WO2020088576A1 - 光学基板及显示装置 - Google Patents

光学基板及显示装置 Download PDF

Info

Publication number
WO2020088576A1
WO2020088576A1 PCT/CN2019/114645 CN2019114645W WO2020088576A1 WO 2020088576 A1 WO2020088576 A1 WO 2020088576A1 CN 2019114645 W CN2019114645 W CN 2019114645W WO 2020088576 A1 WO2020088576 A1 WO 2020088576A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
filter film
incident
convex lens
Prior art date
Application number
PCT/CN2019/114645
Other languages
English (en)
French (fr)
Inventor
孟宪东
王维
孟宪芹
谭纪风
陈小川
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/765,152 priority Critical patent/US11487057B2/en
Publication of WO2020088576A1 publication Critical patent/WO2020088576A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0041Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided in the bulk of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/003Lens or lenticular sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide

Definitions

  • the present disclosure relates to the field of display technology, and particularly to an optical substrate and a display device.
  • the monochromatic light emitted by the LED light source is coupled to the light guide plate.
  • an extraction grating is provided above or below the light guide plate, and the extraction grating will propagate the total reflection in the light guide plate.
  • the monochromatic light is taken out at a collimating angle.
  • the extracted monochromatic light passes through the color film structure to form a color display device.
  • the present disclosure provides an optical substrate and a display device.
  • the present disclosure provides an optical substrate.
  • the optical substrate includes: a light guide plate and a plurality of light selection units, wherein the light guide plate includes a light entrance surface and a light exit surface, the light exit surface includes a plurality of light exit areas; each of the light selection units is used for The light incident on the light incident surface and transmitted in the light guide plate is selected so that monochromatic lights of different colors exit from a plurality of light exit areas corresponding to the light selection unit, and each light exit area emits one Colors of various colors.
  • each of the light selection units includes a plurality of filter films, and the plurality of filter films correspond to a plurality of light output regions corresponding to the light selection unit, and each of the filter films is used In order to reflect the monochromatic light of the preset color among the monochromatic lights of different colors to the light exit surface, and transmit light other than the preset color among the monochromatic lights of different colors.
  • the plurality of filter films include a first filter film, a second filter film and a third filter film, the first filter film, the second filter film and the third filter film
  • the filter film is disposed in the light guide plate at equal intervals with respect to the light exit surface, and the first filter film, the second filter film, the third filter film and the light exit surface
  • the included angles are the first angle, the second angle and the third angle.
  • the first filter film, the second filter film and the third filter film are arranged in parallel, and the first angle, the second angle and the third angle are 45 respectively degree.
  • each of the filter films is formed by periodically stacking at least two dielectric layers with different refractive indexes.
  • the at least two different refractive index dielectric layers include a high refractive index dielectric layer and a low refractive index dielectric layer, wherein the refractive index of the high refractive index dielectric layer is 1.51, the low refractive index The refractive index of the dielectric layer is 1.49.
  • the light selection unit includes a plurality of beam splitting gratings, the plurality of beam splitting gratings correspond to the plurality of light exit regions in one-to-one correspondence, and each of the beam splitting gratings is located in the propagation of light incident from the incident surface On the path, the monochromatic light of a preset color among the light incident on each of the beam splitting gratings is emitted toward the light exit surface.
  • the light guide plate includes a bottom surface disposed opposite to the light exit surface, and the beam splitting grating includes a plurality of transmission gratings disposed on the light exit surface and a plurality of reflection gratings disposed on the bottom surface.
  • the transmission grating and the reflection grating are respectively arranged corresponding to corresponding light-emitting regions of the plurality of light-emitting regions, and the transmission grating and the reflection grating are arranged at intervals, incident on one of the plurality of transmission gratings After passing through the transmission grating, light forms a first transmitted light beam that exits perpendicular to the light exit surface and a first reflected light beam that is reflected to one of the reflection gratings, and the first reflected light beam that is incident to the reflection grating passes through the reflection After the grating, a second reflected beam emitted perpendicular to the light exit surface and a third reflected beam reflected to the next transmission grating are formed.
  • a first flat layer covering a plurality of the transmission gratings is provided on the light exit surface of the light guide plate; a second flat layer covering the plurality of reflection gratings is provided on the bottom surface of the light guide plate.
  • the plurality of beam splitting gratings include a first beam splitting grating, a second beam splitting grating, and a third beam splitting grating, and the periods of the gratings of the first beam splitting grating, the second beam splitting grating, and the third beam splitting grating P is obtained according to the following formula:
  • n 1 refractive index of the medium where the incident beam is located
  • n 2 refractive index of the medium where the diffracted beam is located
  • the wavelength of the light to be selected
  • the optical substrate further includes: a light emitting unit disposed on the light incident surface of the light guide plate for emitting a parallel light beam, and causing the parallel light beam to enter the light guide plate at a preset angle Light incident.
  • a light emitting unit disposed on the light incident surface of the light guide plate for emitting a parallel light beam, and causing the parallel light beam to enter the light guide plate at a preset angle Light incident.
  • the light emitting unit includes: a light source, located on the light incident surface side of the light guide plate, for emitting white light or three-color mixed light; a collimating lens structure for collimating the light emitted by the light source Straight to form a parallel beam and enter the light guide plate at a predetermined angle; and a beam reduction structure for reducing the width of the parallel beam emitted from the collimating lens structure.
  • the beam-shrinking structure includes a light-shielding member, the light-shielding member is disposed on a light incident surface of the light guide plate, and the light-shielding member is provided with an opening having a predetermined area so as to be incident on the light guide plate
  • the width of the light beam is less than or equal to the width of each light-emitting area in the plurality of light-emitting areas.
  • the beam reduction structure includes two lenses with different focal lengths, and the main optical axes of the two lenses coincide, wherein the two lenses include a first lens disposed along the propagation direction of the light beam emitted by the light emitting unit A convex lens and a second convex lens, the focal point of the side of the first convex lens close to the second convex lens coincides with the focal point of the side of the second convex lens close to the first convex lens at a first position, and the first The focal length of the convex lens is greater than that of the second convex lens.
  • the first parallel light beam emitted by the collimating lens structure is incident on the first convex lens parallel to the main optical axis of the first convex lens, passes through the refraction of the first convex lens and passes through In the first position, the light passing through the first position is refracted by the second convex lens to form a second parallel beam propagating in a direction parallel to the main optical axis of the second convex lens, and the width of the second parallel beam Less than the width of the first parallel light beam; or, the two lenses include a third convex lens and a double-sided concave provided along the propagation direction of the light beam emitted by the light emitting unit A first concave lens, the focal point of the side of the third convex lens close to the first concave lens coincides with the focal point of the side of the first concave lens away from the third convex lens at a second position, The focal length is greater than that of the first concave lens, the first parallel light beam emitted by the collim
  • the light emitting unit includes a light source
  • the light source includes at least two sub-light sources arranged at intervals, each of the sub-light sources emits monochromatic light with a preset color, and at least two of the sub-light sources are along a first direction
  • the interval is set on the side of the light incident surface of the light guide plate, so that at least two monochromatic lights emitted by the sub-light sources are incident on the light guide plate in parallel at the preset angle, and in a non-total reflection manner
  • the first direction is a direction from a light exit surface of the light guide plate to a bottom surface of the light guide plate opposite to the light exit surface.
  • the at least two sub-light sources include a first collimating sub-light source, a second collimating sub-light source and a third collimating sub-light source, the first collimating sub-light source, the second collimating sub-light source and the third collimating sub-light source
  • the straight sub-light source is configured to emit first collimated light, second collimated light, and third collimated light incident parallel to the light guide plate at a second preset angle, wherein the first collimated light, the The second collimated light and the third collimated light are transmitted in the light guide plate in a non-total reflection manner.
  • the width of the monochromatic light emitted by at least two of the sub-light sources is less than a preset width, so that the monochromatic light emitted by at least two of the sub-light sources does not overlap in the propagation path.
  • the present disclosure provides a display device including the above-mentioned optical substrate, and a counter substrate disposed opposite to the optical substrate.
  • the display device further includes: a liquid crystal layer disposed between the optical substrate and the counter substrate; a light shielding layer disposed between the counter substrate and the liquid crystal layer, the light shielding The layer has a plurality of opening regions, and the vertical projection of each of the opening regions on the optical substrate is located between any adjacent two light-emitting regions in the plurality of light-emitting regions; electrodes that provide an electric field to the liquid crystal layer , Which is arranged on the light exit surface side of the light guide plate and is used to adjust the deflection direction of the liquid crystal, thereby adjusting the propagation direction of the monochromatic light incident on the liquid crystal layer.
  • the light shielding layer includes shielding regions and opening regions distributed at intervals.
  • FIG. 1 shows a schematic structural diagram of a display device in the related art
  • FIG. 2 shows a schematic structural diagram 1 of an optical substrate in an embodiment of the present disclosure
  • FIG. 3 shows a second schematic structural view of an optical substrate in an embodiment of the present disclosure
  • FIG. 4 shows a schematic structural view 1 of the display device in the embodiment of the present disclosure
  • FIG. 5 shows a second structural diagram of the display device in the embodiment of the present disclosure
  • FIG. 6 shows a schematic diagram 1 of the beam reduction structure of an embodiment of the present disclosure
  • FIG. 7 shows a second schematic diagram of the beam reduction structure of an embodiment of the present disclosure
  • FIG. 8 shows a schematic structural view 3 of the display device in the embodiment of the present disclosure.
  • FIG. 9 shows a schematic structural view of a filter film in an embodiment of the present disclosure.
  • FIG. 10 shows a schematic diagram of the principle of setting the filter film in the embodiment of the present disclosure
  • FIG. 11 is a schematic diagram showing the light emission spectrum of the first filter film in the embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram showing the light emission spectrum of the second filter film in the embodiment of the present disclosure.
  • FIG. 13 shows a schematic diagram of the light emission spectrum of the third filter film in the embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a related display device.
  • the Lambertian monochromatic light emitted by the LED light source 1000 is modulated by a free-form mirror 2000, coupled into the light guide plate 3000 at a certain central angle, and transmitted in the light guide plate 3000 by total reflection.
  • the light extraction surface or the bottom surface of the light plate 3000 (the other surface opposite to the light emission surface) is provided with an extraction grating 4000.
  • the function of the extraction grating 4000 is to take out the large-angle monochromatic light rays totally reflected and propagated in the light guide plate 3000 at a collimating angle, which realizes High-transmittance collimated light source (most background light can pass through).
  • the structure of the above display device has the following problems: the grating 4000 can only be collimated to take out a single color of light, and the LED light source can only be monochromatic light. To achieve color display, a color film structure needs to be provided above the grating. Therefore, there is more light loss.
  • the present disclosure provides an optical substrate.
  • the optical substrate 1 of some embodiments of the present disclosure includes a light guide plate 10 and a plurality of periodically distributed light selection units 90.
  • the light guide plate 10 includes a light incident surface 101 and a light exit surface 102 adjacent to the light incident surface 101.
  • the light exit surface 102 includes a plurality of light exit areas arranged in an array.
  • the light guide plate 10 may be an edge-in light guide plate, and the light incident surface 101 may be located on the side surface of the edge-in light guide plate, and the side surface perpendicular to the light exit surface. There may be a common boundary between the light incident surface 101 and the light exit surface 102, and the light incident surface 101 and the light exit surface 102 are perpendicular to each other.
  • a plurality of pixel units correspond to the plurality of light selection units 90 in one-to-one correspondence.
  • the periodic distribution of the pixel unit is the same as the periodic distribution of the light selection unit.
  • Each pixel unit includes one or more sub-pixel units of different colors.
  • Each light selection unit 90 is used to select the light incident from the light incident surface 101 and transmitted in the light guide plate 10, so that one or more sub-pixel units in the pixel unit corresponding to the light selection unit Monochromatic lights of the same color are respectively emitted from the corresponding color sub-pixel units. That is, the light selected by each light selection sub-unit is projected to the position of one or more sub-pixel units in the pixel unit corresponding to the light selection unit, thereby forming one or more light-emitting regions on the light-emitting surface 102, Each light emitting area emits monochromatic light of one color.
  • the one or more light-emitting regions include three light-emitting regions that emit light of three colors , That is, the first light emitting area E1 is configured to emit monochromatic light of the first preset color from the first light emitting area E1; the second light emitting area E2 is configured to enable monochromatic light of the second preset color Exiting from the second light exit area; the third light exit area E3 is configured to emit monochromatic light of a third preset color from the third light exit area E3.
  • the multiple sub-pixel units include a first sub-pixel unit, a second sub-pixel unit, and a third sub-pixel unit, and the three sub-pixel units respectively correspond to three colors.
  • the light-emitting area includes a first light-emitting area E1, a second light-emitting area E2 and a third light-emitting area E3 respectively corresponding to the plurality of sub-pixel units, and each light selection unit 90 is used for transmission from the light guide plate 10 Among the light, light with a first wavelength range (that is, monochromatic light with a first preset color is light with a first wavelength range) is emitted from the first light emitting region E1, and light with a second wavelength range is selected ( That is, the monochromatic light of the second preset color is light having a second wavelength range) exiting from the second light emitting region E2, and the light having the third wavelength range is selected (that is, the monochromatic light of the third preset color is Light with a third wavelength range) is emitted from the third light
  • the light selection unit 90 is used to select red light from the light transmitted in the light guide plate 10 ( R) Emitted from the first light emitting area E1, selected green light (G) to be emitted from the second light emitting area E2, and selected blue light (B) to be emitted from the third light emitting area E3. Therefore, the optical substrate provided by the embodiments of the present disclosure achieves a color backlight effect, and the display device can realize color display without providing a POL (polarizer) and color film structure, and has certain advantages in transparent display and high light efficiency utilization. Mass production will be further promoted in the future.
  • POL polarizer
  • each light selection unit of the corresponding pixel unit is disposed in the light guide plate, and each light selection unit includes one or more corresponding to one or more sub-pixel units of different colors in the pixel unit Filter film.
  • each of the filter films is used to reflect monochromatic light of a predetermined color in the light incident from the light incident surface and transmit the light of the light incident from the light incident surface Light other than a preset color
  • each of the filter films is inclinedly disposed in the light guide plate relative to the light exit surface, and the angle between the filter film and the light exit surface is the first angle
  • the reflective surface of the filter film faces the light exit surface of the light guide plate
  • the first angle is the angle between the reflective surface of the filter film and the light exit surface of the light guide plate, Specifically, it is non-zero and non-90 ° between 0-90 °.
  • the monochromatic light reflected by the filter film is emitted from the corresponding light exit area in a direction perpendicular to the light exit surface.
  • the first angle may be between 40 degrees and 50 degrees, optionally 45 degrees.
  • a plurality of the light filtering films are provided in a one-to-one correspondence with a plurality of sub-pixel units, a first light emitting region E1, a second light emitting region E2, and a third light emitting region E3, and the light selection unit includes a first filter film 100.
  • the first filter film 100, the second filter film 200 and the third filter film 300 are arranged in parallel.
  • the first filter film 100 is used to reflect light in the first wavelength range and transmit light outside the first wavelength range, and the first filter film 100 is inclinedly disposed in the light guide plate 10 ,
  • the angle between the first filter film 100 and the light beam emitted by the light emitting unit is a first angle, so that the light reflected by the first filter film 100 is perpendicular to the light guide plate 1
  • the direction of the light exit surface exits from the first light exit area E1.
  • the second filter film 200 is used to reflect light in the second wavelength range and transmit light outside the second wavelength range, and the second filter film 200 is inclinedly disposed in the light guide plate 10 ,
  • the angle between the second filter film 200 and the light beam emitted by the light emitting unit is a second angle, so that the light reflected by the second filter film 200 is perpendicular to the light guide plate 10
  • the direction of the light exit surface exits from the second light exit area E2.
  • the third filter film 300 is used to reflect light in the third wavelength range and transmit light outside the third wavelength range, and the third filter film 300 is inclinedly disposed in the light guide plate 10 ,
  • the angle between the third filter film 300 and the light beam emitted by the light-emitting unit is a third angle, so that the light reflected by the third filter film 300 is perpendicular to the light guide plate 10
  • the direction of the light exit surface exits from the third light exit area E3.
  • the first angle, the second angle, and the third angle may be the same or different, and the specific settings of the first angle, the second angle, and the third angle are determined by the first filter film 100.
  • the structural characteristics of the second filter film 200 and the third filter film 300 determine that, as long as the monochromatic light reflected by the filter film is in a direction perpendicular to the light exit surface, the corresponding Just exit the light exit area.
  • the first filter film 100, the second filter film 200, and the third filter film 300 respectively correspond to a plurality of sub-pixel units of one pixel unit, for example, three sub-pixel units; and the first filter film 100, the second The filter film 200 and the third filter film 300 respectively take out light of the same color as the corresponding sub-pixel unit, and the first filter film 100, the second filter film 200, and the third filter in the embodiment of the present disclosure
  • the film structure of the optical film 300 has wavelength selectivity and angular deflection characteristics.
  • the film structure can only modulate a light of a preset color (or preset wavelength), and by reasonable design of the angle of inclination of the film structure relative to the incident light, a specific angle of light can be achieved for a specific wavelength of light Deflection, the light other than the preset color will not change when passing through the film system, and the light other than the preset color light will continue to pass through the other film structure until it is modulated and taken out by its corresponding film structure. There is a loss of light energy.
  • a pixel unit includes sub-pixel units of three colors of RGB
  • the first filter film 100 is corresponding to the R sub-pixel unit
  • the second filter film 200 is corresponding to the G sub-pixel unit
  • the third filter The optical film 300 is provided corresponding to the B sub-pixel unit.
  • the first filter film 100 is used to reflect light of the same color as the R sub-pixel unit (ie, red light) and transmit light outside the first wavelength range (ie, green light and blue light pass through the first filter
  • the light film 10 will not change)
  • the red light reflected by the first filter film 100 exits from the first light emitting area E1 in a direction perpendicular to the light exit surface of the light guide plate 1, as shown in FIG. 11 Is a schematic diagram of the spectrum of the red light reflected by the first filter film.
  • the second filter film 200 is used to reflect light with the same color as the G sub-pixel unit (ie, green light), and transmit light outside the second wavelength range (ie, red light and blue light through the first filter
  • the light film 100 will not change
  • the green light reflected by the second filter film 200 exits from the second light emitting area E2 in a direction perpendicular to the light exit surface of the light guide plate 10, as shown in FIG. 12 Is a schematic diagram of the spectrum of the green light reflected by the second filter film.
  • the third filter film 300 is used to reflect light of the same color as the B sub-pixel unit (ie, blue light) and transmit light outside the third wavelength range (ie, green light and red light pass through the first filter
  • the light film 100 will not change)
  • the blue light reflected by the third filter film 300 exits from the third light emitting area E3 in a direction perpendicular to the light exit surface of the light guide plate 10, as shown in FIG. 13
  • the selection of light with the same color as the corresponding sub-pixel unit is achieved through the structure of the filter film.
  • the micro-nano structure of the grating there will be no stray interference light and will not cause Cross-color and other issues (micro-nano structure is sensitive to wavelength, a micro-nano grating makes the whole band of light diffracted).
  • the light beam emitted by the light emitting unit is parallel to the light exit surface of the light guide plate 10 and enters the light guide plate 10, and the first angle is the corresponding inclination angle of the filter film
  • the light beam incident on the light guide plate 10 from the incident surface of the light guide plate 10 has a propagation path in the light guide plate 10 parallel to the light exit surface 102 of the light guide plate 10.
  • the light of the corresponding wavelength reflected by the first filter film 100, the second filter film 200, or the third filter film 300 is collimated and exits upward, according to the Bragg effect .
  • the filter film is designed according to the Bragg principle, and the filter films are formed by periodically alternately stacking at least two dielectric layers with different refractive indexes.
  • the filter film includes high-refractive-index dielectric layers 01 and low-refractive-index dielectric layers 02 of equal thickness, which are alternately stacked, as shown in FIG. 9.
  • the refractive index of the low refractive index dielectric layer 01 is 1.0-1.8, and the refractive index of the high refractive index dielectric layer 02 is 1.2-2.0, but it is not limited thereto.
  • the arrangement period d of the dielectric layer in the filter film is the sum of the thickness of one high refractive index dielectric layer and the thickness of one low refractive index dielectric layer, the high refractive index dielectric layer
  • the thickness and the thickness of the low-refractive-index dielectric layer are determined by the wavelength of the light and the deflection angle of the corresponding filter film.
  • each filter film is generally between 40 and 100 dielectric layers.
  • the specific refractive index difference between the high-refractive-index dielectric layer and the low-refractive-index dielectric layer will determine the wavelength-selective modulation efficiency of the corresponding filter film.
  • the materials of the high-refractive-index dielectric layer and the low-refractive-index dielectric layer can be reasonably selected according to the principle of backlight uniformity to control the gradual change of the refractive index difference to achieve uniform backlighting.
  • the The wavelengths of light reflected by a filter film 100, or the second filter film 200, or the third filter film 300 are: 650nm (R), 550nm (G), 450nm (B), set high
  • the refractive index of the refractive index dielectric layer is 1.51
  • the refractive index of the low refractive index dielectric layer is 1.49
  • the average refractive index n 1.5.
  • Each of the first filter film 100, the second filter film 200, or the third filter film 300 includes a total of 80 dielectric layers.
  • the period of the filter film corresponding to three wavelengths that is, the arrangement period of the dielectric layer in the filter film
  • the thickness of the filter film can be obtained:
  • d_R be the period of the first filter film 100
  • d_G be the period of the second filter film 200
  • d_B be the period of the third filter film 300
  • each filter film the first filter film 100, the second filter film 200, and the third filter film 300
  • the corresponding wavelength of light can be achieved Precise screening, that is, the optical substrate in the embodiments of the present disclosure can realize a colored dot matrix backlight, and there is basically no loss of light energy.
  • the first filter film 100, the second filter film 200, and the third filter The materials of each dielectric layer of the film 300 are transparent materials, and the overall device has extremely high transparency.
  • the color filter effect is achieved through the filter film.
  • other structures can also be used to achieve light selection, thereby achieving the color backlight effect.
  • the specific structure of the optical substrate that uses the light splitting grating to achieve the color backlight effect is specifically described below.
  • each light selection unit includes a plurality of beam splitting gratings corresponding to the light exit area, and each of the beam splitting gratings is located on a propagation path of light incident from the incident surface for making the incident
  • the monochromatic light of a preset color among the light to each of the beam splitting gratings is collimated and emitted in a direction perpendicular to the light exit surface of the light guide plate.
  • the light guide plate includes a bottom surface disposed opposite to the light exit surface
  • the beam splitter grating includes a plurality of transmission gratings disposed on the light exit surface and a plurality of reflection gratings disposed on the bottom surface
  • the transmission grating and The reflection gratings are respectively arranged corresponding to the corresponding light-emitting regions, and the transmission grating and the reflection grating are arranged at intervals, and the light incident on one of the transmission gratings passes through the transmission grating to form a line perpendicular to the light-emitting region
  • the first transmitted light beam emitted from the surface and the first reflected light beam reflected to one of the reflection gratings, the first reflected light beam incident on the reflection grating passes through the reflection grating to form a third Two reflected beams and a third reflected beam reflected to the next transmission grating.
  • a first flat layer 03 covering a plurality of the transmission gratings is provided on the light exit surface of the light guide plate; a second flat layer 04 covering a plurality of the reflection gratings is provided on the bottom surface of the light guide plate.
  • a first light splitting is set corresponding to the first light-emitting area A grating, and the first beam splitting grating is located on the propagation path of the first collimated light, and is used to make the first collimated light incident on the first beam splitting grating perpendicular to the light guide plate 10
  • the direction of the light exit surface is collimated and exited;
  • a second beam splitter grating is provided corresponding to the second light exit region, and the second beam splitter grating is located on the propagation path of the second collimated light for making it incident on the second
  • the second collimated light of the beam splitting grating is collimated and emitted in a direction perpendicular to the light exit surface of the light guide plate 10.
  • a third beam splitting grating is provided corresponding to the third light emitting region, and the third beam splitting grating is located on the propagation path of the third collimated light, and is used to make the third collimator incident on the third beam splitting grating
  • the direct light is collimated and emitted in a direction perpendicular to the light exit surface of the light guide plate 10.
  • the light guide plate 1 includes a light exit surface 102 and a bottom surface 103 disposed opposite to the light exit surface 102
  • the first beam splitting grating includes: a plurality of first lights disposed on the light exit surface A transmission grating 400 and a plurality of first reflection gratings 401 disposed on the bottom surface, the first transmission grating 400 and the first reflection grating 401 are spaced apart, that is, the first transmission grating 400 is on the bottom surface And the projection of the first reflection grating 401 on the bottom surface are spaced apart from each other, and there is no overlapping area; the first collimated light incident on the first transmission grating 400 passes through the first transmission grating 400 Then, a first transmitted light beam that is perpendicular to the light exit surface 102 and a first reflected light beam that is reflected to the first reflective grating 401 are formed, and the first reflected light beam that is incident to the first reflective grating 401 passes through After the first reflection
  • the second dichroic grating includes: a plurality of second transmission gratings 500 disposed on the light exit surface and a plurality of second reflection gratings 501 disposed on the bottom surface, the second transmission grating 500 and the first
  • the two reflection gratings 501 are spaced apart, that is, the projection of the second transmission grating 500 on the bottom surface and the projection of the second reflection grating 501 on the bottom surface are spaced apart from each other, and there is no overlapping area;
  • the second collimated light of the two transmission grating 500 passes through the second transmission grating 500 to form a second transmitted light beam emitted perpendicularly to the light exit surface and a fourth reflection reflected to the second reflection grating 501
  • Light beam, the fourth reflected light beam incident on the second reflection grating 501 passes through the second reflection grating 501 to form a fifth reflected light beam that is emitted perpendicularly to the light exit surface and reflected to the next first
  • the third dichroic grating includes: a plurality of third transmission gratings 600 disposed on the light exit surface 102 and a plurality of third reflection gratings 601 disposed on the bottom surface, the third transmission grating 600 and the The third reflection grating 601 is spaced apart, that is, the projection of the third transmission grating 600 on the bottom surface and the projection of the third reflection grating 601 on the bottom surface are spaced apart from each other, and there is no overlapping area;
  • the third collimated light of the third transmission grating 600 passes through the third transmission grating 600 to form a third transmitted light beam that is perpendicular to the light exit surface and a seventh reflected to the third reflection grating 601 Reflected light beams, the seventh reflected light beams incident on the third reflection grating 601 pass through the third reflection grating 601 to form an eighth reflected light beam emitted perpendicular to the light exit surface and reflected to the next one
  • the period P of the gratings of the first beam splitter, the second beam splitter, and the third beam splitter can be obtained according to the following formula:
  • n 1 refractive index of the medium where the incident beam is located
  • n 2 refractive index of the medium where the diffracted beam is located
  • ⁇ 2 beam diffraction angle
  • the wavelength of the light to be selected
  • the height and line width of the transmission and reflection gratings of the first beam splitter, the second beam splitter, and the third beam splitter affect the diffraction efficiency of the grating, and can be obtained by optimizing the design according to the specific structural needs and the optical simulation software.
  • Embodiments of the present disclosure also provide a display device.
  • the display device includes the optical substrate 1 and the light-emitting unit 2 described above.
  • the light emitting unit 2 is used to emit parallel light beams, and cause the parallel light beams to enter the light incident surface of the light guide plate at a predetermined angle.
  • the light emitting unit 2 includes a parallel light source 20, and the parallel light source 20 includes: a light source 201 located on a light incident surface of the light guide plate Side, for emitting white light or three-color mixed light; and, a collimating lens structure 202 for collimating the light emitted by the light source 201 to form a parallel beam and entering the light guide plate at the preset angle 10.
  • the light emitting unit 2 further includes a beam reducing structure 70 for reducing the width of the parallel beam emitted from the collimating lens structure.
  • the specific structure of the beam contraction structure may be various. The following examples are taken in the embodiments of the present disclosure.
  • the beam reduction structure 70 includes a light shielding member, the light shielding member is disposed on a light incident surface of the light guide plate, and the light shielding member is provided with an opening having a predetermined area So that the width of the light beam incident on the light guide plate 10 is not greater than (less than or equal to) the width of the corresponding light exit area.
  • the beam reduction structure 70 includes two lenses with different focal lengths, and the main optical axes of the two lenses coincide, wherein the two lenses include the light emitting unit along the A first convex lens 71 and a second convex lens 72 provided in the propagation direction of the emitted light beam, the focal point of the side of the first convex lens 71 close to the second convex lens 72 and the second convex lens 72 close to the first convex lens 71
  • the focal point on one side coincides at the first position, and the focal length f1 of the first convex lens 71 is greater than the focal length f2 of the second convex lens 72, and the first parallel beam emitted by the collimating lens structure is parallel to the first convex lens 71
  • the main optical axis is incident on the first convex lens 71, passes through the first position after being refracted by the first convex lens 71, and the light passing through the first position is refracted by the second convex lens 72 to
  • the first convex lens is a telephoto lens with a large aperture
  • the second convex lens is a short focal lens with a small aperture
  • the collimated light source is located at the telephoto position with a large aperture
  • the final beam reduction ratio is:
  • f2 focal length of the second convex lens.
  • the beam reduction structure 70 includes two lenses with different focal lengths, and the main optical axes of the two lenses coincide, wherein the two lenses include the propagation direction of the light beam emitted from the light emitting unit
  • a third convex lens 73 and a double concave first concave lens 74 are provided.
  • the focal point of the third convex lens 73 on the side close to the first concave lens 74 and the first concave lens 74 are away from the third concave lens 73
  • the focal point on one side coincides at the second position
  • the focal length f1 of the third convex lens 73 is greater than the focal length f2 of the first concave lens 74
  • the first parallel light beam emitted by the collimating lens structure is parallel to that of the third convex lens 73
  • the main optical axis is incident on the third convex lens 73, propagates to the first concave lens 74 after being refracted by the third convex lens 73, and forms main light parallel to the first concave lens 74 after being refracted by the first concave lens 74
  • the width of the second parallel beam d2 is smaller than the width of the first parallel beam d1, as shown in FIG. 7.
  • the light-emitting unit 2 includes a light source, and the light source includes at least two sub-light sources arranged at intervals, each of the sub-light sources emits monochromatic light with a preset color, and at least two The sub-light sources are arranged on the light incident surface 101 side of the light guide plate at intervals along the first direction, so that at least two monochromatic lights emitted by the sub-light sources are incident on the light guide plate 10 in parallel at the preset angle , And transmits in the light guide plate 10 in a non-total reflection manner, the first direction is from the light exit surface 102 of the light guide plate 10 to the bottom surface of the light guide plate 10 opposite to the light exit surface 102 103 direction.
  • the at least two sub-light sources include: a first collimating sub-light source 210 for emitting first collimated light in a first wavelength range; a second collimating sub-light source 220 for emitting light in a second wavelength range The second collimated light; the third collimated sub-light source 230 is used to emit third collimated light in the third wavelength range.
  • the first collimating sub-light source 210, the second collimating sub-light source 220 and the third collimating sub-light source 230 are arranged on the light incident side of the light guide plate 10 at intervals along the first direction, so that the first The collimated light, the second collimated light, and the third collimated light are all incident parallel to the light guide plate 10 at a second preset angle, and are transmitted in the light guide plate 10 in a non-total reflection manner .
  • the widths of the first collimated light, the second collimated light, and the third collimated light are all smaller than the first width, so that the first collimated light, the second collimated light The direct light and the third collimated light do not overlap in the propagation path to avoid color mixing.
  • the first width may be less than or equal to the line width of the transmission grating or the reflection grating in the spectroscopic grating.
  • the display device further includes a gray scale control unit 5.
  • the gray scale control unit 5 includes: an opposite substrate 60 disposed opposite to the light guide plate; and provided on the light guide plate 10 A liquid crystal layer 40 between the opposite substrate 60; a light shielding layer 50 disposed between the opposite substrate 60 and the liquid crystal layer 40, the light shielding layer 50 includes a plurality of opening regions 520, each The vertical projection of the opening area 520 on the light guide plate 10 is located between any two adjacent light-emitting areas in the plurality of light-emitting areas; electrodes 30 (such as common electrodes and pixels) that provide an electric field to the liquid crystal layer 40 Electrodes, or multiple electrodes), provided on the light exit surface side of the light guide plate 10, for adjusting the deflection direction of the liquid crystal, thereby adjusting the propagation direction of the monochromatic light incident on the liquid crystal layer; When the voltage of the electrode 30 is 0, and no electric field is provided to the liquid crystal layer 40, the light emitted from the optical substrate 1 enter
  • the counter substrate 60 is a glass substrate, which requires high transparency, avoids light loss, and has good surface smoothness.
  • the light shielding layer 50 may be a black matrix light-absorbing material on the side of the color film substrate in a TFT-LCD (thin film-transistor-liquid crystal) display.
  • TFT-LCD thin film-transistor-liquid crystal
  • the light-shielding layer 50 includes array-shaped, spaced-apart shielding regions 510 and opening regions 520.
  • FIG. 3 shows a schematic diagram of light exiting in a bright state (it should be understood that FIG. 3 is a schematic diagram, corresponding to adjacent sub-pixels The light between them does not cross, so as not to mix colors).
  • FIG. 2 shows a schematic diagram of light exit in the dark state.
  • the liquid crystal layer In the dark state, the liquid crystal layer does not function, and the light emitted from the light selection unit directly enters the blocking area 510 and is absorbed by the blocking area 510; in the bright state, the liquid crystal deflects under the action of an electric field, and Under the effect of the light, the light emitted from the light selection unit deviates and exits from the opening area 520.
  • the electrode 30 includes a slit electrode 30 and a plate electrode 30 distributed in an advanced super-dimensional field mode.
  • the slit electrode 30 and the plate electrode 30 may be located on the same side of the liquid crystal layer, or may be located on both sides of the liquid crystal layer, respectively.
  • the display device may be any product or component with a display function such as an LCD TV, a liquid crystal display, a digital photo frame, a mobile phone, a tablet computer, etc., wherein the display device further includes a flexible circuit board, a printed circuit board and a backplane.
  • AR Augmented Reality
  • VR Virtual Reality
  • the beneficial effects of the present disclosure are: color backlight effect is achieved, and color display is realized without setting a color film structure, and the light utilization rate is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Inorganic Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种光学基板(1)和显示装置。该光学基板(1)包括导光板(10)和光选择单元(90),导光板(10)包括入光面(101)和出光面(102),出光面(102)包括多个出光区域(E1,E2,E3);光选择单元(90)用于对从入光面(101)入射且在导光板(10)内传输的光进行选择,使得不同颜色的单色光(R,G,B)从与光选择单元(90)对应的多个出光区域(E1,E2,E3)中出射,且每个出光区域(E1,E2,E3)出射一种颜色的单色光(R,G,B)。

Description

光学基板及显示装置
相关申请的交叉引用
本申请主张在2018年10月31日在中国提交的中国专利申请号No.201811287289.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种光学基板及显示装置。
背景技术
在相关的显示器件中,LED光源发出的单色光线耦合到导光板中,在导光板内全反射传输中,在导光板的上面或下面设置取出光栅,取出光栅将在导光板中全反射传播的单色光线以准直角度取出。被取出的单色光线通过彩膜结构,以形成彩色的显示器件。
发明内容
本公开提供一种光学基板及显示装置。
第一方面,本公开提供一种光学基板。该光学基板包括:导光板和多个光选择单元,其中,所述导光板包括入光面和出光面,所述出光面包括多个出光区域;每个所述光选择单元用于对从所述入光面入射且在所述导光板内传输的光进行选择,使得不同颜色的单色光从与所述光选择单元对应的多个出光区域中出射,且每个所述出光区域出射一种颜色的单色光。
可选地,每个所述光选择单元包括多个滤光膜,所述多个滤光膜与所述光选择单元所对应的多个出光区域一一对应,每个所述滤光膜用于将所述不同颜色的单色光中预设颜色的单色光反射到所述出光面,并透射所述不同颜色的单色光中所述预设颜色之外的光。
可选地,所述多个滤光膜包括第一滤光膜、第二滤光膜和第三滤光膜,所述第一滤光膜、所述第二滤光膜和所述第三滤光膜相对于所述出光面彼此等间隔地设置于所述导光板内,所述第一滤光膜、所述第二滤光膜和所述第 三滤光膜与所述出光面之间的夹角分别为第一角度、第二角度和第三角度。
可选地,所述第一滤光膜、所述第二滤光膜和所述第三滤光膜平行设置,所述第一角度、所述第二角度和所述第三角度分别是45度。
可选地,每个所述滤光膜由至少两种不同折射率的介质层周期性的交替层叠设置形成。
可选地,构成所述滤光膜的至少两种不同折射率的介质层的排布周期d满足以下公式:d=λ/2*n*sin(π/2-θ),其中,λ为所述滤光膜所反射的单色光的波长,n为所述滤光膜的至少两种不同折射率的介质层的平均折射率,θ为入射至所述滤光膜的入射光线与经过相应的所述滤光膜的法线之间的夹角。
可选地,所述至少两种不同折射率的介质层包括高折射率的介质层和低折射率的介质层,其中所述高折射率的介质层的折射率是1.51,所述低折射率的介质层的折射率是1.49。
可选地,所述光选择单元包括多个分光光栅,所述多个分光光栅与所述多个出光区域一一对应,且每个所述分光光栅位于从所述入射面入射的光的传播路径上,用于使得入射至每个所述分光光栅的光中的预设颜色的单色光朝向所述出光面出射。
可选地,所述导光板包括与所述出光面相对设置的底面,所述分光光栅包括设置于所述出光面上的多个透射光栅和设置于所述底面上的多个反射光栅,所述透射光栅和所述反射光栅分别与所述多个出光区域中相应的出光区域对应设置,且所述透射光栅和所述反射光栅间隔设置,入射至所述多个透射光栅中一个透射光栅的光经过该透射光栅后形成沿着垂直于所述出光面出射的第一透射光束和反射至一个所述反射光栅的第一反射光束,入射至该反射光栅的所述第一反射光束经过该反射光栅后形成沿着垂直于所述出光面出射的第二反射光束和反射至下一个所述透射光栅的第三反射光束。
可选地,所述导光板的出光面上设置覆盖多个所述透射光栅的第一平坦层;所述导光板的底面上设置覆盖多个所述反射光栅的第二平坦层。
可选地,所述多个分光光栅包括第一分光光栅、第二分光光栅和第三分光光栅,所述第一分光光栅、所述第二分光光栅、所述第三分光光栅的光栅的周期P依照如下公式获得:
n 1sinθ 1-n 2sinθ 2=mλ/P,其中
n 1:入射光束所在介质折射率,
n 2:衍射光束所在介质折射率,
θ 1:光束入射角,
θ 2:光束衍射角,
λ:所要选择的光的波长;
m:光线衍射级次。
可选地,所述光学基板进一步包括:发光单元,设置在所述导光板的所述入光面,用于发出平行光束,且使得所述平行光束以预设角度从所述导光板的入光面入射。
可选地,所述发光单元包括:光源,位于所述导光板的入光面一侧,用于发出白光或三色混合光;准直透镜结构,用于将所述光源发出的光进行准直以形成平行光束、并以预设角度入射所述导光板;以及光束缩束结构,用于将从所述准直透镜结构射出的平行光束的宽度缩小。
可选地,所述光束缩束结构包括遮光部件,所述遮光部件设置于所述导光板的入光面,所述遮光部件上设置一具有预设面积的开口,使得入射至所述导光板的光束的宽度小于或等于所述多个出光区域中每个出光区域的宽度。
可选地,所述光束缩束结构包括两个焦距不同的透镜,且两个透镜的主光轴重合,其中,所述两个透镜包括沿所述发光单元发出的光束的传播方向设置的第一凸透镜和第二凸透镜,所述第一凸透镜靠近所述第二凸透镜的一侧的焦点与所述第二凸透镜靠近所述第一凸透镜一侧的焦点在第一位置重合,且所述第一凸透镜的焦距大于所述第二凸透镜的焦距,所述准直透镜结构发出的第一平行光束平行于第一凸透镜的主光轴入射至第一凸透镜,经过所述第一凸透镜的折射后通过所述第一位置,通过所述第一位置的光线经过所述第二凸透镜的折射后形成沿平行于第二凸透镜的主光轴的方向传播的第二平行光束,所述第二平行光束的宽度小于所述第一平行光束的宽度;或者,所述两个透镜包括沿所述发光单元发出的光束的传播方向设置的第三凸透镜和一双面凹的第一凹透镜,所述第三凸透镜靠近所述第一凹透镜的一侧的焦点与所述第一凹透镜远离所述第三凸透镜的一侧的焦点在第二位置处重合,所 述第三凸透镜的焦距大于所述第一凹透镜的焦距,所述准直透镜结构发出的第一平行光束平行于第三凸透镜的主光轴入射至第三凸透镜,经过所述第三凸透镜的折射后传播至所述第一凹透镜,经过所述第一凹透镜的折射后形成沿平行于第一凹透镜的主光轴的方向传播的第二平行光束,所述第二平行光束的宽度小于所述第一平行光束的宽度。
可选地,所述发光单元包括光源,所述光源包括间隔设置的至少两个子光源,每个所述子光源发出具有预设颜色的单色光,至少两个所述子光源沿第一方向间隔设置于所述导光板的入光面一侧,使得至少两个所述子光源发出的单色光均以所述预设角度平行入射至所述导光板,并以非全反射的方式在所述导光板内传输,所述第一方向为从所述导光板的出光面到所述导光板的与所述出光面相对设置的底面的方向。
可选地,所述至少两个子光源包括第一准直子光源、第二准直子光源和第三准直子光源,所述第一准直子光源、所述第二准直子光源和所述第三准直子光源配置为分别发出以第二预设角度平行入射至所述导光板内的第一准直光、第二准直光和第三准直光,其中所述第一准直光、所述第二准直光和所述第三准直光以非全反射的方式在所述导光板内传输。
可选地,至少两个所述子光源发出的单色光的宽度均小于预设宽度、使得至少两个所述子光源发出的单色光在传播途径中不重叠。
第二方面,本公开提供一种显示装置,该显示装置包括上述的光学基板,以及与所述光学基板相对设置对置基板。
可选地,所述显示装置还包括:设置于所述光学基板与所述对置基板之间的液晶层;设置于所述对置基板与所述液晶层之间的遮光层,所述遮光层具有多个开口区,每个所述开口区在所述光学基板上的垂直投影位于多个所述出光区域中的任意相邻两个出光区域之间;对所述液晶层提供电场的电极,设置于所述导光板的出光面一侧,用于调节液晶的偏转方向,从而调节入射至所述液晶层的单色光的传播方向。
可选地,所述遮光层包括间隔分布的遮挡区和开口区。
附图说明
图1表示相关技术中显示装置的结构示意图;
图2表示本公开实施例中光学基板的结构示意图一;
图3表示本公开实施例中光学基板的结构示意图二;
图4表示本公开实施例中显示装置的结构示意图一;
图5表示本公开实施例中显示装置的结构示意图二;
图6表示本公开实施例的光束缩束结构示意图一;
图7表示本公开实施例的光束缩束结构示意图二;
图8表示本公开实施例中显示装置的结构示意图三;
图9表示本公开实施例中滤光膜的结构示意图;
图10表示本公开实施例中滤光膜设置原理示意图;
图11表示本公开实施例中第一滤光膜出光光谱示意图;
图12表示本公开实施例中第二滤光膜出光光谱示意图;以及
图13表示本公开实施例中第三滤光膜出光光谱示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
图1是相关的显示装置的结构示意图。如图1所示,LED光源1000发出的朗伯体单色光线通过自由曲面反射镜2000调制,以某一中心角度耦合入导光板3000,在导光板3000内以全反射的方式传输,在导光板3000的出光面或底面(与出光面相对的另一面)设置取出光栅4000,取出光栅4000的作用是将在导光板3000中全反射传播的大角度单色光线以准直角度取出,实现了高透过率的准直光源(背景光大部分可通过)。
但是以上的显示装置的结构中有如下问题:取出光栅4000只能准直化的取出单种颜色的光,LED光源只能是单色光,实现彩色显示需要在取出光栅上方设置彩膜结构,因此光损失较多。
针对这一问题,本公开提供一种光学基板,如图2-图5和图8所示,本公开的一些实施例的光学基板1包括导光板10和多个周期分布的光选择单元90。
所述导光板10包括入光面101和与所述入光面101相邻的出光面102。所述出光面102包括阵列式排布的多个出光区域。导光板10可以是侧入式导光板,入光面101可以位于侧入式导光板的侧面,与出光面相垂直的侧面。入光面101和出光面102之间可以存在一个公共的边界,并且入光面101和出光面102之间相互垂直。
多个像素单元与所述多个光选择单元90一一对应设置。所述像素单元的周期性分布与所述光选择单元的周期性分布相同。每个像素单元包括一个或多个不同颜色的子像素单元。
每个光选择单元90用于对从所述入光面101入射且在所述导光板10内传输的光进行选择,使得与该光选择单元对应的像素单元中的一个或多个子像素单元的颜色相同的单色光分别从对应颜色的子像素单元出射。即,每个光选择子单元选择的光线分别投射到与该光选择单元对应的像素单元中的一个或多个子像素单元的位置,从而形成所述出光面102上的一个或多个出光区域,每个出光区域出射一种颜色的单色光。
本公开的实施例中,当所述一个或多个不同颜色的子像素单元是三种颜色的子像素单元时,所述一个或多个出光区域包括出射三种颜色的光的三个出光区域,即第一出光区域E1,被配置为使第一预设颜色的单色光从所述第一出光区域E1出射;第二出光区域E2,被配置为使第二预设颜色的单色光从所述第二出光区域出射;第三出光区域E3,被配置为使第三预设颜色的单色光从所述第三出光区域E3出射。
例如,多个子像素单元包括第一子像素单元、第二子像素单元和第三子像素单元,三个子像素单元分别对应三种颜色。所述出光区域包括分别与多个子像素单元相对应的第一出光区域E1、第二出光区域E2和第三出光区域E3,每个光选择单元90用于从在所述导光板10内传输的光中选择具有第一波长范围的光(即第一预设颜色的单色光为具有第一波长范围的光)从所述第一出光区域E1出射,并选择具有第二波长范围的光(即第二预设颜色的单 色光为具有第二波长范围的光)从所述第二出光区域E2出射,并选择具有第三波长范围的光(即第三预设颜色的单色光为具有第三波长范围的光)从所述第三出光区域E3出射,其中,所述第一波长范围的光的颜色与所述第一出光区域E1对应的第一子像素单元的颜色相同,所述第二波长范围的光的颜色与所述第二出光区域对应的第二子像素单元的颜色相同,所述第三波长范围的光的颜色与所述第三出光区域对应的第三子像素单元的颜色相同。
可选地,当第一、第二、第三子像素单元的颜色为RGB三种颜色时,所述光选择单元90用于从在所述导光板10内传输的光中选择红色的光(R)从所述第一出光区域E1出射,选择绿色的光(G)从所述第二出光区域E2出射,选择蓝色的光(B)从所述第三出光区域E3出射。从而本公开的实施例提供的光学基板,实现了彩色背光效果,显示装置无需设置POL(偏光片)和彩膜结构即可实现彩色显示,在透明显示、高光效利用方面具有一定的优势,为将来量产化进一步推进。
所述光选择单元的具体结构形式可以有多种。下面分别结合具体实例进行说明。
在一个实例中,对应像素单元的每个光选择单元设置在所述导光板内,并且每个光选择单元包括与该像素单元内不同颜色的一个或多个子像素单元一一对应的一个或多个滤光膜。
在一些实施方式中,每个所述滤光膜用于反射从所述入光面入射的光中的预设颜色的单色光、并透射从所述入光面入射的光中的所述预设颜色之外的光,且每个所述滤光膜相对于所述出光面倾斜设置于所述导光板内,所述滤光膜与所述出光面之间的夹角为第一角度,具体的,滤光膜的具有反射功能的一面朝向所述导光板的出光面,所述第一夹角为滤光膜的具有反射功能的一面与导光板的出光面之间的夹角,具体为0-90°之间的非0且非90°。
使得经过所述滤光膜反射后的单色光沿垂直于所述出光面的方向、从相应的所述出光区域出射。该第一角度可以在40度50度之间,可选地是45度。
示例性的,多个所述滤光膜与多个子像素单元一一对应设置,第一出光区域E1、第二出光区域E2和第三出光区域E3,所述光选择单元包括第一滤光膜100、第二滤光膜200和第三滤光膜300。可选的,第一滤光膜100、第 二滤光膜200和第三滤光膜300平行设置。
所述第一滤光膜100用于反射所述第一波长范围内的光线、并透射所述第一波长范围外的光线,所述第一滤光膜100倾斜设置于所述导光板10内,所述第一滤光膜100与所述发光单元发出的光束之间的夹角为第一角度、使得经过所述第一滤光膜100反射后的光线沿垂直于所述导光板1的出光面的方向、从所述第一出光区域E1出射。
所述第二滤光膜200用于反射所述第二波长范围内的光线、并透射所述第二波长范围外的光线,所述第二滤光膜200倾斜设置于所述导光板10内,所述第二滤光膜200与所述发光单元发出的光束之间的夹角为第二角度、使得经过所述第二滤光膜200反射后的光线沿垂直于所述导光板10的出光面的方向、从所述第二出光区域E2出射。
所述第三滤光膜300用于反射所述第三波长范围内的光线、并透射所述第三波长范围外的光线,所述第三滤光膜300倾斜设置于所述导光板10内,所述第三滤光膜300与所述发光单元发出的光束之间的夹角为第三角度、使得经过所述第三滤光膜300反射后的光线沿垂直于所述导光板10的出光面的方向、从所述第三出光区域E3出射。
所述第一角度、所述第二角度、所述第三角度可以相同可以不同,所述第一角度、所述第二角度、所述第三角度的具体设置由所述第一滤光膜100、第二滤光膜200和第三滤光膜300的结构特性决定,只要实现使得经过所述滤光膜反射后的单色光沿垂直于所述出光面的方向、从相应的所述出光区域出射即可。
所述第一滤光膜100、第二滤光膜200和第三滤光膜300分别对应于一个像素单元的多个子像素单元,例如三个子像素单元;并且第一滤光膜100、第二滤光膜200和第三滤光膜300分别取出与对应的子像素单元的颜色相同的光,在本公开的实施例中的第一滤光膜100、第二滤光膜200和第三滤光膜300这种膜系结构具有波长选择性及角度偏转特性。即膜系结构仅可以将一种预设颜色(或预设波长)的光线调制取出,同时通过合理设计该膜系结构相对于入射光的倾斜角度,便可以对特定波长的光线实现特定角度的偏转,其他预设颜色之外的光线通过该膜系时不会发生任何改变,预设颜色光线之 外的光线会继续经过其他膜系结构,直至经过其对应的膜系结构被调制取出,不存在光能损失。
例如,一个像素单元内包括RGB三种颜色的子像素单元,则所述第一滤光膜100与R子像素单元对应设置,第二滤光膜200与G子像素单元对应设置,第三滤光膜300与B子像素单元对应设置。
所述第一滤光膜100用于反射与R子像素单元的颜色相同的光线(即红光)、并透射所述第一波长范围外的光线(即绿光和蓝光通过所述第一滤光膜10不会发生改变),经过所述第一滤光膜100反射后的红光沿垂直于所述导光板1的出光面的方向、从所述第一出光区域E1出射,图11表示的是第一滤光膜反射的红色的光的光谱示意图。
所述第二滤光膜200用于反射与G子像素单元的颜色相同的光线(即绿光)、并透射所述第二波长范围外的光线(即红光和蓝光通过所述第一滤光膜100不会发生改变),经过所述第二滤光膜200反射后的绿光沿垂直于所述导光板10的出光面的方向、从所述第二出光区域E2出射,图12表示的是第二滤光膜反射的绿色的光的光谱示意图。
所述第三滤光膜300用于反射与B子像素单元的颜色相同的光线(即蓝光)、并透射所述第三波长范围外的光线(即绿光和红光通过所述第一滤光膜100不会发生改变),经过所述第三滤光膜300反射后的蓝光沿垂直于所述导光板10的出光面的方向、从所述第三出光区域E3出射,图13表示的是第三滤光膜反射的蓝色的光的光谱示意图。
本公开的实施例中通过滤光膜的结构形式实现与对应的子像素单元的颜色相同的光的选择,相比光栅的微纳结构的设置,不会存在杂散的干扰光线,不会造成串色等问题(微纳结构对波长敏感,一种微纳光栅使得全波段光线都会发生衍射)。
本公开的实施例中,所述发光单元发出的光束平行于所述导光板10的出光面、入射至所述导光板10,所述第一角度即为相应的所述滤光膜的倾斜角度,从所述导光板10的入射面入射至导光板10的光束,在所述导光板10内的传播路径平行于所述导光板10的出光面102。
本公开的实施例中,被所述第一滤光膜100、或者所述第二滤光膜200、 或者所述第三滤光膜300反射的相应波长的光线准直向上出射,依据布拉格效应,被选择的光线与初始入射光线相对于相应的滤光膜的垂线(法线)呈沿垂线对称关系,因此,所述第一滤光膜100、或者所述第二滤光膜200、或者所述第三滤光膜300在所述导光板10内的倾斜角度为α=45°,图10表示的是所述第一滤光膜100、或者所述第二滤光膜200、或者所述第三滤光膜300在导光板1中的设置示意图。
本公开的实施例中,所述滤光膜是依据布拉格原理而设计的,所述滤光膜均由至少两种不同折射率的介质层周期性的交替层叠设置形成。
可选的,所述滤光膜包括厚度相等的、交替叠层设置的高折射率介质层01和低折射率介质层02,如图9所示。
所述低折射率介质层01的折射率为1.0-1.8,所述高折射率介质层02的折射率为1.2-2.0,但并不以此为限。
本公开的实施例中,所述滤光膜中介质层的排布周期d为一层所述高折射率介质层的厚度和一层低折射率介质层的厚度的和,高折射率介质层的厚度和低折射率介质层的厚度具体由相应的滤光膜所要选择的光的波长以及偏转角度决定。
如图9和图10所示,本公开的实施例中,每个所述滤光膜中介质层的排布周期d满足以下公式(1):d=λ/2*n*sin(π/2-θ),其中,λ为所述滤光膜所反射的光线的波长,n为所述滤光膜的至少两种不同折射率的介质层的平均折射率,θ为入射至所述滤光膜的入射光线与经过相应的所述滤光膜的法线之间的夹角。
每个所述滤光膜的厚度一般均在40层~100层介质层之间。
高折射率介质层和低折射率介质层的具体折射率差异将会决定对应的滤光膜的波长选择调制效率。实际使用时,可以根据背光均匀性原则,合理的选择高折射率介质层和低折射率介质层的材料,控制折射率差异渐变变化,实现背光均匀。
当多个所述滤光膜包括与具有三种颜色的子像素单元对应的第一滤光膜100、所述第二滤光膜200、所述第三滤光膜300时,设所述第一滤光膜100、或者所述第二滤光膜200、或者所述第三滤光膜300反射的光线的波长分别 为:650nm(R),550nm(G),450nm(B),设高折射率介质层的折射率为1.51,低折射率介质层的折射率为1.49,平均折射率n=1.5。所述第一滤光膜100、或者所述第二滤光膜200、或者所述第三滤光膜300均包括共80层的介质层。
结合以上公式(1)中,可以得出三种波长对应的滤光膜(即滤光膜中介质层的排布周期)的周期及滤光膜的厚度:
设d_R为第一滤光膜100的周期;d_G为第二滤光膜200的周期;d_B为第三滤光膜300的周期,则:
d_R=λ_R/2*n*sin(π/2-θ)=0.65/(2*1.5*0.707)=0.212um;
d_G=λ_G/2*n*sin(π/2-θ)=0.55/(2*1.5*0.707)=0.259um;
d_B=λ_R/2*n*sin(π/2-θ)=0.45/(2*1.5*0.707)=0.306um;
从图11-13可以看出,当白光入射到各滤光膜(第一滤光膜100、第二滤光膜200、第三滤光膜300)时,均可以实现相应的波长的光线的精确筛选,即本公开实施例中的光学基板可以实现彩色化的点阵背光,且基本不会存在光能损失,所述第一滤光膜100、第二滤光膜200、第三滤光膜300的各介质层的材料均为透明材料,整体器件具有极高的透明度。
上述光学基板的方案中,通过滤光膜来实现彩色背光效果。除了采用滤光膜外还可以采用其他的结构实现光的选择,进而实现彩色背光效果,以下具体介绍采用分光光栅来实现彩色背光效果的光学基板的具体结构形式。
在另一实例中,每个光选择单元包括与所述出光区域相对应的多个分光光栅,且每个所述分光光栅位于从所述入射面入射的光的传播路径上,用于使得入射至每个所述分光光栅的光中的预设颜色的单色光沿垂直于所述导光板的出光面的方向准直出射。
所述导光板包括与所述出光面相对设置的底面,所述分光光栅包括设置于所述出光面上的多个透射光栅和设置于所述底面上的多个反射光栅,所述透射光栅和所述反射光栅分别与相应的所述出光区域对应设置,且所述透射光栅和所述反射光栅间隔设置,入射至一个所述透射光栅的光经过该透射光栅后形成沿着垂直于所述出光面出射的第一透射光束和反射至一个所述反射光栅的第一反射光束,入射至该反射光栅的所述第一反射光束经过该反射光 栅后形成沿着垂直于所述出光面出射的第二反射光束和反射至下一个所述透射光栅的第三反射光束。
所述导光板的出光面上设置覆盖多个所述透射光栅的第一平坦层03;所述导光板的底面上设置覆盖多个所述反射光栅的第二平坦层04。
具体的,当多个所述出光区域包括与具有三种颜色的子像素单元对应设置的第一出光区域、第二出光区域、第三出光区域时,对应所述第一出光区域设置第一分光光栅,且所述第一分光光栅位于所述第一准直光的传播路径上,用于使得入射至所述第一分光光栅的所述第一准直光沿垂直于所述导光板10的出光面的方向准直出射;对应所述第二出光区域设置第二分光光栅,且所述第二分光光栅位于所述第二准直光的传播路径上,用于使得入射至所述第二分光光栅的所述第二准直光沿垂直于所述导光板10的出光面的方向准直出射。对应所述第三出光区域设置第三分光光栅,且所述第三分光光栅位于所述第三准直光的传播路径上,用于使得入射至所述第三分光光栅的所述第三准直光沿垂直于所述导光板10的出光面的方向准直出射。
可选地,参考图8,所述导光板1包括出光面102和与所述出光面102相对设置的底面103,所述第一分光光栅包括:设置于所述出光面上的多个第一透射光栅400和设置于所述底面上的多个第一反射光栅401,所述第一透射光栅400和所述第一反射光栅401间隔设置,即所述第一透射光栅400在所述底面上的投影与所述第一反射光栅401在所述底面上的投影彼此间隔,不存在重叠区域;入射至所述第一透射光栅400的所述第一准直光经过所述第一透射光栅400后形成沿着垂直与所述出光面102出射的第一透射光束和反射至所述第一反射光栅401的第一反射光束,入射至所述第一反射光栅401的所述第一反射光束经过所述第一反射光栅401后形成沿着垂直与所述出光面102出射的第二反射光束和反射至下一个所述第一透射光栅400的第三反射光束。
所述第二分光光栅包括:设置于所述出光面上的多个第二透射光栅500和设置于所述底面上的多个第二反射光栅501,所述第二透射光栅500和所述第二反射光栅501间隔设置,即所述第二透射光栅500在所述底面上的投影与所述第二反射光栅501在所述底面上的投影彼此间隔,不存在重叠区域; 入射至所述第二透射光栅500的所述第二准直光经过所述第二透射光栅500后形成沿着垂直与所述出光面出射的第二透射光束和反射至所述第二反射光栅501的第四反射光束,入射至所述第二反射光栅501的所述第四反射光束经过所述第二反射光栅501后形成沿着垂直与所述出光面出射的第五反射光束和反射至所述下一个第二透射光栅500的第六反射光束。
所述第三分光光栅包括:设置于所述出光面102上的多个第三透射光栅600和设置于所述底面上的多个第三反射光栅601,所述第三透射光栅600和所述第三反射光栅601间隔设置,即所述第三透射光栅600在所述底面上的投影与所述第三反射光栅601在所述底面上的投影彼此间隔,不存在重叠区域;入射至所述第三透射光栅600的所述第三准直光经过所述第三透射光栅600后形成沿着垂直与所述出光面出射的第三透射光束和反射至所述第三反射光栅601的第七反射光束,入射至所述第三反射光栅601的所述第七反射光束经过所述第三反射光栅601后形成沿着垂直与所述出光面出射的第八反射光束和反射至下一个所述第三透射光栅600的第九反射光束。
本公开的实施例中,所述第一分光光栅、所述第二分光光栅、所述第三分光光栅的光栅的周期P可按照如下公式获得:
n 1sinθ 1-n 2sinθ 2=mλ/P,其中
n 1:入射光束所在介质折射率,
n 2:衍射光束所在介质折射率,
θ 1:光束入射角,
θ 2:光束衍射角,(本公开的实施例中,经过所述第一分光光栅、第二分光光栅、第三分光光栅的光准直向上出射,因此θ 2=0.)
λ:所要选择的光的波长;
m:光线衍射级次,(本公开的实施例中,m=1或-1)。
所述第一分光光栅、第二分光光栅、第三分光光栅的透射光栅和反射光栅高度和线宽影响光栅的衍射效率,可以根据具体结构需要,根据光学模拟软件优化设计得出。
本公开的实施例还提供一种显示装置。该显示装置包括上述的光学基板1和发光单元2。所述发光单元2用于发出平行光束,且使得所述平行光束以 预设角度从所述导光板的入光面入射。
为了便于控制所述发光单元2发出的光束的传播路径,本公开的实施例中,所述发光单元2包括平行光源20,平行光源20包括:光源201,位于所述导光板的入光面一侧,用于发出白光或三色混合光;和,准直透镜结构202,用于将所述光源201发出的光进行准直以形成平行光束、并以所述预设角度入射所述导光板10。
经过所述光选择单元选择后的光束从相应的所述出光区域出射,为了防止漏光,从所述出光区域出射的光束的宽度要小于或等于相应的出光区域的宽度,为了实现这一目的,本公开的实施例中所述发光单元2还包括用于将从所述准直透镜结构射出的平行光束的宽度缩小的光束缩束结构70。
所述光束缩束结构的具体结构形式可以有多种。本公开的实施例中采取了以下几种示例。
在一个示例中,如图4所示,所述光束缩束结构70包括遮光部件,所述遮光部件设置于所述导光板的入光面,所述遮光部件上设置一具有预设面积的开口,使得入射至所述导光板10的光束的宽度不大于(小于或等于)相应的所述出光区域的宽度。
在另一示例中,如图5所示,所述光束缩束结构70包括两个焦距不同的透镜,且两个透镜的主光轴重合,其中,所述两个透镜包括沿所述发光单元发出的光束的传播方向设置的第一凸透镜71和第二凸透镜72,所述第一凸透镜71靠近所述第二凸透镜72的一侧的焦点与所述第二凸透镜72靠近所述第一凸透镜71一侧的焦点在第一位置重合,且所述第一凸透镜71的焦距f1大于所述第二凸透镜72的焦距f2,所述准直透镜结构发出的第一平行光束平行于第一凸透镜71的主光轴入射至第一凸透镜71,经过所述第一凸透镜71的折射后通过所述第一位置,通过所述第一位置的光线经过所述第二凸透镜72的折射后形成沿平行于第二凸透镜72的主光轴的方向传播的第二平行光束,所述第二平行光束的宽度d2小于所述第一平行光束d1的宽度,如图6所示。
如图6所示,第一凸透镜为孔径大的长焦透镜,第二凸透镜为孔径小的短焦透镜,准直光源位于大孔径的长焦位置处,最终的缩束比为:
d1/d2=f1/f2,其中,
d1:入射缩束系统的光束宽度
d2:从缩束系统出射的光束宽度
f1:第一凸透镜焦距
f2:第二凸透镜焦距。
在再一示例中,所述光束缩束结构70包括两个焦距不同的透镜,且两个透镜的主光轴重合,其中,所述两个透镜包括沿所述发光单元发出的光束的传播方向设置的第三凸透镜73和一双面凹的第一凹透镜74,所述第三凸透镜73靠近所述第一凹透镜74的一侧的焦点与所述第一凹透镜74远离所述第三凸透镜73的一侧的焦点在第二位置处重合,所述第三凸透镜73的焦距f1大于所述第一凹透镜74的焦距f2,所述准直透镜结构发出的第一平行光束平行于第三凸透镜73的主光轴入射至第三凸透镜73,经过所述第三凸透镜73的折射后传播至所述第一凹透镜74,经过所述第一凹透镜74的折射后形成沿平行于第一凹透镜74的主光轴的方向传播的第二平行光束,所述第二平行光束d2的宽度小于所述第一平行光束d1的宽度,如图7所示。
在本公开的可选实施例中,所述发光单元2包括光源,所述光源包括间隔设置的至少两个子光源,每个所述子光源发出具有预设颜色的单色光,至少两个所述子光源沿第一方向间隔设置于所述导光板的入光面101一侧,使得至少两个所述子光源发出的单色光均以所述预设角度平行入射至所述导光板10,并以非全反射的方式在所述导光板10内传输,所述第一方向为从所述导光板10的出光面102到所述导光板10的与所述出光面102相对设置的底面103的方向。
在一个实施方式中,所述至少两个子光源包括:第一准直子光源210,用于发出第一波长范围的第一准直光;第二准直子光源220,用于发出第二波长范围的第二准直光;第三准直子光源230,用于发出第三波长范围的第三准直光。
所述第一准直子光源210、所述第二准直子光源220和所述第三准直子光源230沿所述第一方向间隔设置于所述导光板10的入光侧,使得所述第一准直光、所述第二准直光和所述第三准直光均以第二预设角度平行入射至所 述导光板10,并以非全反射的方式在所述导光板10内传输。
本实施方式中,所述第一准直光、所述第二准直光和所述第三准直光的宽度均小于第一宽度,使得所述第一准直光、所述第二准直光和所述第三准直光在传播途径中不重叠,避免混色。第一宽度可以小于或等于分光光栅中的透射光栅或反射光栅的线宽。
参考图8,本公开的实施例中,所述显示装置还包括灰阶控制单元5,所述灰阶控制单元5包括:与所述导光板相对设置的对置基板60;设置于导光板10与所述对置基板60之间的液晶层40;设置于所述对置基板60与所述液晶层40之间的遮光层50,所述遮光层50包括多个开口区520,每个所述开口区520在所述导光板10上的垂直投影位于多个所述出光区域中的任意相邻两个出光区域之间;对所述液晶层40提供电场的电极30(如公共电极和像素电极,或多个电极),设置于所述导光板10的出光面一侧,用于调节液晶的偏转方向,从而调节入射至所述液晶层的单色光的传播方向;其中,当所述电极30电压为0,对所述液晶层40不提供电场时,所述光学基板1出射的光线入射至所述遮光层50被吸收,显示暗态;当所述电极30对所述液晶层40提供的电压不为零时,液晶偏转形成液晶光栅,所述光学基板出射的光线经液晶光栅后,从所述开口区出射,显示亮态。
本公开的实施例中,所述对置基板60为玻璃基板,要求透明度较高,避免光损,表面平整性较好。
本公开的实施例中,所述遮光层50可以为TFT-LCD(thin film transistor-liquid crystal display)中位于彩膜基板一侧的黑矩阵吸光材料。
所述遮光层50包括阵列式分布、且间隔分布的遮挡区510和开口区520,图3表示的是亮态时光线出射示意图(应当理解的是,图3是示意图,对应的相邻子像素之间的光线是不交叉的,以免混色)。图2表示的是暗态时的光线出射示意图。在暗态时,液晶层不起作用,从所述光选择单元出射的光线直接入射至所述遮挡区510,被遮挡区510吸收;在亮态时,在电场作用下液晶偏转,在液晶层的作用下,从所述光选择单元出射的光线偏离,从所述开口区520出射。
本公开的实施例中,所述电极30包括以高级超维场模式分布的狭缝电极 30和板状电极30。
所述狭缝电极30和板状电极30可以位于所述液晶层的同一侧,也可以分别位于所述液晶层的两侧。
所述显示装置可以为:液晶电视、液晶显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件,其中,所述显示装置还包括柔性电路板、印刷电路板和背板,在今后AR(增强现实,Augmented Reality)/VR(虚拟实境,Virtual Reality)等领域具有应用价值。
本公开的有益效果是:实现彩色背光效果,且无需设置彩膜结构实现了彩色化显示,提高光的利用率。
以上所述为本公开的可选实施例,应当指出的是,对于本领域普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开保护范围。

Claims (20)

  1. 一种光学基板,包括:
    导光板和多个光选择单元,
    其中,所述导光板包括入光面和出光面,所述出光面包括多个出光区域;
    每个所述光选择单元用于对从所述入光面入射且在所述导光板内传输的光进行选择,使得不同颜色的单色光从与所述光选择单元对应的多个出光区域中出射,且每个所述出光区域出射一种颜色的单色光。
  2. 根据权利要求1所述的光学基板,其中,每个所述光选择单元包括多个滤光膜,所述多个滤光膜与所述光选择单元所对应的多个出光区域一一对应,每个所述滤光膜用于将所述不同颜色的单色光中预设颜色的单色光反射到所述出光面,并透射所述不同颜色的单色光中所述预设颜色之外的光。
  3. 根据权利要求2所述的光学基板,其中,所述多个滤光膜包括第一滤光膜、第二滤光膜和第三滤光膜,所述第一滤光膜、所述第二滤光膜和所述第三滤光膜相对于所述出光面彼此等间隔地设置于所述导光板内,所述第一滤光膜、所述第二滤光膜和所述第三滤光膜与所述出光面之间的夹角分别为第一角度、第二角度和第三角度。
  4. 根据权利要求3所述的光学基板,其中,所述第一滤光膜、所述第二滤光膜和所述第三滤光膜平行设置,所述第一角度、所述第二角度和所述第三角度分别为45度。
  5. 根据权利要求3或4所述的光学基板,其中,每个所述滤光膜由至少两种不同折射率的介质层周期性的交替层叠设置形成。
  6. 根据权利要求5所述的光学基板,其中,构成所述滤光膜的至少两种不同折射率的介质层的排布周期d满足以下公式:d=λ/2*n*sin(π/2-θ),其中,λ为所述滤光膜所反射的单色光的波长,n为所述滤光膜的至少两种不同折射率的介质层的平均折射率,θ为入射至所述滤光膜的入射光线与经过相应的所述滤光膜的法线之间的夹角。
  7. 根据权利要求6所述的光学基板,其中所述至少两种不同折射率的介质层包括高折射率的介质层和低折射率的介质层,其中所述高折射率的介质 层的折射率是1.51,所述低折射率的介质层的折射率是1.49。
  8. 根据权利要求1所述的光学基板,其中,所述光选择单元包括多个分光光栅,所述多个分光光栅与所述多个出光区域一一对应,且每个所述分光光栅位于从所述入射面入射的光的传播路径上,用于使得入射至每个所述分光光栅的光中的预设颜色的单色光朝向所述出光面出射。
  9. 根据权利要求8所述的光学基板,其中,所述导光板包括与所述出光面相对设置的底面,所述分光光栅包括设置于所述出光面上的多个透射光栅和设置于所述底面上的多个反射光栅,所述透射光栅和所述反射光栅分别与所述多个出光区域中相应的出光区域对应设置,且所述透射光栅和所述反射光栅间隔设置,入射至所述多个透射光栅中一个透射光栅的光经过该透射光栅后形成沿着垂直于所述出光面出射的第一透射光束和反射至一个所述反射光栅的第一反射光束,入射至该反射光栅的所述第一反射光束经过该反射光栅后形成沿着垂直于所述出光面出射的第二反射光束和反射至下一个所述透射光栅的第三反射光束。
  10. 根据权利要求9所述的光学基板,其中,所述导光板的出光面上设置覆盖多个所述透射光栅的第一平坦层;
    所述导光板的底面上设置覆盖多个所述反射光栅的第二平坦层。
  11. 根据权利要求9或10所述的光学基板,其中,所述多个分光光栅包括第一分光光栅、第二分光光栅和第三分光光栅,所述第一分光光栅、所述第二分光光栅、所述第三分光光栅的光栅周期P依照如下公式获得:
    n 1sinθ 1-n 2sinθ 2=mλ/P,其中
    n 1:入射光束所在介质折射率,
    n 2:衍射光束所在介质折射率,
    θ 1:光束入射角,
    θ 2:光束衍射角,
    λ:所要选择的光的波长;
    m:光线衍射级次。
  12. 根据权利要求1-11任一项所述的光学基板,进一步包括:
    发光单元,设置在所述导光板的所述入光面,用于发出平行光束,且使 得所述平行光束以预设角度从所述导光板的入光面入射;所述发光单元包括:
    光源,位于所述导光板的入光面一侧,用于发出白光或三色混合光;
    准直透镜结构,用于将所述光源发出的光进行准直以形成平行光束、并以预设角度入射所述导光板;以及
    光束缩束结构,用于将从所述准直透镜结构射出的平行光束的宽度缩小。
  13. 根据权利要求12所述的光学基板,其中,所述光束缩束结构包括遮光部件,所述遮光部件设置于所述导光板的入光面,所述遮光部件上设置一具有预设面积的开口,使得入射至所述导光板的光束的宽度小于或等于所述多个出光区域中每个出光区域的宽度。
  14. 根据权利要求12所述的光学基板,其中,所述光束缩束结构包括两个焦距不同的透镜,且两个透镜的主光轴重合,其中,
    所述两个透镜包括沿所述发光单元发出的光束的传播方向设置的第一凸透镜和第二凸透镜,所述第一凸透镜靠近所述第二凸透镜的一侧的焦点与所述第二凸透镜靠近所述第一凸透镜一侧的焦点在第一位置重合,且所述第一凸透镜的焦距大于所述第二凸透镜的焦距,所述准直透镜结构发出的第一平行光束平行于第一凸透镜的主光轴入射至第一凸透镜,经过所述第一凸透镜的折射后通过所述第一位置,通过所述第一位置的光线经过所述第二凸透镜的折射后形成沿平行于第二凸透镜的主光轴的方向传播的第二平行光束,所述第二平行光束的宽度小于所述第一平行光束的宽度;或者,
    所述两个透镜包括沿所述发光单元发出的光束的传播方向设置的第三凸透镜和一双面凹的第一凹透镜,所述第三凸透镜靠近所述第一凹透镜的一侧的焦点与所述第一凹透镜远离所述第三凸透镜的一侧的焦点在第二位置处重合,所述第三凸透镜的焦距大于所述第一凹透镜的焦距,所述准直透镜结构发出的第一平行光束平行于第三凸透镜的主光轴入射至第三凸透镜,经过所述第三凸透镜的折射后传播至所述第一凹透镜,经过所述第一凹透镜的折射后形成沿平行于第一凹透镜的主光轴的方向传播的第二平行光束,所述第二平行光束的宽度小于所述第一平行光束的宽度。
  15. 根据权利要求12所述的光学基板,其中,所述发光单元包括光源,
    所述光源包括间隔设置的至少两个子光源,每个所述子光源发出具有预 设颜色的单色光,至少两个所述子光源沿第一方向间隔设置于所述导光板的入光面一侧,使得至少两个所述子光源发出的单色光均以所述预设角度平行入射至所述导光板,并以非全反射的方式在所述导光板内传输,所述第一方向为从所述导光板的出光面到所述导光板的与所述出光面相对设置的底面的方向。
  16. 根据权利要求15所述的光学基板,其中,所述至少两个子光源包括第一准直子光源、第二准直子光源和第三准直子光源,所述第一准直子光源、所述第二准直子光源和所述第三准直子光源配置为分别发出以第二预设角度平行入射至所述导光板内的第一准直光、第二准直光和第三准直光,其中所述第一准直光、所述第二准直光和所述第三准直光以非全反射的方式在所述导光板内传输。
  17. 根据权利要求14所述的光学基板,其中,至少两个所述子光源发出的单色光的宽度均小于预设宽度、使得至少两个所述子光源发出的单色光在传播途径中不重叠。
  18. 一种显示装置,包括:
    根据权利要求1-17中任一项所述的光学基板,以及
    与所述光学基板相对设置的对置基板。
  19. 根据权利要求18所述的显示装置,还包括:
    设置于所述光学基板与所述对置基板之间的液晶层;
    设置于所述对置基板与所述液晶层之间的遮光层,所述遮光层具有多个开口区,每个所述开口区在所述光学基板上的垂直投影位于多个所述出光区域中的任意相邻两个出光区域之间;
    对所述液晶层提供电场的电极,设置于所述导光板的出光面一侧,用于调节液晶的偏转方向,从而调节入射至所述液晶层的单色光的传播方向。
  20. 根据权利要求19所述的显示装置,其中,所述遮光层包括间隔分布的遮挡区和开口区。
PCT/CN2019/114645 2018-10-31 2019-10-31 光学基板及显示装置 WO2020088576A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/765,152 US11487057B2 (en) 2018-10-31 2019-10-31 Optical substrate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811287289.4 2018-10-31
CN201811287289.4A CN109188775A (zh) 2018-10-31 2018-10-31 光学基板及显示装置

Publications (1)

Publication Number Publication Date
WO2020088576A1 true WO2020088576A1 (zh) 2020-05-07

Family

ID=64941040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114645 WO2020088576A1 (zh) 2018-10-31 2019-10-31 光学基板及显示装置

Country Status (3)

Country Link
US (1) US11487057B2 (zh)
CN (1) CN109188775A (zh)
WO (1) WO2020088576A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109188775A (zh) * 2018-10-31 2019-01-11 京东方科技集团股份有限公司 光学基板及显示装置
CN109891278B (zh) * 2019-01-23 2021-10-15 京东方科技集团股份有限公司 滤光结构、滤光层以及显示面板
CN109696721B (zh) * 2019-02-26 2020-12-18 京东方科技集团股份有限公司 背光模组及显示装置
CN109799568B (zh) 2019-03-27 2020-04-28 京东方科技集团股份有限公司 一种背光模组及显示装置
CN110032006B (zh) * 2019-05-23 2022-02-01 京东方科技集团股份有限公司 一种背光源透镜组件、直下式背光源模组和显示装置
CN112687186A (zh) * 2019-10-18 2021-04-20 北京小米移动软件有限公司 柔性背光模组、柔性显示装置和显示控制方法
US20220336422A1 (en) * 2019-12-30 2022-10-20 Chongqing Konka Photoelectric Technology Research Institute Co., Ltd. Display Substrate and Display Device
CN113129769A (zh) * 2020-01-16 2021-07-16 重庆康佳光电技术研究院有限公司 一种显示器
CN111474767B (zh) * 2020-04-17 2023-05-12 京东方科技集团股份有限公司 背光模组结构、显示面板及显示装置
CN112413529A (zh) * 2020-12-03 2021-02-26 华域视觉科技(上海)有限公司 导光结构、车灯和车辆
CN113253382B (zh) * 2021-05-24 2023-04-14 佘晓峰 一种可展现出多种颜色光的导光结构
JP7167282B1 (ja) * 2021-07-28 2022-11-08 マクセル株式会社 空間浮遊映像情報表示システムおよびそれに用いられる光源装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050254258A1 (en) * 2004-05-07 2005-11-17 Samsung Electronics Co., Ltd. Light emitting diode module and a flat panel display provided with the same
CN104089221A (zh) * 2014-07-03 2014-10-08 京东方科技集团股份有限公司 一种侧入式背光模组和显示装置
CN107621731A (zh) * 2017-10-10 2018-01-23 京东方科技集团股份有限公司 一种背光模组、显示装置
CN207123688U (zh) * 2017-08-23 2018-03-20 京东方科技集团股份有限公司 一种显示装置
CN108710240A (zh) * 2018-08-06 2018-10-26 京东方科技集团股份有限公司 一种准直背光模组及显示装置
CN109188775A (zh) * 2018-10-31 2019-01-11 京东方科技集团股份有限公司 光学基板及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314819B2 (en) * 2007-06-14 2012-11-20 Nokia Corporation Displays with integrated backlighting
CN103235356B (zh) 2013-04-16 2016-06-29 京东方科技集团股份有限公司 滤光片及其制备方法、彩膜基板和显示装置
DE102014221382A1 (de) * 2014-10-21 2016-04-21 Osram Gmbh Beleuchtungsvorrichtung mit Pumpstrahlungsquelle
US20170322359A1 (en) * 2016-05-04 2017-11-09 Samsung Display Co., Ltd. Display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050254258A1 (en) * 2004-05-07 2005-11-17 Samsung Electronics Co., Ltd. Light emitting diode module and a flat panel display provided with the same
CN104089221A (zh) * 2014-07-03 2014-10-08 京东方科技集团股份有限公司 一种侧入式背光模组和显示装置
CN207123688U (zh) * 2017-08-23 2018-03-20 京东方科技集团股份有限公司 一种显示装置
CN107621731A (zh) * 2017-10-10 2018-01-23 京东方科技集团股份有限公司 一种背光模组、显示装置
CN108710240A (zh) * 2018-08-06 2018-10-26 京东方科技集团股份有限公司 一种准直背光模组及显示装置
CN109188775A (zh) * 2018-10-31 2019-01-11 京东方科技集团股份有限公司 光学基板及显示装置

Also Published As

Publication number Publication date
US11487057B2 (en) 2022-11-01
CN109188775A (zh) 2019-01-11
US20200348461A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
WO2020088576A1 (zh) 光学基板及显示装置
CN107817629B (zh) 一种液晶显示装置
US11221441B2 (en) Display panel, display apparatus and driving method thereof
CN108562965B (zh) 背光模组及显示装置
KR101270165B1 (ko) 반사 투과형 디스플레이 패널 및 이를 채용한 디스플레이장치
CA2317820C (en) A light guide apparatus, a backlight apparatus and a liquid crystal display apparatus
CN109799568B (zh) 一种背光模组及显示装置
US8810752B2 (en) Thin backlight system and liquid crystal display device using the same
WO2020007181A1 (zh) 显示面板及显示装置
US10866453B2 (en) Display panel and method for fabricating the same, display device and display method
US20090059125A1 (en) Image display apparatus
CN210864100U (zh) 一种防窥模组及显示装置
KR20110050929A (ko) 착용형 디스플레이장치
WO2011083513A1 (ja) 表示装置及び光源装置
CN108303822A (zh) 一种背光模组、显示装置及液晶电视
US10571735B2 (en) Display device
US10120117B2 (en) Backlight module and display device
US20160033703A1 (en) Surface Light Source, Backlight Module and Display Device
WO2020015753A9 (zh) 显示面板、显示装置及其控制方法
CN109143665B (zh) 一种显示面板及显示装置
US20210080629A1 (en) Light source module
CN103969719A (zh) 一种三棱镜板和显示装置
JP7376503B2 (ja) 表示パネル及び表示装置
CN209400831U (zh) 一种显示面板和显示装置
KR20160022855A (ko) 착용형 디스플레이장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880604

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19880604

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19880604

Country of ref document: EP

Kind code of ref document: A1