WO2014177102A2 - 封闭式电子平台的热控制系统 - Google Patents

封闭式电子平台的热控制系统 Download PDF

Info

Publication number
WO2014177102A2
WO2014177102A2 PCT/CN2014/078831 CN2014078831W WO2014177102A2 WO 2014177102 A2 WO2014177102 A2 WO 2014177102A2 CN 2014078831 W CN2014078831 W CN 2014078831W WO 2014177102 A2 WO2014177102 A2 WO 2014177102A2
Authority
WO
WIPO (PCT)
Prior art keywords
control system
thermal control
electronic platform
heat exchange
microchannel
Prior art date
Application number
PCT/CN2014/078831
Other languages
English (en)
French (fr)
Other versions
WO2014177102A3 (zh
Inventor
吴琼
景佰亨
王标华
李帅
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14791464.2A priority Critical patent/EP3091826A4/en
Priority to US15/033,075 priority patent/US20160299544A1/en
Publication of WO2014177102A2 publication Critical patent/WO2014177102A2/zh
Publication of WO2014177102A3 publication Critical patent/WO2014177102A3/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/206Air circulating in closed loop within cabinets wherein heat is removed through air-to-air heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20309Evaporators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20318Condensers

Definitions

  • the invention relates to the field of thermal control, and more particularly to a thermal control system for a closed electronic platform.
  • BACKGROUND OF THE INVENTION With the advancement of electronic technology, electronic devices and devices are developing in the direction of high performance, compactness, and miniaturization. The chip's integration, package density, and operating frequency are also increasing. The power consumption of high heat flux thermal chips (such as CPU, GPU, LED) is also increasing. In many industrial and military fields, especially the communications industry, electronic devices and equipment need to be placed in closed equipment platforms to prevent damage to electronic devices caused by dust, corrosive gases, molds, etc. in the environment.
  • the enclosed environment also deteriorates the heat dissipation environment of the electronic components in the platform, which can easily lead to overheating and failure of the electronic device. Therefore, it is urgent to use the necessary thermal control technology to timely dissipate the heat in the enclosed electronic platform, thereby ensuring efficient and reliable operation of the electronic platform.
  • heat is generally dissipated by means of a working fluid flow. During the flow of the working fluid, heat is absorbed or exothermic, thereby achieving heat dissipation in the enclosed electronic platform.
  • the thermal control system in the prior art still has the problem of low heat dissipation efficiency, thereby affecting the normal operation of the electronic platform.
  • the above content is only used to assist in understanding the technical solutions of the present invention, and does not constitute an admission that the above is prior art.
  • SUMMARY OF THE INVENTION The present invention solves the problem of low heat dissipation efficiency of a thermal control system in the prior art.
  • a thermal control system for a closed electronic platform comprising two mutually independent heat exchange chambers, each of which has an air inlet and an air outlet, in each
  • Each of the heat exchange chambers is provided with a heat exchanger, and the heat exchangers are connected through a conduit to form a circulation loop of the working medium
  • the heat exchanger comprises a plurality of microchannel hot capillary tubes and two collecting tanks, and the plurality of micro tubes
  • the channel hot capillaries are disposed in parallel with each other between the two collecting chutes, and the collecting troughs of the two heat exchangers are connected by the conduit, wherein the microchannel hot capillary has a plurality of microgrooves arranged in parallel with each other Road.
  • the microchannel has a rectangular, trapezoidal, triangular, corrugated or " ⁇ " shape.
  • the microchannel hot capillary has a rectangular or trapezoidal cross section.
  • a plurality of the microchannel hot capillaries are disposed in parallel with each other.
  • the thermal control system of the enclosed electronic platform further includes a fin fixedly coupled between two adjacent microchannel hot capillaries.
  • An air driving device for promoting gas circulation in the heat exchange chamber is provided at an air inlet and/or an air outlet of the heat exchange chamber.
  • An air filter is disposed at the air inlet.
  • the thermal control system of the enclosed electronic platform of the present invention uses the microchannels in the microchannel hot capillary as the working medium circulation channel.
  • the working fluid changes phase in the microchannel to exchange heat, so that the heat in the electronic platform is discharged to the external environment.
  • the thermal control system uses the microchannel of the microchannel hot capillary as the working fluid circulation channel, the working medium is subjected to the capillary pressure difference in the pipeline.
  • the capillary pressure difference forms a hot capillary force, and the hot capillary force suctions the working fluid, thereby accelerating the flow rate of the working fluid in the system, improving the heat exchange efficiency of the system, and overcoming the heat dissipation of the thermal control system in the electronic platform in the prior art. Difficulties in inefficiency.
  • FIG. 1 is a schematic exploded view of a thermal control system of a closed communication electronic platform of the present invention
  • FIG. 2 is a schematic structural view of the heat exchanger of FIG. 1
  • FIG. 5 is a partial enlarged structural view of B of FIG.
  • FIG. 1 is a schematic exploded view of a thermal control system of a closed communication electronic platform according to the present invention
  • FIG. 2 is a schematic structural view of the heat exchanger of FIG.
  • the thermal control system of the enclosed electronic platform comprises two mutually independent heat exchange chambers, each of which has an air inlet 10 and an air outlet 20.
  • a heat exchanger is disposed in each of the heat exchange chambers, and the two heat exchangers are connected through a conduit to form a circulation loop of the working medium.
  • Each of the heat exchangers includes a plurality of microchannel hot capillary tubes 140 and two manifolds 80.
  • a plurality of microchannel hot capillary tubes 140 are disposed in parallel with each other between the two manifolds 80.
  • One end of the plurality of microchannel hot capillary tubes 140 and one The collecting troughs 80 are in communication, and the other end of the plurality of microchannel hot capillaries 140 is in communication with the other collecting trough 80.
  • the manifolds 80 of the two heat exchangers are in communication through a conduit.
  • Each of the microchannel hot capillaries 140 has a plurality of microchannels 141 disposed in parallel with each other.
  • the two heat exchange chambers are independent of each other.
  • the two heat exchange chambers are respectively defined as a cold heat exchange chamber and a heat exchange chamber.
  • the cold heat exchange chamber communicates with the outside through the air inlet 10 and the air outlet 20 provided on the chamber.
  • the heat exchange chamber communicates with the enclosed electronic platform through an air inlet 10 and an air outlet 20 disposed on the chamber.
  • the cold heat exchange chamber and the heat exchange chamber are provided with one side opening.
  • a box cover 40 is disposed at the opening of the box 30, the box cover 40 covers the opening of the box body 30, and the box cover 40 is fixedly connected to the box body 30 by rivets.
  • a partition 50 is disposed inside the casing 30, and the partition 50 is fastened to the inner surface of the casing 30 to partition the casing 30 into mutually independent cold heat exchange chambers and heat exchange chambers.
  • An air inlet port 10 and an air outlet port 20 that communicate with the outside are disposed in the cold heat exchange chamber of the casing 30.
  • An air inlet 10 and an air outlet 20 communicating with the enclosed electronic platform are disposed in the heat exchange chamber of the casing 30.
  • the heat exchangers are arranged in two, wherein the heat exchanger placed in the cold heat exchange chamber is the condenser 60, and the heat exchanger placed in the heat exchange chamber is the evaporator 70.
  • the condenser 60 includes a plurality of microchannel hot capillaries 140 and two manifolds 80 arranged in parallel.
  • Each of the microchannel hot capillaries 140 is arranged in parallel with a plurality of microchannels 141 for circulating the working fluid.
  • the two manifolds 80 communicate with both end portions of the microchannel hot capillary 140.
  • the evaporator 70 has the same structure as the condenser 60 and will not be described again.
  • the conduits connecting the condenser 60 and the evaporator 70 are the riser 90 and the return conduit 100, respectively. Wherein, the riser 90 passes through the partition 50, and communicates with the collecting tank 80 for collecting the gaseous working medium in the condenser 60 and the collecting tank 80 for collecting the gaseous working medium in the evaporator 70.
  • the return pipe 100 passes through the partition 50, and communicates with the collecting tank 80 for collecting the liquid working medium in the condenser 60 and the collecting tank 80 for collecting the liquid working medium in the evaporator 70.
  • the riser 90 and the return pipe 100 may be single or multiple.
  • the working principle of the thermal control system The hot air in the closed communication electronic platform enters into the thermal heat exchange chamber through the air inlet 10 of the heat exchange chamber, and the cold air in the external environment enters through the air inlet 10 of the cold heat exchange chamber. Go into the cold heat exchange chamber.
  • the hot air passes over the evaporator 70, and the liquid working medium located in the microchannel 141 of the microchannel hot capillary 140 in the evaporator 70 absorbs the heat generated by the hot air and is evaporated by the heat into a gaseous working medium.
  • the gaseous working medium rises into the collecting tank 80 at the upper end of the evaporator 70, passes through the riser 90 through the partition 50, and enters the collecting tank 80 at the upper end of the condenser 60.
  • the gaseous working fluid is then split into the microchannels 141 of the respective microchannel hot capillaries 140 in the condenser 60.
  • the gas working medium exchanges heat with the cold air in the external environment.
  • the gaseous working medium condenses and releases heat into a liquid working medium.
  • the liquid working medium merges at the collecting tank 80 at the lower end of the condenser 60, and passes through the partition 50 through the return pipe 100 to enter the collecting tank 80 at the lower end of the evaporator 70.
  • the liquid working medium flows upward under the action of the hot capillary force generated by the microchannel 141 in the microchannel hot capillary 140 of the evaporator 70, and enters into the microchannel 141 in the microchannel hot capillary 140, again
  • the heat is evaporated, and the cycle is reciprocated.
  • the phase change of the working fluid discharges the heat generated by the closed communication electronic platform to the external environment.
  • the working fluid may be any liquid working medium such as water, ammonia, ethanol, propanol, acetone, organic matter, or refrigerant.
  • the thermal control system of the enclosed electronic platform of the present invention uses the microchannels 141 in the microchannel hot capillary 140 as working fluid passages.
  • the working fluid flows in the microchannel 141 to undergo heat exchange, thereby dissipating heat in the electronic platform to the external environment.
  • the thermal control system uses the microchannel 141 of the microchannel hot capillary 140 as a working fluid passage, the working fluid is subjected to capillary pressure difference in the pipeline.
  • the capillary pressure difference forms a hot capillary force, and the hot capillary force suctions the working fluid, thereby accelerating the flow rate of the working fluid in the system, improving the heat exchange efficiency of the system, and overcoming the heat dissipation of the thermal control system in the electronic platform in the prior art. Difficulties in inefficiency.
  • the microchannel hot capillary 140 has a rectangular or trapezoidal cross section, and the microchannel 141 has a rectangular, trapezoidal, triangular, corrugated or " ⁇ " shape.
  • the microchannels 141 of the microchannel hot capillary 140 may be provided in various shapes, for example, the cross section may be rectangular, trapezoidal, triangular, corrugated or " ⁇ " shaped or the like.
  • the circulation speed of the working medium in the system is accelerated, and the heat dissipation efficiency of the thermal control system is improved.
  • the plurality of microchannel hot capillary tubes 140 may be disposed parallel to each other.
  • the microchannel hot capillary 140 is provided with fins 110 disposed between the two microchannel hot capillaries 140.
  • the fins 110 are mounted between the two microchannel hot capillaries 140 by means of welding or the like.
  • the presence of the fins 110 greatly increases the heat exchange area, further improving the heat exchange efficiency of the thermal control system, thereby better dissipating heat for the electronic platform.
  • the fins 110 may be provided in a plurality of shapes, and may be in the form of square fins, corrugated fins, louver fins, interlaced fins, curved cross-cut fins, and the like.
  • Fin 110 materials can be selected according to the working environment, copper, aluminum, carbon steel, stainless steel, cast iron and other materials.
  • an air driving device 120 for promoting gas circulation in the heat exchange chamber is provided at the air inlet 10 of the heat exchange chamber.
  • An air drive unit 120 is provided at the air inlet 10 of the cold heat exchange chamber to promote convection of the condenser 60 with the outside air.
  • An air drive unit 120 is provided at the air inlet 10 of the heat exchange chamber to promote air convection of the evaporator 70 and the interior environment of the electronics platform.
  • the arrangement of the air driving device 120 accelerates the circulating flow of air in the system, further improving the heat dissipation efficiency of the thermal control system of the enclosed electronic platform, so that the thermal control system can better dissipate heat for the electronic platform, thereby further ensuring The electronic platform operates normally and reliably.
  • the air drive unit 120 is a centrifugal fan.
  • the centrifugal fan is fixed to the partition 50 by a bracket, and the centrifugal fan is disposed near the air inlet 10.
  • the bracket can be selected according to the working environment, and materials such as copper, aluminum, carbon steel, stainless steel and cast iron can be used.
  • the air drive unit 120 can also be configured as an axial fan.
  • the air driving device 120 may be disposed at the air outlet 20, or the air driving device 120 may be disposed at the air inlet 10 and the air outlet 20 to speed up air circulation of the thermal control system, and may be selected according to actual conditions. .
  • an air filter 130 is disposed at the air inlet 10.
  • the air filter 130 is added.
  • the air filter 130 is placed at the air inlet 10 to effectively prevent foreign matter such as dust from entering the heat exchange chamber, thereby effectively ensuring the service life of the heat exchange system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明公开了一种封闭式电子平台的热控制系统,包括两相互独立的换热腔室,每一换热腔室均具有进风口和出风口,在每一换热腔室内各设有一换热器,两换热器通过导管连通形成工质的循环回路,换热器包括若干微槽道热毛细管和两集流槽,若干微槽道热毛细管相互并联设置在两集流槽之间,两换热器的集流槽通过导管连通,其中,微槽道热毛细管具有若干相互平行设置的微槽道。本发明提升了封闭式电子平台的热控制系统内工质流动的驱动能力,进而提高热控制系统的散热效率,从而提高电子平台运行的可靠性。

Description

封闭式电子平台的热控制系统 技术领域 本发明涉及一种热控制领域, 尤其涉及一种封闭式电子平台的热控制系统。 背景技术 随着电子技术的进步, 电子器件和设备正向着高性能、 紧凑化、 小型化的方向发 展。芯片的集成度、封装密度以及工作频率也随之不断提高。高热流密度发热芯片(如 CPU、 GPU、 LED) 的功耗亦与日倶增。 而在许多工业、 军事领域, 尤其是通讯行业, 电子器件及设备需要放置在封闭型设备平台中, 以防止环境中灰尘、 腐蚀性气体、 霉 菌等对电子器件造成的损害。 但是, 封闭的环境同时也使得平台内电子器件散热环境 恶化, 从而极易导致电子器件的过热和失效。 因此, 亟需采用必要的热控制技术对封 闭型电子平台内的热量进行及时的排散, 从而保证电子平台高效可靠地运行。 现有技术中,通常利用工质流动的方式进行散热。工质流动的过程中吸热或放热, 从而实现封闭式电子平台内热量的排散。 但是, 现有技术中的热控制系统仍然存在散 热效率低下的问题, 从而影响了电子平台的正常运行。 上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。 发明内容 本发明解决了现有技术中的热控制系统存在的散热效率低下的问题。 根据本发明的一个方面, 提供了一种封闭式电子平台的热控制系统, 包括两相互 独立的换热腔室, 每一所述换热腔室均具有进风口和出风口, 在每一所述换热腔室内 各设有一换热器, 两所述换热器通过导管连通形成工质的循环回路, 所述换热器包括 若干微槽道热毛细管和两集流槽, 若干所述微槽道热毛细管相互并联设置在两所述集 流槽之间, 两所述换热器的集流槽通过所述导管连通, 其中, 所述微槽道热毛细管具 有若干相互平行设置的微槽道。 所述微槽道的截面为矩形、 梯形、 三角形、 波纹形或 " Ω "形。 所述的微槽道热毛细管的截面为矩形或梯形。 若干所述微槽道热毛细管相互平行设置。 所述封闭式电子平台的热控制系统还包括翅片, 该翅片固定连接在两相邻的所述 微槽道热毛细管之间。 所述换热腔室的进风口和 /或出风口处设有用于促进所述换热腔室内气体循环流 动的空气驱动装置。 所述进风口处设置有防尘网。 本发明封闭式电子平台的热控系统以微槽道热毛细管中的微槽道作为工质流通通 道。 工质在微槽道中流动相变而发生换热, 从而将电子平台中的热量排散到外界环境 中去。 由于该热控制系统应用了微槽道热毛细管的微槽道作为工质流通通道, 使得工 质在管道内受到毛细压差的作用。 毛细压差形成热毛细力, 热毛细力抽吸工质, 从而 加快了系统内工质流动的速度, 提高了系统的换热效率, 克服了现有技术中, 电子平 台中的热控制系统散热效率低下的困难。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1为本发明封闭式通讯电子平台的热控制系统的爆炸示意图; 图 2为图 1中换热器的结构示意图; 图 3为图 2中 A的局部放大结构示意图; 图 4为图 1中换热器的微槽道热毛细管一实施例的结构示意图; 图 5为图 4中 B的局部放大结构示意图; 图 6为图 1中换热器的微槽道热毛细管另一实施例的结构示意图; 图 7为图 6中 C的局部放大结构示意图。 本发明目的的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明。 具体实施方式 应当理解,此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组 合。 参照图 1至 7, 图 1为本发明封闭式通讯电子平台的热控制系统的爆炸示意图; 图 2为图 1中换热器的结构示意图; 图 3为图 2中 A的局部放大结构示意图; 图 4为 图 1中换热器的微槽道热毛细管一实施例的结构示意图; 图 5为图 4中 B的局部放大 结构示意图; 图 6为图 1中换热器的微槽道热毛细管另一实施例的结构示意图; 图 7 为图 6中 C的局部放大结构示意图。 在本发明实施例中,该封闭式电子平台的热控制系统包括两相互独立的换热腔室, 每一换热腔室均具有进风口 10和出风口 20。 在每一换热腔室内各设有一换热器, 两 换热器通过导管连通形成工质的循环回路。 每一换热器包括若干微槽道热毛细管 140 和两集流槽 80, 若干微槽道热毛细管 140相互并联设置在两集流槽 80之间, 若干微 槽道热毛细管 140的一端与一集流槽 80连通,若干微槽道热毛细管 140的另一端与另 一集流槽 80连通。 两换热器的集流槽 80通过导管连通。 其中, 每一微槽道热毛细管 140内均具有若干相互平行设置的微槽道 141。 两换热腔室相互独立, 为方便理解, 将两换热腔室分别定义为冷换热腔室和热换 热腔室。其中,冷换热腔室通过设置在该腔室上的进风口 10和出风口 20与外界连通。 热换热腔室通过设置在该腔室上的进风口 10和出风口 20与封闭式电子平台连通。 为 了加强该热控制系统的紧凑性, 减少系统占用封闭式电子平台的使用空间, 并且方便 换热系统的安装和维护, 冷换热腔室和热换热腔室同设在一具有一侧开口的箱体 30 内。 该箱体 30的开口处设置一箱盖 40, 箱盖 40覆盖箱体 30的开口处, 且箱盖 40与 箱体 30通过铆钉固定连接。 箱体 30内部设置隔板 50, 隔板 50与箱体 30的内表面紧 固, 将箱体 30分隔成相互独立的冷换热腔室和热换热腔室。 在箱体 30的冷换热腔室 设置与外界连通的进风口 10和出风口 20。在箱体 30的热换热腔室设置与封闭式电子 平台连通的进风口 10和出风口 20。 换热器设置为两个, 其中, 置于冷换热腔室中的换热器为冷凝器 60, 置于热换热 腔室中的换热器为蒸发器 70。 冷凝器 60包括若干并行排列的微槽道热毛细管 140和 两集流槽 80。 其中, 每一根微槽道热毛细管 140内并行排列着若干用于工质流通的微 槽道 141。两集流槽 80与微槽道热毛细管 140的两端部连通。 理所当然地, 蒸发器 70 与冷凝器 60的结构相同, 在此不再赘述。 连接冷凝器 60和蒸发器 70的导管分别为上升管 90和回流管 100。 其中, 上升管 90穿过隔板 50, 连通冷凝器 60中用于收集气体工质的集流槽 80与蒸发器 70中用于 收集气体工质的集流槽 80。 回流管 100穿过隔板 50, 连通冷凝器 60中用于收集液体 工质的集流槽 80与蒸发器 70中用于收集液体工质的集流槽 80。 上升管 90和回流管 100可以为单根, 也可以为多跟。 热控系统的工作原理: 封闭通讯电子平台内的热空气通过热换热腔室的进风口 10 进入到热换热腔室内,外界环境中的冷空气通过冷换热腔室的进风口 10进入到冷换热 腔室内。 热空气掠过蒸发器 70, 位于蒸发器 70中微槽道热毛细管 140的微槽道 141 内的液体工质吸收热空气带来的热量并受热蒸发变为气体工质。 气体工质上升进入到 蒸发器 70上端的集流槽 80, 并通过上升管 90穿过隔板 50, 进入到冷凝器 60上端的 集流槽 80。 随后气体工质分流至冷凝器 60中的各微槽道热毛细管 140的微槽道 141 中。 气体工质与外界环境中的冷空气进行热交换。 气态工质在这里冷凝放热变为液体 工质。 液体工质在冷凝器 60下端的集流槽 80汇合, 并通过回流管 100穿过隔板 50, 进入到蒸发器 70下端的集流槽 80内。液体工质在蒸发器 70微槽道热毛细管 140中的 微槽道 141所产生的热毛细力抽吸作用下向上流动, 并进入到微槽道热毛细管 140内 的微槽道 141内, 再次受热蒸发, 如此循环往复, 工质相变将封闭型通讯电子平台产 生的热量排散到外界环境中。 应当说明的是, 工质可以为水、 氨、 乙醇、 丙醇、 丙酮、 有机物、 制冷剂等任意 液态工质。 本发明封闭式电子平台的热控系统以微槽道热毛细管 140中的微槽道 141作为工 质流通通道。 工质在微槽道 141中流动相变而发生换热, 从而将电子平台中的热量排 散到外界环境中去。 由于该热控制系统应用了微槽道热毛细管 140的微槽道 141作为 工质流通通道, 使得工质在管道内受到毛细压差的作用。 毛细压差形成热毛细力, 热 毛细力抽吸工质, 从而加快了系统内工质流动的速度, 提高了系统的换热效率, 克服 了现有技术中, 电子平台中的热控制系统散热效率低下的困难。
进一步地,微槽道热毛细管 140的截面为矩形或梯形,微槽道 141的截面为矩形、 梯形、 三角形、 波纹形或 " Ω "形。 在本实施例中, 微槽道热毛细管 140的微槽道 141可设置为多种形状, 例如截面 可以为矩形、 梯形、 三角形、 波纹形或 " Ω "形等。 以便在微槽道 141内边角处形成 更强的热毛细力, 从而加速系统内工质的流通速度, 提高该热控制系统的散热效率。 进一步地, 为了使换热器能够具有更好的散热效果, 同时使换热器的结构更加整 齐美观, 若干微槽道热毛细管 140可呈彼此相互平行的设置。
进一步地, 微槽道热毛细管 140上设有翅片 110, 该翅片 110设置于两微槽道热 毛细管 140之间。 在本实施例中, 通过焊接等固定方式将翅片 110安装于两微槽道热毛细管 140之 间。 翅片 110的存在大大增大了换热面积, 进一步提升该热控制系统的换热效率, 从 而更好地为电子平台排散热量。 应当说明的是, 翅片 110可设置为若干个, 且其形状 可以为方形翅片、 波纹翅片、 百叶窗翅片、 异行切翅片、 弧形横切翅片等各种常用翅 片。 翅片 110材料根据工作环境可选择不同的材料, 可选用铜、 铝、 碳钢、 不锈钢、 铸铁等材料。
进一步地,换热腔室的进风口 10处设有用于促进换热腔室内气体循环流动的空气 驱动装置 120。 在冷换热腔室的进风口 10处设置一空气驱动装置 120, 促进冷凝器 60与外界环 境的空气对流。在热换热腔室的进风口 10处设置空气驱动装置 120,促进了蒸发器 70 与电子平台内部环境的空气对流。 空气驱动装置 120的设置加快了系统内空气的循环 流动的速度, 进一步提高了封闭式电子平台的热控制系统的散热效率, 使得该热控制 系统更好地为电子平台排散热量, 从而进一步确保了电子平台正常可靠地运行。 在本 实施例中, 空气驱动装置 120为离心风扇。离心风扇通过支架固定在隔板 50上, 且离 心风扇设置在进风口 10附近。 支架可根据工作环境选择不同的材料, 可选用铜、 铝、 碳钢、 不锈钢、铸铁等材料。 应当说明的是, 空气驱动装置 120也可设置为轴流风扇。 另外, 上述空气驱动装置 120亦可以设置在出风口 20处, 或者在进风口 10和出风口 20处同时设置空气驱动装置 120以加快热控系统的空气流通, 具体可根据实际情况进 行选择设定。
进一步地, 进风口 10处设置有防尘网 130。 在本实施例中,为了防止外界环境中的粉尘等大颗粒的异物通过进风口 10进入到 换热腔室内, 腐蚀腔室内的零件, 从而导致零件失效, 本实施例中增设防尘网 130。 该防尘网 130罩于进风口 10处, 从而有效防止粉尘等异物进入换热腔室内部,有效地 保障了该换热系统的使用寿命。
以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本发 明说明书及附图内容所 作的等效结构或等效流程变换,或直接或间接运用在其他相关 的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权 利 要 求 书 一种封闭式电子平台的热控制系统, 包括两相互独立的换热腔室, 每一所述换 热腔室均具有进风口和出风口, 在每一所述换热腔室内各设有一换热器, 两所 述换热器通过导管连通形成工质的循环回路, 所述换热器包括若干微槽道热毛 细管和两集流槽,若干所述微槽道热毛细管相互并联设置在两所述集流槽之间, 两所述换热器的集流槽通过所述导管连通, 其中, 所述微槽道热毛细管具有若 干相互平行设置的微槽道。 如权利要求 1所述的封闭式电子平台的热控制系统, 其中, 所述微槽道的截面 为矩形、 梯形、 三角形、 波纹形或 " Ω "形。 如权利要求 1所述的封闭式电子平台的热控制系统, 其中, 所述的微槽道热毛 细管的截面为矩形或梯形。 如权利要求 1所述的封闭式电子平台的热控制系统, 其中, 若干所述微槽道热 毛细管相互平行设置。 如权利要求 4所述的封闭式电子平台的热控制系统, 其中, 还包括翅片, 该翅 片固定连接在两相邻的所述微槽道热毛细管之间。 如权利要求 1所述的封闭式电子平台的热控制系统, 其中, 所述换热腔室的进 风口和 /或出风口处设有用于促进所述换热腔室内气体循环流动的空气驱动装 置。 如权利要求 1或 6所述的封闭式电子平台的热控制系统, 其中, 所述进风口处 设置有防尘网。
PCT/CN2014/078831 2013-12-31 2014-05-29 封闭式电子平台的热控制系统 WO2014177102A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14791464.2A EP3091826A4 (en) 2013-12-31 2014-05-29 Thermal control system for closed electronic platform
US15/033,075 US20160299544A1 (en) 2013-12-31 2014-05-29 Thermal Control System for Closed Electronic Platform

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310753812.9 2013-12-31
CN201310753812.9A CN104754917A (zh) 2013-12-31 2013-12-31 封闭式电子平台的热控制系统

Publications (2)

Publication Number Publication Date
WO2014177102A2 true WO2014177102A2 (zh) 2014-11-06
WO2014177102A3 WO2014177102A3 (zh) 2014-12-18

Family

ID=51844031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078831 WO2014177102A2 (zh) 2013-12-31 2014-05-29 封闭式电子平台的热控制系统

Country Status (4)

Country Link
US (1) US20160299544A1 (zh)
EP (1) EP3091826A4 (zh)
CN (1) CN104754917A (zh)
WO (1) WO2014177102A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568334A (zh) * 2016-10-21 2017-04-19 东莞市丰瑞德温控技术有限公司 一种户外移动通信基站用高效微通道热交换系统
CN112135483A (zh) * 2020-09-23 2020-12-25 江西中绿北斗科技控股有限公司 一种车载定位用主板的散热通风结构

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3286513B1 (en) * 2015-04-21 2019-09-04 Aavid Thermalloy, LLC Thermosiphon with multiport tube and flow arrangement
CN105813437B (zh) * 2016-03-21 2018-01-09 何祉欣 一种精密机床类密封式电控柜换热装置
CN110145953A (zh) * 2019-05-28 2019-08-20 苏州科技大学 一种分离式微槽道毛细虹吸管式热交换机
WO2021168461A1 (en) * 2020-02-21 2021-08-26 North American Electric, Inc. Vortex cooling tunnel in variable frequency drive
US11342731B1 (en) 2021-01-19 2022-05-24 Peopleflo Manufacturing, Inc. Electrical control panel with cooling system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279360A (en) * 1985-10-02 1994-01-18 Modine Manufacturing Co. Evaporator or evaporator/condenser
US6119767A (en) * 1996-01-29 2000-09-19 Denso Corporation Cooling apparatus using boiling and condensing refrigerant
DE19723955A1 (de) * 1996-06-12 1998-03-26 Denso Corp Kühlvorrichtung mit Kühlmittel-Verdampfung und -Kondensierung
US6104602A (en) * 1997-07-31 2000-08-15 General Electric Company Compact electrical equipment enclosure
JP4178719B2 (ja) * 2000-05-19 2008-11-12 株式会社デンソー 沸騰冷却装置
US7080683B2 (en) * 2004-06-14 2006-07-25 Delphi Technologies, Inc. Flat tube evaporator with enhanced refrigerant flow passages
JP5045056B2 (ja) * 2005-11-04 2012-10-10 株式会社デンソー 冷却装置およびその製造方法
WO2009105454A2 (en) * 2008-02-22 2009-08-27 Liebert Corporation Laminated sheet manifold for microchannel heat exchanger
WO2010145434A1 (zh) * 2009-06-15 2010-12-23 华为技术有限公司 一种热交换器、热交换器的散热方法以及通信设备
CN102607304A (zh) * 2011-01-21 2012-07-25 苏州昆拓热控系统股份有限公司 整体式热管热交换器
CN103307658A (zh) * 2012-03-13 2013-09-18 华为技术有限公司 一种热交换器及一种机柜
CN203349682U (zh) * 2013-05-15 2013-12-18 上海鹰峰电子科技有限公司 高性能复合结构超导平板热管
CN203340448U (zh) * 2013-06-05 2013-12-11 苏州昆拓热控系统股份有限公司 集成式通讯机柜系统
CN103307917B (zh) * 2013-06-27 2015-09-30 广州市日森机械股份有限公司 一种微通道散热器
CN103776285B (zh) * 2014-02-20 2015-09-30 杭州沈氏节能科技股份有限公司 一种微通道换热器
CN104089498B (zh) * 2014-07-31 2016-03-09 杭州沈氏节能科技股份有限公司 一种新型微通道换热器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP3091826A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568334A (zh) * 2016-10-21 2017-04-19 东莞市丰瑞德温控技术有限公司 一种户外移动通信基站用高效微通道热交换系统
CN112135483A (zh) * 2020-09-23 2020-12-25 江西中绿北斗科技控股有限公司 一种车载定位用主板的散热通风结构
CN112135483B (zh) * 2020-09-23 2022-11-04 江西中绿北斗科技控股有限公司 一种车载定位用主板的散热通风结构

Also Published As

Publication number Publication date
WO2014177102A3 (zh) 2014-12-18
EP3091826A4 (en) 2017-01-11
EP3091826A2 (en) 2016-11-09
US20160299544A1 (en) 2016-10-13
CN104754917A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2014177102A2 (zh) 封闭式电子平台的热控制系统
US7946112B2 (en) Exhaust heat recovery device
RU2524058C2 (ru) Охлаждающий модуль для охлаждения электронных элементов
JP2005331233A5 (zh)
WO2017148197A1 (zh) 散热设备
EP2568789B1 (en) Heat exchanger
JP7152796B2 (ja) 水冷ラジエータ
CN106304805A (zh) 一种板翅式微循环散热器及微循环换热系统
US7934540B2 (en) Integrated liquid cooling unit for computers
US20090065186A1 (en) Condenser assembly
CN107062963B (zh) 一种用于毛细泵环的交错式微通道冷凝器
JP2015062882A (ja) 除湿装置
US20180132386A1 (en) Radiator and server cooling system including the same
CN219577681U (zh) 散热装置及工业控制装置
TWM554979U (zh) 相變化蒸發器及相變化散熱裝置
KR101210570B1 (ko) 열교환기
TWI706118B (zh) 浸入式冷卻設備
KR101582146B1 (ko) 습-건식 다중유로열교환기
WO2015072128A1 (ja) 配管構造、それを用いた冷却装置、および冷媒蒸気輸送方法
CN206118284U (zh) 一种板翅式微循环散热器及微循环换热系统
JP2017070924A (ja) 除湿装置
CN104582419A (zh) 一种用于通讯机柜的换热器
RU2023122103A (ru) Система кондиционирования воздуха
CN111623655B (zh) 热交换装置
CN219938824U (zh) 功率变换设备用散热装置及功率变换设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791464

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15033075

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014791464

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014791464

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE