接收所述发送设备发送的均衡延迟 EqD值;
所述非测距设备, 用于接收所述发送设备发送的均衡延迟 EqD值。
8. 如权利要求 7所述的光网络发送数据的系统, 其特征在于, 所述发送设备还用于多 次获取所述测距设备的第二往返程延迟 Rtd值, 对多次 Rtd值取均值获取到所述测距设备 的第二往返程延迟 Rtd值, 所述测距设备为一个或多个。
9. 如权利要求 7所述的光网络发送数据的系统, 其特征在于, 所述测距设备为多个, 相应地, 所述发送设备包括:
获取模块, 用于获取所述测距设备和所述非测距设备的第一往返程延迟 Rtd值; 测距模块, 用于依次获取所述多个测距设备的第二往返程延迟 Rtd值;
差值模块, 用于分别根据所述测距模块获取的所述测距设备的第二 Rtd值和所述获取 模块获取的测距设备各自的第一 Rtd值,获取到所述测距设备各自的第一 Rtd值和第二 Rtd 值的差值; 对所述多个差值取均值获取 Rtd值的变化值;
处理模块, 用于根据所述差值模块获取的变化值和所述获取模块获取的所述非测距设 备的第一 Rtd值, 获取所述非测距设备的第二 Rtd值; 分别根据获取的所述测距设备的第 二 Rtd值和所述非测距设备的第二 Rtd值, 获取并发送所述测距设备和所述非测距设备的 均衡延迟 EqD值。
10. 如权利要求 7所述的光网络发送数据的系统, 其特征在于, 所述系统还包括: 提供设备, 用于向所述发送设备提供所述测距设备和所述非测距设备的第一往返程延 迟 Rtd值。
11. 一种光网络发送数据的设备, 其特征在于, 所述设备包括:
获取模块, 用于获取测距设备和非测距设备的第一往返程延迟 Rtd值;
测距模块, 用于向所述测距设备发送测距请求, 根据所述测距设备的测距响应获取所 述测距设备的第二往返稈延迟 Rtd值;
差值模块, 用于根据所述获取模块获取的测距设备的第一 Rtd值和所述测距模块获取 的所述测距设备的第二 Rtd值, 获取 Rtd值的变化值;
处理模块, 用于根据所述差值模块获取的变化值和所述获取模块获取的非测距设备的 第一 Rtd值, 获取所述非测距设备的第二 Rtd值;
发送模块, 用于根据所述测距模块获取的所述测距设备的第二 Rtd值和所述处理模块 获取的非测距设备的第二 Rtd值, 获取并发送所述测距设备和所述非测距设备的均衡延迟 EqD值。
12. 如权利要求 11所述的光网络发送数据的设备, 其特征在于,所述测距模块具体为: 测距单元, 用于多次获取所述测距设备的第二往返程延迟 Rtd值, 对多次 Rtd值取均 值获取到所述测距设备的第二往返程延迟 Rtd值。
13. 如权利要求 11所述的光网络发送数据的设备, 其特征在于, 当所述测距设备为多 个,
所述测距模块, 用于依次获取所述多个测距设备的第二往返程延迟 Rtd值;
相应地,
所述差值模块, 用于分别根据所述测距模块获取的测距设备的各自的第二 Rtd值和所 述获取模块获取的测距设备各自的第一 Rtd值, 获取到所述测距设备各自的第一 Rtd值和 第二 Rtd值的差值; 并对所述多个差值取均值获取 Rtd值的变化值。
14. 如权利要求 11所述的光网络发送数据的设备, 其特征在于, 所述光网络发送设备 集成在光线路终端 0LT中。
15. 一种光网络发送数据的系统, 其特征在于, 所述系统包括: 光线路终端 0LT、 测距 光网络单元 0NU和非测距光网络单元 0NU;
所述 0LT, 用于获取所述测距 0NU和所述非测距 0NU的第一往返程延迟 Rtd值; 还用于 向所述测距 0NU发送测距请求, 根据所述测距 0NU的测距响应获取所述测距 0NU的第二往 返程延迟 Rtd值; 根据所述测距 0NU的第一 Rtd值和第二 Rtd值, 获取 Rtd值的变化值; 当获取到所述变化值后, 根据所述变化值和所述非测距 0NU的第一 Rtd值, 获取所述非测 距 0NU的第二 Rtd值; 分别根据获取的所述测距 0NU的第二 Rtd值和所述非测距 0NU的第 二 Rtd值, 获取并发送所述测距 0NU和所述非测距 0NU的均衡延迟 EqD值; 所述测距 0NU, 用于接收所述 OLT发送的测距请求, 向所述 0LT返回测距响应; 还用于 接收所述 0LT发送的均衡延迟 EqD值;
所述非测距 0NU, 用于接收所述 0LT发送的均衡延迟 EqD值。
PCT/CN2009/071134 2008-04-09 2009-04-01 一种光网络发送数据的方法、系统和设备 WO2009124484A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810091949.1 2008-04-09
CN2008100919491A CN101557539B (zh) 2008-04-09 2008-04-09 一种光网络发送数据的方法、系统和设备

Publications (1)

Publication Number Publication Date
WO2009124484A1 true WO2009124484A1 (zh) 2009-10-15

Family

ID=41161545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071134 WO2009124484A1 (zh) 2008-04-09 2009-04-01 一种光网络发送数据的方法、系统和设备

Country Status (2)

Country Link
CN (1) CN101557539B (zh)
WO (1) WO2009124484A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498049A (en) * 2011-12-09 2013-07-03 Zte Corp Protection system for a PON in which equalisation delay is adjusted when switching to a backup OLT

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101990132A (zh) * 2009-07-30 2011-03-23 中兴通讯股份有限公司 光线路终端快速更新光网络单元测距结果的方法及系统
WO2011022883A1 (zh) * 2009-08-26 2011-03-03 华为技术有限公司 光网络倒换保护方法、装置及系统
CN102026048A (zh) * 2009-09-23 2011-04-20 中兴通讯股份有限公司 无源光网络系统调整测距值及恢复的方法、光线路终端
CN102075820B (zh) * 2009-11-23 2015-05-20 中兴通讯股份有限公司 在无源光网络中测距的方法和装置
CN102264010B (zh) * 2010-05-27 2014-05-07 华为技术有限公司 一种pon拉远的方法及设备
CN102377481B (zh) * 2010-08-11 2016-03-30 中兴通讯股份有限公司 一种无源光网络中的测距方法及系统
CN102377556B (zh) * 2010-08-19 2016-04-13 中兴通讯股份有限公司 一种实现主备光线路终端时间戳同步的方法及系统
CN102648590B (zh) * 2011-05-27 2016-05-25 华为技术有限公司 光网络系统的通信方法、系统及装置
CN103139669A (zh) * 2011-11-22 2013-06-05 中兴通讯股份有限公司 数据发送方法及系统
CN104506972B (zh) * 2015-01-07 2018-02-13 烽火通信科技股份有限公司 一种xgpon系统保护倒换的快速测距方法
CN104734772B (zh) * 2015-04-03 2017-08-01 烽火通信科技股份有限公司 无源光网络骨干光链路保护系统及其获取均衡时延的方法
CN108242953B (zh) * 2016-12-26 2022-07-05 中兴通讯股份有限公司 一种onu测距方法、onu内部时延调整参数确定方法及装置
CN107317624B (zh) * 2017-06-05 2021-12-07 深圳市飞鸿光电子有限公司 一种无源光网络测距方法及系统
CN108631861B (zh) * 2018-03-21 2020-07-07 烽火通信科技股份有限公司 实现快速保护倒换的gpon系统及保护倒换方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1479460A (zh) * 2003-05-29 2004-03-03 上海交通大学 无源光网络保护方法
EP1231812B1 (en) * 2001-02-12 2004-04-14 Lucent Technologies Inc. Fast protection switching by snooping on upstream signals in an optical network
CN1866804A (zh) * 2005-10-19 2006-11-22 华为技术有限公司 对无源光网络的主干光纤进行故障保护倒换的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1231812B1 (en) * 2001-02-12 2004-04-14 Lucent Technologies Inc. Fast protection switching by snooping on upstream signals in an optical network
CN1479460A (zh) * 2003-05-29 2004-03-03 上海交通大学 无源光网络保护方法
CN1866804A (zh) * 2005-10-19 2006-11-22 华为技术有限公司 对无源光网络的主干光纤进行故障保护倒换的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498049A (en) * 2011-12-09 2013-07-03 Zte Corp Protection system for a PON in which equalisation delay is adjusted when switching to a backup OLT
GB2498049B (en) * 2011-12-09 2015-03-11 Zte Corp Equalization delay agnostic protection switching in protected passive optical networks
GB2518996A (en) * 2011-12-09 2015-04-08 Zte Corp Equalization delay agnostic protection switching in protected passive optical networks
US9025949B2 (en) 2011-12-09 2015-05-05 Zte Corporation Equalization delay agnostic protection switching in protected passive optical networks
GB2518996B (en) * 2011-12-09 2015-08-12 Zte Corp Equalization delay agnostic protection switching in protected passive optical networks

Also Published As

Publication number Publication date
CN101557539A (zh) 2009-10-14
CN101557539B (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
WO2009124484A1 (zh) 一种光网络发送数据的方法、系统和设备
US10727939B2 (en) Communication method, optical line terminal, and optical network unit in passive optical network system
JP5154686B2 (ja) 受動型光ネットワーク(pon)のための即時保護方式
US9420358B2 (en) Method and arrangements for protection in an optical network
US8917990B2 (en) Fast protection scheme for passive optical network
US20080131124A1 (en) Method and apparatus for partial duplex protection switching by using single splitter in pon
WO2009117969A1 (zh) 降低主备光线路终端切换时延的方法、系统和中继器
WO2010031326A1 (zh) 光网络系统数据链路切换方法、光线路终端及系统
US9167323B2 (en) Method and system for quickly updating ranging results of optical network unit by optical line terminal
CN102075238B (zh) 一种无源光网络及其保护倒换方法
US8229296B2 (en) Method and apparatus for channel protection switching of optical network device
WO2011022883A1 (zh) 光网络倒换保护方法、装置及系统
WO2011038591A1 (zh) 一种无源光网络的主备切换方法、装置和系统
JP4821738B2 (ja) 光伝送システム
US9705625B2 (en) Optical network terminal and a method therein for maintenance of the same
WO2011094990A1 (zh) 通路切换方法、系统及下行数据发送方法
WO2012019458A1 (zh) 一种无源光网络中的测距方法及系统
WO2011144110A2 (zh) 光网络系统的通信方法、系统及装置
WO2013075507A1 (zh) 数据发送方法及系统
WO2019109252A1 (zh) Pon系统中的数据发送和接收方法、网络设备及系统
JP5640877B2 (ja) 通信システム、親局装置および通信回線切替方法
US20240080095A1 (en) Method and apparatus applied to pon system, system, and storage medium
JP2016025575A (ja) 局側装置、宅側装置、ponシステム及び光通信方法
CN113922869A (zh) 一种epon网络保护倒换快速测距的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09730029

Country of ref document: EP

Kind code of ref document: A1