WO2014185068A1 - 酸素を発生させる方法、水の電気分解装置および陽極 - Google Patents

酸素を発生させる方法、水の電気分解装置および陽極 Download PDF

Info

Publication number
WO2014185068A1
WO2014185068A1 PCT/JP2014/002543 JP2014002543W WO2014185068A1 WO 2014185068 A1 WO2014185068 A1 WO 2014185068A1 JP 2014002543 W JP2014002543 W JP 2014002543W WO 2014185068 A1 WO2014185068 A1 WO 2014185068A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
copper
cathode
delafossite compound
chemical formula
Prior art date
Application number
PCT/JP2014/002543
Other languages
English (en)
French (fr)
Inventor
麗子 谷口
豊田 健治
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2014550565A priority Critical patent/JP5793655B2/ja
Priority to EP14789503.1A priority patent/EP2843085A4/en
Priority to US14/530,884 priority patent/US20150225863A1/en
Publication of WO2014185068A1 publication Critical patent/WO2014185068A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method for generating oxygen and a water electrolysis apparatus.
  • Patent Document 1 has the chemical formula ABO 2 (where A represents platinum, palladium, silver, or cobalt, and B represents chromium, iron, cobalt, rhodium, aluminum, gadolinium, scandium, indium, thallium, lead, ruthenium, Or a method for generating chlorine by electrolyzing sodium chloride using an anode having a delafossite compound represented on the surface thereof.
  • Patent Document 1 does not disclose any method for generating oxygen.
  • the present inventors electrolyzed water to generate oxygen using various copper delafossite compounds. As a result, almost all copper delafossite compounds were not suitable for water electrolysis due to their large overvoltage.
  • An object of the present invention is to provide a method for efficiently generating oxygen by electrolysis of water using a copper delafossite compound as an anode.
  • the object of the present invention is also to provide a water electrolysis apparatus suitable for the method.
  • the present invention is a method for generating oxygen comprising the following steps: (A) preparing a water electrolysis apparatus comprising: container, Power supply, anode, The cathode, and the aqueous electrolyte solution, where The anode and the cathode are in contact with the aqueous electrolyte solution;
  • the anode has a copper rhodium delafossite compound represented by the chemical formula CuRhO 2 ;
  • the copper rhodium delafossite compound is in contact with the aqueous electrolyte solution
  • the present invention provides a method for efficiently generating oxygen by electrolysis of water using a copper delafossite compound as an anode.
  • the present invention also provides a water electrolysis apparatus suitable for the method.
  • FIG. 1 shows a schematic diagram of a water electrolysis apparatus 100 according to Embodiment 1.
  • FIG. FIG. 2 is a schematic diagram of a thin film type electrolytic cell.
  • Figure 3 is a graph showing the occupation numbers of the calculation results of the e g orbitals in B sites of the copper Delafossite compound.
  • FIG. 4 is a graph showing the results of X-ray diffraction measurement.
  • FIG. 5 is a graph showing current-potential characteristics measured in Example 1, Comparative Example 1, Comparative Example 2, Comparative Example 3, and Comparative Example 4.
  • FIG. 6 is a graph showing current-potential characteristics measured in Example 1, Reference Example 1, Reference Example 2, and Reference Example 3.
  • FIG. 7A is a diagram showing a scanning electron microscope image of the anode substrate according to Example 1 before the potential sweep is started.
  • FIG. 7B is a diagram showing a scanning electron microscope image of the anode substrate according to Example 1 after the potential sweep was repeated 1000 times.
  • FIG. 8 is a graph showing current-potential characteristics in Example 1 before and after the potential sweep is repeated 1000 times.
  • FIG. 9A is a diagram showing a scanning electron microscope image of the anode substrate according to Comparative Example 4 before the potential sweep is started.
  • FIG. 9B is a diagram showing a scanning electron microscope image of the anode substrate according to Comparative Example 4 after the potential sweep was repeated 10 times.
  • FIG. 10 is a graph showing current-potential characteristics in Comparative Example 4 before and after the potential sweep is repeated 10 times.
  • FIG. 1 shows a schematic diagram of a water electrolysis apparatus 100 according to Embodiment 1.
  • FIG. A water electrolysis apparatus 100 according to Embodiment 1 includes a container 11, an anode 12, a cathode 13, and a power source 14.
  • An electrolyte aqueous solution 15 is stored inside the container 11.
  • An example of the aqueous electrolyte solution 15 is an alkaline aqueous solution such as potassium hydroxide or sodium hydroxide.
  • electrolyte contained in the aqueous electrolyte solution 15 are sulfuric acid, nitric acid, or perchloric acid. More specifically, examples of the electrolyte cation contained in the aqueous electrolyte solution 15 are protons, alkali metal ions, or alkaline earth metal ions.
  • Examples of the anion of the electrolyte contained in the electrolyte aqueous solution 15 are a hydroxide ion represented by the chemical formula OH ⁇ , a sulfate ion represented by the chemical formula SO 4 2 ⁇ , a nitrate ion represented by the chemical formula NO 3 ⁇ , or a chemical formula This is a perchlorate ion represented by ClO 4 ⁇ .
  • Halide ions represented by the chemical formula F ⁇ , Cl ⁇ , Br ⁇ , or I ⁇ are excluded from the anion of the electrolyte contained in the aqueous electrolyte solution 15.
  • the electrolyte aqueous solution 15 contains halide ions, halogen is generated on the anode 12 instead of oxygen.
  • An example of the electrolyte contained in the aqueous electrolyte solution 15 is a salt composed of such cations and anions.
  • yet another example of the electrolyte contained in the aqueous electrolyte solution is sodium sulfate, sodium nitrate, or potassium perchlorate.
  • the anode 12 and the cathode 13 are disposed inside the container 11 so as to be in contact with the electrolyte aqueous solution 15.
  • the anode 12 and the cathode 13 are electrically connected to a power source 14 described later. Oxygen is generated on the anode 12. Hydrogen is generated on the cathode 13.
  • the anode 12 has a copper rhodium delafossite compound.
  • the anode 12 has a copper rhodium delafossite compound on its surface so that oxygen is generated on the surface of the copper rhodium delafossite compound contained in the anode 12.
  • the copper rhodium delafossite compound is represented by the chemical formula CuRhO 2 .
  • the copper rhodium delafossite compound means an oxide having a delafossite compound structure in which the A site is copper and the B site is rhodium.
  • Copper rhodium delafossite compound has high chemical stability. Therefore, the copper rhodium delafossite compound is hardly decomposed even when used in a wide pH range.
  • the method for synthesizing the copper rhodium delafossite compound is not limited.
  • An example of a method for synthesizing the copper rhodium delafossite compound is a solid phase reaction method, a hydrothermal synthesis method, or a sputtering method.
  • the anode 12 can be formed of a conductive substrate carrying a copper rhodium delafossite compound.
  • the method for supporting the copper rhodium delafossite compound is not limited.
  • a slurry containing a synthesized copper rhodium delafossite compound is prepared, and then the slurry is applied to a conductive substrate, and the copper rhodium delafossite compound is supported on the conductive substrate.
  • the slurry may contain conductive carbon particles, tin oxide, an additive for improving dispersibility, and / or a material for suppressing aggregation of bubbles generated during electrolysis. These are not factors that reduce the catalytic effect of the copper rhodium delafossite compound.
  • the conductive substrate can have various shapes such as a plate, a rod, or a mesh.
  • the material of the conductive substrate is desirably a material that can maintain its conductivity even when exposed to an oxidizing atmosphere.
  • An example of the material of the conductive substrate is a valve metal or carbon.
  • the valve metal means a metal having a surface on which a nonconductive film is formed when exposed to an acid. Examples of valve metals are titanium, aluminum, chromium, or alloys thereof.
  • the anode 12 does not need to have a conductive substrate.
  • Such an anode 12 can be obtained, for example, by pressing or sintering copper rhodium delafossite compound particles.
  • Such an anode 12 contains a conductive carbon material for improving conductivity, a flux material for improving adhesion between particles, and / or a material for suppressing aggregation of bubbles generated during electrolysis. obtain.
  • the anode 12 is in contact with the aqueous electrolyte solution 15.
  • the copper rhodium delafossite compound contained in the anode 12 is in contact with the aqueous electrolyte solution 15.
  • the copper rhodium delafossite compound contacts the electrolyte aqueous solution 15
  • only a part of the anode 12 can contact the electrolyte aqueous solution 15.
  • the cathode 13 is formed from a conductive material. Specifically, the surface of the cathode 13 is formed from a conductive material. Examples of suitable conductive materials are platinum or nickel compounds that have a low overvoltage to generate hydrogen. As long as the conductive substance is not decomposed in the electrolyte aqueous solution 15, the material of the conductive substance is not limited.
  • the cathode 13 is in contact with the electrolyte aqueous solution 15. Specifically, the conductive substance contained in the cathode 13 is in contact with the aqueous electrolyte solution 15. As long as the conductive substance is in contact with the aqueous electrolyte solution 15, only a part of the cathode 13 can be in contact with the aqueous electrolyte solution 15.
  • the power source 14 is used to apply a predetermined potential difference between the anode 12 and the cathode 13.
  • a predetermined potential difference is applied between the anode 12 and the cathode 13 using the power source 14 to electrolyze water contained in the aqueous electrolyte solution. It is desirable to apply a potential difference of 1.6 volts or more and 4.0 volts or less.
  • An example of the power source 14 is a potentiostat or a battery.
  • the water electrolysis apparatus 100 has a diaphragm 16 between the anode 12 and the cathode 13.
  • the diaphragm 16 divides the interior of the container 11 into a first chamber in which the anode 12 is located and a second chamber in which the cathode 13 is located.
  • diaphragm 16 examples include a porous ceramic plate such as an unglazed plate, a porous polymer membrane such as a polypropylene film, or an ion exchange membrane such as Nafion (registered trademark).
  • the diaphragm 16 is installed so that oxygen generated on the anode 12 does not mix with hydrogen generated on the cathode 13. In the absence of the diaphragm 16, there is no problem with water electrolysis, but oxygen generated on the anode 12 can move to the cathode 13. The oxygen that has moved to the cathode 13 is converted into water. As a result, the oxygen generation efficiency decreases. In order to suppress such a reverse reaction, it is desirable that the diaphragm 16 is provided in the water electrolysis apparatus 100.
  • the anode 12, the diaphragm 16, and the cathode 13 are arranged at intervals.
  • the water electrolysis apparatus 100 can be composed of an integral electrolysis cell in which the anode 12 and the cathode 13 are in close contact with the front and back surfaces of the diaphragm 16, respectively.
  • FIG. 2 shows a thin film type electrolytic cell which is another example of the water electrolysis apparatus.
  • the thin-film electrolytic cell shown in FIG. 2 includes an electrolyte membrane 17, an anode 12 formed on the surface of the electrolyte membrane 17, and a cathode 13 formed on the back surface of the electrolyte membrane 17.
  • the thin film electrolytic cell includes an electrolyte membrane 17 instead of the container 11 of the water electrolysis apparatus 100.
  • An example of the electrolyte 17 is an ion exchange membrane or a ceramic solid electrolyte membrane. Examples of the ion exchange membrane are cation exchange type Nafion (registered trademark), Selemion (registered trademark), or an anion exchange membrane (for example, manufactured by Tokuyama Corporation).
  • Ceramic solid electrolyte membranes are zirconia-based ceramics such as yttria stabilized zirconia (YSZ) or scandia stabilized zirconia (ScSZ).
  • the thin film type electrolytic cell including the electrolyte membrane 17 formed of an ion exchange membrane is a polymer electrolyte membrane (hereinafter referred to as “PEM”) type electrolytic cell.
  • PEM polymer electrolyte membrane
  • the electrolytic cell including the electrolyte membrane 17 formed of a ceramic solid electrolyte is a solid electrolyte type electrolytic cell.
  • the solid electrolyte type electrolytic cell is also a high temperature steam type electrolytic cell.
  • a metal oxide having a delafossite structure is generally represented by the chemical formula ABO 2 .
  • Patent document 1 is disclosing the anode containing a delafossite compound. However, it does not disclose that the energy efficiency varies depending on the material of the B site.
  • the present inventors diligently studied the possibility that the energy efficiency of a material having a delafossite structure in which the A site is copper differs depending on the material of the B site.
  • Non-Patent Document 1 an overvoltage occupation numbers of electrons e g orbitals in the transition metal B sites contained in the perovskite oxide represented by the chemical formula ABO 3 is to be closer to 1, the need to generate oxygen becomes lower.
  • the properties of the oxide oxygen evolution catalyst can be related to the electronic structure of the oxide.
  • the present inventors predicted that the copper delafossite compound also has a similar relationship, and calculated the electronic state of the copper delafossite compound based on density functional theory.
  • Figure 3 shows the occupation numbers of the calculation results of the e g orbitals in B sites of the copper Delafossite compound.
  • the vertical axis of FIG. 3 represents the occupation numbers of e g orbitals and the horizontal axis represents the material of the B site.
  • the A site is copper
  • the B site is aluminum, gallium, iron, yttrium, and rhodium.
  • the number of occupied B sites has the following relationship (II).
  • the overvoltage necessary for generating oxygen is expected to decrease in the order of rhodium, iron, aluminum, yttrium, and gallium. Since the iron occupancy value is the same as for rhodium, the overvoltage required to generate oxygen when iron is used is expected to be the same as when rhodium is used.
  • Example 1 described below with Comparative Example 2
  • the present inventors have found that the copper rhodium delafossite compound has a much lower overvoltage than the copper iron delafossite compound. It was.
  • the overvoltage of the copper rhodium delafossite compound was thought to be similar to the overvoltage of the copper iron delafossite compound, but actually, from the copper rhodium delafossite compound
  • the inventors have found that when the anode formed is used, water is electrolyzed with a much lower overvoltage, i.e. very good energy efficiency, compared to the copper iron delafossite compound.
  • Example 1 As apparent from comparison of Example 1 described later with Comparative Examples 1 to 4, by using the anode 12 having a copper rhodium delafossite compound, water can be produced with a low overvoltage, that is, excellent energy efficiency. Electrolyzed.
  • the water electrolysis apparatus 100 including the anode 12 formed from the copper rhodium delafossite compound has the same energy efficiency as the water electrolysis apparatus including the anode formed from cobalt oxide Co 3 O 4 having high energy efficiency. See Example 1 and Reference Example 2.
  • the present inventors have also found that when a copper delafossite compound other than the copper rhodium delafossite compound is used, the overvoltage necessary for the generation of oxygen by electrolysis of water is high. See Comparative Examples 1 to 4.
  • Example 1 (Preparation of anode 12)
  • the anode 12 according to Example 1 was manufactured by supporting a copper rhodium delafossite compound on a conductive carbon substrate.
  • a copper rhodium delafossite compound was prepared by a solid phase reaction method.
  • cuprous oxide represented by the chemical formula Cu 2 O obtained from Wako Pure Chemical Industries, Ltd., 1.17 grams
  • rhodium oxide (III) represented by the chemical formula Rh 2 O 3 obtained from Yakuhin Kogyo Co., Ltd., 2.0 grams
  • the mixture was supplied to the tablet press. The mixture was then pressed at a pressure of 40 MPa and the tablets that obtained tablets containing cuprous oxide and rhodium oxide had a diameter of 25 millimeters.
  • the tablets were baked in a muffle furnace (available from Fulltech Co., Ltd., trade name: FT-101FMW) at a temperature of 1050 degrees Celsius for 12 hours to obtain a baked product.
  • the fired product was pulverized in an agate mortar. In this way, particles of a copper rhodium delafossite compound were obtained.
  • the obtained copper rhodium delafossite compound particles were subjected to X-ray diffraction using an X-ray diffractometer (obtained from Panalical, X'Pert PRO MPD, target: Cu, acceleration voltage: 45 kV).
  • FIG. 4 shows the results of X-ray diffraction measurement.
  • the diffraction angle and relative intensity of the peak shown in FIG. 4 were in good agreement with the diffraction angle and relative intensity of the peak determined from the lattice constant of the copper rhodium delafossite compound taught in Non-Patent Document 2. Therefore, the obtained particles were identified as a copper rhodium delafossite compound.
  • Copper rhodium delafossite compound particles (60 milligrams) were dispersed in 2 milliliters of pure water to prepare a slurry.
  • HPG substrate An isotropic electrographite having an effective reaction area of 0.28 square centimeters (hereinafter referred to as “HPG substrate”, obtained from Toyo Tanso Co., Ltd., trade name: HPG-59) was applied with ultrasonic waves in acetone. The HPG substrate was washed. Next, ultrasonic waves were applied to the HPG substrate in ethanol, and the HPG substrate was washed once more.
  • the obtained anode substrate was attached as a working electrode to a rotating disk electrode attachment (manufactured by Nisatsu Kogyo Co., Ltd.) using a cylindrical cap.
  • a reversible hydrogen electrode (hereinafter referred to as “RHE”) was used as a reference electrode.
  • a platinum electrode was used as the counter electrode.
  • As the electrolytic solution an aqueous potassium hydroxide solution having a concentration of 1 mol / L was used. The potential was swept with a potentiostat (available from ALS Co., Ltd., trade name: ALS-760C), and current-potential characteristics were measured.
  • Curves (a) in FIGS. 5 and 6 are current-potential characteristics according to Example 1 at a rotational speed of 2000 rpm.
  • the overvoltage was defined by the following formula (III).
  • EPD1 (volts vs. RHE) ⁇ 1.23 (volts vs. RHE) (III)
  • EPD1 represents a potential difference between the reference electrode and the working electrode when a current of 5 mA / cm 2 flows between the counter electrode and the working electrode.
  • the anode according to Example 1 had a potential difference EPD1 of 1.62 volts. Therefore, the anode according to Example 1 had an overvoltage of 0.39 volts.
  • FIG. 7A is a scanning electron microscope image of the anode substrate according to Example 1 before the potential sweep is started. Using a potentiostat, the potential sweep was repeated 1000 times.
  • FIG. 7B is a scanning electron microscope image of the anode substrate according to Example 1 after the potential sweep was repeated 1000 times.
  • FIG. 8 is a graph showing current-potential characteristics in Example 1 before and after the potential sweep is repeated 1000 times. As can be understood from FIGS. 7A, 7B, and 8, the anode substrate was not deteriorated. On the contrary, the current-potential characteristics improved after the potential sweep was repeated 1000 times. In other words, after a potential sweep was repeated 1000 times, a higher current density was obtained using a smaller voltage.
  • a copper aluminum delafossite compound represented by the chemical formula CuAlO 2 was prepared as follows and its overvoltage was calculated.
  • Cupric oxide represented by the chemical formula CuO obtained from High Purity Chemical Laboratory, 6.56 grams
  • aluminum oxide represented by the chemical formula Al 2 O 3 obtained from High Purity Chemical Laboratory, 4 .20 grams
  • the obtained tablets were placed on a firing boat, and then a firing board having the tablets was placed in a ring furnace (trade name: FKS, manufactured by Fukada Electric Manufacturing Co., Ltd.). After substituting with nitrogen at a flow rate of 200 sccm per hour, the tablets were fired at a firing temperature of 1100 degrees Celsius at a nitrogen flow rate of 50 sccm for 10 hours to obtain a fired product.
  • the fired product was pulverized in an agate mortar to obtain particles of a copper aluminum delafossite compound.
  • cuprous oxide (5.84 grams) represented by the chemical formula Cu 2 O was used to obtain particles of the same copper aluminum delafossite compound.
  • a curve (b) in FIG. 5 is a current-potential characteristic of the anode containing the copper aluminum delafossite compound according to Comparative Example 1.
  • the anode according to Comparative Example 1 had a potential difference EPD1 of 1.92 volts. Therefore, the anode according to Comparative Example 1 had an overvoltage of 0.69 volts.
  • Cuprous oxide represented by the chemical formula Cu 2 O obtained from Wako Pure Chemical Industries, Ltd., 3.50 grams
  • iron oxide represented by the chemical formula Fe 2 O 3 obtained from High Purity Chemical Laboratory, 3.99 g
  • a fired product was obtained from the tablet using a ring furnace, as in Comparative Example 1, except that the firing temperature was 1000 degrees Celsius.
  • the fired product was pulverized in an agate mortar to obtain particles of a copper iron delafossite compound represented by the chemical formula CuFeO 2 .
  • Curve (c) in FIG. 5 is a current-potential characteristic of the anode containing the copper iron delafossite compound according to Comparative Example 2.
  • EPD1 potential difference
  • Cupric oxide represented by the chemical formula CuO obtained from High Purity Chemical Laboratory, Inc., 7.90 grams
  • yttrium oxide represented by the chemical formula Y 2 O 3 (obtained from High Purity Chemical Laboratory, Inc., 11 .29 grams) was ground and mixed in an agate mortar to obtain a mixture.
  • a tablet containing cupric oxide and yttrium oxide was obtained.
  • a fired product was obtained from the obtained tablet using an annular furnace, as in Comparative Example 1, except that the firing temperature was 1000 degrees Celsius.
  • the obtained fired product was pulverized in an agate mortar to obtain copper yttrium oxide particles represented by the chemical formula Cu 2 Y 2 O 5 .
  • the obtained copper yttrium oxide particles were supplied again to the tablet press. The particles were then pressed at a pressure of 40 MPa to obtain tablets containing copper yttrium oxide. Except that the firing temperature was 1190 degrees Celsius, a fired product was obtained from the obtained tablet using a ring furnace in the same manner as in Comparative Example 1. The obtained fired product was pulverized in an agate mortar to obtain particles of a copper yttrium delafossite compound represented by the chemical formula CuYO 2 .
  • Example 2 As in Example 1, an anode containing copper yttrium delafossite compound particles was prepared, and its oxygen generation characteristics were evaluated.
  • a curve (d) in FIG. 6 is a current-potential characteristic of the anode containing the copper yttrium delafossite compound according to Comparative Example 3.
  • the anode according to Comparative Example 3 had a potential difference EPD1 of 2.00 volts. Therefore, the anode according to Comparative Example 3 had an overvoltage of 0.77 volts.
  • Cupric oxide represented by the chemical formula CuO obtained from High Purity Chemical Laboratory, Inc., 799 grams
  • gallium trioxide represented by the chemical formula Ga 2 O 3 obtained from High Purity Chemical Laboratory, 9.37 grams
  • Example 1 a tablet containing cupric oxide and gallium trioxide was obtained.
  • a fired product was obtained from the obtained tablet using an annular furnace, as in Comparative Example 1, except that the firing temperature was 1000 degrees Celsius.
  • the obtained fired product was pulverized in an agate mortar to obtain particles of a copper gallium delafossite compound represented by the chemical formula CuGaO 2 .
  • cuprous oxide (7.18 grams) represented by the chemical formula Cu 2 O was used to obtain particles of the same copper gallium delafossite compound.
  • an anode containing copper gallium delafossite compound particles was prepared and its oxygen generation characteristics were evaluated.
  • the current flowing between the counter electrode and the working electrode increased as the number of sweeps using the potentiostat increased. After the sweep was repeated 10 times, the current was saturated.
  • Curve (e) in FIG. 5 is the current-potential characteristic of the electrode according to Comparative Example 4 after the current is saturated. After the current was saturated, the anode according to Comparative Example 4 was observed using an electron microscope. As a result, a part of the copper gallium oxide crystal seemed to be eluted. Therefore, it was considered that the anode according to Comparative Example 4 was deteriorated due to the sweep using the potentiostat.
  • FIG. 9A is a scanning electron microscope image of the anode substrate according to Comparative Example 4 before the potential sweep is started. The potential sweep was repeated 10 times using a potentiostat.
  • FIG. 9B is a scanning electron microscope image of the anode substrate according to Comparative Example 4 after the potential sweep was repeated 10 times and the current was saturated.
  • FIG. 10 is a graph showing current-potential characteristics in Comparative Example 4 before and after the potential sweep is repeated 10 times. As understood from FIGS. 9A, 9B, and 10, the anode substrate was deteriorated. Furthermore, as seen in FIG. 10, in Comparative Example 4, a cathode current due to reprecipitation was observed.
  • Cupric oxide represented by the chemical formula CuO obtained from High Purity Chemical Laboratory Co., Ltd., 25 milligrams
  • CuO obtained from High Purity Chemical Laboratory Co., Ltd., 25 milligrams
  • a curve (b) included in FIG. 6 is a current-voltage characteristic of the anode according to Reference Example 1.
  • the electrode according to Reference Example 1 had a potential difference EPD1 of 1.85 volts. Therefore, the anode according to Reference Example 1 had an overvoltage of 0.62 volts.
  • Cobalt oxide represented by the chemical formula Co 3 O 4 obtained from Furuuchi Chemical Co., Ltd., 40 milligrams was dispersed in pure water (2 milliliters) to prepare a slurry.
  • an anode was prepared using this slurry, and its oxygen generation characteristics were evaluated.
  • a curve (c) included in FIG. 6 shows the current-voltage characteristics of the anode according to Reference Example 2.
  • the electrode according to Reference Example 2 had a potential difference EPD1 of 1.60 volts. Therefore, the anode according to Reference Example 2 had an overvoltage of 0.37 volts.
  • Reference Example 3 In Reference Example 3, the HPG substrate itself used in Example 1 was used as the anode. In other words, the anode according to Reference Example 3 was composed only of the HPG substrate used in Example 1. After the HPG substrate was cleaned as in Example 1, its oxygen evolution characteristics were evaluated. A curve (d) included in FIG. 6 shows the current-voltage characteristics of the anode according to Reference Example 3.
  • the electrode according to Reference Example 3 had a potential difference EPD1 of 2.00 volts. Therefore, the anode according to Reference Example 1 had an overvoltage of 0.77 volts.
  • Table 1 below shows anode materials, potential difference EPD1, and overvoltage according to Example 1, Comparative Example 1 to Comparative Example 4, and Reference Example 1 to Reference Example 3.
  • the present invention provides a method for efficiently generating oxygen by electrolysis of water using a copper delafossite compound as an anode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本発明は、陽極として銅デラフォサイト化合物を利用する水の電気分解により効率よく酸素を発生する方法を提供する。本発明は、酸素を発生させる方法であって、以下の工程を具備する:(a)以下を具備する水の電気分解装置を用意する工程、容器(11)、電源(14)、陽極(12)、陰極(13)、および電解質水溶液(15)、ここで、前記陽極(12)および前記陰極(13)は、前記電解質水溶液(15)に接しており、前記陽極(12)は、化学式CuRhO2により表される銅ロジウムデラフォサイト化合物を有しており、前記銅ロジウムデラフォサイト化合物は、前記電解質水溶液(15)に接しており、(b)前記電源(14)を用いて前記陰極(13)および前記陽極(12)の間に電位差を印加して、前記銅ロジウムデラフォサイト化合物上で生じる水の電気分解を介して前記陽極(12)上に酸素を発生させる工程。

Description

酸素を発生させる方法および水の電気分解装置
 本発明は、酸素を発生させる方法および水の電気分解装置に関する。
 特許文献1は、化学式ABO2(ここで、Aは白金、パラジウム、銀、またはコバルトを表し、かつBはクロム、鉄、コバルト、ロジウム、アルミニウム、ガドリニウム、スカンジウム、インジウム、タリウム、鉛、ルテニウム、またはランタニドを表す)により表されるデラフォサイト化合物を表面に有する陽極を用いて塩化ナトリウムを電解することによって、塩素を発生する方法を開示している。しかし、特許文献1は、酸素を発生する方法については何も開示していない。
英国特許第1400948号明細書
J. Suntivich, et al., "A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles" Science, vol. 334, December 2011. pp.  1383-1385. ロシアン・ジャーナル・オブ・インオルガニック・ケミストリー、31巻、1649頁(1986年)
 水の電気分解に必要とされる理論的な電圧は、1.23ボルトである。しかし、実際の水の電気分解には、電極における過電圧のために、1.23ボルトを超える電圧が必要である。過電圧が小さいほど、水の電気分解はより効率的に進行する。本明細書において用いられる用語「過電圧」とは、水を電気分解することによって陽極上で酸素を発生させるために必要な理論電圧からの電圧差を意味する。例えば、金属Mから形成される陽極を用いて水を電気分解することによって酸素を発生させるために2.0ボルトの電圧が必要とされた場合、金属Mは0.77ボルト(=2.0ボルト-1.23ボルト)の過電圧を有する。
 後述される比較例において実証されるように、本発明者らは、様々な銅デラフォサイト化合物を用いて、水を電気分解して酸素を発生させた。その結果、ほとんど全ての銅デラフォサイト化合物は、その大きな過電圧のために、水の電気分解には適していなかった。
 しかし、本発明者らは、様々な銅デラフォサイト化合物の中から、水の電気分解により酸素を発生させるために好適な銅デラフォサイト化合物を見いだし、本発明を完成した。本発明の目的は、陽極として銅デラフォサイト化合物を利用する水の電気分解により効率よく酸素を発生する方法を提供することにある。本発明の目的は、その方法に適した水の電気分解装置を提供することでもある。
 本発明は、酸素を発生させる方法であって、以下の工程を具備する:
 (a) 以下を具備する水の電気分解装置を用意する工程、
      容器、
      電源、
      陽極、
      陰極、および
      電解質水溶液、ここで、
      前記陽極および前記陰極は、前記電解質水溶液にに接しており、
      前記陽極は、化学式CuRhO2により表される銅ロジウムデラフォサイト化合物を有しており、
      前記銅ロジウムデラフォサイト化合物は、前記電解質水溶液に接しており、
 (b) 前記電源を用いて前記陰極および前記陽極の間に電位差を印加して、前記銅ロジウムデラフォサイト化合物上で生じる水の電気分解を介して前記陽極上に酸素を発生させる工程。
 本発明は、陽極として銅デラフォサイト化合物を利用する水の電気分解により効率よく酸素を発生する方法を提供する。本発明は、その方法に好適な水の電気分解装置も提供する。
図1は、実施形態1による水電解装置100の模式図を示す。 図2は、薄膜型の電解セルの模式図を示す。 図3は、銅デラフォサイト化合物のBサイトにおけるeg軌道の占有数の計算結果を示すグラフである。 図4は、X線回折測定の結果を示すグラフである。 図5は、実施例1、比較例1、比較例2、比較例3、および比較例4において測定された電流-電位特性を示すグラフである。 図6は、実施例1、参考例1、参考例2、および参考例3において測定された電流-電位特性を示すグラフである。 図7Aは、電位の掃引が開始される前の実施例1による陽極基板の走査型電子顕微鏡像を表す図である。 図7Bは、電位の掃引が1000回繰り返された後の実施例1による陽極基板の走査型電子顕微鏡像を表す図である。 図8は、電位の掃引が1000回繰り返される前後の実施例1における電流-電位特性を示すグラフである。 図9Aは、電位の掃引が開始される前の比較例4による陽極基板の走査型電子顕微鏡像を表す図である。 図9Bは、電位の掃引が10回繰り返された後の比較例4による陽極基板の走査型電子顕微鏡像を表す図である。 図10は、電位の掃引が10回繰り返される前後の比較例4における電流-電位特性を示すグラフである。
 本発明の実施形態が、以下、図面を参照しながら説明される。
 (実施形態1)
 図1は、実施形態1による水電解装置100の模式図を示す。実施形態1による水電解装置100は、容器11、陽極12、陰極13、および電源14を具備する。
 (容器11)
 容器11の内部には、電解質水溶液15が貯留されている。電解質水溶液15の例は、水酸化カリウムまたは水酸化ナトリウムのようなアルカリ性水溶液である。アルカリ性水溶液を用いて水を電解することにより、酸素発生の効率を向上させ、かつ電解に必要とされる電力を減少できる。
 電解質水溶液15に含まれる電解質の他の例は、硫酸、硝酸、または過塩素酸である。より具体的には、電解質水溶液15に含まれる電解質のカチオンの例は、プロトン、アルカリ金属イオン、またはアルカリ土類金属イオンである。電解質水溶液15に含まれる電解質のアニオンの例は、化学式OH-で表される水酸化物イオン、化学式SO4 2-で表される硫酸イオン、化学式NO3 -で表される硝酸イオン、または化学式ClO4 -で表される過塩素酸イオンである。化学式F-、Cl-、Br-、またはI-により表されるハロゲン化物イオンは、電解質水溶液15に含まれる電解質のアニオンから除外される。万一、電解質水溶液15がハロゲン化物イオンを含有する場合、陽極12上では、酸素ではなくハロゲンが生成する。電解質水溶液15に含まれる電解質の例は、このようなカチオンおよびアニオンから構成される塩である。例えば、電解質水溶液に含まれる電解質のさらに他の例は、硫酸ナトリウム、硝酸ナトリウム、または過塩素酸カリウムである。
 (陽極12)
 陽極12及び陰極13は、電解質水溶液15に接するように、容器11の内部に配置される。陽極12及び陰極13は、後述する電源14に電気的に接続されている。陽極12上では、酸素が発生する。陰極13上では、水素が発生する。
 陽極12は、銅ロジウムデラフォサイト化合物を有している。望ましくは、酸素が、陽極12に含まれる銅ロジウムデラフォサイト化合物の表面上で発生するように、陽極12は、その表面に銅ロジウムデラフォサイト化合物を有している。銅ロジウムデラフォサイト化合物は、化学式CuRhO2により表される。言い換えれば、銅ロジウムデラフォサイト化合物は、Aサイトが銅であり、かつ、Bサイトがロジウムであるデラフォサイト化合物構造を有する酸化物を意味する。
 銅ロジウムデラフォサイト化合物は、高い化学的安定性を有する。そのため、広いpH領域で用いられても、銅ロジウムデラフォサイト化合物は分解されにくい。
 銅ロジウムデラフォサイト化合物を合成する方法は限定されない。銅ロジウムデラフォサイト化合物を合成する方法の例は、固相反応法、水熱合成法、またはスパッタリング法である。
 陽極12は、銅ロジウムデラフォサイト化合物を担持した導電性基板により形成され得る。銅ロジウムデラフォサイト化合物を担持させる方法は、限定されない。例えば、合成された銅ロジウムデラフォサイト化合物を含有するスラリーが調製され、次いで、導電性基板へ当該スラリーが塗布され、導電性基板に銅ロジウムデラフォサイト化合物を担持する。当該スラリーは、導電性のカーボン粒子、酸化錫、分散性を向上させるための添加剤、および/または電解時に発生する気泡の凝集を抑制するための材料を含有し得る。これらは、銅ロジウムデラフォサイト化合物の触媒効果を低下させる要因とはならない。
 導電性基板は、板、ロッド、またはメッシュ状のような種々の形状を有し得る。導電性基板の材料は、酸化雰囲気に晒されてもその導電性を維持できる材料が望ましい。導電性基板の材料の例は、弁金属またはカーボンである。弁金属とは、酸に曝された際に不導態皮膜が形成される表面を有する金属を意味する。弁金属の例は、チタン、アルミニウム、クロム、またはその合金である。
 陽極12は、導電性基板を具備する必要はない。このような陽極12は、例えば、銅ロジウムデラフォサイト化合物の粒子を圧着または焼結することによって得られ得る。このような陽極12は、導電性を向上させるための導電性カーボン材料、粒子間の密着性を高めるためのフラックス材料、および/または電解時に発生する気泡の凝集を抑制するための材料を含有し得る。
 陽極12は、電解質水溶液15に接する。具体的には、陽極12に含まれる銅ロジウムデラフォサイト化合物が電解質水溶液15に接する。銅ロジウムデラフォサイト化合物が電解質水溶液15に接する限り、陽極12の一部のみが電解質水溶液15に接触し得る。
 <陰極13>
 陰極13は、導電性物質から形成される。具体的には、陰極13の表面が導電性物質から形成される。好適な導電性物質の例は、水素を発生させるために低い過電圧を有する白金またはニッケル化合物である。導電性物質が電解質水溶液15中で分解されない限り、導電性物質の材料は限定されない。
 陰極13は電解質水溶液15に接する。具体的には、陰極13に含まれる導電性物質が電解質水溶液15に接する。導電性物質が電解質水溶液15に接する限り、陰極13の一部のみが電解質水溶液15に接触し得る。
 <電源14>
 電源14は、陽極12及び陰極13間に、所定の電位差を印加するために用いられる。電源14を用いて陽極12及び陰極13の間に所定の電位差が印加され、電解質水溶液に含有される水を電気分解する。1.6ボルト以上4.0ボルト以下の電位差が印加されることが望ましい。電源14の例は、ポテンシオスタットまたは電池である。
 <隔膜16>
 水電解装置100は、陽極12及び陰極13の間に、隔膜16を有する。隔膜16は、容器11の内部を、陽極12が位置する第1室および陰極13が位置する第2室に分割する。
 隔膜16の例は、素焼き板のような多孔性セラミックス板、ポリプロピレンフィルムのような多孔性高分子膜、またはナフィオン(登録商標)のようなイオン交換膜である。
 隔膜16は、陽極12上で発生した酸素が、陰極13で発生した水素と混合しないようにする為に設置する。隔膜16が無い場合、水の電解に問題は生じないが、陽極12上で生成した酸素が陰極13に移動し得る。陰極13に移動した酸素は、水に変換される。その結果、酸素の発生効率は低下する。このような逆反応を抑制するために、隔膜16が水電解装置100に設けられることが望ましい。
 図1に示される水電解装置100では、陽極12、隔膜16、および陰極13は、間隔を置いて配置されている。しかし、水電解装置100は、陽極12および陰極13が隔膜16の表面および裏面にそれぞれ密着している一体型の電解セルから構成され得る。
 図2は、水電解装置の他の例である薄膜型の電解セルを示す。図2に示される薄膜型の電解セルは、電解質膜17と、電解質膜17の表面に形成された陽極12、および電解質膜17の裏面に形成された陰極13を具備する。薄膜型の電解セルは、水電解装置100の容器11に代えて、電解質膜17を具備する。電解質17の例は、イオン交換膜、またはセラミックの固体電解質膜である。イオン交換膜の例は、陽イオン交換型のナフィオン(登録商標)、セレミオン(登録商標)、または陰イオン交換膜(例えば、株式会社トクヤマ製)である。セラミックの固体電解質膜の例は、イットリア安定化ジルコニア(YSZ)、またはスカンジア安定化ジルコニア(ScSZ)のようなジルコニア系のセラミックである。イオン交換膜から形成された電解質膜17を具備する薄膜型の電解セルは、ポリマー電解質膜(以下、「PEM」という)型の電解セルである。セラミックの固体電解質から形成された電解質膜17を具備する電解セルは、固体電解質型の電解セルである。固体電解質型の電解セルは、高温水蒸気型の電解セルでもある。
 <本発明者らの知見>
 銅の酸化物は、酸素発生に必要とされる過電圧が高いため、陽極の材料として適さないと考えられる。後述される参考例1を参照せよ。
 デラフォサイト型構造を有する金属酸化物は、一般的に化学式ABO2により表される。特許文献1は、デラフォサイト化合物を含有する陽極を開示している。しかし、そのBサイトの材料に応じて、エネルギー効率が異なることを開示していない。
 本発明者らは、Aサイトが銅であるデラフォサイト構造を有する材料のエネルギー効率が、Bサイトの材料に応じて異なる可能性を鋭意、研究した。
 まず、本発明者らは、理論的に検討した。
 非特許文献1によれば、化学式ABO3によって表されるペロブスカイト酸化物に含有される遷移金属Bサイトにおける電子のeg軌道の占有数が1に近い程、酸素の発生に必要とされる過電圧が低くなる。このように、酸化物の酸素発生触媒の特性は、酸化物の電子構造に関連し得る。
 本発明者らは、銅デラフォサイト化合物もまた、同様の関係性を有すると予想し、そして密度汎関数理論に基づいて銅デラフォサイト化合物の電子状態を計算した。
 図3は、銅デラフォサイト化合物のBサイトにおけるeg軌道の占有数の計算結果を示す。
 図3の縦軸は、eg軌道の占有数を表し、かつ横軸は、Bサイトの材料を表す。図3に示す計算結果においては、Aサイトは銅であり、かつBサイトは、アルミニウム、ガリウム、鉄、イットリウム、およびロジウムである。
 図3に示される結果から明らかなように、Bサイトの占有数は、以下の(II)の関係を有する。
 Ga<Y<Al<<Fe<Rh   (II)
 そのため、酸素を発生させるために必要な過電圧は、ロジウム、鉄、アルミニウム、イットリウム、およびガリウムの順に低くなることが予想される。鉄の占有数の値はロジウムと同じであるため、鉄が用いられた場合の酸素を発生させるために必要な過電圧は、ロジウムが用いられた場合と同じであると予想される。
 しかし、後述される実施例1を比較例2と比較すれば明らかなように、銅ロジウムデラフォサイト化合物は、銅鉄デラフォサイト化合物よりも、ずっと低い過電圧を有することを本発明者は見いだした。言い換えれば、上記の計算結果によれば、銅ロジウムデラフォサイト化合物の過電圧は、銅鉄デラフォサイト化合物の過電圧と同様であると考えられたが、実際には、銅ロジウムデラフォサイト化合物から形成される陽極が用いられた場合、銅鉄デラフォサイト化合物と比較して、ずっと低い過電圧、つまり極めて優れたエネルギー効率で、水が電解されることを本発明者らは見出した。
 後述される実施例1を比較例1~比較例4と比較すれば明らかなように、銅ロジウムデラフォサイト化合物を有する陽極12を用いることで、低い過電圧、つまり優れたエネルギー効率で、水が電解される。銅ロジウムデラフォサイト化合物から形成される陽極12を具備する水電解装置100は、高いエネルギー効率を有する酸化コバルトCo34から形成した陽極を具備する水電解装置と同じエネルギー効率を有する。実施例1および参考例2を参照せよ。一方、本発明者らは、銅ロジウムデラフォサイト化合物以外の銅デラフォサイト化合物が用いられた場合には、水の電気分解によって酸素の発生のために必要な過電圧は高いことも見いだした。比較例1~比較例4を参照せよ。
 (実験例)
 以下の実験例は、本発明をより詳細に説明する。本発明者らは、水電解装置100に用いられる陽極12の材料および陽極12上で酸素が発生するために必要とされる電圧の間の関係を明らかにするために、以下の実験を行った。
 (実施例1)
 (陽極12の作製)
 実施例1による陽極12は、導電性カーボン基体上に銅ロジウムデラフォサイト化合物を担持させることによって製造された。
 まず、銅ロジウムデラフォサイト化合物が固相反応法により調製された。
 具体的には、化学式Cu2Oにより表される酸化第一銅(和光純薬工業株式会社より入手、1.17グラム)および化学式Rh23により表される酸化ロジウム(III)(和光純薬工業株式会社より入手、2.0グラム)が、めのう乳鉢中で十分に粉砕かつ混合され、混合物を得た。
 錠剤成形器に、混合物が供給された。次いで、混合物は、40MPaの圧力でプレスされ、酸化第一銅及び酸化ロジウムを含有する錠剤を得た錠剤は、25ミリメートルの直径を有していた。
 錠剤は、マッフル炉(フルテック株式会社より入手、商品名:FT-101FMW)中で、摂氏1050度の温度下で、12時間かけて焼成され、焼成物を得た。めのう乳鉢中で、焼成物が粉砕された。このようにして、銅ロジウムデラフォサイト化合物の粒子が得られた。
 得られた銅ロジウムデラフォサイト化合物の粒子は、X線回折装置(パナリティカルより入手、X’Pert PRO MPD、ターゲット:Cu、加速電圧:45kV)を用いるX線回折に供された。
 図4は、X線回折測定の結果を示す。図4に示されるピークの回折角および相対強度は、非特許文献2に教示された銅ロジウムデラフォサイト化合物の格子定数から求まるピークの回折角及び相対強度によく一致していた。そのため、得られた粒子は、銅ロジウムデラフォサイト化合物と同定された。
 銅ロジウムデラフォサイト化合物粒子(60ミリグラム)が、2ミリリットルの純水に分散され、スラリーを調製した。
 0.28平方センチメートルの有効反応面積を有する等方性電気黒鉛質(以下、「HPG基板」という。東洋炭素株式会社より入手、商品名:HPG-59)に超音波がアセトン中で印加されて、HPG基板を洗浄した。次いで、HPG基板に超音波がエタノール中で印加され、HPG基板をもう一度洗浄した。
 スラリー(20マイクロリットル)がHPG基板に滴下された。次いで、HPG基板は、摂氏80度の温度下で10分乾燥された。5%の濃度を有するナフィオン分散液(シグマ・アルドリッチより入手)がエタノールを用いて4倍に希釈され、1.2%の濃度を有するナフィオン分散液を調製した。次いで、ナフィオン分散液(10マイクロリットル)がHPG基板に滴下された。最後に、HPG基板は、摂氏80度の温度下で10分間、乾燥された。このようにして、銅ロジウムデラフォサイト化合物を含有する陽極が得られた。
 (酸素発生特性の評価)
 得られた陽極基板は、円筒状のキャップを用いて、回転ディスク電極アタッチメント(日厚計測社製)に作用電極として取り付けられた。
 次に、参照極として可逆水素電極(以下、「RHE」という/reversible hydrogen electrode)が用いられた。対極として白金電極が用いられた。電解液として、1mol/Lの濃度を有する水酸化カリウム水溶液が用いられた。ポテンシオスタット(ALS株式会社より入手、商品名:ALS-760C)で電位が掃引され、電流-電位特性を測定した。
 図5および図6における曲線(a)は、2000rpmの回転数における実施例1による電流-電位特性である。過電圧は、以下の数式(III)によって定義された。
 過電圧=電位差EPD1(ボルト vs. RHE)-1.23(ボルト vs. RHE)   (III)
  ここで、電位差EPD1は、5mA/cm2の電流が対極および作用電極の間に流れる時の参照極および作用電極の間の電位差を表す。
 過電圧の低下に伴い、酸素の発生効率は高まる。
 図5から明らかなように、実施例1による陽極は、1.62ボルトの電位差EPD1を有していた。従って、実施例1による陽極は、0.39ボルトの過電圧を有していた。
 図7Aは、電位の掃引が開始される前の実施例1による陽極基板の走査型電子顕微鏡像である。ポテンシオスタットを用いて、電位の掃引が1000回繰り返された。図7Bは、電位の掃引が1000回繰り返された後の実施例1による陽極基板の走査型電子顕微鏡像である。図8は、電位の掃引が1000回繰り返される前後の実施例1における電流-電位特性を示すグラフである。図7A、図7B、および図8から理解されるように、陽極基板は劣化していなかった。それどころか、電位の掃引が1000回繰り返された後には、電流-電位特性は改善していた。言い換えれば、電位の掃引が1000回繰り返された後には、より小さい電圧を用いてより高い電流密度が得られた。
 (比較例1)
 化学式CuAlO2により表される銅アルミニウムデラフォサイト化合物が以下のように調製され、その過電圧が計算された。
 化学式CuOにより表される酸化第二銅(株式会社高純度化学研究所より入手、6.56グラム)および化学式Al23により表される酸化アルミニウム(株式会社高純度化学研究所より入手、4.20グラム)が、めのう乳鉢中で粉砕および混合され、混合物を得た。実施例1の場合と同様に、酸化第二銅及び酸化アルミニウムを含有する錠剤が得られた。
 得られた錠剤が焼成ボートに載せられ、次いで錠剤を有する焼成ボードが、環状炉(深田電機製作所製、商品名:FKS)に配置された。1時間あたり200sccmの流量で窒素に置換した後、50sccmの窒素流量で、摂氏1100度の焼成温度下で、10時間かけて錠剤が焼成され、焼成物を得た。めのう乳鉢中で、焼成物が粉砕され、銅アルミニウムデラフォサイト化合物の粒子を得た。化学式CuOにより表される酸化第二銅に代えて、化学式Cu2Oにより表される酸化第一銅(5.84グラム)が用いられ、同様の銅アルミニウムデラフォサイト化合物の粒子を得た。
 実施例1の場合と同様に、銅アルミニウムデラフォサイト化合物を含有する陽極が作成され、その酸素発生特性を評価した。図5における曲線(b)は、比較例1による銅アルミニウムデラフォサイト化合物を含有する陽極の電流-電位特性である。図5から明らかなように、比較例1による陽極は、1.92ボルトの電位差EPD1を有していた。従って、比較例1による陽極は、0.69ボルトの過電圧を有していた。
 (比較例2)
 化学式CuFeO2により表される銅鉄デラフォサイト化合物が以下のように調製され、その過電圧を計算した。
 化学式Cu2Oにより表される酸化第一銅(和光純薬工業株式会社より入手、3.50グラム)および化学式Fe23により表される酸化鉄(株式会社高純度化学研究所より入手、3.99g)が、めのう乳鉢中で粉砕および混合され、混合物を得た。実施例1の場合と同様に、酸化第一銅及び酸化鉄を含有する錠剤が得られた。
 次に、焼成温度が摂氏1000度であったことを除き、比較例1の場合と同様に、錠剤から環状炉を用いて焼成物が得られた。焼成物は、めのう乳鉢中で粉砕され、化学式CuFeO2により表される銅鉄デラフォサイト化合物の粒子を得た。
 実施例1の場合と同様に、銅鉄デラフォサイト化合物を含有する陽極が作成され、その酸素発生特性を評価した。図5における曲線(c)は、比較例2による銅鉄デラフォサイト化合物を含有する陽極の電流-電位特性である。図5から明らかなように、比較例2による陽極は、1.90の電位差EPD1を有していた。従って、比較例2による陽極は、0.67ボルトの過電圧を有していた。
 (比較例3)
 化学式CuYO2により表される銅イットリウムデラフォサイト化合物が以下のように調製され、その過電圧を計算した。
 化学式CuOにより表される酸化第二銅(株式会社高純度化学研究所より入手、7.90グラム)および化学式Y23により表される酸化イットリウム(株式会社高純度化学研究所より入手、11.29グラム)が、めのう乳鉢中で粉砕および混合され、混合物を得た。実施例1の場合と同様に、酸化第二銅及び酸化イットリウムを含有する錠剤が得られた。
 次に、焼成温度が摂氏1000度であったことを除き、比較例1の場合と同様に、得られた錠剤から環状炉を用いて焼成物が得られた。得られた焼成物は、めのう乳鉢中で粉砕され、化学式Cu225により表される銅イットリウム酸化物の粒子を得た。
 得られた銅イットリウム酸化物の粒子は、再度、錠剤成形器に供給された。次いで、粒子は、40MPaの圧力でプレスされ、銅イットリウム酸化物を含有する錠剤を得た。焼成温度が摂氏1190度であったことを除き、比較例1の場合と同様に、得られた錠剤から環状炉を用いて焼成物が得られた。得られた焼成物は、めのう乳鉢中で粉砕され、化学式CuYO2により表される銅イットリウムデラフォサイト化合物の粒子を得た。
 実施例1の場合と同様に、銅イットリウムデラフォサイト化合物粒子を含有する陽極が作成され、その酸素発生特性を評価した。図6における曲線(d)は、比較例3による銅イットリウムデラフォサイト化合物を含有する陽極の電流-電位特性である。図6から明らかなように、比較例3による陽極は、2.00ボルトの電位差EPD1を有していた。従って、比較例3による陽極は、0.77ボルトの過電圧を有していた。
 (比較例4)
 化学式CuGaO2により表される銅ガリウムデラフォサイト化合物が以下のように調製され、その過電圧を計算した。
 化学式CuOにより表される酸化第二銅(株式会社高純度化学研究所より入手、7.99グラム)および化学式Ga23により表される三酸化ガリウム(株式会社高純度化学研究所より入手、9.37グラム)が、めのう乳鉢中で粉砕され、混合された。実施例1の場合と同様に、酸化第二銅及び三酸化ガリウムを含有する錠剤が得られた。次に、焼成温度が摂氏1000度であったことを除き、比較例1の場合と同様に、得られた錠剤から環状炉を用いて焼成物が得られた。得られた焼成物は、めのう乳鉢中で粉砕され、化学式CuGaO2により表される銅ガリウムデラフォサイト化合物の粒子を得た。化学式CuOにより表される酸化第二銅に代えて、化学式Cu2Oにより表される酸化第一銅(7.18グラム)が用いられ、同様の銅ガリウムデラフォサイト化合物の粒子を得た。
 実施例1の場合と同様に、銅ガリウムデラフォサイト化合物粒子を含有する陽極が作成され、その酸素発生特性を評価した。比較例4では、ポテンシオスタットを用いた掃引の回数の増加に伴って、対極および作用電極の間に流れる電流が増加した。掃引が10回繰り返された後、電流は飽和した。図5における曲線(e)は、電流が飽和した後の比較例4による電極の電流-電位特性である。電流が飽和した後、比較例4による陽極が電子顕微鏡を用いて観察された。その結果、銅ガリウム酸化物結晶の一部が溶出しているようであった。そのため、比較例4による陽極は、ポテンシオスタットを用いた掃引が原因で変質したと考えられた。
 図9Aは、電位の掃引が開始される前の比較例4による陽極基板の走査型電子顕微鏡像である。ポテンシオスタットを用いて、電位の掃引が10回繰り返された。図9Bは、電位の掃引が10回繰り返され電流が飽和した後の比較例4による陽極基板の走査型電子顕微鏡像である。図10は、電位の掃引が10回繰り返される前後の比較例4における電流-電位特性を示すグラフである。図9A、図9B、および図10から理解されるように、陽極基板は劣化していた。さらに、図10に見られるように、比較例4では、再析出を原因とするカソード電流が観測された。
 (参考例1)
 化学式CuOにより表される酸化銅を担持した陽極が以下のように作成され、その過電圧を計算した。
 化学式CuOにより表される酸化第二銅(株式会社高純度化学研究所より入手、25ミリグラム)が、純水(2ミリリットル)に分散され、スラリーを調製した。実施例1の場合と同様に、このスラリーを用いて陽極が作製され、かつその酸素発生特性を評価した。図6に含まれる曲線(b)は、参考例1による陽極の電流-電圧特性である。参考例1による電極は、1.85のボルトの電位差EPD1を有していた。従って、参考例1による陽極は、0.62ボルトの過電圧を有していた。
 (参考例2)
 化学式Co34により表される酸化コバルトを担持した陽極が以下のように作成され、その過電圧を計算した。
 化学式Co34により表される酸化コバルト(フルウチ化学株式会社より入手、40ミリグラム)が、純水(2ミリリットル)に分散され、スラリーを調製した。実施例1の場合と同様に、このスラリーを用いて陽極が作製され、かつその酸素発生特性を評価した。図6に含まれる曲線(c)は、参考例2による陽極の電流-電圧特性を示す。参考例2による電極は、1.60のボルトの電位差EPD1を有していた。従って、参考例2による陽極は、0.37ボルトの過電圧を有していた。
 (参考例3)
 参考例3では、実施例1において用いられたHPG基板自体が陽極として用いられた。言い換えれば、参考例3による陽極は、実施例1において用いられたHPG基板のみから構成された。HPG基板が実施例1の場合と同様に洗浄された後、その酸素発生特性が評価された。図6に含まれる曲線(d)は、参考例3による陽極の電流-電圧特性を示す。参考例3による電極は、2.00のボルトの電位差EPD1を有していた。従って、参考例1による陽極は、0.77ボルトの過電圧を有していた。
 以下の表1は、実施例1、比較例1~比較例4、および参考例1~参考例3による陽極の材料、電位差EPD1、および過電圧を示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、参考例2を除き、実施例1による銅ロジウムデラフォサイト化合物のみが、低い過電圧を有する。この過電圧は、Co34の過電圧と同じであった。そのため、実施例1による銅ロジウムデラフォサイト化合物から形成した陽極を具備する水電解装置は、高いエネルギー効率を有する酸化コバルトCo34から形成した陽極を具備する水電解装置と同じエネルギー効率を有する。さらに、表1に示される結果は、図3に示した密度汎関数理論に基づく電子状態の計算結果からは予想し得えない結果であった。
 本発明は、陽極として銅デラフォサイト化合物を利用する水の電気分解により効率よく酸素を発生する方法を提供する。
 11 容器
 12 陽極
 13 陰極
 14 電源
 15 電解質水溶液
 16 隔膜
 17 電解質膜

Claims (5)

  1.  酸素を発生させる方法であって、以下の工程を具備する:
     (a) 以下を具備する水の電気分解装置を用意する工程、
     容器、
     電源、
     陽極、
     陰極、および
     電解質水溶液、ここで、
     前記陽極および前記陰極は、前記電解質水溶液にに接しており、
     前記陽極は、化学式CuRhO2により表される銅ロジウムデラフォサイト化合物を有しており、
     前記銅ロジウムデラフォサイト化合物は、前記電解質水溶液に接しており、
     (b) 前記電源を用いて前記陰極および前記陽極の間に電位差を印加して、前記銅ロジウムデラフォサイト化合物上で生じる水の電気分解を介して前記陽極上に酸素を発生させる工程。
  2.  請求項1に記載の方法であって、
     前記容器はさらに隔膜を具備し、
     前記隔膜は、容器の内部を、前記陽極を有する第1室および前記陰極を有する第2室に分割している。
  3.  酸素を発生するために用いられる水の電気分解装置であって、以下を具備する:
     容器、
     電源、
     陽極、および
     陰極、ここで、
     電解質水溶液は、前記容器に貯留されており、
     前記陽極および前記陰極は、前記電源に電気的に接続されており、
     前記陽極および前記陰極は、前記電解質水溶液に接しており、
     前記陽極は、化学式CuRhO2により表される銅ロジウムデラフォサイト化合物を有しており、
     前記銅ロジウムデラフォサイト化合物は、前記電解質水溶液に接している。
  4.  請求項3に記載の水の電気分解装置であって、
     前記容器はさらに隔膜を具備し、
     前記隔膜は、容器の内部を、前記陽極を有する第1室および前記陰極を有する第2室に分割している。
  5.  水の電気分解により酸素を発生するための陽極であって、
     化学式CuRhO2により表される銅ロジウムデラフォサイト化合物を有している、陽極。
PCT/JP2014/002543 2013-05-15 2014-05-14 酸素を発生させる方法、水の電気分解装置および陽極 WO2014185068A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014550565A JP5793655B2 (ja) 2013-05-15 2014-05-14 酸素を発生させる方法、水の電気分解装置および陽極
EP14789503.1A EP2843085A4 (en) 2013-05-15 2014-05-14 METHOD FOR PRODUCING OXYGEN, DEVICE FOR ELECTROLYSIS OF WATER AND ANODE
US14/530,884 US20150225863A1 (en) 2013-05-15 2014-11-03 Method for generating oxygen and water electrolysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-102728 2013-05-15
JP2013102728 2013-05-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/530,884 Continuation US20150225863A1 (en) 2013-05-15 2014-11-03 Method for generating oxygen and water electrolysis device

Publications (1)

Publication Number Publication Date
WO2014185068A1 true WO2014185068A1 (ja) 2014-11-20

Family

ID=51898057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002543 WO2014185068A1 (ja) 2013-05-15 2014-05-14 酸素を発生させる方法、水の電気分解装置および陽極

Country Status (4)

Country Link
US (1) US20150225863A1 (ja)
EP (1) EP2843085A4 (ja)
JP (1) JP5793655B2 (ja)
WO (1) WO2014185068A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5869169B1 (ja) * 2015-06-01 2016-02-24 公立大学法人大阪府立大学 酸素発生反応用ペロブスカイト酸化物触媒
EP3445894A1 (en) * 2016-04-18 2019-02-27 SABIC Global Technologies B.V. Oxygen evolution electrocatalysts with carbon coated cobalt (ii, iii) oxide layers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1400948A (en) 1973-02-03 1975-07-16 Ppg Industries Inc Electrodes having a delafossite surface
JPS5967381A (ja) * 1982-10-07 1984-04-17 Agency Of Ind Science & Technol 水電解のための陽極及びその製法
JP2009224206A (ja) * 2008-03-17 2009-10-01 Mitsubishi Electric Corp 固体高分子電解質膜・触媒金属複合電極及びその製造方法
JP2009299111A (ja) * 2008-06-11 2009-12-24 Nec Corp 酸素発生電極触媒、酸素発生電極および水電解装置
WO2011028262A2 (en) * 2009-08-27 2011-03-10 Sun Catalytix Corporation Compositions, electrodes, methods and systems for water electrolysis and other electrochemical techniques

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140261645A1 (en) * 2013-03-15 2014-09-18 Research Triangle Institute Semiconductor-conductor composite particle structures for solar energy conversion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1400948A (en) 1973-02-03 1975-07-16 Ppg Industries Inc Electrodes having a delafossite surface
JPS5967381A (ja) * 1982-10-07 1984-04-17 Agency Of Ind Science & Technol 水電解のための陽極及びその製法
JP2009224206A (ja) * 2008-03-17 2009-10-01 Mitsubishi Electric Corp 固体高分子電解質膜・触媒金属複合電極及びその製造方法
JP2009299111A (ja) * 2008-06-11 2009-12-24 Nec Corp 酸素発生電極触媒、酸素発生電極および水電解装置
WO2011028262A2 (en) * 2009-08-27 2011-03-10 Sun Catalytix Corporation Compositions, electrodes, methods and systems for water electrolysis and other electrochemical techniques

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J. SUNTIVICH ET AL.: "A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles", SCIENCE, vol. 334, December 2011 (2011-12-01), pages 1383 - 1385
REIKO HINOGAMI ET AL.: "Active copper delafossite anode for oxygen evolution reaction", ELECTROCHEMISTRY COMMUNICATIONS, vol. 35, October 2013 (2013-10-01), pages 142 - 145, XP028740810 *
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, vol. 31, 1986, pages 1649
See also references of EP2843085A4

Also Published As

Publication number Publication date
EP2843085A1 (en) 2015-03-04
JPWO2014185068A1 (ja) 2017-02-23
JP5793655B2 (ja) 2015-10-14
US20150225863A1 (en) 2015-08-13
EP2843085A4 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
Liu et al. Calcium-doped lanthanum nickelate layered perovskite and nickel oxide nano-hybrid for highly efficient water oxidation
JP2015148010A (ja) 酸素を発生させる方法および水の電気分解装置
Lv et al. Activity of IrO 2 supported on tantalum-doped TiO 2 electrocatalyst for solid polymer electrolyte water electrolyzer
JP7408716B2 (ja) 電極触媒用途向けの金属ドープ酸化スズ
Yuan et al. IrO 2–TiO 2 electrocatalysts for the hydrogen evolution reaction in acidic water electrolysis without activation
JP7066172B2 (ja) コバルト複合γ型二酸化マンガン及びその製造方法
US11572630B2 (en) Method and apparatus for water electrolysis, and method for determining drive potential of water electrolysis
JPWO2020153401A1 (ja) 酸素触媒及び該酸素触媒を用いる電極
Mondal et al. A combined experimental and theoretical approach revealing a direct mechanism for bifunctional water splitting on doped copper phosphide
WO2019189701A1 (ja) 電解セル及び電解装置
JP5793655B2 (ja) 酸素を発生させる方法、水の電気分解装置および陽極
JP7401115B2 (ja) 電極触媒およびアミン化合物の製造方法
JP2016011458A (ja) 酸素を発生させる方法、水の電気分解装置および陽極
Narahara et al. Solution plasma synthesis of perovskite hydroxide CoSn (OH) 6 nanocube electrocatalysts toward the oxygen evolution reaction
Singh et al. Lanthanum-based double perovskite oxides as cobalt-free catalyst for bifunctional application in electrocatalytic oxygen reactions
US11142837B2 (en) Electrocatalytic materials for oxygen evolution of formula A1-xBxO3-δ
KR20190017573A (ko) 물분해 장치
JP4851691B2 (ja) 硫黄サイクルハイブリッド水素製造に用いられる電気分解槽用のアノード電極材料とこれを利用した硫黄サイクルハイブリッド水素製造用電気分解槽、並びに電子導電性セラミックス粉体と立方晶系チタン酸化物パイロクロア焼結体
Yang et al. Cu-doped La 0.5 Sr 0.5 CoO 3− δ perovskite as a highly efficient and durable electrocatalyst for hydrogen evolution
Farfour et al. Catalytic oxidation of methanol on Pt/X (X= CaTP, NaTP) electrodes in sulfuric acid solution
JP2016199772A (ja) 酸素を発生させる方法、水の電気分解装置および陽極
WO2022080466A1 (ja) アルカリ水電解用アノード及びその製造方法
Hosseini et al. Preparation and Study of Bismuth Oxide Doped and co-Doped with Cobalt (III) and Holmium (III) via Sol-Gel Method
Boshnakova et al. Montmorillonite as a catalytic support in water electrolysis
Karels Effect of synthetic methods on the characteristics and performance of IrO2 catalysts

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014550565

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014789503

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014789503

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14789503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE