WO2014187012A1 - 测长机日常检测与自动补正方法 - Google Patents

测长机日常检测与自动补正方法 Download PDF

Info

Publication number
WO2014187012A1
WO2014187012A1 PCT/CN2013/078249 CN2013078249W WO2014187012A1 WO 2014187012 A1 WO2014187012 A1 WO 2014187012A1 CN 2013078249 W CN2013078249 W CN 2013078249W WO 2014187012 A1 WO2014187012 A1 WO 2014187012A1
Authority
WO
WIPO (PCT)
Prior art keywords
platform
machine
automatic correction
coordinate value
automatically
Prior art date
Application number
PCT/CN2013/078249
Other languages
English (en)
French (fr)
Inventor
黄文德
张岳妍
朱厚毅
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/003,041 priority Critical patent/US9470518B2/en
Publication of WO2014187012A1 publication Critical patent/WO2014187012A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/042Calibration or calibration artifacts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/0207Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer
    • G01B9/02072Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer by calibration or testing of interferometer

Definitions

  • the invention relates to the field of precision measurement, in particular to a daily detection and automatic it method of a precision length measuring machine.
  • the precision measuring machine TTP machine is an important optical measuring machine for the thin film transistor liquid crystal flat panel display (TFTMLCD) process. It is mainly used for thin film transistor (TFT) substrate/color filter (CF) substrate.
  • TFT thin film transistor
  • CF color filter
  • the basic principle for measuring the total pitch error is that Michelson is using a single frequency laser (laser) to calculate the distance from the intensity of the thousand stripes by Michelson.
  • the total pitch error will be unstable or major abnormality due to laser stability variation, temperature and light quantity changes, hardware outage conditions, etc., which may not accurately reflect the true characteristics of the product, or even misjudge the exposure equipment. , causing major production anomalies.
  • the machine uses a non-divided glass platform (Glass b) e) as the substrate stage.
  • the four corners of the glass platform are affixed with cross marks, and the machine is initialized by the software.
  • the coordinates of the four cross marks are calculated, and compared with the initial set values, the coordinate system is automatically calculated and corrected;
  • Automatic correction No automatic correction: mechanism, when an abnormality needs to be corrected, only the person can manually measure the daily test piece, manually adjust the coordinate system parameters repeatedly according to the difference, until the adjustment into the specification;
  • the object of the present invention is to provide a daily detecting and automatic correcting method for a length measuring machine, which can conveniently and accurately monitor and improve the measuring stability of the measuring machine, and can notify the operator to confirm the first time when there is a major abnormality in the daily detecting and measuring. Processing, and ultimately improve the measurement stability of the total error of the product pitch.
  • the present invention provides a daily detection and automatic method of a length measuring machine, which comprises the following steps:
  • Step 1 Determine the running status of the machine when the preset daily detection time arrives
  • Step 2 When the machine is in the idle state, stop the film and go to step 3.
  • Step 3 measuring the coordinate value of the alignment mark on the platform for carrying the substrate on the machine platform, generating a platform measurement data file, and comparing the measured coordinate value of the alignment mark with the preset standard coordinate value;
  • Step 4 If the difference between the measured alignment mark coordinate value and the preset standard coordinate value is within a predetermined difference range, the correction amount is automatically calculated, and the correction amount is updated to the platform coordinate system parameter file, and the automatic correction is completed. At the same time, automatically back up the daily platform coordinate system parameter file, go to step 14; if the difference between the measured alignment mark coordinate value and the preset standard coordinate value exceeds the predetermined difference range, the alarm prompts, and proceeds to step 5;
  • Step 5 According to the reason that the difference of the pre-judgment exceeds the predetermined difference range, continue to automatically correct, not automatically correct or confirm the large-scale substrate measurement;
  • Step 6 When the automatic correction is continued, go to step 7; when it is not automatically corrected, go to step 13; when the large substrate measurement confirmation is made, go to step 8;
  • Step 7. automatically calculate the correction amount according to the platform measurement data file in step 3, and update the correction amount to the platform coordinate system parameter file, complete the automatic correction, and automatically back up the old platform coordinate system parameter file, and then go to step 14;
  • Step 8 measuring a coordinate value of the large substrate confirmation mark on the platform for carrying the substrate on the machine table, generating a substrate measurement data file, and comparing the measured confirmation mark coordinate value with the preset confirmation coordinate value;
  • Step 9 If the difference between the measured confirmation mark coordinate value and the preset confirmation coordinate value is within the predetermined difference range, the positive amount is automatically calculated according to the platform measurement data file in step 3, and the correction amount is updated to the platform coordinate system parameter file. , complete the automatic correction, and automatically back up the old platform coordinate system parameter file, go to step 14; if the difference between the measured confirmation mark coordinate value and the preset confirmation coordinate value exceeds the predetermined difference range, then the alarm prompts, and goes to the step 10;
  • Step 10 According to the reason that the difference of the pre-judgment exceeds the predetermined difference range, continue to automatically correct or not automatically correct;
  • Step 11 When the automatic correction is continued, go to step 12; when it is not automatically corrected, go to step 13;
  • Step 12 automatically calculating the correction amount according to the platform measurement data file in step 3, and updating the correction amount to the platform coordinate system parameter file, completing the automatic correction, and automatically backing up the old platform coordinate system parameter file, and proceeding to step 14;
  • Step 13 If automatic correction is not required, go to step 14; if the machine bursts abnormally abnormal, go to step 15 and the sudden abnormality includes 'mechanism offset and temperature abnormality;
  • Step 14 the machine resumes the film feeding function, normal use, the machine routine inspection and automatic correction knot Step 15.
  • the processing machine is triggered to be abnormally abnormal, and the daily detection and automatic correction of the machine are ended.
  • the alignment marks on the platform are respectively located at four corner positions of the platform, and the alignment marks are in a "ten" shape, and the line width is 500 ⁇ to excitation 0 ⁇ , and the width is 20 ⁇ to 50 ⁇ .
  • the alignment mark is formed directly on the platform by a jet or a captioner.
  • the alignment marks are respectively formed on the pasteboard, and the pasteboard is attached to the corresponding position of the platform by super glue.
  • the alignment mark is formed of chromium or a photoresist; when the alignment mark is formed of a photoresist, a protective film is formed on an outer surface thereof, and the protective film is an indium tin oxide layer or a silicon layer.
  • the establishment of the platform coordinate system includes the following steps:
  • Step 101 Define four alignment marks as first, second, third, and fourth points, respectively, and set the first and fourth points diagonally, and set the second and third points diagonally, and measure the first First, the third, third and fourth points of the mechanical coordinate values;
  • Step 102 Calculate a midpoint of the first and third points, and mark it as a defect; calculate a midpoint of the second and fourth points, and mark it as point B;
  • Step 103 Calculate the midpoint of the line connecting point A and point B, and mark it as 0 point;
  • Step 104 Taking the O point as the origin, the direction of the third point toward the first point is the positive direction of the Y axis, and the direction of the third point toward the fourth point is the positive direction of the X axis to establish the platform coordinate system.
  • the measured coordinate values of the first, second, third and fourth points are (X' 1 , Y' i ), (X' 2 , Y'2 ) , ( ⁇ 3 , ⁇ ' 3 ) , ( ⁇ 4 , ⁇ ' 4 )
  • the calculation formula of the positive quantity is:
  • the correction amount ⁇ in the X-axis direction is called XX' Factory X r - X 4 X 4 )/2-- ( ' 2 — X 2 + X'3 - X 3 ) /2]
  • the measurement data file generated in the step 3 is named in the format of date and time.
  • the length measuring machine is a TFT-LCD precision measuring machine for measuring the total pitch error of the exposure precision parameter of the exposure machine during the first layer of the TFT substrate and the CF substrate.
  • the invention also provides a method for daily detection and automatic correction of a length measuring machine, which comprises the following steps: Step 1. When the preset daily detection time arrives, determine the running status of the machine;
  • Step 2 When the machine is in the idle state, stop the film and go to step 3.
  • step 3 When the machine is in the non-idle state, wait until the machine is idle, stop the film and go to the step.
  • Step 3 measuring the coordinate value of the alignment mark on the platform for carrying the substrate on the machine platform, generating a platform measurement data file, and comparing the measured coordinate value of the alignment mark with the preset standard coordinate value;
  • Step 4 If the difference between the measured alignment mark coordinate value and the preset standard coordinate value is within a predetermined difference range, the correction amount is automatically calculated, and the correction amount is updated to the platform coordinate system parameter file, and the automatic correction is completed. At the same time automatically back up the old platform coordinate system parameter file, go to step 14; if the difference between the measured alignment mark coordinate value and the preset standard coordinate value exceeds the predetermined difference range, the alarm prompts, and proceeds to step 5;
  • Step 5 According to the reason that the difference of the pre-judgment exceeds the predetermined difference range, continue to automatically correct, not automatically correct or confirm the large-scale substrate measurement;
  • Step 6 When the automatic correction is continued, go to step 7; when it is not automatically corrected, go to step 13; when the large substrate measurement confirmation is made, go to step 8;
  • Step 7 automatically calculate the correction amount according to the platform measurement data file in step 3, and update the correction amount to the platform coordinate system parameter file, complete the automatic correction, and automatically back up the old platform coordinate system parameter file, and then go to step 14;
  • Step 8 measuring a coordinate value of the large substrate confirmation mark on the platform for carrying the substrate on the machine table, generating a substrate measurement data file, and comparing the measured confirmation mark coordinate value with the preset confirmation coordinate value;
  • Step 9 If the difference between the measured confirmation mark coordinate value and the preset confirmation coordinate value is within the predetermined difference range, the correction amount is automatically calculated according to the platform measurement data file in step 3, and the correction amount is updated to the platform coordinate System parameter file, complete automatic correction, and automatically back up the old platform coordinate system parameter file, go to step 14; if the difference between the measured confirmation mark coordinate value and the preset confirmation coordinate value exceeds the predetermined difference range, the alarm prompts, and Go to step 10;
  • Step 10 According to the reason that the difference of the pre-judgment exceeds the predetermined difference range, continue to make automatic correction or not self-movement.
  • Step 11 When the automatic correction is continued, go to step 12; when it is not automatically corrected, go to step 13;
  • Step 12 automatically calculating the correction amount according to the platform measurement data file in step 3, and updating the correction amount to the platform coordinate system parameter file, completing the automatic correction, and automatically backing up the old platform coordinate system parameter file, and proceeding to step 14;
  • Step 13 if automatic correction is not required, go to step 14; if the machine bursts abnormally abnormal, go to step 15, the sudden abnormal state abnormality includes mechanism offset and temperature abnormality;
  • Step 14 The machine resumes the film feeding function, and the normal use, the daily detection and automatic correction of the machine are completed;
  • Step 15. prompt the processing machine to burst abnormally, and end the daily detection and automatic correction of the machine;
  • the alignment marks on the platform are four, respectively located at four corner positions of the platform, and the alignment marks are in a "ten" shape, and the line length is 500 ⁇ 1000 ⁇ , and the width is 20 ⁇ 50 ⁇ ;
  • the alignment mark is directly formed on the platform by printing or a captioning device
  • the alignment mark is formed of chromium or a photoresist; when the alignment mark is formed of a photoresist, a protective film is formed on an outer surface thereof, and the protective film is an indium tin oxide layer or a silicon layer;
  • the establishing of the platform coordinate system includes the following steps:
  • Step 101 Define four alignment marks as first, second, third, and fourth points, respectively, and set the first and fourth points diagonally, and set the second and third points diagonally. Measuring mechanical coordinate values of the first, second, third, and fourth points;
  • Step 102 Calculate a midpoint of the first and third points, and mark it as a defect; calculate a midpoint of the second and fourth points, and mark it as point B;
  • Step 103 Calculate a midpoint of the line connecting point A and point B, and mark it as 0 point;
  • Step 104 Taking the ⁇ point as the origin, the direction of the third point toward the first point is the positive direction of the ⁇ axis, and the direction of the third point toward the fourth point is the positive direction of the X axis to establish the platform coordinate system;
  • the standard coordinate values of the first, second, third, and fourth points are (Xf, ⁇ ) , ( ⁇ 2 , ⁇ 2 ) , ( ⁇ 3 , ⁇ 3 ) , ( ⁇ 4 , ⁇ 4 ), respectively.
  • the measured coordinate values of the first, second, third, and fourth points are respectively (X' i , Y'i ) '( ⁇ '2, ⁇ '2 ) , ( ⁇ '3, ⁇ '3 ) , ( ⁇ 4 , ⁇ ' 4 ), the formula for calculating the correction amount is:
  • the straightness correction amount ⁇ ⁇ [( X′ 3 — ⁇ 3 + X 4. ⁇ 4 )/2-- ( X, — X r — X 2 — ⁇ 2 ) /2] 12; wherein, the step 8
  • the large substrate is transported by the mechanical arm from the constant temperature buffer to the platform, and after the large substrate measurement is confirmed, the robot is transported by the robot to the constant temperature buffer; wherein the measurement data generated in the step 3 is dated.
  • the time format is named; wherein the length measuring machine is a TFTTLCD precision measuring machine for TFT substrate and CF base The measurement of the total pitch error of the exposure precision parameter of the exposure machine during the first layer of the board.
  • the daily detecting and automatic correcting method of the length measuring machine of the present invention the automatic daily detecting and the automatic correcting design combined with the platform and the large substrate, the daily and high-efficiency testing is performed efficiently, and the section of the precision measuring machine is improved. From the total error measurement stability, at the same time easy to control, abnormality in daily detection and measurement can also prompt the operator to confirm the treatment, and ultimately improve the measurement stability of the product pitch total error value.
  • FIG. 1 is a flow chart of a routine detection and automatic correction method of a length measuring machine according to the present invention
  • FIG. 2 is a flow chart of establishing a platform coordinate system for the routine detection and automatic correction method of the length measuring machine of the present invention
  • Fig. 3 is a schematic diagram of the establishment of the platform coordinate system in the daily detection and automatic correction method of the long-term measuring machine. Specific travel mode
  • the present invention provides a daily detecting and automatic correcting method for a length measuring machine, which includes the following steps:
  • Step 1 Determine the running status of the machine when the preset daily detection time arrives.
  • the daily detection time is preset. When the preset daily detection time is reached, the software automatically starts the daily detection function, and then determines the current running status of the machine.
  • the running status of the machine includes an idle state and a non-idle state.
  • Step 2 When the machine is in the idle state, stop the film and go to step 3.
  • Step 3 When the machine is in the non-idle state, wait until the machine is in the idle state, stop the film and go to step 3.
  • Step 3 Measure the coordinate value of the alignment mark on the platform 20 for carrying the base on the machine platform, generate a platform measurement data file, and obtain the coordinate value of the alignment mark obtained by the measurement and the preset standard coordinate value. Into the .4 ⁇ contrast.
  • the measurement data file is saved in the format of date and time for subsequent viewing or recall.
  • the alignment marks on the platform 20 are four, respectively located at four corner positions of the platform 20, and the alignment marks are in a "ten" shape, and the line length is 500 ⁇ m ⁇ 1000 ⁇ , and the width is 20 ⁇ ' 50 ⁇ .
  • the alignment mark is preferably formed directly on the platform 20 by a jet or subtitle (TMer).
  • the alignment marks may also be formed on the adhesive sheet, respectively, and the adhesive sheet is attached to the stage 20 by super glue, and the alignment mark is preferably formed on the glass sheet.
  • the alignment mark is formed of chromium (Cr) or a photoresist, and when the alignment mark is formed of a photoresist, a protective film is formed on an outer surface thereof, and the protective film is indium tin. An oxide ( ⁇ ) layer or a silicon (Si) layer.
  • the preset standard coordinate value is a registration mark measured in the platform coordinate system, which is pre-stored in the machine.
  • the establishment of the platform coordinate system may specifically include the following steps:
  • Step 101 Define four alignment marks as first, second, third, and fourth points 22, 24, 26, 28, and set the first and fourth points 22, 28 diagonally, and second The third point is 24.26 diagonal setting (as shown in Figure 3), measuring the first, second, third and fourth points 22, 24. 26, 28 mechanical coordinate values.
  • Step 102 Calculate a midpoint of the first and third points 22, 26, and mark it as point A; calculate a midpoint of the second and fourth points 24, 28, and mark it as point B.
  • Step 103 Calculate the midpoint of the line connecting point A and point B, and mark it as 0 point.
  • Step 104 Taking 0 point as the origin, the direction of the third point 26 toward the first point 22 is the positive direction of the Y axis, and the direction of the third point 26 toward the fourth point 28 is the positive direction of the X axis to establish the platform coordinate system.
  • Step 4 If the difference between the measured coordinate mark coordinate value and the standard coordinate value is within a predetermined difference range, the correction amount is automatically calculated, and the correction amount is updated to the platform coordinate system parameter file, and the automatic correction is completed, and the automatic correction is performed simultaneously. Back up the old platform coordinate system parameter file, go to step 4; If the difference between the measured alignment mark coordinate value and the standard coordinate value exceeds the predetermined difference range, then an alarm prompt is given, and go to step 5.
  • the standard coordinate values of the second, third, and fourth points 22, 24, 26, and 28 are (X: X, Y, ;), (X 2 , Y 2 ), ( ⁇ -3 , ⁇ 3 ) , ( ⁇ 4 , ⁇ 4 )
  • the coordinate values of the measured alignment marks of the first, second, third and fourth points 22, 24, 26, 28 are (X' Y ) , ( ⁇ ' 2 , ⁇ ' 2 ) , ( ⁇ ': ⁇ ⁇ ' 3 ) , ( ⁇ ' 4 , ⁇ ' 4 ) , then
  • the formula for calculating the correction amount is:
  • the correction amount ⁇ in the X-axis direction is called XX' Factory X r - X 4 X 4 )/2-- ( ' 2 — X 2 + X'3 - X 3 ) /2]
  • ⁇ Y [( Y' 3— Y 3 + ⁇ '4 ⁇ 4 )/2— ( ⁇ 'Guang Yi + ⁇ 2 — ⁇ 2 ) 12 ⁇
  • the predetermined difference range is generally ⁇ 0.5 ⁇ m, which can be appropriately adjusted according to actual production needs.
  • step 5 if the difference between the coordinate value of the alignment mark measured by the ⁇ and the preset standard coordinate value exceeds the predetermined difference range, an alarm prompt is given, and an option window is popped up, and the difference is displayed, and the operator confirms, daily
  • An abnormality in the detection and measurement can also prompt the operator to confirm the processing, facilitate the control, display the difference, more intuitive and user-friendly design, and can effectively mention step 5, based on the reason that the difference of the pre-judgment exceeds the predetermined difference range. Continue to automatically correct. Does not automatically correct or confirm the large substrate measurement.
  • the three treatment measures (continuing automatic correction, automatic correction and large-scale substrate measurement) require the operator to provide an account and password, and the login permission can complete the operation, which can prevent misuse and improve safety.
  • Step 6 When the automatic correction is continued, go to step 7; when it is not automatically corrected, go to step 3; When the large substrate measurement is confirmed, go to step 8.
  • the operator selects the corresponding operation item according to the reason that the difference of the pre-judgment exceeds the predetermined difference range.
  • the automatic correction can be selected.
  • the reason is When the machine suddenly becomes abnormal (such as mechanism offset, temperature abnormality, etc.), error correction cannot be performed, and the entire process needs to be exited. The engineer then performs some processing.
  • Step 7 Automatically calculate the correction amount according to the platform measurement data file in step 3, and update the correction amount to the platform coordinate system parameter file to complete the automatic correction, and automatically back up the old platform coordinate system parameter file, and then go to step 14.
  • Step 8 measuring the coordinate value of the large substrate confirmation mark on the platform 20 for carrying the substrate (not shown) on the machine table, generating the substrate measurement data file, and obtaining the confirmation mark coordinate value of the measurement and the pre-measurement Set the confirmation coordinate values for comparison.
  • the large substrate (not shown) includes a substrate and a confirmation mark disposed at a corner of the substrate, and the four confirmation marks of the large substrate are preferably adjacent to the four alignment marks of the platform 20, the confirmation mark
  • the manner of forming the alignment mark described above is the same.
  • the preset confirmation coordinate value is a coordinate value of four confirmation marks measured in a coordinate system of the large substrate, and the coordinate system of the large substrate is established in the same manner as the platform coordinate system, and is not described herein.
  • the coordinate system of the large substrate and the predetermined confirmation coordinate values are stored in the machine table.
  • the large substrate is transported to the platform 20 by a thermostatic buffer (not shown) through a mechanical arm (not shown), and after the large substrate measurement is confirmed, it is transported by the robot 20 to the constant temperature buffer by the robot arm.
  • Step 9 If the difference between the measured confirmation mark coordinate value and the preset confirmation coordinate value is within the predetermined difference range, the correction amount is automatically calculated according to the platform measurement data file in step 3, and the correction amount is updated to the platform coordinate System parameter file, complete automatic correction, and automatically back up the old platform coordinate system parameter file, go to step ⁇ 4; If the difference between the measured confirmation mark coordinate value and the preset confirmation coordinate value exceeds the predetermined difference range, the alarm prompts, And go to step 10.
  • Step 10 According to the reason that the difference of the pre-judgment exceeds the predetermined difference range, continue to automatically correct or not automatically correct.
  • Step 11 When the automatic correction is continued, go to step 12; when it is not automatically corrected, go to step 13.
  • Step 12 automatically calculate the correction amount according to the platform measurement data file in step 3, and update the correction amount to the platform coordinate system parameter file, complete the automatic correction, and automatically back up the old platform coordinate system parameter file, and go to step 14.
  • Step 13 If automatic correction is not required, go to step 14; if the machine bursts abnormally abnormal, go to step 15 and the sudden abnormality includes 'mechanism offset and temperature abnormality.
  • Step 14 The machine resumes the film feeding function, and the normal use, the machine routine inspection and the automatic correction of the knot.
  • Step 15. The processing machine is suddenly abnormal, and the machine is routinely detected and automatically corrected.
  • the daily detection and monitoring trend graph is set in the software in the machine, and the daily measurement data is automatically read.
  • the personnel can view and save the daily detection and monitoring data change trend graph of the specified date area, which is convenient for control and analysis.
  • the stability of the machine is convenient for control and analysis.
  • the length measuring machine in the invention can be a thin film transistor liquid crystal flat panel display precision measuring machine, and is used for measuring the total pitch error of the exposure precision parameter of the exposure machine when the first layer of the thin film transistor substrate and the color filter substrate are produced.
  • the daily detection and automatic correction method of the length measuring machine of the invention improves the precision of the precision measuring machine by the automatic daily detection and the automatic correction design combined with the large substrate and the high-efficiency and perfect daily inspection.
  • the total error measurement stability at the same time facilitates control, abnormality in daily detection and measurement can also prompt the operator to confirm the treatment, and finally improve the product pitch total Measurement stability of error values.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种测长机日常检测与自动补正方法,包括:步骤1、在预设日常检测时间到达时,判断机台运行状况;步骤2、当机台处于空闲状态时,则停止进片;步骤3、测量机台上用于承载基板的平台上对位标记的坐标值,生成平台测量数据档,并将该测量得到的对位标记坐标值与预设标准坐标值进行对比;步骤4、如果测量的对位标记坐标值与预设标准坐标值之间的差异在预定差异范围内,则自动计算补正量,并将该补正量更新到平台坐标系参数档,完成自动补正;如果测量的对位标记坐标值与预设标准坐标值之间的差异超出预定差异范围,则报警提示;步骤5、根据预判的差异超出预定差异范围的原因,作出继续自动补正、不自动补正或进行大片基板测量确认。

Description

日常检测与自动补正方;
本发明涉及精密测量领域, 尤其涉及一种精密测长机日常检测与自动 it方法。 背景;
精密测长机 TTP机台是薄膜晶体管液晶平板显示器(TFTMLCD )制程 重要的光学测量机台, 主要用于薄膜晶体管 ( Thin Film Transistor, TFT ) 基板 /彩色滤光片 ( Color Filter, CF )基板第一层图案 ( pattern )制作时曝 光机曝光精度参数节距总误差 (Tbtal Pitch ) 的测量。 测量节距总误差的基 本原理是迈克尔逊千涉, 利用单一频率的激光(laser ) , 通过迈克尔逊千 涉, 根据千涉条纹强度来计算距离。 实际生产中, 节距总误差会因为机台 的激光稳定性变异、 温度及光量变化、 硬件出状况等原因出现测量不稳定 或者重大异常, 从而无法正确反映产品真实特性, 甚至误判曝光设备异 常, 造成重大生产异常。
薄膜晶体管液晶平板显示器工厂使用的精密测长机 TTP机台生产厂家 主要是 S社( SPRAY公司)和 V社(Valve, 维尔福软件公司) 。 两家的 曰常检测 ( Daity Check )和补正机制如下:
S t:
日常检测 ( Daily Check ) 方面: 在机台上方的恒温緩冲区 ( uffer ) 放置日常检测用的大片基板标准片, 由人员点击日常检测按钮, 机械臂 ( Robot )从恒温缓冲区搬大片基板标准片到机台中测量基板固定点位标 记 ( mark ) (一般是大板四角标记, 由工程师根据基板产品点位设定) , 量完再搬回恒温緩冲区。
自动补正方面: 机台使用整面非分割式的玻璃平台 (Glass b】e )做 基板载台, 在玻璃平台四个角处分别贴酎埋入十字标记, 机台在开启软件 做初始化 ( initialize ) 时, 抓取计算四个十字标记的坐标, 与初始设定值 比较, 自动计算并补正坐标系;
缺点: 日常检测无法做到全自动进行, 仍需工作人员点击按鈕进行操 作, 且涉及与机械臂端的特殊搬运规则设定, 较为繁瑣 (机械臂一般为不 同部门管控) ; 日常检测异常时无法第一时间报警和自动处理; 日常检测 异常出现时不便于确认是基板标准片变异还是机台异常; 自动#正只能在 手动开启软件初始化时进行, 无法定时, 全自动, 但生产中需要机台为自 动 (auto )模式, 一般不允许切换为手动或重启软件; 自动补正没有异常 报警和预防机制, 机台在发生温度异常或硬件异常时, 会出现错误补正的 重大风险。
V社:
日常检测方面: 在机台上方的恒温缓冲区放置日常检测用的大片基板 标准片, 由人员点击日常检测按钮, 机械臂从恒温缓冲区搬片到机台中测 量基板固定点位标记(一般是大板四角标记, 由工程师根据基板产品点位 设定) , 量完再搬回恒温緩沖区。
自动补正方面: 无自动补正:机制, 出现异常需补正时, 只能人.员手动 测量日常检测片后, 根据差值, 手动反复调整坐标系参数, 直至调整进规 格内;
缺点: 日常检测无法做到全自动进行, 钙需人员点击按钮搡作, 且涉 及与机械臂端的特殊搬运规则设定, 较为繁琐 (机械臂一般为不同部门管 控) ; 日常检测异常无法第一时间报警和自动处理; 日常检测异常出现时 不便于确认是基板标准片变异还是机台异常; 无自动朴正机制, 手动补正 时必须搬入大片基板标准片, 搡作繁瑣且耗费时间较长, 2-4 个小时, 对 人员的经验要求较高; 机台玻璃平台为多面分割拼接式, 平台标记并非如 S 社制作在玻璃平台上, 而是贴附在玻璃平台承载支架的试样架 (sample holder ) 上, 实际测试中, 该试样架位置不稳定, 导致标记坐标有士 Ιμιη 以上的位置变异, 使得测量值无法作为机台稳定性参考值, 更不能根据这 个测量值进行自动补正。 发明内容
本发明的目的在于提供一种测长机日常检测与自动补正方法, 其能方 便和准确地监控和提高测长机测量稳定性, 日常检测测量出现重大异常时 可第一时间报警告知操作人员确认处理, 最终提高产品节距总误差值的测 量稳定性。
为实现上述目的, 本发明提供一种测长机日常检测与自动#正方法, 包括以下步骤:
步骤 1、 在预设日常检测时间到达时, 判断机台运行状况;
步骤 2、 当机台处于空闲状态时, 則停止进片并转至步驟 3 ; 当机台 处于非空闲状态时, 则等到机台处于空闲状态时, 停止进片并转至步骤 步骤 3、 测量机台上用于承载基板的平台上对位标记的坐标值, 生成 平台测量数据档, 并将该测量得到的对位标记坐标值与预设标准坐标值进 行对比;
步骤 4、 如果测量的对位标记坐标值与预设标准坐标值之间的差异在 预定差异范围内, 则自动计算补正量, 并将该补正量更新到平台坐标系参 数档, 完成自动补正, 同时自动备份日平台坐标系参数档, 转至步骤 14; 如果测量的对位标记坐标值与预设标准坐标值之间的差异超出预定差异范 围, 则报警提示, 并转至步骤 5;
步骤 5。 根据预判的差异超出预定差异范围的原因, 作出继续自动补 正、 不自动补正或进行大片基板测量确认;
步骤 6、 当继续自动补正时, 转至步骤 7; 当不自动补正时, 转至步 骤 13 ; 当进行大片基板测量确认时, 转至步骤 8;
步骤 7、 根据步骤 3 中的平台测量数据档自动计算补正量, 并将该补 正量更新到平台坐标系参数档, 完成自动补正, 同时自动备份旧平台坐标 系参数档, 转至步骤 14;
步骤 8、 测量置于机台上用于承载基板的平台上的大片基板确认标记 的坐标值, 生成基板测量数据档, 并将该测量得到的确认标记坐标值与预 设确认坐标值进行对比;
步骤 9。 如果测量的确认标记坐标值与预设确认坐标值之间的差异在 预定差异范围内, 则根据步骤 3 中的平台测量数据档自动计算 正量, 并 将该补正量更新到平台坐标系参数档, 完成自动补正, 同时自动备份旧平 台坐标系参数档, 转至步骤 14; 如果测量的确认标记坐标值与预设确认坐 标值之间的差异超出预定差异范围, 则报警提示, 并转至步骤 10;
步骤 10、 根据预判的差异超出预定差异范围的原因, 作出继续自动补 正或不自动补正;
步骤 11、 当继续自动补正时, 转至步骤 12; 当不自动补正时, 转至 步骤 13 ;
步骤 12、 根据步骤 3中的平台测量数据档自动计算补正量, 并将该补 正量更新到平台坐标系参数档, 完成自动补正, 同时自动备份旧平台坐标 系参数档, 转至步骤 14;
步骤 13、 如果不需要自动补正, 转至步骤 14; 如果机台突发非常态 异常, 转至步骤 15 , 所述突发非常态异常包括 '机构偏移与温度异常;
步骤 14、 机台恢复进片功能, 正常使用, 机台日常检测与自动补正结 步骤 15、 提示处理机台突发非常态异常, 结束机台日常检测与自动补 正。
所述平台上的对位标记为 个 , 分别位于所述平台的四个角落位置, 所述对位标记呈 "十" 字形, 其线幅长为 500μηι〜励 0μπι, 宽为 20μιη 〜50μηι。
所述对位标记通过喷印或字幕器直接形成于平台上。
所述对位标记分别形成于粘贴板上, 再通过强力胶将该粘贴板贴附于 平台的相应位置。
所述对位标记由鉻或光刻胶形成; 当所述对位标记由光刻胶形成时, 其外表面形成有保护膜, 所述保护膜为铟锡氧化物层或硅层。
所述平台坐标系的建立包括以下步骤:
步骤 101、 将四个对位标记分别定义为第一、 第二、 第三及第四点, 且该第一与第四点对角设置, 第二与第三点对角设置, 测量该第一、 第 二、 第三及第四点的机械坐标值;
步骤 102、 计算第一与第三点连线的中点, 并标记为 Α点; 计算第二 与第四点连线的中点, 并标记为 B点;
步骤 103 计算 A点与 B点连线的中点, 并标记为 0点;
步骤 104、 以 O 点作为原点, 第三点朝向第一点的方向为 Y 轴正方 向, 第三点朝向第四点方向为 X轴正方向建立平台坐标系。
设第一、 第二、 第三及第四点的标准坐标值分别为 ( , Y{ ) 、
( Χ2, Υ2 ) 、 (Χ3 , Υ3 ) 、 (Χ4, Υ4 ) , 第一、 第二、 第三及第四点的测 量坐标值分别为 (X' 1 , Y' i ) 、 (X'2, Y'2 ) 、 ( Χ 3 , Υ'3 ) 、 ( χ 4 , γ'4 ) , 卜正量的计算 式为:
X轴方向的补正量 ΔΧ叫 X X' 厂 Xr - X 4 X4)/2-- ( ' 2— X2+ X'3 - X3 ) /2]
Y轴方向的补正量 Δ Υ—叫:( Υ'厂 Υ3+ Υ'4— Υ4)/2— ( Υ'广 Yj+ Υ 2— Υ2 ) /2] 直交度补正量 Δ θ-[( X' 3-- Χ3+ X 4- Χ4)/2 ( Χ'ι . [- X 2- Χ2 ) /2] 12。 所述步骤 8 中, 大片基板通过机械臂由恒温緩冲区搬运至平台上, 大 片基板测量确认完成后, 再通过机械臂由平台搬运至恒温缓冲区。
所述步骤 3中生成的测量数据档以日期时间的格式来命名。
所述测长机为 TFT-LCD精密测长机, 用于 TFT基板与 CF基板第一 层图形制作时曝光机曝光精度参数总节距误差的测量。
本发明还提^ Γ—种测长机日常检测与自动补正方法, 包括以下步骤: 步骤 1、 在预设日常检测时间到达时, 判断机台运行状况;
步骤 2、 当机台处于空闲状态时, 则停止进片并转至步骤 3 ; 当机台 处于非空闲状态时, 则等到机台处于空闲状态时, 停止进片并转至步驟
3 *
步骤 3、 测量机台上用于承载基板的平台上对位标记的坐标值, 生成 平台测量数据档, 并将该测量得到的对位标记坐标值与预设标准坐标值进 行对比;
步骤 4、 如果测量的对位标记坐标值与预设标准坐标值之间的差异在 预定差异范围内, 则自动计算补正量, 并将该补正量更新到平台坐标系参 数档, 完成自动补正, 同时自动备份旧平台坐标系参数档, 转至步骤 14; 如果测量的对位标记坐标值与預设标准坐标值之间的差异超出预定差异范 围, 则报警提示, 并转至步骤 5;
步骤 5、 根据预判的差异超出预定差异范围的原因, 作出继续自动补 正、 不自动补正或进行大片基板测量确认;
步骤 6、 当继续自动补正时, 转至步骤 7; 当不自动补正时, 转至步 骤 13 ; 当进行大片基板测量确认时, 转至步骤 8;
步糠 7、 根据步骤 3 中的平台测量数据档自动计算补正量, 并将该补 正量更新到平台坐标系参数档, 完成自动补正, 同时自动备份旧平台坐标 系参数档, 转至步驟 14;
步骤 8、 测量置于机台上用于承载基板的平台上的大片基板确认标记 的坐标值, 生成基板测量数据档, 并将该测量得到的确认标记坐标值与预 设确认坐标值进行对比;
步骤 9、 如果测量的确认标记坐标值与预设确认坐标值之间的差异在 预定差异范围内, 则根据步骤 3 中的平台测量数据档自动计算补正量, 并 将该补正量更新到平台坐标系参数档, 完成自动补正, 同时自动备份旧平 台坐标系参数档, 转至步骤 14; 如果测量的确认标记坐标值与预设确认坐 标值之间的差异超出预定差异范围, 则报警提示, 并转至步骤 10;
步骤 10、 根据预判的差异超出预定差异范围的原因, 作出继续自动补 正或不自 -动^卜 j£ ;
步骤 11、 当继续自动补正时, 转至步骤 12 ; 当不自动补正时, 转至 步骤. 13 ;
步骤 12、 根据步驟 3中的平台测量数据档自动计算补正量, 并将该补 正量更新到平台坐标系参数档, 完成自动补正, 同时自动备份旧平台坐标 系参数档, 转至步骤 14; 步骤 13, 如果不需要自动补正, 转至步骤 14; 如果机台突发非常态 异常, 转至步骤 15, 所述突发非常态异常包括机构偏移与温度异常;
步骤 14、 机台恢复进片功能, 正常使用, 机台日常检测与自动补正结 束;
步骤 15、 提示处理机台突发非常态异常, 结束机台日常检测与自动补 正;
其中, 所述平台上的对位标记为四个, 分别位于所述平台的四个角落 位置, 所述对位标记呈 "十" 字形, 其线幅长为 500μη^1000μηι, 宽为 20μηι〜50μιτι;
其中, 所述对位标记通过喷印或字幕器直接形成于平台上;
其中, 所述对位标记由铬或光刻胶形成; 当所述对位标记由光刻胶形 成时, 其外表面形成有保护膜, 所述保护膜为铟锡氧化物层或硅层;
其中, 所述平台坐标系的建立包括以下步骤:
步骤 101, 将四个对位标记分别定义为第一, 第二、 第三及第四点, 且该第一与第四点对角设.置, 第二与第三点对角设.置, 测量该第一、 第 二、 第三及第四点的机械坐标值;
步骤 102, 计算第一与第三点连线的中点, 并标记为 Α点; 计算第二 与第四点连线的中点, 并标记为 B点;
步骤 103、 计算 A点与 B点连线的中点, 并标记为 0点;
步骤 104、 以 Ο 点作为原点, 第三点朝向第一点的方向为 Υ 轴正方 向, 第三点朝向第四点方向为 X轴正方向建立平台坐标系;
其中, 设第一、 第二、 第三及第四点的标准坐标值分别为 (Xf, Υί ) 、 (Χ2, Υ2 ) 、 (Χ3, Υ3 ) 、 (χ4, Υ4) , 第一、 第二、 第三及第四 点的测量坐标值.分别为 (X' i , Y'i ) ' (Χ'2, Υ'2 ) 、 (Χ'3, Υ'3 ) , (Χ4, Υ'4) , 补正量的计算公式为:
X轴方向的补正量 ΔΧ叫:( X'厂 X ' '4~ Χ4)/2~ ( Χ' 2~ Χ2+ Χ':厂 ¾ ) /2]
Υ轴方向的补正量△ Υ=[( Υ' 3 - Υ3+ Υ'4 Υ4)/2-- ( Υ'Γ- ΥΙ+- Υ2 Υ2 ) /2]
/2;
直交度补正量 Δ θ=[( X' 3— Χ3+ X 4. Χ4)/2-- ( X、- Xr- X 2— Χ2 ) /2] 12; 其中, 所述步驟 8 中, 大片基板通过机械臂由恒温缓冲区搬运至平台 上, 大片基板测量确认完成后, 再通过机械臂由平台搬运至恒温緩冲区; 其中, 所述步骤 3中生成的测量数据档以日期时间的格式来命名; 其中, 所述测长机为 TFTTLCD精密测长机, 用于 TFT基板与 CF基 板第一层图形制作时曝光机曝光精度参数总节距误差的测量。
本发明的有益效果: 本发明的测长机日常检测与自动补正方法, 通过 平台与大片基板结合的自动日常检测以及自动补正设计, 高效和完善地进 行日常检测, 提高了精密测长机的节距总误差测量稳定性, 同时便于管 控, 日常检测测量时出现异常亦可及时提醒操作人员确认处理, 最终提高 产品节距总误差值的测量稳定性。
为了能更进一步了解本发明的特征以及技术内容, 请参阅以下有关本 发明的详细说明与酎图, 然而附图仅提供参考与说明用, 并非用来对本发 明加以限制。 附图说明
下面结合附图, 通过对本发明的具体实施方式详细描述, 将使本发明 的技术方案及其它有益效果显而易见
附图中,
图 1为本发明测长机日常检测与自动补正方法的流程图;
图 2为本发明测长机日常检测与自动补正方法建立平台坐标系的流程 图;
图 3 为本发.明测长机日常检测与自动补正方法中平台坐标系的建立示 意图。 具体实旅方式
为更进一步阐述本发明所采取的技术手段及其效果, 以下结合本发明 的优选实施例及其附图进行、详细描述。
请参阅图 1 及图 3 , 本发明提供一种测长机日常检测与自动补正方 法, 包括以下步骤:
步骤 1、 在预设日常检测时间到达时, 判断机台运行状况。
预先设置日常检测时间, 当到达该預设日常检测时间时, 软件自动启 动日常检测功能, 然后判断当前机台的运行状况, 所述机台运行状况包括 空闲状态与非空闲状态。
步骤 2、 当机台处于空闲状态时, 則停止进片并转至步骤 3 , 当机台 处于非空闲状态时, 则等到机台处于空闲状态时, 停止进片并转至步骤 3。
步骤 3、 测量机台上用于承载基 £的平台 20上对位标记的坐标值, 生 成平台测量数据档, 并将该测量得到的对位标记坐标值与预设标准坐标值 进.4亍对比。
所述测量数据档按照日期时间的格式命名保存, 以便后续查看或调 用。
所述平台 20上的对位标记为四个, 分别位于所述平台 20的四个角落 位置, 所述对位标记呈 "十" 字形, 其线幅长为 500μιη〜1000μϊη, 宽为 20μπι〜'50μιτι。
所述对位标记优选通过喷印或字幕器 (TMer ) 直接形成于平台 20 上。 所述对位标记还可以分别形成于粘贴板上, 再通过强力胶将该粘贴板 贴 于平台 20 上, 优选将对位标记形成于玻璃片上。 在本实施例中, 所 述对位标记由铬( Cr )或光刻胶形成, 当所述对位标记由光刻胶形成时, 其外表面形成有保护膜, 所述保护膜为铟锡氧化物 (ΙΤΌ )层或硅(Si ) 层。
所述预设标准坐标值为在平台坐标系下测量的对位标记, 其预先存储 于机台内。 请参阅图 2 及图 3 , 其平台坐标系的建立具体可包括如下步 骤:
步骤 101、 将四个对位标记分别定义为第一、 第二、 第三及第四点 22、 24、 26、 28 , 且该第一与第四点 22、 28 对角设置, 第二与第三点 24. 26 对角设置 (如图 3 所示) , 测量该第一、 第二、 第三及第四点的 22、 24。 26、 28 械坐标值。
步骤 102、 计算第一与第三点 22、 26连线的中点, 并标记为 A点; 计算第二与第四点 24、 28连线的中点, 并标记为 B点。
步骤 103 计算 A点与 B点连线的中点, 并标记为 0点。
步骤 104、 以 0点作为原点, 第三点 26朝向第一点 22的方向为 Y軸 正方向, 第三点 26朝向第四点 28方向为 X轴正方向建立平台坐标系。
步骤 4、 如果测量的对位标记坐标值与标准坐标值之间的差异在预定 差异范围内, 則自动计算补正量, 并将该补正量更新到平台坐标系参数 档, 完成自动补正, 同时自动备份旧平台坐标系参数档, 转至步骤〗 4; 如 果测量的对位标记坐标值与标准坐标值之间的差异超出预定差异范围, 则 进行报警提示, 并转至步骤 5。
自动备份旧平台坐标系参数档, 可以用于异常时进行还原。
为了能清楚的说明, 现设第 、 第二、 第三及第四点 22、 24、 26、 28 的标准坐标值分别为 (― X!, Y,;) 、 ( X2 , Y2 ) 、 ( Χ-3 , Υ3 ) 、 ( Χ4, Υ4 ) , 第一、 第二、 第三及第四点 22、 24、 26、 28 的测量对位标记坐标 值分别为 (X' Y ) 、 ( Χ'2, Υ'2 ) 、 ( Χ':ν Υ'3 ) 、 (Χ'4 , Υ'4 ) , 那么 补正量的计算公式为:
X轴方向的补正量 ΔΧ叫 X X' 厂 Xr - X 4 X4)/2-- ( ' 2— X2+ X'3 - X3 ) /2]
/2;
Y轴方向的补正量△ Y=[( Y' 3— Y3+ Υ'4 Υ4)/2— ( Υ'广 Yi+ Υ 2— Υ2 ) 12} 直交度补正量 Δ θ-[( X' χ- Χ3+ X 4- Χ4)/2--
Figure imgf000011_0001
ί- X 2- Χ2 ) /2] 12。 所述预定差异范围一般为 ± 0。5μιη, 其可根据实际生产需要进行适当 调整》
在本步骤中, 如杲测量的对位标记坐标值与预设标准坐标值之间的差 异超出预定差异范围, 則进行报警提示, 并弹出选项窗口, 同时显示差 值, 待操作人员确认, 日常检测测量时出现异常亦可及时提醒操作人员确 认处理, 便于管控, 显示差值, 更为直观、 人性化设计, 且可以有效地提 步骤 5、 根据预判的差异超出预定差异范围的原因, 作出继续自动补 正。 不自动补正或进行大片基板测量确认。
该三项处理措施(继续自动补正、 不自动补正及进行大片基板测量) 均需要操作人员提供账户和密码, 登录权限才能完成操作, 可以防止误操 作, 提高安全性。
步骤 6。 当继续自动补正时, 转至步骤 7; 当不自动补正时, 转至步 骤 3; 当进行大片基板测量确认时, 转至步骤 8。
操作人员根据预判的差异超出预定差异范围的原因, 登录权限后, 选 择相应的操作项, 当差异超出预定差异范围稍小时, 可选择继续自动补 正; 当预判差异超出预定差异范围的原因为机台突发非常态异常 (如机构 偏移、 温度异常等) 时, 不可进行错误补正, 需退出整个流程, 工程师再 进行 ^几况处理。
步骤 7、 根据步骤 3 中的平台测量数据档自动计算补正量, 并将该补 正量更新到平台坐标系参数档, 完成自动补正, 同时自动备份旧平台坐标 系参数档, 转至步骤 14。
步糠 8、 测量置于机台上用于承载基板(未图示) 的平台 20上的大片 基板确认标记的坐标值, 生成基板测量数据档, 并将该测量得到的确认标 记坐标值与预设确认坐标值进行对比。
所述大片基板(未图示) 包括基片及设置于基片 个角落位置的 个 确认标记, 所述大片基板的四个确认标记优选靠近平台 20 的四个对位标 记, 所述确认标记的形成与上述对位标记的方式相同。 所述预设确认坐标值为在大片基板的坐标系下测量的四个确认标记的 坐标值, 所述大片基板的坐标系的建立与平台坐标系的建立方式相同, 在 此不作赘述, 所述大片基板的坐标系与预定确认坐标值均存储与机台内。
在本步骤中, 大片基板通过机械臂 (未图示) 由恒温缓冲区 (未图 示)搬运至平台 20 上, 大片基板测量确认完成后, 再通过机械臂由平台 20搬运至恒温緩沖区。
步骤 9、 如果测量的确认标记坐标值与预设确认坐标值之间的差异在 预定差异范围内, 則根据步骤 3 中的平台测量数据档自动计算补正量, 并 将该补正量更新到平台坐标系参数档, 完成自动补正, 同时自动备份旧平 台坐标系参数档, 转至步骤〗4; 如果测量的确认标记坐标值与预设确认坐 标值之间的差异超出预定差异范围, 则报警提示, 并转至步骤 10。
步骤 10、 根据预判的差异超出预定差异范围的原因, 作出继续自动补 正或不自动补正。
步骤 11、 当继续自动补正时, 转至步骤 12; 当不自动补正时, 转至 步骤 13。
步骤 12、 根据步骤 3中的平台测量数据档自动计算补正量, 并将该补 正量更新到平台坐标系参数档, 完成自动补正, 同时自动备份旧平台坐标 系参数档, 转至步骤 14。
步骤 13、 如果不需要自动补正, 转至步骤 14; 如果机台突发非常态 异常, 转至步骤 15 , 所述突发非常态异常包括 '机构偏移与温度异常。
步骤 14、 机台恢复进片功能, 正常使用, 机台日常检测与自动补正结 步骤 15、 提示处理机台突发非常态异常, 结束机台日常检测与自动补 正。
值得一提的是: 机台内的软件中设置日常检测监控趋势图, 自动读取 每天的测量数据, 人员可查看并保存指定日期区闾的日常检测监测量数据 变化趋势图, 便于管控和分析机台的稳定性。
本发明中的测长机可以为薄膜晶体管液晶平板显示器精密测长机, 用 于薄膜晶体管基板与彩色滤光片基板第一层图形制作时曝光机曝光精度参 数总节距误差的量测„
综上所述, 本发明的测长机日常检测与自动补正方法, 通过平台与大 片基板结合的自动日常检测以及自动补正设计, 高效和完善地进行日常检 测, 提高了精密测长机的节距总误差测量稳定性, 同时便于管控, 日常检 测测量时出现异常亦可及时提醒操作人员确认处理, 最终提高产品节距总 误差值的测量稳定性„
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形, 而所有这些改变和变形 都应属于本发明权利要求的保护范围。

Claims

权 利 要 求
】、 一种测长机日常检测与自动补正方法, 包括以下步骤:
步骤 1、 在预设日常检测时间到达时, 判断机台运行状况;
步骤 2、 当机台处于空闲状态时, 則停止进片并转至步骤 3 ; 当机台 处于非空闲状态时, 则等到机台处于空闲状态时, 停止进片并转至步骤 3 ;
步骤 3。 测量机台上用于承载基板的平台上对位标记的坐标值, 生成 平台测量数据档, 并将该测量得到的对位标记坐标值与预设标准坐标值进 4亍.对比;
步 4、 如果测量的对位标记坐标值与预设标准坐标值之间的差异在 预定差异范围内, 则自动计算补正量, 并将该补正量更新到平台坐标系参 数档, 完成自动补正, 同时自动备份;曰平台坐标系参数档, 转至步骤 14; 如果测量的对位标记坐标值与预设标准坐标值之间的差异超出预定差异范 围, 则报警提示, 并转至步骤 5;
步骤 5、 根据预判的差异超出预定差异范围的原因, 作出继续自动补 正、 不自动补正或进行大片基板测量确认;
步骤 6。 当继续自动补正时, 转至步骤 7; 当不自动补正时, 转至步 骤 3 ; 当进行大片基板测量确认时, 转至步骤 8;
步骤 7、 根据步骤 3 中的平台测量数据档自动计算补正量, 并将该补 正量更新到平台坐标系参数档, 完成自动补正, 同时自动备份旧平台坐标 系参数档, 转至步骤 14;
步骤 8、 测量置于机台上用于承载基板的平台上的大片基板确认标记 的坐标值, 生成基.板测量数据档, 并将该测量得到的确认标记坐标值与预 设确认坐标值进行对比;
步骤 9、 如果测量的确认标记坐标值与预设确认坐标值之间的差异在 预定差异范围内, 則根据步骤 3 中的平台测量数据档自动计算#正量, 并 将该补正量更新到平台坐标系参数档, 完成自动补正, 同时自动备份旧平 台坐标系参数档, 转至步骤 14; 如果测量的确认标记坐标值与预设确认坐 标值之间的差异超出预定差异范围, 则报警提示, 并转至步骤 10;
步骤 10。 根据预判的差异超出预定差异范围的原因, 作出继续自动补 正或不自动补正;
步骤 11 , 当继续自动补正时, 转至步骤 12; 当不自动补正时, 转至 步骤 12、 根据步骤 3中的平台测量数据档自动计算补正量, 并将该补 正量更新到平台坐标系参数档, 完成自动补正, 同时自动备份旧平台坐标 系参数档, 转至步骤 14;
步骤 13、 如果不需要自动补正, 转至步骤 14; 如果机台突发非常态 异常, 转至步骤 15, 所述突发非常态异常包括机构偏移与温度异常;
步骤 14、 机台恢复进片功能, 正常使用, 机台日常检测与自动补正结 束;
步骤 15、 提示处理机台突发非常态异常, 结束机台日常检测与自动补 正。
2、 如权利要求 1 所述的测长机日常检测与自动朴正方法, 其中, 所 述平台上的对位标记为四个, 分别位于所述平台的 个角落位置, 所述对 位标记呈 "十" 字形, 其线幅长为 500μηι〜1000μπι, 宽为 20μηι〜50μπι。
3、 如权利要求 2 所述的测长机日常 r测与自动补正方法, 其中, 所 述对位标记通过喷印或字幕器直接形成于平台上。
4、 如权利要求 2 所述的测长机日常检测与自动补正方法, 其中, 所 述对位标记分别形成于粘贴板上, 再通过强力胶将该粘贴板贴附于平台的 相应位置。
5、 如权利要求 2 所述的测长机日常检测与自动补正方法, 其中, 所 述对位标记由铬或光刻胶形成; 当所述对位标记由光刻胶形成时, 其外表 面形成有保护膜, 所述保护膜为铟锡氧化物层或硅层。
6、 如权利要求 2 所述的测长机日常检测与自动补正方法, 其中, 所 述平台坐标系的建立包括以下步骤:
步骤 101 > 将四个对位标记分别定义为第一, 第二、 第三及第四点, 且该第一与第四点对角设.置, 第二与第三点对角设.置, 测量该第一、 第 二、 第三及第四点的机械坐标值;
步骤 102、 计算第一与第三点连线的中点, 并标记为 A点; 计算第二 与第四点连线的中点, 并标记为 B点;
步骤 103 计算 A点与 B点连线的中点, 并标记为 0点;
步骤 104、 以 O 点作为原点, 第三点朝向第一点的方向为 Y 轴正方 向, 第三点朝向第四点方向为 X轴正方向建立平台坐标系。
7、 如权利要求 6 所述的测长机日常检测与自动 正方法, 其中, 设 第一、 第二、 第三及第四点的标准坐标值分别为 ( , Yj ) 、 ( Χ2 , Υ2 ) 、 ( Χ3, Υ3 ) 、 ( , Υ4 ) , 第一、 第二、 第三及第四点的测量坐标
13 值分别为 (X' i ,
Figure imgf000016_0001
) 、 (Χ'2 , Υ'2 ) 、 (Χ'3 , Υ'3 ) 、 (χ'4 , Υ 4 ) , 补正 量的计算公式为:
X轴方向的补正量 Δ Χ=[( X' 厂 Χ,+ X 4 Χ4)/2— ( Χ' 2— Χ2+— Χ'3— ¾ ) /2] η '
Υ轴方向的补正量△ Υ=[( Υ' 3— Υ3+ Υ 4— Υ4)Ζ2— ( Υ'厂 ΥΊ+ Υ'2— Υ2 ) /2] η '
直交度补正量 Δ θ叫 X Χ' 3— Χ3+ X - Χ4)/2-- ( Χ'Γ Χι+- Χ'2 . Χ2 ) /2] 12 α
8、 如权利要求 1 所述的测长机日常检测与自动补正方法, 其中, 所 述步骤 8 中, 大片基板通过机械臂由恒温緩沖区搬运至平台上, 大片基板 测量确认完成后, 再通过机械臂由平台搬运至恒温缓冲区。
9、 如权利要求 1 所述的测长机日常检测与自动朴正方法, 其中, 所 述步骤 3中生成的测量数.据档以日期时间的格式来命名。
10、 如权利要求 1 所述的测长机日常检测与自动补正方法, 其中, 所 述测长机为 TFTXCD精密测长机, 用于 TFT基板与 CF基板第一层图形 制作时曝光机曝光精度参数总节距误差的测量。
1 一种测长机日常检测与自动补正方法, 包括以下步骤:
步糠 1、 在预设日常检测时间到达时, 判断机台运行状况;
步骤 2、 当机台处于空闲状态时, 則停止进片并转至步骤 3 ; 当机台 处于非空闲状态时, 则等到机台处于空闲状态时, 停止进片并转至步骤 3 ;
步骤 3、 测量机台上用于承载基板的平台上对位标记的坐标值, 生成 平台测量数据档, 并将该测量得到的对位标记坐标值与预设标准坐标值进 行'对比;
步骤 4、 如果测量的对位标记坐标值与预设标准坐标值之间的差异在 预定差异范围内, 则自动计算补正量, 并将该补正量更新到平台坐标系参 数档, 完成自动补正, 同时自动备份旧平台坐标系参数档, 转至步骤 14; 如果测量的对位标记坐标值与预设标准坐标值之间的差异超出预定差异范 围, 则报警提示, 并转至步骤 5;
步骤 5、 根据预判的差异超出预定差异范围的原因, 作出继续自动补 正、 不自动补正或进行大片基板测量确认;
步骤 6。 当继续自动补正时, 转至步骤 7; 当不自动补正时, 转至步 骤 3 ; 当进行大片基板测量确认时, 转至步骤 8;
步骤 7、 根据步骤 3 中的平台测量数据档自动计算补正量, 并将该补 正量更新到平台坐标系参数档, 完成自动补正, 同时自动备份旧平台坐标 系参数档, 转至步骤 14;
步骤 8、 测量置于机台上用于承载基板的平台上的大片基板确认标记 的坐标值, 生成基.板测量数据档, 并将该测量得到的确认标记坐标值与预 设确认坐标值进行对比;
步骤 9、 如果测量的确认标记坐标值与预设确认坐标值之间的差异在 预定差异范围内, 則根据步骤 3 中的平台测量数据档自动计算#正量, 并 将该补正量更新到平台坐标系参数档, 完成自动补正, 同时自动备份 i曰平 台坐标系参数档, 转至步骤 14; 如果测量的确认标记坐标值与预设确认坐 标值之间的差异超出预定差异范围, 则报警提示, 并转至步骤 10;
步骤 10、 根据预判的差异超出预定差异范围的原因, 作出继续自动补 正或不自动补正;
步骤 11 , 当继续自动补正时, 转至步骤 12; 当不自动补正时, 转至 步骤 13;
步骤 12、 根据步骤 3中的平台测量数据档自动计算补正量, 并将该补 正量更新到平台坐标系参数档, 完成自动补正, 同时自动备份旧平台坐标 系参数档, 转至步骤 14;
步骤 13、 如果不需要自动补正, 转至步骤 14; 如果机台突发非常态 异常, 转至步骤 15 , 所述突发非常态异常包括机构偏移与温度异常;
步骤 14、 机台恢复进片功能, 正常使用, 机台日常检测与自动补正结 束;
步骤 15、 提示处理机台突发非常态异常, 结束^台日常检测与自动补 正;
其中, 所述平台上的对位标记为四个, 分别位于所述平台的四个角落 位置, 所述对位标记呈 "十" 字形, 其线幅长为 500μηι~1000μπι, 宽为 20μιπ〜5ί)μηι;
其中, 所述对位标记通过喷印或字幕器直接形成于平台上;
其中, 所述对位标记由铬或光刻胶形成; 当所述对位标记由光刻胶形 成时, 其外表面形成有保护膜, 所述保护膜为铟锡氧化物层或硅层;
其中, 所述平台坐标系的建立包括以下步骤:
步骤 101、 将四个对位标记分别定义为第一、 第二、 第三及第四点, 且该第一与第 点对角设置, 第二与第三点对角设置, 测量该第一、 第 二、 第三及第四点的机械坐标值;
步骤 102、 计算第一与第三点连线的中点, 并标记为 Α点; 计算第二 与第四点连线的中点, 并标记为 B点; 步骤 103、 计算 A点与 B点连线的中点 , 并标记为 0点; 步骤 104、 以 O 点作为原点, 第三点朝向第一点的方向为 Y轴正方 向, 第三点朝向第四点方向为 X轴正方向建立平台坐标系;
其中, 设第一、 第二、 第三及第四点的标准坐标值分别为 ( , Ύι ) 、 (Χ2, Υ2 ) 、 (¾, Υ3 ) 、 (¾, Υ4 ) , 第一、 第二、 第三及第四 点的测量坐标值分别为 (Χ' ί, Υ'ι ) 、 ( Χ'2, Υ'2 ) 、 (Χ'3, Υ'3 ) 、 (Χ4, Υ'4) , 补正量的计算公式为:
X轴方向的补正量 Δ X叫 :( X'厂 Χι+ Χ'4-- X4)/2-- ( X' 2.-- Χ2+' X — X3 ) /2]
/2;
Y轴方向的补正量△ Υ=[( Υ':厂 Υ3+ Υ 4— Υ4)Ζ2— ( Υ'厂 ΥΊ+ Υ'2— Υ2 ) /2] η'
直交度补正量 Δ θ=[( X' 3'- Χ3+- Χ'4 . Χ4)/2 -- ( X - Χι+ XV- Χ2 ) /2] 12: 其中, 所述步骤 8 中, 大片基板通过机械臂由恒温缓冲区搬运至平台 上, 大片基板测量确认完成后, 再通过机械臂由平台搬运至恒温缓沖区; 其中, 所述步骤 3中生成的测量数据档以日期时间的格式来命名; 其中, 所述测长机为 TFT-LCD精密测长机, 用于 TFT基板与 CF基 板第一层图形制作时曝光机曝光精度参数总节距误差的测量。
PCT/CN2013/078249 2013-05-24 2013-06-28 测长机日常检测与自动补正方法 WO2014187012A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/003,041 US9470518B2 (en) 2013-05-24 2013-06-28 Daily checking and calibrating method of length measuring machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310198726.6 2013-05-24
CN201310198726.6A CN103292709B (zh) 2013-05-24 2013-05-24 测长机日常检测与自动补正方法

Publications (1)

Publication Number Publication Date
WO2014187012A1 true WO2014187012A1 (zh) 2014-11-27

Family

ID=49093973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078249 WO2014187012A1 (zh) 2013-05-24 2013-06-28 测长机日常检测与自动补正方法

Country Status (3)

Country Link
US (1) US9470518B2 (zh)
CN (1) CN103292709B (zh)
WO (1) WO2014187012A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945789A (zh) * 2019-04-08 2019-06-28 安庆帝伯粉末冶金有限公司 一种气门导管尺寸检查装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292709B (zh) 2013-05-24 2015-09-09 深圳市华星光电技术有限公司 测长机日常检测与自动补正方法
CN103529652B (zh) * 2013-10-23 2015-04-15 深圳市华星光电技术有限公司 一种精密测长机中冷却缓冲机构的进出片控制方法及装置
CN103673897B (zh) * 2013-12-10 2015-05-06 深圳市华星光电技术有限公司 垫料高度测量机自动补正方法及系统
CN103743318B (zh) * 2013-12-30 2017-08-25 深圳市华星光电技术有限公司 探针膜厚测量机坐标补正方法及装置
CN104165701B (zh) * 2014-08-27 2017-02-15 福建星网锐捷网络有限公司 一种电子器件散热异常的检测方法及装置
EP3032227B1 (en) 2014-12-08 2020-10-21 Sensirion AG Flow sensor package
CN104894510B (zh) 2015-05-25 2017-06-16 京东方科技集团股份有限公司 用于制作掩模集成框架的对位方法及系统
CN105549233A (zh) * 2016-01-26 2016-05-04 武汉华星光电技术有限公司 精密测长机的校准片构造及其制作方法
US10339817B1 (en) 2016-09-07 2019-07-02 Rockwell Collins, Inc. Flight management system and flight plan alert integration systems and methods
CN106814479B (zh) * 2017-01-11 2019-07-16 昆山国显光电有限公司 一种面板缺陷位置的偏移补偿方法、装置及系统
CN106679570A (zh) * 2017-02-23 2017-05-17 苏州坤镥光电科技有限公司 Oled平面显示行业大尺寸超精密全自动坐标量测设备
CN107621245B (zh) * 2017-09-06 2019-12-31 深圳市华星光电技术有限公司 一种量测机点位自动补正方法及装置
CN112230522B (zh) * 2018-12-25 2022-06-07 福建华佳彩有限公司 基于测长仪的提升tft-lcd面板对组精度的方法
US10576636B1 (en) * 2019-04-12 2020-03-03 Mujin, Inc. Method and control system for and updating camera calibration for robot control
CN113654497A (zh) * 2020-05-12 2021-11-16 广州汽车集团股份有限公司 测量装置和利用测量装置的测量方法
CN114481313A (zh) * 2022-01-20 2022-05-13 厦门士兰集科微电子有限公司 一种外延生长温度测量方法以及外延设备温度校准方法
CN117537758B (zh) * 2023-11-27 2024-04-09 宿迁市计量测试所 一种在线薄膜测长仪的校准方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164590A (ja) * 2010-01-14 2011-08-25 Nsk Ltd 露光装置及び露光方法
WO2012053402A1 (ja) * 2010-10-19 2012-04-26 シャープ株式会社 蒸着装置、蒸着方法、並びに、有機エレクトロルミネッセンス表示装置の製造方法
CN102692831A (zh) * 2012-05-28 2012-09-26 京东方科技集团股份有限公司 对位标识及在曝光工艺中采用该对位标识制作工件的方法
CN103075970A (zh) * 2012-12-27 2013-05-01 深圳市华星光电技术有限公司 测长装置直交度补偿方法及使用该方法的测长装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19534535C2 (de) * 1995-09-18 2000-05-31 Leitz Mestechnik Gmbh Koordinatenmeßmaschine
JP3946716B2 (ja) * 2004-07-28 2007-07-18 ファナック株式会社 ロボットシステムにおける3次元視覚センサの再校正方法及び装置
US8037736B2 (en) * 2008-01-14 2011-10-18 International Business Machines Corporation Non-linearity determination of positioning scanner of measurement tool
US7752003B2 (en) * 2008-06-27 2010-07-06 Hexagon Metrology, Inc. Hysteresis compensation in a coordinate measurement machine
US8219353B2 (en) * 2009-01-30 2012-07-10 Axiam, Inc. Absolute diameter measurement arm
JP5663192B2 (ja) * 2010-04-30 2015-02-04 オリンパス株式会社 処理装置、座標補正方法および座標補正プログラム
CN102998824B (zh) * 2012-12-10 2016-01-13 深圳市华星光电技术有限公司 彩色滤光片穿透频谱量测偏差补正系统和方法
CN103292709B (zh) 2013-05-24 2015-09-09 深圳市华星光电技术有限公司 测长机日常检测与自动补正方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164590A (ja) * 2010-01-14 2011-08-25 Nsk Ltd 露光装置及び露光方法
WO2012053402A1 (ja) * 2010-10-19 2012-04-26 シャープ株式会社 蒸着装置、蒸着方法、並びに、有機エレクトロルミネッセンス表示装置の製造方法
CN102692831A (zh) * 2012-05-28 2012-09-26 京东方科技集团股份有限公司 对位标识及在曝光工艺中采用该对位标识制作工件的方法
CN103075970A (zh) * 2012-12-27 2013-05-01 深圳市华星光电技术有限公司 测长装置直交度补偿方法及使用该方法的测长装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENG, DAN;: "Alignment Method of Multi-Layer Imprint Lithography Based on Principle of Moiré Interference", JOURNAL OF TIANJING UNIVERSITY OF TECHNOLOGY AND EDUCATION, vol. 18, no. 1, March 2008 (2008-03-01), pages 17 - 20 *
LI, XIAOPENG ET AL.: "A Type of New Base Plate Positioning Way Based on Touch Screen Production", ADVANCED DISPLAY, September 2011 (2011-09-01), pages 34 - 37 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945789A (zh) * 2019-04-08 2019-06-28 安庆帝伯粉末冶金有限公司 一种气门导管尺寸检查装置
CN109945789B (zh) * 2019-04-08 2024-05-28 安庆帝伯粉末冶金有限公司 一种气门导管尺寸检查装置

Also Published As

Publication number Publication date
CN103292709A (zh) 2013-09-11
US20150143871A1 (en) 2015-05-28
CN103292709B (zh) 2015-09-09
US9470518B2 (en) 2016-10-18

Similar Documents

Publication Publication Date Title
WO2014187012A1 (zh) 测长机日常检测与自动补正方法
US8965552B2 (en) Method and a device for titling
KR102472595B1 (ko) 기판 처리 장치 및 기판 처리 방법
JP2010044037A (ja) ペーストディスペンサーのノズルの吐出口とレーザー変位センサーの結像点の位置測定装置及びその方法{positiondetectionapparatusandmethodfordetectingpositionsofnozzleorrificeandopticalpointoflaserdisplacementsensorofpastedispenser}
EP2735905B1 (en) Double-surface manufacturing method and exposure apparatus
JP2009224806A5 (zh)
TW200304016A (en) Substrate laminating apparatus and method thereof and substrate detecting apparatus
JP2007019139A (ja) フィードバック補正方法および装置、部品実装方法および装置、部品実装システム
WO2016107080A1 (zh) 对位设备及对位方法
US20160185096A1 (en) Vacuum lamination machine suitable for all generations and operation method thereof
CN103743318A (zh) 探针膜厚测量机坐标补正方法及装置
JP2009125905A (ja) 基板加工機の運転制御方法
CN104503112A (zh) 阵列基板的修补方法及其系统
TWI616268B (zh) 控制多軸件平台設備的設備及方法
CN205220075U (zh) 一种标识码打印装置
KR20110019990A (ko) 기판 정렬 방법
WO2020147569A1 (zh) 彩色滤光片隔垫物的修补方法以及装置
JP4907478B2 (ja) 部品取付方法
CN104297147B (zh) 基板划伤程度的检测装置及其检测方法、检测系统
KR20110130064A (ko) 액정표시장치의 제조방법
WO2020103222A1 (zh) 显示面板的检测方法和检测设备
WO2020082717A1 (zh) 曝边机及基板曝边方法
TWI644802B (zh) 印刷方法及印刷裝置
KR101060653B1 (ko) 기판 이송 장치, 기판 이송 방법 및 이를 이용한 기판 합착장치
TW202006363A (zh) 探針卡更換後機構位置之補正方法及其量測裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14003041

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885100

Country of ref document: EP

Kind code of ref document: A1