WO2014177903A1 - Procedimiento de biolixiviacion y estracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuros - Google Patents

Procedimiento de biolixiviacion y estracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuros Download PDF

Info

Publication number
WO2014177903A1
WO2014177903A1 PCT/IB2013/002418 IB2013002418W WO2014177903A1 WO 2014177903 A1 WO2014177903 A1 WO 2014177903A1 IB 2013002418 W IB2013002418 W IB 2013002418W WO 2014177903 A1 WO2014177903 A1 WO 2014177903A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
copper
stage
bioleaching
solvent extraction
Prior art date
Application number
PCT/IB2013/002418
Other languages
English (en)
French (fr)
Inventor
Belisario SANCHEZ-VAZQUEZ
Francisco ESTRADA-DE LOS SANTOS
Alfonso LOPEZ-JUAREZ
Eric David Buendia-Cachu
Ulises MONTER-VALENZUELA
Original Assignee
Servicios Condumex S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Servicios Condumex S.A. De C.V. filed Critical Servicios Condumex S.A. De C.V.
Priority to US14/787,805 priority Critical patent/US10280481B2/en
Priority to AU2013388340A priority patent/AU2013388340B2/en
Priority to BR112015027356-4A priority patent/BR112015027356B1/pt
Priority to CA2910768A priority patent/CA2910768C/en
Publication of WO2014177903A1 publication Critical patent/WO2014177903A1/es
Priority to ZA2015/08360A priority patent/ZA201508360B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B15/00Other processes for the manufacture of iron from iron compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • C22B15/0071Leaching or slurrying with acids or salts thereof containing sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • C22B19/22Obtaining zinc otherwise than by distilling with leaching with acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention is related to the processing of sulphide-based minerals and concentrates, as well as to the extraction of metals through the use of moderate or extreme thermophilic microorganisms within the Extractive Industries, and more particularly is related to a bioleaching and extraction process by solvents with selective recovery of copper and zinc from polymetallic sulphide concentrates.
  • Copper is traditionally obtained from the smelting of mineral concentrates in furnaces, with the purpose of producing "Blister” copper with 98.5% purity, which is subsequently emptied to anodes and finally electro-refined, to achieve Obtain high purity cathode copper (99.999%).
  • the current process of obtaining zinc is traditionally carried out by a roasting system of zinc concentrates in a fluidized bed furnace with the purpose of oxidizing the mineral, generating a calcine, which is subsequently treated by a hydrometallurgical process, where zinc is Recovers in a solution that is refined and purified, in a final stage the metal in solution is electro-deposited in aluminum cathodes, zinc is obtained in metal sheets, and melted for presentation in zinc bars with a high degree of purity (SGH).
  • SGH degree of purity
  • One of the processes for treating copper or zinc sulphide-based concentrates utilizes continuous flow agitated tank type reactors with aeration systems, which are placed in series, where the finely ground concentrate or mineral (metal sulphide) is added to the first reactor together. with inorganic nutrients.
  • the mineral pulp flows through the reactors at controlled pH and temperature, and contains microorganisms that carry out the dissolution of the mineral species present in the concentrate; In this case it is carried out through the use of iron-oxidizing and thio-oxidant acidophilic microorganisms, which live at temperatures in the range of 25 ° C to 90 ° C and are capable of tolerating high levels of acidity and dissolved metal ions.
  • microorganisms used have a temperature dependence for their growth, processes have been developed by type and operating temperature.
  • the microorganisms that have been widely used in bioleaching processes are mesophilic bacteria such as Acidithiobacillusferrooxidans, Acidithiobacillusthiooxidans, and Leptospriliumferrooxidans at temperatures close to 40 ° C.
  • Thermophilic bacteria of the Sulfolobus type, and archaea such as Sulfolobusspp have been used due to their potential to increase the kinetics of metal extraction from mineral sulphides at temperatures above 50 ° C. Exhausted minerals from this bioleaching stage are separated and sent to confinement. During the bioleaching stage, copper and zinc are obtained in ionic form in sulfate medium.
  • Another object of the present invention is to provide a solvent bioleaching and solvent extraction process with selective recovery of copper and zinc from polymetallic sulphide concentrates, which makes its operation more efficient, by consuming less oxygen during the bioleaching process.
  • a further object of the present invention is to provide a solvent bioleaching and solvent extraction process with selective recovery of copper and zinc from polymetallic sulphide concentrates, which allows bioreactors to be used for bioleaching of the stirred tank type with a system for injection and diffusion of air, which allows to control the fine size of the air bubble, improving the distribution of oxygen and carbon dioxide that are required by the microorganisms that promote the bioleaching process, in order to maintain the cell concentration during the process.
  • the present invention relates to a method for obtaining metallic zinc (Zn) and copper (Cu), from complex sulfide-based minerals and / or concentrates (polymetallic, mixed) with the presence of iron (Fe) and arsenic (As), using an integrated bioleaching process (as a stage of mineral dissolution); and, solvent extraction with selective recovery (purification and electro-deposit of copper-zinc); In addition to including a stage of arsenic control.
  • the copper and zinc solvent extraction process consists of the following stages:
  • FIG. 1 is a block diagram of the bioleaching and solvent extraction process with selective recovery of copper and zinc from polymetallic sulphide concentrates, in accordance with the principles of a preferred embodiment of the present invention.
  • Figure 2 is a block diagram of the process of bioleaching and reduction of ferric ion, which is carried out as a first stage of the procedure shown in Figure 1.
  • FIG 3 is a block diagram of the copper and zinc solvent extraction process, which is carried out as a second stage of the process shown in Figure 1.
  • Figure 4 is a block diagram of the process of solvent extraction and copper electrolysis, which is carried out as a first stage of the process shown in Figure 3.
  • Figure 6 is a block diagram of the solvent extraction and zinc electrolysis process, which is carried out as a final stage of the procedure shown in Figure 3.
  • Figure 7 is a graph showing the evolution of scorcorite formation from the arsenopyrite oxidation of the polymetallic concentrate.
  • Figure 8 is a graph showing the recovery of copper in the extraction stage as a function of pH.
  • FIG. 1 shows a bioleaching and solvent extraction process with selective recovery of copper and zinc from polymetallic sulphide concentrates, which it is carried out in accordance with a particularly preferred embodiment of the invention, which should be considered as illustrative but not limited thereto, wherein a pulp of polymetallic mineral sulphide concentrates is subjected to a process comprising a bioleaching and reduction process 100 of ferric ion, followed by a solvent extraction process 200 of copper (Cu) and zinc (Zn).
  • a pulp of polymetallic mineral sulphide concentrates is subjected to a process comprising a bioleaching and reduction process 100 of ferric ion, followed by a solvent extraction process 200 of copper (Cu) and zinc (Zn).
  • the solvent extraction stage 200 comprises a stage 201 of solvent extraction and copper electrolysis, to which the solution from the stage 104 of ion reduction is fed as raw material ferric to extract copper; a step 202 of arsenic control, wherein the solution to which the copper has been extracted and which comes from the step 201 of solvent extraction and copper electrolysis, the arsenic is controlled; and, a stage 203 solvent extraction and zinc electrolysis, where the solution to which arsenic has been controlled and which comes from step 202, zinc is extracted.
  • the stage 101 for conditioning a pulp of concentrates consists in sending a stream of a polymetallic concentrate (partially attacked) from a stage 104 of ferric ion reduction, a stream of mine water (to a repulping tank) for mixing.
  • AM a stream of fresh solids of polymetallic sulphides (CSP) from the solids store and a stream of an aqueous solution depleted of zinc from step 2032 of washing / conditioning said aqueous depleted solution of zinc, a step that we will describe further ahead.
  • sulfuric acid is added to adjust the pH in a range of 1.4 to 1.8 prior to being sent to the bioleaching stage 02.
  • the pulp is sent to the bioleaching stage 102, where the pulp is fed to a plurality of bioreactors of the stirred tank type that have a system for injection and diffusion of air as described in the Mexican Patent Application MX / a / 201 1/011147 of the same holder of the present invention, which allows the bioleaching process to reach a pulp density in solids greater than 15%, as well as a high distribution efficiency of air, in addition to the water that evaporates during the process, is recovered through the condenser system that has the bioreactor.
  • the discharge of the bioleaching stage 102 is a pulp composed of a solution rich in metal ions (in particular ferric ion, Cu and Zn) and depleted minerals that is ready to be subjected to step 103 of solids separation.
  • metal ions in particular ferric ion, Cu and Zn
  • a plurality of bioreactors consisting of five agitated bioreactors of equal capacity and cylindrical shape, with a 1.5: 1 height / diameter ratio, are used to perform bioleaching, in an arrangement 2 -1-1-1 (two bioreactors in parallel and three serial bioreactors), where the flow of solution between each reactor is carried out by gravity.
  • Each bioreactor is equipped with a cooling / heating system, mechanical agitation, control of operating parameters, air supply, operating at atmospheric pressure, as well as feeding ports that allow the addition of nutrients, water, gases and acid.
  • the bioreactor bioreactor process is carried out by means of a set of simultaneous mechanisms according to the following:
  • Bioleaching A mineral dissolution is carried out by microorganisms, in this case it is carried out through the use of thermophilic microorganisms, which live in temperatures of 50 ° C to 90 ° C, and are capable of tolerating high levels of acidity, The process takes place in a residence time of 10 days.
  • Ferric leaching It is carried out by the oxidation of sulphide-based minerals in the presence of ferric ion.
  • Galvanic interactions It is carried out by the difference of oxidation potentials between the sulphide-based mineral species present in the concentrate, which form galvanic pairs favoring the dissolution of the most reactive mineral species.
  • this consists in subjecting the pulp from the bioleaching stage 102, composed of a solution rich in metal ions (in particular ferric ion, Cu and Zn) and depleted minerals, to a filtration operation preferably in a plate filter, where two products are obtained: a mixture of depleted minerals that are sent to confinement; and, an intermediate and clarified solution rich in ferric ion, which is sent to step 104 of reduction of ferric ion.
  • metal ions in particular ferric ion, Cu and Zn
  • step 104 of ferric ion reduction it is required to have a first stream with the intermediate solution with high content of the ferric ion and which also has a high acidity (pH ⁇ 1.5), which is sent to a reactor conventional at atmospheric pressure, where a second stream is added that includes a concentrate of polymetallic sulphides (CSP) with a particle size smaller than 20pm from the solids store to achieve the desired conditions.
  • CSP polymetallic sulphides
  • Stage 104 of ferric ion reduction has a temperature control (between 60 ° C and 80 ° C) and acidity monitoring (pH), in addition to monitoring the transformation of ferric ions to ferrous ions by analytical methods .
  • the reactor discharge is sent to a filtration stage preferably in a plate filter, in order to separate the unreacted solids from the resulting solution. Unreacted solids are sent to the repulping tank of stage 101 prior to the bioleaching stage.
  • the solution obtained from the filter is rich in copper and zinc, in addition to having a low ferric ion content, so once it is obtained it is sent to step 201 of solvent extraction and copper electrolysis of process 200 of Solvent extraction of copper and zinc.
  • the step 201 of solvent extraction and copper electrolysis consists in feeding the solution rich in copper and zinc from the stage 104 of reduction of ferric ion once clarified, to a stage 20 1 of storage in a storage tank of rich solution in copper and zinc, to be subsequently sent by pumping to a 2012 stage of copper extraction in a mixing / settling tank of copper extraction, consisting of two stages in series and against current operating at atmospheric pressure and temperature.
  • the solution that enters the copper extraction tank is brought into contact with an organic compound to extract the copper.
  • organic extractants phenolic oximes (aldoximes), which are commercially available, mixed in organic diluent (kerosene) are preferably used.
  • the stream of copper-loaded organic solution leaving the extraction equipment in the 2012 stage is sent to a 2014 organic washing stage in an organic compound washing equipment; and, the stream of aqueous solution rich in zinc and arsenic that also leaves the extraction equipment, is sent to a 2013 stage of aqueous washing in a mixing / settling equipment to remove the organic trawlers, prior to being sent to the arsenic control step 202 (As).
  • the organic copper discharge stream is recirculated back to the 2012 solvent extraction stage to start the copper charging cycle again.
  • the stream of aqueous solution rich in zinc and arsenic leaving the 2012 stage of copper extraction, once the aqueous one has been washed in the 2013 stage to remove the organic entrainment from the process of Solvent extraction of copper is sent to stage 202 of arsenic control, which consists of feeding the aqueous solution rich in zinc and arsenic to a stage 2021 of conditioning and precipitation of arsenic, which is carried out in a tank pH and precipitation conditioner, where arsenic control is performed through precipitation and co-precipitation, by contacting the aqueous solution rich in zinc and arsenic with a pH modifying agent to generate ferric compounds (FeAs0 4 . 2H 2 0) rich in arsenic.
  • arsenic control which consists of feeding the aqueous solution rich in zinc and arsenic to a stage 2021 of conditioning and precipitation of arsenic, which is carried out in a tank pH and precipitation conditioner, where arsenic control is
  • the pH modifying agent used can be selected from ammonium hydroxide, sodium hydroxide, calcium hydroxide, magnesium hydroxide, preferably using ammonium hydroxide.
  • the pulp obtained in the conditioning and precipitation tank is sent to a filtration stage 2022 in a press filter for the separation of arsenic.
  • Part of the recovered solids is returned to the arsenic precipitation and conditioning tank, so that they act as an initiator in its precipitation.
  • the rest of the paste with a high arsenic content is sent to final disposal.
  • the arsenic-free zinc-rich solution that is recovered in the filter press it is sent to a storage stage 2023 in a liquor storage tank with a high zinc content.
  • the solution from the arsenic control step 202 once clarified in the zinc rich solution storage tank is pumped to a stage 203 for solvent extraction and zinc electrolysis.
  • the solvent extraction and zinc electrolysis step 203 consists in sending the zinc-rich solution to a zinc extraction stage 2031 in which a plurality of mixing / settling tanks are preferably used for zinc extraction, where it is placed in contact with the counter current the solution rich in zinc with a zinc extraction solution.
  • the plurality of mixing / settling tanks for zinc extraction in a preferred embodiment consists of an array of tanks of up to five stages, which, as already mentioned, bring the zinc-rich solution into contact with a solution against the current.
  • phosphonic acid compounds are used as the extracting solution, preferably 2,4,4 trimethylpentyl phosphinic acid dissolved in kerosene with a concentration of 10% to 50% volume.
  • the use of the phosphinic acid dissolved in kerosene for the recovery of zinc is what allows the use of a single acid (H 2 S0 4 ) to carry out a selective stripping of the metal of interest (zinc) and subsequently the co-extraction of the impurities (iron), using a single adjustment in the concentration of said acid.
  • the zinc-laden organic stream from the arrangement of mixing / settling tanks of step 2031 is sent to an organic washing stage 2033 where aqueous solution trawls are removed using an acidified aqueous solution (H 2 S0 4 ) with a pH between 2 and 3, using up to two mixing / settling tanks similar to those of the previous stage and prior to being subjected to a stage 2034 of selective zinc stripping, followed by a stage 2035 of selective iron stripping.
  • H 2 S0 4 acidified aqueous solution
  • the organic solution already stripped of zinc and now rich in iron from stage 2034 is sent to a 2035 stage of iron stripping, in a mixer / sedimentation tank similar to the previous ones, where the Fe (III iron) is extracted ) co-extracted in the organic by contacting countercurrent with a solution of sulfuric acid that has an acidity> 200 g / L.
  • the discharged organic flows into a neutralization stage 2036 in a neutralization tank, prior to being sent countercurrent to step 2031 of zinc solvent extraction for start the charge cycle with zinc again.
  • the operating conditions of the solvent extraction procedure are room temperature and atmospheric pressure.
  • Test 1 Management of suspended solids concentration (pulp of polymetallic sulphide concentrates rich in Cu and Zn) of at least 15% in the process, preferably greater than 20%.
  • Table I shows the evolution in zinc dissolution during the processing of a zinc concentrate enriched with 20% solids Pyrite:
  • Table II shows the concentration of Zn and Cu as the stages in the cascade arrangement of five bioleaching bioreactors evolve using a 2-1-1-1 arrangement, operating with 27.5% solids and with 12 days of residence .
  • Test 2 Ability to bio-concentrate concentrates with high arsenic contents in the form of sulphides.
  • Figure 7 shows the evolution in the generation of Scorodite (FeAs0 4 .2H 2 0), during the bioleaching process and which allows to produce a stable arsenic compound for final disposal.
  • Test results by modifying the flow of the air / water mixture without oxygen enrichment and monitoring of dissolved oxygen at a temperature of 70 ° C and a fixed stirring speed of 300 rpm with a single impeller.
  • Test 8 Proton consumption of the intermediate solution during the Cu extraction stage (maximum Cu load).
  • Table VIII shows the increase in the maximum charge of the extractant as a function of the increase in pH, decrease in the concentration of protons.
  • Figure 8 shows the increase in efficiency in Cu extraction as a function of pH.
  • Test 9 shows the selective stripping of Zn first and Fe (lll) later, during the zinc recovery stage, with different concentrations of acid (pH) in the aqueous solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

Se describe un procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, que comprende un proceso de biolixiviación y reducción de ion férrico y un proceso de extracción por disolventes de cobre y zinc. El proceso de biolixiviación y reducción de ion férrico comprende una etapa de acondicionamiento de una pulpa de concentrados; una etapa de biolixiviación, en donde la pulpa un vez acondicionada se somete a un proceso de biolixiviación empleando una pluralidad de biorreactores del tipo de tanque agitado con un sistema para inyección y difusión de aire, lo que permite manejar una densidad de pulpa mayor al 15 %; una etapa de separación de sólidos de una solución rica en iones metálicos proveniente de la etapa de biolixiviación; y, una etapa de reducción de ion férrico, en donde la pulpa proveniente de la etapa previa se somete a un etapa de transformación de los iones férricos a iones ferrosos. La etapa de extracción por disolventes comprende una etapa de extracción por disolventes y electrólisis de cobre; una etapa de control de arsénico, en donde a la solución una vez que se le ha extraído el cobre, se le controla el arsénico; y, una etapa de extracción por disolventes y electrólisis de zinc, que emplea una disolución extractora de zinc a base de ácidos fosfínicos.

Description

PROCEDIMIENTO DE BIOLIXIVIACION Y EXTRACCIÓN POR DISOLVENTES CON RECUPERACIÓN SELECTIVA DE COBRE Y ZINC A PARTIR DE CONCENTRADOS
POLIMETÁLICOS DE SULFUROS.
CAMPO DE LA INVENCION
La presente invención está relacionada con el procesamiento de minerales y concentrados base sulfuro, así como con la extracción de metales mediante el uso de microorganismos termófilos moderados o extremos dentro de las Industrias Extractivas, y más particularmente está relacionada con un procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras.
ANTECEDENTES DE LA INVENCION
La producción actual de concentrados de zinc y cobre, de alto grado y valor comercial presenta dificultades técnicas, debido a que durante la explotación de los yacimientos minerales, se han encontrado zonas de baja ley de los metales con valor comercial, y que por la complejidad mineral en el yacimiento, no hacen costeable la obtención de concentrados por flotación en plantas de beneficio. La presencia de impurezas de arsénico y antimonio, hacen que el concentrado comercial (cobre, zinc) tenga un castigo económico, reduciendo su valor comercial.
La obtención de cobre se realiza tradicionalmente a partir de la fundición de concentrados de minerales en hornos, con la finalidad de producir cobre "Blister" con un 98.5% de pureza, que posteriormente es vaciado a ánodos y finalmente es electro- refinado, para lograr obtener cobre catódico de alta pureza (99.999%).
Así también se realiza la extracción de cobre por procesos hidrometalúrgicos como es la lixiviación en montones o camas de minerales de baja ley a base de óxidos o sulfuras secundarios no susceptibles a flotación, y la purificación mediante extracción por disolventes, siendo en la actualidad preferida por su bajo costo y efectos ambientales menos adversos.
El actual proceso de obtención de zinc se realiza tradicionalmente por un sistema de tostación de concentrados de zinc en un horno de lecho fluidizado con la finalidad de oxidar el mineral, generando una calcina, que es posteriormente tratada por un proceso hidrometalúrgico, donde el zinc se recupera en una solución que es refinada y purificada, en una última etapa el metal en solución es electro-depositado en cátodos de aluminio, el zinc es obtenido en láminas metálicas, y fundido para su presentación en barras de zinc con un alto grado de pureza (SGH). Este proceso presenta dificultades para procesar concentrados con impurezas tales como hierro, arsénico, antimonio, entre otros.
La utilización de microorganismos tio-oxidantes y/o hierro-oxidantes en el proceso de disolución de minerales y concentrados base sulfuro de cobre o zinc, se conoce como biolixiviación y ha sido utilizado como alternativa para la extracción de metales base. Se han tratado minerales y/o concentrados base sulfuro de cobre, zinc, níquel, cobalto, en procesos como lixiviación en montones (Heapleaching) o lixiviación continua en tanques agitados.
Uno de los procesos para tratar concentrados base sulfuro de cobre o zinc utiliza reactores de tipo tanque agitado de flujo continuo con sistemas de aireación, que son colocados en serie, donde el concentrado o mineral (sulfuro metálico) finamente molido se añade al primer reactor junto con nutrientes inorgánicos. La pulpa mineral fluye a través de los reactores a pH y temperatura controlados, y contiene microorganismos que llevan a cabo la disolución de las especies minerales presentes en el concentrado; en este caso se realiza mediante el uso de microorganismos acidófilos hierro-oxidantes y tio-oxidantes, que viven a temperaturas en el intervalo de 25°C a 90°C y son capaces de tolerar altos niveles de acidez y iones metálicos disueltos. Uno de los mayores retos durante la operación de los tanques agitados es la coexistencia entre la cantidad de sólidos (densidad de pulpa) mantenida en suspensión y la presencia de microorganismos. Los procesos desarrollados en la actualidad están limitados a no más de un 15% en densidad de pulpa debido a que se presentan problemas por daño físico a los microorganismos, inhibiendo la disolución.
Debido a que los microorganismos utilizados presentan una dependencia de la temperatura para su crecimiento, se han desarrollado procesos por tipo y temperatura de operación. Los microorganismos que han sido ampliamente utilizados en procesos de biolixiviación son bacterias mesófilas como Acidithiobacillusferrooxidans, Acidithiobacillusthiooxidans, y Leptospriliumferrooxidans en temperaturas cercanas a los 40°C. Bacterias termofilas de tipo Sulfolobus, y arqueas como Sulfolobusspp han sido utilizadas debido a su potencial para incrementar la cinética de extracción de metales a partir de sulfuras minerales a temperaturas superiores a los 50°C. Los minerales agotados de esta etapa de biolixiviación son separados y enviados a confinamiento. Durante la etapa de biolixiviación, el cobre y el zinc se obtienen en forma iónica en medio sulfato.
Obtenida la solución rica en cobre y/o zinc es necesario realizar la separación, concentración, purificación y recuperación de estos metales en solución, para lo cual se involucra el uso de extractantes orgánicos inmiscibles al agua, disueltos en disolventes orgánicos (fase orgánica). La solución acuosa con los metales obtenidos, se pone en contacto con extractantes específicos como son Aldoximas, Ketoximas y ácidos fosfínicos, y mediante la reacción química de intercambio o transferencia entre el protón y el catión metálico, permite separar el catión de interés económico, siendo transferido a la fase orgánica. Para concentrar al ion metálico de interés y regenerar la fase orgánica para su reutilización, se utiliza un medio ácido, produciendo una solución metálica concentrada que es enviada a electrólisis para obtener el metal afinado. Dentro de las patentes que se han desarrollado para el tratamiento de concentrados base sulfuro de metales de cobre o zinc se tiene, por ejemplo, la solicitud de patente WOOO/23629 A1 , donde se presenta un método para biolixiviar concentrados de cobre, donde se somete un mineral de cobre involucrando microorganismos oxidantes del hierro/azufre para obtener una solución que contiene cobre, dicha solución se pone en contacto con una mezcla de un extractante y un solvente orgánico comerciales para extraer parcialmente el cobre de la solución. En contacto con la fase orgánica en la etapa de extracción por disolventes, el cobre es concentrado. Una vez obtenida una solución concentrada y purificada es procesada en una etapa de electrólisis.
De acuerdo con la solicitud de patente WO01/18266 A1 se presenta un método para la recuperación de zinc, mediante un sistema integrado de biolixiviación y extracción por disolventes, que se plantea como una alternativa al tratamiento de zinc. Se obtiene principalmente zinc metálico y subproductos como cobre, y yeso que pueden ser comercializados y/o que pueden ser confinados de acuerdo a la legislación ambiental vigente.
En la patente W09428184 A1 se propone la recuperación de zinc, mediante un proceso combinado de biolixiviación de concentrados de zinc y extracción por disolventes, donde se utiliza como extractante orgánico Dietil-hexil ácido fosfórico (D2EHPA) y lonquest 801 como diluyente para recuperar de manera específica el zinc de soluciones de sulfato.
Como se puede observar, en el estado actual del arte se encuentra descrito el uso de procedimientos combinados de biolixiviación y extracción con disolventes para la recuperación selectiva de cobre o zinc; sin embargo, los procedimientos descritos en el arte previo, tienen el inconveniente de que no se pueden emplear con densidades de pulpa superiores al 15%, que tengan un alto contenido de arsénico y hierro, además de que consumen demasiado oxígeno durante el proceso de biolixiviación. Por ello, se ha buscado suprimir los inconvenientes encontrados en el estado de la técnica mediante el desarrollo de un procedimiento de biolixiviacion y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, que permita el manejo de densidades de pulpa superiores al 15%, con un alto contenido de hierro y arsénico y que tengan una operación más eficiente al consumir menos oxígeno durante la biolixiviacion.
OBJETOS DE LA INVENCION
Teniendo en cuenta las limitaciones de la técnica anterior, es un objeto de la presente invención proveer un procedimiento de biolixiviacion y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, que permita el manejo de densidades de pulpa superiores al 15% con un alto contenido de hierro y arsénico.
Otro objeto de la presente invención es proveer un procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, que permita hacer más eficiente su operación, al consumir menos oxígeno durante el proceso de biolixiviación.
Un objeto adicional de la presente invención es proveer un procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, que permita emplear biorreactores para biolixiviación del tipo de tanque agitado con un sistema para inyección y difusión de aire, lo que permite controlar el tamaño fino de la burbuja de aire, mejorando la distribución del oxigeno y del dióxido de carbono que son requeridos por los microorganismos que promueven el proceso de biolixiviación, a fin de mantener la concentración celular durante el proceso.
Es un objeto más de la presente invención proveer un procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuros, que permita emplear biorreactores para biolixiviacion del tipo de tanque agitado con un sistema para inyección y difusión de aire, lo que permite realizar el proceso en continuo y con ello alcanzar una recuperación alta de metales en solución.
Es un objeto adicional de la presente invención proveer un procedimiento de biolixiviacion y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuros, que permita emplear un extractante de naturaleza orgánica, para la utilización de una sola matriz acida durante el despojo selectivo del zinc.
BREVE DESCRIPCIÓN DE LA INVENCION
La presente invención se relaciona con un método para obtener zinc (Zn) y cobre (Cu) metálicos, a partir de minerales y/o concentrados complejos base sulfuro (polimetálicos, mixtos) con presencia de hierro (Fe) y arsénico (As), empleando un proceso integrado de biolixiviacion (como etapa de disolución de mineral); y, la extracción por disolventes con recuperación selectiva (purificación y electro-depósito de cobre-zinc); además de incluir una etapa de control de arsénico.
La invención se relaciona con:
• La recuperación de cobre y zinc metálicos a partir de concentrados de sulfuros minerales polimetálicos en un proceso continuo e integral de biolixiviacion y extracción por disolventes.
• El uso de un proceso de biolixiviacion mediante biorreactores de alta eficiencia en la distribución de aire, que funciona en un intervalo de temperatura de 25°C a 90°C. El arreglo de los reactores puede ser en serie, paralelo o combinaciones paralelo-serie, lo que permite tener un diseño versátil con la finalidad de mantener la operación en continuo. El proceso permite procesar densidades de pulpa superiores a 15% de sólidos. • Un proceso de extracción por disolventes en dos etapas para la recuperación selectiva de cobre y zinc de una solución de alta concentración de zinc y concentración media de cobre y posterior electro-deposición en forma metálica.
• Una etapa de control de arsénico en solución, mediante la formación de compuestos estables para disposición final.
El procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de la presente invención, comprende en términos generales dos procesos principales: un proceso de biolixiviación y reducción de ion férrico y un proceso de extracción por disolventes de cobre y zinc.
El proceso de biolixiviación y reducción de ion férrico consiste de las siguientes etapas:
a) .- Acondicionamiento de la pulpa de alimentación;
b) .- Biolixiviación de la pulpa de alimentación, empleando un conjunto de biorreactores del tipo de tanque mecánico agitado que incluyen un sistema para inyección y difusión de aire;
c) .- Separación de los sólidos de la pulpa proveniente de la etapa de biolixiviación; y,
d) .- Transformación de ion férrico (reducción).
El proceso de extracción por disolventes de cobre y zinc consiste de las siguientes etapas:
a) .- Extracción por disolventes y electrólisis de cobre;
b) .- Control de arsénico; y,
c) .- Extracción por disolventes y electrólisis de zinc.
BREVE DESCRIPCION DE LAS FIGURAS
Los aspectos novedosos que se consideran característicos de la presente invención, se establecerán con particularidad en las reivindicaciones anexas. Sin embargo, algunas modalidades, características y algunos objetos y ventajas de la misma, se comprenderán mejor en la descripción detallada, cuando se lea en relación con los dibujos anexos, en los cuales:
La figura 1 es un diagrama de bloques del procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuros, de conformidad con los principios de una modalidad preferida de la presente invención.
La figura 2 es un diagrama de bloques del proceso de biolixiviación y reducción de ion férrico, el cual se lleva al cabo como una primera etapa del procedimiento que se muestra en la figura 1.
La figura 3 es un diagrama de bloques del proceso de extracción por disolventes de cobre y zinc, el cual se lleva al cabo como una segunda etapa del procedimiento que se muestra en la figura 1.
La figura 4 es un diagrama de bloques del proceso de extracción por disolventes y electrólisis de cobre, el cual se lleva al cabo como una primera etapa del procedimiento que se muestra en la figura 3.
La figura 5 es un diagrama de bloques del proceso de extracción por disolventes y electrólisis de zinc, el cual se lleva al cabo como una etapa intermedia del procedimiento que se muestra en la figura 3.
La figura 6 es un diagrama de bloques del proceso de extracción por disolventes y electrólisis de zinc, el cual se lleva al cabo como una etapa final del procedimiento que se muestra en la figura 3.
La figura 7 es una gráfica que muestra la evolución de la formación de escorodita a partir de la oxidación de la arsenopirita del concentrado polimétalico.
La figura 8 es una gráfica que muestra la recuperación de cobre en la etapa de extracción como una función del pH. DESCRIPCIÓN DETALLADA
Haciendo ahora referencia a los dibujos que se acompañan, y más específicamente a la Figura 1 de los mismos, en ella se muestra un procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, el cual se realiza de conformidad con una modalidad particularmente preferida de la invención, la cual debe considerarse como ilustrativa más no limitativa de la misma, en donde una pulpa de concentrados de sulfuras minerales polimetálicos se somete a un procedimiento que comprende un proceso 100 de biolixiviación y reducción de ion férrico, seguido de un proceso 200 de extracción por disolventes de cobre (Cu) y zinc (Zn).
El proceso 100 de biolixiviación y reducción de ion férrico, tal y como se muestra en la Figura 2, comprende una etapa 101 de acondicionamiento de una pulpa de concentrados, la cual una vez acondicionada se envía a un proceso de biolixiviación; una etapa 102 de biolixiviación, en donde la pulpa acondicionada proveniente de la etapa 101 se somete a un proceso de biolixiviación empleando una pluralidad de biorreactores del tipo de tanque agitado con un sistema para inyección y difusión de aire; una etapa 103 de separación de sólidos de una solución rica en iones metálicos proveniente de la etapa 102 de biolixiviación; y, una etapa 104 de reducción de ion férrico, en donde la pulpa proveniente de la etapa de separación de sólidos se somete a un etapa de transformación de los iones férricos a iones ferrosos.
La etapa 200 de extracción por disolventes, tal y como se muestra en la Figura 3, comprende una etapa 201 de extracción por disolventes y electrólisis de cobre, a la cual se alimenta como materia prima la solución proveniente de la etapa 104 de reducción de ion férrico para extraer el cobre; una etapa 202 de control de arsénico, en donde a la solución a la que se le ha extraído el cobre y que proviene de la etapa 201 de extracción por disolventes y electrólisis de cobre, se le controla el arsénico; y, una etapa 203 de extracción por disolventes y electrólisis de zinc, en donde a la solución a la que se le ha controlado el arsénico y que proviene de la etapa 202, se le extrae el zinc .
La etapa 101 de acondicionamiento de una pulpa de concentrados, consiste en enviar a un tanque repulpador para su mezclado, una corriente de un concentrado polimetálico (parcialmente atacada) proveniente de la etapa 104 de reducción de ion férrico, una corriente de agua de mina (AM), una corriente de sólidos frescos de sulfuras polimetálicos (CSP) proveniente del almacén de sólidos y una corriente de una solución acuosa agotada de zinc proveniente de la etapa 2032 de lavado/acondicionamiento de dicha solución acuosa agotada de zinc, etapa que describiremos más adelante. A estas corrientes una vez en el tanque repulpador y durante el mezclado, se les adiciona ácido sulfúrico para ajustar el pH en un intervalo de 1.4 a 1.8 previo al envío a la etapa de biolixiviación 02.
Una vez acondicionada la pulpa, esta se envía a la etapa de biolixiviación 102, en donde la pulpa se alimenta a una pluralidad de biorreactores del tipo de tanque agitado que cuentan con un sistema para inyección y difusión de aire como el que se describe en la Solicitud de Patente Mexicana MX/a/201 1/011147 del mismo titular de la presente invención, lo que permite que el proceso de biolixiviación alcance en operación una densidad de pulpa en sólidos mayor a 15%, así como una alta eficiencia en la distribución de aire, además de que el agua que se evapora durante el proceso, se recupera por medio del sistema de condensadores con que cuenta el biorreactor.
La descarga de la etapa de biolixiviación 102 es una pulpa compuesta por una solución rica en iones metálicos (en particular ion férrico, Cu y Zn) y minerales agotados que está lista para ser sometida a la etapa 103 de separación de sólidos.
En una modalidad preferida de la presente invención, para llevar a cabo la biolixiviación se utiliza una pluralidad de biorreactores que consiste preferiblemente de cinco biorreactores agitados de igual capacidad y de forma cilindrica, con una relación altura/diámetro 1.5:1 , en un arreglo 2-1-1-1 (dos biorreactores en paralelo y tres biorreactores en serie), en donde el flujo de solución entre cada reactor se realiza por gravedad. Cada biorreactor está provisto de un sistema de enfriamiento/calentamiento, agitación mecánica, control de parámetros de operación, suministro de aire, operando a una presión atmosférica, así como de puertos de alimentación que permiten la adición de nutrientes, agua, gases y ácido.
El proceso en el biorreactor de biolixiviación, se lleva al cabo mediante un conjunto de mecanismos simultáneos de acuerdo a lo siguiente:
• Biolixiviación: Se realiza una disolución de minerales por acción de microorganismos, en este caso se realiza mediante el uso de microorganismos termófilos, que viven en temperaturas de 50°C a 90°C, y son capaces de tolerar niveles altos de acidez, el proceso se desarrolla en un tiempo de residencia de 10 días.
• Lixiviación férrica: Se realiza por la oxidación de minerales base sulfuro en presencia de ion férrico.
• Interacciones galvánicas: Se realiza por diferencia de potenciales de oxidación entre las especies minerales base sulfuro presentes en el concentrado, que forman pares galvánicos favoreciendo la disolución de las especies minerales más reactivas.
Por lo que respecta a la etapa 103 de separación de sólidos, esta consiste en someter la pulpa proveniente de la etapa 102 de biolixiviación, compuesta por una solución rica en iones metálicos (en particular ion férrico, Cu y Zn) y minerales agotados, a una operación de filtración preferiblemente en un filtro de placas, en donde se obtienen dos productos: una mezcla de minerales agotados que son enviados a confinamiento; y, una solución intermedia y clarificada rica en ion férrico, la cual es enviada a la etapa 104 de reducción de ion férrico.
Para llevar a cabo la etapa 104 de reducción de ion férrico, se requiere contar con una primera corriente con la solución intermedia con alto contenido del ion férrico y que además tiene una alta acidez (pH<1.5), la cual se envía a un reactor convencional a presión atmosférica, en donde se adiciona una segunda corriente que incluye un concentrado de sulfuras polimetálicos (CSP) con un tamaño de partícula menor a 20pm provenientes del almacén de sólidos para lograr las condiciones deseadas.
Ambas corrientes entran al reactor en donde se lleva al cabo la reacción química de disolución del mineral en flujo continuo, para lograr la transformación de los iones férricos a iones ferrosos. El volumen de sólidos se reduce por la lixiviación del concentrado mineral y como consecuencia de la reacción química hay un consumo de protones por el ataque ácido a los sulfuras presentes (incremento de pH), además de que se incrementa el tenor de Zn y Cu en solución.
La etapa 104 de reducción de ion férrico, cuenta con un control de temperatura (entre 60°C y 80°C) y un monitoreo de acidez (pH), además del seguimiento de la transformación de los iones férrico a iones ferrosos mediante métodos analíticos. Una vez terminada la reacción, la descarga del reactor es enviada a una etapa de filtración preferiblemente en un filtro de placas, con el fin de separar los sólidos no reaccionados de la solución resultante. Los sólidos no reaccionados son enviados al tanque de repulpeo de la etapa 101 previo a la etapa de biolixiviación.
La solución que se obtiene del filtro es rica en cobre y zinc, además de tener un bajo contenido de ion férrico, por lo que una vez que se obtiene es enviada a la etapa 201 de extracción por disolventes y electrólisis de cobre del proceso 200 de extracción por disolventes de cobre y zinc .
La etapa 201 de extracción por disolventes y electrólisis de cobre consiste en alimentar la solución rica en cobre y zinc proveniente de la etapa 104 de reducción de ion férrico una vez clarificada, a una etapa 20 1 de almacenamiento en un tanque de almacenamiento de solución rica en cobre y zinc, para ser enviada posteriormente por bombeo a una etapa 2012 de extracción de cobre en un tanque mezclador/asentador de extracción de cobre, que consta de dos etapas en serie y a contra corriente que operan a presión y temperatura atmosférica.
La solución que entra al tanque de extracción de cobre, se pone en contacto a contracorriente con un compuesto orgánico para extraer el cobre. Como compuestos orgánicos extractantes se utilizan preferiblemente oximas fenólicas (aldoximas), que se encuentran disponibles comercialmente, mezcladas en diluyente orgánico (queroseno). La corriente de solución orgánica cargada de cobre que sale del equipo de extracción en la etapa 2012, es enviada a una etapa 2014 délavado orgánico en un equipo lavador de compuesto orgánico; y, la corriente de solución acuosa rica en zinc y en arsénico que también sale del equipo de extracción, es enviada a una etapa 2013 de lavado de acuoso en un equipo mezclador/sedimentador para remover los arrastres de orgánico, previo a ser enviada a la etapa 202 de control de arsénico (As).
Una vez que la corriente de solución orgánica cargada de cobre pasa por la etapa 2014 de lavado orgánico en el equipo lavador de orgánico, la corriente que sale es una corriente de orgánico cargado de cobre, la cual es enviada a una etapa 2015 de despojamiento de cobre en un equipo mezclador/sedimentador. En esta etapa de despojamiento de cobre, la corriente de orgánico cargada de cobre se pone en contacto y a contracorriente con una solución de electrolito agotado de cobre y con una acidez >150 g/l H2S04, en donde el electrolito agotado se enriquece con el cobre de la corriente de orgánico. El electrolito ya enriquecido en cobre, se envía a una etapa 2016 de electrodeposición de cobre.
Después de la separación del cobre en la etapa 2015 de despojamiento, la corriente de orgánico descargado de cobre se recircula de nuevo hacia la etapa 2012 de extracción por disolventes para comenzar nuevamente el ciclo de carga con cobre.
Por otra parte, el electrolito agotado de cobre que se alimenta en la etapa 2015 de despojamiento de cobre, es un electrolito altamente acidificado que proviene del área de electrodeposición 2016, el cual es enviado a dicha etapa 2015 de despojamiento de cobre, para comenzar nuevamente el ciclo de carga con cobre.
Como ya se mencionó arriba, la corriente de solución acuosa rica en zinc y en arsénico que sale de la etapa 2012 de extracción de cobre, una vez que se ha lavado el acuoso en la etapa 2013 para remover los arrastres de orgánico proveniente del proceso de extracción por disolventes de cobre, es enviada a la etapa 202 de control de arsénico, la cual consiste en alimentar la solución acuosa rica en zinc y arsénico a una etapa 2021 de acondicionamiento y precipitación de arsénico, la cual se lleva al cabo en un tanque acondicionador de pH y de precipitación, en donde se realiza el control del arsénico mediante su precipitación y co-precipitación, al ponerse en contacto la solución acuosa rica en zinc y en arsénico con un agente modificador de pH para generar compuestos férricos(FeAs04.2H20) ricos en arsénico.
El agente modificador de pH que se emplea se puede seleccionar entre hidróxido de amonio, hidróxido de sodio, hidróxido de calcio, hidróxido de magnesio, empleándose preferentemente el hidróxido de amonio.
La pulpa que se obtiene en el tanque acondicionador y de precipitación, es enviada a una etapa 2022 de filtración en un filtro prensa para la separación del arsénico. Parte de los sólidos recuperados se regresan al tanque acondicionador y de precipitación de arsénico, para que actúen como iniciador en la precipitación del mismo. El resto de la pasta con un alto contenido de arsénico es enviada a disposición final.
Por lo que respecta a la solución rica de zinc y libre de arsénico que se recupera en el filtro prensa, se envía a una etapa 2023 de almacenamiento en un tanque de almacenamiento de licor con alto contenido en zinc.
La solución proveniente de la etapa 202 de control de arsénico una vez clarificada en el tanque de almacenamiento de solución rica de zinc, se envía por bombeo a una etapa 203 de extracción por disolventes y electrólisis de zinc. La etapa 203 de extracción por disolventes y electrólisis de zinc consiste en enviar la solución rica en zinc a una etapa 2031 de extracción de zinc en la que se emplea preferiblemente una pluralidad de tanques mezcladores/sedimentadores para la extracción del zinc, en donde se pone en contacto a contracorriente la solución rica en zinc con una disolución extractora de zinc.
La pluralidad de tanques mezcladores/sedimentadores para extracción de zinc, en una modalidad preferida consiste de un arreglo de tanques en serie de hasta cinco etapas, los cuales como ya se mencionó, ponen en contacto a contra corriente la solución rica en zinc con una disolución extractora de zinc.
Para la extracción por disolventes, como disolución extractora se utilizan compuestos de ácidos fosfínicos, preferentemente el 2,4,4 trimetilpentil ácido fosfinico disuelto en queroseno con una concentración del 10% hasta el 50% volumen.
La utilización del ácido fosfinico disuelto en queroseno para la recuperación de zinc, es lo que permite emplear un solo ácido (H2S04) para llevar a cabo un despojo selectivo del metal de interés (zinc) y posteriormente la co-extracción de las impurezas (fierro), empleando un solo ajuste en la concentración de dicho ácido.
En otros procesos empleando D2HEPA se tiene que utilizar ácido sulfúrico para el despojo del zinc y posteriormente para eliminar el fierro co-extraído, se debe de emplear ácido clorhídrico (HCI) 5M con todos los inconvenientes que implica trabajar con dicho ácido, mientras que como ya se mencionó arriba, con la utilización del ácido fosfinico disuelto en queroseno, se utiliza solamente H2S04> lo que implica una gran ventaja desde el punto de vista de operación y desde el punto de vista económico.
La solución acuosa agotada de zinc una vez que sale del arreglo de tanques mezcladores/sedimentadores de la etapa 2031 , es rica en iones ferrosos, por lo que esta solución acuosa agotada de zinc es enviada a una etapa 2032 de lavado/acondicionamiento, previo a ser retornada al tanque repulpador de la etapa 101 de acondicionamiento de pulpa y previo a ser sometida de nuevo a la etapa 102 de biolixiviación.
La corriente de orgánico cargado de zinc proveniente del arreglo de tanques mezcladores/sedimentadores de la etapa 2031 , es enviada a una etapa 2033 de lavado de orgánico en donde se retiran arrastres de solución acuosa utilizando una solución acuosa acidulada (H2S04) con un pH entre 2 y 3, empleando hasta dos tanques mezcladores/sedimentadores similares a los de la etapa anterior y previo a ser sometida a una etapa 2034 de despojamiento selectivo del zinc, seguida de una etapa 2035de despojamiento selectivo de fierro.
En la etapa 2034 de despojamiento de zinc, se enriquece una solución de electrolito agotado de zinc proveniente de una etapa 2037de electrodeposición de zinc, al ponerse en contacto a contracorriente, con la corriente de orgánico cargado de zinc proveniente de la etapa 2033 de lavado de orgánico, empleando hasta dos tanques mezcladores/sedimentadores similares a los de la etapa anterior. La solución de electrolito enriquecido de zinc que se obtiene y que sale de esta etapa 2034, es enviada a una etapa 2038 de purificación de zinc en una pluralidad de tanques de cementación/filtrado y posteriormente es enviada a la etapa 2037 de electrodeposición de zinc en una celda de electrodepósito.
La solución de orgánico ya despojada de zinc y rica ahora en fierro proveniente de la etapa 2034, se envía a una etapa 2035 de despojamiento de fierro, en un tanque mezclador/sedimentador similar a los anteriores, en donde se extrae el fierro Fe (III) co-extraído en el orgánico al ponerse en contacto a contracorriente con una solución de acido sulfúrico que tiene una acidez>200 g/L.
Después de la separación en la etapa 2035 de despojo de fierro Fe (III), el orgánico descargado fluye hacia una etapa 2036 de neutralización en un tanque de neutralización, previo a ser enviado a contracorriente a la etapa 2031 de extracción por disolventes de zinc para comenzar nuevamente el ciclo de carga con zinc. Es importante mencionar que las condiciones de operación del procedimiento de extracción por disolventes son temperatura ambiente y presión atmosférica.
EJEMPLOS
Se realizaron diversas pruebas y corridas experimentales en laboratorio y en planta piloto empleando diversas condiciones y carga de materiales, las cuales se indican respectivamente en cada una de las pruebas realizadas y que se enumeran a continuación, en donde se pudo validar que el procedimiento de la presente invención muestra las siguientes ventajas con respecto a los procedimientos del arte previo:
Prueba 1.- Manejo de concentración de sólidos en suspensión (pulpa de concentrados de sulfuras polimetálicos rica en Cu y Zn) de por lo menos el 15% en el proceso, preferentemente superiores al 20%.
En la Tabla I se muestra la evolución en la disolución de zinc durante el procesamiento de un concentrado de zinc enriquecido con Pirita al 20% de sólidos:
TABLA I
Figure imgf000020_0001
En la Tabla II se muestra la concentración de Zn y Cu conforme van evolucionando las etapas en el arreglo en cascada de cinco biorreactores de Biolixiviacion empleando un arreglo 2-1-1-1 , operando con 27.5% de sólidos y con 12 días de residencia. TABLA II
Extracción de Zn y Cu por etapas en el procesamiento de un concentrado de Cu-Zn.
Figure imgf000021_0001
Prueba 2.- Capacidad de biolixiviar concentrados con altos contenidos de arsénico en forma de sulfuras.
En la Figura 7 se muestra la evolución en la generación de Escorodita (FeAs04.2H20), durante el proceso de biolixiviación y que permite producir un compuesto de arsénico estable para su disposición final.
Prueba 3.- Sistema integrado de recuperación de agua durante el proceso. Dado que se trata de un proceso cíclico, éste permite recuperar la gran mayoría del agua de proceso en las siguientes etapas: biolixiviación, extracción por disolventes y electro reducción.
Aunado a lo anterior, al emplear los biorreactores de la Solicitud de Patente Mexicana MX/a/2011/011147 del mismo titular de la presente invención, que incluyen un sistema de condensadores de alta eficiencia, se permite una alta tasa de recuperación del agua evaporada durante el proceso de biolixiviación.
Con el sistema de condensadores de cada uno de los biorreactores de biolixiviación, se tuvo un incremento en la recuperación de agua superior al 85%.
Prueba 4.- Durante la etapa de biolixiviación, al emplearse los biorreactores de la Solicitud de Patente Mexicana MX/a/2011/011147 del mismo titular de la presente invención, se mejora la distribución de oxigeno por medio del sistema de inyección de aire que incorpora cada uno de los biorreactores empleados, lo que permite mejorar las cinéticas de extracción de metales en la biolixiviación; y, por lo tanto la reducción de tiempo de proceso.
TABLA III
Promedio de la concentración de sólidos en el agua (% Peso) a 4 diferentes profundidades en el biorreactor.
Figure imgf000023_0001
Prueba 5.- En otros procesos del arte previo, al no utilizarse los biorreactores de la Solicitud de Patente Mexicana MX/a/2011/011147 del mismo titular de la presente invención, es necesario adicionar oxígeno en exceso en la corriente de aire, lo que incrementa los costos de operación. En la siguiente tabla se muestran los resultados empleando dicho biorreactor:
TABLA IV
Resultados de pruebas modificando el flujo de la mezcla de aire/agua sin enriquecimiento de oxígeno y monitoreo del oxígeno disuelto a una temperatura de 70°C y una velocidad de agitación fija de 300 rpm con un solo impulsor.
Figure imgf000024_0001
Prueba 6.- Etapa de transformación de ion férrico y consumo de protones de la solución intermedia. Se procesaron pulpas con sólidos superiores al 15%, además de permitirse una extracción selectiva de Zn en la etapa de extracción por disolventes.
Los resultados en la etapa de transformación de ion férrico, y consumo de protones medidos a través del potencial oxido reducción (ORP) y el pH, así como el incremento en la concentración de Zn, para un concentrado de Zn enriquecido con Pirita para diferentes pruebas realizadas, se muestran en la Tabla V:
TABLA V
Etapa de Reducción de ion férrico.
Disminución de ORP, incremento de pH y Zn en la solución.
Figure imgf000025_0001
Los resultados del consumo de iones férricos medidos de forma indirecta por ORP en la etapa de transformación de ion férrico así como consumo de protones (incremento de pH) en la solución intermedia en Cu y Zn para el concentrado polimetálico, se muestran en la Tabla VI:
TABLA VI
Etapa de Reducción de ion férrico.
Disminución de ORP e incremento de acidez en solución.
Figure imgf000025_0002
Los resultados del incremento en la concentración de Cu y Zn en la solución de salida de la etapa de reducción de ion férrico, se muestran en la Tabla VII: TABLA VII
Etapa de Reducción de ion férrico.
Incremento en la concentración de Cu y Zn (datos complementarios de la Tabla VI).
Figure imgf000026_0001
Prueba 8.- Consumo de protones de la solución intermedia durante la etapa de extracción de Cu (carga máxima de Cu).
La tabla VIII muestra el incremento en la carga máxima del extractante como una función del incremento en el pH, disminución en la concentración de protones.
TABLA VIII
Incremento en la carga máxima del extractante como una función del pH.
Figure imgf000026_0002
La Figura 8 muestra el incremento en la eficiencia en la extracción de Cu como una función del pH.
Prueba 9.- La Tabla IX muestra el despojo selectivo de Zn primero y de Fe(lll) después, durante la etapa de recuperación de zinc, con diferentes concentraciones de ácido (pH) en la solución acuosa. TABLA IX
Resultados de la extracción y despojo selectivo de Zn (II) y Fe (III) en la etapa de recuperación de Zn utilizando el 2,4,4 trimetilpentil ácido fosfínico.
Figure imgf000027_0001
De conformidad con lo anteriormente descrito, se podrá observar que el procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras de la presente invención, ha sido ideado para resolver los problemas de la técnica anterior, mediante el manejo de una concentración alta de sólidos en suspensión (pulpa de concentrados polimetálicos de sulfuras), con respecto al arte previo, así como el empleo de un solo ajuste de la concentración de ácido sulfúrico para la recuperación del zinc en todo el proceso; por lo que, será evidente para cualquier experto en la materia que las modalidades del procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, tal y como se describió anteriormente y se mostró en los dibujos que se acompañan, son únicamente ilustrativas más no limitativas de la presente invención, ya que son posibles numerosos cambios de consideración en sus detalles sin apartarse del alcance de la invención. Por lo tanto, la presente invención no deberá considerarse como restringida excepto por lo que exija la técnica anterior y por el alcance de las reivindicaciones anexas.

Claims

NOVEDAD DE LA INVENCIÓN REIVINDICACIONES
1. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, caracterizado porque comprende una etapa de biolixiviación y reducción de ion férrico, seguida de una etapa de extracción por disolventes de cobre y zinc, en donde la etapa de biolixiviación y reducción de ión férrico incluye las etapas de: a) acondicionamiento de una pulpa de concentrados polimetálicos de sulfuras; b) biolixiviación de la pulpa de concentrados polimetálicos de sulfuras; c) separación de los sólidos de la pulpa proveniente de la etapa de biolixiviación; y, d) transformación de ion férrico (reducción); mientras que la etapa de extracción por disolventes de cobre y zinc incluye las etapas de: a) extracción por disolventes y electrólisis de cobre; b) control de arsénico; y, c) extracción por disolventes y electrólisis de zinc.
2. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 1 , caracterizado además porque la etapa de acondicionamiento de pulpa consiste en mezclar una corriente de un concentrado polimetálico de sulfuras (parcialmente atacada), una corriente de agua de mina, una corriente de sólidos frescos de sulfuras polimetálicos y una corriente de una solución acuosa agotada de zinc.
3. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 2, caracterizado además porque durante el mezclado se adiciona ácido sulfúrico para ajusfar el pH en un intervalo de 1.4 a 1.8.
4. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 1 , caracterizado además porque la etapa de biolixiviación se realiza empleando una pluralidad de biorreactores del tipo de tanque agitado que cuentan con un sistema para inyección y difusión de aire, lo que permite manejar una densidad de pulpa en sólidos mayor a 15%, una alta eficiencia en la distribución de aire, además de recuperar el agua que se evapora durante el proceso.
5. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 4, caracterizado además porque la pulpa que se obtiene está compuesta por una solución rica en iones metálicos, en particular ion férrico, cobre y zinc.
6. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 1 , caracterizado además porque la etapa de separación de los sólidos consiste en someter la pulpa proveniente de la etapa de biolixiviación a una operación de filtración o de decantado, para obtener dos productos: una mezcla de minerales agotados que son enviados a confinamiento; y, una solución intermedia y clarificada rica en ion férrico, la cual es enviada a la etapa de reducción de ion férrico.
7. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 1 , caracterizado además porque la etapa de reducción de ion férrico consiste en enviar una primera corriente de solución intermedia con alto contenido del ion férrico y con un pH<1.5, a un reactor, en donde se adiciona una segunda corriente que incluye un concentrado de sulfuras polimetálicos con un tamaño de partícula menor a 20μιη, para lograr la transformación de los iones férricos a iones ferrosos.
8. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 7, caracterizado además porque la etapa de reducción de ion férrico se lleva a cabo a una temperatura de entre aproximadamente 60°C y aproximadamente 80°C, con monitoreo de acidez (pH).
9. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 8, caracterizado además porque una vez que termina la reacción, la descarga del reactor es enviada a una etapa de filtración con el fin de separar los sólidos no reaccionados de la solución resultante rica en cobre y zinc; los sólidos no reaccionados son recirculados ala etapa de acondicionamiento de la pulpa,, y la solución rica en cobre y zinc, se envía a la etapa de extracción por disolventes y electrólisis de cobre.
10. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 1 , caracterizado además porque la etapa de extracción por disolventes y electrólisis de cobre consiste en poner en contacto y a contracorriente la solución rica en cobre y zinc proveniente de la etapa de reducción de ion férrico con un compuesto orgánico extractante, obteniéndose una solución orgánica cargada de cobre y una solución acuosa rica en zinc y en arsénico; en donde como compuesto orgánico extractante sé emplean preferiblemente oximas fenólicas (aldoximas) disueltas en queroseno.
11. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 10, caracterizado además porque la corriente de solución orgánica cargada de cobre se envía a una etapade lavado orgánico en donde se obtiene una corriente de orgánico cargado de cobre la cual se envía a una etapa de despojamiento de cobre; y, la corriente de solución acuosa rica en zinc y en arsénico se envía a una etapa de lavado de acuoso para remover los arrastres de orgánico, previo a ser enviada a la etapa de control de arsénico.
12. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 1 1 , caracterizado además porque la etapa de despojamiento de cobre consiste en poner en contacto y a contracorriente, la corriente de orgánico cargada de cobre con una solución de electrolito agotado de cobre que tiene una acidez >150 g/l H2S04, en donde el electrolito agotado se enriquece con el cobre de la corriente de orgánico, por lo que una vez que se ha enriquecido el electrolito en cobre, se envía a una etapa de electrodeposición de cobre y la corriente de orgánico descargado de cobre se recircula hacia la etapa de extracción por disolventes.
13. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 12, caracterizado además porque el electrolito agotado de cobre que se alimenta en la etapa de despojamiento de cobre, es un electrolito altamente acidificado que proviene del área de electrodeposición, el cual es enviado a dicha etapa de despojamiento de cobre, para comenzar nuevamente el ciclo de carga con cobre.
14. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 11 , caracterizado además porque la corriente de solución acuosa rica en zinc y en arsénico que sale de la etapa de extracción de cobre, una vez que se ha lavado el acuoso para remover los arrastres de orgánico proveniente del proceso de extracción por disolventes de cobre, es enviada a una etapa de control de arsénico.
15. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 14, caracterizado además porque la etapa de control de arsénico consiste en alimentar la solución acuosa rica en Zn y As a una etapa de acondicionamiento y precipitación de arsénico, en donde se pone en contacto la solución acuosa rica en zinc y en arsénico con un agente modificador de pH para generar compuestos férricos (FeAs04.2H20) ricos en As.
16. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 15, caracterizado además porque el agente modificador de pH se selecciona entre hidróxido de amonio, hidróxido de sodio, hidróxido de calcio, hidróxido de magnesio, empleándose preferentemente el hidróxido de amonio.
17. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 15, caracterizado además porque la solución obtenida se envía a una etapa de filtración para separar una solución rica en zinc y libre arsénico de una pasta con un alto contenido de arsénico; la solución rica en zinc y libre de arsénico se envía a la etapa de extracción por disolventes y electrólisis de zinc; y, la pasta con un alto contenido de arsénico se envía a disposición final.
18. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 1 , caracterizado además porque la etapa de extracción por disolventes y electrólisis de zinc consiste en enviar la solución rica en zinc a una etapa de extracción de zinc en donde se pone en contacto a contracorriente la solución rica en zinc con una disolución extractora de zinc, obteniéndose de esta forma una solución acuosa agotada de zinc que es rica en iones ferrosos y una corriente de orgánico cargado de zinc.
19. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 18, caracterizado además porque la solución agotada de zinc se envía a una etapa de lavado/acondicionamiento, previo a ser retomada a la etapa de acondicionamiento de pulpa y previo a ser sometida de nuevo a la etapa de biolixiviación.
20. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuros, de conformidad con la reivindicación 18, caracterizado además porque la corriente de orgánico cargado de zinc es enviada a una etapa de lavado de orgánico en donde se retiran arrastres de solución acuosa utilizando una solución acuosa acidulada de H2S04 con un pH entre 2 y 3, previo a ser sometida a una etapa de despojamiento selectivo del zinc, seguida de una etapa de despojamiento selectivo de fierro.
21. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 20, caracterizado además porque en la etapa de despojamiento de zinc, se enriquece a contracorriente una solución de electrolito agotado de zinc proveniente de una etapa de electrodeposición de zinc, al ponerse en contacto a contracorriente, con la corriente de orgánico cargado de zinc proveniente de la etapa de lavado de orgánico; la solución de electrolito enriquecido de zinc que se obtiene y que sale de esta etapa de despojamiento, es enviada a una etapa de purificación de zinc y posteriormente es enviada a la etapa de electrodeposición de zinc en una celda de electrodepósito.
22. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 21 , caracterizado además porque la solución de orgánico ya despojada de zinc y rica ahora en fierro proveniente de la etapa de despojamiento de zinc, se envía a una etapa de despojamiento de fierro, en donde se extrae el fierro Fe (III) co-extraído en el orgánico al ponerse en contacto a contracorriente con una solución de acido sulfúrico que tiene una acidez >200 g/L.
23. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 22, caracterizado además porque después de la separación en la etapa de despojo de fierro Fe(lll), el orgánico descargado fluye hacia una etapa de neutralización, previo a ser enviado a contracorriente a la etapa de extracción por disolventes de zinc para comenzar nuevamente el ciclo de carga con zinc.
24. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 18, caracterizado además porque como disolución extractora se utilizan compuestos de ácidos fosfínicos, preferentemente el 2,4,4 trimetilpentil ácido fosfinico.
25. - Procedimiento de biolixiviación y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuras, de conformidad con la reivindicación 24, caracterizado además porque la disolución extractora se disuelve en queroseno con una concentración de aproximadamente 10% hasta aproximadamente 50% volumen, lo que permite llevar a cabo un despojo selectivo del zinc y posteriormente de las impurezas que se co-extraen, empleando un solo ajuste de la concentración de ácido sulfúrico en todo el proceso.
PCT/IB2013/002418 2013-04-29 2013-10-30 Procedimiento de biolixiviacion y estracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuros WO2014177903A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/787,805 US10280481B2 (en) 2013-04-29 2013-10-30 Method for bioleaching and solvent extraction with selective recovery of copper and zinc from polymetal concentrates of sulfides
AU2013388340A AU2013388340B2 (en) 2013-04-29 2013-10-30 Method for bioleaching and solvent extraction with selective recovery of copper and zinc from polymetal concentrates of sulfides
BR112015027356-4A BR112015027356B1 (pt) 2013-04-29 2013-10-30 processo de biolixiviação e extração por solventes com recuperação seletiva de cobre e zinco a partir de concentrados polimetálicos de sulfetos
CA2910768A CA2910768C (en) 2013-04-29 2013-10-30 Method for bioleaching and solvent extraction with selective recovery of copper and zinc from polymetal concentrates of sulfides
ZA2015/08360A ZA201508360B (en) 2013-04-29 2015-11-12 Bioleaching and solvent extraction process with a selective recovery of copper and zinc from sulphide polymetallic oncentrates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2013004855A MX2013004855A (es) 2013-04-29 2013-04-29 Procedimiento de biolixiviacion y extracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetalicos de sulfuros.
MXMX/A/2013/004855 2013-04-29

Publications (1)

Publication Number Publication Date
WO2014177903A1 true WO2014177903A1 (es) 2014-11-06

Family

ID=51843214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/002418 WO2014177903A1 (es) 2013-04-29 2013-10-30 Procedimiento de biolixiviacion y estracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuros

Country Status (9)

Country Link
US (1) US10280481B2 (es)
AU (1) AU2013388340B2 (es)
BR (1) BR112015027356B1 (es)
CA (1) CA2910768C (es)
CL (1) CL2015003189A1 (es)
MX (1) MX2013004855A (es)
PE (1) PE20151918A1 (es)
WO (1) WO2014177903A1 (es)
ZA (1) ZA201508360B (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830091A (zh) * 2016-12-21 2017-06-13 中南大学 一种从含砷溶液中沉淀得到高浸出稳定性臭葱石的方法
CN110527831A (zh) * 2019-09-20 2019-12-03 常州工学院 一种使用铜萃取剂回收铜的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110564963A (zh) * 2019-10-17 2019-12-13 中南大学 一种采用微生物从含锌铜精矿中选择性脱锌的方法
CN112458277B (zh) * 2020-11-25 2022-06-21 铜陵有色金属集团股份有限公司 一种从深海多金属硫化矿中回收有价金属的方法
CN113637856A (zh) * 2021-07-02 2021-11-12 深圳市中金岭南有色金属股份有限公司丹霞冶炼厂 一种从锌冶炼过程中分离富集砷的工艺
CN114959262A (zh) * 2022-05-27 2022-08-30 中国恩菲工程技术有限公司 铜锌混合矿联合提取金属铜、锌的方法
CN115612865A (zh) * 2022-12-15 2023-01-17 矿冶科技集团有限公司 从含铅烟灰中回收铟的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028184A1 (en) * 1993-05-25 1994-12-08 Mim Holdings Limited An integrated bioleach/solvent extraction process for zinc metal production from zinc concentrates
EP1063308A2 (en) * 1999-06-22 2000-12-27 Boliden Mineral AB A method for recovering the valuable metal content of a sulphuric acid leaching solution.
US6406676B1 (en) * 1999-06-01 2002-06-18 Boliden Mineral Ab Method of purifying acid leaching solution by precipitation and oxidation
MXPA01003809A (es) * 1998-10-16 2003-07-21 Mintek Un proceso para biolixiviar concentrados de cobre.
US20050066773A1 (en) * 2001-07-13 2005-03-31 Harlamovs Juris R Heap bioleaching process for the extraction of zinc
WO2013057557A1 (es) * 2011-10-21 2013-04-25 Servicios Condumex S.A. De C.V. Biorreactor para biolixiviación con un sistema para inyección y difusión de aire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028184A1 (en) * 1993-05-25 1994-12-08 Mim Holdings Limited An integrated bioleach/solvent extraction process for zinc metal production from zinc concentrates
MXPA01003809A (es) * 1998-10-16 2003-07-21 Mintek Un proceso para biolixiviar concentrados de cobre.
US6406676B1 (en) * 1999-06-01 2002-06-18 Boliden Mineral Ab Method of purifying acid leaching solution by precipitation and oxidation
EP1063308A2 (en) * 1999-06-22 2000-12-27 Boliden Mineral AB A method for recovering the valuable metal content of a sulphuric acid leaching solution.
US20050066773A1 (en) * 2001-07-13 2005-03-31 Harlamovs Juris R Heap bioleaching process for the extraction of zinc
WO2013057557A1 (es) * 2011-10-21 2013-04-25 Servicios Condumex S.A. De C.V. Biorreactor para biolixiviación con un sistema para inyección y difusión de aire

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALI A M I ET AL.: "Cyanex 272 for the extraction and recovery of zinc from aqueous waste solution using a mixer-settler unit.", SEPARATION AND PURIFICATION TECHNOLOGY, vol. 47, no. 3, 1 January 2006 (2006-01-01), pages 135 - 140 *
BOLIN N J ET AL.: "Two-stage precipitation process of iron and arsenic from acid leaching solutions.", TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA ., vol. 18, no. 6, 1 December 2008 (2008-12-01), pages 1513 - 1517 *
LAN, ZHUO-YUE ET AL.: "Solvent extraction of copper and zinc from bioleaching solutions with LIX984 and D2EHPA.", JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, vol. 12, no. 1, 2005, pages 45 - 49 *
ZHU, Z ET AL.: "A study on zinc recovery from leach solutions using Ionquest 801 and its mixture with D2EHPA.", MINERALS ENGINEERING, vol. 39, 2012, pages 117 - 123 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830091A (zh) * 2016-12-21 2017-06-13 中南大学 一种从含砷溶液中沉淀得到高浸出稳定性臭葱石的方法
CN110527831A (zh) * 2019-09-20 2019-12-03 常州工学院 一种使用铜萃取剂回收铜的方法

Also Published As

Publication number Publication date
BR112015027356A2 (pt) 2017-09-12
AU2013388340A1 (en) 2015-12-03
CA2910768C (en) 2021-06-29
AU2013388340B2 (en) 2018-08-23
CL2015003189A1 (es) 2016-07-08
CA2910768A1 (en) 2014-11-06
ZA201508360B (en) 2017-01-25
US20160115564A1 (en) 2016-04-28
PE20151918A1 (es) 2015-12-28
MX2013004855A (es) 2014-10-29
BR112015027356B1 (pt) 2019-09-10
US10280481B2 (en) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2014177903A1 (es) Procedimiento de biolixiviacion y estracción por disolventes con recuperación selectiva de cobre y zinc a partir de concentrados polimetálicos de sulfuros
CN104039991B (zh) 从混合氧化型材料中回收铅
CN1392902A (zh) 由氯化物促进氧化加压浸提回收硫化浮选精矿中的镍及钴
CN105296753B (zh) 氧化镍矿酸浸液中钴、镍、镁的分离方法
CN107287422B (zh) 湿法炼锌中的连续除铁工艺
CN103857811A (zh) 从含金属物料中回收金属的方法
CN102859012B (zh) 处理含镍原料的方法
Zhang et al. Manganese metallurgy review. Part III: Manganese control in zinc and copper electrolytes
US9683277B2 (en) Process for preparing a ferric nitrate reagent from copper raffinate solution and use of such reagent in the leaching and/or curing of copper substances
JP6471912B2 (ja) 高純度硫酸コバルト水溶液の製造方法
CA2912332C (en) Method for recovering metals
AU2007216890A1 (en) Process for treating electrolytically precipitated copper
Rotuska et al. Growing role of solvent extraction in copper ores processing
JP7070209B2 (ja) 高純度塩化コバルト水溶液の製造方法
JP7070208B2 (ja) 高純度塩化コバルト水溶液の製造方法
SE446015B (sv) Forfarande for utvinning av koppar genom lakning med svavelsyra och extraktion med aminlosningsmedel
FI65813C (fi) Hydrometallurgisk metod foer behandling av nickelskaersten
CA2715470C (en) Method for separating zinc, iron, calcium, copper and manganese from the aqueous solutions of cobalt and/or nickel
CN112501451A (zh) 一种采用溶剂萃取电积工艺生产金属铅的方法
WO2002027072A1 (en) Hydrometallurgical processes utilising solutions containing dissolved ferric and/or ferrous salts
EP3578673B1 (en) Tank bioleaching of copper sulfide ores
CN100406593C (zh) 由流程的次要物流制备锌化学物质
RU2339714C1 (ru) Способ экстракции меди из сернокислых растворов, содержащих ионы двухвалентного железа

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883804

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 002274-2015

Country of ref document: PE

ENP Entry into the national phase

Ref document number: 2910768

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14787805

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013388340

Country of ref document: AU

Date of ref document: 20131030

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015027356

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13883804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015027356

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151028