WO2011022883A1 - 光网络倒换保护方法、装置及系统 - Google Patents
光网络倒换保护方法、装置及系统 Download PDFInfo
- Publication number
- WO2011022883A1 WO2011022883A1 PCT/CN2009/073532 CN2009073532W WO2011022883A1 WO 2011022883 A1 WO2011022883 A1 WO 2011022883A1 CN 2009073532 W CN2009073532 W CN 2009073532W WO 2011022883 A1 WO2011022883 A1 WO 2011022883A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- central office
- delay
- equipment
- standby
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0278—WDM optical network architectures
- H04J14/0283—WDM ring architectures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/02—Details
- H04J3/06—Synchronising arrangements
- H04J3/0635—Clock or time synchronisation in a network
- H04J3/0682—Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0852—Delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0067—Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0079—Operation or maintenance aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0079—Operation or maintenance aspects
- H04Q2011/0081—Fault tolerance; Redundancy; Recovery; Reconfigurability
Definitions
- the present invention relates to the field of optical communication technology, and in particular to an optical network switching protection method, device, and system.
- PON Passive Optical Network
- 0LT Optical Line Termination
- ONU Optical Network Unit, optical network unit
- ONT Optical Network Unit Terminal
- optical network terminal As the central office equipment, the 0LT is connected to an optical splitter through a backbone fiber, and the optical splitter is connected to each 0NU through a separate branch fiber.
- the PON network supports the failure protection of the backbone fiber and the 0LT equipment.
- the two 0LT devices (0LT1 and 0LT2) that are backup to each other are connected to the optical splitter through independent backbone fibers.
- the 0LT1 and 0LT2 in the figure can be two independent 0LT devices, or they can backup each other but integrate different boards in the same device.
- EqD Equalization delay, equalization delay
- the inventor found that the current PON failure protection has the following problems:
- the PON network is due to the backbone fiber failure or the main 0LT failure, it needs to switch to the backup 0LT, but due to the main backbone fiber and the backup backbone
- the length of the optical fiber is different, the EqD value of the 0NU will be different after the switch, and the spare 0LT needs to re-range all the 0NUs and set a new EdD. Since 0NU's ranging process is serial, 0LT can start the next 0NU ranging process after finishing the previous 0NU ranging process. After all ONU ranging is completed, the service between 0NU and 0LT can resume transmission.
- the embodiments of the present invention provide an optical network switching protection method, device, and system, which are used to shorten the service interruption time caused by fault protection.
- An optical network switching protection method includes:
- An optical network switching protection system including a primary optical central office equipment, a backup optical central office equipment and at least one optical terminal equipment,
- the standby optical central office equipment is used to switch services from the primary optical central office equipment to the standby optical central office equipment. After the equipment, select one from all optical terminal equipment as the ranging optical terminal equipment; and obtain the delay difference between the ranging optical terminal equipment to the standby optical central office equipment and the ranging optical terminal equipment to the main optical central office equipment
- the optical terminal equipment is used to send data to the standby optical central office equipment after the service is switched from the primary optical central office equipment to the standby optical central office equipment.
- An optical central office equipment including:
- the selection unit is used to select one of all optical terminal equipment as the ranging optical terminal equipment after the service is switched from the main optical central office equipment to the standby optical central office equipment;
- the obtaining unit is used to obtain the delay difference between the ranging optical terminal equipment to the standby optical central office equipment and the ranging optical terminal equipment to the main optical central office equipment; the time of the standby optical central office equipment.
- the embodiments of the present invention In the optical network switching protection method, device and system provided by the embodiments of the present invention, after the backbone fiber fails or the primary optical central office equipment fails to switch to the standby optical central office equipment, first select a ranging optical terminal equipment, and obtain this The selected delay difference between the ranging optical terminal equipment to the backup optical central office equipment and the ranging optical terminal equipment to the main optical central office equipment, and then the data sent by all optical terminal equipment can be synchronized according to this delay difference Time to reach the standby optical central office equipment. Since in the embodiment of the present invention, only the ranging optical terminal device needs to be ranged when obtaining the delay difference value, compared with the solution of re-ranging all optical terminal devices in the prior art, the embodiment of the present invention Can shorten the time used for ranging.
- Figure 1 is a topological schematic diagram of a passive optical network in the prior art
- FIG. 2 is a flowchart of an optical network switching protection method in an embodiment of the present invention
- FIG. 3 is a block diagram of an optical network switching protection system in an embodiment of the present invention.
- FIG. 5 is a flowchart of an optical network switching protection method in Embodiment 2 of the present invention.
- FIG. 6 is a flowchart of the optical network switching protection method in Embodiment 3 of the present invention.
- Fig. 7 is a block diagram of the optical central office equipment in embodiment 4 of the present invention.
- An embodiment of the present invention provides an optical network switching protection method. As shown in FIG. 2, the method includes: switching services to a standby optical central office equipment to continue providing services; this embodiment is switching services to the standby optical central office equipment Then, one of all optical terminal equipment is selected as the ranging optical terminal equipment.
- the selected optical terminal equipment can be any optical terminal equipment under the standby optical central office equipment, or it can be selected according to a predetermined rule.
- the optical terminal equipment is used as the ranging optical terminal equipment.
- the switching described in this embodiment can switch all physical ports of the entire primary optical central office equipment to the backup optical central office equipment; or only switch physical ports that have failed from the primary optical central office equipment to the standby optical office.
- the physical port of the end device, the original physical port without failure remains in the main optical office end device to work normally.
- the above-mentioned delay difference may be an equalization delay difference or a round-trip delay difference.
- the embodiment of the present invention also provides an optical network switching protection system.
- the system includes an active optical central office equipment, a standby optical central office equipment, and at least one optical terminal equipment, wherein the standby optical central office equipment passes through the backbone
- the optical fiber is connected to the optical splitter, and each optical terminal device is connected to the optical splitter through the branch fiber;
- the standby optical central office equipment in this implementation is used after the service is switched from the main optical central office equipment to the standby optical central office equipment , Select one from all optical terminal equipment as the ranging optical terminal equipment; and obtain the delay difference between the ranging optical terminal equipment to the standby optical central office equipment and the ranging optical terminal equipment to the primary optical central office equipment;
- the standby optical central office device adjusts the time for the data sent by all optical terminal equipment to reach the standby optical central office device according to the delay difference value, so that the standby optical central office device is responsible for the service of each optical terminal device. Process synchronization.
- the following embodiments are used in an optical network switching protection system.
- the system includes a primary optical central office equipment, a backup optical central office equipment, and at least one optical terminal equipment.
- the system shortens the primary Service interruption time caused by standby switchover.
- 0LT is used to implement the function of the optical central office device
- ONU is used to implement the function of the optical terminal device.
- the above-mentioned functions may also be implemented by other devices.
- This embodiment provides an optical network switching protection method.
- the standby OLT selects a special ONU (called the ranging ONU) from the ONU, and obtains that the ranging ONU is in the active mode.
- the standby OLT can also calculate the second equalization delay of the ranging ONU under the standby OLT after the second round-trip delay is measured, and finally calculate the equalization delay difference A EdD,
- the A EdD is distributed to all ONUs in a multicast/broadcast manner, so that each ONU can calculate the EqD under the standby 0LT respectively.
- the first balanced round-trip time under the active 0LT is When the delay is equal to the second balanced round-trip delay under the standby 0LT, A Rtd can be directly used to calculate the EqD under the standby 0LT; if the first balanced round-trip delay under the active 0LT is equal to the second balanced round-trip delay under the standby 0LT If the delays are not equal, the first balanced round-trip delay under the active 0LT and the second balanced round-trip delay under the standby 0LT need to be simultaneously delivered to all ONUs in a multicast/broadcast manner.
- the figure shows the main 0LT, the backup 0LT, and two of the multiple ONUs.
- the system can contain more ONUs (others not shown).
- the specific execution process of this method is as follows:
- the main 0LT and each 0NU will detect the L0S or LOF (Loss of Frame) alarm because they cannot receive the signal of the other party.
- the active 0LT detects the L0S/L0F alarm, and learns that the main trunk fiber is faulty, and needs to switch between the active and standby 0LTs: Switch the service of the connected 0NU to the backup 0LT, using the backup backbone fiber and each ONU provided by the backup 0LT. Communication (At this time, the main 0LT is changed to the standby 0LT, and the original standby 0LT is changed to the new main 0LT.
- each 0NU device When each 0NU device detects the L0S alarm, it switches from the normal working state (OPERATION) to the pop-up state (POPUP). At this time, the service transmission of the standby 0LT and each ONU is in an interrupted state.
- OPERATION normal working state
- POPUP pop-up state
- the standby 0LT multicasts a POPUP message to each ONU, so that all ONUs enter the ranging state (Ranging).
- the ONU's Ranging state is mainly used for ranging.
- the standby 0LT multicasts an empty BW Ma message to each ONU to stop all ONUs from sending data to the standby 0LT, so as to avoid interference with the subsequent ONU ranging process.
- the standby OLT selects one ONU from the connected ONUs as the ranging ONU.
- the spare 0LT can arbitrarily select one ONU from all the connected ONUs as the ranging ONU, and can also designate one of the connected ONUs as the ranging ONU according to a preset rule.
- the standby 0LT sends a ranging request message (Range Reques t) to the selected ranging 0NU, and starts a ranging timer to perform ranging on the ranging 0NU.
- a ranging request message (Range Reques t)
- the ranging ONU After receiving the ranging request message (Range Reques t), the ranging ONU returns a ranging response message (Range Response) to the standby 0LT.
- the ranging response message generally passes through the Ser ia l -Number -ONU in the optical network. PL0AM message implementation.
- the standby 0LT receives the ranging response message and stops the ranging timer, and the second round trip delay (second Rtd) of the ranging 0NU under the standby 0LT can be obtained from the ranging timer;
- the standby 0LT obtains the first round-trip delay (first Rtd) of the ranging ONU under the active 0LT from the active 0LT.
- the step of obtaining the first round-trip delay by the standby OLT in this step does not necessarily need to be executed at this time, because the first round-trip delay is pre-stored in the primary OLT, so this step can be performed at any time after step 401, or it can be It is executed at any time before step 401, for example, when the PON system is deployed, the parameters of each ONU to be accessed are configured and pre-stored in the main 0LT and the standby 0LT respectively.
- This embodiment of the present invention does not limit the specific manner and time for the standby OLT to obtain the parameters of the connected ONUs, but it must be ensured that the standby OLT has successfully obtained the ranging ONU parameters before step 409 is executed.
- the standby 0LT calculates a round-trip delay difference ⁇ R t d according to the first round-trip delay and the second round-trip delay of the ranging ONU.
- the standby 0LT delivers A Rtd to all ONUs in a multicast/broadcast/unicast manner, where multicast/broadcast is a better implementation solution, and unicast is a suboptimal solution.
- the standby 0LT obtains the first equalization delay (first EqD) of the ranging 0NU under the active 0LT from the active 0LT.
- the standby 0LT calculates the equalization delay difference AEqD according to the first equalization delay and the second equalization delay of the ranging ONU.
- the standby 0LT delivers AEdD to all 0NUs in a multicast/broadcast/unicast manner, where multicast/broadcast is the better implementation solution, and unicast is the second best solution.
- the final standby 0LT needs to deliver ARtd or AEDD to all ONUs in a multicast/broadcast manner.
- the specific method can be broadcast PLOAM (Physical Layer Operation Administration Maintenance, physical layer operation management maintenance). )
- the message is delivered with ARtd or AEqD; or the ARtd/AEqD can be delivered with a specific Mi! it least GEM Port (Gigabit passive optical network encapsulation multicast port), that is, ARtd/AEqD can be delivered through a specific Multicast GEM Port PL0AM message to ONU.
- PLOAM Physical Layer Operation Administration Maintenance, physical layer operation management maintenance
- the PL0AM message format of ARtd/AEqD delivered by multicast is defined as follows:
- the second balanced round-trip delay and the first balanced round-trip delay may be pre-configured in the standby 0LT, or may be obtained by the standby 0LT from the active 0LT.
- the spare 0LT and the 0NU connected to the spare 0LT can resume service transmission.
- the service interruption time L0S detection time + switching decision execution time + 1 ONU ranging time;
- lx ONU ranging time refers to the standby 0LT direction
- 1 X ONU ranging time also includes the use of multicast/broadcast notification to send ⁇ Rtd to all ONUs Or the time of A EqD, this time is about 0.4ms, so the entire ranging time is about 1ms.
- the L0S detection time is less than lms, and the switching decision execution time can also be completed in lms.
- the time for these two is less than 2ms. It can be seen that the service interruption time in the embodiment of the present invention requires at most 3 ms; it can fully meet the requirement that the service interruption time is less than 50 ms.
- N the number of ONUs connected to a PON OLT.
- the service interruption time formula it can be seen that the time for ONU re-ranging directly restricts the service interruption time. From the above description, it can be known that the ranging time of each ONU is about lms. The more the number of ONUs connected to a PON port, the longer the interruption time of the bearer service after the main/standby 0LT switch occurs. Generally, it is required that the service interruption time caused by the main/standby switch is less than 50ms.
- the service interruption time caused during the protection switching process can be controlled to about 3 ms, which meets the requirement that the service interruption time is less than 50 ms, and can be applied to many services with high service delay requirements.
- This embodiment provides an optical network switching protection method. After the service is switched from the active OLT to the standby OLT, the standby OLT first selects a special ONU (called the ranging ONU) from the ONUs, and obtains that the ranging ONU is in the active area.
- the ranging ONU a special ONU
- the multicast/broadcast/unicast mode instructs all ONUs to keep the original equalization delay unchanged, and the standby 0LT adjusts the start time of each ONU uplink frame header according to ⁇ Rt d.
- the standby OLT can also calculate the second equalization delay of the ranging ONU under the standby OLT after the second round-trip delay is measured, and finally calculate the equalization delay difference ⁇ EqD, It also instructs all ONUs to keep the original equalization delay unchanged in a multicast/broadcast/unicast manner, and the standby 0LT adjusts the start time of each ONU uplink frame header according to ⁇ EqD.
- the figure shows the main 0LT, the backup 0LT, and two of the multiple ONUs.
- the system can contain more ONUs (others are not shown).
- the specific execution process of this method is as follows:
- the main 0LT and each 0NU will detect LOS (Lost Of Signal) or LOF (Lost of Frame) alarms because they cannot receive each other's signal.
- the active 0LT detects the L0S/L0F alarm and learns that the main trunk fiber is faulty, and needs to switch between the active and standby 0LTs: Switch the service of the connected 0NU to the backup 0LT, using the backup backbone fiber and each ONU provided by the backup 0LT. Communication (At this time, the main 0LT is changed to the standby 0LT, and the original standby 0LT is changed to the new main 0LT. The following is for the convenience of description, and the name of each 0LT is not changed).
- each 0NU device detects the L0S alarm, it will change from the normal working state
- the standby 0LT multicasts a POPUP message to each 0NU, so that all the 0NUs enter the ranging state (Ranging).
- the Ranging state of the 0NU is mainly used for ranging.
- the standby 0LT multicasts an empty BW Ma message to each ONU to stop all ONUs from sending data to the standby 0LT, so as to avoid interfering with the subsequent ONU ranging process.
- the standby OLT selects one ONU from each connected ONU as the ranging ONU.
- the spare 0LT can arbitrarily select an ONU from all the connected ONUs as the ranging ONU, or designate one of the connected ONUs as the ranging ONU according to a preset rule.
- the standby 0LT sends a ranging request message (Range Request) to the selected ranging 0NU, and starts a ranging timer to perform ranging on the ranging 0NU.
- Range Request a ranging request message
- the ranging ONU After receiving the ranging request message (Range Request), the ranging ONU returns a ranging response message (Range Response) to the standby 0LT.
- the ranging response message is generally implemented through the Serial-Number-ONU PL0AM message in the optical network. 507.
- the standby OLT receives the ranging response message, stops the ranging timer, and can obtain the second round trip delay (second Rtd) of the ranging ONU under the standby 0LT from the ranging timer;
- the standby 0LT obtains the first round-trip delay (first Rtd) of the ranging ONU under the active 0LT from the active 0LT.
- the step of obtaining the first round-trip delay by the standby OLT does not necessarily need to be performed at this time, because the first round-trip delay is pre-stored in the primary OLT, so this step can be performed at any time after step 501, or it can be It is executed at any time before step 501, for example, when the PON system is deployed, the parameters of each connected ONU are respectively configured and pre-stored in the main 0LT and the standby 0LT.
- This embodiment of the present invention does not limit the specific manner and time for the standby OLT to obtain the parameters of the connected ONUs, but it must be ensured that the standby OLT has successfully obtained the ranging ONU parameters before the execution of step 509.
- the standby 0LT calculates a round-trip delay difference ⁇ R t d according to the first round-trip delay and the second round-trip delay of the ranging ONU.
- the standby OLT instructs all ONUs in the Ranging state to maintain their original EqD values, so that each ONU exits the Ranging state and enters the Opera t ion (working) state, and then executes 511.
- the standby 0LT adjusts the start time of the subsequent uplink frame header of each ONU according to the time represented by A Rtd.
- the specific implementation of 510 in the embodiment of the present invention can be used but is not limited to any of the following methods: First, modify the existing unicast Ranging-Time PL0AM message to a multicast Ranging-Time PL0AM message, and then use the modification The subsequent message informs all ONUs to keep the original EqD value in a multicast manner.
- the modified Rang ing_Time PL0AM message format is defined as follows:
- 00000001 or 00000001 indicates that it carries the EqD value of the backup link
- the standby 0LT needs to obtain the first equalized delay of each ONU under the primary 0LT in advance, so in step 510, the standby 0LT can use a specific Mul t icas t GEM Por t bearer to deliver the unicast to each ONU.
- Ranging-Time PLOAM messages each unicast Ranging-Time PLOAM message carries a corresponding first equalization delay, so as to ensure that all ONUs maintain the first equalization delay.
- the standby OLT obtains the first equalization delay of each ONU under the primary OLT in advance, and in step 510, the standby OLT separately issues the first equalization via the existing unicast Range_Time PLOAM message in a unicast manner. The delay is given to the corresponding ONU to ensure that all ONUs maintain the first balanced delay.
- the first equalization delay that needs to be used in the third and fourth methods mentioned above can actually be calculated as follows: First, the standby 0LT obtains the first round-trip delay of each ONU under the active 0LT in advance, and then uses the first The round-trip delay calculates the first equalized delay of each ONU under the main 0LT, and instructs all ONUs in the Ranging state to maintain the original EqD value according to the third or fourth method.
- Second EdD the second equalization delay corresponding to the ranging ONU under the standby 0LT according to the second Rtd of the ranging ONU.
- the specific calculation is as follows: the second equalized round-trip delay (second Teqd) is subtracted from the second equalized round-trip delay under the standby 0LT to obtain the second equalized delay.
- the standby 0LT obtains the first equalized delay of the ranging 0NU under the active 0LT from the active 0LT (First EqD).
- the standby OLT calculates the equalized delay difference A EqD according to the first equalized delay and the second equalized delay of the ranging ONU.
- the standby 0LT instructs all ONUs in the Ranging state to maintain the original EqD value, so that the ONU exits the Ranging state and enters the Opera t ion (working) state, and then executes 511'.
- the standby 0LT adjusts the start time of the subsequent uplink frame header according to the time represented by A EdD. After all the 0NUs receive the instruction to keep the original EdD unchanged from the backup 0LT, the backup 0LT and the 0NU connected to the backup 0LT can resume service transmission.
- the service interruption time L0S detection time + switching Decision execution time + 1 0NU ranging time + EqD multicast notification time;
- 1 X 0NU ranging time refers to the time taken by the standby 0LT to send a ranging request message to the ranging 0NU to the standby 0LT to calculate the round-trip delay. This time is approximately About 0.6ms; EqD multicast notification time is about 0.4ms, so lx 0NU ranging time + EqD multicast notification time is about 1ms.
- the L0S detection time is less than 1ms, and the switching decision execution time can also be completed within 1ms, and the time for these two is less than 2ms. It can be seen that the service interruption time in the embodiment of the present invention requires at most 3 ms; it can fully meet the requirement that the service interruption time is less than 50 ms.
- service interruption time L0S detection time + switching decision execution time + N ONU ranging time; where N is the number of ONUs connected to a PON 0LT.
- the time for ONU re-ranging directly restricts the service interruption time.
- the ranging time of each ONU is about lms. The more the number of ONUs connected to a PON port, the longer the interruption time of the bearer service after the main/standby 0LT switch occurs. Generally, it is required that the service interruption time caused by the main/standby switch is less than 50ms. If 64 0NUs or more are connected to a PON port, the service interruption time greatly exceeds the 50ms requirement. Moreover, capacity expansion is an inevitable trend in the development of PON networks.
- the service interruption time caused during the protection switching process can be controlled to about 3 ms, which meets the requirement that the service interruption time is less than 50 ms, and can be applied to many services with high service delay requirements.
- the service interruption time L 0 S detection time + switching decision execution time + 1 0NU ranging time + (N_ 1) EqD unicast serial notification Time; where lx ONU ranging time includes the time from when the standby 0LT sends a ranging request message to the ranging ONU until the standby 0LT calculates the round-trip delay, which is about 0.6ms; using unicast to notify one of the ONUs to maintain EqD The time is about 0.4ms, plus the previous 0.6ms for a total of about 1ms.
- a unicast method is used to notify the remaining (N-1) each ONU to maintain the EqD, the time used is about (N-1) 0.4 ms, and the final time is shorter than that in the prior art, which is relatively multicast /Broadcast mode, the business interruption time is longer, it is the second best solution.
- This embodiment provides an optical network switching protection method.
- the standby OLT After the service is switched from the active OLT to the standby OLT, the standby OLT first selects a special ONU (called the ranging ONU) from the ONUs, and obtains that the ranging ONU is in the active area.
- the ranging ONU uses the first round-trip delay under 0LT, and obtain the second round-trip delay of the ranging ONU under the standby 0LT; then, obtain the round-trip delay difference A Rtd according to the first round-trip delay and the second round-trip delay of the ranging ONU, and obtain The first Rtd of each ONU under the active 0LT; then calculate the second equalization delay of each ONU under the standby 0LT according to the first Rtd and A Rtd.
- the ranging ONU a special ONU
- the figure shows the main OLT, the backup OLT, and two of the multiple ONUs.
- the system may include more ONUs (others are not shown). This method has been implemented The process is as follows:
- the main 0LT and each 0NU will detect LOS (Loss of Signal) or LOF (Loss of Frame) because they cannot receive the signal from each other. Frame loss) alarm.
- the active 0LT detects the L0S/L0F alarm and learns that the main trunk fiber is faulty, and needs to switch between the active and standby 0LTs: Switch the service of the connected 0NU to the backup 0LT, using the backup backbone fiber and each ONU provided by the backup 0LT. Communication (at this time, the main 0LT is changed to the standby 0LT, and the original standby 0LT is changed to the new main 0LT.
- each ONU device When each ONU device detects an L0S alarm, it switches from a normal working state (OPERATI ON) to a pop-up state (POPUP). At this time, the service transmission of the standby 0LT and each ONU is in an interrupted state.
- OPERATI ON a normal working state
- POPUP pop-up state
- the standby 0LT multicasts a POPUP message to each ONU, so that all ONUs enter the ranging state (Ranging).
- the ONU's Ranging state is mainly used for ranging.
- the standby 0LT multicasts an empty BW Ma message to each ONU, so as to stop all ONUs from sending data to the standby 0LT, so as to avoid interfering with the subsequent ranging process of the ONU.
- the standby 0LT selects one 0NU from each connected 0NU as the ranging 0NU.
- the spare 0LT can arbitrarily select an ONU from all the connected ONUs as the ranging ONU, or designate one of the connected ONUs as the ranging ONU according to a preset rule.
- the standby 0LT sends a ranging request message (Range Reques t) to the selected ranging 0NU, and starts a ranging timer to perform ranging on the ranging 0NU.
- a ranging request message (Range Reques t)
- the ranging ONU After receiving the ranging request message (Range Reques t), the ranging ONU returns a ranging response message (Range Response) to the standby 0LT.
- the ranging response message generally passes through the Ser ia l -Number -ONU in the optical network. PL0AM message implementation.
- the standby 0LT receives the ranging response message and stops the ranging timer, and the second round-trip delay (second Rtd) of the ranging 0NU under the standby 0LT can be obtained from the ranging timer;
- the standby 0LT obtains the first round-trip delay (first Rtd) of the ranging ONU under the active 0LT from the active 0LT; and obtains the first round-trip delay (first Rtd) of each ONU ONU under the active 0LT. Rtd).
- the step of obtaining the first round-trip delay by the standby OLT in this step does not necessarily need to be executed at this time, because the first round-trip delay is pre-stored in the active OLT, so this step can be executed at any time after step 601, or it can be It is executed at any time before step 601, for example, when the PON system is deployed, the parameters of each connected ONU are respectively configured and pre-stored in the main 0LT and the standby 0LT.
- This embodiment of the present invention does not limit the specific manner and time for the standby OLT to obtain the parameters of the connected ONUs, but it must be ensured that the standby OLT has successfully acquired the ranging ONU parameters before step 609 is executed.
- the standby 0LT calculates a round-trip delay difference ⁇ R t d according to the first round-trip delay and the second round-trip delay of the ranging ONU.
- Tpd to represent the optical fiber propagation delay.
- Tpd branch fiber propagation delay value + backbone fiber propagation delay value; the Tpd from the same 0NU to the main and standby 0LT is the same in the branch fiber section, In the backbone fiber section, the propagation delay of the backbone fiber is different due to the difference in distance; for the nth ONU/ONT, the round-trip delay difference between the active and standby 0LTs is the same ONUn in the main and standby backbone fibers.
- ⁇ Rtd namely
- the standby OLT delivers all ONU correspondences to all ONUs in a multicast/broadcast manner.
- the ONU extracts the corresponding second EdD from the multicast/broadcast message. After all ONUs have obtained EdD under the standby 0LT and completed the setting of EdD, the standby 0LT and the ONU connected to the standby 0LT can resume service transmission.
- the standby 0LT uses a specific Mult ica st GEM Port to bear the unicast Range-Time PLOAM message delivered to each ONU, and each unicast Range-Time PLOAM message carries the second EqD value to the ONU corresponding to the ONU ID. ; ONU can obtain the second EqD value carried in the corresponding Rang i ng -T i me PLOAM message according to the ONU ID in the Rang ing-Time PLOAM message.
- the service interruption time L0S detection time + switching decision execution time + 1 ONU ranging time;
- lx ONU ranging time refers to the standby 0LT direction
- 1 X ONU ranging time also includes the use of multicast/broadcast notification to send the second to all ONUs
- the time of EqD, this time is about 0.4ms, so the entire ranging time is about lms.
- the L0S detection time is less than lms, and the switching decision execution time can also be completed in lms.
- the time for these two is less than 2ms. It can be seen that the service interruption time in the embodiment of the present invention requires at most 3 ms; it can fully meet the requirement that the service interruption time is less than 50 ms.
- service interruption time L0S detection time + switching decision execution time + N ONU ranging time; where N is the number of ONUs connected to a PON 0LT.
- the time for ONU re-ranging directly restricts the service interruption time.
- the ranging time of each ONU is about lms. The more the number of ONUs connected to a PON port, the longer the interruption time of the bearer service after the main/standby 0LT switch occurs. Generally, it is required that the service interruption time caused by the main/standby switch is less than 50ms. If 64 0NUs or more are connected to a PON port, the service interruption time greatly exceeds the 50ms requirement. In addition, capacity expansion is an inevitable trend of the development of PON networks.
- the switching protection method in the prior art is suitable for those services.
- Services with high delay requirements such as TDM (Time Divi s ion) Multiplex, time division multiplexing) voice services, video services, etc.
- the service interruption time caused during the protection switching process can be controlled to about 3 ms, which meets the requirement that the service interruption time is less than 50 ms, and can be used in many services with high service delay requirements.
- the multicast/broadcast mode used in the embodiments of the present invention has the following advantages: 1.
- the service interruption time is constant and does not change with the change of the number of optical terminal devices, and the service interruption time is only about 3 ms. , Far less than 50ms, and can be applied to many services that require high service delay; 2.
- the standby optical central office equipment proposed in the present invention it only needs to obtain the first distance measuring optical terminal equipment in a multicast/broadcast manner.
- One EqD/Rtd value is sufficient, and there is no need to obtain the first EqD/Rtd value of the non-ranging optical terminal equipment, and the amount of synchronization information data between the primary and backup optical central office equipment is the least.
- the embodiment of the present invention also provides an optical central office equipment, which is used to implement the method in the foregoing embodiment of the present invention.
- the optical central office equipment includes: a selection unit 71, an acquisition unit 72, and a synchronization unit 73.
- the selecting unit 71 is used for selecting one of all optical terminal equipment as the ranging optical terminal equipment after the service is switched from the primary optical central office equipment to the standby optical central office equipment; the acquiring unit 72 is used for Obtain the time when the data from the ranging optical terminal equipment to the standby optical central office equipment and the ranging optical terminal equipment to the primary optical central office equipment reach the standby optical central office equipment.
- the synchronization unit 73 includes but is not limited to the following three implementation manners:
- the synchronization unit 73 includes a first sending module 731, and the first sending module 731 is configured to deliver the delay difference value to all optical terminal devices; and instruct each optical terminal
- the equipment respectively calculates the equalization time delay between each and the standby optical central office equipment according to the time delay difference value, and sets the calculated equalization time delay.
- the way the optical terminal equipment calculates the equalization delay can be different depending on the type of the delay difference, for example:
- the optical terminal equipment adds the equalized delay between the optical terminal equipment and the main optical central office equipment to the equalized delay difference as the optical terminal equipment and the standby optical Balanced delay between central office equipment;
- each optical terminal equipment The equalized delay between the terminal equipment and the primary optical central office equipment plus the round-trip delay difference value is used as if the delay difference is the round-trip delay difference value, and the first equalized round-trip delay under the primary optical central office equipment sums If the second balanced round-trip delay under the backup optical central office equipment is not equal, the first sending module 731 is also used to combine the first balanced round-trip delay under the primary optical central office equipment with the second balanced round-trip delay under the standby optical central office equipment.
- the balanced round-trip delay is distributed to all optical terminal equipment in the manner of multicast/broadcast; and each optical terminal equipment adds the balanced delay between the optical terminal equipment and the main optical central office equipment to the round-trip delay difference and adds The difference between the first balanced round-trip delay and the second balanced round-trip delay is used as the balanced delay between the optical terminal equipment and the standby optical central office equipment.
- the synchronization unit 73 includes: a second sending module 732 And adjustment module 733.
- the second sending module 732 is configured to send a message in a multicast/broadcast/unicast manner to instruct all optical terminal devices to keep the original equalization delay unchanged; the adjustment module 733 adjusts according to the time represented by the delay difference The start time of the upstream frame header of each optical terminal equipment.
- the second sending module 732 may carry the unicast instruction message to the multicast/broadcast channel and deliver it to all optical terminal devices, so as to instruct all optical terminal devices to keep the original equalized delay unchanged; or The second sending module 732 modifies the instruction message in the unicast mode to a multicast/broadcast message and delivers it to all optical terminal devices, so as to instruct all optical terminal devices to keep the original equalized delay unchanged.
- the second sending module 732 can also send a message to the multicast/broadcast/unicast In this way, each optical terminal device respectively issues the corresponding first equalization delay to instruct the optical terminal device to keep the original equalization delay unchanged.
- the second sending module 732 may also separately deliver the corresponding first equalization delay to each optical terminal device in a multicast/broadcast/unicast manner to instruct the optical terminal device to keep the original equalization delay unchanged.
- the synchronization unit 73 includes: a first acquisition module 734, a first calculation module 735, and a third sending module 736.
- the third sending module 736 is configured to send the calculated second equalization delay to the corresponding optical terminal equipment in a multicast/broadcast manner, and Instruct each optical terminal device to set the calculated equalization delay separately.
- the foregoing acquiring unit 72 can be used but not limited to the following two implementation manners: First, the acquiring unit 72 acquires the first round-trip delay between the ranging optical terminal equipment and the primary optical central office equipment from the primary optical central office equipment; and performs ranging on the ranging optical terminal equipment to obtain the ranging The second round-trip delay between the optical terminal equipment and the standby optical central office equipment; and then the round-trip delay difference is calculated according to the first round-trip delay and the second round-trip delay.
- the acquiring unit 72 acquires the first equalized delay between the ranging optical terminal equipment and the primary optical central office equipment from the primary optical central office equipment, or reads the first balanced delay from the primary optical central office equipment in advance Obtain the first equalized delay between the ranging optical terminal equipment and the primary optical central office equipment; and perform ranging on the ranging optical terminal equipment to obtain the second round trip between the ranging optical terminal equipment and the standby optical central office equipment Calculate the second equalization delay between the ranging optical terminal equipment and the standby optical central office equipment according to the second round-trip delay; calculate the equalization delay according to the first equalization delay and the second equalization delay Difference.
- the embodiment of the present invention can shorten the distance measurement. time.
- This enables all optical terminal equipment to be synchronized quickly under the standby optical central office equipment, that is: to achieve the same time for all optical terminal equipment to send data to the standby optical central office equipment; to facilitate the communication between the optical terminal equipment and the optical central office equipment
- the service resumes transmission, shortening the service interruption time caused by fault protection.
- the continuity of services is ensured, which brings a better experience to users, and improves users' satisfaction with the services provided by operators.
- the optical terminal equipment in the above embodiments may be ONT or ONU, and the optical central office equipment may be OLT or other optical central office equipment.
- the embodiments of the present invention are mainly used in optical communication systems, especially in optical communication systems that require OLT to perform signal synchronization processing.
- the present invention can be implemented by means of software plus necessary general-purpose hardware, of course, it can also be implemented by hardware, but in many cases the former is a better implementation. .
- the technical solution of the present invention essentially or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, such as a computer floppy disk. , Hard disk or CD Etc., including several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to execute the method described in each embodiment of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Environmental & Geological Engineering (AREA)
- Small-Scale Networks (AREA)
Description
光网络倒换保护方法、 装置及系统 技术领域
本发明涉及光通信技术领域, 特别涉及光网络倒换保护方法、 装置及系 统。
背景技术
如图 1所示, PON (Passive Optical Network, 无源光网络)主要由 0LT ( Optical Line Termination,光路终结点)、光分路器、 0NU( Optical Network Unit, 光网络单元) /ONT ( Optical Network Terminal, 光网络终端) 以及 连接这些设备的光纤组成。 0LT作为局端设备, 通过一根主干光纤与光分路器 (Optical splitter)连接,光分路器通过单独的分支光纤连接每一个 0NU。 PON 网络支持主干光纤和 0LT设备的故障保护, 如图 1所示, 互为备份的两个 0LT 设备(0LT1和 0LT2)各自通过独立的主干光纤与光分路器连接。正常情况下, 只有主用 OLT (0LT1 )通过主用主干光纤与 0NU通信。 在系统检测到主用 0LT 端口故障或者主用主干光纤故障时, 将业务切换到备用 0LT (0LT2)继续为 0NU提供服务。 图中的 0LT1和 0LT2可以是两台独立的 0LT设备, 也可是互为 备份但集成在同一个设备中的不同板卡。
为了保证 0LT对各 0NU的业务处理同步, 需要所有的 0NU发送的光信号 到达 0LT的时间相同。 但由于每个 0NU到 0LT的光纤距离不同, 所以, 需要 根据 0NU与 0LT距离的不同, 在 0NU向 0LT发送上行数据时延迟相应的时间, 所延迟的时间称为 EqD (Equalization delay, 均衡时延)。 ONU可以通过以 下方式获取 EqD: 首先, 0LT分别对每个 0NU执行测距处理, 获得 0LT到每个 0NU 的 Rtd ( Round trip delay, 往返程时延), 并参考如下公式分别计算每 个 0NU的 EqD: EqD = Teqd - Rtd, 其中, Teqd是一个常数, 表示均衡往返 程时延(Equalized round trip delay) , 是指该 OLT下最远的 ONU的 Rtd值; 然后, 将上述计算出的 EqD发送到对应的 0NU中; 0NU接收到 EqD后对自身的
均衡时延进行设置。
在 P0N网络的故障保护过程中, 发明人发现目前的 P0N故障保护存在如 下问题: 当 P0N网络出现由于主干光纤故障或主 0LT故障时, 需要切换到备 用 0LT, 但由于主用主干光纤和备用主干光纤的长度不同, 切换后 0NU的 EqD 值也会不同,备用 0LT需要对所有 0NU重新测距并设置新的 EdD。 由于 0NU的 测距处理是串行的, 0LT完成前一个 0NU的测距处理后, 才能开始下一个 0NU 的测距处理。 所有 0NU的测距完成后, 0NU与 0LT之间的业务才能恢复传输。 因此, 故障保护造成的中断时间为: 业务中断时间 = L0S ( Los t Of S i gna l , 信号丟失)检测时间 +倒换决策执行时间 + N X每个 0NU测距时间; 其中, N 为一个 P0N网络中 0LT下接入的 0NU的个数。 如果一个 P0N网络中 0LT下接 入较多的 0NU , 故障保护造成的业务中断时间将会较长, 无法保证业务的连续 性, 给用户带来较差的体验, 降低用户对运营商提供服务的满意度。
发明内容
本发明的实施例提供一种光网络倒换保护方法、 装置及系统, 用于缩短 故障保护造成的业务中断时间。
为了达到上述目的, 本发明的实施例釆用如下技术方案:
一种光网络倒换保护方法, 包括:
在将业务从主用光局端设备倒换到备用光局端设备后, 从所有光终端设 备中选择一个作为测距光终端设备;
获取测距光终端设备到备用光局端设备和测距光终端设备到主用光局端 设备的时延差值; 的时间。
一种光网络倒换保护系统, 包括主用光局端设备、 备用光局端设备和至 少一个光终端设备,
所述备用光局端设备用于在将业务从主用光局端设备倒换到备用光局端
设备后, 从所有光终端设备中选择一个作为测距光终端设备; 并获取测距光 终端设备到备用光局端设备和测距光终端设备到主用光局端设备的时延差
到达备用光局端设备的时间;
所述光终端设备, 用于在业务从主用光局端设备倒换到备用光局端设备 后向所述备用光局端设备发送数据。
一种光局端设备, 包括:
选择单元, 用于在将业务从主用光局端设备倒换到备用光局端设备后, 从所有光终端设备中选择一个作为测距光终端设备;
获取单元, 用于获取测距光终端设备到备用光局端设备和测距光终端设 备到主用光局端设备的时延差值; 备用光局端设备的时间。
本发明实施例提供的光网络倒换保护方法、 装置及系统, 在主干光纤故 障或主用光局端设备故障切换到备用光局端设备后, 先选出一个测距光终端 设备, 并获取这个选出的测距光终端设备到备用光局端设备和测距光终端设 备到主用光局端设备的时延差值, 然后可以根据这个时延差值去同步所有光 终端设备发送的数据到达备用光局端设备的时间。 由于本发明实施例中在获 取时延差值的时候只需要对测距光终端设备进行测距, 相对于现有技术中对 所有光终端设备进行重新测距的方案而言, 本发明实施例能够缩短测距所用 的时间。 使得所有光终端设备能够很快在备用光局端设备下实现同步, 以便 于光终端设备与光局端设备之间的业务恢复传输, 缩短了故障保护造成的业 务中断时间。 进而保证业务的连续性, 给用户带来较好的体验, 提高了用户 对运营商提供服务的满意度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中无源光网络的拓朴原理图;
图 2为本发明实施例中光网络倒换保护方法流程图;
图 3为本发明实施例中光网络倒换保护系统框图;
图 4为本发明实施例 1中光网络倒换保护方法流程图;
图 5为本发明实施例 2中光网络倒换保护方法流程图;
图 6为本发明实施例 3中光网络倒换保护方法流程图;
图 7为本发明实施例 4中光局端设备的框图。
具体实施方式
本发明实施例提供一种光网络倒换保护方法, 如图 2所示, 该方法包括: 业务倒换到备用光局端设备, 以便继续提供服务; 本实施例在将业务倒换到 备用光局端设备后, 从所有光终端设备中选择一个作为测距光终端设备, 选 出的光终端设备可以是该备用光局端设备下的任意一个光终端设备, 也可以 是根据预定的规则选取某一指定的光终端设备作为测距光终端设备。
本实施例所述的倒换可以将整个主用光局端设备的所有物理端口倒换到 备用光局端设备; 也可以是仅将出现故障的物理端口由主用光局端设备倒换 到备用光局端设备的物理端口, 原来没有故障的物理端口仍保留在主用光局 端设备正常工作。
202、 获取测距光终端设备到备用光局端设备和测距光终端设备到主用光 局端设备的时延差值;
上述时延差值可以为均衡时延差值或往返程时延差值。
203、 为了保证在使用备用光局端设备的情况下备用光局端设备对各光终
送的数据到达备用光局端设备的时间。
本发明实施例还提供一种光网络倒换保护系统, 如图 3 所示, 该系统包 括主用光局端设备、 备用光局端设备和至少一个光终端设备, 其中备用光局 端设备通过主干光纤连接到光分路器, 各光终端设备通过分支光纤连接到光 分路器; 本实施中的备用光局端设备用于在业务从主用光局端设备倒换到备 用光局端设备后, 从所有光终端设备中选择一个作为测距光终端设备; 并获 取测距光终端设备到备用光局端设备和测距光终端设备到主用光局端设备的 时延差值; 在得到上述时延差值后, 该备用光局端设备根据所述时延差值调 整所有光终端设备发送的数据到达备用光局端设备的时间, 使得备用光局端 设备对各光终端设备的业务处理同步。
为了能更清楚了解本发明实施例的实现方式, 下面将结合本发明实施例 中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所 描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发 明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获得的 所有其他实施例, 都属于本发明保护的范围。
以下的实施例中运用在一种光网络倒换保护系统中, 该系统包括主用光 局端设备、 备用光局端设备和至少一个光终端设备, 该系统通过执行如下实 施例中的方法缩短主备倒换导致的业务中断时间。 为了便于描述, 以下的实 施例中均釆用 0LT实现光局端设备的功能, 釆用 0NU实现光终端设备的功能, 实际使用中上述功能也可以由其他设备实现。
实施例 1:
本实施例提供一种光网络倒换保护方法, 当业务从主用 0LT切换到备用 0LT后, 备用 0LT从 0NU中选择出一个特殊的 0NU (称为测距 0NU ) , 获取测距 0NU在主用 0LT下的第一往返程时延以及测距 0NU在备用 0LT下的第二往返程 时延; 然后, 根据测距 0NU 的第一往返程时延和第二往返程时延获取往返程
时延差值 A Rtd , 并以组播 /广播方式向所有 ONU下发 A Rtd , 以便各个 ONU分 别计算出在备用 0LT下的 EdD。 当然, 本实施例中的保护方法中, 备用 0LT还 可以在测出第二往返程时延后计算测距 0NU在备用 0LT下的第二均衡时延, 并最终计算出均衡时延差值 A EdD , 将 A EdD 以组播 /广播的方式下发给所有 0NU, 以便各个 0NU分别计算出在备用 0LT下的 EqD。
在为了使得各 ONU利用 A Rtd能够计算出在备用 0LT下的 EdD, 本实施例 中在以组播 /广播的方式向所有 0NU下发 A Rtd时, 在主用 0LT下的第一均衡 往返时延与备用 0LT下的第二均衡往返时延相等时,可直接利用 A Rtd计算出 在备用 0LT下的 EqD;如果主用 0LT下的第一均衡往返时延与备用 0LT下的第 二均衡往返时延不相等, 则需要同时以组播 /广播的方式向所有 0NU下发主用 0LT下的第一均衡往返时延、 以及备用 0LT下的第二均衡往返时延。
具体如图 4所示, 图中表示出了主用 0LT、备用 0LT以及多个 0NU中的两 个, 实际上该系统中可以包含更多的 0NU (其它未示出)。 该方法具体执行过 程如下:
401、 当主用 0LT的主干光纤出现故障后, 主用 0LT和各 0NU由于接收不 到对方的信号, 都会检测到 L0S或 LOF ( Los t of Frame , 帧丟失)告警。 主 用 0LT检测到 L0S/L0F告警, 获知出现主用主干光纤故障, 需要进行主备 0LT 切换: 将接入的 0NU的业务切换到备用 0LT上, 利用备用 0LT提供的备用主 干光纤和各 0NU进行通信(此时, 主用 0LT转变为备用 0LT, 原备用 0LT转变 为新主用 0LT , 本文为描述方便, 不对各 0LT的名称进行变更)。 当各 0NU设 备检测到 L0S告警后,由正常工作状态( OPERATION )切换到弹出状态( POPUP )。 此时, 备用 0LT和各 0NU的业务传输处于中断状态。
402、 备用 0LT 向各 0NU组播 POPUP 消息, 使所有 0NU 进入测距状态 ( Rang ing ), 在光网络中 0NU的 Rang ing状态主要用于测距。
403、 备用 0LT向各个 0NU组播空的 BW Ma 消息, 以停止所有 0NU向备 用 0LT发送数据, 避免干扰后续的对 0NU的测距过程。
404、 备用 OLT从接入的各个 0NU中选择一个 0NU作为测距 0NU。 在实际 运用时,备用 0LT可以从所有接入的 0NU中任意选择出一个 0NU作为测距 0NU, 也可以根据预设的规则指定接入的各 0NU中某一 0NU作为测距 0NU。
405、 备用 0LT向选出的测距 0NU发送测距请求消息 ( Range Reques t ), 并启动测距计时器以便对该测距 0NU执行测距。
406、 测距 0NU接收到测距请求消息 ( Range Reques t )后, 向备用 0LT 返回测距响应消息 (Range Res ponse ), 该测距响应消息在光网络中一般通过 Ser ia l -Number -ONU PL0AM消息实现。
407、 备用 0LT收到测距响应消息, 停止测距计时器, 从测距计时器中可 以得到备用 0LT下的测距 0NU的第二往返程时延(第二 Rtd );
408、 备用 0LT从主用 0LT获取测距 0NU在主用 0LT下的第一往返程时延 (第一 Rtd )。
其中, 该步骤备用 0LT获取第一往返程时延并不一定要在该时间执行, 因为第一往返程时延是主用 0LT预先存有的, 故而该步骤可以在步骤 401之 后的任意时刻执行, 也可以是在步骤 401之前的任意时刻执行, 例如进行 P0N 系统部署的时候, 将接入的各 0NU的参数分别在主用 0LT、备用 0LT中进行配 置预存。 该发明实施例不限制备用 0LT获取到接入的各 0NU的参数的具体的 方式和时间, 但要保证在步骤 409执行之前, 备用 0LT 已经成功获取到测距 0NU参数。
409、 备用 0LT根据测距 0NU的第一往返程时延和第二往返程时延, 计算 往返程时延差值 Δ R t d。
410、 备用 0LT以组播 /广播 /单播的方式向所有 0NU下发 A Rtd , 其中组 播 /广播是较优的实现方案, 而单播是次优方案。
在实际运用时, 可以将步骤 407至 410替换为如下步骤:
407' 、 根据测距 0NU的第二 Rtd计算测距 0NU在备用 0LT下对应的第二 均衡时延(第二 EdD )。 具体计算为: 将备用 0LT下的第二均衡往返程时延(第
二 Teqd)减去所述第二往返程时延即为第二均衡时延。
408' 、 备用 0LT从主用 0LT获取测距 0NU在主用 0LT下的第一均衡时延 (第一 EqD)。
409' 、 备用 0LT根据测距 0NU的第一均衡时延和第二均衡时延, 计算均 衡时延差值 AEqD。
410' 、 备用 0LT以组播 /广播 /单播的方式向所有 0NU下发 AEdD, 其中 组播 /广播是较优的实现方案, 而单播是次优方案。
从上面实施例的描述可以看出, 最终备用 0LT需要以组播 /广播的方式向 所有 0NU下发 ARtd或者 AEdD, 具体的方式可以釆用广播 PLOAM (Physical Layer Operation Administration Maintenance, 物理层运行管理维护) 消 息下发 ARtd或 AEqD; 或者釆用特定 Mi! it least GEM Port (吉比特无源光网 絡封装方式组播端口)下发 ARtd/AEqD,即可以通过特定 Multicast GEM Port 下发带 ARtd/AEqD的 PL0AM消息给 0NU。
其中, 组播下发 ARtd/ AEqD的 PL0AM消息格式定义如下:
在执行完上述流程后, 本实施例中的方法还需要执行如下过程:
411、 通过上述的流程之后, 各个 0NU接收到了△ Rtd或△ EqD。 如果 0NU 接收到的是 Δ EqD , 0NU根据 Δ EqD和 0NU的第一 EqD值(即主用 0LT下的 EqD ), 计算 0NU在备用 0LT下的第二 EqD, 其中计算公式为: 第二 EdD=第一 EqD值 +
△ EqD。
如果 ONU接收到的是 Δ Rtd ,每个 ONU根据各自的第一 EqD值(即主用 0LT 下的 EqD )和往返程时延差值△ Rtd , 获取 0NU在备用 0LT下的第二 EqD, 其 中计算公式为: 第二 EdD =第一 EdD值 + (第二均衡往返时延- 第一均衡往返 时延 + A Rtd )。 所以, 在第二均衡往返时延与第一均衡往返时延不相等时, 需要备用 0LT向每个 0NU以广播 /组播的方式下发第二均衡往返时延和第一均 衡往返时延, 一般来讲, 第二均衡往返时延与第一均衡往返时延可以预先配 置在备用 0LT中, 也可以是备用 0LT从主用 0LT获取的。
上述的第一均衡往返时延是一个常数值, 是主用 0LT下 EdD = 0时的 Rtd 数值, 也就是主用 0LT下最远 0NU的 Rtd值; 上述的第二均衡往返时延也是 一个常数值,是备用 0LT下 EdD = G时的 Rtd数值,也就是备用 0LT下最远 0NU 的 Rtd值。 如果第二均衡往返时延与第一均衡往返时延相等, 则第二 8(^值= 第一 EdD值 + A Rtd , 此时就不需要下发第二均衡往返时延和第一均衡往返时 延。
在所有 0NU都得到备用 0LT下的 EqD并完成 EqD的设置后, 备用 0LT和 接入备用 0LT的 0NU可以恢复业务传输。
釆用本发明实施例后, 在进行主用 0LT和备用 0LT倒换的时候, 业务中 断时间 = L0S检测时间 +倒换决策执行时间 + 1 0NU测距时间; 其中, l x 0NU测距时间指备用 0LT向测距 0NU发送测距请求消息到备用 0LT计算出往返 程时延的时间, 这个时间大概在 0. 6ms左右; 1 X 0NU测距时间还包括釆用多 播 /广播方式通知向所有 0NU 下发 Δ Rtd 或 A EqD 的时间, 这个时间大概在 0. 4ms左右, 所以, 整个测距时间在 1ms左右。
L0S检测时间小于 lms , 倒换决策执行时间也可以在 lms 内完成, 这两个 的时间小于 2ms。 由此可见, 本发明实施例中的业务中断时间最多需要 3ms; 完全可以满足业务中断小于 50ms时间的要求。
而现有技术中的业务中断时间为:业务中断时间 = L0S检测时间 +倒换决
策执行时间 + Ν ONU测距时间; 其中, N为一个 PON 0LT下接入的 ONU数目。 根据上述业务中断时间的公式可以看出, 其中, 0NU重新测距的时间直接 制约着业务中断时间。 由上述描述可知每个 0NU的测距时间在 lms左右。 一 个 P0N端口下接入的 0NU的个数的越多, 发生主备 0LT倒换后承载业务的中 断时间就会越长。 通常要求主备倒换造成业务的中断时间为小于 50ms , 如果 一个 P0N端口下接入 64个 0NU或者更多, 业务的中断时间大大超过 50ms的 要求。 并且扩容是 P0N网络的发展的必然趋势, 随着接入 P0N的 0NU的个数 的大量增加, 当在业务运行的过程需要进行重新测距时, 现有技术中的倒换 保护方法对于那些对业务时延要求较高的业务, 如 TDM (T ime D i v i s i on Mu l t i p l ex , 时分复用)话音业务, 视频业务等等, 将无法满足其时延要求。
但是釆用本发明实施例之后, 能够将倒换保护过程中造成的业务中断时 间控制在 3ms左右, 满足业务中断小于 50ms时间的要求, 能够应用于很多对 业务时延要求较高的业务。
实施例 2:
本实施例提供一种光网络倒换保护方法, 当业务从主用 0LT切换到备用 0LT后, 备用 0LT先从 0NU中选择出一个特殊的 0NU (称为测距 0NU ), 获取测 距 0NU在主用 0LT下的第一往返程时延, 并获取测距 0NU在备用 0LT下的第 二往返程时延; 然后, 根据测距 0NU 的第一往返程时延和第二往返程时延获 取往返程时延差值 A Rtd , 并以组播 /广播 /单播的方式指示所有 0NU保持原有 的均衡时延不变,而由备用 0LT根据 Δ Rt d调整各个 0NU上行帧头的起始时间。 当然, 本实施例中的保护方法中, 备用 0LT还可以在测出第二往返程时延后 计算测距 0NU在备用 0LT下的第二均衡时延, 并最终计算出均衡时延差值 Δ EqD , 并以组播 /广播 /单播的方式指示所有 0NU保持原有的均衡时延不变, 而 由备用 0LT根据 Δ EqD调整各个 0NU上行帧头的起始时间。
在指示所有 0NU保持原有的均衡时延不变时, 可能需要向所有 0NU组播 / 广播 /单播下发其在主用 0LT下的第一均衡时延。 所以需要另外获取各个 0NU
在主用 OLT下的第一均衡时延; 或者另外获取各个 0NU在在主用 0LT下的第 一往返程时延, 然后利用该第一往返程时延计算出对应的第一均衡时延。
具体如图 5所示, 图中表示出了主用 0LT、备用 0LT以及多个 0NU中的两 个, 实际上该系统中可以包含更多的 0NU (其它未示出)。 该方法具体执行过 程如下:
501、 当主用 0LT的主干光纤出现故障后, 主用 0LT和各 0NU由于接收不 到对方的信号, 都会检测到 LOS (Lost Of Signal, 信号丟失)或 LOF (Lost of Frame, 帧丟失)告警。 主用 0LT检测到 L0S/L0F告警, 获知出现主用主 干光纤故障, 需要进行主备 0LT切换: 将接入的 0NU的业务切换到备用 0LT 上, 利用备用 0LT提供的备用主干光纤和各 0NU进行通信(此时, 主用 0LT 转变为备用 0LT,原备用 0LT转变为新主用 0LT,下文为描述方便,不对各 0LT 的名称进行变更)。 当各 0NU 设备检测到 L0S 告警后, 由正常工作状态
(OPERATION)切换到弹出状态( POPUP )。 此时, 备用 0LT和各 0NU的业务传 输处于中断状态。
502、 备用 0LT 向各 0NU组播 POPUP 消息, 使所有 0NU 进入测距状态 ( Ranging ), 在光网络中 0NU的 Ranging状态主要用于测距。
503、 备用 0LT向各个 0NU组播空的 BW Ma 消息, 以停止所有 0NU向备 用 0LT发送数据, 避免干扰后续的对 0NU的测距过程。
504、 备用 0LT从接入的各个 0NU中选择一个 0NU作为测距 0NU。 在实际 运用时 ,备用 0LT可以从所有接入的 0NU中任意选择出一个 0NU作为测距 0NU , 也可以根据预设的规则指定接入的各 0NU中某一 0NU作为测距 0NU。
505、 备用 0LT向选出的测距 0NU发送测距请求消息 (Range Request ), 并启动测距计时器以便对该测距 0NU执行测距。
506、 测距 0NU接收到测距请求消息 (Range Request )后, 向备用 0LT 返回测距响应消息 (Range Response ), 该测距响应消息在光网络中一般通过 Serial-Number-ONU PL0AM消息实现。
507、 备用 OLT收到测距响应消息, 停止测距计时器, 从测距计时器中可 以得到备用 0LT下的测距 0NU的第二往返程时延(第二 Rtd );
508、 备用 0LT从主用 0LT获取测距 0NU在主用 0LT下的第一往返程时延 (第一 Rtd )。
其中, 该步骤备用 0LT获取第一往返程时延并不一定要在该时间执行, 因为第一往返程时延是主用 0LT预先存有的, 故而该步骤可以在步骤 501之 后的任意时刻执行, 也可以是在步骤 501之前的任意时刻执行, 例如进行 P0N 系统部署的时候, 将接入的各 0NU的参数分别在主用 0LT、备用 0LT中进行配 置预存。 该发明实施例不限制备用 0LT获取到接入的各 0NU的参数的具体的 方式和时间, 但要保证在步骤 509执行之前, 备用 0LT 已经成功获取到测距 0NU参数。
509、 备用 0LT根据测距 0NU的第一往返程时延和第二往返程时延, 计算 往返程时延差值 Δ R t d。
510、 备用 OLT指示所有处于 Rang ing状态的 0NU保持原来的 EqD值, 以 使各 0NU退出 Rang ing状态, 进入 Opera t ion (工作)状态, 然后执行 511。
511、 备用 0LT按照 A Rtd所代表的时间调整各 0NU后续上行帧头的起始 时间。
本发明实施例中 510的具体实现可以釆用但不限于如下方式的任意一种: 第一、 将现有单播 Rang ing—Time PL0AM 消息修改为组播 Rang ing—Time PL0AM消息, 然后利用修改后的消息以组播方式通知所有 0NU保持原来的 EqD 值。 爹改后的 Rang ing_Time PL0AM消息格式定义如下:
3 00000000或 00000000表明携带主用链路 EdD值
00000001或 00000001表明携带备用链路 EqD值
00000011 00000011表明保持现有的 EqD值
4 - 7 XXXXXXXX EqD值
8 - 12 未规定 预留
第二、 将现有单播 Rang ing—Time PLOAM 消息修改为组播 Rang ing—Time PLOAM消息, 釆用特定 Mul t ica s t GEM Por t下发修改后的组播 Rang ing—Time PLOAM消息。
第三、 备用 0LT预先要获取了各个 0NU在主用 0LT下的第一均衡时延, 则在 510步骤中备用 0LT可以釆用特定 Mul t icas t GEM Por t承载下发给各个 0NU的单播 Rang ing—Time PLOAM消息, 每个单播 Rang ing—Time PLOAM消息携 带对应的第一均衡时延, 以保证所有 0NU保持第一均衡时延。
第四、 备用 0LT预先获取了各个 0NU在主用 0LT下的第一均衡时延, 则 在 510步骤中备用 0LT以单播的方式分别通过现有的单播 Rang ing_Time PLOAM 消息下发第一均衡时延给对应的 0NU, 以保证所有 0NU保持第一均衡时延。
上述第三和第四种方法中需要用到的第一均衡时延实际上可以釆用如下 方式计算出来: 首先备用 0LT预先获取各个 0NU在主用 0LT下的第一往返程 时延, 然后利用第一往返程时延计算出各个 0NU在主用 0LT下的第一均衡时 延, 并分别按照第三或第四种方法指示所有处于 Ranging状态的 0NU保持原 来的 EqD值。
在实际运用时, 可以将步骤 507至 511替换为如下步骤:
507' 、 根据测距 0NU的第二 Rtd计算测距 0NU在备用 0LT下对应的第二 均衡时延(第二 EdD )。 具体计算为: 将备用 0LT下的第二均衡往返程时延(第 二 Teqd)减去所述第二往返程时延即为第二均衡时延。
508' 、 备用 0LT从主用 0LT获取测距 0NU在主用 0LT下的第一均衡时延
(第一 EqD )。
509' 、 备用 OLT根据测距 ONU的第一均衡时延和第二均衡时延, 计算均 衡时延差值 A EqD。
510' 、 备用 0LT指示所有处于 Rang ing状态的 0NU保持原来的 EqD值, 以使 0NU退出 Rang ing状态, 进入 Opera t ion (工作)状态, 然后执行 511 ' 。
511 ' 、备用 0LT按照 A EdD所代表的时间调整后续上行帧头的起始时间。 在所有 0NU都收到备用 0LT下发的保持原有 EdD不变的指示后,备用 0LT 和接入备用 0LT的 0NU可以恢复业务传输。
釆用本发明实施例后, 在进行主用 0LT和备用 0LT倒换的时候, 如果备 用 0LT釆用组播 /广播方式指示所有 0NU保持均衡时延不变, 则业务中断时间 = L0S检测时间 +倒换决策执行时间 + 1 0NU测距时间 +EqD组播通知时间; 其中, 1 X 0NU测距时间指备用 0LT向测距 0NU发送测距请求消息到备用 0LT 计算出往返程时延的时间, 这个时间大概在 0. 6ms左右; EqD组播通知时间大 概在 0. 4ms左右, 所以, l x 0NU测距时间 +EqD组播通知时间在 1ms左右。 L0S 检测时间小于 1ms ,倒换决策执行时间也可以在 1ms 内完成, 这两个的时间小 于 2ms。 由此可见, 本发明实施例中的业务中断时间最多需要 3ms ; 完全可以 满足业务中断小于 50ms时间的要求。
而现有技术中的业务中断时间为:业务中断时间 = L0S检测时间 +倒换决 策执行时间 + N 0NU测距时间; 其中, N为一个 PON 0LT下接入的 0NU数目。
根据上述业务中断时间的公式可以看出, 其中, 0NU重新测距的时间直接 制约着业务中断时间。 由上述描述可知每个 0NU的测距时间在 lms左右。 一 个 P0N端口下接入的 0NU的个数的越多, 发生主备 0LT倒换后承载业务的中 断时间就会越长。 通常要求主备倒换造成业务的中断时间为小于 50ms , 如果 一个 P0N端口下接入 64个 0NU或者更多, 业务的中断时间大大超过 50ms的 要求。 并且扩容是 P0N网络的发展的必然趋势, 随着接入 P0N的 0NU的个数 的大量增加, 当在业务运行的过程需要进行重新测距时, 现有技术中的倒换
保护方法对于那些对业务时延要求较高的业务, 如 TDM (Time Divi s ion Mul t iplex , 时分复用)话音业务, 视频业务等等, 将无法满足其时延要求。
但是釆用本发明实施例之后, 能够将倒换保护过程中造成的业务中断时 间控制在 3ms左右, 满足业务中断小于 50ms时间的要求, 能够应用于很多对 业务时延要求较高的业务。
即使备用 0LT釆用单播方式指示所有 0NU保持均衡时延不变, 则业务中 断时间 = L 0 S检测时间 +倒换决策执行时间 + 1 0NU测距时间 + ( N_ 1 ) EqD 单播串行通知时间; 其中, l x 0NU测距时间包括备用 0LT向测距 0NU发送测 距请求消息到备用 0LT计算出往返程时延的时间, 这个时间大概在 0. 6ms左 右; 釆用单播通知其中一个 0NU保持 EqD的时间大约为 0. 4ms , 加上前面的 0. 6ms共 1ms左右。 然后, 还釆用单播方式通知剩余(N - 1 )每个 0NU保持 EqD, 所用时间大约为 (N - 1 ) 0. 4ms , 最后所用的时间也比现有技术中要短, 相对组播 /广播方式, 业务中断时间较长, 为次优方案。
实施例 3:
本实施例提供一种光网络倒换保护方法, 当业务从主用 0LT切换到备用 0LT后, 备用 0LT先从 0NU中选择出一个特殊的 0NU (称为测距 0NU ), 获取测 距 0NU在主用 0LT下的第一往返程时延, 并获取测距 0NU在备用 0LT下的第 二往返程时延; 然后, 根据测距 0NU 的第一往返程时延和第二往返程时延获 取往返程时延差值 A Rtd , 并获取每个 ONU在主用 0LT下的第一 Rtd; 再根据 第一 Rtd和 A Rtd计算出每个 0NU在备用 0LT下的第二均衡延迟,计算公式为: 第二均衡往返时延 Te 值- (第一往返程延迟- A Rtd )0 其中, 第二均衡往 返时延是一个常数值, 是备用 0LT下 EqD = 0时的 Rtd数值, 也就是备用 0LT 下最远 0NU的 Rtd值。 最后将计算出的第二均衡延迟以组播 /广播的方式下发 到各个 0NU。
具体如图 6所示, 图中表示出了主用 0LT、备用 0LT以及多个 0NU中的两 个, 实际上该系统中可以包含更多的 0NU (其它未示出)。 该方法具体执行过
程如下:
601、 当主用 OLT的主干光纤出现故障后, 主用 0LT和各 0NU由于接收不 到对方的信号, 都会检测到 LOS ( Los t Of S i gna l , 信号丟失)或 LOF ( Los t of Frame , 帧丟失)告警。 主用 0LT检测到 L0S/L0F告警, 获知出现主用主 干光纤故障, 需要进行主备 0LT切换: 将接入的 0NU的业务切换到备用 0LT 上, 利用备用 0LT提供的备用主干光纤和各 0NU进行通信(此时, 主用 0LT 转变为备用 0LT, 原备用 0LT转变为新主用 0LT, 下文为描述方便, 不改变各 0LT的名称)。 当各 0NU设备检测到 L0S告警后, 由正常工作状态( OPERATI ON ) 切换到弹出状态 ( POPUP )。 此时, 备用 0LT和各 0NU的业务传输处于中断状 态。
602、 备用 0LT 向各 0NU组播 POPUP 消息, 使所有 0NU 进入测距状态 ( Rang ing ), 在光网络中 0NU的 Rang ing状态主要用于测距。
603、 备用 0LT向各个 0NU组播空的 BW Ma 消息, 以停止所有 0NU向备 用 0LT发送数据, 避免干扰后续的对 0NU的测距过程。
604、 备用 0LT从接入的各个 0NU中选择一个 0NU作为测距 0NU。 在实际 运用时 ,备用 0LT可以从所有接入的 0NU中任意选择出一个 0NU作为测距 0NU , 也可以根据预设的规则指定接入的各 0NU中某一 0NU作为测距 0NU。
605、 备用 0LT向选出的测距 0NU发送测距请求消息 ( Range Reques t ), 并启动测距计时器以便对该测距 0NU执行测距。
606、 测距 0NU接收到测距请求消息 ( Range Reques t )后, 向备用 0LT 返回测距响应消息 (Range Res ponse ), 该测距响应消息在光网络中一般通过 Ser ia l -Number -ONU PL0AM消息实现。
607、 备用 0LT收到测距响应消息, 停止测距计时器, 从测距计时器中可 以得到备用 0LT下的测距 0NU的第二往返程时延(第二 Rtd );
608、 备用 0LT从主用 0LT获取测距 0NU在主用 0LT下的第一往返程时延 (第一 Rtd ); 并且获取每个 ONU 0NU在主用 0LT下的第一往返程时延(第一
Rtd)。
其中, 该步骤备用 OLT获取第一往返程时延并不一定要在该时间执行, 因为第一往返程时延是主用 0LT预先存有的, 故而该步骤可以在步骤 601之 后的任意时刻执行, 也可以是在步骤 601之前的任意时刻执行, 例如进行 P0N 系统部署的时候, 将接入的各 0NU的参数分别在主用 0LT、备用 0LT中进行配 置预存。 该发明实施例不限制备用 0LT获取到接入的各 0NU的参数的具体的 方式和时间, 但要保证在步骤 609执行之前, 备用 0LT 已经成功获取到测距 0NU参数。
609、 备用 0LT根据测距 0NU的第一往返程时延和第二往返程时延, 计算 往返程时延差值 Δ R t d。
610、 备用 OLT根据 ARtd和每个 0NU的第一 Rtd计算出每个 0NU在备用 0LT下的第二 EdD;具体计算公式为: 第二均衡时延 =第二均衡往返时延-(第 一往返程时延 -ARtd)。 其中, 第二均衡往返时延是一个常数值, 是备用 0LT 下 EdD = 0时的 Rtd数值, 也就是备用 0LT下最远 0NU的 Rtd值。
上述计算公式的推导原理如下:
用 Tpd表示光纤传播时延 ( Optical fibre propagation delay), 对于 0NU/0NT, Tpd=分支光纤传播时延值 +主干光纤传播时延值; 同一个 0NU到主 备 0LT的 Tpd在分支光纤段相同, 在主干光纤段由于距离的不同而导致主干 光纤传播时延不同; 对于第 n个 0NU/0NT, 其在主备 0LT上的往返程时延差值 为同一个 ONUn在主备主干光纤传播时延差值 Δ Rtd, 即
△ Rtd (n)= Rtd (主用 , n) -Rtd (备用 , n) ,
并且 ARtd =ARtd (1)= ARtd (2)=... = ARtd (n)=固定值;
当第 n个 0NU/0NT由主 OLT切换到备 0LT时, 0NU(n)在备用 0LT的均衡 时延 EqD (备用, n) = Teqd (备用)- Rtd (备用, n) = Teqd (备用)- [Rtd (主用,n)_ △ Rtd]。
611、 备用 OLT以组播 /广播的方式向所有 0NU—次性下发所有 0NU对应
的第二 EqD, ONU从组播 /广播报文中分别提取相应的第二 EdD。在所有 ONU都 得到备用 0LT下的 EdD并完成 EdD的设置后,备用 0LT和接入备用 0LT的 0NU 可以恢复业务传输。
备用 0LT 釆用特定 Mul t ica s t GEM Por t 承载下发给各个 0NU 的单播 Rang ing—Time PLOAM消息, 每个单播 Rang ing—Time PLOAM消息携带第二 EqD 值给 ONU ID所对应的 ONU; 0NU可以根据 Rang ing—Time PLOAM消息中的 ONU ID 获取相应 Rang i ng -T i me PLOAM消息所携带的第二 EqD值。
釆用本发明实施例后, 在进行主用 0LT和备用 0LT倒换的时候, 业务中 断时间 = L0S检测时间 +倒换决策执行时间 + 1 0NU测距时间; 其中, l x 0NU测距时间指备用 0LT向测距 0NU发送测距请求消息到备用 0LT计算出往返 程时延的时间, 这个时间大概在 0. 6ms左右; 1 X 0NU测距时间还包括釆用多 播 /广播方式通知向所有 0NU下发第二 EqD的时间, 这个时间大概在 0. 4ms左 右, 所以, 整个测距时间在 lms左右。
L0S检测时间小于 lms , 倒换决策执行时间也可以在 lms 内完成, 这两个 的时间小于 2ms。 由此可见, 本发明实施例中的业务中断时间最多需要 3ms; 完全可以满足业务中断小于 50ms时间的要求。
而现有技术中的业务中断时间为:业务中断时间 = L0S检测时间 +倒换决 策执行时间 + N 0NU测距时间; 其中, N为一个 PON 0LT下接入的 0NU数目。
根据上述业务中断时间的公式可以看出, 其中, 0NU重新测距的时间直接 制约着业务中断时间。 由上述描述可知每个 0NU的测距时间在 lms左右。 一 个 P0N端口下接入的 0NU的个数的越多, 发生主备 0LT倒换后承载业务的中 断时间就会越长。 通常要求主备倒换造成业务的中断时间为小于 50ms , 如果 一个 P0N端口下接入 64个 0NU或者更多, 业务的中断时间大大超过 50ms的 要求。 并且扩容是 P0N网络的发展的必然趋势, 随着接入 P0N的 0NU的个数 的大量增加, 当在业务运行的过程需要进行重新测距时, 现有技术中的倒换 保护方法对于那些对业务时延要求较高的业务, 如 TDM (Time Divi s ion
Mul t iplex, 时分复用)话音业务, 视频业务等等, 将无法满足其时延要求。 但是釆用本发明实施例之后, 能够将倒换保护过程中造成的业务中断时 间控制在 3ms左右, 满足业务中断小于 50ms时间的要求, 能够使用在很多对 业务时延要求较高的业务中。
综合对比实施例 1、 2、 3对应的方法, 可以得到与现有技术中业务中断 时间的比较, 具体见下表:
综合上述实施例可以总结出本发明实施例中釆用多播 /广播方式存在如 下优点:1、 业务中断时间是恒定的, 并不随光终端设备数量的变化而变化, 并且业务中断时间仅约 3ms , 远小于 50ms , 能够应用于很多对业务时延要求 较高的业务中; 2、 对于本发明提出的备用光局端设备以组播 /广播的方式向 只需获取测距光终端设备的第一 EqD/Rtd值即可, 无需获取非测距光终端设 备的第一 EqD/Rtd值, 主备光局端设备间的同步信息数据量最少。
实施例 4:
本发明实施例还提供一种光局端设备, 用于实施本发明上述实施例中的 方法。 如图 7所示, 该光局端设备包括: 选择单元 71、 获取单元 72、 同步单 元 73。
其中, 选择单元 71用于在当业务从主用光局端设备倒换到备用光局端设 备后, 从所有光终端设备中选择一个作为测距光终端设备; 获取单元 72用于
获取测距光终端设备到备用光局端设备和测距光终端设备到主用光局端设备 数据到达备用光局端设备的时间。
下面进一步详细说明各个单元的实现方式, 所述同步单元 73包括但不限 于如下三种实现方式:
第一、 如图 7所示, 所述同步单元 73包括第一发送模块 731 , 该第一发 送模块 731 用于将所述时延差值下发给所有光终端设备; 并指示每个光终端 设备根据所述时延差值分别计算出各自与备用光局端设备之间的均衡时延, 设置所计算出的均衡时延。
光终端设备计算均衡时延的方式可以因时延差值类型的不同而不同, 例 如:
如果所述时延差值为均衡时延差值, 所述光终端设备将光终端设备与主 用光局端设备之间的均衡时延加上均衡时延差值作为光终端设备与备用光局 端设备之间的均衡时延;
如果所述时延差值为往返程时延差值, 且主用光局端设备下的第一均衡 往返程时延和备用光局端设备下的第二均衡往返程时延相等, 则每个光终端 设备将光终端设备与主用光局端设备之间的均衡时延加上往返程时延差值作 如果所述时延差值为往返程时延差值, 且主用光局端设备下的第一均衡 往返程时延和备用光局端设备下的第二均衡往返程时延不相等, 则所述第一 发送模块 731 还用于将主用光局端设备下的第一均衡往返程时延和备用光局 端设备下的第二均衡往返程时延以组播 /广播的方式下发给所有光终端设备; 且每个光终端设备将光终端设备与主用光局端设备之间的均衡时延加上往返 程时延差值、 并加上第一均衡往返程时延和第二均衡往返程时延的差作为光 终端设备与备用光局端设备之间的均衡时延。
第二、 如图 7中的虚线所示, 所述同步单元 73包括: 第二发送模块 732
和调整模块 733。 其中, 第二发送模块 732用于以组播 /广播 /单播的方式发送 消息指示所有光终端设备保持原有的均衡时延不变; 调整模块 733按照所述 时延差值代表的时间调整每个光终端设备上行帧头的起始时间。
具体而言, 第二发送模块 732可以将单播方式的指示消息承载到组播 /广 播通道中向所有光终端设备下发, 以指示所有光终端设备保持原有的均衡时 延不变; 或者第二发送模块 732将单播方式的指示消息修改为组播 /广播消息 向所有光终端设备下发, 以指示所有光终端设备保持原有的均衡时延不变。
如果所述获取单元 72还获取了每个光终端设备与主用光局端设备之间的 第一均衡时延; 则所述第二发送模块 732还可以向以组播 /广播 /单播的方式 每个光终端设备分别下发对应的第一均衡时延以指示光终端设备保持原有的 均衡时延不变。
如果所述获取单元 72还获取了每个光终端设备与主用光局端设备之间的 第一往返程时延, 并利用该第一往返程时延计算出对应的第一均衡时延; 则 所述第二发送模块 732 还可以以组播 /广播 /单播的方式向每个光终端设备分 别下发对应的第一均衡时延以指示光终端设备保持原有的均衡时延不变。
第三、如图 7中的点划线所示,所述同步单元 73包括:第一获取模块 734、 第一计算模块 735、 第三发送模块 736。 其中, 第一获取模块 734用于获取每 个光终端设备与主用光局端设备之间的第一往返程时延; 第一计算模块 735 用于根据公式^1)。 = 1 (1 _ [1¾(1。 _舰(1]进行计算, 其中, £90„表示任意一个光 终端设备与备用光局端设备之间的第二均衡时延, Teqd表示备用光局端设备 下的第二均衡往返程时延, Rtdn表示任意一个光终端设备与主用光局端设备之 间的第一往返程时延, ARtd表示测距光终端设备到备用光局端设备和测距光 终端设备到主用光局端设备的往返程时延差值; 第三发送模块 736 用于以组 播 /广播的方式将所计算出的第二均衡时延分别发送给对应的光终端设备, 并 指示每个光终端设备分别设置所计算出的均衡时延。
上述的获取单元 72可以釆用但不限于如下两种实现方式:
第一、 所述获取单元 72从主用光局端设备中获取测距光终端设备与主用 光局端设备之间的第一往返程时延; 并对测距光终端设备进行测距得到测距 光终端设备与备用光局端设备之间的第二往返程时延; 然后根据所述第一往 返程时延和第二往返程时延计算出往返程时延差值。
第二、 所述获取单元 72从主用光局端设备中获取测距光终端设备与主用 光局端设备之间的第一均衡时延, 或者读取预先从主用光局端设备中获取测 距光终端设备与主用光局端设备之间的第一均衡时延; 并对测距光终端设备 进行测距得到测距光终端设备与备用光局端设备之间的第二往返程时延; 然 后根据所述第二往返程时延计算出测距光终端设备与备用光局端设备之间第 二均衡时延, 根据所述第一均衡时延和第二均衡时延计算出均衡时延差值。
釆用上述实施例之后, 因为只需要对测距光终端设备进行测距, 相对于 现有技术中对所有光终端设备进行重新测距的方案而言, 本发明实施例能够 缩短测距所用的时间。 使得所有光终端设备能够很快在备用光局端设备下实 现同步, 即: 实现所有光终端设备发送数据到达备用光局端设备的时间相同; 以便于光终端设备与光局端设备之间的业务恢复传输, 缩短了故障保护造成 的业务中断时间。 进而保证业务的连续性, 给用户带来较好的体验, 提高了 用户对运营商提供服务的满意度。
以上实施例中的光终端设备可以是 0NT或者 0NU , 光局端设备可以是 0LT 或者其他的光局端设备。
本发明实施例主要用在光通信系统中, 特别是需要 0LT进行信号同步处 理的光通信系统中。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 发明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过硬件, 但 很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案本 质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该 计算机软件产品存储在可读取的存储介质中, 如计算机的软盘, 硬盘或光盘
等, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述的方法。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 护范围应所述以权利要求的保护范围为准。
Claims
1、 一种光网络倒换保护方法, 其特征在于, 包括:
在将业务从主用光局端设备倒换到备用光局端设备后, 从所有光终端设备 中选择一个作为测距光终端设备;
获取所述测距光终端设备到备用光局端设备和所述测距光终端设备到主用 光局端设备的时延差值; 时间。
2、 根据权利要求 1所述的光网络倒换保护方法, 其特征在于, 所述根据所 述时延差值同步所有光终端设备发送的数据到达备用光局端设备的时间包括: 将所述时延差值下发给所有光终端设备, 使每个光终端设备根据所述时延 差值分别计算出各自与所述备用光局端设备之间的均衡时延, 并设置所计算出 的均衡时延。
3、 根据权利要求 2所述的光网络倒换保护方法, 其特征在于,
如果所述时延差值为均衡时延差值, 则每个光终端设备根据所述时延差值 分别计算出各自与所述备用光局端设备之间的均衡时延具体为: 将光终端设备 与主用光局端设备之间的均衡时延加上所述均衡时延差值作为光终端设备与备 用光局端设备之间的均衡时延;
如果所述时延差值为往返程时延差值, 则每个光终端设备根据所述时延差 值分别计算出各自与所述备用光局端设备之间的均衡时延具体为: 将光终端设 备与主用光局端设备之间的均衡时延加上往返程时延差值作为光终端设备与所 述备用光局端设备之间的均衡时延;
如果所述时延差值为往返程时延差值, 且主用光局端设备下的第一均衡往 返程时延和备用光局端设备下的第二均衡往返程时延不相等, 则该方法还包括: 将主用光局端设备下的第一均衡往返程时延和备用光局端设备下的第二均衡往 返程时延以组播 /广播的方式下发给所有光终端设备; 且
每个光终端设备根据所述时延差值分别计算出各自与所述备用光局端设备 之间的均衡时延具体为: 将光终端设备与主用光局端设备之间的均衡时延加上 往返程时延差值、 并加上第一均衡往返程时延和第二均衡往返程时延的差作为 光终端设备与备用光局端设备之间的均衡时延。
4、 根据权利要求 3所述的光网络倒换保护方法, 其特征在于, 所述第一均 衡往返程时延和第二均衡往返程时延被预先配置在所述备用光局端设备中, 或
5、 根据权利要求 1所述的光网络倒换保护方法, 其特征在于, 所述根据所 述时延差值同步所有光终端设备发送数据到达备用光局端设备的时间包括: 以组播 /广播 /单播的方式指示所有光终端设备保持原有的均衡时延不变; 按照所述时延差值代表的时间调整每个光终端设备上行帧头的起始时间。
6、 根据权利要求 1所述的光网络倒换保护方法, 其特征在于, 所述根据所 述时延差值同步所有光终端设备发送数据到达备用光局端设备的时间包括: 获取每个光终端设备与主用光局端设备之间的第一往返程时延;
根据公式
进行计算, 其中, EqDn表示任意一个光终 端设备与备用光局端设备之间的第二均衡时延, Teqd表示备用光局端设备下的 第二均衡往返程时延, Rtdn表示任意一个光终端设备与主用光局端设备之间的第 一往返程时延, ARtd表示测距光终端设备到备用光局端设备和测距光终端设备 到主用光局端设备的往返程时延的差值;
以组播 /广播的方式将所计算出的第二均衡时延分别发送给对应的光终端 设备, 并指示每个光终端设备分别设置所计算出的均衡时延。
7、 根据权利要求 1至 6中任意一项所述的光网络倒换保护方法, 其特征在 于, 所述时延差值为测距光终端设备到备用光局端设备和测距光终端设备到主 用光局端设备的往返程时延的差值; 或者所述时延差值为测距光终端设备到备 用光局端设备和测距光终端设备到主用光局端设备的均衡时延的差值。
8、 一种光网络倒换保护系统, 包括主用光局端设备、 备用光局端设备和至
少一个光终端设备, 其特征在于:
所述备用光局端设备用于在将业务从主用光局端设备倒换到备用光局端设 备后, 从所有光终端设备中选择一个作为测距光终端设备; 并获取测距光终端 设备到备用光局端设备和测距光终端设备到主用光局端设备的时延差值; 并根 据所述时延差值同步所有光终端设备发送的数据到达备用光局端设备的时间; 所述光终端设备, 用于在业务从主用光局端设备倒换到备用光局端设备后 向所述备用光局端设备发送数据。
9、 根据权利要求 8所述的光网络倒换保护系统, 其特征在于, 当所述备用 设备的时间时, 每个光终端设备, 还用于根据所述时延差值分别计算出各自与备用光局端 设备之间的均衡时延, 并设置所计算出的均衡时延。
10、 根据权利要求 9所述的光网络倒换保护系统, 其特征在于,
如果所述时延差值为均衡时延差值, 则每个光终端设备将其与主用光局端 的均衡时延;
如果所述时延差值为往返程时延差值, 则每个光终端设备将光终端设备与 主用光局端设备之间的均衡时延加上往返程时延差值作为光终端设备与备用光 局端设备之间的均衡时延;
如果所述时延差值为往返程时延差值, 且主用光局端设备下的第一均衡往 返程时延和备用光局端设备下的第二均衡往返程时延不相等, 则所述备用光局 端设备还用于将主用光局端设备下的第一均衡往返程时延和备用光局端设备下 的第二均衡往返程时延以组播 /广播的方式下发给所有光终端设备; 每个光终端 设备将其与主用光局端设备之间的均衡时延加上往返程时延差值、 并加上第一 均衡往返程时延和第二均衡往返程时延的差作为光终端设备与备用光局端设备
之间的均衡时延。
11、 根据权利要求 10所述的光网络倒换保护系统, 其特征在于, 所述备用 光局端设备中预先配置了第一均衡往返程时延和第二均衡往返程时延, 或者所 述备用光局端设备从主用光局端设备中获取第一均衡往返程时延和第二均衡往 返程时延。
12、 根据权利要求 8 所述的光网络倒换保护系统, 其特征在于, 当所述备 端设备的时间时:
所述备用光局端设备, 还用于以组播 /广播 /单播的方式指示所有光终端设 备保持原有的均衡时延不变, 并按照所述时延差值代表的时间调整每个光终端 设备上行帧头的起始时间。
1 3、 根据权利要求 8 述的光网络倒换保护系统, 其特征在于, 当所述备用 设备的时间时,
14、 一种光局端设备, 其特征在于, 包括:
选择单元, 用于在将业务从主用光局端设备倒换到备用光局端设备后, 从 所有光终端设备中选择一个作为测距光终端设备;
获取单元, 用于获取所述测距光终端设备到备用光局端设备和所述测距光
终端设备到主用光局端设备的时延差值; 用光局端设备的时间。
15、根据权利要求 14所述的光局端设备, 其特征在于, 所述同步单元包括: 第一发送模块, 用于将所述时延差值下发给所有光终端设备; 并指示每个 光终端设备根据所述时延差值分别计算出各自与备用光局端设备之间的均衡时 延, 设置所计算出的均衡时延。
16、 根据权利要求 15所述的光局端设备, 其特征在于,
如果所述时延差值为均衡时延差值, 所述光终端设备将光终端设备与主用 备之间的均衡时延;
如果所述时延差值为往返程时延差值, 则每个光终端设备将光终端设备与 主用光局端设备之间的均衡时延加上往返程时延差值作为光终端设备与备用光 局端设备之间的均衡时延;
如果所述时延差值为往返程时延差值, 且主用光局端设备下的第一均衡往 返程时延和备用光局端设备下的第二均衡往返程时延不相等, 则所述发送模块 还用于将主用光局端设备下的第一均衡往返程时延和备用光局端设备下的第二 均衡往返程时延以组播 /广播的方式下发给所有光终端设备; 且
每个光终端设备将光终端设备与主用光局端设备之间的均衡时延加上往返 程时延差值、 并加上第一均衡往返程时延和第二均衡往返程时延的差作为光终 端设备与备用光局端设备之间的均衡时延。
17、根据权利要求 14所述的光局端设备, 其特征在于, 所述同步单元包括: 第二发送模块, 用于以组播 /广播 /单播的方式发送消息指示所有光终端设 备保持原有的均衡时延不变;
调整模块, 按照所述时延差值代表的时间调整每个光终端设备上行帧头的 起始时间。
18、根据权利要求 14所述的光局端设备, 其特征在于, 所述同步单元包括: 第一获取模块, 用于获取每个光终端设备与主用光局端设备之间的第一往 返程时延;
第一计算模块,用于根据公式 EqD n = Teqd - [Rtdn - ARtd]进行计算,其中, EqDn 表示任意一个光终端设备与备用光局端设备之间的第二均衡时延, Teqd表示备 用光局端设备下的第二均衡往返程时延, Rtdn表示任意一个光终端设备与主用光 局端设备之间的第一往返程时延, ARtd表示测距光终端设备到备用光局端设备 和测距光终端设备到主用光局端设备的往返程时延的差值;
第三发送模块, 用于以组播 /广播的方式将所计算出的第二均衡时延分别发 送给对应的光终端设备, 并指示每个光终端设备分别设置所计算出的均衡时延。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980146906.1A CN102239664B (zh) | 2009-08-26 | 2009-08-26 | 光网络倒换保护方法、装置及系统 |
EP20090848615 EP2426856B1 (en) | 2009-08-26 | 2009-08-26 | Method, apparatus and system for optical network switching protection |
EP15153918.6A EP2892184B1 (en) | 2009-08-26 | 2009-08-26 | Method, apparatus and system for optical network switching protection |
PCT/CN2009/073532 WO2011022883A1 (zh) | 2009-08-26 | 2009-08-26 | 光网络倒换保护方法、装置及系统 |
US13/316,166 US8515276B2 (en) | 2009-08-26 | 2011-12-09 | Method, device and system for optical network switching protection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2009/073532 WO2011022883A1 (zh) | 2009-08-26 | 2009-08-26 | 光网络倒换保护方法、装置及系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/316,166 Continuation US8515276B2 (en) | 2009-08-26 | 2011-12-09 | Method, device and system for optical network switching protection |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011022883A1 true WO2011022883A1 (zh) | 2011-03-03 |
Family
ID=43627149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/073532 WO2011022883A1 (zh) | 2009-08-26 | 2009-08-26 | 光网络倒换保护方法、装置及系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8515276B2 (zh) |
EP (2) | EP2892184B1 (zh) |
CN (1) | CN102239664B (zh) |
WO (1) | WO2011022883A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2498049A (en) * | 2011-12-09 | 2013-07-03 | Zte Corp | Protection system for a PON in which equalisation delay is adjusted when switching to a backup OLT |
WO2022133938A1 (zh) * | 2020-12-24 | 2022-06-30 | 华为技术有限公司 | 一种灵活以太网开销帧处理方法及装置 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102282788A (zh) * | 2009-01-16 | 2011-12-14 | 瑞典爱立信有限公司 | 用于接入网中的方法和互连节点 |
CN101990132A (zh) * | 2009-07-30 | 2011-03-23 | 中兴通讯股份有限公司 | 光线路终端快速更新光网络单元测距结果的方法及系统 |
SG194129A1 (en) * | 2011-05-17 | 2013-11-29 | Ericsson Telefon Ab L M | Protection for fibre optic access networks |
WO2013082804A1 (zh) * | 2011-12-09 | 2013-06-13 | 华为技术有限公司 | 光网络系统的数据通信方法、光线路终端以及光网络系统 |
US20140050471A1 (en) * | 2012-08-15 | 2014-02-20 | Alcatel-Lucent Usa Inc. | Apparatus And Method For Providing Protection In A Passive Optical Network |
KR102132491B1 (ko) * | 2014-02-24 | 2020-07-09 | 한국전자통신연구원 | 수동 광 네트워크에서의 고속 보호 절체 방법 |
CN104022818B (zh) * | 2014-05-21 | 2016-08-17 | 烽火通信科技股份有限公司 | 基于otn板卡的业务动态切换测试系统、方法及装置 |
AU2017260108B2 (en) * | 2016-05-04 | 2021-08-26 | Adtran, Inc. | Systems and methods for performing optical line terminal (OLT) failover switches in optical networks |
US12040831B2 (en) * | 2020-04-14 | 2024-07-16 | Nippon Telegraph And Telephone Corporation | Optical communication system and master station |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1479460A (zh) * | 2003-05-29 | 2004-03-03 | 上海交通大学 | 无源光网络保护方法 |
CN1791039A (zh) * | 2004-12-17 | 2006-06-21 | 电子科技大学 | 一种以太无源光网络上行接入方法 |
CN101378311A (zh) * | 2007-08-27 | 2009-03-04 | 华为技术有限公司 | 一种保护倒换的方法、系统和设备 |
CN101557539A (zh) * | 2008-04-09 | 2009-10-14 | 华为技术有限公司 | 一种光网络发送数据的方法、系统和设备 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020071149A1 (en) * | 2000-12-12 | 2002-06-13 | Xu Dexiang John | Apparatus and method for protection of an asynchronous transfer mode passive optical network interface |
US6771908B2 (en) * | 2001-02-12 | 2004-08-03 | Lucent Technologies Inc. | Fast protection switching by snooping on downstream signals in an optical network |
EP2053762A1 (en) * | 2007-10-24 | 2009-04-29 | British Telecommunications public limited company | Optical communication |
US8855491B2 (en) * | 2008-12-30 | 2014-10-07 | Broadcom Corporation | Techniques for protecting passive optical networks |
CN101990132A (zh) * | 2009-07-30 | 2011-03-23 | 中兴通讯股份有限公司 | 光线路终端快速更新光网络单元测距结果的方法及系统 |
-
2009
- 2009-08-26 EP EP15153918.6A patent/EP2892184B1/en active Active
- 2009-08-26 WO PCT/CN2009/073532 patent/WO2011022883A1/zh active Application Filing
- 2009-08-26 EP EP20090848615 patent/EP2426856B1/en active Active
- 2009-08-26 CN CN200980146906.1A patent/CN102239664B/zh active Active
-
2011
- 2011-12-09 US US13/316,166 patent/US8515276B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1479460A (zh) * | 2003-05-29 | 2004-03-03 | 上海交通大学 | 无源光网络保护方法 |
CN1791039A (zh) * | 2004-12-17 | 2006-06-21 | 电子科技大学 | 一种以太无源光网络上行接入方法 |
CN101378311A (zh) * | 2007-08-27 | 2009-03-04 | 华为技术有限公司 | 一种保护倒换的方法、系统和设备 |
CN101557539A (zh) * | 2008-04-09 | 2009-10-14 | 华为技术有限公司 | 一种光网络发送数据的方法、系统和设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2426856A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2498049A (en) * | 2011-12-09 | 2013-07-03 | Zte Corp | Protection system for a PON in which equalisation delay is adjusted when switching to a backup OLT |
GB2498049B (en) * | 2011-12-09 | 2015-03-11 | Zte Corp | Equalization delay agnostic protection switching in protected passive optical networks |
GB2518996A (en) * | 2011-12-09 | 2015-04-08 | Zte Corp | Equalization delay agnostic protection switching in protected passive optical networks |
US9025949B2 (en) | 2011-12-09 | 2015-05-05 | Zte Corporation | Equalization delay agnostic protection switching in protected passive optical networks |
GB2518996B (en) * | 2011-12-09 | 2015-08-12 | Zte Corp | Equalization delay agnostic protection switching in protected passive optical networks |
WO2022133938A1 (zh) * | 2020-12-24 | 2022-06-30 | 华为技术有限公司 | 一种灵活以太网开销帧处理方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102239664B (zh) | 2014-07-09 |
EP2426856A4 (en) | 2012-04-25 |
US20120082449A1 (en) | 2012-04-05 |
US8515276B2 (en) | 2013-08-20 |
EP2892184B1 (en) | 2016-08-03 |
EP2426856A1 (en) | 2012-03-07 |
EP2426856B1 (en) | 2015-04-22 |
EP2892184A1 (en) | 2015-07-08 |
CN102239664A (zh) | 2011-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011022883A1 (zh) | 光网络倒换保护方法、装置及系统 | |
US10735836B2 (en) | Passive optical network communications method, apparatus and system | |
US9025949B2 (en) | Equalization delay agnostic protection switching in protected passive optical networks | |
JP5154686B2 (ja) | 受動型光ネットワーク(pon)のための即時保護方式 | |
US8693868B2 (en) | Versatile optical network interface methods and systems | |
AU2008353014B2 (en) | Fast protection scheme for passive optical network | |
US20170303020A1 (en) | Communication method applied to multi-wavelength passive optical network, apparatus, and system | |
CN102075238B (zh) | 一种无源光网络及其保护倒换方法 | |
WO2010031326A1 (zh) | 光网络系统数据链路切换方法、光线路终端及系统 | |
EP2389738B1 (en) | Methods and systems for dynamic equalization delay passive optical networks | |
WO2012119439A1 (zh) | 光网络系统的数据通信方法、光网络单元及系统 | |
EP2451092A1 (en) | Method and system for quickly updating ranging results of optical network unit by optical line terminal | |
US9614612B2 (en) | Fast protection switching method for passive optical network | |
WO2009117969A1 (zh) | 降低主备光线路终端切换时延的方法、系统和中继器 | |
JP2022540600A (ja) | 受動光ネットワークの上り遅延を低減する方法および関連機器 | |
CN102648590B (zh) | 光网络系统的通信方法、系统及装置 | |
WO2013075507A1 (zh) | 数据发送方法及系统 | |
WO2019109252A1 (zh) | Pon系统中的数据发送和接收方法、网络设备及系统 | |
CN103248418B (zh) | 一种基于无源光网络的主备通道切换方法及系统 | |
JP6403634B2 (ja) | 局側装置及び遅延関連設定値修正方法 | |
JP5640877B2 (ja) | 通信システム、親局装置および通信回線切替方法 | |
EP2148453A1 (en) | Redundancy method in PON systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980146906.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09848615 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009848615 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8947/CHENP/2011 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |