WO2014178436A1 - 超音波処置システム - Google Patents

超音波処置システム Download PDF

Info

Publication number
WO2014178436A1
WO2014178436A1 PCT/JP2014/062141 JP2014062141W WO2014178436A1 WO 2014178436 A1 WO2014178436 A1 WO 2014178436A1 JP 2014062141 W JP2014062141 W JP 2014062141W WO 2014178436 A1 WO2014178436 A1 WO 2014178436A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
amplitude
ultrasonic
current
current value
Prior art date
Application number
PCT/JP2014/062141
Other languages
English (en)
French (fr)
Inventor
庸高 銅
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to EP14791658.9A priority Critical patent/EP2992847B1/en
Priority to JP2014546225A priority patent/JP5678242B1/ja
Priority to CN201480003911.8A priority patent/CN104883992B/zh
Publication of WO2014178436A1 publication Critical patent/WO2014178436A1/ja
Priority to US14/674,009 priority patent/US9439671B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • A61B90/94Identification means for patients or instruments, e.g. tags coded with symbols, e.g. text
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00132Setting operation time of a device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00137Details of operation mode
    • A61B2017/00154Details of operation mode pulsed
    • A61B2017/00181Means for setting or varying the pulse energy
    • A61B2017/0019Means for setting or varying the pulse width
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00199Electrical control of surgical instruments with a console, e.g. a control panel with a display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • A61B2017/320093Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw additional movable means performing cutting operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • A61B2017/320095Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw with sealing or cauterizing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00607Coagulation and cutting with the same instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0803Counting the number of times an instrument is used

Definitions

  • the present invention relates to an ultrasonic treatment system including an ultrasonic treatment tool for performing treatment by ultrasonic vibration.
  • Patent Document 1 discloses an ultrasonic treatment system provided with a vibrating body unit including an ultrasonic transducer that is an ultrasonic wave generation unit and a probe that transmits ultrasonic vibration from a proximal direction to a distal direction. ing.
  • a vibration sensor is attached to the ultrasonic vibration, and the vibration state of the vibrating body unit is detected by the vibration sensor.
  • the recording unit calculates the vibration time of the vibration body unit (that is, the use time of the ultrasonic treatment tool) from the vibration state of the vibration body unit, the amplitude of the ultrasonic vibration with respect to the current value of the supplied current, and the ultrasonic treatment
  • the information on the amplitude of ultrasonic vibration with respect to the tool usage time and current value is recorded.
  • the usage state of the vibrating body unit is recognized, and it is determined whether the handpiece that is an ultrasonic treatment instrument including the vibrating body unit has reached the end of its life. If the handpiece has exceeded its life, a warning is displayed or the current supply to the ultrasonic transducer is stopped.
  • the amplitude of ultrasonic vibration in the vibrator unit may be kept constant from the viewpoint of ensuring treatment performance in the treatment unit provided in the vibrator unit. is necessary.
  • the vibrator unit deterioration or the like occurs in the piezoelectric element that forms the ultrasonic transducer as a period elapses from the time of manufacture.
  • the handpiece which is the ultrasonic treatment tool is subjected to autoclave sterilization and heat-treated. When the heat treatment is performed, deterioration or the like occurs in the piezoelectric element.
  • the vibration characteristics of the vibration body unit change, and the amplitude of the ultrasonic vibration in the vibration body unit changes compared to the manufacturing time. For this reason, the treatment performance in the treatment section is lowered with the passage of the period from the time of manufacture, and the treatment performance in the treatment section is lowered every time the heat treatment by autoclave sterilization is performed.
  • the use time of the ultrasonic treatment apparatus and the amplitude of the ultrasonic vibration with respect to the current value of the supplied current are calculated, but the heat treatment by autoclave sterilization and the amplitude of the ultrasonic vibration are calculated. The relationship is not calculated.
  • the amplitude of ultrasonic vibration in the vibrator unit is made constant only by determining whether the handpiece including the vibrator unit has exceeded its life. Current control is not performed. Therefore, the amplitude of the ultrasonic vibration in the vibrating body unit changes as compared with the time of manufacture due to the passage of the period from the time of manufacture and the heat treatment by autoclave sterilization.
  • the present invention has been made paying attention to the above-mentioned problems, and the purpose thereof is an ultrasonic treatment that ensures treatment performance in the treatment section regardless of the elapsed time from the production and heat treatment by autoclave sterilization. To provide a system.
  • an ultrasonic treatment system includes an ultrasonic generator that generates an ultrasonic vibration when supplied with an electric current, and an ultrasonic transmission that transmits the generated ultrasonic vibration.
  • a vibration unit comprising: an amplitude setting unit configured to set, as a target amplitude, an amplitude in a state in which the vibration unit performs optimal vibration by the ultrasonic vibration; and from the time of manufacture of the vibration unit
  • a storage unit that stores an elapsed period and the number of heat treatments performed each time the vibrator unit is sterilized, and the vibration when the ultrasonic vibration is generated based on both the elapsed period and the number of heat treatments
  • a calculation unit that calculates a relationship between the amplitude of the body unit and the current supplied to the ultrasonic wave generation unit, and the amplitude and the current of the vibrator unit calculated by the calculation unit.
  • a current value setting unit that sets the current to be supplied to the ultrasonic wave generator to an adaptive current value that sets the amplitude of the vibrator unit to the target amplitude, and the current at the adaptive current value
  • a supply control unit configured to control supply of the current to the ultrasonic wave generation unit in a supplied state
  • an ultrasonic treatment system in which treatment performance in a treatment section is ensured regardless of an elapsed period from the time of manufacture and heat treatment by autoclave sterilization.
  • 1 is a perspective view schematically showing an ultrasonic treatment system according to a first embodiment.
  • 1 is a block diagram schematically showing an ultrasonic treatment system according to a first embodiment. It is sectional drawing which decomposes
  • the ultrasonic treatment system 1 includes a handpiece 2 that is an ultrasonic treatment instrument.
  • the handpiece 2 has a longitudinal axis C.
  • one of the directions parallel to the longitudinal axis C is the distal direction (the direction of the arrow C1 in FIG. 1), and the direction opposite to the distal direction is the proximal direction (the direction of the arrow C2 in FIG. 1).
  • the handpiece 2 is an ultrasonic coagulation / incision treatment instrument that performs coagulation / incision of a living tissue or the like using ultrasonic vibration.
  • the handpiece 2 includes a holding unit 3.
  • the holding unit 3 is rotatable with respect to the cylindrical case portion 5 that extends along the longitudinal axis C, a fixed handle 6 that is formed integrally with the cylindrical case portion 5, and the cylindrical case portion 5.
  • a movable handle 7 to be attached.
  • the movable handle 7 opens and closes the fixed handle 6 by rotating the movable handle 7 around the attachment position to the cylindrical case portion 5.
  • the holding unit 3 also includes a rotation operation knob 8 attached to the distal direction side of the cylindrical case portion 5.
  • the rotation operation knob 8 is rotatable about the longitudinal axis C with respect to the cylindrical case portion 5.
  • the fixed handle 6 is provided with a supply operation input button 9 which is a supply operation input unit.
  • the handpiece 2 includes a sheath 10 that extends along the longitudinal axis C.
  • the sheath 10 is attached to the holding unit 3 by inserting the sheath 10 into the inside of the rotary operation knob 8 and the inside of the cylindrical case portion 5 from the distal direction side.
  • a jaw 11 is rotatably attached to the distal end portion of the sheath 10.
  • the movable handle 7 is connected to a movable cylindrical portion (not shown) of the sheath 10 inside the cylindrical case portion 5.
  • the distal end of the movable cylindrical portion is connected to the jaw 11.
  • the movable cylindrical portion moves along the longitudinal axis C by opening and closing the movable handle 7 with respect to the fixed handle 6.
  • the jaw 11 rotates around the attachment position to the sheath 10.
  • the sheath 10 and the jaw 11 can be rotated around the longitudinal axis C with respect to the cylindrical case portion 5 integrally with the rotation operation knob 8.
  • the handpiece 2 includes a vibrator case 12 extending along the longitudinal axis C.
  • the vibrator case 12 is attached to the holding unit 3 by inserting the vibrator case 12 into the cylindrical case portion 5 from the proximal direction side. Inside the cylindrical case portion 5, the vibrator case 12 is connected to the sheath 10.
  • the vibrator case 12 is rotatable about the longitudinal axis C with respect to the cylindrical case portion 5 integrally with the rotation operation knob 8.
  • one end of a cable 13 is connected to the vibrator case 12.
  • the other end of the cable 13 is connected to the control unit 15.
  • the control unit 15 is an ultrasonic treatment control unit that controls ultrasonic treatment in the ultrasonic treatment system.
  • the energy generator includes a CPU (Central Processing Unit), an ASIC (Application Specific Specific Integrated Circuit), and the like. It is.
  • the handpiece 2 includes a vibrating body unit 17.
  • the vibrating body unit 17 extends along the longitudinal axis C from the inside of the vibrator case 12 through the inside of the cylindrical case portion 5 and the inside of the sheath 10.
  • the vibrating body unit 17 includes a treatment portion 18 that protrudes from the distal end of the sheath 10 in the distal direction.
  • the treatment portion 18 is provided at the distal end portion of the vibrating body unit 17.
  • the jaw 11 rotates with respect to the sheath 10
  • the jaw 11 opens and closes the treatment portion 18.
  • the vibrating body unit 17 is rotatable about the longitudinal axis C with respect to the cylindrical case portion 5 integrally with the rotation operation knob 8.
  • FIG. 3 is an exploded view of the vibrating body unit 17 for each member.
  • the vibrating body unit 17 includes an ultrasonic transducer 21 that is an ultrasonic generator that generates ultrasonic vibration when supplied with an electric current.
  • the ultrasonic transducer 21 includes a plurality of (four in this embodiment) piezoelectric elements 22A to 22D that convert current into vibration.
  • the vibrator unit 17 includes a columnar horn member 23 extending along the longitudinal axis C.
  • the horn member 23 includes a vibrator mounting portion 25.
  • a member for forming the ultrasonic vibrator 21 such as the piezoelectric elements 22A to 22D is attached to the vibrator mounting portion 25.
  • the ultrasonic vibrator 21 is provided at the proximal end portion of the vibrator unit 17 and is located inside the vibrator case 12.
  • the horn member 23 is provided with a cross-sectional area changing portion 27 in which the cross-sectional area perpendicular to the longitudinal axis C decreases toward the front end direction.
  • a female screw portion 29 is provided at the tip of the horn member 23.
  • the vibrating body unit 17 includes a probe 31 that extends along the longitudinal axis C on the distal direction side of the horn member 23.
  • a male screw portion 32 is provided at the proximal end portion of the probe 31.
  • the probe 31 is connected to the distal direction side of the horn member 23 by the male screw portion 32 being screwed into the female screw portion 29.
  • the horn member 23 extends to the inside of the cylindrical case portion 5, and the probe 31 is connected to the horn member 23 inside the cylindrical case portion 5.
  • the probe 31 extends through the inside of the sheath 10 and protrudes from the distal end of the sheath 10 toward the distal direction. For this reason, the treatment portion 18 is located at the distal end portion of the probe 31.
  • the ultrasonic vibration generated by the ultrasonic vibrator 21 is transmitted to the horn member 23.
  • ultrasonic vibration is transmitted along the longitudinal axis C from the proximal direction to the distal direction. That is, the horn member 23 and the probe 31 are ultrasonic transmission units that transmit the generated ultrasonic vibration along the longitudinal axis C.
  • the treatment unit 18 performs treatment by the transmitted ultrasonic vibration.
  • a grasp target such as a living tissue is grasped between the jaw 11 and the treatment portion 18. Friction heat is generated between the treatment unit 18 and the gripping target by vibrating the vibrating body unit 17 while gripping the gripping target.
  • the object to be grasped is solidified by the frictional heat and simultaneously incised.
  • the vibrator unit 17 vibrates at a frequency at which the base end (the base end of the ultrasonic transducer 21) and the tip (the tip of the probe 31) are antinodes.
  • the ultrasonic vibration is a longitudinal vibration in which the vibration direction and the transmission direction are parallel to the longitudinal axis C.
  • the control unit 15 includes a supply control unit 35.
  • the supply control unit 35 is connected to the other ends of the electrical wirings 33A and 33B.
  • the supply control unit 35 controls the current supply state to the ultrasonic transducer 121.
  • one end of an electric signal line 39 is connected to the supply operation input button 9.
  • the other end of the electric signal line 39 is connected to the supply control unit 35.
  • a storage unit 36 such as an IC chip is provided inside the vibrator case 12.
  • the storage unit 36 stores information related to the handpiece 2 such as specification information of the handpiece 2.
  • One end of an electrical signal line 37 is connected to the storage unit 36.
  • the control unit 15 includes an information reading unit 38. The other end of the electric signal line 37 is connected to the information reading unit 38.
  • the control unit 15 includes an amplitude setting unit 41, a calculation unit 42, a current value setting unit 43, a power switch 45, a determination unit 46, a date and time update unit 47, a number addition unit 48, and a number reset unit. 49.
  • the power switch 45 is, for example, an operation button.
  • the information reading unit 38, the amplitude setting unit 41, the calculation unit 42, the current value setting unit 43, the determination unit 46, the date and time update unit 47, the number addition unit 48, and the number reset unit 49 are, for example, electronic circuits provided in the CPU and ASIC ( Control circuit, determination circuit, reading circuit, arithmetic circuit, etc.). Details of the processing of these parts will be described later.
  • step S101 when the treatment is performed by the treatment unit 18 of the vibrating body unit 17, first, the power switch 45 is turned on and the control unit 15 is activated (step S101). Then, the handpiece 2 is connected to the control unit 15 via the cable 13 (step S102). As a result, the ultrasonic transducer 21 is electrically connected to the supply control unit 35 via the electrical wirings 33A and 33B.
  • the storage unit 36 is connected to the information reading unit 38 via the electric signal line 37. Further, the supply operation input button 9 is connected to the supply control unit 35 via the electric signal line 39.
  • the information reading unit 38 reads information on the handpiece 2 stored in the storage unit 36 (step S103). Then, based on the read information about the handpiece 2, the amplitude setting unit 41 sets the target amplitude V0 of the ultrasonic vibration in the treatment unit 18 of the vibrating body unit 17 (step S104).
  • the target amplitude V0 is the amplitude of the treatment section 18 in a state where the vibrating body unit 17 performs optimum vibration suitable for treatment.
  • a treatment target such as a living tissue is appropriately treated.
  • the target amplitude V0 may be stored in the storage unit 36. In this case, the amplitude setting unit 41 sets the read target amplitude V0 as the target amplitude V0 of the ultrasonic vibration in the treatment unit 18.
  • the storage unit 36 stores an elapsed period P from the manufacture of the vibrating body unit 17. Further, the handpiece 2 including the vibrator unit 17 is sterilized by autoclave sterilization after use. For this reason, heat treatment is performed once in the vibrator unit 17 every time sterilization is performed. That is, after the treatment with the handpiece 2 is completed, one heat cycle is performed in the vibrator unit 17.
  • the storage unit 36 stores the number of heat treatments (heat cycle number) N of the vibrator unit 17.
  • the elapsed period P and the number of heat treatments N from the time of manufacture are information regarding the handpiece 2 and are read by the information reading unit 38.
  • the calculation unit 42 and the current value setting unit 43 calculate the current supplied to the ultrasonic transducer 21 based on the information related to the handpiece 2 read by the information reading unit 38 (information related to the vibrating body unit 17). A0 is set (step S106). The setting of the current value A of the current supplied from the supply control unit 35 to the ultrasonic transducer 21 is performed based on the elapsed period P and the number of heat treatments N from the time of manufacture.
  • the flowchart of FIG. 5 shows a process for setting the current supplied to the ultrasonic transducer 21 to the compatible current value A0.
  • the calculating unit 42 treats the treatment unit 18 (when the ultrasonic vibration is generated based on both the elapsed period P and the heat treatment number N (The relationship between the amplitude of the vibrating body unit 17) and the current supplied to the ultrasonic transducer (ultrasonic wave generator) 21 is calculated (step S120).
  • both the elapsed period P and the number of heat treatments N to the relationship between the amplitude V of the ultrasonic vibration in the treatment section 18 and the current supplied to the ultrasonic vibrator 21 are given.
  • the impact is calculated.
  • the current value setting unit 43 sets the current value A of the current based on the relationship between the amplitude V of the treatment unit 18 and the current calculated by the calculation unit 42 in correspondence with both the elapsed period P and the number of heat treatments N. .
  • the current value setting unit 43 sets the current to be supplied to the ultrasonic transducer 21 to the adaptive current value A0 that sets the amplitude V of the ultrasonic vibration in the treatment unit 18 to the target amplitude V0.
  • the current of the reference current value A1 is supplied to the ultrasonic transducer 21.
  • a temporary amplitude V1 which is the amplitude V of the ultrasonic vibration of the treatment section 18, is calculated (step S122).
  • the provisional amplitude V1 is calculated in correspondence with both the elapsed period P from the manufacturing and the number of heat treatments N.
  • the calculation unit 42 calculates the amplitude change rate ⁇ of the temporary amplitude V1 with respect to the target amplitude V0 (step S121).
  • the temporary amplitude V1 is calculated using the target amplitude V0 and the amplitude change rate ⁇ .
  • the reference current value A1 is stored in the storage unit 36 and is read by the information reading unit 38 as information regarding the handpiece 2.
  • a state where the elapsed period P is zero and the number of heat treatments N is zero is defined as an initial state.
  • the calculation is performed with the current value A of the current that sets the amplitude V of the ultrasonic vibration in the treatment unit 18 as the target amplitude V0 in the initial state as the reference current value A1.
  • the piezoelectric elements 22 ⁇ / b> A to 22 ⁇ / b> D forming the ultrasonic transducer 21 as a period elapses from the time of manufacture. Due to the deterioration of the piezoelectric elements 22A to 22D, the vibration characteristics of the vibrating body unit 17 change, and the amplitude V of the ultrasonic vibration in the treatment unit 18 changes compared to the manufacturing time.
  • the change amount of the amplitude V due to the elapsed period P from the time of manufacture is ⁇ ,
  • Q1 and Q2 are constants determined by the characteristics of the piezoelectric elements 22A to 22D, and are stored in the storage unit 36. From the formula (1), as the period elapses from the time of manufacture, the amplitude V of the ultrasonic vibration in the treatment unit 18 of the vibrating body unit 17 increases.
  • the vibrator unit 17 deterioration or the like occurs in the piezoelectric elements 22 ⁇ / b> A to 22 ⁇ / b> D forming the ultrasonic vibrator 21 by performing heat treatment by autoclave sterilization. Due to the deterioration of the piezoelectric elements 22A to 22D, the vibration characteristics of the vibrating body unit 17 change, and the amplitude V of the ultrasonic vibration in the treatment unit 18 changes compared to the manufacturing time.
  • the amount of change in amplitude V due to the number of heat treatments N is ⁇ ,
  • R1 and R2 are constants determined by the characteristics of the piezoelectric elements 22A to 22D and the like, and are stored in the storage unit 36. From equation (2), the amplitude V of the ultrasonic vibration in the treatment section 18 increases each time heat treatment is performed.
  • the amplitude change rate ⁇ of the temporary amplitude V1 with respect to the target amplitude V0 is obtained using the equations (1) and (2).
  • the change amount ⁇ of the amplitude V caused by the elapsed period P is converted into a parameter N ′ corresponding to the number N of heat treatments.
  • the amplitude change rate ⁇ of the temporary amplitude V1 with respect to the target amplitude V0 is obtained.
  • the temporary amplitude V1 is
  • the amplitude change rate ⁇ of the temporary amplitude V1 with respect to the temporary amplitude V1 and the target amplitude V0 using the equations (6) and (7), which are relational expressions using the elapsed period P and the number of heat treatments N as parameters. Is calculated. From the equations (6) and (7), the amplitude change rate ⁇ increases as the elapsed period P increases. Further, the amplitude change rate ⁇ increases as the number of heat treatments N increases. Therefore, the temporary amplitude V1 is larger than the target amplitude V0.
  • the current value setting unit 43 sets the current value A of the current supplied to the ultrasonic transducer 21 to the compatible current value A0 based on the amplitude change rate ⁇ (step S123).
  • the treatment unit 18 vibrates with a temporary amplitude V1 larger than the target amplitude V0. For this reason, in a state in which the period has elapsed since the manufacture and the heat treatment has been performed several times, the adaptive current value A0 that sets the amplitude V of the treatment unit 18 to the target amplitude V0 is smaller than the reference current value A1.
  • the amplitude of the vibrator unit 17 including the treatment unit 18 is proportional to the current output from the supply control unit 35 (that is, the current supplied to the ultrasonic transducer 21).
  • the provisional amplitude V1 which is the amplitude of the treatment section 18 when the current of the reference current value A1 is supplied to the ultrasonic transducer 21 due to the deterioration of the piezoelectric elements 22A to 22D due to the heat treatment, is described above with the equation (7).
  • (1 + ⁇ ) V0 is obtained. Therefore, the matching current value A0 is
  • the amplitude of the treatment section 18 can be maintained at the target amplitude V0.
  • the supply operation is input by pressing the supply operation input button 9 (step S107). Then, the current having the adaptive current value A0 is supplied from the supply control unit 35 to the ultrasonic transducer 21 (step S108).
  • the supply control unit 35 controls the supply of current so that a current having a constant adaptive current value A 0 is supplied to the ultrasonic transducer 21. That is, the supply control unit 35 performs constant current control with the adaptive current value A0.
  • Step S109 By supplying a current having an appropriate current value A0 to the ultrasonic vibrator 21, ultrasonic vibration is generated in the ultrasonic vibrator 21, and the vibrator unit 17 vibrates in a state where the treatment section 18 has the target amplitude V0.
  • the treatment unit 18 performs treatment of a grasp target such as a living tissue using ultrasonic vibration.
  • the storage unit 36 stores a current supply count M from the supply control unit 35 to the ultrasonic transducer 21. When the current is supplied from the supply control unit 35 by the input of the supply operation, the supply control unit 35 adds the number of times of supply M only once (step S110). When the supply number M is added, the added supply number M is stored in the storage unit 36.
  • Step S111 If the treatment is to be continued (No at Step S111), the process returns to Step S107, and Steps S107 to S110 are repeated. For this reason, every time current is supplied from the supply control unit 35, the number of times of supply M is added only once.
  • the storage unit 36 stores a reference date and time t0 as a reference.
  • the determination unit 46 determines whether or not the current date and time t1 has passed a predetermined time T0 (for example, 12 hours) from the reference date and time t0 (step S112).
  • the determination in step S112 is performed before the process of setting the current value A of the current supplied to the ultrasonic transducer 21 (that is, step S106) is performed.
  • the reference date and time t0 is updated by the date and time update unit 47.
  • the reference date and time t0 is updated to the date and time when the current is supplied.
  • a supply operation is frequently input, and current is frequently supplied from the supply control unit 35 to the ultrasonic transducer 21.
  • the time between a certain date and time when the current is supplied from the supply control unit 35 and the next date and time when the current is supplied from the supply control unit 35 is short.
  • the time from the end of the treatment to the start of the next treatment is long.
  • the supply control unit 35 updates the reference date and time t0 at the date and time when the current is supplied, so that heat treatment by autoclave sterilization is performed between the reference date and time t0 and the current date and time t1 based on the time elapsed from the reference date and time t0. It has been done or is determined to be valid.
  • step S112 If the predetermined time T0 or more has elapsed from the reference date / time t0 (step S112—Yes), it is determined that the heat treatment has been performed from the reference date / time t0. For this reason, the number adding unit 48 adds the heat treatment number N only once (step S113).
  • the storage unit 36 stores the added number N of heat treatments.
  • the date and time update unit 47 updates the reference date and time t0 to the date and time when the heat treatment count is added (step S114).
  • the reference date and time t0 is not updated as in step S114, the heat treatment count N is added again when the control unit 15 is started again after an unexpected situation occurs. That is, when the heat treatment is not actually performed, the heat treatment count N may be added.
  • the calculation unit 42 performs calculation using the heat treatment count N with high accuracy.
  • step S115 when the heat treatment count N is added, the number reset section 49 resets the current supply count M from the supply control section 35 to zero (step S115). After performing steps S113 to S115, processing for setting the current value A of the current is performed in step S106. At this time, the calculation unit 42 and the current value setting unit 43 calculate the relationship between the amplitude V of the ultrasonic vibration and the current based on both the elapsed period P and the heat treatment number N using the added heat treatment number N. The current supplied to the ultrasonic transducer 21 is set to the compatible current value A0.
  • step S112 determines whether the current supply count M from the supply control unit 35 exceeds the predetermined number M0.
  • Step S116 The determination in step S116 is performed before the process of setting the current value A of the current supplied to the ultrasonic transducer 21 (that is, step S106) is performed.
  • the current date and time t1 has not passed the predetermined time T0 from the reference date and time t0.
  • heat treatment by autoclave sterilization is performed after the treatment is completed and before the next treatment is started. For this reason, the heat treatment actually performed may not be added to the heat treatment count N. Therefore, in the present embodiment, determination based on the current supply count M is performed in step S116. In a single treatment using ultrasonic vibration, the current is supplied from the supply control unit 35 at least for the supply number M exceeding the predetermined number M0.
  • step S110 the number M of times of supply is added every time current is supplied.
  • step S116 If the current supply number M exceeds the predetermined number M0 (step S116—Yes), it is determined that the heat treatment has been performed from the reference date and time t0. For this reason, the above-described steps S113 to S115 are performed. Then, after performing steps S113 to S115, processing for setting the current value A of the current is performed in step S106. At this time, the calculation unit 42 and the current value setting unit 43 calculate the relationship between the amplitude V of the ultrasonic vibration and the current based on both the elapsed period P and the heat treatment number N using the added heat treatment number N. The current supplied to the ultrasonic transducer 21 is set to the compatible current value A0.
  • the heat treatment count N is not added again until the next treatment is started after the heat treatment count N is added. That is, the number N of heat treatments is not added again in the currently performed treatment (at the time of the current treatment). Therefore, the calculation unit 42 performs calculation using the heat treatment count N with high accuracy.
  • step S116 If the current supply number M does not exceed the predetermined number M0 (No in step S116), it is determined that the heat treatment has not been performed from the reference date and time t0. Therefore, the process of setting the current value A of the current is performed in step S106 without performing the above-described steps S113 to S115. At this time, the calculation unit 42 and the current setting unit 43 calculate the relationship between the current V and the amplitude V of the ultrasonic vibration based on both the elapsed period P and the heat treatment number N using the heat treatment number N not added. The current supplied to the ultrasonic transducer 21 is set to the compatible current value A0.
  • the amplitude V of the ultrasonic vibration in the treatment unit 18 and the ultrasonic transducer based on both the elapsed period P and the number N of heat treatments.
  • the relationship with the current supplied to 21 is calculated.
  • the current value for adjusting the amplitude V of the ultrasonic vibration in the treatment section 18 to the target amplitude V0 is set to A0.
  • the vibrator unit 17 Since the current of the conforming current value A0 is supplied to the ultrasonic transducer 21, the vibrator unit 17 always vibrates the treatment section 18 to the target amplitude V0, and according to the elapsed period P and the number of heat treatments N since manufacture. The vibration characteristics of the vibrating body unit 17 do not change. For this reason, the amplitude V of the treatment section 18 is always maintained at a constant target amplitude V0 regardless of the elapsed period P from the manufacturing and the number of heat treatments N. Therefore, the treatment performance in the treatment section 18 can be ensured regardless of the elapsed period P and the number of heat treatments N from the time of manufacture.
  • a plurality of (three in this modified example) handpieces 2a to 2c which are ultrasonic treatment devices are connected to a control unit 15 which is an ultrasonic treatment control unit. Is possible.
  • a control unit 15 which is an ultrasonic treatment control unit.
  • the ultrasonic transducer one of 21a to 21c
  • the storage unit One of 36a to 36c
  • the manufacturing number of the vibrator unit (one of 17a to 17c) is stored in the storage unit (one of 36a to 36c).
  • the information reading unit 38 includes the serial number of the vibrator unit (one of 17a to 17c) to which the ultrasonic transducer (one of 21a to 21c) is connected to the supply control unit 35.
  • a number detection unit 51 for detection is provided. For example, when the handpiece 2a is connected to the control unit 15, the number detection unit 51 detects the manufacturing number of the vibrating body unit 17a from the storage unit 36a.
  • the vibration characteristics of the vibrating body units 17a to 17c are different for each manufacturing number.
  • the target current value Aa0 that is the current value A that sets the treatment portions 18a to 18c of the vibrator units 17a to 17c to the target amplitude V0 in the initial state (the elapsed period P is zero and the heat treatment number N is zero).
  • ... Ac0 differs for each serial number of the vibrating body units 17a to 17c.
  • the calculation unit 42 associates the detected manufacturing number with the elapsed period P and the number of heat treatments in the relationship between the amplitude V of the ultrasonic vibration and the current in the corresponding treatment unit (one of 18a to 18c).
  • the effect of both N is calculated. That is, by using the parameter relating to the vibration characteristic corresponding to the vibration body unit (one of 17a to 17c) of the detected manufacturing number, the corresponding treatment unit (18a to 18c) based on both the elapsed period P and the heat treatment number N is used.
  • the relationship between the amplitude V of the ultrasonic vibration and current in (one of them) is calculated. For example, when the handpiece 2a is connected to the control unit 15, the amplitude change rate ⁇ a is
  • the current value setting unit 43 sets the current value A of the current to the adaptive current value Aa0 that sets the amplitude V of the treatment unit 18a to the target amplitude V0.
  • the amplitude change rate ⁇ b is
  • the current value setting unit 43 sets the current value A of the current to the adaptive current value Ab0 that sets the amplitude V of the treatment unit 18b to the target amplitude V0.
  • Qa1, Qa2, Ra1, Ra2, Qb1, Qb2, Rb1, and Rb2 are constants determined by the manufacturing number.
  • the control unit 15 causes the corresponding conforming current values (Aa0 to Ac0) to correspond to the elapsed period P and the number of heat treatments N for each of the vibrator units 17a to 17c having a plurality of production numbers. One of the currents). Therefore, the control unit 15 always maintains a constant target amplitude V0 in each of the treatment units 18a to 18c of the vibrator units 17a to 17c having a plurality of serial numbers.
  • the handpiece 2 that coagulates and solidifies the object to be grasped between the jaw 11 and the treatment unit 18 by ultrasonic vibration is connected to the control unit 15, but is not limited thereto.
  • the ultrasonic suction treatment instrument 55 may be connected to the control unit 15.
  • the ultrasonic suction treatment instrument 55 is provided with the transducer case 12, the holding unit 3, and the vibrating body unit 17 in the same manner as the handpiece.
  • the holding unit 3 is provided with only the cylindrical case portion 5, and the fixed handle 6, the movable handle 7, and the rotation operation knob 8 are not provided.
  • the vibrating body unit 17 includes the ultrasonic probe 31, the horn member 23, and the ultrasonic vibrator 21, but the jaw 11 is not provided.
  • a suction passage 56 extends along the longitudinal axis C inside the vibrating body unit 17. Then, one end of a suction tube 57 is connected to the suction passage 56. In addition, one end of a liquid feeding tube 58 is connected to the cavity between the sheath 10 and the probe 31.
  • the vibrator unit 17 is vibrated by ultrasonic vibration, and water is supplied from the distal end of the sheath 10 through the inside of the liquid supply tube 58 and the cavity between the probe 31 and the sheath 10. Do.
  • cavitation occurs in the vicinity of the treatment portion 59 provided on the distal end surface of the probe 31, and a treatment target such as a living tissue is crushed. Then, the crushed treatment target is sucked through the inside of the suction passage 56 and the suction tube 57.
  • the amplitude V at the treatment section 59 is set to the target amplitude V0.
  • the ultrasonic ablation treatment tool 60 may be connected to the control unit 15.
  • the jaw 11, the fixed handle 6, the movable handle 7, and the rotation operation knob 8 are not provided.
  • a hook-like portion 61 that is a treatment portion is provided at the distal end portion of the probe 31.
  • the vibrating body unit 17 is vibrated by ultrasonic vibration while a treatment target such as a living tissue is hooked on the hook-like portion 61. Thereby, the treatment target to be hooked is excised.
  • the amplitude V at the hook-like portion (treatment portion) 61 is set to the target amplitude V0.
  • the treatment instrument connected to the control unit 15 may be an ultrasonic treatment instrument (2; 55; 60) that performs treatment using ultrasonic vibration.
  • the control unit 15 sets the amplitude of the treatment unit 18 in a state in which the vibrator unit 17 performs optimal vibration suitable for treatment as the target amplitude V0, but is not limited thereto.
  • the amplitude of the vibrator mounting portion 25 in a state in which the vibrator unit 17 performs optimal vibration suitable for treatment may be set as the target amplitude (V0).
  • the current supplied to the ultrasonic transducer 21 is controlled so that the transducer mounting portion 25 of the vibrator unit 17 has the target amplitude (V0).
  • the amplitude setting unit 41 may set a certain amplitude of the vibrating body unit 17 in a state where the vibrating body unit 17 performs the optimum vibration by the ultrasonic vibration as the target amplitude (V0).
  • the storage unit 36 is provided in the transducer case 12, but the present invention is not limited to this.
  • the storage unit 36 may be provided inside the holding unit 3 or may be provided inside the cable 13. Further, the storage unit 36 may be provided in the control unit 15. In this case, from the storage unit 36 of the control unit 15, the information reading unit 38 reads information such as the elapsed period P from the manufacture of the vibrating body unit 17 and the number N of heat treatments of the vibrating body unit 17.
  • the heat treatment count N is automatically added, but is not limited thereto.
  • the number N of heat treatments may be added by an operator's operation.
  • the ultrasonic treatment system (1) includes an ultrasonic wave generation unit (21) that generates ultrasonic vibrations when electric current is supplied, and an ultrasonic wave transmission unit (23, 31) that transmits the generated ultrasonic vibrations. ), And the amplitude in a state in which the vibrator unit (17; 17a to 17c) optimally vibrates by ultrasonic vibration is set as the target amplitude (V0).
  • the storage unit (36; 36a to 36c) for storing the number of times (N) and the elapsed period (P) and the number of times of heat treatment (N) the vibrator unit (17; 17a ⁇ 17c
  • the current (A0; Aa0 to Ac0) is adjusted to the current value (A0; Aa0 to Ac0) that sets the amplitude (V) of the vibrator unit (17; 17a to 17c) to the target amplitude (V0).
  • the vibrator unit comprising the ultrasonic wave generation unit and the ultrasonic wave transmission unit;
  • An ultrasonic treatment system comprising:

Abstract

 超音波処置システムは、振動体ユニットの製造時からの経過期間及び前記振動体ユニットの熱処理回数の両方に基づいて、超音波振動が発生した場合の前記振動体ユニットの振幅と超音波発生部に供給される電流との関係を算出する算出部を備える。前記超音波処置制御ユニットは、前記算出部で算出された前記振動体ユニットの前記振幅と前記電流との前記関係に基づいて、前記振動体ユニットの前記振幅を目標振幅にする適合電流値に、前記電流を設定する電流値設定部を備える。

Description

超音波処置システム
 本発明は、超音波振動による処置を行う超音波処置具を備える超音波処置システムに関する。
 特許文献1には、超音波発生部である超音波振動子と、超音波振動を基端方向から先端方向へ伝達するプローブと、を備える振動体ユニットが設けられた超音波処置システムが開示されている。この超音波処置システムでは、超音波振動に振動センサが取付けられ、振動センサにより振動体ユニットの振動状態が検出される。そして、記録部が、振動体ユニットの振動状態から振動体ユニットの振動時間(すなわち超音波処置具の使用時間)、供給される電流の電流値に対する超音波振動の振幅を算出し、超音波処置具の使用時間、電流の電流値に対する超音波振動の振幅の情報を記録する。記録された情報に基づいて、振動体ユニットの使用状態が認識され、振動体ユニットを含む超音波処置具であるハンドピースが寿命を超えているか、判断される。ハンドピースが寿命を超えている場合は、警告が表示されたり、超音波振動子への電流の供給が停止されたりする。
特開平5-49647号公報
 前記特許文献1に示すような超音波処置システムでは、振動体ユニットに設けられる処置部での処置性能を確保する観点から、振動体ユニットでの超音波振動の振幅が一定に維持されることが必要である。しかし、振動体ユニットでは、製造時から期間が経過することにより、超音波振動子を形成する圧電素子に劣化等が発生する。また、超音波振動による超音波処置が行われた後には、超音波処置具であるハンドピースは、オートクレーブ滅菌(autoclave sterilization)が行われ、熱処理される。熱処理が行われることにより、圧電素子に劣化等が発生する。圧電素子の劣化等により、振動体ユニットの振動特性が変化し、振動体ユニットでの超音波振動の振幅が製造時に比べて変化する。このため、製造時からの期間の経過とともに処置部での処置性能が低下し、オートクレーブ滅菌による熱処理が行われる度に処置部での処置性能が低下してしまう。
 前記特許文献1の超音波処置システムでは、超音波処置装置の使用時間、供給される電流の電流値に対する超音波振動の振幅は算出されるが、オートクレーブ滅菌による熱処理と超音波振動の振幅との関係は、算出されない。また、前記特許文献1の超音波処置システムでは、振動体ユニットを含むハンドピースが寿命を超えているか判断されるだけで、振動体ユニット(処置部)での超音波振動の振幅を一定にする電流制御等も行われていない。したがって、製造時からの期間の経過及びオートクレーブ滅菌による熱処理によって、製造時に比べて振動体ユニットでの超音波振動の振幅が変化してしまう。
 本発明は前記課題に着目してなされたものであり、その目的とするところは、製造時からの経過期間及びオートクレーブ滅菌による熱処理に関係なく、処置部での処置性能が確保される超音波処置システムを提供することにある。
 前記目的を達成するため、本発明のある態様の超音波処置システムは、電流が供給されることにより超音波振動を発生する超音波発生部と、発生した前記超音波振動を伝達する超音波伝達部と、を備える振動体ユニットと、前記超音波振動によって前記振動体ユニットが最適の振動を行う状態での振幅を、目標振幅として設定する振幅設定部と、前記振動体ユニットの製造時からの経過期間、及び、前記振動体ユニットの滅菌処理の度に行われる熱処理回数を記憶する記憶部と、前記経過期間及び前記熱処理回数の両方に基づいて、前記超音波振動が発生した場合の前記振動体ユニットの前記振幅と前記超音波発生部に供給される前記電流との関係を算出する算出部と、前記算出部で算出された前記振動体ユニットの前記振幅と前記電流との前記関係に基づいて、前記振動体ユニットの前記振幅を前記目標振幅にする適合電流値に前記超音波発生部に供給する前記電流を設定する電流値設定部と、前記適合電流値で前記電流が供給される状態に、前記超音波発生部への前記電流の供給を制御する供給制御部と、を備える。
 本発明によれば、製造時からの経過期間及びオートクレーブ滅菌による熱処理に関係なく、処置部での処置性能が確保される超音波処置システムを提供することができる。
第1の実施形態に係る超音波処置システムを概略的に示す斜視図である。 第1の実施形態に係る超音波処置システムを概略的に示すブロック図である。 第1の実施形態に係る振動体ユニットを部材ごとに分解して示す断面図である。 第1の実施形態に係る振動体ユニットの処置部で処置を行う際に、制御ユニット及びハンドピースで行われる処理を説明するフローチャートである。 第1の実施形態に係る算出部及び電流値設定部において電流を適合電流値に設定する処理を説明するフローチャートである。 第1の変形例に係る超音波処置システムを示す概略図である。 第2の変形例に係る超音波処置システムを概略的に示す斜視図である。 第3の変形例に係る超音波処置システムを概略的に示す斜視図である。
 (第1の実施形態) 
 本発明の第1の実施形態について、図1乃至図5を参照して説明する。
 図1及び図2は、本実施形態の超音波処置システム1の構成を示す図である。図1に示すように、超音波処置システム1は、超音波処置具であるハンドピース2を備える。ハンドピース2は、長手軸Cを有する。ここで、長手軸Cに平行な方向の一方が先端方向(図1の矢印C1の方向)であり、先端方向とは反対方向が基端方向(図1の矢印C2の方向)である。ここで、ハンドピース2は、超音波振動を用いて生体組織等の凝固切開を行う超音波凝固切開処置具である。
 ハンドピース2は、保持ユニット3を備える。保持ユニット3は、長手軸Cに沿って延設される筒状ケース部5と、筒状ケース部5と一体に形成される固定ハンドル6と、筒状ケース部5に対して回動可能に取付けられる可動ハンドル7と、を備える。筒状ケース部5への取付け位置を中心として可動ハンドル7が回動することにより、可動ハンドル7が固定ハンドル6に対して開閉動作を行う。また、保持ユニット3は、筒状ケース部5の先端方向側に取付けられる回転操作ノブ8を備える。回転操作ノブ8は、筒状ケース部5に対して長手軸Cを中心として回転可能である。また、固定ハンドル6には、供給操作入力部である供給操作入力ボタン9が設けられている。
 ハンドピース2は、長手軸Cに沿って延設されるシース10を備える。シース10が先端方向側から回転操作ノブ8の内部及び筒状ケース部5の内部に挿入されることにより、シース10が保持ユニット3に取付けられる。シース10の先端部には、ジョー11が回動可能に取付けられている。可動ハンドル7は、筒状ケース部5の内部でシース10の可動筒状部(図示しない)に接続されている。可動筒状部の先端は、ジョー11に接続されている。固定ハンドル6に対して可動ハンドル7を開閉することにより、可動筒状部が長手軸Cに沿って移動する。これにより、ジョー11が、シース10への取付け位置を中心として回動する。また、シース10及びジョー11は、回転操作ノブ8と一体に、筒状ケース部5に対して長手軸Cを中心として、回転可能である。
 また、ハンドピース2は、長手軸Cに沿って延設される振動子ケース12を備える。振動子ケース12が基端方向側から筒状ケース部5の内部に挿入されることにより、振動子ケース12が保持ユニット3に取付けられる。筒状ケース部5の内部では、振動子ケース12は、シース10に連結されている。振動子ケース12は、回転操作ノブ8と一体に、筒状ケース部5に対して長手軸Cを中心として、回転可能である。また、振動子ケース12には、ケーブル13の一端が接続されている。ケーブル13の他端は、制御ユニット15に接続されている。ここで、制御ユニット15は、超音波処置システムでの超音波処置を制御する超音波処置制御ユニットであり、例えば、CPU(Central Processing Unit)、ASIC(Application Specific Integrated Circuit)等を備えるエネルギー生成器である。
 また、ハンドピース2は、振動体ユニット17を備える。振動体ユニット17は、振動子ケース12の内部から筒状ケース部5の内部及びシース10の内部を通って、長手軸Cに沿って延設されている。振動体ユニット17は、シース10の先端から先端方向に向かって突出する処置部18を備える。処置部18は、振動体ユニット17の先端部に設けられている。ジョー11がシース10に対して回動することにより、ジョー11が処置部18に対して開閉動作を行う。また、振動体ユニット17は、回転操作ノブ8と一体に、筒状ケース部5に対して長手軸Cを中心として、回転可能である。
 図3は、振動体ユニット17を部材ごとに分解して示す図である。図2及び図3に示すように、振動体ユニット17は、電流が供給されることにより超音波振動を発生する超音波発生部である超音波振動子21を備える。超音波振動子21は、電流を振動に変換する複数の(本実施形態では4つの)圧電素子22A~22Dを備える。また、振動体ユニット17は、長手軸Cに沿って延設される柱状のホーン部材23を備える。ホーン部材23は、振動子装着部25を備える。振動子装着部25に、圧電素子22A~22D等の超音波振動子21を形成する部材が装着される。超音波振動子21は、振動体ユニット17の基端部に設けられ、振動子ケース12の内部に位置している。
 ホーン部材23には、先端方向に向かうにつれて長手軸Cに垂直な断面積が減少する断面積変化部27が、設けられている。また、ホーン部材23の先端部には、雌ネジ部29が設けられている。振動体ユニット17は、ホーン部材23の先端方向側に長手軸Cに沿って延設されるプローブ31を備える。プローブ31の基端部には、雄ネジ部32が設けられている。雄ネジ部32が雌ネジ部29に螺合することにより、ホーン部材23の先端方向側にプローブ31が接続される。ホーン部材23は、筒状ケース部5の内部まで延設され、筒状ケース部5の内部でホーン部材23にプローブ31が接続されている。プローブ31は、シース10の内部を通って延設され、シース10の先端から先端方向に向かって突出している。このため、処置部18は、プローブ31の先端部に位置している。
 振動体ユニット17では、超音波振動子21で発生した超音波振動が、ホーン部材23に伝達される。そして、ホーン部材23及びプローブ31において、超音波振動が、基端方向から先端方向へ長手軸Cに沿って伝達される。すなわち、ホーン部材23及びプローブ31は、発生した超音波振動を長手軸Cに沿って伝達する超音波伝達部である。そして、処置部18が伝達された超音波振動によって処置を行う。ジョー11を処置部18に対して閉じることにより、生体組織等の把持対象がジョー11と処置部18との間で把持される。把持対象を把持した状態で振動体ユニット17を振動させることにより、処置部18と把持対象との間に摩擦熱が発生する。摩擦熱によって、把持対象が凝固されると同時に切開される。なお、振動体ユニット17は、基端(超音波振動子21の基端)及び先端(プローブ31の先端)が腹位置となる周波数で振動する。また、超音波振動は、振動方向及び伝達方向が長手軸Cに平行な縦振動である。
 図2に示すように、超音波振動子21には、2本の電気配線33A,33Bの一端が接続されている。制御ユニット15は、供給制御部35を備える。供給制御部35には、電気配線33A,33Bの他端が接続されている。供給制御部35により、超音波振動子121への電流の供給状態が、制御される。また、供給操作入力ボタン9には、電気信号線39の一端が接続されている。電気信号線39の他端は、供給制御部35に接続されている。供給操作入力ボタン9を押圧することにより、供給制御部35から電流を供給する供給操作が入力される。供給制御部35に供給操作の入力が伝達されることにより、供給制御部35から超音波振動子21に電流が供給される。すなわち、超音波処置制御ユニットである制御ユニット15は、超音波振動子21への電流の供給を制御することにより、振動体ユニット17の振動状態を制御している。
 振動子ケース12の内部には、ICチップ等の記憶部36が設けられている。記憶部36には、ハンドピース2のスペック情報等のハンドピース2に関する情報が、記憶されている。記憶部36には、電気信号線37の一端が接続されている。制御ユニット15は、情報読取部38を備える。電気信号線37の他端は、情報読取部38に接続されている。
 また、制御ユニット15は、振幅設定部41と、算出部42と、電流値設定部43と、電源スイッチ45と、判定部46と、日時更新部47と、回数加算部48と、回数リセット部49と、を備える。電源スイッチ45は、例えば、操作ボタンである。情報読取部38、振幅設定部41、算出部42、電流値設定部43、判定部46、日時更新部47、回数加算部48及び回数リセット部49は、例えばCPU、ASICに設けられる電子回路(制御回路、判定回路、読取回路、演算回路等)によって形成されている。これらの部分の処理の詳細については、後述する。
 次に、振動体ユニット17の処置部18で処置を行う際に制御ユニット15及びハンドピース2で行われる処理について、図4のフローチャートを参照して説明する。図4に示すように、振動体ユニット17の処置部18で処置を行う際には、まず、電源スイッチ45をONにし、制御ユニット15を起動する(ステップS101)。そして、ケーブル13を介して、ハンドピース2を制御ユニット15に接続する(ステップS102)。これにより、電気配線33A,33Bを介して、超音波振動子21が供給制御部35に電気的に接続される。また、電気信号線37を介して、記憶部36が情報読取部38に接続される。また、電気信号線39を介して、供給操作入力ボタン9が供給制御部35に接続される。
 記憶部36が情報読取部38に接続されることにより、情報読取部38が、記憶部36に記憶されているハンドピース2に関する情報を読取る(ステップS103)。そして、読取ったハンドピース2に関する情報に基づいて、振幅設定部41が、振動体ユニット17の処置部18での超音波振動の目標振幅V0を設定する(ステップS104)。ここで、目標振幅V0は、振動体ユニット17が処置に適した最適の振動を行う状態での、処置部18の振幅である。処置部18が目標振幅V0で振動することにより、生体組織等の処置対象が適切に処置される。なお、記憶部36に目標振幅V0が記憶されていてもよい。この場合、振幅設定部41は、読取られた目標振幅V0を、処置部18での超音波振動の目標振幅V0として設定する。
 記憶部36には、振動体ユニット17の製造時からの経過期間Pが記憶されている。また、振動体ユニット17を含むハンドピース2では、使用後にオートクレーブ滅菌による滅菌が行われる。このため、滅菌の度に、振動体ユニット17において熱処理が1回行われる。すなわち、ハンドピース2による処置が完了後には、振動体ユニット17において1回のヒートサイクルが行われる。記憶部36には、振動体ユニット17の熱処理回数(ヒートサイクル回数)Nが記憶されている。製造時からの経過期間P及び熱処理回数Nは、ハンドピース2に関する情報であり、情報読取部38によって読取られる。
 算出部42及び電流値設定部43は、情報読取部38によって読取られたハンドピース2に関する情報(振動体ユニット17に関する情報)に基づいて、超音波振動子21へ供給される電流を適合電流値A0に設定する(ステップS106)。供給制御部35から超音波振動子21へ供給される電流の電流値Aの設定は、製造時からの経過期間P及び熱処理回数Nに基づいて、行われる。
 図5のフローチャートでは、超音波振動子21へ供給される電流を適合電流値A0に設定する処理を、示している。図5に示すように、電流の電流値Aを設定する処理では、まず、算出部42が、経過期間P及び熱処理回数Nの両方に基づいて、超音波振動が発生した場合の処置部18(振動体ユニット17)の振幅と超音波振動子(超音波発生部)21に供給される電流との関係を、算出する(ステップS120)。すなわち、経過期間P及び熱処理回数Nを用いて、処置部18での超音波振動の振幅Vと超音波振動子21に供給する電流との関係への経過期間P及び熱処理回数Nの両方が与える影響が、算出される。電流値設定部43は、経過期間P及び熱処理回数Nの両方に対応させて算出部42で算出された処置部18の振幅Vと電流との関係に基づいて、電流の電流値Aを設定する。この際、電流値設定部43は、処置部18での超音波振動の振幅Vを目標振幅V0にする適合電流値A0に、超音波振動子21へ供給する電流を設定する。
 そして、ステップS120で算出された処置部18の振幅Vと超音波振動子21に供給される電流との関係に基づいて、基準電流値A1の電流が超音波振動子21に供給された場合の処置部18の超音波振動の振幅Vである仮振幅V1を、算出する(ステップS122)。この際、製造時からの経過期間P及び熱処理回数Nの両方に対応させて、仮振幅V1が算出される。また、算出部42は、目標振幅V0に対する仮振幅V1の振幅変化率δを算出する(ステップS121)。仮振幅V1は、目標振幅V0及び振幅変化率δを用いて算出される。基準電流値A1は、記憶部36に記憶されており、ハンドピース2に関する情報として情報読取部38で読取られる。ここで、経過期間Pがゼロで、かつ、熱処理回数Nがゼロの状態を初期状態とする。本実施形態では、初期状態において処置部18での超音波振動の振幅Vを目標振幅V0にする電流の電流値Aを基準電流値A1として、計算が行われる。
 振動体ユニット17では、製造時から期間が経過することにより、超音波振動子21を形成する圧電素子22A~22Dに劣化等が発生する。圧電素子22A~22Dの劣化等により、振動体ユニット17の振動特性が変化し、処置部18での超音波振動の振幅Vが製造時に比べて変化する。ここで、製造時からの経過期間Pに起因する振幅Vの変化量をαとすると、 
Figure JPOXMLDOC01-appb-M000001
の関係が成り立つ。ここで、Q1,Q2は、圧電素子22A~22Dの特性等によって定まる定数であり、記憶部36に記憶されている。式(1)より、製造時から期間が経過するとともに、振動体ユニット17の処置部18での超音波振動の振幅Vは、大きくなる。
 また、振動体ユニット17では、オートクレーブ滅菌による熱処理が行われることにより、超音波振動子21を形成する圧電素子22A~22Dに劣化等が発生する。圧電素子22A~22Dの劣化等により、振動体ユニット17の振動特性が変化し、処置部18での超音波振動の振幅Vが製造時に比べて変化する。ここで、熱処理回数Nに起因する振幅Vの変化量をβとすると、 
Figure JPOXMLDOC01-appb-M000002
の関係が成り立つ。ここで、R1,R2は、圧電素子22A~22Dの特性等によって定まる定数であり、記憶部36に記憶されている。式(2)より、熱処理を行う度に、処置部18での超音波振動の振幅Vは、大きくなる。
 目標振幅V0に対する仮振幅V1の振幅変化率δは、式(1)、式(2)を用いて求められる。振幅変化率δを求める場合、経過期間Pに起因する振幅Vの変化量αを、熱処理回数Nに対応するパラメータN´に変換する。熱処理回数N及びパラメータN´を用いると、 
Figure JPOXMLDOC01-appb-M000003
なる。変化量αとパラメータN´との関係は、 
Figure JPOXMLDOC01-appb-M000004
とる。このため、 
Figure JPOXMLDOC01-appb-M000005
となる。式(1)及び式(5)を式(3)に代入して、 
Figure JPOXMLDOC01-appb-M000006
となり、目標振幅V0に対する仮振幅V1の振幅変化率δが求まる。そして、仮振幅V1は、 
Figure JPOXMLDOC01-appb-M000007
となる。
 前述のようにして、経過期間P及び熱処理回数Nをパラメータとした関係式である式(6)、式(7)を用いて、仮振幅V1及び目標振幅V0に対する仮振幅V1の振幅変化率δが算出される。式(6)、式(7)より、経過期間Pが大きくなるにつれて、振幅変化率δが大きくなる。また、熱処理回数Nが大きくなるにつれて、振幅変化率δが大きくなる。したがって、仮振幅V1は、目標振幅V0より大きくなる。
 図5に示すように、電流値設定部43は、振幅変化率δに基づいて、超音波振動子21に供給する電流の電流値Aを適合電流値A0に設定する(ステップS123)。ここで、製造時から期間が経過し、かつ、熱処理が何回か行われた状態で基準電流値A1の電流を供給した場合、処置部18は目標振幅V0より大きい仮振幅V1で振動する。このため、製造時から期間が経過し、かつ、熱処理が何回か行われた状態では、処置部18の振幅Vを目標振幅V0にする適合電流値A0は、基準電流値A1より小さくなる。
 ここで、処置部18を含む振動体ユニット17の振幅は、供給制御部35から出力される電流(すなわち、超音波振動子21に供給される電流)に比例する。熱処理に起因する圧電素子22A~22Dの劣化によって、基準電流値A1の電流が超音波振動子21に供給された場合の処置部18の振幅である仮振幅V1は、式(7)で前述したように、(1+δ)V0となる。したがって、適合電流値A0を、 
Figure JPOXMLDOC01-appb-M000008
とすることにより、処置部18の振幅を目標振幅V0で維持することができる。
 適合電流値A0が設定されると、図4に示すように、供給操作入力ボタン9を押圧することにより、供給操作が入力される(ステップS107)。そして、適合電流値A0の電流が、供給制御部35から超音波振動子21に供給される(ステップS108)。供給制御部35は、一定の適合電流値A0の電流が超音波振動子21へ供給される状態に、電流の供給を制御している。すなわち、供給制御部35では、適合電流値A0で定電流制御が行われている。
 超音波振動子21に適合電流値A0の電流が供給されることにより、超音波振動子21で超音波振動が発生し、処置部18が目標振幅V0となる状態に振動体ユニット17が振動する(ステップS109)。処置部18は、超音波振動を用いて、生体組織等の把持対象の処置を行う。また、記憶部36には、供給制御部35から超音波振動子21への電流の供給回数Mが記憶されている。供給操作の入力によって供給制御部35から電流が供給されることにより、供給制御部35は、供給回数Mを1回だけ加算する(ステップS110)。供給回数Mが加算された場合、加算された供給回数Mが記憶部36に記憶される。
 そして、処置を続行する場合は(ステップS111-No)、ステップS107に戻り、ステップS107~S110が繰り返し行われる。このため、供給制御部35から電流が供給される度に、供給回数Mが1回だけ加算される。
 また、記憶部36には基準となる基準日時t0が記憶されている。図4に示すように、判定部46は、電流値Aの設定において、現在日時t1が基準日時t0から所定の時間T0(例えば12時間)以上経過しているか判定する(ステップS112)。ステップS112での判定は、超音波振動子21へ供給される電流の電流値Aを設定する処理(すなわちステップS106)が行われる前に、行われる。
 基準日時t0は、日時更新部47によって更新される。供給制御部35から電流が供給された場合には、基準日時t0は電流を供給した日時に更新される。一般に、超音波を用いた処置時には、供給操作の入力が頻繁に行われ、供給制御部35から超音波振動子21に頻繁に電流が供給される。このため、処置時において、供給制御部35から電流が供給されたある日時と次に供給制御部35から電流が供給される日時との間の時間は、短い。一方、処置が終了すると、処置終了から次の処置を開始するまでの時間は、長い。このため、ある処置において最後に供給制御部35から電流が供給される日時と次の処置において最初に供給制御部35から電流が供給される日時との間は、長い。また、ある処置と次の処置との間に、オートクレーブ滅菌による熱処理が行われる。このため、供給制御部35が電流を供給した日時において基準日時t0を更新することにより、基準日時t0から経過した時間に基づいて、基準日時t0と現在日時t1との間にオートクレーブ滅菌による熱処理が行われたか、有効に判定される。
 基準日時t0から所定の時間T0以上経過している場合には(ステップS112-Yes)、基準日時t0から熱処理が行われたと判断される。このため、回数加算部48は、熱処理回数Nを1回だけ加算する(ステップS113)。記憶部36には、加算された熱処理回数Nが記憶される。
 また、日時更新部47は、熱処理回数Nが加算された場合、基準日時t0を熱処理回数が加算された日時に更新する(ステップS114)。処置時においては、供給制御部35から電流を供給する前に、制御ユニット15の電源が切れたり、ケーブル13の制御ユニットへの接続が外れたり等の不測の事態が発生する可能性がある。ステップS114のような基準日時t0の更新が行われない場合、不測の事態が発生後に再び制御ユニット15の起動等を行った際に、再び熱処理回数Nが加算されてしまう。すなわち、実際に熱処理が行われていない場合に、熱処理回数Nが加算される可能性がある。そこで、本実施形態では、ステップS114で基準日時t0が更新されるため、熱処理回数Nが加算された後に、次の処置を開始するまで熱処理回数Nが再び加算されることはない。すなわち、現在行っている処置(今回の処置時)において、熱処理回数Nが再び加算されることはない。したがって、算出部42では、正確性の高い熱処理回数Nを用いて計算が行われる。
 また、回数リセット部49は、熱処理回数Nが加算された場合、供給制御部35からの電流の供給回数Mをゼロにリセットする(ステップS115)。ステップS113~S115を行った後、ステップS106で電流の電流値Aを設定する処理が行われる。この際、算出部42及び電流値設定部43は、加算された熱処理回数Nを用いて、経過期間P及び熱処理回数Nの両方に基づく超音波振動の振幅Vと電流との関係を算出するとともに、超音波振動子21へ供給される電流を適合電流値A0に設定する。
 基準日時t0から所定の時間T0以上経過していない場合には(ステップS112-No)、判定部46は、供給制御部35からの電流の供給回数Mが所定の回数M0を超えているか判定する(ステップS116)。ステップS116での判定は、超音波振動子21へ供給される電流の電流値Aを設定する処理(すなわちステップS106)が行われる前に、行われる。
 1回の処置に長時間を要した場合、次の処置までの間が長くないことがある。この場合、現在日時t1が基準日時t0から所定の時間T0以上経過していない。しかし、処置が完了後、次の処置が開始されるまでに、オートクレーブ滅菌による熱処理は行われる。このため、実際に行われた熱処理が熱処理回数Nに加算されない可能性がある。そこで、本実施形態では、ステップS116で、電流の供給回数Mに基づく判定が行われる。超音波振動を用いた1回の処置では、少なくとも所定の回数M0を超える供給回数Mだけ、供給制御部35から電流が供給される。このため、所定の回数M0と供給回数Mとを比較することにより、前回の処置に長時間を要した場合でも、電流の供給回数Mに基づいてオートクレーブ滅菌による熱処理が行われたか、有効に判定される。なお、ステップS110で、供給回数Mは、電流が供給される度に加算される。
 電流の供給回数Mが所定の回数M0を超える場合には(ステップS116-Yes)、基準日時t0から熱処理が行われたと判断される。このため、前述したステップS113~S115が行われる。そして、ステップS113~S115を行った後、ステップS106で電流の電流値Aを設定する処理が行われる。この際、算出部42及び電流値設定部43は、加算された熱処理回数Nを用いて、経過期間P及び熱処理回数Nの両方に基づく超音波振動の振幅Vと電流との関係を算出するとともに、超音波振動子21へ供給される電流を適合電流値A0に設定する。
 本実施形態では、ステップS115で電流の供給回数Mがゼロにリセットされるため、熱処理回数Nが加算された後に、次の処置を開始するまで熱処理回数Nが再び加算されることはない。すなわち、現在行われている処置(今回の処置時)において、熱処理回数Nが再び加算されることはない。したがって、算出部42では、正確性の高い熱処理回数Nを用いて計算が行われる。
 電流の供給回数Mが所定の回数M0を超えていない場合には(ステップS116-No)、基準日時t0から熱処理が行われていないと判断される。このため、前述したステップS113~S115が行われることなく、ステップS106で電流の電流値Aを設定する処理が行われる。この際、算出部42及び電流設定部43は、加算されていない熱処理回数Nを用いて、経過期間P及び熱処理回数Nの両方に基づく超音波振動の振幅Vと電流との関係を算出するとともに、超音波振動子21へ供給される電流を適合電流値A0に設定する。
 前述のように、本実施形態の超音波処置システム1及び超音波処置制御ユニット15では、経過期間P及び熱処理回数Nの両方に基づく処置部18での超音波振動の振幅Vと超音波振動子21に供給する電流との関係が、算出される。そして、経過期間P及び熱処理回数Nに対応して変化する超音波振動の振幅Vと電流との関係に基づいて、処置部18での超音波振動の振幅Vを目標振幅V0にする適合電流値A0に、電流の電流値Aが設定される。適合電流値A0の電流が超音波振動子21に供給されるため、振動体ユニット17は処置部18が目標振幅V0となる振動を常時行い、製造時からの経過期間P及び熱処理回数Nによって、振動体ユニット17の振動特性が変化しない。このため、製造時からの経過期間P及び熱処理回数Nに関係なく、処置部18の振幅Vが常時一定の目標振幅V0で維持される。したがって、製造時からの経過期間P及び熱処理回数Nに関係なく、処置部18での処置性能を確保することができる。
 (変形例) 
 なお、第1の変形例として図6に示すように、複数の(本変形例では3つの)超音波処置具であるハンドピース2a~2cが、超音波処置制御ユニットである制御ユニット15に接続可能である。超音波処置を行う際には、制御ユニット15にハンドピース2a~2cの中のある1つが接続される。制御ユニット15に接続されたハンドピース(2a~2cの中の1つ)では、超音波振動子(21a~21cの中の1つ)が供給制御部35に電気的に接続され、記憶部(36a~36cの中の1つ)が情報読取部38に電気的に接続されている。
 本変形例のそれぞれのハンドピース2a~2cでは、記憶部(36a~36cの中の1つ)に振動体ユニット(17a~17cの中の1つ)の製造番号が記憶されている。また、情報読取部38には、供給制御部35に超音波振動子(21a~21cの中の1つ)が接続されている振動体ユニット(17a~17cの中の1つ)の製造番号を検出する番号検出部51が、設けられている。例えば、ハンドピース2aが制御ユニット15に接続されている場合は、番号検出部51は振動体ユニット17aの製造番号を記憶部36aから検出する。
 一般に、振動体ユニット17a~17cの製造においては、振動体ユニット17a~17cごとの圧電素子22A~22Dの特性のバラツキ等により、全ての振動体ユニット17a~17cで振動特性を均一にすることは難しい。このため、製造番号ごとに振動体ユニット17a~17cの振動特性が異なる。例えば、初期状態(経過期間Pがゼロで、かつ、熱処理回数Nがゼロの状態)で振動体ユニット17a~17cの処置部18a~18cを目標振幅V0にする電流値Aである目標電流値Aa0~Ac0は、振動体ユニット17a~17cの製造番号ごとに異なる。
 算出部42は、検出された製造番号に対応させて、対応する処置部(18a~18cの中の1つ)での超音波振動の振幅Vと電流との関係への経過期間P及び熱処理回数Nの両方が与える影響を算出する。すなわち、検出された製造番号の振動体ユニット(17a~17cの1つ)に対応する振動特性に関するパラメータを用いて、経過期間P及び熱処理回数Nの両方に基づく対応する処置部(18a~18cの中の1つ)での超音波振動の振幅Vと電流との関係が、算出される。例えば、ハンドピース2aが制御ユニット15に接続されている場合は、振幅変化率δaは、 
Figure JPOXMLDOC01-appb-M000009
となる。そして、振幅変化率δaに基づいて、電流値設定部43が電流の電流値Aを、処置部18aの振幅Vを目標振幅V0にする適合電流値Aa0に設定する。一方、ハンドピース2bが制御ユニット15に接続されている場合は、振幅変化率δbは、 
Figure JPOXMLDOC01-appb-M000010
となる。そして、振幅変化率δbに基づいて、電流値設定部43が電流の電流値Aを、処置部18bの振幅Vを目標振幅V0にする適合電流値Ab0に設定する。ここで、Qa1,Qa2,Ra1,Ra2,Qb1,Qb2,Rb1,Rb2は、製造番号によって定まる定数である。
 前述のように本変形例では、制御ユニット15によって、複数の製造番号の振動体ユニット17a~17cのそれぞれについて、経過期間P及び熱処理回数Nに対応させて、対応する適合電流値(Aa0~Ac0の中の1つ)の電流を供給することが可能である。したがって、制御ユニット15によって、複数の製造番号の振動体ユニット17a~17cの処置部18a~18cのそれぞれにおいて、常時一定の目標振幅V0が維持される。
 また、第1の実施形態では、ジョー11と処置部18との間の把持対象を超音波振動によって凝固固切開するハンドピース2が、制御ユニット15に接続されるが、これに限るものではない。例えば、第2の変形例として図7に示すように、超音波吸引処置具55が制御ユニット15に接続されてもよい。超音波吸引処置具55には、ハンドピースと同様に、振動子ケース12、保持ユニット3及び振動体ユニット17が、設けられている。ただし、保持ユニット3には、筒状ケース部5のみが設けられ、固定ハンドル6、可動ハンドル7及び回転操作ノブ8は、設けられていない。また、振動体ユニット17は、超音波プローブ31、ホーン部材23及び超音波振動子21を備えるが、ジョー11は設けられていない。
 本変形例では、振動体ユニット17の内部に吸引通路56が長手軸Cに沿って延設されている。そして、吸引通路56には、吸引チューブ57の一端が接続されている。また、シース10とプローブ31との間の空洞には、送液チューブ58の一端が接続されている。超音波振動による処置を行う際には、超音波振動によって振動体ユニット17を振動させるとともに、送液チューブ58の内部及びプローブ31とシース10との間の空洞を通して、シース10の先端から送水を行う。これにより、プローブ31の先端面に設けられる処置部59の近傍でキャビテーションが発生し、生体組織等の処置対象が破砕される。そして、吸引通路56及び吸引チューブ57の内部を通して、破砕された処置対象を吸引する。この際、第1の実施形態と同様にして、処置部59での振幅Vを目標振幅V0にする。
 また、第3の変形例として図8に示すように、超音波切除処置具60が制御ユニット15に接続されてもよい。本変形例では、第2の変形例と同様に、ジョー11、固定ハンドル6、可動ハンドル7及び回転操作ノブ8は、設けられていない。本変形例では、プローブ31の先端部に、処置部であるフック状部61が設けられている。超音波振動による処置を行う際には、フック状部61に生体組織等の処置対象を引掛けた状態で、超音波振動によって振動体ユニット17を振動させる。これにより、引掛けた処置対象が切除される。この際、第1の実施形態と同様にして、フック状部(処置部)61での振幅Vを目標振幅V0にする。第2の変形例及び第3の変形例より、制御ユニット15に接続される処置具は、超音波振動を用いて処置を行う超音波処置具(2;55;60)であればよい。
 また、第1の実施形態では、制御ユニット15は、振動体ユニット17が処置に適した最適の振動を行う状態での処置部18の振幅を目標振幅V0としているが、これに限るものではない。例えば、制御ユニット15での計算及び電流制御において、振動体ユニット17が処置に適した最適の振動を行う状態での振動子装着部25の振幅を目標振幅(V0)としてもよい。この場合も、第1の実施形態と同様にして、振動体ユニット17の振動子装着部25が目標振幅(V0)となる状態に、超音波振動子21に供給される電流の制御が行われる。振動子装着部25が目標振幅(V0)で振幅することにより、処置部18での処置性能が確保される。したがって、振幅設定部41は、超音波振動によって振動体ユニット17が最適の振動を行う状態での振動体ユニット17のある一部の振幅を、目標振幅(V0)として設定すればよい。
 また、第1の実施形態では、振動子ケース12の内部に記憶部36が設けられているが、これに限るものではない。記憶部36は、保持ユニット3の内部に設けられてもよく、ケーブル13の内部に設けられてもよい。また、制御ユニット15に記憶部36が設けられてもよい。この場合、制御ユニット15の記憶部36から、情報読取部38は、振動体ユニット17の製造時からの経過期間P及び振動体ユニット17の熱処理回数N等の情報を読取る。
 また、第1の実施形態では、熱処理回数Nは、自動的に加算されるが、これに限るものではない。例えば、術者の操作によって熱処理回数Nが加算されてもよい。
 以上より、超音波処置システム(1)は、電流が供給されることにより超音波振動を発生する超音波発生部(21)と、発生した超音波振動を伝達する超音波伝達部(23,31)と、を備える振動体ユニット(17;17a~17c)と、超音波振動によって振動体ユニット(17;17a~17c)が最適の振動を行う状態での振幅を、目標振幅(V0)として設定する振幅設定部(41)と、振動体ユニット(17;17a~17c)の製造時からの経過期間(P)、及び、振動体ユニット(17;17a~17c)の滅菌の度に行われる熱処理回数(N)を記憶する記憶部(36;36a~36c)と、経過期間(P)及び熱処理回数(N)の両方に基づいて、超音波振動が発生した場合の振動体ユニット(17;17a~17c)の振幅(V)と超音波発生部(21)に供給される電流との関係を算出する算出部(42)と、算出部(42)で算出された振動体ユニット(17;17a~17c)の振幅(V)と電流との関係に基づいて、振動体ユニット(17;17a~17c)の振幅(V)を目標振幅(V0)にする適合電流値(A0;Aa0~Ac0)に、電流の電流値(A)を設定する電流値設定部(43)と、適合電流値(A0;Aa0~Ac0)で電流が供給される状態に、振動発生部(21)への電流の供給を制御する供給制御部(35)と、を備える。
 以上、本発明の実施形態等について説明したが、本発明は前述の実施形態等に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形ができることは勿論である。
 以下、特徴的事項を付記する。 
                記 
 (付記項1) 
 電流が供給されることにより超音波振動を発生する超音波発生部と、発生した前記超音波振動を伝達する超音波伝達部と、を備える振動体ユニットの前記超音波振動による振動状態を制御する超音波処置制御ユニットであって、 
 前記振動体ユニットの製造時からの経過期間、及び、前記振動体ユニットの滅菌処理の度に行われる熱処理回数を読取る情報読取部と、 
 前記超音波振動によって前記振動体ユニットが最適の振動を行う状態での振幅を、目標振幅として設定する振幅設定部と、 
 前記経過期間及び前記熱処理回数の両方に基づいて、前記超音波振動が発生した場合の前記振動体ユニットの前記振幅と前記超音波発生部に供給される前記電流との関係を算出する算出部と、 
 前記算出部で算出された前記振動体ユニットの前記振幅と前記電流との前記関係に基づいて、前記振動体ユニットの前記振幅を前記目標振幅にする適合電流値に前記超音波発生部に供給する前記電流を設定する電流値設定部と、 
 前記適合電流値で前記電流が供給される状態に、前記超音波発生部への前記電流の供給を制御する供給制御部と、 
 を具備する超音波処置制御ユニット。
 (付記項2) 
 請求項1の超音波処置制御ユニットと、 
 前記超音波発生部と、前記超音波伝達部と、を備える前記振動体ユニットと、 
 を具備する超音波処置システム。

Claims (9)

  1.  電流が供給されることにより超音波振動を発生する超音波発生部と、発生した前記超音波振動を伝達する超音波伝達部と、を備える振動体ユニットと、
     前記超音波振動によって前記振動体ユニットが最適の振動を行う状態での振幅を、目標振幅として設定する振幅設定部と、
     前記振動体ユニットの製造時からの経過期間、及び、前記振動体ユニットの滅菌処理の度に行われる熱処理回数を記憶する記憶部と、
     前記経過期間及び前記熱処理回数の両方に基づいて、前記超音波振動が発生した場合の前記振動体ユニットの前記振幅と前記超音波発生部に供給される前記電流との関係を算出する算出部と、
     前記算出部で算出された前記振動体ユニットの前記振幅と前記電流との前記関係に基づいて、前記振動体ユニットの前記振幅を前記目標振幅にする適合電流値に前記超音波発生部に供給する前記電流を設定する電流値設定部と、
     前記適合電流値で前記電流が供給される状態に、前記超音波発生部への前記電流の供給を制御する供給制御部と、
     を具備する超音波処置システム。
  2.  前記算出部は、前記経過期間及び前記熱処理回数の両方に対応させて、基準電流値の前記電流が供給された場合の前記振動体ユニットの前記振幅である仮振幅を算出するとともに、前記目標振幅に対する前記仮振幅の振幅変化率を算出し、
     前記電流値設定部は、前記振幅変化率に基づいて、前記電流の前記適合電流値を設定する、
     請求項1の超音波処置システム。
  3.  前記経過期間がゼロで、かつ、前記熱処理回数がゼロの状態を初期状態とした場合に、前記算出部は、前記初期状態での前記振動体ユニットの前記振幅を前記目標振幅にする前記電流の電流値を前記基準電流値として、前記仮振幅及び前記振幅変化率を算出する、請求項2の超音波処置システム。
  4.  前記算出部は、前記経過期間及び前記熱処理回数をパラメータとし、かつ、前記目標振幅より前記仮振幅が大きくなる関係式を用いて、前記仮振幅及び前記振幅変化率を算出し、
     前記電流値設定部は、前記振幅変化率に基づいて、前記基準電流値より小さい前記適合電流値に設定する、
     請求項3の超音波処置システム。
  5.  前記振動体ユニットは、互いに対して製造番号が異なる複数の振動体ユニットを備え、
     前記供給制御部は、前記複数の振動体ユニットの中のある1つの前記振動体ユニットの前記超音波発生部に電気的に接続され、
     前記超音波処置システムは、前記供給制御部に前記超音波発生部が接続される前記振動体ユニットの前記製造番号を検出する番号検出部を、さらに備え、
     前記算出部は、検出された前記製造番号に対応させて、前記経過期間及び前記熱処理回数の両方に基づく前記振動体ユニットでの前記超音波振動の前記振幅と前記電流との前記関係を算出する、
     請求項1の超音波処置システム。
  6.  前記記憶部は、基準となる基準日時を記憶し、
     前記超音波処置システムは、
     前記適合電流値への設定において、前記基準日時から所定の時間以上経過している場合に、前記熱処理回数を1回だけ加算する回数加算部と、
     前記供給制御部から前記電流が供給される日時、及び、前記熱処理回数が加算される日時において、前記基準日時を更新する日時更新部と、
     をさらに備える、
     請求項1の超音波処置システム。
  7.  前記記憶部は、前記供給制御部から前記超音波発生部への前記電流の供給回数を記憶し、
     前記回数加算部は、前記適合電流値への設定において、前記基準日時から所定の時間以上経過していないが、前記電流の前記供給回数が所定の回数を超えている場合に、前記熱処理回数を1回だけ加算し、
     前記超音波処置システムは、前記熱処理回数が加算された場合に、前記電流の前記供給回数をゼロにリセットする回数リセット部を、さらに備える、
     請求項6の超音波処置システム。
  8.  前記算出部は、前記適合電流値への設定において前記熱処理回数が加算された場合に、加算された前記熱処理回数を用いて、前記経過期間及び前記熱処理回数の両方に基づく前記振動体ユニットでの前記超音波振動の前記振幅と前記電流との前記関係を算出する、請求項7の超音波処置システム。
  9.  前記振動体ユニットは、長手軸に沿って延設され、
     前記超音波発生部は、前記振動体ユニットの基端部に設けられ、
     前記振動体ユニットは、先端部に処置部を備え、
     前記超音波伝達部は、基端方向から先端方向へ前記長手軸に沿って前記超音波振動を伝達する、
     請求項1の超音波処置システム。
PCT/JP2014/062141 2013-05-02 2014-05-02 超音波処置システム WO2014178436A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14791658.9A EP2992847B1 (en) 2013-05-02 2014-05-02 Ultrasonic treatment system
JP2014546225A JP5678242B1 (ja) 2013-05-02 2014-05-02 超音波処置システム
CN201480003911.8A CN104883992B (zh) 2013-05-02 2014-05-02 超声波处置系统
US14/674,009 US9439671B2 (en) 2013-05-02 2015-03-31 Ultrasonic treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361818657P 2013-05-02 2013-05-02
US61/818,657 2013-05-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/674,009 Continuation US9439671B2 (en) 2013-05-02 2015-03-31 Ultrasonic treatment system

Publications (1)

Publication Number Publication Date
WO2014178436A1 true WO2014178436A1 (ja) 2014-11-06

Family

ID=51843560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062141 WO2014178436A1 (ja) 2013-05-02 2014-05-02 超音波処置システム

Country Status (5)

Country Link
US (1) US9439671B2 (ja)
EP (1) EP2992847B1 (ja)
JP (1) JP5678242B1 (ja)
CN (1) CN104883992B (ja)
WO (1) WO2014178436A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3048807A1 (en) * 2015-01-21 2016-07-27 Covidien LP Ultrasonic surgical instruments and methods of compensating for transducer aging
WO2017003850A1 (en) * 2015-06-30 2017-01-05 Ethicon Endo-Surgery, Llc Surgical instrument with user adaptable algorithms
US10603065B2 (en) 2016-02-18 2020-03-31 Covidien Lp Surgical instruments and jaw members thereof

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
EP3162309B1 (en) 2004-10-08 2022-10-26 Ethicon LLC Ultrasonic surgical instrument
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
EP2796102B1 (en) 2007-10-05 2018-03-14 Ethicon LLC Ergonomic surgical instruments
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9050093B2 (en) 2009-10-09 2015-06-09 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
JP6165780B2 (ja) 2012-02-10 2017-07-19 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. ロボット制御式の手術器具
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9492224B2 (en) 2012-09-28 2016-11-15 EthiconEndo-Surgery, LLC Multi-function bi-polar forceps
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10842523B2 (en) 2016-01-15 2020-11-24 Ethicon Llc Modular battery powered handheld surgical instrument and methods therefor
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10828056B2 (en) 2016-08-25 2020-11-10 Ethicon Llc Ultrasonic transducer to waveguide acoustic coupling, connections, and configurations
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US20210196359A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instruments with electrodes having energy focusing features
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US20210196358A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with electrodes biasing support

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749426A (en) * 1980-09-10 1982-03-23 Olympus Optical Co Endoscope
JPH0549647A (ja) 1991-08-23 1993-03-02 Olympus Optical Co Ltd 超音波手術装置
JPH1156746A (ja) * 1997-08-21 1999-03-02 Olympus Optical Co Ltd 内視鏡装置
JP2003038423A (ja) * 2001-07-26 2003-02-12 Olympus Optical Co Ltd 医療機器
JP2007244403A (ja) * 2006-03-13 2007-09-27 Pentax Corp オートクレーブ滅菌回数を把握可能な内視鏡
JP2011036655A (ja) * 2009-08-10 2011-02-24 Tyco Healthcare Group Lp 動力式外科用器具の再処理を防止するシステムおよび方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9089360B2 (en) * 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US20110062824A1 (en) * 2009-09-15 2011-03-17 Fujifilm Corporation Ultrasonic transducer, ultrasonic probe and producing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749426A (en) * 1980-09-10 1982-03-23 Olympus Optical Co Endoscope
JPH0549647A (ja) 1991-08-23 1993-03-02 Olympus Optical Co Ltd 超音波手術装置
JPH1156746A (ja) * 1997-08-21 1999-03-02 Olympus Optical Co Ltd 内視鏡装置
JP2003038423A (ja) * 2001-07-26 2003-02-12 Olympus Optical Co Ltd 医療機器
JP2007244403A (ja) * 2006-03-13 2007-09-27 Pentax Corp オートクレーブ滅菌回数を把握可能な内視鏡
JP2011036655A (ja) * 2009-08-10 2011-02-24 Tyco Healthcare Group Lp 動力式外科用器具の再処理を防止するシステムおよび方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2992847A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3048807A1 (en) * 2015-01-21 2016-07-27 Covidien LP Ultrasonic surgical instruments and methods of compensating for transducer aging
US9943326B2 (en) 2015-01-21 2018-04-17 Covidien Lp Ultrasonic surgical instruments and methods of compensating for transducer aging
WO2017003850A1 (en) * 2015-06-30 2017-01-05 Ethicon Endo-Surgery, Llc Surgical instrument with user adaptable algorithms
EP3590448A1 (en) * 2015-06-30 2020-01-08 Ethicon LLC Surgical instrument with user adaptable algorithms
US10603065B2 (en) 2016-02-18 2020-03-31 Covidien Lp Surgical instruments and jaw members thereof
US11571237B2 (en) 2016-02-18 2023-02-07 Covidien Lp Surgical instruments and jaw members thereof

Also Published As

Publication number Publication date
EP2992847A1 (en) 2016-03-09
EP2992847A4 (en) 2016-12-21
JPWO2014178436A1 (ja) 2017-02-23
US9439671B2 (en) 2016-09-13
EP2992847B1 (en) 2017-08-30
US20150201960A1 (en) 2015-07-23
CN104883992B (zh) 2017-02-22
JP5678242B1 (ja) 2015-02-25
CN104883992A (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5678242B1 (ja) 超音波処置システム
JP5905178B1 (ja) 骨を処置するための、超音波システム、エネルギー源ユニット、及び、エネルギー源ユニットの作動方法
US9445833B2 (en) Ultrasonic probe and ultrasonic treatment apparatus
JP6271512B2 (ja) 組織密度感知を備える外科用器具
US9693793B2 (en) Ultrasonic probe and ultrasonic treatment instrument
JP4253605B2 (ja) 超音波処置具
EP3069676B1 (en) Vibration generation unit, vibrating body unit, and ultrasonic treatment device
JP5974183B2 (ja) 超音波プローブ及び超音波処置装置
JP5855799B2 (ja) 検査プローブ、振動状態検査システム及び振動状態の検査方法
US10045815B2 (en) Energy treatment device and energy control device
CN107205764B (zh) 振动体单元以及超声波探头
JP6072394B1 (ja) エネルギー処置システム及びエネルギー制御装置
JP6109433B2 (ja) 振動伝達ユニット及び超音波処置具
JP3989121B2 (ja) 手術具
EP3205300A1 (en) Vibration-generating unit, vibrating body unit, and ultrasonic treatment tool
WO2016047241A1 (ja) 振動発生ユニット、振動体ユニット及び超音波処置具
JP5932192B1 (ja) 超音波処置具
WO2018087841A1 (ja) 振動伝達部材及び超音波処置具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014546225

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014791658

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014791658

Country of ref document: EP