WO2014184889A1 - 内燃機関の自動停止・再始動装置 - Google Patents

内燃機関の自動停止・再始動装置 Download PDF

Info

Publication number
WO2014184889A1
WO2014184889A1 PCT/JP2013/063493 JP2013063493W WO2014184889A1 WO 2014184889 A1 WO2014184889 A1 WO 2014184889A1 JP 2013063493 W JP2013063493 W JP 2013063493W WO 2014184889 A1 WO2014184889 A1 WO 2014184889A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
rotational speed
self
automatic stop
Prior art date
Application number
PCT/JP2013/063493
Other languages
English (en)
French (fr)
Inventor
智久 正田
石川 修
健 岡部
弘明 北野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/063493 priority Critical patent/WO2014184889A1/ja
Priority to DE112013007073.1T priority patent/DE112013007073B4/de
Priority to CN201380076679.6A priority patent/CN105229283B/zh
Priority to US14/758,271 priority patent/US9624894B2/en
Priority to JP2015516808A priority patent/JP6049870B2/ja
Publication of WO2014184889A1 publication Critical patent/WO2014184889A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0833Vehicle conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/04Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling rendering engines inoperative or idling, e.g. caused by abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0844Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop with means for restarting the engine directly after an engine stop request, e.g. caused by change of driver mind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/004Generation of the ignition spark
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an automatic stop / restart device for an internal combustion engine that automatically stops the internal combustion engine when a predetermined automatic stop condition is satisfied and then automatically restarts the internal combustion engine when a predetermined restart condition is satisfied. is there.
  • an apparatus that employs an automatic stop / restart device (so-called idling stop device) of an internal combustion engine for the purpose of improving the fuel consumption of an automobile and reducing the environmental load.
  • the internal combustion engine automatic stop / restart device automatically stops the operation of the internal combustion engine when a predetermined automatic stop condition based on a driver's deceleration / stop operation is satisfied while the internal combustion engine is in operation.
  • the internal combustion engine is automatically restarted when a predetermined restart condition based on the start / acceleration operation is satisfied.
  • the rotational speed of the internal combustion engine at the time of the restart request is set in advance in consideration of the amount of rotation drop from the crank angle at the time of the restart request to the compression angle position of the combustion cylinder after the restart request.
  • the starter necessity determination value is greater than or equal to the value, the restart of the internal combustion engine, that is, the self-sustained restart is performed only by restarting the fuel injection.
  • the judgment value is set assuming a state where the rotational drop amount is large, the state of the internal combustion engine changes while the rotational speed is decreasing, for example, when the rotational drop amount becomes small while the rotational speed is decreasing
  • the restart condition is satisfied, even if it is possible to perform a self-recovery restart by reducing the rotational drop amount of the rotational speed, the restart operation will be waited until the starter drive starts, and the restart time There is a possibility that the starter driving frequency may increase with the occurrence of the delay.
  • the present invention takes the above-mentioned problems into consideration, and the purpose of the present invention is to accurately carry out a self-sustained return permission determination that restarts only by fuel supply in an internal combustion engine after automatic stop, and restarts only by fuel injection.
  • An automatic stop / restart device for an internal combustion engine that can be surely performed and that can appropriately perform the necessity of driving the starter and can drive the starter only for restart that requires driving of the starter Is to provide.
  • an internal combustion engine automatic stop / restart device automatically stops an internal combustion engine when a predetermined automatic stop condition is satisfied during operation of the internal combustion engine, thereby automatically stopping the internal combustion engine.
  • An automatic stop / restart device for an internal combustion engine that restarts the internal combustion engine when a predetermined restart condition is satisfied during the period, a crank angle detection means for detecting a crank angle of the internal combustion engine, and a rotation of the internal combustion engine Rotational speed calculation means for calculating speed, fuel injection control means for restarting fuel injection to a predetermined cylinder after the restart condition is established, and predicting the rotational speed of the internal combustion engine at the ignition timing after the automatic stop of the internal combustion engine
  • the predicted rotational speed of the internal combustion engine at the ignition timing is determined by a predetermined cylinder by the fuel injection control means according to the restart condition establishment timing. This is characterized in that it is the rotational speed of the internal combustion engine at the ignition timing at which the fuel injected into the initial combustion, that is, the initial combustion rotational speed.
  • the ignition-time internal combustion engine rotational speed predicting means uses the predicted rotational speed in consideration of the amount of change in rotational energy of the internal combustion engine for the initial combustion. It is characterized by calculating the rotation speed.
  • the ignition-time internal combustion engine rotational speed predicting means uses the rotational energy of the internal combustion engine after the automatic stop as an initial value as an initial value of the rotational speed. It is characterized by making a prediction.
  • the self-sustained return determination rotational speed is determined based on at least one of the water temperature of the internal combustion engine, the intake pipe pressure, and the rotational load. It is said.
  • An automatic stop / restart device for an internal combustion engine determines that the self-sustained return is permitted by the self-sustained return permission determining means, and the amount of increase in the rotational speed of the internal combustion engine from the ignition timing of the first combustion Is smaller than a predetermined self-recovery determination rotational speed correction necessity determination value, it is determined that the self-recovery determination rotational speed needs to be corrected, and a predetermined correction coefficient is added to the self-recovery determination rotational speed. It is said.
  • An automatic stop / restart apparatus for an internal combustion engine according to a seventh aspect of the present invention is based on at least one of the water temperature of the internal combustion engine, the intake pipe pressure, and the rotational load. It is characterized by making decisions.
  • the self-recovery of the internal combustion engine is determined according to the comparison result between the predicted rotational speed at the ignition timing of the internal combustion engine after the automatic stop and the preset self-recovery determination rotational speed. Since the permission determination for restart is performed, the self-recovery return restart can be performed accurately. Also, since the rotation speed at the ignition timing at the time of the first combustion after the restart condition is established, the self-recovery restart is performed after the rotation speed at the time of the first combustion is recognized. There is no. Furthermore, since the rotational speed is predicted using the rotational energy of the internal combustion engine after the automatic stop as an initial value, the rotational speed can be accurately predicted from the initial rotational speed.
  • the self-sustained return determination rotational speed is determined based on at least one information of the water temperature of the internal combustion engine, the intake pipe pressure, and the rotational load, the state of the internal combustion engine can be taken into consideration and It is possible to improve the determination accuracy of the permission determination for returning and restarting.
  • the self-recovery determination rotation speed is set high. Therefore, the failure of the self-recovery restart due to deterioration of the internal combustion engine or the like is not caused.
  • the self-sustained return determination rotational speed correction necessity determination value is determined based on at least one information such as the water temperature of the internal combustion engine, the intake pipe pressure, and the rotational load of the internal combustion engine. Considering the state of the internal combustion engine, it is possible to improve the determination accuracy of the permission determination for the independent return restart.
  • FIG. 1 is a configuration diagram of an internal combustion engine according to an embodiment of the present invention. It is a control flowchart of the automatic stop / restart device for an internal combustion engine according to the embodiment of the present invention. It is explanatory drawing of the fuel-injection time concerning embodiment of this invention. It is a figure which shows the example of a setting of the independent return determination rotational speed concerning embodiment of this invention. It is a control flowchart of the first combustion rotation speed process concerning embodiment of this invention. It is calculation explanatory drawing of the estimated rotational speed concerning embodiment of this invention. It is a control flowchart of a self-recovery determination rotational speed correction process according to an embodiment of the present invention.
  • FIG. 1 shows a block diagram of an automatic stop / restart device for an internal combustion engine to which the present invention is applied.
  • reference numeral 1 denotes an internal combustion engine (hereinafter referred to as an engine 1).
  • Air supplied to the engine 1 is supplied to each engine 1 via an air filter 2, an intake pipe 10, a surge tank 9, and an intake manifold 11. Supplied to the cylinder.
  • the air filter 2 is operated by an intake air temperature sensor 3 for detecting the temperature of the intake air
  • the intake pipe 10 is operated by an air flow sensor 4 for detecting the amount of intake air
  • the motor 5 is operated downstream of the air flow sensor 4.
  • a throttle valve 6 that controls the flow rate of the throttle valve 6 and a throttle opening sensor 7 that detects the opening degree of the throttle valve 6 are provided.
  • the surge tank 9 is provided with an intake pipe pressure sensor 8 for detecting the intake pressure in the surge tank 9.
  • the fuel supplied to the engine 1 is supplied by a fuel injection valve 12 provided in the vicinity of the intake port of each cylinder of the engine 1, and forms an air-fuel mixture with the aforementioned supply air to burn the cylinders of the engine 1.
  • a fuel injection valve 12 provided in the vicinity of the intake port of each cylinder of the engine 1, and forms an air-fuel mixture with the aforementioned supply air to burn the cylinders of the engine 1.
  • the air-fuel mixture sucked into the combustion chamber is ignited by an ignition plug (not shown) to generate combustion, and the combustion gas generated by the combustion passes through the exhaust pipe 14 and is harmful gas by a catalyst device (not shown). After being purified, it is discharged into the atmosphere.
  • the engine 1 is also provided with a starter 15 and a ring gear 16 connected to the crankshaft of the engine 1.
  • the starter 15 causes the ring gear to be connected.
  • the cranking of the engine 1 is started by rotating the engine 16.
  • the engine 1 is provided with a water temperature sensor 19 that detects the cooling water temperature of the engine 1 and a crank angle sensor 13 that detects the crank angle of the engine 1, and the output signals of the water temperature sensor 19 and the crank angle sensor 13 are used as output signals.
  • an engine control unit hereinafter referred to as ECU 17 calculates the crank angle, the rotational speed, and the like of the engine 1.
  • the ECU 17 has an input / output interface for inputting detection signals such as the output signals of the various sensors described above, an accelerator pedal depression amount (not shown), and a brake depression amount (not shown), and performs various calculations for controlling the engine 1 to the drive circuit.
  • CPU microprocessor
  • ROM read-only memory
  • RAM random access memory
  • the ECU 17 determines whether or not the automatic stop condition and restart condition of the engine 1 according to the present invention are satisfied, and calculates the self-recovery determination when the restart request is satisfied. Further, based on the output signal of the crank angle sensor 13, the compression top dead center of each cylinder is calculated to be the crank angle crk minimum value, and when the compression top dead center is exceeded, the crank angle crk maximum value is calculated. Ne is calculated, the key is started, and the drive to the starter 15 at the time of restart is determined.
  • FIG. 2 is a control flowchart for performing automatic stop / restart processing of the engine 1 according to the present invention, and the ECU 17 performs calculation at a constant cycle (for example, a cycle of 10 msec).
  • the automatic stop condition of the engine 1 is, for example, whether the detected temperature of the water temperature sensor 19 is equal to or higher than a predetermined temperature (for example, 60 degrees), or whether the vehicle speed is detected once or more than a predetermined speed (for example, 12 km / h).
  • the current vehicle speed is a predetermined speed (for example, 0 km / h) or less, whether the brake pedal is depressed, and whether the amount of depression of the accelerator pedal is a predetermined value (for example, no depression amount)
  • a predetermined speed for example, 0 km / h
  • the brake pedal is depressed
  • the amount of depression of the accelerator pedal is a predetermined value (for example, no depression amount)
  • it is information for determining the driver's deceleration and stopping operation, and the determination is made in S101 by combining these pieces of information.
  • automatic stop control is performed.
  • the drive signal to the fuel injection valve 12 is stopped to stop the fuel supply to the engine 1, for example, the control amount of the throttle valve 6 is changed, and the speed change provided in the engine 1 is performed. Control such as releasing the clutch of the machine is executed.
  • the restart condition is satisfied.
  • a restart condition for example, the depression amount of the brake pedal is not more than a predetermined value (for example, no depression amount), or the accelerator pedal is not less than a predetermined value (for example, the depression amount is 10% or more of the depression amount).
  • This is information for determining whether or not the driver is willing to start and accelerate, and information on the state of the battery 18 that supplies power to sensors provided in the engine 1 such as the intake air temperature sensor 3. By combining these pieces of information, the restart condition is determined in S106.
  • the initial combustion rotational speed NE_IG read in S107 is compared with the self-recovery determination rotational speed NE_TH.
  • the self-recovery determination rotational speed NE_TH is a lower limit value of the rotational speed at which combustion is possible without assistance of the starter 15 when ignition is performed at a rotational speed equal to or higher than this rotational speed. For example, 400 r / min is set. Further, the self-recovery determination rotational speed NE_TH may be calculated from a map as shown in FIG. 4 according to the state of the engine 1, such as the water temperature of the engine 1 when the restart condition is satisfied, the intake pipe pressure, or the rotational load. . Specifically, in FIG.
  • the horizontal axis is the water temperature of the engine 1, and the set value in consideration that the combustion at the time of the self-recovery restart becomes more unstable as the water temperature of the engine 1 is closer to the automatic stop impossible condition. Is set to a higher value, and is set to be lower as the intake pipe pressure is higher.
  • the process proceeds to S111, and the drive permission determination of the starter (starter 15) is performed.
  • the determination performed in S111 is determined based on whether or not the rotational speed Ne of the engine 1 is within the driveable rotational speed range of the starter 15. If the start permission of the starter 15 is determined, the determination of S111 is Yes, the process proceeds to S112, the drive instruction is given to the starter (starter 15), and the process proceeds to S113.
  • the starter (starter 15) If driving is not permitted, the determination is No and the process is terminated.
  • the next control process at restart is performed.
  • the restart control process for example, the control amount of the throttle valve 6 is changed to the restart control amount, and the fuel injection from the fuel injection valve 12 is restarted.
  • the initial fuel injection timing and the initial combustion timing in the present invention will be described with reference to FIG.
  • FIG. 3 is a diagram showing the relationship between the stroke of each cylinder, the initial fuel injection range, and the initial combustion timing in a three-cylinder engine.
  • the compression stroke end timing is the ignition timing
  • the ignition sequence is performed in the order of the ignition timing (D) of each cylinder.
  • the initial fuel injection cylinder is performed based on the initial fuel injection range (C) of each cylinder with reference to the crank angle (A) of the injection timing.
  • the initial fuel injection timing is determined after storing the self-recovery return rotational speed state after the restart condition is established (after execution of S110 in FIG. 2) or after the drive instruction of the starter (starter 15) (S112 in FIG. 2). After the execution).
  • the initial fuel injection range is set from the start of the exhaust stroke of each cylinder to the limit of the intake stroke crank angle (CRK_F) at which each cylinder can inhale fuel.
  • the injection timing and combustion timing after the restart condition is established will be described with reference to the initial fuel injection timing and initial combustion timing (E) in FIG.
  • the first fuel injection is performed in the first cylinder and the second cylinder because the first cylinder and the second cylinder are in the initial fuel injection range.
  • one cylinder in the intake stroke reaches the compression stroke, and the first combustion is performed at time T_IG1 when the ignition timing is reached.
  • the injection timing of the circled number 2 is the initial fuel injection to only two cylinders, and the injection timing of the circled number 3 is 2
  • Initial fuel injection is performed in the cylinder and the third cylinder.
  • the two cylinders reach the compression stroke, and the first combustion is performed at T_IG2 which is the ignition timing.
  • the initial fuel injection is performed only for the three cylinders, and the three cylinders are initially combusted at the compression stroke final time T_IG3.
  • normal fuel injection that is, fuel injection (normal sequential injection) is performed according to a predetermined crank angle of the exhaust stroke of each cylinder.
  • the initial fuel injection is performed after the self-recovery return rotational speed state NE_SC is stored. Therefore, in the self-recovery restart, the initial fuel injection is synchronized with the determination that the restart condition is satisfied.
  • FIG. 5 is a control flowchart for calculating the initial combustion rotation speed of the present invention. This control flowchart performs calculation every time the output signal of the crank angle sensor 13 is input to the ECU 17, and the calculation result is read in S107 in FIG.
  • the crank angle crk (n) and the rotational speed Ne (n) calculated by other control are read, and the process proceeds to S204.
  • crank angle crk (n) read in S202 is an ignition timing crank angle CRK_IG (for example, 5 degrees). If the crank angle crk (n) is the ignition timing crank angle CRK_IG, the determination is Yes, the process proceeds to S208, the ignition timing counter crk_C (m) is incremented by 1, and the process proceeds to S209. On the other hand, if the crank angle crk (n) is not the ignition timing crank angle CRK_IG in S207, the determination is No and the process proceeds to S214.
  • CRK_IG for example, 5 degrees
  • the calculation of the initial combustion rotational speed NE_IG is started by determining Yes in S207.
  • the initial combustion rotational speed NE_IG calculated in S208 and subsequent steps will be described.
  • the calculation of the initial combustion rotational speed NE_IG is started after the automatic stop condition is satisfied and after the final combustion, and the calculation method is performed using the predicted rotational speed in consideration of the change amount of the rotational energy of the engine 1.
  • a method of calculating the predicted rotation speed will be described with reference to FIG.
  • FIG. 6 is a diagram showing a calculated value of the predicted rotational speed calculated from the rotational speed Ne of the engine 1 and the amount of energy change after the automatic stop condition is satisfied.
  • the ignition timing after the final combustion after the automatic stop condition is satisfied.
  • the predicted rotation speed is calculated every time.
  • the rotational speed Ne is decreased by losing the rotational energy held during the rotation due to a pumping loss or the like. Since the viscous resistance depending on the rotational speed Ne during inertial rotation at an idle rotational speed (for example, 800 r / min) or less can be regarded as almost 0 (zero), the predetermined crank angle interval (in the present invention, the ignition time period) ) Is considered to be constant regardless of the rotational speed Ne.
  • the predetermined crank angle interval in the present invention, the ignition time period
  • the rotational speed Ne3 at the third ignition timing and the rotational speed Ne4 at the fourth ignition timing can be calculated from the following formulas (5) and (6) using the above formulas (1) to (3). it can. Therefore, by using the rotational speeds (Ne1 and Ne2) at the ignition timings at the times T1 and T2, the rotational speeds (Ne3 and Ne4) at the third and fourth ignition timings can be predicted and calculated.
  • the energy change amount initial value E_loss_ini is a value calculated based on the behavior of the engine 1 after the automatic stop condition is satisfied through experiments or the like.
  • the rotation speed at the next ignition is expressed by the following equation: (9), (10) can be used for predictive calculation, and when the second and subsequent ignition timings are detected, the next and subsequent times are determined by using the rotation speed at the current ignition timing and the rotation speed at the previous ignition timing.
  • the rotation speed at ignition can be predicted and calculated by the following equations (11) and (12).
  • the process proceeds to S208, the ignition timing counter crk_C (m) is incremented by 1, and the process proceeds to S209. In S209, the ignition timing counter crk_C (m) is 1 or not. Determine whether or not.
  • the process proceeds to S210, the initial value of energy change El_0 is read, and the rotational speed Ne ( n) is stored in the RAM of the ECU 17 as the ignition timing rotational speed NE (n), and the process proceeds to S211, and the next ignition predicted rotational speed Ne_p1 (formula (9) is used by using the formulas (9) and (10) described above. ) (Ne (n + 1)) and the next predicted ignition speed Ne_p2 (Ne (n + 2) in equation (10)) are calculated, and the process proceeds to S214.
  • the energy change amount initial value El_0 is stored in advance in the ROM in the ECU 17.
  • the ignition timing rotational speed NE (n) is stored as the previous value NE (n-1) of the ignition timing rotational speed
  • the rotational speed Ne (n) is stored as the ignition timing rotational speed NE (n).
  • the crank angle crk (n) is determined. Specifically, it is determined whether the crank angle crk (n) is equal to or greater than the ignition timing crank angle CRK_IG or the fuel injection crank angle determination value CRK_TH.
  • the fuel injection crank angle determination value CRK_TH is set based on the intake stroke crank angle CRK_F which is the limit at which each cylinder described in FIG. 3 can suck fuel, and is set to 215 degrees, for example. If the crank angle crk (n) is equal to or greater than the ignition timing crank angle CRK_IG or the ignition timing fuel injection crank angle determination value CRK_TH in S214, the determination is Yes and the process proceeds to S215, where the crank angle crk (n) is the fuel injection crank angle. If smaller than the determination value CRK_TH, the process proceeds to S217.
  • the predicted rotational speed is calculated for each ignition timing at the next and subsequent ignition timings. Further, as shown in FIG. 3 (initial combustion injection range (C) of each cylinder in FIG. 3), the initial fuel injection is set across the ignition timing of the cylinder, and the crank angle crk (n) at the time of fuel injection Depending on the case, combustion occurs at the first ignition after fuel injection. That is, if fuel injection is performed before the fuel injection crank angle determination value CRK_TH, initial combustion occurs at the next ignition timing (next predicted rotation speed).
  • the initial combustion rotational speed NE_IG is the next predicted rotational speed Ne_p1
  • the crank angle crk (n) is the fuel injection. If it is smaller than the crank angle determination value CRK_TH (No in S214), the initial combustion rotational speed NE_IG becomes the next predicted rotational speed NE_p2, and therefore the determination of S214 is performed.
  • the process proceeds to S216, the self-recovery return rotational speed state NE_SC is set to 1, and the process returns.
  • the process proceeds to S217 to set the predicted rotation speed NE_p2 to the initial combustion rotation speed NE_IG one after another, and the process proceeds to S218 to set the self-sustained rotation speed state NE_SC to 2 and returns.
  • the initial combustion rotational speed NE_IG is determined according to the control flowchart of FIG. 5 described above.
  • FIG. 7 is a control flowchart of the self-recovery determination rotational speed correction process executed in S ⁇ b> 114 of FIG. 2, and the calculation is performed every time the output signal of the crank angle sensor 13 is input to the ECU 17.
  • the crank angle crk (n) and the rotational speed Ne (n) are read, and the process proceeds to S304.
  • S304 it is determined whether the crank angle crk (n) read in S302 is the ignition timing crank angle CRK_IG. If the crank angle crk (n) is the ignition timing crank angle CRK_IG, S304 is Yes and the process proceeds to S305.
  • the rotational speed Ne (n) read in S302 is stored in the RAM in the ECU 17 as the reference rotational speed NE_std, and the process proceeds to S306.
  • the ignition number counter recrk_C is incremented by 1, and the process returns.
  • crank angle crk (n) is not the ignition timing crank angle CRK_IG in S304, the determination is No and the process proceeds to S307.
  • the crank angle crk (n) is now the combustion determination crank angle CRK_judge (for example, 125 degrees). It is determined whether or not. If the crank angle crk (n) is the combustion determination crank angle CRK_judge, the determination is Yes and the process proceeds to S308. If the crank angle crk (n) is not the combustion determination crank angle CRK_judge, the determination is No and the process returns.
  • the rotation speed Ne (n) of the engine 1 does not turn up immediately after the ignition timing CRK_IG is reached. Since the rotational speed Ne (n) increases due to the combustion energy generated by the combustion of each cylinder, the maximum value of the rotational speed increase has a delay time with respect to the ignition timing CRK_IG. This is because the delay time varies depending on the rotational speed at the ignition timing CRK_IG, so that the combustion determination crank angle CRK_judge is set and the rotational speed increase determination is performed using the rotational speed at a specific crank angle.
  • the information used in S308 is a self-recovery determination rotational speed correction execution flag (F4), which is a flag set in S317 described later. Since the correction of the self-recovery return determination rotational speed is not executed at the time of the first calculation in S308, the determination is Yes and the process proceeds to S309, and the correction of the self-supporting return determination rotational speed is executed at the second calculation. The determination is returned and the process is terminated.
  • F4 self-recovery determination rotational speed correction execution flag
  • the self-recovery return state determination value NE_IGF set at S110 of FIG. 2 is read, and the process proceeds to S310 to determine the self-recovery return state determination value NE_IGF. If the independence return state determination value NE_IGF is 1, the determination is Yes and the process proceeds to S311. Otherwise, the determination is No and the process proceeds to S312. The determination in S310 is performed because the first combustion occurs at the next or subsequent ignition timing as described with reference to FIG. 5. If the self-recovery return state determination value NE_IGF is 1, the self-recovery return restart from the first ignition is performed. While the combustion starts, if the self-sustained return state determination value NE_IGF is 2, the first combustion starts from the second ignition, so the determination of S310 is provided.
  • the rotational speed increase amount ⁇ NE is calculated from the rotational speed Ne (n) read in S302 and the reference rotational speed NE_std stored in S305, and the process proceeds to S314.
  • the rotational speed increase amount ⁇ NE calculated in S313 is compared with the self-recovery determination rotational speed correction necessity determination value NE_exp.
  • S314 is a calculation for determining the combustibility of the first combustion, and the self-recovery determination rotational speed correction necessity determination value NE_exp is set to 150 r / min, for example.
  • the self-recovery determination rotational speed correction necessity determination value NE_exp may be calculated from a map as shown in FIG.
  • the horizontal axis is the water temperature of the engine 1, and the set value is set to a higher value considering that the amount of change in the rotational speed Ne is larger as the water temperature of the engine 1 is lower, and higher as the intake pipe pressure is higher.
  • the process proceeds to S316, and a predetermined value ⁇ is added to the self-sustained return determination rotational speed NE_TH (the reference value NE_THb is added to the self-sustained return determination rotational speed NE_TH).
  • the predetermined value ⁇ is set from a map as shown in FIG.
  • the self-recovery determination rotational speed correction process is performed along the control flowchart of FIG. 7 described above.
  • the figure is a timing chart showing the self-recovery determination operation according to the present invention in the behavior during the decrease in the rotational speed Ne of the engine 1 after the automatic stop condition is satisfied.
  • the horizontal axis represents time
  • the vertical axis represents the rotational speed Ne (A), the crank angle crk (B), the ignition timing counter crk_C, the ignition frequency counter recrk_C (C), the stroke of each cylinder (D), and the initial combustion rotation.
  • Speed NE_IG E
  • autonomous return rotational speed state NE_SC F
  • rotational speed increase ⁇ NE G
  • automatic stop control execution flag F1 H
  • final combustion flag F2 I
  • autonomous return restart flag F3 J
  • a self-recovery determination rotational speed correction execution flag F4 K
  • FIG. 10 will be described.
  • the automatic stop control flag F1 (H ) Is set (F1 1).
  • NE_IG (E) can be calculated.
  • the initial ignition timing after the final combustion is detected, so the ignition timing counter crk_C (C) is incremented by 1, and the calculation of the initial combustion rotational speed NE_IG (E) is executed. Is done. As described with reference to FIG. 5, the calculation of the initial combustion rotational speed NE_IG (E) uses the rotational speed Ne (A) and the initial energy change amount El_0 at time T3, and the next predicted rotational speed Ne_p1 and the next predicted rotational speed. Ne_p2 is calculated. Then, the initial combustion rotational speed NE_IG (E) is set according to the crank angle crk (B) at time T3.
  • the crank angle crk (B) is the ignition timing crank angle CRK_IG
  • the next predicted rotational speed Ne_p1 is set as the initial combustion rotational speed NE_IG (E) (S215 in FIG. 5). Further, the self-sustained rotation speed state NE_SC (F) is set to 1.
  • the initial combustion rotational speed NE_IG (E) is updated to the predicted rotational speed Ne_p2 one after another (S217 in FIG. 5).
  • the calculated value is not updated until the self-recovery return rotational speed state NE_SC (F) is set to 2 and the next ignition timing is detected.
  • the ignition timing counter crk_C (C) is incremented by 1 to 2 and the initial combustion rotational speed NE_IG (E) is calculated again.
  • the next predicted rotational speed Ne_p1 and the next predicted rotational speed Ne_p2 using the rotational speed Ne at time T3 and time T5. Is calculated.
  • the crank angle crk (B) is the ignition timing crank angle CRK_IG
  • the initial combustion rotational speed NE_IG is updated to the calculated next predicted rotational speed Ne_p1
  • the crank angle crk (B) is changed to the fuel injection crank angle.
  • the initial combustion rotational speed NE_IG is updated to the predicted rotational speed Ne_p2 one after another.
  • the initial fuel injection at time T6 is fuel injection into one cylinder, and the initial combustion rotational speed NE_IG becomes the predicted rotational speed Ne_p2 one after another.
  • the self-recovery return rotational speed state NE_SC is stored as a self-recovery return state determination value NE_IGF.
  • the crank angle crk (B) is determined as the fuel injection crank angle. Since the value is equal to or greater than the value CRK_TH, the result of the independent return determination calculation is different, and the initial combustion rotational speed NE_IG becomes the next predicted rotational speed Ne_p1.
  • the initial fuel injection is fuel injection into one cylinder and two cylinders.
  • the self-recovery return rotational speed state NE_SC is stored as a self-recovery return state determination value NE_IGF.
  • the self-recovery determination rotational speed NE_TH is updated to the self-sustained recovery determination rotational speed initial value NE_THb and the self-recovery determination rotational speed is increased.
  • the fuel injected sequentially burns, the rotational speed Ne (A) increases, and at time T9, the self-recovery return restart is completed, and the ignition timing counter crk_C, the ignition frequency counter recrk_C, the initial combustion rotation
  • the speed NE_IG, the next predicted rotational speed Ne_p1, the next predicted rotational speed Ne_p2, the self-recovery determination rotational speed state NE_SC, the rotational speed increase ⁇ NE, and various flags (F1 to F4) are cleared.
  • FIG. 11 shows a case where the initial combustion is bad in the self-recovery restart, and is the same as FIG. 10 except that the self-recovery determination rotational speed NE_TH is updated.
  • the ignition timing counter crk_C (C) is incremented by 1, and the next predicted rotational speed Ne_p1 and the next predicted rotational speed Ne_p2 are calculated as described above.
  • the initial combustion rotation speed NE_IG (E) is calculated.
  • the initial combustion rotational speed NE_IG (E) becomes the next predicted rotational speed Ne_p1 from the crank angle crk (B).
  • the crank angle crk (B) is smaller than the fuel injection crank angle determination value CRK_TH, the initial combustion rotational speed NE_IG (E) is updated to the predicted rotational speed Ne_p2 one after another.
  • the ignition timing counter crk_C (C) is further incremented by 1, and the next predicted rotation is performed using the rotational speed Ne at time T3 and time T5.
  • the speed Ne_p1 and the predicted rotational speed Ne_p2 are calculated one after another, and the initial combustion rotational speed NE_IG (E) is calculated.
  • the initial combustion rotational speed NE_IG (E) becomes the next predicted rotational speed Ne_p1.
  • the initial combustion rotational speed NE_IG is set to the predicted rotational speed Ne_p2 one after another.
  • the self-recovery return rotational speed state NE_SC is stored as a self-recovery return state determination value NE_IGF.
  • the self-recovery return restart is completed, and the ignition timing counter crk_C, the ignition frequency counter recrk_C, the initial combustion rotational speed NE_IG, the next predicted rotational speed Ne_p1, the next predicted rotational speed Ne_p2, the self-sustained return determination rotational speed state NE_SC, The rotational speed increase amount ⁇ NE and various flags (F1 to F4) are cleared.
  • the self-sustained restart permission determination is performed, so that the self-sustained restart can be accurately performed. Since the self-recovery restart can be performed accurately, the starter (starter 15) is not driven due to the failure of the self-return restart, and the drive frequency of the starter (starter 15) is wasted. There is no increase.
  • the self-recovery determination rotational speed is increased and the next self-recovery restart permission determination is performed. Failure of the self-recovery restart due to aging or the like can be avoided.
  • the present invention is not limited to this and can be applied to a cylinder injection type internal combustion engine.
  • the number of cylinders of the internal combustion engine is not limited to three, and can be applied to a four or six cylinder internal combustion engine.
  • the self-recovery determination rotational speed may be corrected by calculating based on the rotational speed difference, that is, the rotational speed difference between the next predicted rotational speed Ne_p1 and the next predicted rotational speed Ne_p2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

 自動停止後の内燃機関において、自動停止後の内燃機関の点火時期ごとに次回以降の点火時期における回転速度を予測して、その予測回転速度と自立復帰判定回転速度との比較結果に基づいて、自立復帰再始動の許可判定を行い、自立復帰再始動を確実に行うようにしたものである。

Description

内燃機関の自動停止・再始動装置
 この発明は所定の自動停止条件が成立すると、内燃機関の自動停止を行い、その後所定の再始動条件が成立すると、内燃機関の自動再始動を行う内燃機関の自動停止・再始動装置に関するものである。
 従来、自動車の燃費改善・環境負荷低減等を目的として、内燃機関の自動停止・再始動装置(いわゆるアイドリングストップ装置)を採用したものがある。この内燃機関の自動停止・再始動装置は、内燃機関が運転中に運転者の減速・停車操作に基づいた所定の自動停止条件が成立すると、内燃機関の運転を自動停止させると共に、運転者の発進・加速操作に基づいた所定の再始動条件が成立すると内燃機関を自動で再始動させるようにしている。
 このような内燃機関の自動停止・再始動装置においては、再始動条件成立時の内燃機関の回転速度が所定回転速度より高い場合は燃料噴射の再開のみで内燃機関の再始動を行う、つまり自立復帰再始動を行い、再始動条件成立時の内燃機関の回転速度が所定回転速度より低い場合は始動装置(スタータ)を駆動させることによって、再始動時の始動装置(スタータ)の駆動頻度を低減させる装置が提案されている。
 特許文献1においては、再始動要求時の内燃機関の回転速度が、再始動要求時のクランク角度から再始動要求後の燃焼気筒の圧縮角度位置までの回転落込量を考慮して予め設定されているスタータ要否判定値以上の場合に、燃料噴射の再開のみで内燃機関の再始動、つまり自立復帰再始動を行っている。
特許第5059043号
 ところで、自動停止後の内燃機関の回転速度が毎回一定量で低下するかと言うと、そうではなく内燃機関の状態によって低下量は変化してしまう。また、内燃機関の運転状態は同じであっても自動停止時の回転速度が異なる場合や、回転速度低下中に内燃機関の状態が変化する場合には回転速度の低下量は異なってしまう。従って従来技術のように内燃機関の回転落込量を考慮してスタータ要否判定値を設定するためには、多様な運転状態や、自動停止中の状態における回転落込量を正確に把握しておく必要があり、また判定値は回転落込量の大きい状態を想定した設定にしておく必要がある。
 しかしながら、回転落込量の大きい状態を想定して判定値を設定すると、回転速度低下中に内燃機関の状態が変化する、例えば、回転速度低下中に回転落込量が小さくなるような場合に自立復帰再始動不可の判定を行ってしまう可能性がある。つまり、再始動条件成立後に回転速度の回転落込量が小さくなる事で自立復帰再始動が可能な状態であっても、スタータ駆動開始まで再始動動作を待機する事になってしまい、再始動時間の遅延が発生すると共にスタータ駆動頻度が増加する可能性がある。
 本発明は上記問題を考慮したものであり、その目的は自動停止後の内燃機関において燃料供給のみで再始動を行う自立復帰の許可判定を正確に実施できて、燃料噴射のみでの再始動を確実に行うことができると共に、始動装置駆動の要否を適切に行うことができて始動装置の駆動が必要な再始動のみ始動装置を駆動させることが可能な内燃機関の自動停止・再始動装置を提供することである。
 そこで、この発明の第1の観点になる内燃機関の自動停止・再始動装置は、内燃機関の運転中に所定の自動停止条件が成立した時に内燃機関の自動停止を行い、内燃機関の自動停止期間中において所定の再始動条件が成立した時に内燃機関の再始動を行う内燃機関の自動停止・再始動装置であって、内燃機関のクランク角度を検出するクランク角度検出手段と、内燃機関の回転速度を演算する回転速度演算手段と、再始動条件成立後に所定の気筒に対して燃料噴射を再開する燃料噴射制御手段と、内燃機関の自動停止後の点火時期における内燃機関の回転速度を予測する点火時内燃機関回転速度予測手段と、上記点火時期における内燃機関の予測回転速度と予め設定された自立復帰判定回転速度との比較結果に応じて内燃機関の自立復帰の許可判定を行う自立復帰許可判定手段を備えた構成にしている。
 またこの発明の第2の観点になる内燃機関の自動停止・再始動装置では、上記点火時期における内燃機関の予測回転速度は、再始動条件成立時期に応じて上記燃料噴射制御手段により所定の気筒に噴射された燃料が初回燃焼する点火時期の内燃機関の回転速度、すなわち初回燃焼回転速度であることを特徴としている。
 またこの発明の第3の観点になる内燃機関の自動停止・再始動装置では、上記点火時内燃機関回転速度予測手段は内燃機関の回転エネルギーの変化量を考慮した予測回転速度を用いて初回燃焼回転速度を演算することを特徴としている。
 またこの発明の第4の観点になる内燃機関の自動停止・再始動装置では、上記点火時内燃機関回転速度予測手段は、自動停止後の前記内燃機関の回転エネルギーを初期値として回転速度の初回予測を行うことを特徴としている。
またこの発明の第5の観点になる内燃機関の自動停止・再始動装置では、自立復帰判定回転速度を内燃機関の水温、吸気管圧力、回転負荷の少なくとも一つに基づいて決定することを特徴としている。
またこの発明の第6の観点になる内燃機関の自動停止・再始動装置は、上記自立復帰許可判定手段により自立復帰許可と判定して、初回燃焼の点火時期からの内燃機関の回転速度上昇量が予め設定された自立復帰判定回転速度補正要否判定値よりも小さい場合、自立復帰判定回転速度の補正が必要と判断して、自立復帰判定回転速度に所定の補正係数を加算することを特徴としている。
またこの発明の第7の観点になる内燃機関の自動停止・再始動装置は、上記自立復帰判定回転速度補正要否判定値を内燃機関の水温、吸気管圧力、回転負荷の少なくとも一つに基づいて決定することを特徴としている。
 第1乃至第4の観点になる発明によれば、自動停止後の内燃機関の点火時期における予測回転速度と、予め設定した自立復帰判定回転速度との比較結果に応じて、内燃機関の自立復帰による再始動の許可判定を行うので、自立復帰再始動を正確に実施することができる。また、再始動条件成立後の初回燃焼時の点火時期における回転速度を予測するので、初回燃焼時の回転速度を認識した上で自立復帰再始動を行うので自立復帰再始動の失敗を発生させることがない。更に、自動停止後の内燃機関の回転エネルギーを初期値として回転速度を予測するので、初回の回転速度から精度良く回転速度を予測することができる。
 また第5の観点になる発明によれば、自立復帰判定回転速度を内燃機関の水温、吸気管圧力、回転負荷の少なくとも一つの情報に基づいて決定するので、内燃機関の状態を考慮でき、自立復帰再始動の許可判定の判定精度を向上させることができる。
 また第6の観点になる発明によれば、再始動条件成立後の初回燃焼の回転上昇が芳しくなく、自立復帰判定の補正要否判定値より小さい場合には、自立復帰判定回転速度を高い設定に補正するので、内燃機関の劣化等に起因する自立復帰再始動の失敗を発生させることがない。
 また第7の観点になる発明によれば、自立復帰判定回転速度補正要否判定値を内燃機関の水温、吸気管圧力等の少なくとも一つの情報や内燃機関の回転負荷に基づいて決定するので、内燃機関の状態を考慮できて、自立復帰再始動の許可判定の判定精度を向上させることができる。
本発明の実施の形態に係わる内燃機関の構成図である。 本発明の実施の形態に係わる内燃機関の自動停止・再始動装置の制御フローチャートである。 本発明の実施の形態に係わる燃料噴射時期の説明図である。 本発明の実施の形態に係わる自立復帰判定回転速度の設定例を示す図である。 本発明の実施の形態に係わる初回燃焼回転速度処理の制御フローチャートである。 本発明の実施の形態に係わる予測回転速度の算出説明図である。 本発明の実施の形態に係わる自立復帰判定回転速度補正処理の制御フローチャートである。 本発明の実施の形態に係わる自立復帰判定回転速度補正要否判定値の設定例を示す図である。 本発明の実施の形態に係わる自立復帰判定回転速度に加算する所定値の設定例を示す図である。 本発明の実施の形態に係わる自立復帰再始動の一例を示すタイミングチャートである。 本発明の実施の形態に係わる自立復帰再始動の他の例を示すタイミングチャートである。
実施の形態1.
 以下、本発明の実施の形態を図面を用いて説明する。図1は本発明を適用した内燃機関の自動停止・再始動装置の構成図を示している。図1において、1は内燃機関(以下、エンジン1と称す)であり、エンジン1に供給される空気は、エアフィルタ2、吸気管10、サージタンク9、吸気マニホルド11を介してエンジン1の各気筒に供給される。エアフィルタ2には吸入空気の温度を検出する吸気温度センサ3、吸気管10には吸入空気の空気量を検出するエアフロセンサ4、そしてエアフロセンサ4の下流にはモータ5によって動作し、吸入空気の流量を制御するスロットル弁6と、スロットル弁6の開度を検出するスロットル開度センサ7が設けられている。そして、サージタンク9にはサージタンク9内の吸気圧力を検出する吸気管圧力センサ8が設けられている。
 次にエンジン1に供給される燃料は、エンジン1の各気筒の吸気ポート近傍に設けられた燃料噴射弁12によって供給され、前述した供給空気と混合気を形成してエンジン1の各気筒の燃焼室に吸入される。燃焼室に吸入された混合気は点火プラグ(図示しない)により着火されることで燃焼が発生し、燃焼により発生した燃焼ガスは、排気管14を通って触媒装置(図示しない)により有害なガスを浄化したのち大気に排出される。
 また、エンジン1にはスタータ15とエンジン1のクランク軸に連結されたリングギア16が設けられており、エンジン1のキー始動およびスタータ15の駆動が必要な再始動時は、スタータ15によってリングギア16を回転駆動させることでエンジン1のクランキングが開始される。
 さらに、エンジン1にはエンジン1の冷却水温を検出する水温センサ19や、エンジン1のクランク角度を検出するクランク角度センサ13が設けられており、この水温センサ19やクランク角度センサ13の出力信号に基づいてエンジン・コントロール・ユニット(以下、ECU17と称す)において、エンジン1のクランク角度、回転速度等の演算を行う。
 ECU17には、上述した各種センサの出力信号や図示しないアクセルべダルの踏み込み量や図示しないブレーキ踏み込み量等の検出信号を入力する入出力インターフェース、エンジン1を制御する様々な演算を行い駆動回路へ駆動信号を送るCPU(マイクロプロセッサ)、CPUの種々の演算で使用する制御プログラムや各種定数を格納するROM(リードオンリーメモリ)、CPUでの演算結果を一時的に格納するRAM(ランダムアクセスメモリ)、CPUからの演算結果に応じて燃料噴射弁12やスタータ15等に駆動信号を送る駆動回路から構成され、ECU17への電源供給は入出力インターフェースを介してバッテリ18から行われる。
 またECU17は、本発明に係わるエンジン1の自動停止条件、再始動条件の成立判断を行うと共に、再始動要求成立時の自立復帰判定の演算等を行う。また、クランク角度センサ13の出力信号に基づき各気筒の圧縮上死点をクランク角度crk最小値、圧縮上死点を越えるとクランク角度crk最大値になるように演算すると共に、エンジン1の回転速度Neの算出、キー始動、再始動時のスタータ15への駆動判定を行う。
 次に図2から図10を用いて、本発明について詳細に説明する。まず図2は本発明に係わるエンジン1の自動停止・再始動処理を行う制御フローチャートであり、ECU17にて一定周期(例えば10msec周期)で演算が行われる。
 図2に示す制御フローチャートが実行されると、S101で自動停止条件の成立判定を行う。エンジン1の自動停止条件は、例えば、水温センサ19の検出温度が所定温度(例えば60度)以上であるか、また車両速度が所定速度(例えば、12km/h)以上を一度以上検出しているか、また現在の車両速度が所定速度(例えば、0km/h)以下であるか、またブレーキペダルは踏み込まれているか、またアクセルペダルの踏み込み量が所定値(例えば、踏み込み量なし)以下であるかなど、運転手の減速、停車操作を判断する情報であり、これら個々の情報を総合してS101において判定を行う。
 S101において自動停止条件のうち少なくとも一つの条件が不成立である場合は、No判定となってS103に進み、自動停止制御実施フラグをクリア(F1=0(ゼロ))、自立復帰再始動フラグをクリア(F3=0(ゼロ))、自立復帰状態判定値をクリア(NE_IGF=0(ゼロ))として処理を終了する。
 一方、S101において自動停止条件が成立していれば、Yes判定となってS102に進み、S102に進むと、次は自動停止制御の実施判定を行う。このS102の判定は後述する自動停止制御を実施後に成立する自動停止制御実施フラグ(F1)にて行う。自動停止条件成立後の初回S102の演算では当然、自動停止制御は未実施であるのでS104に進む。自動停止条件成立後の2回目以降のS102の演算では、後述する自動停止制御フラグがセット(F1=1)されているので、S102はNo判定となってS106に進む。
 初回のS102の演算にてYes判定となってS104に進むと、自動停止制御を実施する。この自動停止制御は、燃料噴射弁12への駆動信号が停止されてエンジン1への燃料供給を停止すると共に、例えば、スロットル弁6の制御量を変更する、またエンジン1に設けられている変速機のクラッチを開放する等の制御を実行する。それらの自動停止制御が終了するとS105に進み、自動停止制御実施フラグをセット(F1=1)してS106に進む。
 S106に進むと、今度は再始動条件の成立判定を行う。再始動条件としては、例えば、ブレーキペダルの踏み込み量が所定値(例えば、踏み込み量なし)以下であるか、またアクセルペダルが所定値(例えば、踏み込み量に対し一割以上の踏み込み量)以上であるか等、運転者の発進・加速操作の意思を判断する情報や、吸気温度センサ3等エンジン1に設けているセンサなどに電力を供給するバッテリ18の状態情報である。これら個々の情報を総合してS106において再始動条件の判定を行う。
 S106において、再始動条件が成立していればYes判定となってS107に進み、再始動条件のうち少なくとも一つの条件が不成立である場合は、No判定となり処理を終了する。S107に進むと自立復帰判定回転速度処理の結果を読み込み、S108に進む。S107にて読み込む自立復帰判定回転速度処理結果は後述するS108に用いる情報(初回燃焼回転速度NE_IG)である。また自立復帰判定回転速度処理に関しては図5に示す制御フローチャートにて実行され、その詳細な説明を図2の説明後に行う。
 S108に進むと、S107で読み込んだ初回燃焼回転速度NE_IGと自立復帰判定回転速度NE_THとの比較を行う。自立復帰判定回転速度NE_THは、この回転速度以上で点火が実施されるとスタータ15の補助なしで燃焼可能となる回転速度の下限値であり、例えば、400r/minを設定している。また自立復帰判定回転速度NE_THは、再始動条件成立時のエンジン1の水温、及び吸気管圧力、あるいは回転負荷等、エンジン1の状態に応じて図4に示すようなマップから算出してもよい。具体的に言うと、図4において横軸はエンジン1の水温であり、エンジン1の水温が自動停止不可条件に近いほど自立復帰再始動時の燃焼が不安定になることを考慮して設定値を高い値に設定し、また吸気管圧力が高いほど低く設定する。
 S108において、初回燃焼回転速度NE_IGが自立復帰判定回転速度NE_TH以上であればYes判定、つまり自立復帰による再始動許可となってS109に進み、自立復帰再始動フラグをセット(F3=1)としてS110に進み、自立復帰による再始動許可判定時の自立復帰回転速度状態NE_SCを自立復帰状態判定値NE_IGFとしてストアし、S113に進む。S110で用いる自立復帰回転速度状態NE_SCは図5にて詳細を説明する。
 一方、S108でNo判定、つまり自立復帰による再始動を不許可と判定した場合はS111に進み、始動装置(スタータ15)の駆動許可判定を行う。S111で行う判定はエンジン1の回転速度Neがスタータ15の駆動可能回転速度範囲にあるか、などによって判定される。スタータ15が駆動許可判定されていれば、S111の判定はYes判定となってS112に進んで始動装置(スタータ15)へ駆動指示を行い、S113に進むが、S111で始動装置(スタータ15)の駆動が許可されていなければNo判定となって処理を終了する。
 S113に進むと、次は再始動時制御処理を行う。この再始動時制御処理は、例えば、スロットル弁6の制御量を再始動時の制御量に変更する、また燃料噴射弁12からの燃料噴射を再開するなどの処理を行う。ここで本発明における初回燃料噴射時期と初回燃焼時期について図3を用いて説明する。
 図3は3気筒エンジンにおける各気筒の行程と初回燃料噴射範囲と初回燃焼時期の関係を示す図である。各気筒の行程(B)において圧縮行程終了時期が点火時期であり、点火順序は各気筒の点火時期(D)の順序で実施される。初回燃料の噴射気筒に関しては噴射時期のクランク角度(A)を参照して各気筒の初回燃料噴射範囲(C)に基づき実施する。また本発明において初回燃料の噴射時期は、再始動条件成立後の自立復帰回転速度状態をストア後(図2中S110実行後)、または始動装置(スタータ15)の駆動指示後(図2中S112実行後)に実施する。また初回燃料の噴射範囲は各気筒の排気行程開始から、各気筒が燃料を吸入できる限界の吸気行程クランク角度(CRK_F)までの範囲で設定している。
 次に再始動条件成立後の噴射時期と燃焼時期は、図3の初回燃料噴射時期と初回燃焼時期(E)を参照しながら説明する。時刻T1までに初回燃料噴射を実施する噴射時期を示す丸付き数字1の場合、1気筒と2気筒が初回燃料噴射範囲となるので、1気筒と2気筒に初回燃料噴射を行う。そして吸気行程中の1気筒が圧縮行程を迎え、点火時期となる時刻T_IG1で初回燃焼となる。次に時刻T1から時刻T2間にある噴射時期を示す丸付き数字2及び3の場合、丸付き数字2の噴射時期は2気筒だけに初回燃料噴射を行い、丸付き数字3の噴射時期は2気筒と3気筒に初回燃料噴射を行う。そして2気筒が圧縮行程を迎え、点火時期となるT_IG2で初回燃焼となる。そして時刻T2から時刻T3間にある噴射時期を示す丸付き数字4の場合は、3気筒だけに初回燃料噴射を行い、3気筒が圧縮行程最終時刻T_IG3で初回燃焼となる。
 初回燃料噴射実施後は通常の燃料噴射、つまり各気筒の排気行程の所定のクランク角度に応じて燃料噴射(通常のシーケンシャル噴射)を行う。また本発明においては、前述したように自立復帰回転速度状態NE_SCのストア後に初回燃料噴射を実施するので、自立復帰再始動においては再始動条件成立の判定に同期した初回燃料噴射となる。
 図2に戻って、S113で再始動時制御処理を行うと、S114に進み今度は自立復帰判定回転速度補正処理を行って処理が終了する。S114で行う自立復帰判定回転速度補正処理は図7に示すフローチャートに沿って実行され、詳細説明は図5の説明後に行う。以上のようにしてエンジン1の自動停止・再始動処理を行う。
 次に、図5に関して説明を行う。図5は本発明の初回燃焼回転速度を算出する制御フローチャートである。この制御フローチャートはクランク角度センサ13の出力信号がECU17に入力されるごとに演算を行い、その演算結果は図2中のS107にて読み込まれる。
 図5の制御フローチャートが実行されると、まずS201において図2で説明した自動停止制御実施フラグ(F1)の成立判定を行う。自動停止制御フラグがセット(F1=1)であれば、Yes判定となってS202に進み、自動停止制御フラグがクリア(F1=0(ゼロ))であれば、No判定となって、S203に進み、最終燃焼フラグをクリア(F2=0)、点火時期カウンタをクリア(crk_C(m)=0)、点火時期NE今回値カウンタをクリア(NE(n)=0)、点火時期NE前回値をクリア(NE(n-1)=0)、次回予測回転速度をクリア(Ne_p1)、次々回予測回転速度をクリア(NE(n-1)= 0)、自立復帰回転速度状態をクリア(NE_SC = 0)等、各種の演算情報をクリアして処理を終了する。
 S202に進むと、他の制御で演算されているクランク角度crk(n)、回転速度Ne(n)を読み込んで、S204に進む。S204に進むと、最終燃焼フラグ(F2)の成立判定を行う。この最終燃焼フラグ(F2)は後述するS206にてセットされるフラグである。S204において最終燃焼フラグがクリア(F2=0(ゼロ))であれば、Yes判定となってS205に進み、最終燃焼フラグがセット(F2=1)されていれば、S207に進む。
 S204がYes判定となって、S205に進むと最終燃料噴射気筒の点火時期の経過有無を判定、つまり自動停止条件成立後にエンジン1の燃焼が完全に終了したかを判定する。この判定は予測回転速度演算の前提条件であり、予測回転速度の演算はエンジン1の自動停止条件成立後にエンジン1での燃焼が終了している回転速度領域で行う。S205にて最終燃料噴射気筒の点火時期を経過していれば、S205はYes判定となってS206に進み最終燃焼フラグをセット(F2=1)してS207に進む。一方、最終燃料噴射気筒の点火時期を未経過であれば、S205はNo判定となりリターンして処理を終了する。
 S207に進むと、S202で読み込んだクランク角度crk(n)が点火時期クランク角度CRK_IG(例えば、5度)であるかの判定を行う。クランク角度crk(n)が点火時期クランク角度CRK_IGであれば、Yes判定となってS208に進み点火時期カウンタcrk_C(m)を1だけカウントアップしてS209に進む。一方S207でクランク角度crk(n)が点火時期クランク角度CRK_IGでなければ、No判定となってS214に進む。
 S207にてYes判定となる事で初回燃焼回転速度NE_IG、つまり予測回転速度の演算が開始される。ここでS208以下で演算する初回燃焼回転速度NE_IGの説明を行う。本発明では自動停止条件成立かつ最終燃焼以降から初回燃焼回転速度NE_IGの演算を開始し、その演算方法はエンジン1の回転エネルギーの変化量を考慮した予測回転速度を用いて行う。この予測回転速度の計算方法について図6を参照しながら説明する。図6は自動停止条件成立後のエンジン1の回転速度Neとエネルギー変化量から算出する予測回転速度の計算値を示した図であり、本発明では自動停止条件成立後の最終燃焼以降の点火時期ごとに予測回転速度の計算を行う。
 自動停止条件成立かつ最終燃焼以降のエンジン1は、回転中に保持していた回転エネルギーをポンピング損失等で失うことで回転速度Neが低下していく。アイドル回転速度(例えば、800r/min)以下の惰性回転中において回転速度Neに依存する粘性抵抗はほぼ0(ゼロ)とみなすことができるから、所定のクランク角度間(本発明においては点火時期間)のエネルギー変化量は回転速度Neによらず一定と考えられる。図6において点火時期間のエネルギー変化量をE_loss、エンジン1の慣性モーメントをJとすると、各点火時期T1~T4における回転速度Neとの関係は下記式(1)から(4)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、3回目の点火時期における回転速度Ne3及び4回目の点火時期における回転速度Ne4は上記式(1)から(3)を用いると、下記式(5)及び(6)から算出することができる。
Figure JPOXMLDOC01-appb-M000002
従って、時刻T1と時刻T2の点火時期における回転速度(Ne1とNe2)を用いることで3回目及び4回目の点火時期における回転速度(Ne3、Ne4)は予測計算することができる。
 また、クランク角度間のエネルギー変化量E_lossは一定と考えるから、エネルギー変化量初期値E_loss_iniを用いると、式(1)、式(2)から、2回目と3回目の回転速度は下記式(7)、式(8)で表すことができ、時刻T1の点火時期における回転速度Ne1から2回目及び3回目の点火時期における回転速度(Ne2、Ne3)を予測計算することができる。なお、エネルギー変化量初期値E_loss_iniは、実験等から自動停止条件成立後のエンジン1の挙動を基に算出する値である。
Figure JPOXMLDOC01-appb-M000003
 よって、最終燃焼以降の惰性回転中の初回点火時期を検出し、実験等によって算出されるエネルギー変化量初期値E_loss_iniと初回点火時回転速度を用いることで次回、次々回の点火時回転速度は下式(9)、(10)から予測計算することができ、2回目以降の点火時期を検出した場合は、今回の点火時期における回転速度と前回の点火時期における回転速度を用いることで次回及び次々回の点火時回転速度を下式(11)、(12)にて予測計算することができる。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
上記の式(9)から(12)を用いて、図5のS209以降で点火時期の回転速度を予測計算する。
 図5に戻って説明を再開すると、S207においてYes判定となるとS208に進み、点火時期カウンタcrk_C(m)を1だけカウントアップしてS209に進み、S209では点火時期カウンタcrk_C(m)が1か否かの判定を行う。点火時期カウンタcrk_C(m)が1であれば、最終燃焼後の初回点火時期であるのでS209はYes判定となってS210に進んで、エネルギー変化量初期値El_0を読み込むと共にその時の回転速度Ne(n)をECU17のRAMに点火時期回転速度NE(n)としてストアして、S211に進み、前述した式(9)及び(10)を用いて、次回の点火時予測回転速度Ne_p1(式(9)中Ne(n+1))と、次々回の点火時予測回転速度Ne_p2(式(10)中Ne(n+2))の演算を行い、S214に進む。なお、エネルギー変化量初期値El_0は予めECU17内のROMに格納されている。
 一方、S209で点火時期カウンタcrk_C(m)が1より大きい場合は、2回目以降の点火時期となるので、No判定となってS212に進み、点火時期回転速度NE(n)と回転速度Ne(n)をストアする。具体的には点火時期回転速度NE(n)を点火時期回転速度の前回値NE(n-1)としてストアして、回転速度Ne(n)を点火時期回転速度NE(n)としてストアする。そしてS213に進み、前述した式(11)及び(12)を用いて、次回の点火時予測回転速度Ne_p1(式(11)中Ne(n+1))と、次々回の点火時予測回転速度Ne_p2(式(12)中Ne(n+2))の演算を行い、S214に進む。
 S214に進むと、クランク角度crk(n)の判定を行う。具体的にはクランク角度crk(n)が点火時期クランク角度CRK_IG、または燃料噴射クランク角度判定値CRK_TH以上かの判定を行う。燃料噴射クランク角度判定値CRK_THの設定は図3にて説明した各気筒が燃料を吸入できる限界の吸気行程クランク角度CRK_Fに基づいて設定され、例えば215度に設定される。S214でクランク角度crk(n)が点火時期クランク角度CRK_IG、または点火時期燃料噴射クランク角度判定値CRK_TH以上であれば、Yes判定となってS215に進み、クランク角度crk(n)が燃料噴射クランク角度判定値CRK_THより小さい場合はS217に進む。
 ここで、S214の判定について説明する。図6で説明したように予測回転速度は点火時期ごとに次回と次々回の点火時期における回転速度を演算する。また図3に示している(図3中各気筒の初回燃焼噴射範囲(C))ように初回燃料噴射は気筒の点火時期を跨いで設定しており、燃料噴射時のクランク角度crk(n)によっては燃料噴射後の初回点火にて燃焼が発生する。つまり燃料噴射クランク角度判定値CRK_THまでに燃料噴射を行うと、次回の点火時期(次回の予測回転速度)で初回燃焼が発生する。従ってS214でクランク角度crk(n)が燃料噴射クランク角度判定値CRK_TH以上の場合(S214がYes判定)は、初回燃焼回転速度NE_IGは次回の予測回転速度Ne_p1、クランク角度crk(n)が燃料噴射クランク角度判定値CRK_THより小さい場合(S214がNo判定)は、初回燃焼回転速度NE_IGは次々回の予測回転速度NE_p2となることからS214の判定を行っている。
 S214でYes判定となってS215に進むと、初回燃焼回転速度NE_IGに次回予測回転速度NE_p1を設定して、S216に進み自立復帰回転速度状態NE_SCを1にしてリターンする。S214でNo判定の場合はS217に進み、初回燃焼回転速度NE_IGに次々回予測回転速度NE_p2を設定して、S218に進んで自立復帰回転速度状態NE_SCを2に設定してリターンする。以上、説明した図5の制御フローチャートによって初回燃焼回転速度NE_IGを決定する。
 次に図7の説明を行う。図7は図2のS114で実行される自立復帰判定回転速度補正処理の制御フローチャートであり、クランク角度センサ13クランク角度センサ13の出力信号がECU17に入力されるごとに演算を行う。
 自立復帰判定回転速度補正処理が実行されると、まずS301で自立復帰再始動の成立判定を行う。この自立復帰再始動の判定は図2のS109にてセットされる自立復帰再始動フラグ(F3)を参照する。自立復帰再始動フラグがセット(F3=1)の場合にはS301はYes判定となって、S302に進み、自立復帰再始動フラグがクリア(F3=0(ゼロ))の時は、No判定となるので、S303に進んで基準回転速度をクリア(NE_std=0)、回転速度上昇量をクリア(ΔNE=0)、点火回数カウンタをクリア(recrk_C=0)、自立復帰判定回転速度補正実施フラグをクリア(F4=0)等、種々の演算情報をクリアして処理を終了する。このS301の判定を行うことで自立復帰による再始動時のみ以下で説明する自立復帰判定回転速度補正処理が行われる。
 S302に進むとクランク角度crk(n)と回転速度Ne(n)を読み込んで、S304に進む。S304に進むとS302で読み込んだクランク角度crk(n)が点火時期クランク角度CRK_IGであるかの判定を行う。クランク角度crk(n)が点火時期クランク角度CRK_IGであれば、S304はYes判定となってS305に進む。S305に進むと、S302にて読み込んだ回転速度Ne(n)を基準回転速度NE_stdとして、ECU17内のRAMにストアして、S306に進む。S306では点火回数カウンタrecrk_Cを1だけカウントアップしてリターンする。
 一方、S304でクランク角度crk(n)が点火時期クランク角度CRK_IGでない場合は、No判定となってS307に進み、S307では今度はクランク角度crk(n)が燃焼判定クランク角度CRK_judge(例えば125度)であるかの判定を行う。クランク角度crk(n)が燃焼判定クランク角度CRK_judgeであれば、Yes判定となってS308に進み、クランク角度crk(n)が燃焼判定クランク角度CRK_judgeでない場合はNo判定となってリターンする。
 ここで、S307の演算理由を説明する。エンジン1の回転速度Ne(n)は点火時期CRK_IGを迎えたからといってすぐには回転上昇に転じない。回転速度Ne(n)は各気筒の燃焼により発生する燃焼エネルギーによって上昇するから、点火時期CRK_IGに対して回転速度上昇の最大値は遅れ時間が存在する事になる。その遅れ時間は点火時期CRK_IGにおける回転速度によって変化するから、燃焼判定クランク角度CRK_judgeを設定し、特定のクランク角度における回転速度を用いて、回転速度の上昇量判定を行うためである。
 S308に進むと、次は自立復帰判定回転速度補正実施の有無を判定する。S308に用いる情報は自立復帰判定回転速度補正実施フラグ(F4)であり、後述するS317にて設定されるフラグである。S308の初回演算時は自立復帰判定回転速度の補正を実行していないので、Yes判定となってS309に進み、2回目の演算時は自立復帰判定回転速度の補正を実行しているので、No判定となってリターンされ処理を終了する。
 S309に進むと、図2のS110で設定される自立復帰状態判定値NE_IGFを読み込んで、S310に進み自立復帰状態判定値NE_IGFの判定を行う。自立復帰状態判定値NE_IGFが1であれば、Yes判定となってS311に進み、1以外であればNo判定となってS312に進む。このS310の判定は図5でも説明したように初回燃焼が次回または次々回の点火時期で発生するために行う判定であり、自立復帰状態判定値NE_IGFが1であれば自立復帰再始動の初回点火から燃焼が始まるのに対し、自立復帰状態判定値NE_IGFが2であれば初回燃焼は2回目の点火から始まるので、S310の判定を設ける。
 S310がYes判定となってS311に進むと、次は点火回数カウンタrecrk_Cの判定を行い、点火回数カウンタrecrk_Cが1であればYes判定となってS313に進み、1以外であればNo判定となりリターンされる。S310でNo判定の場合はS312に進み点火回数カウンタrecrk_Cの判定を行い、点火回数カウンタrecrk_Cが2であればYes判定となってS313に進み、S312でNo判定の場合はリターンして処理を終了する。
 S313に進むと、S302で読み込んだ回転速度Ne(n)とS305でストアした基準回転速度NE_stdから回転速度上昇量ΔNEを算出してS314に進む。S314に進むとS313で算出した回転速度上昇量ΔNEと自立復帰判定回転速度補正要否判定値NE_expとの比較を行う。S314は初回燃焼の燃焼性を判定する演算で、自立復帰判定回転速度補正要否判定値NE_expは例えば150r/minを設定している。また自立復帰判定回転速度補正要否判定値NE_expは、再始動条件成立時のエンジン1の水温及び、吸気管圧力等、エンジン1の状態に応じて図8に示すようなマップから算出してもよい。図8において横軸はエンジン1の水温であり、エンジン1の水温が低いほど回転速度Neの変化量が大きいことを考慮して設定値を高い値に設定し、また吸気管圧力が高いほど高く設定する。
 S314において、回転速度上昇量ΔNEが自立復帰判定回転速度補正要否判定値NE_exp以上であれば、Yes判定となってS315に進む。S315では自立復帰判定回転速度NE_THの初期化(自立復帰判定回転速度NE_THに基準値NE_THbを代入)してS317に進み、自立復帰判定回転速度補正の実施フラグをセット(F4=1)にしてリターンする。なお、基準値NE_THbは予めECU17内のROMに格納されている。一方、S314おいてNo判定となった場合は初回燃焼性が悪い判定となるので、S316に進み、自立復帰判定回転速度NE_THに所定値αだけ加算(自立復帰判定回転速度NE_THに基準値NE_THbと所定値αの合計を代入)して、S317に進んで自立復帰判定回転速度補正の実施フラグをセット(F4=1)にしてリターンする。この所定値αは図9に示すようなマップから設定される。以上説明した図7の制御フローチャートに沿って自立復帰判定回転速度補正処理を行う。
 次に図10、図11に示すタイミングチャートを説明する。図は自動停止条件成立後のエンジン1の回転速度Ne低下中の挙動において、本発明に係わる自立復帰判定の動作を示すタイミングチャートである。図において横軸は時間を示し、縦軸は回転速度Ne(A)、クランク角度crk(B)、点火時期カウンタcrk_C、点火回数カウンタrecrk_C(C)、各気筒の行程(D)、初回燃焼回転速度NE_IG(E)、自立復帰回転速度状態NE_SC(F)、回転速度上昇量ΔNE(G)、自動停止制御実施フラグF1(H)、最終燃焼フラグF2(I)、自立復帰再始動フラグF3(J)、自立復帰判定回転速度補正実施フラグF4(K)をそれぞれ示している。
 まず図10について説明する。図10において時刻T1で自動停止条件が成立して、自動停止が実施されると、燃料噴射弁12からの燃料噴射の停止等、自動停止制御が実行されることで自動停止実施フラグF1(H)がセット(F1=1)される。その後、自動停止条件成立前に噴射された燃料が燃焼する時刻T2で最終燃焼フラグF2(I)がセット(F2=1)されるので、時刻T2以降において点火時期の検出毎に初回燃焼回転速度NE_IG(E)の演算を行うことが可能となる。
 時間が経過して時刻T3になると、最終燃焼後の初回点火時期を検出するので、点火時期カウンタcrk_C(C)が1だけカウントアップされると共に、初回燃焼回転速度NE_IG(E)の演算が実行される。初回燃焼回転速度NE_IG(E)の演算は、図5で説明したように、時刻T3における回転速度Ne(A)とエネルギー変化量初期値El_0を用いて、次回予測回転速度Ne_p1と次々回予測回転速度Ne_p2を算出する。そして時刻T3におけるクランク角度crk(B)に応じて、初回燃焼回転速度NE_IG(E)を設定する。時刻T3では、クランク角度crk(B)が点火時期クランク角度CRK_IGであるので、初回燃焼回転速度NE_IG(E)は次回予測回転速度Ne_p1を設定する(図5のS215)。また自立復帰回転速度状態NE_SC(F)は1に設定される。
 そして時刻T4になるとクランク角度crk(B)が燃料噴射クランク角度判定値CRK_THより小さくなるので、初回燃焼回転速度NE_IG(E)が次々回予測回転速度Ne_p2に更新される(図5のS217)と共に、自立復帰回転速度状態NE_SC(F)が2に設定され、次の点火時期を検出するまで各演算値の更新はない。
 次に時刻T5で最終燃焼後の2回目の点火時期を検出すると、点火時期カウンタcrk_C(C)が1だけカウントアップされて2になると共に、再び初回燃焼回転速度NE_IG(E)の演算を行う。時刻T5においては時刻T3で初回の点火時期を検出しているので、図5で説明したように、時刻T3と時刻T5の回転速度Neを用いて、次回予測回転速度Ne_p1と次々回予測回転速度Ne_p2を算出する。そしてクランク角度crk(B)は点火時期クランク角度CRK_IGであるので、初回燃焼回転速度NE_IGは演算された次回予測回転速度Ne_p1に更新され、時刻T5以降でクランク角度crk(B)が燃料噴射クランク角度判定値CRK_THより小さくなると、初回燃焼回転速度NE_IGは次々回予測回転速度Ne_p2に更新される。
 このように時刻T5以降において再度点火時期を検出した場合は、検出時の回転速度と前回の点火時期の回転速度を用いて、次回予測回転速度Ne_p1と次々回予測回転速度Ne_p2を演算し、クランク角度crk(B)に応じて、初回燃焼回転速度NE_IG(E)が更新されていく。
 次に時刻T6で再始動条件が成立した場合は、初回燃焼回転速度NE_IG(E)が自立復帰判定回転速度NE_TH以上であるので、自立復帰再始動となり自立復帰再始動フラグF3(J)がセット(F3=1)となる。時刻T6における初回燃料噴射は1気筒への燃料噴射となり、初回燃焼回転速度NE_IGは次々回予測回転速度Ne_p2となる。また時刻T6において、自立復帰回転速度状態NE_SCを自立復帰状態判定値NE_IGFとしてストアする。
 また時刻T6´で再始動条件が成立した場合も初回燃焼回転速度NE_IG(E)が自立復帰判定回転速度NE_TH以上であるので、自立復帰再始動となり自立復帰再始動フラグF3(J)がセット(F3=1)される。時刻T6´の場合は、時刻T6と同様自立復帰再始動ではあるが、再始動条件成立時期が最終燃焼後の3回目の点火時期検出後、かつクランク角度crk(B)は燃料噴射クランク角度判定値CRK_TH以上であるので、自立復帰判定演算結果が異なり初回燃焼回転速度NE_IGは次回予測回転速度Ne_p1となる。また初回燃料噴射は1気筒と2気筒への燃料噴射となる。また時刻T6´において、自立復帰回転速度状態NE_SCを自立復帰状態判定値NE_IGFとしてストアする。
 時刻T6(または時刻T6´)で再始動条件が成立すると共に、該当気筒へ噴射を行った燃料が時刻T7において初回燃焼となって回転速度Ne(A)が上昇に転じ始める。また点火回数クランクカウンタrecrk_C(C)が1だけカウントアップされる。そして時刻T8になってクランク角度crk(B)が燃焼判定クランク角度CRK_judgeになると、回転速度上昇量ΔNE(G)が演算される。図7においては回転速度上昇量ΔNEが自立復帰判定回転速度補正要否判定値NE_exp以上であるので、自立復帰判定回転速度NE_THを自立復帰判定回転速度初期値NE_THbに更新すると共に、自立復帰判定回転速度補正実施フラグF4(K)がセット(F4=1)される。
 そして、順次燃料噴射された燃料が燃焼して、回転速度Ne(A)が上昇して、時刻T9になると自立復帰再始動完了となって、点火時期カウンタcrk_C、点火回数カウンタrecrk_C、初回燃焼回転速度NE_IG、次回予測回転速度Ne_p1、次々回予測回転速度Ne_p2、自立復帰判定回転速度状態NE_SC、回転速度上昇量ΔNE、及び各種フラグ(F1からF4)をクリアする。
 次に図11の説明を行う。図11は自立復帰再始動において初回燃焼が悪い場合を示しており、自立復帰判定回転速度NE_THが更新される以外は、図10と同様となるので、変更箇所以外の説明は簡単に行う。
 まず、時刻T1で自動停止条件が成立して、自動停止制御が実行されると自動停止制御実施フラグF1(H)がセット(F1=1)される。時刻T2になると自動停止条件成立後の最終燃焼となるので、最終燃焼フラグF2(I)がセット(F2=1)され、次に検出される点火時期の時刻(時刻T3)から初回燃焼回転速度NE_IG(E)の演算を行う。
 次に時刻T3になると、最終燃焼後の初回点火時期となるので、点火時期カウンタcrk_C(C)を1だけカウントアップすると共に、前述したように次回予測回転速度Ne_p1と次々回予測回転速度Ne_p2を算出して、初回燃焼回転速度NE_IG(E)を演算する。時刻T3ではクランク角度crk(B)より初回燃焼回転速度NE_IG(E)は次回予測回転速度Ne_p1となる。そして時刻T4では、クランク角度crk(B)が燃料噴射クランク角度判定値CRK_THより小さくなるので、初回燃焼回転速度NE_IG(E)は次々回予測回転速度Ne_p2に更新される。
 時刻T5になると、最終燃焼後の2回目の点火時期を検出するので、点火時期カウンタcrk_C(C)がさらに1だけカウントアップされて、時刻T3と時刻T5の回転速度Neを用いて次回予測回転速度Ne_p1と次々回予測回転速度Ne_p2を算出して、初回燃焼回転速度NE_IG(E)の演算を行う。時刻T5において初回燃焼回転速度NE_IG(E)は次回予測回転速度Ne_p1となる。
 そして時刻T6において再始動条件が成立すると、初回燃焼回転速度NE_IG(E)が自立復帰下限回転速度NE_TH以上であるので、自立復帰再始動フラグF3がセット(F3=1)されると共に、その時のクランク角度crk(B)に応じて初回燃料噴射が実施(図11では1気筒に燃料噴射)される。また時刻T6においては、初回燃焼回転速度NE_IGは次々回予測回転速度Ne_p2を設定している。また時刻T6において、自立復帰回転速度状態NE_SCを自立復帰状態判定値NE_IGFとしてストアする。
 再始動条件成立後の時刻T7になると、時刻T6にて初回噴射を行った燃料が燃焼を迎えることで、回転速度Ne(A)が上昇に転じ始め、点火回数カウンタrecrk_C(C)が1だけカウントアップされる。そしてクランク角度crk(B)が燃料判定クランク角度CRK_judgeになる時刻T8において、回転速度上昇量ΔNE(G)が算出される。図11においては回転速度上昇量ΔNE(G)が自立復帰判定回転速度補正要否判定値NE_exp以下、つまり初回燃焼の回転上昇が悪化しているので、自立復帰判定回転速度NE_THに所定値(α)だけ加算する(図11中(A)または(E)参照)。また、自立復帰判定回転速度補正実施フラグF4(K)をセット(F4=1)にする。
 そして、時刻T9において自立復帰再始動完了となって、点火時期カウンタcrk_C、点火回数カウンタrecrk_C、初回燃焼回転速度NE_IG、次回予測回転速度Ne_p1、次々回予測回転速度Ne_p2、自立復帰判定回転速度状態NE_SC、回転速度上昇量ΔNE、及び各種フラグ(F1からF4)をクリアする。
 以上、説明した本発明の実施の形態よれば、自動停止後かつ最終燃焼後の点火時期ごとに次回以降の点火時期の回転速度を予測するので、自立復帰再始動の初回燃焼時の回転速度を正確に把握できると共に、その予測回転速度を自立復帰判定回転速度と比較して自立復帰再始動の許可判定を行うので、自立復帰再始動を正確に実施することができる。そして自立復帰再始動を正確に実施することができるので、自立復帰再始動の失敗に起因する始動装置(スタータ15)の駆動を行うことがなく、始動装置(スタータ15)の駆動頻度が無駄に増加することがない。
 また、自立復帰判定回転速度を内燃機関の運転状態に応じた設定を行うことで、自立復帰再始動の判定精度を向上させることができる。
 また、自立復帰再始動したにもかかわらず、初回燃焼の燃焼性が芳しくない場合には、自立復帰判定回転速度を大きくして、次回の自立復帰再始動の許可判定を行うので、内燃機関の経年劣化等に起因する自立復帰再始動の失敗を回避することができる。
 また、自立復帰判定回転速度補正を内燃機関の運転状態に応じた設定を行うことで、自立復帰再始動の判定精度を向上させることができる。
 また、本発明の実施の形態ではポート噴射式の内燃機関で説明したが、これに限るものではなく、筒内噴射式の内燃機関に適用することができる。また、内燃機関の気筒数も3気筒に限らず4、6気筒の内燃機関にも適用することができる。
また、本発明の実施の形態では、回転速度上昇量ΔNEが自立復帰判定回転速度補正要否判定値NE_expより小さい場合に、自立復帰判定回転速度に所定値を加算するが、その所定値は予測回転速度の差、つまり次回予測回転速度Ne_p1と次々回予測回転速度Ne_p2の回転速度差に基づいて算出し、自立復帰判定回転速度を補正してもよい。
1.内燃機関(エンジン)、  2.エアフィルタ、  
3.吸気温センサ、 4.エアフロセンサ、  
5.モータ、  6.スロットル弁、  
7.スロットル開度センサ、 8.吸気管圧力センサ、  
9.サージタンク、  10.吸気管、  11.吸気マニホルド、
12.燃料噴射弁、  13.クランク角度センサ、  
14.排気管、  15.スタータ、 16.リングギア、  
17.ECU(エンジン・コントロール・ユニット)、
18. バッテリ、  19.水温センサ。

Claims (7)

  1.  内燃機関の運転中に所定の自動停止条件が成立した時に前記内燃機関の自動停止を行い、前記内燃機関の自動停止期間中に所定の再始動条件が成立した時に前記内燃機関の再始動を行う内燃機関の自動停止・再始動装置であって、
    前記内燃機関のクランク角度を検出するクランク角度検出手段と、
    前記内燃機関の回転速度を演算する回転速度演算手段と、
    前記再始動条件成立後に所定の気筒に対して燃料噴射を再開する燃料噴射制御手段と、
    前記内燃機関の自動停止後の点火時期における前記内燃機関の回転速度を予測する点火時内燃機関回転速度予測手段と、
    前記点火時期における内燃機関の回転速度と予め設定された自立復帰判定回転速度との比較結果に応じて、前記内燃機関の自立復帰の許可判定を行う自立復帰許可判定手段を備えたことを特徴とする内燃機関の自動停止・再始動装置。
  2.  請求項1に記載の内燃機関の自動停止・再始動装置において、
    前記点火時期における内燃機関の回転速度は、前記再始動条件成立時期に応じて、前記燃料噴射制御手段により所定の気筒に噴射された燃料が初回燃焼する点火時期における前記内燃機関の回転速度、すなわち初回燃焼回転速度であることを特徴とする内燃機関の自動停止・再始動装置。
  3.  請求項2に記載の内燃機関の自動停止・再始動装置において、
    前記点火時内燃機関回転速度予測手段は内燃機関の回転エネルギーの変化量を考慮した予測回転速度を用いて初回燃焼回転速度を演算することを特徴とする内燃機関の自動停止・再始動装置。
  4.  請求項3に記載の内燃機関の自動停止・再始動装置において、
    前記点火時内燃機関回転速度予測手段は、自動停止後の前記内燃機関の回転エネルギーを初期値として前記予測回転速度の初回予測を行うことを特徴とする内燃機関の自動停止・再始動装置。
  5. 請求項1に記載の内燃機関の自動停止・再始動装置において、
    前記自立復帰判定回転速度は前記内燃機関の水温、吸気管圧力、回転負荷の少なくとも一つに基づいて決定されることを特徴とする内燃機関の自動停止・再始動装置。
  6.  請求項1に記載の内燃機関の自動停止・再始動装置において、
    前記自立復帰許可判定手段により自立復帰許可と判定して、初回燃焼の点火時期からの前記内燃機関の回転速度上昇量が予め設定された自立復帰判定回転速度補正要否判定値よりも小さい場合は、前記自立復帰判定回転速度の補正が必要と判断して、前記自立復帰判定回転速度に所定の補正係数を加算することを特徴とする内燃機関の自動停止・再始動装置。
  7.  請求項5に記載の内燃機関の自動停止・再始動装置において、
    前記自立復帰判定回転速度補正要否判定値は、前記内燃機関の水温、吸気管圧力、回転負荷の少なくとも一つに基づいて決定されることを特徴とする内燃機関の自動停止・再始動装置。
PCT/JP2013/063493 2013-05-15 2013-05-15 内燃機関の自動停止・再始動装置 WO2014184889A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/063493 WO2014184889A1 (ja) 2013-05-15 2013-05-15 内燃機関の自動停止・再始動装置
DE112013007073.1T DE112013007073B4 (de) 2013-05-15 2013-05-15 Automatische Stopp- und Neustartvorrichtung für einen Innenverbrennungsmotor
CN201380076679.6A CN105229283B (zh) 2013-05-15 2013-05-15 内燃机的自动停止/再起动装置
US14/758,271 US9624894B2 (en) 2013-05-15 2013-05-15 Automatic stopping and restarting device of internal combustion engine
JP2015516808A JP6049870B2 (ja) 2013-05-15 2013-05-15 内燃機関の自動停止・再始動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063493 WO2014184889A1 (ja) 2013-05-15 2013-05-15 内燃機関の自動停止・再始動装置

Publications (1)

Publication Number Publication Date
WO2014184889A1 true WO2014184889A1 (ja) 2014-11-20

Family

ID=51897906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063493 WO2014184889A1 (ja) 2013-05-15 2013-05-15 内燃機関の自動停止・再始動装置

Country Status (5)

Country Link
US (1) US9624894B2 (ja)
JP (1) JP6049870B2 (ja)
CN (1) CN105229283B (ja)
DE (1) DE112013007073B4 (ja)
WO (1) WO2014184889A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6237667B2 (ja) * 2015-02-10 2017-11-29 トヨタ自動車株式会社 エンジン始動装置
CN106762315B (zh) * 2016-11-17 2018-08-28 控福(上海)智能科技有限公司 基于预判转速进行起动机启停起动的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185425A (ja) * 2009-02-13 2010-08-26 Toyota Motor Corp 内燃機関の制御装置
JP2010255548A (ja) * 2009-04-27 2010-11-11 Denso Corp エンジン停止始動制御装置
JP5059043B2 (ja) * 2009-03-17 2012-10-24 株式会社デンソー エンジン停止始動制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4362133A (en) * 1981-05-08 1982-12-07 General Motors Corporation Automatic engine shutdown and restart system
JP3571014B2 (ja) * 2001-08-30 2004-09-29 本田技研工業株式会社 内燃機関の自動停止始動制御装置
JP4419655B2 (ja) * 2004-04-08 2010-02-24 株式会社デンソー エンジンの停止始動制御装置
DE102008041037A1 (de) * 2008-08-06 2010-02-11 Robert Bosch Gmbh Verfahren und Vorrichtung einer Steuerung für einen Start-Stopp-Betrieb einer Brennkraftmaschine
JP4730713B2 (ja) * 2008-08-08 2011-07-20 株式会社デンソー エンジン自動停止・始動制御装置
JP5007839B2 (ja) * 2008-09-02 2012-08-22 株式会社デンソー エンジン自動停止始動制御装置
EP2211051B8 (en) * 2009-01-21 2019-09-11 Denso Corporation System for restarting internal combustion engine
JP5656013B2 (ja) * 2010-01-11 2015-01-21 株式会社デンソー エンジン自動停止始動制御装置
US8510019B2 (en) * 2010-01-20 2013-08-13 Denso Corporation Control device of automatic engine stop and start
JP5360500B2 (ja) * 2010-02-04 2013-12-04 トヨタ自動車株式会社 エンジン自動停止始動制御装置
DE102010001762B4 (de) * 2010-02-10 2018-12-13 Seg Automotive Germany Gmbh Verfahren zur Vorausbestimmung eines Bewegungszustandes einer Antriebswelle einer Brennkraftmaschine
JP5108040B2 (ja) * 2010-02-18 2012-12-26 三菱電機株式会社 エンジン自動停止再始動装置
US8347855B2 (en) * 2010-05-13 2013-01-08 GM Global Technology Operations LLC Control system and method for improving engine stop-start response time
DE102010040562B4 (de) * 2010-09-10 2022-02-03 Robert Bosch Gmbh Verfahren zum Wiederstart einer Brennkraftmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185425A (ja) * 2009-02-13 2010-08-26 Toyota Motor Corp 内燃機関の制御装置
JP5059043B2 (ja) * 2009-03-17 2012-10-24 株式会社デンソー エンジン停止始動制御装置
JP2010255548A (ja) * 2009-04-27 2010-11-11 Denso Corp エンジン停止始動制御装置

Also Published As

Publication number Publication date
JP6049870B2 (ja) 2016-12-21
DE112013007073B4 (de) 2020-09-03
DE112013007073T5 (de) 2016-02-11
CN105229283B (zh) 2018-08-31
CN105229283A (zh) 2016-01-06
US9624894B2 (en) 2017-04-18
JPWO2014184889A1 (ja) 2017-02-23
US20150345457A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
US8838368B2 (en) Device and method for controlling timing at which ignition is stopped when internal combustion engine becomes stopped
JP4678442B2 (ja) 車両制御装置
US8290693B2 (en) Internal-combustion-engine automatic stop and restart system
US8566007B2 (en) Automatic stop/restart device for internal combustion engine
JP4529190B2 (ja) エンジン停止制御装置
EP1881188A1 (en) Start controller of internal combustion engine
JP5847324B2 (ja) 内燃機関の自動停止・再始動装置および内燃機関の自動停止・再始動方法
JP2010043534A (ja) エンジン停止制御装置
EP3109443B1 (en) Fuel injection device for internal combustion engine
JP2010043533A (ja) エンジン停止制御装置
JP6049870B2 (ja) 内燃機関の自動停止・再始動装置
CN109653888B (zh) 内燃机的控制装置及控制方法
JP5381733B2 (ja) 内燃機関の制御装置
US8285464B2 (en) Half-clutch state decision device
US20170234256A1 (en) Control device for internal combustion engine
JP5221786B1 (ja) 燃料噴射制御装置及びこれを備える自動車
JP6234116B2 (ja) 内燃機関の制御装置
JP6287347B2 (ja) エンジン制御装置
JP4645625B2 (ja) 筒内噴射型内燃機関の始動装置
JP2015048722A (ja) 内燃機関の制御装置
JP6245940B2 (ja) 内燃機関の制御装置
JP5741631B2 (ja) 車載内燃機関の制御装置
JP2019085874A (ja) 内燃機関の制御装置
JP2007239525A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076679.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884406

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14758271

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015516808

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013007073

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884406

Country of ref document: EP

Kind code of ref document: A1