WO2014176815A1 - 直下式背光源及液晶显示装置 - Google Patents

直下式背光源及液晶显示装置 Download PDF

Info

Publication number
WO2014176815A1
WO2014176815A1 PCT/CN2013/077194 CN2013077194W WO2014176815A1 WO 2014176815 A1 WO2014176815 A1 WO 2014176815A1 CN 2013077194 W CN2013077194 W CN 2013077194W WO 2014176815 A1 WO2014176815 A1 WO 2014176815A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
prism unit
unit structure
liquid crystal
prism
Prior art date
Application number
PCT/CN2013/077194
Other languages
English (en)
French (fr)
Inventor
张春兵
晏斌
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/358,269 priority Critical patent/US9671645B2/en
Publication of WO2014176815A1 publication Critical patent/WO2014176815A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/34Colour display without the use of colour mosaic filters

Definitions

  • the present disclosure relates to a direct type backlight and a liquid crystal display device. Background technique
  • a conventional liquid crystal display device generally realizes color display characteristics through a color filter substrate.
  • a conventional liquid crystal display device includes: a color filter substrate and an array substrate of a pair of boxes, a liquid crystal layer disposed between the color filter substrate and the array substrate, and a backlight disposed on a side of the array substrate facing away from the color filter substrate .
  • the color filter substrate comprises: a substrate and a color filter layer disposed on the substrate, the color filter layer comprises a plurality of color pixels, each color pixel corresponding to one color, usually one of three primary colors of red, green and blue Kind.
  • the backlight emits light in the spectral range covering red, green, and blue colors
  • one color pixel allows only the light of the corresponding color to pass through and absorbs the light of the other two colors, thereby realizing the color display of the liquid crystal display device.
  • the present disclosure provides a direct type backlight and a liquid crystal display device for improving transmittance of a liquid crystal display device.
  • a direct type backlight comprising: a prism member having a plurality of prism unit structures; a plurality of rows of light sources located under the prism members, and each row of light sources corresponding to a prism unit structure, each The discharge light source comprises a plurality of light sources, and a plurality of apertures located between the prism member and the plurality of rows of light sources, and the divergent light emitted by each of the light sources is converted into one or two linear rays by a corresponding aperture, each of the linear light beams After being refracted by the corresponding prism unit structure, seven visible colors of visible light are dispersed.
  • each of the prism unit structures has a triangular or trapezoidal cross-sectional shape, and each bundle of linear light illuminates an incident angle on a bottom surface of the corresponding prism unit structure and a deflection of the emitted light with respect to the incident light after being refracted by the prism unit structure.
  • the angle satisfies the following relationship:
  • ⁇ - ⁇ + arcsin(V n 2 - sin 2 A sin a - sin A cos a)
  • is the deflection angle of the outgoing light with respect to the incident light
  • X is the angle between the bottom surface and the side surface in the prism unit structure
  • is the light incident angle
  • is the refractive index of the prism.
  • each of the prism unit structures has a semi-circular cross-sectional shape, and each bundle of linear light illuminates an incident angle on a bottom surface of the corresponding prism unit structure and a deflection of the exiting light with respect to the incident light after being refracted by the prism unit structure.
  • is the deflection angle of the outgoing light with respect to the incident light
  • is the incident angle of the light
  • is the refractive index of the prism
  • each of the apertures is a first flat aperture, the first flat aperture having a linear first aperture slit, the direction of the light slit being parallel or perpendicular to the lengthwise direction of the prism member.
  • a first flat stop is disposed between each of the light sources and the corresponding prism unit structure such that the divergent light emitted by each of the light sources is converted by the first light of the corresponding first flat stop.
  • a bundle of linear light is incident on the corresponding prism unit structure.
  • two first flat apertures are disposed between each light source and the corresponding prism unit structure, and the light source is located between the two first flat apertures such that the divergent light emitted by each of the light sources passes through the corresponding
  • the first light of the two first flat apertures is quilted and converted into two linear light beams, which are incident on the corresponding prism unit structure.
  • each prism unit structure is symmetrical with respect to the mid-perpendicular line of the bottom surface of the prism unit structure, and each light source is correspondingly located between two first flat apertures disposed symmetrically in an inverted V shape.
  • the two first flat apertures that are symmetrically disposed in an inverted V shape are an integrated structure.
  • a baffle is provided between each adjacent two prism unit structures for mitigating the interference of the outgoing light of the adjacent two prism unit structures.
  • a liquid crystal display device comprising: a liquid crystal panel including a plurality of pixels; and the above-described direct type backlight provided on one side of the liquid crystal panel, each bundle of linear light passing through a corresponding prism unit The visible light of the seven colors formed by the dispersion after the structure is refracted is irradiated on one pixel in the liquid crystal panel.
  • the liquid crystal panel includes: an array substrate and a counter substrate, and a liquid crystal layer disposed between the array substrate and the opposite substrate, disposed on a side of the opposite substrate facing away from the array substrate, having a plurality of openings Black matrix, each opening of the black matrix corresponds to one pixel of the liquid crystal panel, a first polarizer disposed on a side of the black matrix facing away from the array substrate, and a second polarizer disposed on a side of the array substrate facing away from the opposite substrate.
  • the direct type backlight is disposed on a side of the first polarizer facing away from the array substrate.
  • L is the distance between the array substrate and the direct type backlight
  • W is the width of each pixel on the array substrate
  • is the angle between the incident light and the normal line perpendicular to the array substrate, which is the outgoing light
  • ⁇ 2 is the deflection angle of the red light having a wavelength of 766 nm.
  • each opening of the black matrix includes seven sub-openings that are spaced apart for the passage of visible light of a corresponding color.
  • the divergent light emitted by each light source is converted into one beam or two linear beams by using a diaphragm, and then each beam of linear light is refracted by the prism by using a prism splitting action.
  • the seven colors of visible light are correspondingly illuminated on one pixel of the liquid crystal panel, and the liquid crystal display device can realize full color gamut display by controlling the opening and closing of each pixel.
  • the embodiment of the present disclosure does not require a color filter layer, reduces light loss, and thereby improves the transmittance of the liquid crystal display device.
  • FIG. 1 is a schematic structural view of a direct type backlight according to a first embodiment of the present disclosure
  • FIG. 2 is an optical path diagram of a prism unit structure having a triangular cross section shape according to an embodiment of the present disclosure
  • each prism unit structure is semicircular in the embodiment of the present disclosure
  • Figure 4 is a schematic structural view of the diaphragm of Figure 1;
  • FIG. 5 is a schematic structural diagram of a direct type backlight provided by Embodiment 2 of the present disclosure
  • FIG. 6 is a schematic structural diagram of a liquid crystal display device according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a full color gamut display principle of a liquid crystal display device according to an embodiment of the present disclosure.
  • the present disclosure provides a direct type backlight, which converts white light generated by a light source into visible light of seven colors by using a prism splitting function, and can realize full color gamut display of the liquid crystal display device by controlling opening and closing of each pixel. Since the color filter layer is not required, the light loss is reduced, thereby increasing the transmittance of the liquid crystal display device.
  • the direct type backlight of the first embodiment of the present disclosure includes: a prism member 1 having a plurality of prism unit structures 11; a plurality of rows of light sources 2 located under the prism member 1, each row of light sources 2 including a plurality of light sources 21, and each row of light sources 2 corresponds to a prism unit structure 11; and a plurality of apertures 3 between the prism member 1 and the plurality of rows of light sources 2, and each of the apertures 3 and a prism unit structure 11 and a row of light sources 21 corresponds.
  • each of the prism unit structures 11 on the prism member 1 may be the same and uniformly arranged.
  • the cross-sectional shape of each of the prism unit structures 11 is, for example, a triangle, a trapezoid or a semicircle.
  • Each of the apertures 3 converts the divergent light emitted by the corresponding light source 21 into one or two linear beams of light.
  • Each bundle of linear light is incident on the corresponding prism unit structure 111 at a certain incident angle, and is refracted by the corresponding prism unit structure 11 to form visible light of seven colors, that is, red, orange, and yellow in a wavelength range of 405 nm to 766 nm.
  • the visible light of the seven colors formed after each of the linear light is refracted is irradiated on a corresponding one of the pixels in the liquid crystal panel 5.
  • the liquid crystal display device can realize full color gamut display by controlling the opening and closing of each pixel. Compared with the prior art, the embodiment of the present disclosure does not require a color filter layer, which reduces light loss, thereby improving the transmittance of the liquid crystal display device.
  • each bundle of linear light is refracted by the corresponding prism unit structure 11 to form visible light of seven colors
  • the incident angle of each bundle of linear light irradiated on the prism unit structure 11 and the refracted light after being refracted by the corresponding prism unit structure 11 With respect to the deflection angle of the incident light, it is necessary to satisfy a specific relationship with the refractive index of the prism unit structure 11 and the cross-sectional shape of each prism unit structure 11 in the prism member 1.
  • Fig. 2 is a view of the optical path when the cross-sectional shape of each prism unit structure 11 is a triangle in the embodiment of the present disclosure.
  • the cross-sectional shape of each prism unit structure 11 is a triangle or a trapezoid
  • the incident angle of each bundle of linear light on the bottom surface of the corresponding prism unit structure 11 and the deflection of the emitted light with respect to the incident light after being refracted by the prism unit structure 11 The angle satisfies the following relationship:
  • ⁇ - a + arcsin (V n 2 - sin 2 A sin a - sin A cos a) (1)
  • the deflection angle of the outgoing light with respect to the incident light
  • the bottom surface and the side surface of the prism unit structure 11 The angle between the two ranges from 20. ⁇ 70.
  • the incident angle of light
  • n the refractive index of the prism.
  • each of the prism unit structures 11 in the prism member 1 is triangular or trapezoidal
  • the incident angle A of each bundle of linear light incident into the prism member 1 and the refraction after being refracted by the corresponding prism unit structure 11 The deflection angle ⁇ of the light with respect to the incident light needs to satisfy the above relation (1), so that each of the linear light beams is refracted by the corresponding prism unit structure 11 to form visible light of seven colors.
  • Fig. 3 is a view of the optical path when the cross-sectional shape of each of the prism unit structures 11 is semicircular in the embodiment of the present disclosure.
  • the angle of incidence of each of the beams on the bottom surface of the corresponding prism unit structure 11 and the deflection angle of the emitted light with respect to the incident light after being refracted by the prism unit structure 11 Meet the following relationship:
  • is the deflection angle of the outgoing light with respect to the incident light
  • is the incident angle of the light
  • n is the refractive index of the prism
  • each prism unit structure 11 in the prism member 1 when the cross-sectional shape of each prism unit structure 11 in the prism member 1 is semicircular, it is only necessary to satisfy the corresponding relationship (2) to refract each beam of linear light through the corresponding prism unit structure 11. After that, seven colors of visible light are formed.
  • the angle of incidence of each beam of linear illumination on the underside of the prism unit structure is related to the position and orientation of the pupil 3. For example, the angle of incidence of each linear light can be changed by adjusting the tilt angle of the diaphragm 3.
  • the divergent light emitted by each of the light sources 21 is converted into one or two linear rays by the aperture 3, specifically by the following means.
  • Figure 4 is a schematic view showing the structure of the diaphragm 3 of Figure 1.
  • the aperture 3 may be a first flat aperture 31, and the first flat aperture 31 may have a linear first optical slit.
  • a first plate stop 31 may be disposed between each of the light sources 21 and the corresponding prism unit structure 11 such that the divergent light emitted by each of the light sources 21 is quilted by a corresponding first light and converted into a bundle of linear light. And injected into the corresponding prism unit structure 11.
  • the number of the apertures 3 is the same as the number of the light sources 21, and each aperture corresponds to one light source 21, and the divergent light emitted by the light source 21 is converted into a bundle of linear light, and is incident into the prism unit structure at a certain incident angle.
  • the longitudinal direction of the first light quilting may be parallel or perpendicular to the longitudinal direction of the prism unit structure 11.
  • each of the light sources 21 corresponds to a first flat aperture 31 such that the divergent light emitted from each of the light sources 21 is converted into a bundle of linear light by a first flat aperture 31, but the disclosure is not limited thereto. It is also possible to convert the divergent light emitted by each of the light sources 21 into two linear beams by using the two first flat apertures 31.
  • two first flat apertures 31 as shown in FIG. 4 are disposed between each light source 21 and the corresponding prism unit structure 11, and the light source 21 is located at two.
  • each of the light sources 21 is converted into two linear beams by the corresponding two first light slits, and is incident on the corresponding prism unit structure 11.
  • the two bundles of linear light are refracted by the corresponding prism unit structure 11, they are respectively irradiated on two different pixels in the liquid crystal panel 5.
  • the light-emitting surface of each prism unit structure 11 is symmetrical with respect to the vertical line of the bottom surface of the prism unit structure 11, that is, the cross-sectional shape of each prism unit structure 11 is an isosceles triangle, an isosceles trapezoid or a semicircle. .
  • Each of the light sources 21 is located between the two first flat apertures 31 arranged symmetrically in an inverted V shape such that the divergent light emitted by each of the light sources 21 passes through the first light of the corresponding two first flat apertures 31.
  • the two linear rays are converted, and the two linear lights are respectively incident on the corresponding prism unit structure 11 at the same incident angle.
  • each edge The cross-sectional shape of the mirror unit structure 11 is an isosceles triangle, and the two first flat apertures 31 arranged symmetrically in an inverted V shape are symmetric with respect to the vertical bisector of the bottom side of the isosceles triangle, and the light source 21 is located on the two first flat plates.
  • the divergent light emitted by the light source 21 is converted into two linear rays by the corresponding two first optical slits, and the two linear light beams are respectively injected into the same prism unit structure at the same incident angle.
  • the two first flat apertures 31, which are arranged in an inverted V-shape, can be of an integrated structure, thereby facilitating the mounting of the two first flat apertures 31 in a direct-type backlight.
  • a baffle 4 may be disposed between each adjacent two prism unit structures 11 for interference between light emitted from adjacent two prism unit structures 11.
  • each of the baffles 4 is located between the adjacent two triangular prism unit structures 11 and perpendicular to the bottom surface of the prism unit structure 11.
  • the divergent light emitted by each light source is first converted into one beam or two beams of linear light by using an aperture, and then each beam of linear light is made by the prism splitting action. After being refracted by the prism, visible light of seven colors is dispersed, and correspondingly irradiated on one pixel of the liquid crystal panel.
  • the liquid crystal display device can realize full color gamut display by controlling the opening and closing of each pixel; compared with the prior art, the embodiment of the present disclosure does not require a color filter layer, thereby reducing light loss, thereby improving the liquid crystal display device. Transmittance.
  • FIG. 6 is a schematic structural diagram of a liquid crystal display device according to an embodiment of the present disclosure.
  • the liquid crystal display device provided in this embodiment includes a liquid crystal panel 5 and a direct type backlight according to an embodiment of the present disclosure provided on one side of the liquid crystal panel.
  • the liquid crystal panel 5 includes a plurality of pixels.
  • the liquid crystal panel 5 may include an array substrate 52 and a counter substrate 51 of the pair of substrates, and a liquid crystal layer 53 disposed between the array substrate 52 and the opposite substrate 51, and disposed on the opposite substrate 51 away from the array substrate 52.
  • the black matrix 56 having a plurality of openings on the side is disposed on the first polarizer 54 on the black matrix 56 facing away from the array substrate 52, and is disposed on the second polarizer 55 on the array substrate 52 facing away from the opposite substrate 51.
  • the direct type backlight is disposed on a side of the first polarizer 54 facing away from the array substrate 52.
  • Each opening of the black matrix corresponds to one pixel in the liquid crystal panel 5.
  • the direct type backlight forms visible light of seven colors and illuminates one pixel of the liquid crystal panel 5 through a corresponding one of the openings of the black matrix 56.
  • the light source is controlled to be controlled by controlling the opening and closing of each pixel, thereby enabling the liquid crystal display device to realize full color gamut display.
  • the array substrate 52 is, for example, a Thin Film Transistor (TFT) P ⁇ 'J substrate, which enables the liquid crystal display device to realize full color gamut display by switching the thin film transistor.
  • TFT Thin Film Transistor
  • FIG. 7 is a schematic diagram showing the principle of full color gamut display of a liquid crystal display device according to an embodiment of the present disclosure.
  • the distance from the backlight to the array substrate satisfies the following relationship:
  • L W * (cos ⁇ ) I (tan ⁇ ⁇ - tan ⁇ 2 ) (3)
  • L is the distance between the array substrate and the direct type backlight
  • W is the width of each pixel on the array substrate
  • is The angle between the incident light and the normal line perpendicular to the array substrate
  • is the deflection angle of the emitted light as the violet light of the wavelength 405 nm
  • ⁇ 2 is the deflection angle of the red light of the outgoing light of 766 nm.
  • the distance L between the array substrate and the direct type backlight can be defined as the distance between the intermediate plane between the top surface and the bottom surface of the prism member and the array substrate, as shown in FIG.
  • the refractive index ranges from 1.470 to 1.455, and the width of each pixel in the array substrate 52 is 0.5 mm, between the bottom surface and the side surface of the prism unit structure 11.
  • the angle ⁇ is 30.
  • the distance from the direct-type backlight to the array substrate is 53.6 mm; when the angle ⁇ between the bottom surface and the side surface of the prism unit structure 11 is 45°, the direct-type backlight can be obtained by calculation to
  • the distance between the array substrate is 31.5 mm, and the angle ⁇ between the bottom surface and the side surface in the prism unit structure 11 is 60.
  • the distance from the direct type backlight to the array substrate was 15.2 mm.
  • the mouth passes the visible light of the seven colors respectively from the corresponding sub-openings, thereby reducing the interference between the visible light of the seven colors in each pixel.
  • the divergent light emitted by each light source is converted into one or two linear lights by using a diaphragm, and then each beam of light is made by the prism splitting action. After the prism is refracted, visible light of seven colors is formed, and correspondingly irradiated on one pixel of the liquid crystal panel, and the liquid crystal display device can realize full color gamut display by controlling the opening and closing of each pixel.
  • the embodiment of the present disclosure does not require a color filter layer to reduce light loss, thereby improving the transmittance of the liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种直下式背光源及包括其的液晶显示装置。该直下式背光源包括:具有多个棱镜单元结构(11)的棱镜构件(1);位于棱镜构件(1)下方的多排光源(2),每排光源(2)包括多个光源(21),且每排光源(2)与一个棱镜单元结构(11)对应;位于棱镜构件(1)和所述多排光源(2)之间的多个光阑(3),每个光源(21)发出的发散的光经过对应的光阑(3)后转换成一束或两束线形光,每束线形光经对应的棱镜单元结构(11)折射后分散形成七种颜色的可见光。

Description

直下式背光源及液晶显示装置 技术领域
本公开涉及一种直下式背光源及液晶显示装置。 背景技术
目前, 用于彩色显示的液晶显示装置已经广泛的应用在生产和生活中。 现有的液晶显示装置通常通过彩膜基板来实现彩色显示特性。 具体地, 常规 的液晶显示装置包括: 对盒的彩膜基板和阵列基板, 设置于彩膜基板和阵列 基板之间的液晶层, 以及设置于所述阵列基板背离彩膜基板一侧的背光源。 该彩膜基板包括: 基板和设置于基板上的彩色滤光层, 所述彩色滤光层包括 多个彩色像素, 每个彩色像素对应一种颜色, 通常是红、 绿、 蓝三原色中的 一种。 当背光源发出光谱范围覆盖红、 绿、 蓝三种颜色的光线时, 一个彩色 像素仅允许对应颜色的光透过而吸收另外两种颜色的光,从而实现液晶显示 装置的彩色显示。
在上述的具有彩膜基板的常规液晶显示装置中,因彩色滤光层的滤光作 用, 光损失较大, 导致液晶显示装置的透过率较低。 发明内容
本公开提供一种直下式背光源及液晶显示装置,用于提高液晶显示装置 的透过率。
根据本公开的实施例, 提供了一种直下式背光源, 其包括: 具有多个棱 镜单元结构的棱镜构件; 位于棱镜构件下方的多排光源, 且每排光源与一个 棱镜单元结构对应, 每排光源包括多个光源, 和位于棱镜构件和多排光源之 间的多个光阑,每个光源发出的发散的光经过对应的光阑后转换成一束或两 束线形光,每束线形光经对应的棱镜单元结构折射后分散形成七种颜色的可 见光。
在一个示例中,每个棱镜单元结构的横截面形状为三角形或梯形,每束 线形光照射在对应棱镜单元结构的底面上的入射角和经棱镜单元结构折射 后出射光相对于入射光的偏转角满足以下关系式:
β=Α-α+ arcsin(V n2 - sin2 A sin a - sin A cos a) 其中, β为出射光相对于入射光的偏转角, (X为棱镜单元结构中底面与侧面 之间的夹角, Α为光线入射角且 η为棱镜的折射率。
在一个示例中,每个棱镜单元结构的横截面形状为半圓形,每束线形光 照射在对应棱镜单元结构的底面上的入射角和经棱镜单元结构折射后出射 光相对于入射光的偏转角满足以下关系式: p=2A - 2 arcsm
V n
其中, β为出射光相对于入射光的偏转角, Α为光线入射角且 η为棱镜的折 射率。
在一个示例中,每个光阑为第一平板光阑, 第一平板光阑具有一个直线 状的第一光阑缝, 光阑缝的方向与棱镜构件的长度方向平行或者垂直。
在一个示例中,每个光源与对应的棱镜单元结构之间设置一个第一平板 光阑,使得每个光源发出的发散的光通过对应的一个第一平板光阑的第一光 阑缝后转换成一束线形光, 并射入对应的棱镜单元结构。
在一个示例中,每个光源与对应的棱镜单元结构之间设置两个第一平板 光阑, 且光源位于两个第一平板光阑之间, 使得每个光源发出的发散的光分 别通过对应的两个第一平板光阑的第一光阑缝后转换成两束线形光,射入对 应的棱镜单元结构。
在一个示例中,每个棱镜单元结构的出光面相对于该棱镜单元结构底面 的中垂线对称, 且每个光源对应的位于呈倒 V形对称设置的两个第一平板 光阑之间。
在一个示例中, 呈倒 V形对称设置的两个第一平板光阑为一体化结构。 在一个示例中,每相邻的两个棱镜单元结构之间设置一个挡板,用于减 轻相邻的两个棱镜单元结构的出射光的干涉现象。
根据本公开的实施例, 提供了一种液晶显示装置, 其包括: 包括多个像 素的液晶面板; 和设置于液晶面板一侧的上述的直下式背光源, 每束线形光 经对应的棱镜单元结构折射后分散形成的七种颜色的可见光对应的照射在 液晶面板中的一个像素上。
在一个示例中, 液晶面板包括: 对盒的阵列基板和对向基板, 设置于阵 列基板和对向基板之间的液晶层, 设置于对向基板上背离阵列基板一侧的、 具有多个开口的黑矩阵, 黑矩阵的每个开口与液晶面板的一个像素对应, 设 置于黑矩阵上背离阵列基板一侧的第一偏光片,和设置于阵列基板上背离对 向基板一侧的第二偏光片。该直下式背光源设置于第一偏光片背离阵列基板 的一侧。
在一个示例中, 阵列基板与直下式背光源之间的距离满足以下关系式: L = W * (cos γ) I (tan βχ - tan β2)
其中, L为阵列基板与直下式背光源之间的距离, W为每个像素在阵列基板 上的宽度, γ为入射光与垂直于阵列基板的法线之间的夹角, 为出射光 为波长 405 nm的紫光的偏转角, β 2为出射光为波长 766 nm的红光的偏转 角。
在一个示例中,黑矩阵的每个开口包括间隔排列的分别供对应颜色的可 见光通过的七个子开口。
在本公开提供的直下式背光源中,首先利用光阑将每个光源发出的发散 的光转换成一束或两束线形光, 然后利用棱镜的分光作用, 使每束线形光经 棱镜折射后形成七种颜色的可见光, 并对应的照射在液晶面板的一个像素 上, 通过控制各个像素的开闭即可使液晶显示装置实现全色域显示。 本公开 的实施例与现有技术先比, 不需要彩色滤光层, 减少了光损失, 从而提高了 液晶显示装置的透过率。 附图说明
为了更清楚地说明本公开或现有技术中的技术方案,下面将对本公开提 供的技术方案或现有技术描述中所需要使用的附图作筒单地介绍,显而易见 地,下面描述中的附图仅仅是本公开的技术方案的部分具体实施方式图示说 明, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1为本公开实施例一提供的一种直下式背光源的结构示意图; 图 2 为本公开实施例中各个棱镜单元结构的横截面形状为三角形时的 光路图;
图 3 为本公开实施例中各个棱镜单元结构横截面形状为半圓形时的光 路图;
图 4为图 1中光阑的一种结构示意图;
图 5为本公开实施例二提供的一种直下式背光源的结构示意图; 图 6为本公开实施例提供的一种液晶显示装置的结构示意图; 和 图 7为本公开实施例提供的液晶显示装置的全色域显示原理示意图。 具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本公开一部分实施例, 而 不是全部的实施例。基于本公开中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领 域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权 利要求书中使用的 "第一"、 "第二" 以及类似的词语并不表示任何顺序、 数 量或者重要性, 而只是用来区分不同的组成部分。 同样, "一个" 或者 "一" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "连接" 或者 "相 连"等类似的词语并非限定于物理的或者机械的连接, 而是可以包括电性的 连接, 不管是直接的还是间接的。 "上"、 "下"、 "左"、 "右" 等仅用于表示 相对位置关系, 当被描述对象的绝对位置改变后, 则该相对位置关系也相应 地改变。
本公开提供了一种直下式背光源,其利用棱镜的分光作用,将光源产生 的白光转换成七种颜色的可见光,通过控制各个像素的开闭即可使液晶显示 装置实现全色域显示, 因不需要彩色滤光层, 减少了光损失, 从而提高了液 晶显示装置的透过率。
为了使本领域技术人员更好的理解本公开的技术方案,下面结合说明书 附图对本公开实施例进行详细的描述。
如图 1所示,本公开实施例一的直下式背光源包括: 具有多个棱镜单元 结构 11的棱镜构件 1 ; 位于棱镜构件 1下方的多排光源 2, 每一排光源 2包 括多个光源 21 , 且每排光源 2与一个棱镜单元结构 11对应; 以及位于棱镜 构件 1和多排光源 2之间的多个光阑 3 , 且每个光阑 3与一个棱镜单元结构 11和一排光源 21对应。
例如, 棱镜构件 1上的各个棱镜单元结构 11的形状、 大小可相同, 并 均匀排列。 每个棱镜单元结构 11 的横截面形状例如为三角形、 梯形或半圓 形。每个光阑 3将对应的光源 21发出的发散的光转化成一束或两束线形光。 每束线形光以一定的入射角射入对应的棱镜单元结构 111 , 经对应的棱镜单 元结构 11折射后分散形成七种颜色的可见光,即波长范围在 405 nm~766 nm 的红、橙、 黄、绿、 蓝、 青、 紫七种颜色的可见光, 其中紫光波长为 405 nm, 红光波长为 766 nm。 每束线形光折射后形成的七种颜色的可见光照射在在 液晶面板 5中的对应的一个像素上。通过控制各个像素的开闭即可使液晶显 示装置实现全色域显示。 本公开的实施例与现有技术相比, 不需要彩色滤光 层, 减少了光损失, 从而提高了液晶显示装置的透过率。
为了保证每束线形光经对应的棱镜单元结构 11折射后都形成七种颜色 的可见光, 每束线形光照射在棱镜单元结构 11上的入射角、 以及经对应的 棱镜单元结构 11折射后出射光相对于入射光的偏转角, 需要满足与棱镜单 元结构 11的折射率、棱镜构件 1中的各个棱镜单元结构 11的横截面形状的 特定关系。
图 2为本公开实施例中各个棱镜单元结构 11的横截面形状为三角形时 的光路图。 当每个棱镜单元结构 11 的横截面形状为三角形或梯形时, 每束 线形光照射在对应棱镜单元结构 11的底面上的入射角和经棱镜单元结构 11 折射后出射光相对于入射光的偏转角满足以下关系式:
β=Α- a+ arcsin(V n2 - sin2 A sin a - sin A cos a) ( 1 ) 其中, β为出射光相对于入射光的偏转角, α为棱镜单元结构 11中底面与侧 面之间的夹角, 范围在 20。~70。之间, Α为光线入射角, n为棱镜的折射率。
也就是说, 当棱镜构件 1中的各个棱镜单元结构 11的横截面形状为三 角形或梯形时, 每束线形光射入棱镜构件 1的入射角 A, 与经对应棱镜单元 结构 11 折射后的出射光线相对于入射光的偏转角 β 需要满足上述关系式 ( 1 ), 才能使每束线形光经对应的棱镜单元结构 11折射后都形成七种颜色 的可见光。
图 3为本公开实施例中各个棱镜单元结构 11横截面形状为半圓形时的 光路图。 当每个棱镜单元结构 11 的横截面形状为半圓形时, 每束光线照射 在对应棱镜单元结构 11的底面上的入射角和经棱镜单元结构 11折射后出射 光相对于入射光的偏转角满足以下关系式:
sin A
β=2Α― 2 arcsin (2 )
n 其中, β为出射光相对于入射光的偏转角, Α为光线入射角, n为棱镜的折 射率。
也就是说, 当棱镜构件 1中的各个棱镜单元结构 11的横截面形状为半 圓形时, 只需满足对应的关系式(2 ) 即可使每束线形光经对应的棱镜单元 结构 11折射后都形成七种颜色的可见光。 每束线形光的照射在棱镜单元结 构底面上的入射角与光阑 3的位置和取向有关。 例如, 可通过调整光阑 3的 倾斜角度来改变每束线形光的入射角。
每个光源 21发出的发散的光通过光阑 3转换成一束或两束线形光, 具 体通过以下方式实现。
图 4为图 1中光阑 3的一种结构示意图。 光阑 3可为第一平板光阑 31 , 第一平板光阑 31可具有一个直线状的第一光阑缝。可在每个光源 21与对应 的棱镜单元结构 11之间设置一个第一平板光阑 31 ,使得每个光源 21发出的 发散的光通过对应的一个第一光阑缝后转换成一束线形光,并射入对应的棱 镜单元结构 11。 也就是说, 光阑 3的数量与光源 21的数量相同, 每个光阑 对应一个光源 21 , 将光源 21发出的发散的光转换成一束线形光, 并以一定 的入射角射入棱镜单元结构 11。 第一光阑缝的长度方向可与棱镜单元结构 11的长度方向平行或者垂直。
在上述实施一中, 每个光源 21对应一个第一平板光阑 31 , 使得每个光 源 21发出的发散的光通过一个第一平板光阑 31转换成一束线形光,但本公 开不限于此。也可以采用两个第一平板光阑 31将每个光源 21发出的发散的 光转换成两束线形光。 根据本公开的实施例二, 如图 5 所示, 在每个光源 21与对应的棱镜单元结构 11之间设置两个如图 4所示的第一平板光阑 31 , 且光源 21位于两个第一平板光阑 31之间, 使得每个光源 21发出的发散的 光通过对应的两个第一光阑缝后转换成两束线形光,并射入对应的棱镜单元 结构 11。 这两束线形光经对应的棱镜单元结构 11折射后, 分别照射在液晶 面板 5中的两个不同的像素上。 优选地, 每个棱镜单元结构 11的出光面可 相对于该棱镜单元结构 11底面的中垂线对称, 即每个棱镜单元结构 11的横 截面形状为等腰三角形、 等腰梯形或半圓形。 每个光源 21对应的位于呈倒 V形对称设置的两个第一平板光阑 31之间,使得每个光源 21发出的发散的 光通过对应的两个第一平板光阑 31 的第一光阑缝后转换成两束线形光, 且 两束线形光以相同的入射角分别射入对应的棱镜单元结构 11。例如,每个棱 镜单元结构 11的横截面形状为等腰三角形, 呈倒 V形对称设置的两个第一 平板光阑 31相对于等腰三角形的底边的垂直平分线对称,光源 21位于两个 第一平板光阑 31之间,使得光源 21发出的发散的光通过对应的两个第一光 阑缝后转换成两束线形光,且两束线形光以相同的入射角分别射入同一个棱 镜单元结构 11呈倒 V形对称设置的两个第一平板光阑 31可为一体化结构, 从而便于将两个第一平板光阑 31安装在直下式背光源中。
每相邻的两个棱镜单元结构 11之间可设置一个挡板 4, 用于从相邻的 两个棱镜单元结构 11射出的光之间的干涉现象。 在图 1所示的实施例一和 图 5所示的实施例二中,每个挡板 4位于相邻的两个三角形棱镜单元结构 11 之间, 并与棱镜单元结构 11的底面垂直。
从上述方案可知,在本公开提供的直下式背光源中, 首先利用光阑将每 个光源发出的发散的光转换成一束或两束线形光, 然后利用棱镜的分光作 用, 使每束线形光经棱镜折射后分散形成七种颜色的可见光, 并对应的照射 在液晶面板的一个像素上。通过控制各个像素的开闭即可使液晶显示装置实 现全色域显示; 与现有技术相比, 本公开的实施例不需要彩色滤光层, 减少 了光损失, 从而提高了液晶显示装置的透过率。
如图 6所示, 为本公开实施例提供的一种液晶显示装置的结构示意图。 本实施例提供的液晶显示装置包括液晶面板 5 和设置于液晶面板一侧的根 据本公开的实施例的直下式背光源。 液晶面板 5包括多个像素。 具体而言, 液晶面板 5可包括对盒的阵列基板 52和对向基板 51 , 设置于阵列基板 52 和对向基板 51之间的液晶层 53 , 设置于对向基板 51上背离阵列基板 52一 侧的具有多个开口的黑矩阵 56, 设置于黑矩阵 56上背离阵列基板 52一侧 的第一偏光片 54, 设置于阵列基板 52上背离对向基板 51—侧的第二偏光 片 55。 该直下式背光源设置于第一偏光片 54背离阵列基板 52的一侧。 黑 矩阵的每个开口与液晶面板 5中的一个像素对应。
根据本公开的实施例的直下式背光源形成七种颜色的可见光穿过黑矩 阵 56中对应的一个开口后照射在液晶面板 5的一个像素上。 通过控制各个 像素的开闭来控制光线的通过, 从而使液晶显示装置实现全色域显示。 阵列 基板 52例如为薄膜晶体管 (Thin Film Transistor, 筒称 TFT ) P车歹 'J基板, 其 通过薄膜晶体管的开关, 可使液晶显示装置实现全色域显示。
图 7为本公开实施例提供的液晶显示装置的全色域显示的原理示意图。 为了保证每束折射后形成的七种颜色的可见光对应的照射在液晶面板一个 像素上, 背光源到阵列基板的距离满足以下关系式:
L = W * (cos γ) I (tan βχ - tan β2) (3) 其中, L为阵列基板与直下式背光源之间的距离, W为阵列基板上每个像素 的宽度, γ为入射光与垂直于阵列基板的法线之间的夹角, βΐ为出射光为波 长 405nm紫光的偏转角, β2为出射光为波长 766nm红光的偏转角。 阵列基 板与直下式背光源之间的距离 L 可以定义为棱镜构件的顶表面和底表面之 间的中间平面与阵列基板之间的距离, 如图 7所示。
以石英玻璃棱镜为例, 在可见光范围 405nm到 766nm的范围内, 它的 折射率范围为 1.470到 1.455 , 阵列基板 52中各个像素的宽度为 0.5mm, 当 棱镜单元结构 11中底面与侧面之间的夹角 α为 30。时,通过计算可得出直下 式背光源到阵列基板的距离为 53.6mm; 当棱镜单元结构 11中底面与侧面之 间的夹角 α 为 45°时, 通过计算可得出直下式背光源到阵列基板的距离为 31.5mm, 当棱镜单元结构 11 中底面与侧面之间的夹角 α为 60。时, 通过计 算可得出直下式背光源到阵列基板的距离为 15.2mm。 口, 使得七种颜色的可见光分别从对应的子开口通过, 从而减轻每个像素中 七种颜色的可见光之间的干涉现象。
综上所述,在本公开提供的直下式背光源中, 首先利用光阑将每个光源 发出的发散的光转换成一束或两束线形光, 然后利用棱镜的分光作用, 使每 束线形光经棱镜折射后形成七种颜色的可见光,并对应的照射在液晶面板的 一个像素上, 通过控制各个像素的开闭即可使液晶显示装置实现全色域显 示。 与现有技术先比, 本公开的实施例不需要彩色滤光层, 减少光线损失, 从而提高了液晶显示装置的透过率。
以上实施方式仅用于说明本公开, 而并非对本公开的限制,有关技术领 域的普通技术人员, 在不脱离本公开的精神和范围的情况下, 还可以做出各 种变化和变型, 因此所有等同的技术方案也属于本公开的范畴, 本公开的专 利保护范围应由权利要求限定。

Claims

权利要求书
1、 一种直下式背光源, 包括:
具有多个棱镜单元结构的棱镜构件;
位于所述棱镜构件下方的多排光源,且每排光源与一个棱镜单元结构对 应, 每排光源包括多个光源, 和
位于所述棱镜构件和所述多排光源之间的多个光阑,每个所述光源发出 的发散的光经过所述对应的光阑后转换成一束或两束线形光,每束线形光经 对应的棱镜单元结构折射后分散形成七种颜色的可见光。
2、 如权利要求 1所述的直下式背光源, 其特征在于, 每个所述棱镜单 元结构的横截面形状为三角形或梯形,每束线形光照射在对应棱镜单元结构 的底面上的入射角和经棱镜单元结构折射后出射光相对于入射光的偏转角 满足以下关系式:
β=Α- a+ arcsin(V n2 - sin2 A sin a - sin A cos a) 其中, β为出射光相对于入射光的偏转角, α为棱镜单元结构中底面与侧面 之间的夹角, Α为光线入射角且 η为棱镜的折射率。
3、 如权利要求 1所述的直下式背光源, 其特征在于, 每个所述棱镜单 元结构的横截面形状为半圓形,每束线形光照射在对应棱镜单元结构的底面 上的入射角和经棱镜单元结构折射后出射光相对于入射光的偏转角满足以 下关系式:
sin A
β=2Α― 2 arcsin
n 其中, β为出射光相对于入射光的偏转角, Α为光线入射角且 η为棱镜的折 射率。
4、 如权利要求 1-3中任一所述的直下式背光源, 其特征在于, 每个所述光阑为第一平板光阑,所述第一平板光阑具有一个直线状的第 一光阑缝, 所述光阑缝的方向与所述棱镜构件的长度方向平行或者垂直。
5、 如权利要求 4所述的直下式背光源, 其特征在于,
每个所述光源与对应的棱镜单元结构之间设置一个第一平板光阑,使得 每个光源发出的发散的光通过对应的一个第一平板光阑的第一光阑缝后转 换成一束线形光, 并射入对应的棱镜单元结构。
6、 如权利要求 4所述的直下式背光源, 其特征在于,
每个光源与对应的棱镜单元结构之间设置两个第一平板光阑,且所述光 源位于所述两个第一平板光阑之间,使得每个光源发出的发散的光分别通过 对应的两个第一平板光阑的第一光阑缝后转换成两束线形光,射入对应的棱 镜单元结构。
7、 如权利要求 6所述的直下式背光源, 其特征在于,
每个所述棱镜单元结构的出光面相对于该棱镜单元结构底面的中垂线 对称, 且每个光源对应的位于呈倒 V形对称设置的两个第一平板光阑之间。
8、 如权利要求 6或 7所述的直下式背光源, 其特征在于, 所述呈倒 V 形对称设置的两个第一平板光阑为一体化结构。
9、 如权利要求 1-8 中任一所述的直下式背光源, 其特征在于, 每相邻 的两个棱镜单元结构之间设置一个挡板,用于减轻相邻的两个棱镜单元结构 的出射光的干涉现象。
10、 一种液晶显示装置, 包括:
包括多个像素的液晶面板; 和
设置于液晶面板一侧的如权利要求 1-9中任一所述的直下式背光源, 其中所述每束线形光经对应的所述棱镜单元结构折射后分散形成的七 种颜色的可见光对应的照射在所述液晶面板中的一个像素上。
11、 如权利要求 10所述的液晶显示装置, 其特征在于,
所述液晶面板包括:
对盒的阵列基板和对向基板,
设置于所述阵列基板和所述对向基板之间的液晶层,
设置于所述对向基板上背离所述阵列基板一侧的、 具有多个开口的 黑矩阵, 所述黑矩阵的每个开口与所述液晶面板的一个像素对应,
设置于所述黑矩阵上背离所述阵列基板一侧的第一偏光片, 和 设置于所述阵列基板上背离所述对向基板一侧的第二偏光片, 其中该直下式背光源设置于所述第一偏光片背离所述阵列基板的一侧。
12、 如权利要求 10或 11所述的液晶显示装置, 其特征在于, 所述阵列 基板与所述直下式背光源之间的距离满足以下关系式:
L = W * (cos γ) I (tan βχ - tan β2) 其中, L为所述阵列基板与所述直下式背光源之间的距离, W为每个像素在 所述阵列基板上的宽度, Ί为入射光与垂直于所述阵列基板的法线之间的夹 角, β 1为出射光为波长 405 nm的紫光的偏转角, β 2为出射光为波长 766 nm的红光的偏转角。
13、 如权利要求 11所述的液晶显示装置, 其特征在于, 所述黑矩阵的
PCT/CN2013/077194 2013-04-28 2013-06-13 直下式背光源及液晶显示装置 WO2014176815A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/358,269 US9671645B2 (en) 2013-04-28 2013-06-13 Direct-type backlight and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310154433.8A CN103234153B (zh) 2013-04-28 2013-04-28 一种直下式背光源及液晶显示装置
CN201310154433.8 2013-04-28

Publications (1)

Publication Number Publication Date
WO2014176815A1 true WO2014176815A1 (zh) 2014-11-06

Family

ID=48882204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077194 WO2014176815A1 (zh) 2013-04-28 2013-06-13 直下式背光源及液晶显示装置

Country Status (3)

Country Link
US (1) US9671645B2 (zh)
CN (1) CN103234153B (zh)
WO (1) WO2014176815A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959544B (zh) * 2016-01-08 2020-12-04 京东方科技集团股份有限公司 一种背光模组、液晶显示器及其制备工艺
CN105629579B (zh) * 2016-04-08 2018-10-12 京东方科技集团股份有限公司 一种显示模组及其制备方法、显示装置
US20190064515A1 (en) * 2017-08-30 2019-02-28 Innolux Corporation Display device and electronic apparatus using the same
CN109426027B (zh) * 2017-08-30 2021-10-08 群创光电股份有限公司 显示装置
CN107632447A (zh) * 2017-09-26 2018-01-26 京东方科技集团股份有限公司 显示面板、显示装置及其控制方法
CN109886252B (zh) * 2019-03-27 2021-08-24 武汉华星光电技术有限公司 一种液晶显示面板
TWI752894B (zh) * 2021-07-16 2022-01-11 暘旭光電股份有限公司 具傾斜結構之光學膜片的背光模組

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85204962U (zh) * 1985-11-27 1987-07-15 北京大学 彩色分解与合成演示仪
CN87104204A (zh) * 1986-06-10 1988-01-20 森敬 彩虹产生装置
JPH1164850A (ja) * 1997-08-26 1999-03-05 Nec Corp 偏光照明装置、および投写型液晶表示装置
CN101878437A (zh) * 2007-10-12 2010-11-03 明亮视角技术公司 光管理膜、背光单元以及相关结构
CN102129137A (zh) * 2010-01-13 2011-07-20 瀚宇彩晶股份有限公司 液晶显示器及其制造方法
CN103018953A (zh) * 2012-12-24 2013-04-03 天马微电子股份有限公司 双视显示模组

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104446A (en) * 1996-12-18 2000-08-15 Blankenbecler; Richard Color separation optical plate for use with LCD panels
KR100818278B1 (ko) * 2006-10-16 2008-04-01 삼성전자주식회사 액정 표시장치용 조명장치
US8040462B2 (en) * 2008-04-17 2011-10-18 Toppan Printing Co., Ltd. Liquid crystal display device
CN101625458B (zh) * 2008-07-11 2011-12-21 财团法人工业技术研究院 复合式分光元件
WO2013183288A1 (ja) * 2012-06-07 2013-12-12 パナソニック株式会社 光偏向器、光偏向器の製造方法、及び、液晶ディスプレイ
CN103268179B (zh) * 2013-05-02 2016-05-25 京东方科技集团股份有限公司 触控电极及制作方法、电容式触控装置和触摸显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85204962U (zh) * 1985-11-27 1987-07-15 北京大学 彩色分解与合成演示仪
CN87104204A (zh) * 1986-06-10 1988-01-20 森敬 彩虹产生装置
JPH1164850A (ja) * 1997-08-26 1999-03-05 Nec Corp 偏光照明装置、および投写型液晶表示装置
CN101878437A (zh) * 2007-10-12 2010-11-03 明亮视角技术公司 光管理膜、背光单元以及相关结构
CN102129137A (zh) * 2010-01-13 2011-07-20 瀚宇彩晶股份有限公司 液晶显示器及其制造方法
CN103018953A (zh) * 2012-12-24 2013-04-03 天马微电子股份有限公司 双视显示模组

Also Published As

Publication number Publication date
CN103234153B (zh) 2015-11-18
CN103234153A (zh) 2013-08-07
US20150253626A1 (en) 2015-09-10
US9671645B2 (en) 2017-06-06

Similar Documents

Publication Publication Date Title
WO2014176815A1 (zh) 直下式背光源及液晶显示装置
US11221441B2 (en) Display panel, display apparatus and driving method thereof
US10627664B2 (en) Display panel, display device and display method
US8920018B2 (en) Front light module
CN108572482B (zh) 一种背光模组、显示装置及其驱动方法
WO2020063376A1 (zh) 显示器件及其控制方法
WO2020088576A1 (zh) 光学基板及显示装置
US11150398B2 (en) Edge-lit type backlight module and display device
US11391877B2 (en) Backlight source and manufacturing method thereof, and display device
EP2360515A1 (en) Thin backlight system and liquid crystal display device using same
US10571735B2 (en) Display device
WO2021068661A1 (zh) 液晶显示面板及其驱动方法、显示装置
KR20200060581A (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
WO2013163878A1 (zh) 调光装置及显示器
US20220113591A1 (en) Diffusion plate and backlight module
WO2017181477A1 (zh) 背光模组及显示装置
TW201915982A (zh) 拼接顯示裝置
US9091798B2 (en) Display apparatus and backlight assembly
CN106125304B (zh) 可配戴式显示装置
US20110157521A1 (en) Liquid crystal display
WO2020181967A1 (zh) 透明液晶显示面板及其驱动方法,以及包括它的透明液晶显示器
WO2018129998A1 (zh) 液晶显示器及其驱动方法
TWI545296B (zh) 背光模組
US9910205B2 (en) Light-emitting device and display device
US10795064B2 (en) Grating assembly, light source apparatus and driving method of the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14358269

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/03/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13883575

Country of ref document: EP

Kind code of ref document: A1