WO2014183228A1 - 驱动控制器操作电路、驱动控制器芯片及其操作方法 - Google Patents

驱动控制器操作电路、驱动控制器芯片及其操作方法 Download PDF

Info

Publication number
WO2014183228A1
WO2014183228A1 PCT/CN2013/000569 CN2013000569W WO2014183228A1 WO 2014183228 A1 WO2014183228 A1 WO 2014183228A1 CN 2013000569 W CN2013000569 W CN 2013000569W WO 2014183228 A1 WO2014183228 A1 WO 2014183228A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
voltage
driving
energy storage
circuit
Prior art date
Application number
PCT/CN2013/000569
Other languages
English (en)
French (fr)
Inventor
蔡文贵
Original Assignee
长华电材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长华电材股份有限公司 filed Critical 长华电材股份有限公司
Priority to PCT/CN2013/000569 priority Critical patent/WO2014183228A1/zh
Publication of WO2014183228A1 publication Critical patent/WO2014183228A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • Driving controller operating circuit Driving controller chip and operating method thereof
  • the present invention relates to a drive controller operating circuit, and more particularly to a drive controller operating circuit that is improved and can be used in high brightness LED lighting devices.
  • the present invention also relates to a method of operating the drive controller operating circuit, and a drive controller chip including the components of the drive controller operating circuit. Background technique
  • Light-emitting diode lighting devices such as LED bulbs have various advantages such as energy saving, long service life and low maintenance cost. In the future, incandescent bulbs and power-saving bulbs will be replaced as the mainstream lighting devices on the market. There are also many drive control ICs on the market that can be applied to high-brightness LED lighting devices with power factor correction, such as 02 Micro® OZ8022V controller chip, etc.
  • the OZ8022V controller chip uses quasi-resonance (Quas One of the applications of the buck DC-DC power converter (i-Resonant) technology.
  • FIG. 1 is a schematic diagram of a conventional driving controller operating circuit.
  • the figure illustrates one of the typical operating circuits of the OZ8022V controller chip 11.
  • the AC voltage is filtered and rectified by the bridge rectifier DB1 to generate a DC voltage, and the DC voltage charges the capacitor C3 through the resistors R1, R2 and R3, thereby generating the operating voltage Vdd of the driving controller chip 11 to start the driving controller chip 11. .
  • a drive pulse can be output to control the opening and closing of the switch Q1.
  • the induced voltage generated by the secondary winding of the transformer T1 is fed back to the capacitor C3, and the capacitor C3 is charged to continuously generate the operating voltage Vdd of the driving controller chip 11.
  • switch Q1 is turned off, the energy stored in transformer T1 is transferred to the load, and capacitor C2 is charged to drive the load.
  • the detailed operation of the OZ8022V controller chip should be well known to those of ordinary skill in the art and will not be repeated here.
  • the main object of the present invention is to provide a driving controller operating circuit to solve the problem that the conventional driving controller operating circuit is too bulky and costly.
  • Another object of the present invention is to provide an operational method of driving a controller operating circuit. It is still another object of the present invention to provide a drive controller chip.
  • the driving controller operating circuit comprises: a rectifying and voltage stabilizing unit coupled to the input unit, the input unit receiving an alternating voltage, and rectifying the alternating voltage to generate a direct current voltage; the driving unit coupled to the The rectifying and stabilizing unit; the switching unit is coupled to the driving unit and the input unit; and the energy storage unit is coupled to the switching unit and the rectifying and voltage stabilizing unit; wherein the rectifying and voltage stabilizing unit receives the a DC voltage to activate the driving unit, the driving unit controls the switching unit, and the energy storage unit stores energy by opening and closing the switching unit, and releasing energy stored by the energy storage unit to drive a load, the energy storage The voltage generated by the unit is fed back to the rectification and voltage stabilizing unit for rectification and voltage regulation to continuously supply the operating voltage to the driving unit.
  • the foregoing driving controller operates the circuit, wherein the energy storage unit is an inductor.
  • the foregoing driving controller operating circuit further includes a short circuit protection unit coupled to the driving unit and the switching unit to perform short circuit protection on the circuit.
  • the driving controller operating circuit further includes a detecting unit, wherein the detecting unit detects a current flowing through the energy storage unit by the detecting unit, and the detecting unit is coupled to the energy storage unit, Switch unit and the drive unit.
  • the foregoing driving controller operates the circuit, wherein the detecting unit comprises a variable resistor.
  • the foregoing driving controller operates the circuit, wherein the rectifying and voltage stabilizing unit comprises a combination of a diode, a bipolar junction transistor or a Zener diode, or a regulator IC.
  • the controller operates the driving circuit, wherein the switching unit is a power metal oxide semiconductor field effect transistor (Power MOSFET) 0
  • the switching unit is a power metal oxide semiconductor field effect transistor (Power MOSFET) 0
  • An operating method of a driving controller operating circuit comprising the steps of: receiving a DC voltage input by an input unit through a rectifying and voltage stabilizing unit to activate a driving unit; controlling a switching unit by the driving unit, and passing the switching unit Turning on and off causes the energy storage unit to store energy, and releasing energy stored in the energy storage unit to drive the load; and rectifying and stabilizing the voltage returned by the energy storage unit by the rectifying and voltage stabilizing unit to continue Provide operating voltage to the drive unit.
  • the foregoing driving controller operates the operating method of the circuit, wherein the energy storage unit is an inductor.
  • the foregoing operation method of the driving controller operating circuit further comprises the following steps: performing short circuit protection on the circuit by using the short circuit protection unit.
  • the foregoing operation method of the driving controller operating circuit further includes the following steps:
  • the driving unit detects the current flowing through the energy storage unit through the detecting unit.
  • the foregoing driving controller operates a circuit operation method, wherein the detecting unit includes a variable resistor.
  • the rectifying and voltage stabilizing unit comprises a diode and a bipolar junction transistor.
  • the foregoing driving controller operates a circuit operating method, wherein the switching unit is a power metal oxide semiconductor field effect transistor.
  • the driving controller chip comprises: a rectifying and voltage stabilizing unit; a driving unit coupled to the rectifying and voltage stabilizing unit; wherein the rectifying and voltage stabilizing unit receives a DC voltage input by the input unit to activate the a driving unit, the driving unit controls the switching unit, and the energy storage unit stores energy by opening and closing the switching unit, and releases energy stored by the energy storage unit to drive the load, and the rectifying and voltage stabilizing unit stores the The voltage that can be fed back by the unit is rectified and regulated to continuously supply the operating voltage to the drive unit.
  • the object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.
  • the above-mentioned driving controller chip wherein the driving controller chip performs short-circuit protection on the circuit by the short-circuit protection unit, the short-circuit protection unit is coupled to the driving unit and the switching unit.
  • the driving controller chip wherein the driving controller chip detects a current flowing through the energy storage unit by using a detecting unit, the detecting unit is coupled to the energy storage unit, the switching unit, and the moving unit.
  • the rectifying and voltage stabilizing unit comprises a diode, a combination of a Zen polarity junction transistor or a Zener diode or a regulator IC.
  • the foregoing controller chip wherein the detecting unit comprises a variable resistor.
  • the present invention has significant advantages and advantageous effects over the prior art.
  • the driving controller operating circuit, the driving controller chip and the operating method thereof can achieve considerable technical progress and practicability, and have wide industrial use value, and at least have the following advantages:
  • An embodiment of the present invention can replace a transformer with an inductor and a rectifying and voltage stabilizing unit including a diode, etc., thereby effectively reducing the cost.
  • the driving unit can be integrated with the rectifying and voltage stabilizing unit into the same chip, which can further miniaturize the circuit.
  • the circuit configuration of the present invention can reduce the thermal energy generated by the circuit to effectively reduce the power consumption of the circuit.
  • An embodiment of the present invention utilizes a short-circuit protection unit to perform short-circuit protection on the circuit, which can effectively improve the service life of the circuit.
  • the present invention can be applied to any buck-type DC-to-DC or AC-to-DC power converter (Buck Conver ter) architecture or other circuits having a similar architecture, and thus is extremely versatile.
  • FIG. 1 is a schematic diagram of a conventional driving controller operating circuit.
  • FIG. 2 is a block diagram of an operation circuit of a drive controller of the present invention.
  • FIG. 3 is a schematic diagram of an embodiment of a drive controller operating circuit of the present invention.
  • FIG. 4 is a schematic diagram of an embodiment of a drive controller chip of the present invention.
  • FIG. 5 is a flow chart of a method for operating a drive controller operating circuit of the present invention.
  • FIG. 2 is a block diagram of the operating circuit of the drive controller of the present invention.
  • the drive controller operating circuit 2 can include a drive unit 21, a switch unit 22, an energy storage unit 23, and a rectification and voltage stabilizing unit 24.
  • the input unit 26 can rectify or regulate the AC voltage to generate a DC voltage.
  • the rectifying and stabilizing unit 24 can receive the DC voltage to provide the operating voltage required for the driving unit 21 to start.
  • the driving unit 21 can start to control the opening and closing of the switching unit 22.
  • the opening and closing of the switching unit 22 causes the energy storage unit 23 to store energy and release the energy stored by the energy storage unit 23 to drive the load 25.
  • the energy storage unit 23 can be an inductor.
  • the voltage generated by the energy storage unit 23 is fed back to the rectification and voltage stabilization unit 24 for rectification and voltage regulation to continuously supply the operating voltage to the driving unit 21, so that the driving unit 21 can maintain the startup state.
  • the driving unit 21 can detect the current flowing through the energy storage unit 23 by using a detecting unit (not shown) to determine the magnitude of the voltage of the energy storage unit 23.
  • the detecting unit is coupled to the energy storage unit 23 and the switching unit. 22 and the drive unit 21.
  • the drive controller operating circuit 2 may further include a short circuit protection unit (not shown).
  • the short circuit protection unit can be coupled to the driving unit 21 and the switching unit 22 to perform short circuit protection on the circuit to improve the safety of the circuit and increase the service life of the circuit.
  • the driving controller operating circuit of the present invention can utilize the energy storage unit and the rectifying and voltage stabilizing unit to replace the transformer provided in the operating circuit of the driving controller disclosed in FIG. 1, and can also operate normally.
  • the energy storage unit can be implemented with a simple and low-cost inductor. Therefore, the cost of the circuit can be greatly reduced, and when the product is mass-produced, the competitiveness of the product can be effectively improved.
  • the driving controller operating circuit of the present invention can replace the function of the transformer by using other circuit components such as an inductor, it can effectively reduce the need for implementing the circuit design.
  • the volume is more conducive to the miniaturization of the product.
  • Any of the buck-type DC-to-DC or AC-to-DC power converter (Buck Conver ter) architectures or other circuits having similar architectures can be modified using the proposed circuit architecture, and thus the use of the present invention Extremely wide.
  • FIG. 3 is a schematic diagram of an embodiment of a driving controller operating circuit of the present invention.
  • This embodiment exemplifies one of the circuit configurations for realizing the operation circuit of the drive controller of the present invention.
  • the AC voltage can be rectified by the bridge rectifier BR1 to generate a DC voltage, and the DC voltage can be charged to the capacitor C7 through the resistor R3, and after driving to a certain voltage, the controller chip 31 can be started.
  • a drive pulse can be output to control the turning on and off of the transistor Q1 (power MOSFET).
  • the turn-on and turn-off of transistor Q1 can change the polarity of the voltage across inductor L2, and when transistor Q1 is turned off, the energy stored in inductor L2 can be released, thereby charging capacitor C6 to drive load 35. .
  • the voltage generated by the inductor L2 can be fed back to the rectifying and regulating circuit 34, which is first rectified by the diode D2, and then regulated by the remaining circuit components, and the bipolar transistor B1 can act as a buffer. Capacitor C7 can be charged to continuously provide an operating voltage to drive controller chip 31.
  • the rectifying and stabilizing circuit 34 can include a diode, a bipolar junction transistor, or a combination of Zener Diodes or a regulator IC.
  • a simple inductor can be used and a rectifying and voltage stabilizing circuit including a diode and the like can completely replace the function of the transformer in the operating circuit of the driving controller disclosed in FIG. 1, so the circuit cost of the present invention It can be further reduced, and the area required for the circuit can be further reduced.
  • the rectification and voltage stabilizing circuit can be further integrated into the same chip as the driving controller chip 31, thereby greatly reducing the volume required by the circuit and making the circuit miniaturized.
  • the detecting circuit 38 can be coupled to the inductor L2 and the driving controller chip 31, and the detecting circuit 38 includes the variable resistor VR1 to adjust the power thereof.
  • the driving controller chip 31 can detect the magnitude of the current flowing through the inductor L2 through the detecting circuit 38 to measure the voltage.
  • the driving controller chip 31 can control the opening and closing of the transistor Q1 according to the magnitude of the voltage generated by the detecting circuit 38 according to the current flowing through the inductor L2.
  • the short circuit protection circuit 37 can be coupled to the drive controller chip 31, which can provide protection when the circuit is short-circuited.
  • this embodiment is only an example, and the present invention is not limited thereto.
  • FIG. 4 is a schematic diagram of an embodiment of a driving controller chip according to the present invention.
  • the drive controller chip 41 of the present invention is disposed in the lamp cap, and the drive controller chip 41 has integrated the rectification and voltage stabilizing circuit. Therefore, the volume required to implement the circuit can be further reduced, so that the space in the lamp head can be used to further increase the remaining devices to increase the function of the lamp cap.
  • the present embodiment is only an example, and the driving controller chip 41 of the present invention can be applied to other various devices, and the invention is not limited thereto.
  • the term “comprising” as used throughout the specification and the appended claims is an open term and should be interpreted as “including but not limited to”.
  • the term “coupled” is used herein to include any direct and indirect electrical connection. Thus, if the first device is described as being coupled to the second device, it is meant that the first device can be directly electrically coupled to the second device, or indirectly electrically connected to the second device by other means or means.
  • FIG. 5 it is a flowchart of a method for operating a driving controller operating circuit according to the present invention. The method includes the following steps:
  • step S51 the DC voltage input by the input unit is received by the rectification and voltage stabilization unit to activate the 3-zone dynamic unit.
  • step S52 the switching unit is controlled by the driving unit, and the energy storage unit stores energy by turning on and off the switching unit, and releases the energy stored in the energy storage unit to drive the load.
  • step S53 the voltage fed back by the energy storage unit is rectified and regulated by the rectification and voltage stabilizing unit to continuously supply the operating voltage to the driving unit.
  • the present invention replaces the transformer with an inductor and a rectifying and voltage stabilizing unit including components such as diodes, so that the cost of the circuit is greatly reduced.
  • the driving unit and the rectifying and voltage stabilizing unit are integrated into the same chip, thereby enabling the circuit to Miniaturization.
  • the circuit configuration of the present invention can reduce the thermal energy generated by the circuit and reduce the power consumption thereof.
  • the present invention utilizes a short circuit protection unit to perform short circuit protection on the circuit, thereby effectively improving the service life of the circuit.
  • the invention can be directly applied to any buck DC-DC or AC-to-DC power converter (Buck Conver ter) architecture or other drive controller operation circuits with similar architecture, and thus is extremely versatile.

Abstract

本发明是有关于一种驱动控制器操作电路、驱动控制器芯片及其操作方法,此电路可包含输入单元、整流及稳压单元、驱动单元、开关单元及储能单元。输入单元可接收交流电压,并对交流电压整流以产生直流电压。整流及稳压单元可接收直流电压以启动驱动单元使驱动单元控制开关单元,并可通过开关单元的开启与关闭可使储能单元储存能量,并释放储能单元储存的能量以驱动负载,储能单元产生的电压回授至整流及稳压单元以进行整流及稳压,以持续提供工作电压至驱动单元。

Description

驱动控制器操作电路、 驱动控制器芯片及其操作方法 技术领域
本发明是有关于一种驱动控制器操作电路, 特別是有关于一种经改良 并可用于高亮度发光二极管照明装置的驱动控制器操作电路。 本发明还涉 及此驱动控制器操作电路的操作方法、 以及包含此驱动控制器操作电路部 分元件的驱动控制器芯片。 背景技术
发光二极管灯泡等发光二极管照明装置具有节能省电、 使用寿命长及 维护成本低等种种优点 , 未来即将取代白炽灯泡及省电灯泡成为市面上主 流的照明装置。 现今市面上也出现了许多能够应用于高亮度发光二极管照 明装置且具功率因素校正功能的驱动控制芯片, 例如 02 Micro®公司的 OZ8022V 控制器芯片等等, OZ8022V 控制器芯片 为利用准谐振 ( Quas i-Resonant )技术的降压型直流对直流电源转换器( Buck Conver ter ) 的其中一种应用。
请参阅图 1 , 为现有习知的驱动控制器操作电路的示意图。 图中举例说 明了 OZ8022V控制器芯片 11的其中一种典型的操作电路。 交流电压经滤波 并经过桥式整流器 DB1整流以产生直流电压, 直流电压则通过电阻 Rl、 R2 及 R3对电容 C3充电, 借此产生驱动控制器芯片 11的工作电压 Vdd以启动 驱动控制器芯片 11。驱动控制器芯片 11启动后则可输出驱动脉冲以控制开 关 Q1的开启与关闭。变压器 T1的副线圈产生的感应电压则回授至电容 C3, 并对电容 C3进行充电以持续产生驱动控制器芯片 11的工作电压 Vdd。而当 开关 Q1关闭时, 储存于变压器 T1的能量则传送至负载, 并对电容 C2充电 借此驱动负载。 而关于 OZ8022V控制器芯片的详细操作应为本领域中具有 通常知识者所熟知, 故不在此重覆叙述。
然而, 由于上述的驱动控制器操作电路需要利用变压器做为其电路元 件, 因此成本较高, 且由于变压器体积较大, 因此实现上述的电路也需要 耗费较大的空间, 不利于产品的微小化。 其它类似的驱动控制器操作电路 也有相同的问题。
因此, 如何提出一种驱动控制器操作电路, 能够有效的改善现有习知 的驱动控制器操作电路成本过高及体积过大的情况已成为一个刻不容緩的 问题。 发明内容 有鉴于上述现有习知的问题, 本发明的主要目的在于提供一种驱动控 制器操作电路, 以解决现有习知的驱动控制器操作电路体积过大及成本过 高的问题。
本发明的另一目的在于, 提供一种驱动控制器操作电路的操作方法。 本发明的还一目的在于, 提供一种驱动控制器芯片。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的驱动控制器操作电路, 其包含: 整流及稳压单元, 耦接于输 入单元, 该输入单元接收交流电压, 并对该交流电压整流以产生直流电压; 驱动单元, 耦接于该整流及稳压单元; 开关单元, 耦接于该驱动单元及该 输入单元; 以及储能单元, 耦接于该开关单元及该整流及稳压单元; 其中, 该整流及稳压单元接收该直流电压以启动该驱动单元, 使该驱动单元控制 该开关单元, 并通过该开关单元的开启与关闭使该储能单元储存能量, 并 释放该储能单元储存的能量以驱动负载, 该储能单元产生的电压则回授至 该整流及稳压单元以进行整流及稳压, 以持续提供工作电压至该驱动单元。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 较佳地, 前述的驱动控制器操作电路, 其中该储能单元为电感。
较佳地, 前述的驱动控制器操作电路, 更包含短路保护单元, 耦接于 该驱动单元及该开关单元以对电路执行短路保护。
较佳地, 前述的驱动控制器操作电路, 更包含侦测单元, 该驱动单元 借由该侦测单元侦测流经该储能单元的电流, 该侦测单元耦接该储能单元、 该开关单元及该驱动单元。
较佳地, 前述的驱动控制器操作电路, 其中该侦测单元包含可变电阻。 较佳地, 前述的驱动控制器操作电路, 其中该整流及稳压单元包含二 极管、 双极性接面晶体管或齐纳二极管 (Zener Diode ) 的组合或者调节器 IC (regulator IC)。
较佳地, 前述的驱动控制器操作电路, 其中该开关单元为功率金属氧 化物半导体场效应晶体管 (Power MOSFET )0
本发明的目的及解决其技术问题还采用以下技术方案来实现。 依据本 发明提出的驱动控制器操作电路的操作方法, 其包含下列步骤: 通过整流 及稳压单元接收输入单元输入的直流电压以启动驱动单元; 由该驱动单元 控制开关单元, 并通过该开关单元的开启与关闭使储能单元储存能量, 并 释放该储能单元储存的能量以驱动负载; 以及借由该整流及稳压单元则对 该储能单元回授的电压进行整流及稳压以持续提供工作电压至该驱动单 元。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 较佳地, 前述的驱动控制器操作电路的操作方法, 其中该储能单元为 电感。
较佳地, 前述的驱动控制器操作电路的操作方法, 更包含下列步骤: 利用短路保护单元对电路执行短路保护。
较佳地, 前述的驱动控制器操作电路的操作方法, 更包含下列步骤: 由该驱动单元通过侦测单元侦测流经该储能单元的电流。
较佳地, 前述的驱动控制器操作电路的操作方法, 其中该侦测单元包 含可变电阻。
较佳地, 前述的驱动控制器操作电路的操作方法, 其中该整流及稳压 单元包含二极管及双极性接面晶体管。
较佳地, 前述的驱动控制器操作电路的操作方法, 其中该开关单元为 功率金属氧化物半导体场效应晶体管。
本发明的目的及解决其技术问题另外还采用以下技术方案来实现。 依 据本发明提出的驱动控制器芯片, 其包含: 整流及稳压单元; 驱动单元, 耦接于该整流及稳压单元; 其中, 该整流及稳压单元接收输入单元输入的 直流电压以启动该驱动单元, 使该驱动单元控制开关单元, 并通过该开关 单元的开启与关闭使储能单元储存能量, 并释放该储能单元储存的能量以 驱动负载, 该整流及稳压单元则对该储能单元回授的电压进行整流及稳压, 以持续提供工作电压该驱动单元。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 较佳地, 前述的驱动控制器芯片, 其中该储能单元为电感。
较佳地, 前述的驱动控制器芯片, 其中该驱动控制器芯片借由短路保 护单元对电路执行短路保护, 该短路保护单元耦接于该驱动单元及该开关 单元。
较佳地, 前述的驱动控制器芯片, 其中该驱动控制器芯片借由侦测单 元侦测流经该储能单元的电流, 该侦测单元耦接该储能单元、 该开关单元 及该 动单元。
较佳地, 前述的驱动控制器芯片, 其中该整流及稳压单元包含二极管、 汉极性接面晶体管或齐纳二极管的组合或者调节器 IC。
较佳地, 前述的驱动控制器芯片, 其中该侦测单元包含可变电阻。 本发明与现有技术相比具有明显的优点和有益效果。 借由上述技术方 案,本发明驱动控制器操作电路、 驱动控制器芯片及其操作方法可达到相当 的技术进步性及实用性, 并具有产业上的广泛利用价值, 其至少具有下列 优点:
(1)本发明一实施例可利用电感与及包含二极管等元件的整流及稳压 单元取代变压器, 因此可以有效降低成本。 (2)本发明一实施例中, 驱动单元可与整流及稳压单元整合为同一芯 片, 可使电路进一步的微小化。
( 3)本发明的电路构造可使电路产生的热能减少, 以有效降低电路的功 耗。
(4)本发明一实施例利用短路保护单元对电路执行短路保护, 可有效提 高电路的使用寿命。
(5)本发明可应用于任何具备降压型直流对直流或交流对直流电源转 换器 (Buck Conver ter ) 架构或其它具有类似架构的电路, 因此用途极为 广泛。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附 图,详细说明如下。 附图的简要说明
图 1为现有习知的驱动控制器操作电路的示意图。
图 2为本发明的驱动控制器操作电路的方框图。
图 3为本发明驱动控制器操作电路一实施例的示意图。
图 4为本发明驱动控制器芯片一实施例的示意图。
图 5为本发明驱动控制器操作电路操作方法的流程图。
【主要元件符号说明】
11、 31、 41 : 驱动控制器芯片
2、 3: 驱动控制器操作电路
21 驱动单元
22 开关单元
23 储能单元
24 整流及稳压单元
25、 35: 负载
26 输入单元
34 整流及稳压电路
37 短路保护电路
38 侦测电路
CX1-CX2 , C1-C8 : 电容
BR1 : 桥式整流器
L1-L2 : 电感 Z1-Z2: 积纳二极管
VR1、 R1-R10: 电阻
Ql-Q2、 Bl : 晶体管
D1-D3: 二极管
F: 浮接
GND: 接地
S51-S53: 步骤流程 实现发明的最佳方式
以下将参照相关图式, 说明依本发明的驱动控制器操作电路、 驱动控 制器芯片、 灯头及其操作方法的实施例, 为使便于理解, 下述实施例中的 相同元件是以相同的符号标示来说明。
请参阅图 2, 为本发明驱动控制器操作电路的方框图。 如图所示, 驱动 控制器操作电路 2可包含驱动单元 21、 开关单元 22、 储能单元 23以及整 流及稳压单元 24。
当交流电压输送至输入单元 26时, 输入单元 26可以对交流电压进行 整流或稳压以产生直流电压。 而整流及稳压单元 24则可接收此直流电压, 以提供驱动单元 21启动所需要的工作电压。 而在驱动单元 21被启动后, 驱动单元 21可开始控制开关单元 22的开启与关闭。 开关单元 22的开启与 关闭可使储能单元 23储存能量, 并释放储能单元 23储存的能量以驱动负 载 25。
在一实施例中, 储能单元 23可为电感。 而储能单元 23产生的电压则 回授至该整流及稳压单元 24以进行整流及稳压, 以持续提供工作电压至驱 动单元 21, 使驱动单元 21能够维持启动的状态。 驱动单元 21可借由侦测 单元(未绘于图中)侦测流经储能单元 23的电流, 以判断储能单元 23电 压的大小, 此侦测单元耦接储能单元 23、 开关单元 22及驱动单元 21。
此外, 驱动控制器操作电路 2更可包含短路保护单元(未绘于图中)。 此短路保护单元可耦接于驱动单元 21及开关单元 22 以对电路执行短路保 护, 以提高电路使用上的安全性并增加电路的使用寿命。
值得一提的是, 本发明的驱动控制器操作电路可以利用储能单元以及 整流及稳压单元来取代图 1揭示的驱动控制器操作电路中所设置的变压器, 并且同样能够正常运作。 而在一实施例中, 储能单元能够以简单且低价的 电感来实现, 因此, 电路的成本可以大幅的降低, 当产品大量生产时, 能 够有效地提升产品的竟争力。
除此之外, 由于本发明的驱动控制器操作电路可以利用如电感等其它 的电路元件来代替变压器的功能, 因此可以有效降低实现电路设计所需要 的体积, 更利于产品的微小化。 而各种任何具备降压型直流对直流或交流 对直流电源转换器 (Buck Conver ter ) 架构或其它具有类似架构的电路均 可以利用本发明所提出的电路架构来进行改良, 因此本发明的用途极为广 泛。
请参阅图 3, 为本发明驱动控制器操作电路一实施例的示意图。本实施 例举例说明了其中一种实现本发明驱动控制器操作电路的电路结构。
其中, 交流电压可经由桥式整流器 BR1 整流后产生直流电压, 而直流 电压则可通过电阻 R3对电容 C7进行充电, 在充到一定的电压后则可启动 驱动控制器芯片 31。驱动控制器芯片 31启动后则可输出驱动脉沖以控制晶 体管 Q1 (功率金属氧化物半导体场效应晶体管( Power M0SFET ) )的开启与 关闭。 晶体管 Q1的开启与关闭可以使横跨电感 L2两端的电压的极性改变, 而当晶体管 Q1被关闭时, 储存于电感 L2中的能量可被释放, 借此对电容 C6进行充电以驱动负载 35。 而电感 L2产生的电压则可以回授至整流及稳 压电路 34, 其先通过二极管 D2整流, 再经由其余的电路元件稳压, 双极性 晶体管 B1则可起到緩冲的作用, 借此可对电容 C7充电以持续提供工作电 压至驱动控制器芯片 31。在一实施例中,整流及稳压电路 34可包含二极管、 双极性接面晶体管或齐纳二极管 ( Zener Diode ) 的组合或者调节器 IC (regulator IC)
由此可见, 在本实施例中可利用简易的电感并配合包含二极管等元件 的整流及稳压电路即可完全取代变压器于图 1揭示的驱动控制器操作电路 中的作用, 因此本案的电路成本可以进一步的降低, 电路所需要的面积也 可以进一步的减少。 除此之外, 整流及稳压电路甚至可以更进一步的与驱 动控制器芯片 31整合为同一个芯片, 借此大幅缩小电路所需要的体积, 使 电路能够微小化。 而任何具备降压型直流对直流或交流对直流电源转换器 其中, 侦测电路 38可耦接于电感 L2及驱动控制器芯片 31 , 而侦测电 路 38包含可变电阻 VR1 以调整其功率, 驱动控制器芯片 31则可通过侦测 电路 38侦测流经电感 L2的电流大小, 以测量其电压。 驱动控制器芯片 31 则可才艮据流经电感 L2的电流于侦测电路 38产生的电压的大小来控制晶体 管 Q1的开启与关闭。 此外,短路保护电路 37可耦接于驱动控制器芯片 31, 其可于电路发生短路时产生保护的作用。 当然, 本实施例仅为举例, 本发 明并不以此为限。
值得一提的是, 一般而言, 于整流及稳压的回路中通常需要增加电容 以做为稳压的作用, 然而, 若是增加此电容则有可能使整流及稳压的回路 产生的热能增加, 如此则不利于将整流及稳压的回路与驱动控制器芯片整 合于同一芯片。 然而, 本发明所提出的电路架构可以省略此电容, 并能够 正常运作 , 因此可以直接将整流及稳压的回路与驱动控制器芯片整合于同 一芯片, 以大幅缩小电路所需要的体积, 使产品的使用上更具弹性。 由上 述可知, 本发明实具进步性的专利要件。
请参阅图 4, 为本发明驱动控制器芯片一实施例的示意图。 如图所示, 在本实施例中, 本发明的驱动控制器芯片 41设置于灯头中, 而驱动控制器 芯片 41已整合了整流及稳压电路。 因此, 实现电路所需要的体积可以更一 步的减少, 故灯头中的空间可以用于进一步增加其余的装置, 以增加灯头 的功能。 当然, 本实施例仅为举例, 本发明的驱动控制器芯片 41更可以应 用于其余多种装置, 本发明并不以此为限。
在说明书及后续的权利要求当中使用了某些词汇来指称特定的元件。 本发明所属技术领域中具有通常知识者应可理解, 制造商可能会用不同的 名词来称呼同一个元件。 因此, 本说明书及说明书后续的权利要求并不以 名称的差异来作为区分元件的方式, 而是以元件在功能上的差异来作为区 分的准则。
此外, 在通篇说明书及后续的权利要求当中所提及的 "包含" 为一开 放式的用语, 故应解释成 "包含但不限定于"。 以外, "耦接" 一词在此包 含任何直接及间接的电气连接手段。 因此, 若文中描述第一装置耦接于第 二装置, 则代表该第一装置可直接电气连接于该第二装置, 或通过其他装 置或连接手段间接地电气连接至该第二装置。
尽管前述在说明本发明的驱动控制器操作电路的过程中, 亦已同时说 明本发明驱动控制器操作电路的操作方法的概念, 但为求清楚起见, 以下 仍然另绘示流程图以详细说明。
请参阅图 5 , 为本发明驱动控制器操作电路的操作方法的流程图,此方 法包含下列步骤:
在步骤 S51 中, 通过整流及稳压单元接收输入单元输入的直流电压以 启动 3区动单元。
在步骤 S52 中, 由驱动单元控制开关单元, 并通过开关单元的开启与 关闭使储能单元储存能量, 并释放储能单元储存的能量以驱动负载。
在步骤 S53 中, 借由整流及稳压单元则对储能单元回授的电压进行整 流及稳压以持续提供工作电压至驱动单元。
本发明驱动控制器操作电路的操作方法的详细说明以及实施方式已于 前面叙述本发明驱动控制器操作电路时描述过, 在此为了简略说明便不再 重覆叙述。
综上所述, 本发明在一实施例中利用电感与及包含二极管等元件的整 流及稳压单元取代变压器, 使电路的成本大幅的降低。 又, 本发明在另一 实施例中将驱动单元与整流及稳压单元整合为同一芯片, 进而使电路能够 微小化。 此外, 本发明的电路构造可使电路产生的热能降低, 使其产生的 功耗减少。 再者, 本发明在又一实施例利用短路保护单元对电路执行短路 保护, 借此可有效提高电路的使用寿命。 而本发明可直接应用于任何具备 降压型直流对直流或交流对直流电源转换器 (Buck Conver ter ) 架构或其 它具有类似架构的驱动控制器操作电路, 因此用途极为广泛。
可见本发明在突破先前技术下, 确实已达到所欲增进的功效, 且也非 熟悉该项技艺者所易于思及, 其所具进步性、 实用性, 显已符合专利的申 请要件, 故依法提出专利申请, 恳请贵局核准本件发明专利申请案, 以励 创作, 至感德便。
以上所述仅为举例性, 而非为限制性。 任何未脱离本发明的精神与范 畴, 而对其进行的等效修改或变更, 均应包含于本说明书后附的权利要求 中。

Claims

权 利 要 求
1. 一种驱动控制器操作电路, 其特征在于其包含:
整流及稳压单元, 耦接于输入单元, 该输入单元接收交流电压, 并对 该交流电压整流以产生直流电压;
驱动单元, 耦接于该整流及稳压单元;
开关单元, 耦接于该驱动单元及该输入单元; 以及
储能单元, 耦接于该开关单元及该整流及稳压单元;
其中, 该整流及稳压单元接收该直流电压以启动该驱动单元, 使该驱 动单元控制该开关单元, 并通过该开关单元的开启与关闭使该储能单元储 存能量, 并释放该储能单元储存的能量以驱动负载, 该储能单元产生的电 压则回授至该整流及稳压单元以进行整流及稳压, 以持续提供工作电压至 该驱动单元。
2. 根据权利要求 1所述的驱动控制器操作电路, 其特征在于该储能单 元为电感。
3. 根据权利要求 1或 2所述的驱动控制器操作电路, 其特征在于其更 包含短路保护单元, 耦接于该驱动单元及该开关单元以对电路执行短路保 护。
4. 根据权利要求 3所述的驱动控制器操作电路, 其特征在于其更包含 侦测单元, 该驱动单元借由该侦测单元侦测流经该储能单元的电流, 该侦 测单元耦接该储能单元、 该开关单元及该驱动单元。
5. 根据权利要求 4所述的驱动控制器操作电路, 其特征在于该侦测单 元包含可变电阻。
6. 根据权利要求 3所述的驱动控制器操作电路, 其特征在于该整流及 稳压单元包含二极管、 汉极性接面晶体管或齐纳二极管的组合或者调节器
IC。
7. 根据权利要求 3所述的驱动控制器操作电路, 其特征在于该开关单 元为功率金属氧化物半导体场效应晶体管。
8. 一种驱动控制器操作电路的操作方法,其特征在于其包含下列步骤: 通过整流及稳压单元接收输入单元输入的直流电压以启动驱动单元; 由该驱动单元控制开关单元, 并通过该开关单元的开启与关闭使储能 单元储存能量, 并释放该储能单元储存的能量以驱动负载; 以及
借由该整流及稳压单元则对该储能单元回授的电压进行整流及稳压以 持续提供工作电压至该驱动单元。
9. 根据权利要求 8所述的驱动控制器操作电路的操作方法, 其特征在 于该储能单元为电感。
10. 根据权利要求 8或 9所述的驱动控制器操作电路的操作方法, 其 特征在于其更包含下列步骤:
利用短路保护单元对电路执行短路保护。
11. 根据权利要求 10所述的驱动控制器操作电路的操作方法, 其特征 在于其更包含下列步骤:
由该驱动单元通过侦测单元侦测流经该储能单元的电流。
12. 根据权利要求 11所述的驱动控制器操作电路的操作方法, 其特征 在于该侦测单元包含可变电阻。
13. 根据权利要求 10所述的驱动控制器操作电路的操作方法, 其特征 在于该整流及稳压单元包含二极管及双极性接面晶体管。
14. 根据权利要求 10所述的驱动控制器操作电路的操作方法, 其特征 在于该开关单元为功率金属氧化物半导体场效应晶体管。
15. 一种驱动控制器芯片, 其特征在于其包含:
整流及稳压单元;
驱动单元, 耦接于该整流及稳压单元;
其中, 该整流及稳压单元接收输入单元输入的直流电压以启动该驱动 单元, 使该驱动单元控制开关单元, 并通过该开关单元的开启与关闭使储 能单元储存能量, 并释放该储能单元储存的能量以驱动负载, 该整流及稳 压单元则对该储能单元回授的电压进行整流及稳压, 以持续提供工作电压 该驱动单元。
16. 根据权利要求 15所述的驱动控制器芯片, 其特征在于该储能单元 为电感。
17. 根据权利要求 15或 16所述的驱动控制器芯片, 其特征在于该驱 动控制器芯片借由短路保护单元对电路执行短路保护, 该短路保护单元耦 接于该驱动单元及该开关单元。
18. 根据权利要求 17所述的驱动控制器芯片, 其特征在于该驱动控制 器芯片借由侦测单元侦测流经该储能单元的电流, 该侦测单元耦接该储能 单元、 该开关单元及该驱动单元。
19. 根据权利要求 17所述的驱动控制器芯片, 其特征在于该整流及稳 压单元包含二极管、双极性接面晶体管或齐纳二极管的组合或者调节器 IC。
20. 根据权利要求 18所述的驱动控制器芯片, 其特征在于该侦测单元 包含可变电阻。
PCT/CN2013/000569 2013-05-13 2013-05-13 驱动控制器操作电路、驱动控制器芯片及其操作方法 WO2014183228A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/000569 WO2014183228A1 (zh) 2013-05-13 2013-05-13 驱动控制器操作电路、驱动控制器芯片及其操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/000569 WO2014183228A1 (zh) 2013-05-13 2013-05-13 驱动控制器操作电路、驱动控制器芯片及其操作方法

Publications (1)

Publication Number Publication Date
WO2014183228A1 true WO2014183228A1 (zh) 2014-11-20

Family

ID=51897564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000569 WO2014183228A1 (zh) 2013-05-13 2013-05-13 驱动控制器操作电路、驱动控制器芯片及其操作方法

Country Status (1)

Country Link
WO (1) WO2014183228A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414680A (zh) * 2001-09-27 2003-04-30 杨泰和 多组电压差电源的储放电装置充电电路
CN201323679Y (zh) * 2008-12-05 2009-10-07 浩阳半导体股份有限公司 发光二极管驱动回路
CN202737771U (zh) * 2012-08-07 2013-02-13 深圳市众明半导体照明有限公司 一种开关电源电路及开关电源

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414680A (zh) * 2001-09-27 2003-04-30 杨泰和 多组电压差电源的储放电装置充电电路
CN201323679Y (zh) * 2008-12-05 2009-10-07 浩阳半导体股份有限公司 发光二极管驱动回路
CN202737771U (zh) * 2012-08-07 2013-02-13 深圳市众明半导体照明有限公司 一种开关电源电路及开关电源

Similar Documents

Publication Publication Date Title
KR100903040B1 (ko) 고효율 전원 회로 및 상기 고효율 전원 회로를 구비한 전자기기
US9148922B2 (en) Power conversion apparatus and system for solid state lighting
US20170179846A1 (en) Self-driven ac-dc synchronous rectifier for power applications
US8441210B2 (en) Adaptive current regulation for solid state lighting
US9331583B2 (en) Switch mode power supply, control circuit and associated control method
TWI393337B (zh) 雙級交換式電源轉換電路
JP4481879B2 (ja) スイッチング電源装置
JP3763831B2 (ja) 電源供給装置及びその制御方法
JP6421047B2 (ja) スイッチング電源装置
TWM513378U (zh) 輸入掉電輸出維持電路
TW201315105A (zh) 使用與開關串聯之負載的偏壓電壓產生技術
JP2009004156A (ja) 照明用発光素子駆動回路及びそれを備えた照明機器
US7440295B2 (en) Switching mode power supply with active load detection function, and switching method thereof
US20140285099A1 (en) Power Supply Circuit and Illumination Apparatus
US20130033110A1 (en) Power supply circuit with low-voltage control and producing method thereof
TW201122794A (en) Power supply circuit capable of reducing power loss and computer device using the same
JP5606877B2 (ja) バックコンバータ
JP2015216044A (ja) 点灯装置および照明器具
JP2011010396A (ja) スイッチング素子の駆動回路、コンバータ
JP4111326B2 (ja) スイッチング電源装置
JP2018060731A (ja) Led点灯装置及びled照明装置
JP2009142020A (ja) 電源装置
WO2014183228A1 (zh) 驱动控制器操作电路、驱动控制器芯片及其操作方法
JP2008289334A (ja) スイッチング電源装置および電源制御方法
JP2003250274A (ja) シングルステージのシングルスイッチ力率補正回路におけるバス電圧ストレスを低減する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884763

Country of ref document: EP

Kind code of ref document: A1