WO2014175381A1 - 鋼板 - Google Patents

鋼板 Download PDF

Info

Publication number
WO2014175381A1
WO2014175381A1 PCT/JP2014/061573 JP2014061573W WO2014175381A1 WO 2014175381 A1 WO2014175381 A1 WO 2014175381A1 JP 2014061573 W JP2014061573 W JP 2014061573W WO 2014175381 A1 WO2014175381 A1 WO 2014175381A1
Authority
WO
WIPO (PCT)
Prior art keywords
inclusions
content
rem
steel
steel sheet
Prior art date
Application number
PCT/JP2014/061573
Other languages
English (en)
French (fr)
Inventor
諸星 隆
荒牧 高志
昌文 瀬々
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to PL14788723T priority Critical patent/PL2990500T3/pl
Priority to JP2015513831A priority patent/JP5920531B2/ja
Priority to CN201480022841.0A priority patent/CN105143490B/zh
Priority to ES14788723.6T priority patent/ES2688180T3/es
Priority to EP14788723.6A priority patent/EP2990500B1/en
Priority to US14/785,788 priority patent/US10337092B2/en
Priority to CA2909984A priority patent/CA2909984C/en
Priority to BR112015026643A priority patent/BR112015026643A2/pt
Priority to KR1020157030918A priority patent/KR101729881B1/ko
Publication of WO2014175381A1 publication Critical patent/WO2014175381A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a carbon steel plate having a carbon content of more than 0.25% and less than 0.50% by mass%, and particularly to a carbon steel plate that is formed into a product shape by punching, hole expanding, forging, or the like.
  • Patent Documents 1 to 3 propose the following techniques.
  • Patent Document 1 by mass%, C: 0.15% to 0.50%, S: 0.01% or less, and the relationship [% P] ⁇ 6 ⁇ [% B] +0.005 is satisfied.
  • a steel reclining seat gear made of a steel plate having an excellent notch tensile elongation rate has been proposed.
  • Patent Document 1 paying attention to the fact that there is a strong correlation between punchability and notch tensile elongation, the notch tensile elongation and hence punchability can be increased by increasing the particle size of carbides dispersed in the steel sheet. It suggests that it can be improved.
  • Patent Document 2 proposes a high-carbon steel containing C: 0.70% to 1.20% by mass and having a controlled particle size of carbides dispersed in a ferrite matrix. This steel is also excellent in punching workability because the notch tensile elongation which is closely related to the punching workability is improved. Further, this steel further contains Ca to control the form of MnS, and as a result, the punching workability is further improved.
  • Patent Document 3 in steel containing C: 0.10% to 0.40% and S: 0.010% or less by mass%, the shapes of inclusions are classified based on the ASTM-D method, We propose to provide steel for gears with excellent cold forgeability by keeping the shape and number of objects within a certain range.
  • Ca and / or REM Reare Earth Metal
  • the present inventors also added oxides (inclusions) generated in steel by adding Ca and REM to a structural thick steel plate containing 0.08% to 0.22% C by mass%. Controlled as a mixed phase state of a high melting point phase and a low melting point phase, this oxide (inclusion) is prevented from stretching during rolling, and the continuous casting nozzle does not cause melting damage or internal inclusion defects
  • oxides inclusions
  • Japanese Unexamined Patent Publication No. 2000-265238 Japanese Unexamined Patent Publication No. 2000-265239 Japanese Unexamined Patent Publication No. 2001-329339 Japanese Unexamined Patent Publication No. 2011-68949
  • Patent Document 1 aims to suppress the connection of microvoids by increasing the particle size of the carbide, assuming that the microvoids generated from the carbide are the starting points of cracking.
  • Patent Document 2 proposes to increase the carbide particle size. Further, Patent Document 2 proposes that Ca is contained in order to suppress generation of MnS in the steel, focusing on the fact that MnS stretched (during rolling) in the steel sheet becomes a crack starting point.
  • Patent Document 3 states that stretched oxide inclusions (B system of ASTM-D method) and non-stretched oxide inclusions (D system of ASTM-D method) cause the forgeability to deteriorate.
  • the length and the total number are defined based on the classification of the ASTM-D method.
  • Patent Document 3 defines the size, length, and total number of stretched oxide inclusions and non-stretched oxide inclusions, and shows specific measures for realizing this rule. Not.
  • Patent Document 4 the inclusion number density is controlled by adding Ca and / or REM.
  • the C content of the steel described in Patent Document 4 is 0.08% by mass to 0.22% by mass, and when used as a material for mechanical structural parts having a complicated shape, the strength (tensile strength, Abrasion, hardness, etc.) may be insufficient.
  • Patent Document 4 does not disclose a method for controlling the inclusion number density to a desirable level in steel that is required to contain C in excess of 0.25% by mass.
  • the present invention has been devised in view of the above-described problems, and contains C in an amount of more than 0.25% and less than 0.50%, and is used for manufacturing products with complicated shapes including gears.
  • An object is to provide a carbon steel sheet having suitable workability.
  • the chemical composition is mass%, C: more than 0.25% and less than 0.50%, Si: 0.10% to 0.60%, Mn: 0.00. 40% to 0.90%, Al: 0.003% to 0.070%, Ca: 0.0005% to 0.0040%, REM: 0.0003% to 0.0050%, Cu: 0% to 0 0.05%, Nb: 0% to 0.05%, V: 0% to 0.05%, Mo: 0% to 0.05%, Ni: 0% to 0.05%, Cr: 0% to 0% 50%, B: 0% to 0.0050%, P: 0.020% or less, S: 0.0070% or less, Ti: 0.050% or less, O: 0.0040% or less, N: limited to 0.0075% or less, the balance is made of iron and impurities, and the content expressed by mass% of each element in the chemical component is represented by the following formula 1 and the following formula 2 Simultaneously satisfy, present alone, the number density of Ti
  • the chemical component is further in mass%, Cu: 0.01% to 0.05%, Nb: 0.01% to 0.05%, V: 0.01% to 0.05%, Mo: 0.01% to 0.05%, Ni: 0.01% to 0.05%, Cr: 0.01% to 0.50%, B: 0.0.
  • One or more of 0010% to 0.0050% may be contained.
  • the steel sheet according to (1) or (2) further includes a composite inclusion containing Al, Ca, O, S, and REM, and the Ti-containing carbonitride on the surface of the composite inclusion.
  • An attached inclusion may be included.
  • the content represented by mass% of each element in the chemical component may satisfy the following formula 3. 18 ⁇ (REM / 140) ⁇ O / 16 ⁇ 0 (Formula 3)
  • the content expressed by mass% of each element in the chemical component may satisfy the following formula 4.
  • the number density of the A-based inclusions, the number density of the B-based inclusions, the number density of the C-based inclusions in the steel is coarse and has an angular shape and is independent.
  • Non-metallic inclusions and carbonitrides can be cited as causes for reducing the workability of steel sheets. These serve as starting points for cracking of the steel sheet when stress is applied to the steel sheet.
  • Inclusions include oxides and sulfides that exist in the molten steel or that are generated during solidification of the molten steel.
  • the size (long side) of inclusions ranges from several ⁇ m to several hundred ⁇ m when stretched by rolling. Therefore, in order to improve the workability of the steel sheet, it is important to reduce the content of inclusions.
  • the state where the size of the inclusions in the steel sheet is small and the number is small that is, the state of “high cleanliness” of the steel sheet is preferable.
  • Inclusions vary in shape, distribution, and the like. For example, in JIS G 0555, inclusions are distinguished from A-based inclusions, B-based inclusions, and C-based inclusions. In the present embodiment, the inclusions are classified into three types according to the following definition.
  • A-based inclusions Non-metallic inclusions in steel that are viscously deformed by processing. A steel sheet having high stretchability and subjected to processing is often stretched along the processing direction.
  • inclusions having an aspect ratio (major axis / minor axis) of 3.0 or more are defined as A-based inclusions.
  • B-based inclusions Among non-metallic inclusions in steel, the inclusions form a group in the processing direction and are discontinuously granular inclusions, often have an angular shape, and have low stretchability. is there. In the present embodiment, an inclusion group in which three or more inclusions are aligned along the processing direction, an inclusion group in which the separation distance between the inclusions is 50 ⁇ m or less is formed, and an aspect ratio ( Inclusions having a major axis / minor axis of less than 3.0 are defined as B-based inclusions.
  • C-based inclusion Dispersed irregularly without viscous deformation, often has an angular shape or a spherical shape, and has low stretchability.
  • an inclusion having an aspect ratio (major axis / minor axis) of less than 3.0 and randomly distributed is defined as a C-based inclusion.
  • Ti-containing carbonitrides that are very hard and square are generally classified as C-based inclusions, but in this embodiment, they may be distinguished from C-based inclusions.
  • the influence on the properties of the steel sheet is greater than other C-based inclusions (C-based inclusions that are not Ti-containing carbonitrides).
  • the “Ti-containing carbonitride present alone” refers to Ti-containing carbonitride that is not attached to inclusions that do not contain Ti.
  • the Ti-containing carbonitride when the Ti-containing carbonitride is present in a state of being attached to other inclusions (for example, composite inclusions including Al, Ca, O, S, and REM), the Ti-containing carbonitride gives the properties of the steel sheet The impact is the same level as other C inclusions.
  • the Ti-containing carbonitride adhering to other inclusions is regarded as a C-based inclusion that is not a Ti-containing carbonitride.
  • “number density of C-based inclusions” means “number density of C-based inclusions that are not Ti-containing carbonitrides (including those in which Ti-containing carbonitrides adhere to C-based inclusions). ”And“ number density of Ti-containing carbonitrides present alone ”. Ti-containing carbonitrides can be distinguished from other C-based inclusions by their shape and color tone.
  • inclusions having a particle size (in the case of a substantially spherical inclusion) or a long diameter (in the case of a deformed inclusion) of 1 ⁇ m or more are considered.
  • Inclusions having a particle diameter or major axis of less than 1 ⁇ m have little influence on the workability of steel even if they are contained in steel, and therefore, such inclusions are not considered in this embodiment.
  • the above-mentioned major axis is defined as a line segment having the maximum length among the line segments connecting the apexes that are not adjacent to each other in the cross-sectional contour of the inclusion on the observation surface.
  • the above-mentioned minor axis is defined as a line segment that is the minimum length among the line segments that connect the apexes that are not adjacent to each other in the cross-sectional contour of the inclusion on the observation surface.
  • the long side mentioned later is defined as the line segment which becomes the maximum length among the line segments which connect each adjacent vertex in the cross-sectional outline of the inclusion on an observation surface.
  • Patent Document 4 proposes a technique that prevents the occurrence of defects.
  • the present inventors also include the above-described A-based inclusions and B by adding Ca and REM with respect to a steel containing more than 0.25% and less than 0.50% by mass%. And the conditions for reducing C-based inclusions were examined. As a result, the present inventors have found a condition that can simultaneously reduce A-based inclusions and B and C-based inclusions. The specific contents are shown below.
  • the inventors of the present invention have examined the addition of Ca and REM to a steel containing, by mass%, C more than 0.25% and less than 0.50%. As a result, when the content expressed by mass% of each element in the chemical component satisfies the following formula I, A-based inclusions in steel, in particular, MnS constituting the A-based inclusions can be greatly reduced. I found.
  • the inclusions in the hot-rolled steel sheet are magnified 400 times with an optical microscope (however, when measuring the shape of inclusions in detail) (1000 times) and a total of 60 fields of view.
  • the inclusions having a particle size (in the case of spherical inclusions) or a long diameter (in the case of deformed inclusions) of 1 ⁇ m or more are observed, and these inclusions are classified as A-based inclusions, They were classified into B-based inclusions and C-based inclusions, and their number density was measured.
  • the number density of the square Ti containing carbonitride which exists independently among C type inclusions was also measured.
  • SEM scanning electron microscope
  • EPMA Electro Probe Micro Analysis
  • EDX Electronic X-Ray Analysis
  • the Charpy impact value at room temperature was measured as an index of workability of the hot-rolled steel sheet obtained above.
  • the Charpy impact value is a numerical value indicating the toughness of the steel sheet.
  • the Charpy impact value decreases as the number of inclusions serving as crack initiation points or the size of inclusions increases. That is, there is a strong correlation between the Charpy impact value and workability.
  • the value of the limit strain at which cracking occurs varies depending on the processing method, but has a correlation with the Charpy impact value.
  • the Charpy impact value and the number density of inclusions have a correlation. Specifically, it has been clarified that when the number density of A-based inclusions in steel exceeds 6 / mm 2 , the Charpy impact value deteriorates rapidly. Further, it has been clarified that even when the number density of B-based inclusions and C-based inclusions exceeds 6 / mm 2 in total, the impact value rapidly deteriorates. In addition, for Ti-containing carbonitrides that are C-based inclusions, if the number density of coarse Ti-containing carbonitrides having a long side of 5 ⁇ m or more that is present alone exceeds 5 / mm 2 , the impact value was found to worsen rapidly.
  • FIG. 1 circles indicate the results of steel containing a chemical component containing Ca and not containing REM (hereinafter referred to as “Ca alone”), and square marks (“REM + Ca” in FIG. 1).
  • Ca alone a chemical component containing Ca and not containing REM
  • REM + Ca square marks
  • FIG. 1 shows the results for a steel with a chemical component that contains Ca and also contains REM (hereinafter referred to as the combined inclusion of REM and Ca).
  • the above R1 was calculated on the assumption that the REM content was 0. From FIG. 1, it was found that there is a correlation between the number density of A-based inclusions and the above R1 both in the case of containing Ca alone and in the case of containing REM and Ca in combination.
  • the value of R1 is 0.3000 or more, the number density of A-based inclusions is reduced, and the number density is 6 pieces / mm 2 or less. As a result, the Charpy impact value is improved.
  • the major axis of the A-based inclusions in the steel becomes longer than in the case of containing REM and Ca in combination.
  • a CaO—Al 2 O 3 -based low melting point oxide is formed as an A-based inclusion, and this oxide is stretched during rolling. Therefore, in consideration of the major axis of inclusions that adversely affect the properties of the steel sheet, the combined inclusion of REM and Ca is preferable to the inclusion of Ca alone.
  • the number density of A-based inclusions in the steel can be preferably reduced to 6 pieces / mm 2 or less under the conditions satisfying the above-mentioned formula I and in the case of composite inclusion of REM and Ca. I understood.
  • R1 the value of R1 is 1.000, as an average composition, 1 equivalent of Ca and REM which couple
  • MnS may be generated in the microsegregation part between dendrite branches.
  • the value of R1 is 2.000 or more, it is possible to preferably prevent MnS formation at the microsegregation part between dendritic branches.
  • the value of R1 is preferably 5.000 or less. That is, the upper limit value on the right side of Formula I is preferably 5.000.
  • B-type inclusions and C-type inclusions As described above, by observing the observation surface of the hot-rolled steel sheet, B-type inclusions and C-type inclusions having an aspect ratio (major axis / minor axis) of less than 3 and a grain size or major axis of 1 ⁇ m or more. The number density was measured. As a result, the inventors have found that the number density of B-based inclusions and C-based inclusions increases as the Ca content increases in both cases of containing Ca alone or containing REM and Ca in combination. I found it. On the other hand, the inventors have found that the REM content does not greatly affect the number density of these inclusions.
  • FIG. 2 shows the relationship between the Ca content in steel and the total number density of B-based inclusions and C-based inclusions when Ca is contained alone and when REM and Ca are combined.
  • circles indicate the results of containing Ca alone
  • square marks (explained as “REM + Ca” in FIG. 2) indicate the results of combined inclusion of REM and Ca.
  • the total number density of B-based inclusions and C-based inclusions increases as the Ca content in steel increases in the case of containing Ca alone or in the case of containing REM and Ca in combination.
  • the surface of the Ca-REM composite inclusion is in a liquid phase in the molten steel, and the aggregation and coalescence behavior is presumed to be similar to the CaO—Al 2 O 3 inclusion produced when Ca alone is contained. Therefore, it is considered that a large number of Ca-REM composite inclusions remain dispersed in the slab and the total number density of B-type inclusions and C-type inclusions increases.
  • the total number density of B-based inclusions and C-based inclusions has a correlation with Ca content and C content.
  • the present inventors have found that the total number density of B-based inclusions and C-based inclusions increases as the C content increases even with the same Ca content. More specifically, in order to make the total number density of B-based inclusions and C-based inclusions 6 pieces / mm 2 or less, the content expressed by mass% of each element in the chemical component is set as follows: It was found that it was necessary to control to the range represented by the formula II.
  • This Formula II indicates that the upper limit value of the Ca content needs to be changed depending on the C content, that is, the upper limit value of the Ca content needs to be lowered as the C content increases.
  • the lower limit value of the above formula II is not particularly limited, but 0.0005 which is the lower limit value of the Ca content in mass% is the substantial lower limit value of the right side of the above formula II. .
  • the reason why the total number density of B inclusions and C inclusions increases as the C content increases is that the solidification temperature range from the liquidus temperature to the solidus temperature increases as the C concentration in the molten steel increases. Is considered to be caused by the increase in the length of the dendrite structure. That is, it is presumed that the dendrite structure develops for a long time, so that inclusions are easily trapped between the dendrite trees (it is difficult to be discharged into the bulk molten steel from between the dendrite trees). Therefore, it is necessary to lower the upper limit of the Ca content so as to satisfy the above-described formula II as the steel having a higher C content and thus a longer dendrite structure during solidification tends to develop.
  • the phase at the time of solidification of the steel having the carbon concentration range (C: more than 0.25% and less than 0.50%) is a liquid phase + ⁇ phase above the peritectic temperature. Below the crystallization temperature, it is a liquid phase + ⁇ phase. That is, the degree of microsegregation of solute elements such as S is different at the peritectic temperature.
  • the solid-liquid partition coefficient that affects inclusion trapping because it is a surface active element is greater when the phase is liquid phase + ⁇ phase than when the phase is liquid phase + ⁇ phase. Is small. When the solid-liquid distribution coefficient of S is small, the amount of S distributed to the solid phase decreases, and the amount of S distributed to the liquid phase increases.
  • Ti-containing carbonitride When Ti is mixed from auxiliary materials such as alloys and scrap, Ti-containing carbonitrides such as TiN are produced in the steel. This Ti-containing carbonitride has a high hardness and has a square shape. For this reason, when coarse Ti-containing carbonitrides are produced alone in the steel, the carbonitrides are likely to be the starting point of fracture, so that the Charpy impact value of the steel and, consequently, the workability deteriorates.
  • Ti-containing carbonitride As described above, as a result of examining the relationship between the content of Ti-containing carbonitride and the workability of the steel sheet, the number density of Ti-containing carbonitrides having a long side length of 5 ⁇ m or more, which is present alone, is It was found that if it is 5 pieces / mm 2 or less, breakage hardly occurs and deterioration of workability can be prevented.
  • Ti carbide Ti nitride, Ti carbonitride, Ti-containing carbonitride includes TiNb carbide, TiNb nitride, TiNb carbonitride, etc. in the case of containing Nb as a selective element. .
  • the number density of a coarse single Ti-containing carbonitride having a long side length of 5 ⁇ m or more can be preferably reduced to 5 pieces / mm 2 or less.
  • the Ti-containing carbonitride that has been compositely deposited on the REM-containing composite inclusion is unlikely to become a starting point of fracture.
  • the reason for this is considered that the Ti-shaped carbonitride is compound-deposited on the REM-containing composite inclusions, thereby reducing the angular portion of the Ti-containing carbonitride.
  • the shape of Ti-containing carbonitride is a cube or a rectangular parallelepiped, when present alone in steel, all of the eight corners of Ti-containing carbonitride are in contact with the matrix. Since the corner is the starting point of fracture, the Ti-containing carbonitride having eight corners has eight fracture starting points.
  • Ti-containing carbonitride when Ti-containing carbonitride is complex-deposited on the REM-containing composite inclusion, for example, when only half of Ti-containing carbonitride contacts the matrix, only four places of Ti-containing carbonitride are in the matrix. Touch. That is, the corners of the Ti-containing carbonitride in contact with the matrix are reduced from 8 places to 4 places. As a result, the starting point of fracture due to the Ti-containing carbonitride is reduced from 8 to 4 locations.
  • Ti-containing carbonitride is likely to be preferentially precipitated on the REM-containing composite inclusion.
  • Ti-containing carbonitride is precipitated on a specific crystal plane of the REM composite inclusion, This is presumably because the lattice matching between the specific crystal plane of the REM composite inclusion and the Ti-containing carbonitride is good.
  • a composite of a Ti-containing carbonitride and a REM-containing inclusion ie, an inclusion in which a Ti-containing carbonitride is attached to the surface of a composite inclusion containing Al, Ca, O, S, and REM
  • it Since it has less adverse effects on various properties of the steel sheet than Ti-containing carbonitrides present, it is considered to be a C-based inclusion that is not a Ti-containing carbonitride present alone.
  • C more than 0.25% and less than 0.50%
  • C (carbon) is an important element in securing the strength (hardness) of the steel sheet.
  • C content is 0.25% or less, the hardenability of the steel sheet is lowered, so that the strength required for products manufactured using the steel sheet as a raw material, such as gears, cannot be obtained.
  • the C content is 0.50% or more, a long time is required for the heat treatment to ensure workability. Therefore, the workability of the steel sheet may deteriorate unless the heat treatment is prolonged.
  • the C content increases, the total number density of B-based inclusions and C-based inclusions increases.
  • the C content is controlled to be more than 0.25% and less than 0.50%.
  • the preferable lower limit of C content is 0.27%.
  • the higher the C content the greater the hardness and tensile strength after heat treatment (quenching and tempering).
  • a strength of 1300 MPa or more can be sufficiently secured after performing quenching and low-temperature tempering treatment.
  • FIG. 3 is a graph showing the relationship between C content and tensile strength.
  • the inventors measured the tensile strength of steel sheets in which conditions other than the C content were made to satisfy the conditions of the steel sheet according to the present embodiment and the C content was varied. As a result, it was revealed that when the C content is 0.27% or more, the steel sheet surely has a tensile strength of 1300 MPa. Furthermore, in the steel plate according to the present embodiment, the lower limit of the C content is preferably 0.30%, and the upper limit of the C content is preferably 0.48%.
  • Si 0.10% to 0.60%
  • Si silicon
  • Si is an element that acts as a deoxidizer and is effective in improving the hardenability and improving the strength (hardness) of the steel sheet. If the Si content is less than 0.10%, the above-described content effect cannot be obtained. On the other hand, if the Si content exceeds 0.60%, the surface properties of the steel sheet may be deteriorated due to scale defects during hot rolling. Therefore, the Si content is controlled to 0.10% to 0.60%.
  • the lower limit of the Si content is preferably 0.15%, and the upper limit of the Si content is preferably 0.55%.
  • Mn manganese
  • Mn manganese
  • Mn is an element that acts as a deoxidizer and is an effective element for improving the hardenability and improving the strength (hardness) of the steel sheet. If the Mn content is less than 0.40%, the effect cannot be obtained sufficiently. On the other hand, if the Mn content exceeds 0.90%, the workability of the steel sheet may be deteriorated. Therefore, the Mn content is controlled to 0.40% to 0.90%.
  • the lower limit of the Mn content is preferably 0.50%, and the upper limit of the Mn content is preferably 0.75%.
  • Al 0.003% to 0.070%
  • Al aluminum
  • Al is an element that acts as a deoxidizer and is an element effective for improving the workability of the steel sheet by fixing N. If the Al content is less than 0.003%, the above-described effects cannot be obtained sufficiently, so 0.003% or more must be contained. On the other hand, when the Al content exceeds 0.070%, the content effect is saturated, and coarse inclusions increase. Due to the coarse inclusions, workability may be deteriorated or surface defects may be easily generated. Therefore, the Al content is controlled to 0.003% to 0.070%.
  • the lower limit of the Al content is preferably 0.010%, and the upper limit of the Al content is preferably 0.040%.
  • Ca 0.0005% to 0.0040%
  • Ca is an effective element for controlling the form of inclusions and thereby improving the workability of the steel sheet. If the Ca content is less than 0.0005%, the above effect cannot be obtained sufficiently. Control of the form of inclusions is also possible by REM, but when the Ca content is less than 0.0005%, the nozzle clogging occurs during continuous casting as in the case where REM described later is contained alone. Stability is hindered, and further, high specific gravity inclusions are deposited on the lower surface side of the slab, which may deteriorate the workability of the steel sheet.
  • the Ca content exceeds 0.0040%, for example, coarse low-melting point oxides such as CaO—Al 2 O 3 inclusions and / or inclusions such as CaS inclusions that are easily stretched during rolling. It becomes easy to produce
  • the lower limit of the Ca content is preferably 0.0007%, more preferably 0.0010%.
  • the upper limit of the Ca content is preferably 0.0030%, more preferably 0.0025%.
  • the upper limit of the Ca content according to the C content. Specifically, it is necessary to control the content represented by mass% of C and Ca in the chemical component within a range represented by the following formula III.
  • the Ca content does not satisfy the following formula III, the total number density of B-based inclusions and C-based inclusions exceeds 5 / mm 2 .
  • REM 0.0003% to 0.0050%
  • REM Rare Earth Metal
  • the steel plate according to the present embodiment contains at least one element selected from these.
  • REM is often selected from Ce (cerium), La (lanthanum), Nd (neodymium), Pr (praseodymium) and the like because of its availability.
  • adding as a misch metal which is a mixture of these elements in steel is widely performed.
  • the main components of misch metal are Ce, La, Nd, and Pr.
  • the total amount of these rare earth elements contained in the steel plate is defined as the REM content.
  • the average atomic weight of Misch metal is about 140, so the atomic weight of REM is 140.
  • REM is an effective element for controlling the form of inclusions and improving the workability of the steel sheet. If the REM content is less than 0.0003%, the above effect cannot be obtained sufficiently, and the same problem as when Ca is contained alone occurs. That is, when the REM content is less than 0.0003%, the CaO—Al 2 O 3 inclusions and a part of CaS are stretched by rolling, thereby reducing the steel sheet properties (workability and toughness after processing). May occur. Furthermore, when the REM content is less than 0.0003%, the Ti-containing carbonitride is likely to be preferentially compounded, so there are few compound inclusions including Al, Ca, O, S, and REM, and thus it is generated alone in the steel sheet.
  • the REM content is controlled to 0.0003% to 0.0050%.
  • the lower limit of the REM content is preferably 0.0005%, more preferably 0.0010%.
  • the upper limit of the REM content is preferably 0.0040%, more preferably 0.0030%.
  • the content of Ca and REM according to the S content. Specifically, it is necessary to control the content expressed by mass% of each element in the chemical component within a range represented by the following formula IV.
  • the number density of the A-based inclusions exceeds 6 / mm 2 .
  • the value on the right side of the following formula IV is 2 or more, the form of inclusions can be more preferably controlled.
  • the upper limit of the following formula IV is not specifically limited, when the value of the right side of the following formula IV exceeds 5, a coarse B-type or C-type inclusion having a maximum length exceeding 20 ⁇ m tends to be generated. Therefore, the upper limit value of the following formula IV is preferably 5.
  • the steel sheet according to the present embodiment contains impurities in addition to the basic components described above.
  • the impurities are auxiliary materials such as scrap, and P, S, Ti, O, N, Cd, Zn, Sb, W, Mg, Zr, As, Co, Sn, and the like mixed from the manufacturing process. It means an element such as Pb. Since the inclusion of these elements is not essential, the lower limit of the content of these elements is 0%.
  • P, S, Ti, O, and N are limited as follows in order to preferably exhibit the above effects.
  • the described% is mass%.
  • P phosphorus
  • the lower limit of the P content may be 0%. In consideration of current general refining (including secondary refining), the lower limit of the P content may be 0.005%.
  • S sulfur
  • S is an impurity element that inhibits the workability of the steel sheet by forming non-metallic inclusions. Therefore, the S content is limited to 0.0070% or less, preferably to 0.0050% or less.
  • the lower limit of the S content may be 0%. In consideration of current general refining (including secondary refining), the lower limit of the S content may be 0.0003%.
  • Ti titanium
  • Ti titanium
  • Ti is an element that deteriorates the workability of a steel sheet by forming a hard square carbonitride.
  • the lower limit of the Ti content may be 0%. In consideration of current general refining (including secondary refining), the lower limit of the Ti content may be 0.0005%.
  • O (oxygen) is an impurity element that forms an oxide (non-metallic inclusion), and this oxide aggregates and coarsens, thereby reducing the workability of the steel sheet. Therefore, the O content is limited to 0.0040% or less.
  • the lower limit of the O content may be 0%. In consideration of current general refining (including secondary refining), the lower limit of the O content may be 0.0010%.
  • the O content of the steel sheet according to the present embodiment is the total O content (TO content) obtained by adding up all O contents such as O dissolved in the steel and O present in the inclusions. Means.
  • the O content and the REM content within the range represented by the following formula V using the content expressed by mass% of each element.
  • the number density of A-based inclusions is further reduced, which is preferable.
  • the upper limit of the following formula V is not specifically limited, 0.000643 becomes the upper limit of the left side of the following formula V from the upper limit and the lower limit of the O content and the REM content.
  • REM 2 O 3 .11Al 2 O 3 (REM 2 O 3 and Al 2 O 3 molar ratio 1:11) and REM 2 O 3 .Al 2
  • the A-based inclusions are further preferably reduced.
  • REM / 140 indicates the number of moles of REM
  • O / 16 indicates the number of moles of O.
  • N nitrogen
  • nitrogen is an impurity element that forms nitrides (non-metallic inclusions) and lowers the workability of the steel sheet. Therefore, the N content is limited to 0.0075% or less.
  • the lower limit of the N content may be 0%. In consideration of current general refining (including secondary refining), the lower limit of the N content may be 0.0010%.
  • the above basic components are controlled, and the balance is made of iron and the above impurities.
  • the steel sheet according to the present embodiment may further contain the following selected components in the steel, if necessary, instead of a part of the remaining Fe.
  • the hot-rolled steel sheet according to this embodiment may further contain one or more of Cu, Nb, V, Mo, Ni, and B as a selection component in addition to the basic components and impurities described above. Good.
  • the numerical limitation range of the selected component and the reason for limitation will be described.
  • the described% is mass%.
  • Cu (copper) is a selective element having an effect of improving the strength (hardness) of the steel sheet. Therefore, if necessary, Cu may be contained within a range of 0.05% or less. Moreover, the said effect can be preferably acquired when the lower limit of Cu content shall be 0.01%. On the other hand, if the Cu content exceeds 0.05%, hot work cracking may occur during hot rolling due to molten metal embrittlement (Cu cracking). A preferable range of the Cu content is 0.02% to 0.04%.
  • Nb 0.05% or less
  • Nb niobium
  • Nb is a selective element that forms carbonitrides and is effective in preventing coarsening of crystal grains and improving the workability of the steel sheet. Therefore, Nb may be contained within a range of 0.05% or less as necessary. Moreover, the said effect can be preferably acquired when the lower limit of Nb content shall be 0.01%. On the other hand, if the Nb content exceeds 0.05%, coarse Nb carbonitride may precipitate and cause deterioration in workability of the steel sheet. A preferable range of the Nb content is 0.02% to 0.04%.
  • V vanadium
  • V vanadium
  • Nb vanadium
  • V vanadium
  • V vanadium
  • the said effect can be preferably acquired when the lower limit of V content shall be 0.01%.
  • the V content exceeds 0.05%, coarse inclusions may be generated and the workability of the steel sheet may be reduced.
  • the preferred range is 0.02% to 0.04%.
  • Mo mobdenum
  • Mo mobdenum
  • Mo is a selective element having an effect of improving the strength (hardness) of the steel sheet by improving hardenability and improving tempering softening resistance. Therefore, if necessary, Mo may be contained within a range of 0.05% or less. Moreover, the said effect can be preferably acquired when the lower limit of Mo content shall be 0.01%. On the other hand, when the Mo content exceeds 0.05%, the cost increases and the content effect is saturated. Furthermore, if the Mo content exceeds 0.05%, the workability of the steel sheet, particularly the cold workability, is deteriorated, which makes it difficult to process the steel sheet into a complicated shape (for example, a gear shape). . For the above reason, the upper limit of the Mo content is set to 0.05%. A preferable range of the Mo content is 0.01% to 0.05%.
  • Ni (nickel) is a selective element effective for improving the strength (hardness) of a steel sheet by improving hardenability and improving workability. Further, it is a selective element that also has an effect of preventing molten metal embrittlement (Cu cracking) when Cu is contained. Therefore, if necessary, Ni may be contained within a range of 0.05% or less. Moreover, the said effect can be preferably acquired when the lower limit of Ni content shall be 0.01% or more. On the other hand, if the Ni content exceeds 0.05%, the cost increases, but the content effect is saturated, so the upper limit of the Ni content is set to 0.05%. A preferred range for the Ni content is 0.02% to 0.05%.
  • Cr 0.50% or less
  • Cr chromium
  • Cr is an effective element for improving the hardenability and improving the strength (hardness) of the steel sheet. Therefore, if necessary, Cr may be contained within a range of 0.50% or less. Moreover, the said effect can be preferably acquired when the lower limit of Cr content shall be 0.01%. When the Cr content exceeds 0.50%, the cost increases while the content effect is saturated. Therefore, the Cr content is controlled to 0.50% or less.
  • B boron
  • B (boron) is a selective element that has the effect of increasing the hardenability and improving the strength (hardness) of the steel sheet. Therefore, you may contain B within the range of 0.0050% or less as needed. Moreover, the said effect can be preferably acquired when the lower limit of B content shall be 0.0010%. On the other hand, if the B content exceeds 0.0050%, a B-based compound is generated and the workability of the steel sheet is lowered, so the upper limit is made 0.0050%. A preferable range of the B content is 0.0020% to 0.0040%.
  • the steel plate according to the present embodiment is made of, for example, a slab by continuous casting, using a blast furnace hot metal as a raw material, and by performing converter refining and secondary refining.
  • the steel sheet is made by hot rolling, cold rolling and / or annealing as necessary.
  • secondary refining in the ladle performs inclusion control by addition of Ca and REM along with adjustment of the steel components.
  • molten steel melted in an electric furnace using iron scrap as a raw material may be used as a raw material.
  • Ca and REM are added after adjusting the components of other contained elements and further floating Al 2 O 3 produced by Al deoxidation from the molten steel. If a large amount of Al 2 O 3 remains in the molten steel, Ca and REM are consumed by the reduction of Al 2 O 3 . Therefore, the contents of Ca and REM used for fixing S are reduced, and the generation of MnS cannot be sufficiently prevented.
  • Ca has a high vapor pressure
  • an alloy wire composed of these alloys may be used.
  • REM may be added in the form of Fe-Si-REM alloy, misch metal, or the like.
  • Misch metal is a mixture of rare earth elements, and specifically, it often contains about 40% to 50% Ce and about 20% to 40% La. For example, it is possible to obtain Misch metal made of Ce45%, La35%, Nd9%, Pr6%, and other impurities.
  • the order of adding Ca and REM is not particularly limited. However, when Ca is added after REM addition, the size of inclusions tends to be slightly reduced. Therefore, it is preferable to add Ca after REM addition.
  • Al 2 O 3 is generated after Al deoxidation, and a part of the Al 2 O 3 is clustered.
  • REM addition is performed before Ca addition
  • a part of the cluster is reduced and decomposed, and the size of the cluster can be reduced.
  • Ca addition is performed before REM addition
  • Al 2 O 3 changes to CaO—Al 2 O 3 -based inclusions having a low melting point, and the Al 2 O 3 cluster is converted into one coarse CaO—Al 2.
  • Ca it is preferable to add Ca after REM addition.
  • the ingredients were adjusted by ladle refining to produce 300 tons of molten steel having the ingredients shown in Table 2A.
  • Al is first added to perform deoxidation, then components of other elements such as Ti are adjusted, and then Al 2 O 3 generated by Al deoxidation is floated for 5 minutes or more.
  • REM was added and held for 3 minutes for uniform mixing before Ca was added.
  • Misch metal was used for REM.
  • the REM elements contained in this misch metal were Ce 50%, La 25%, and Nd 10%, and the balance was impurities. Therefore, the ratio of each REM element contained in the obtained steel plate is substantially the same as the ratio of each REM element described above. Since Ca has a high vapor pressure, a Ca—Si alloy was added to increase the yield.
  • the molten steel after refining was cast into a slab of thickness 250 mm by continuous casting. Thereafter, the slab is heated to 1250 ° C. and held for 1 hour, and then hot-rolled so that the finishing temperature is 850 ° C. to a plate thickness of 5 mm, and then the coiling temperature is 580 ° C. Winded up.
  • the pickled steel sheet was pickled and then annealed at 700 ° C. for 72 hours. This hot-rolled steel sheet was quenched at 900 ° C. for 30 minutes and further tempered at 100 ° C. for 30 minutes.
  • the composition of inclusions and deformation behavior (ratio of major axis / minor axis after rolling; aspect ratio) were investigated.
  • a field parallel to the rolling direction and the plate thickness direction was used as an observation surface, and 60 fields were observed with an optical microscope at a magnification of 400 times (however, when the inclusion shape was measured in detail, the magnification was 1000 times).
  • the inclusions having a particle size (in the case of spherical inclusions) or a long diameter (in the case of deformed inclusions) of 1 ⁇ m or more are observed, and these inclusions are classified as A-based inclusions, They were classified into B-type inclusions and C-type inclusions, and their number density was measured. In addition, the number density of square Ti-containing carbonitrides precipitated alone in steel and having a long side exceeding 5 ⁇ m was also measured. Since the Ti-containing carbonitride is different in shape and color from other C-based inclusions, it can be determined by observation.
  • an SEM Sccanning Electron Microscope, Scanning Electron Microscopy
  • an EPMA Electro Probe Micro Analysis
  • EDX Electro Dispersive X-Ray Analysis
  • the inclusion evaluation criteria were as follows. Regarding the number density of A-type inclusions and the total number density of B-type inclusions and C-type inclusions, the case where the number density exceeds 6 / mm 2 is B (Bad), 4 / mm 2 and more than 6 / Mm 2 or less is G (Good), 2 / mm 2 is more than 4 pieces / mm 2 or less is VG (Very Good), and 2 / mm 2 or less is GG (Greyly Good).
  • a B system and the C system relates the maximum length 20 ⁇ m or more coarse inclusions, the case where more than six / mm 2 B (Bad), 3 pieces / mm 2 Ultra-6 / mm 2 or less in the case G ( Good) 3 / mm 2 or less was designated as VG (Very Good).
  • VG Very Good
  • the number density exceeds 5 pieces / mm 2 and B (Bad), 3 pieces / mm 2 and more than 5 pieces / mm 2 In the case of G (Good), the case of 3 pieces / mm 2 or less was designated as VG (Very Good).
  • the hot-rolled steel sheet obtained after quenching and tempering was evaluated for tensile strength (MPa), Charpy impact value (J / cm 2 ) at room temperature (about 25 ° C.), and hole expansibility (%).
  • a steel plate having a tensile strength of 1200 MPa or more was regarded as a steel plate satisfying the acceptance criteria for tensile strength.
  • the Charpy impact value at room temperature indicates toughness and is one of the indices for evaluating the workability of a steel sheet.
  • the toughness of the product obtained by processing a steel plate can also be evaluated by the Charpy impact value.
  • a steel plate having a Charpy impact value at room temperature of 6 J / cm 2 or more was regarded as a steel plate satisfying the acceptance criteria for toughness.
  • Hole expandability is another index for evaluating workability.
  • a punched hole having a diameter of 10 mm was formed in the center of a 150 mm ⁇ 150 mm steel plate, and then the punched hole was expanded with a 60 ° conical punch.
  • the hole diameter D (mm) at the time when the plate thickness penetration crack occurred in the steel plate by this expansion treatment was measured.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry: ICP-MS (Inductively Coupled Plasma-Mass-Plasma-Mass-Plasma-Mass-Plasma-Mass-Plasma-Mass-Plasma-Mass) )
  • ICP-MS Inductively Coupled Plasma-Mass-Plasma-Mass-Plasma-Mass-Plasma-Mass-Plasma-Mass-Plasma-Mass
  • REM elements may be below the analysis limit, and in that case, the content is the largest as it is proportional to the content (Ce 50%, La 25%, Nd 10%) in the misch metal. It calculated using the ratio with respect to the analytical value of Ce.
  • Comparative Example 2 since the Ca content exceeded the upper limit, a coarse CaO—Al 2 O 3 -based low melting point oxide was generated. Thereby, the evaluation of the number density of the A-type inclusions, the number density of the B-type + C-type inclusions, and the number density of the coarse inclusions in Comparative Example 2 was “B”.
  • Comparative Example 3 since the REM content was less than the lower limit and did not satisfy Formula 3, a large number of coarse Ti-containing carbonitrides were produced alone in the matrix. Thereby, the evaluation of the number density of the Ti-containing carbonitride of Comparative Example 3 was “B”.
  • Comparative Example 4 since the REM content exceeded the upper limit, the evaluation of the number density of B-type + C-type inclusions and the evaluation of the number density of coarse inclusions were “B”. Furthermore, nozzle clogging occurred during the casting of Comparative Example 4.
  • Comparative Example 5 since the value on the right side of Formula 1 was less than 0.3, the evaluation of the number density of the A-based inclusions was “B”. Further, in Comparative Example 5, the C content was excessive, so the workability was low. Thereby, the impact value of Comparative Example 5 was insufficient. Since Comparative Example 6 did not satisfy Formula 2, the evaluation of the number density of B-based + C-based inclusions was “B”. In Comparative Example 7, since the C content was insufficient, the tensile strength was insufficient.
  • Comparative Example 8 the number density of inclusions was at an appropriate level, but the C content was excessive, so that the workability was lowered. For this reason, the hole expansibility of the comparative example 8 was disqualified.
  • Comparative Example 9 since the S content was excessive, coarse MnS inclusions were generated, and the evaluation of the number density of the A-based inclusions was “B”. Furthermore, the impact value and hole expansibility of Comparative Example 9 were insufficient.
  • Comparative Example 10 since the Ti content was excessive, the evaluation of the number density of the Ti-containing carbonitride was “B”. Thereby, the impact value and hole expansibility of Comparative Example 10 were insufficient.
  • Comparative Example 11 since the Ca content was excessive, a coarse oxide having a high CaO content was generated and stretched.
  • Comparative Example 11 the evaluation of the number density of the A-based inclusions and B + C-based coarse inclusions in Comparative Example 11 was “B”. Furthermore, in Comparative Example 11, since the CaO content was high, the effect of the Ti-containing carbonitride adhering to the oxide surface was reduced. Thereby, the evaluation of the number density of the Ti-containing carbonitride of Comparative Example 11 was “B”. For the above reasons, the impact value and hole expansibility of Comparative Example 11 were insufficient. In Comparative Example 12, since the REM content was insufficient, the effect of attaching the Ti-containing carbonitride to the oxide surface was reduced. Thereby, the evaluation of the number density of the Ti-containing carbonitride of Comparative Example 12 was “B”.
  • Comparative Example 12 since the REM content was excessive, the evaluation of the number density of coarse inclusions was “B”. Therefore, the impact value and hole expansibility of Comparative Example 13 were insufficient.
  • Comparative Example 14 since the Mo content was excessive, the workability deteriorated despite the good evaluation of the number density of inclusions. Thereby, the impact value and hole expansibility of Comparative Example 14 were insufficient. Since Comparative Example 15 did not satisfy Formula 1, the evaluation of the number density of the A-based inclusions was “B”. Thereby, the impact value and hole expansibility of Comparative Example 15 were insufficient. Since Comparative Example 16 did not satisfy Formula 2, the evaluation of the number density of B + C inclusions was “B”. Therefore, the impact value and hole expansibility of Comparative Example 16 were insufficient.
  • the C content, Ca content, and REM content of the steel sheet according to the present invention are expressed by the equation “0.3000 ⁇ ⁇ Ca / 40.88 + (REM / 140) / 2 ⁇ / (S / 32.07)”. And “Ca ⁇ 0.0058 ⁇ 0.0050 ⁇ C”.
  • the number density of A-based inclusions having a long side of 1 ⁇ m or more of the steel plate according to the present invention is limited to 6 pieces / mm 2 or less
  • the B-type having a long side of 1 ⁇ m or more of the steel plate according to the present invention is limited to 6 pieces / mm 2 or less.
  • the number density of Ti carbonitrides having a long side of 5 ⁇ m or more and present alone in the steel sheet according to the present invention is limited to 5 pieces / mm 2 or less. According to the above aspect of the present invention, it is possible to reduce A-type inclusions, B-type inclusions, and C-type inclusions in steel, and to prevent generation of coarse Ti-containing carbonitrides that exist alone. Since it is possible to provide a steel sheet with excellent workability, the industrial applicability is high.
  • the carbon steel sheet of the present invention can be used for manufacturing machine parts of various shapes, for example, vehicle gears, clutches, washers and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 本発明に係る鋼板は、所定の化学成分を有し、前記化学成分中の各元素の質量%で示した含有量が、0.3000≦{Ca/40.88+(REM/140)/2}/(S/32.07)との式と、Ca≦0.0058-0.0050×Cとの式を同時に満たし、単独で存在する、長辺が5μm以上であるTi含有炭窒化物の個数密度が5個/mm以下に制限される。

Description

鋼板
 本発明は、炭素含有量が質量%で0.25%超0.50%未満の炭素鋼板に関し、特に、打ち抜き加工や穴拡げ加工、鍛造等によって製品形状に成形される炭素鋼板に関する。
 本願は、2013年4月25日に、日本に出願された特願2013-092408号に基づき優先権を主張し、その内容をここに援用する。
 形状が複雑な機械部品を製造する際、従来は、まず複数の部品それぞれを個別に作製し、次いでそれらを組み合わせることにより製品形状を得ることが多かった。その場合、歯車など複雑な形状を持つ部位は、組み合わせる前に切削加工されることが多かった。しかし、近年は製造コスト低減のために、製品形状に近い形状を有する部品を打ち抜き加工や穴拡げ加工、鍛造等で成形することが進められている。これにより、部品点数を削減でき、より少ない工程数で製造することが可能になる。材料に大きな変形を加える際は変形抵抗が少ない熱間加工が適用され、一方、形状を精度よく加工する必要がある場合には冷間加工が適用される。製品形状に近い複雑な形状に鋼板を加工する場合には、従来のように複数の部位ごとに製造してからそれらを組み合わせる場合よりも、鋼板には従来以上に良好な加工性が求められる。すなわち、従来の鋼板には、複雑な形状に打ち抜いたり拡げたり、鍛造すると、鋼板が割れたり、部品の寸法精度が悪化するという課題があった。さらに、当然、加工後の製品には、従来と同等以上に、靭性、強度、耐摩耗性などの特性を確保することが求められる。こうした課題を解決するために、特許文献1~3では以下の技術が提案されている。
 特許文献1では、質量%で、C:0.15%~0.50%、S:0.01%以下であり、且つ[%P]≦6×[%B]+0.005の関係が満足され、切欠き引張伸び率が優れた鋼板を素材とする鋼製リクライニングシートギアが提案されている。特許文献1では、打ち抜き性と切欠き引張伸びとの間に強い相関があることに着目し、鋼板中に分散している炭化物の粒径を大きくすることにより切欠き引張伸び、ひいては打ち抜き性を改善することができると提案している。
 特許文献2では、質量%で、C:0.70%~1.20%を含有し、フェライトマトリックス中に分散する炭化物の粒径を制御した高炭素鋼が提案されている。この鋼も、打ち抜き加工性に密接な関係をもつ切欠き引張伸びが改善されているので、打ち抜き加工性に優れる。また、この鋼は、Caをさらに含有することで、MnSの形態を制御して、その結果、打ち抜き加工性をさらに改善している。
 特許文献3では、質量%で、C:0.10%~0.40%、S:0.010%以下を含有する鋼において、介在物の形状をASTM-D法に基づいて分類し、介在物の形状と個数とを一定範囲内に収めることによる、冷間鍛造性に優れた歯車用鋼の提供を提案している。
 また、鋼中の介在物の存在量および/または形態の制御のために、Caおよび/またはREM(Rare Earth Metal)の添加が行われてきた。本発明者らも、質量%で、Cを0.08%~0.22%含有する構造用厚鋼板にCaとREMとを添加することで、鋼中に生成する酸化物(介在物)を高融点相と低融点相との混合相状態として制御し、この酸化物(介在物)が圧延中に延伸することを防止し、そして、連続鋳造ノズルの溶損や内部介在物欠陥を発生させないようにした技術を、特許文献4で提案している。
日本国特開2000-265238号公報 日本国特開2000-265239号公報 日本国特開2001-329339号公報 日本国特開2011-68949号公報
 上記4件の文献は、加工性、具体的には打ち抜き加工性および鍛造性を悪化させる割れ起点原因を特定し、それに対する対策を提案している。特許文献1は炭化物を起点として生成したミクロボイドが割れ起点であるとして、この炭化物の粒径を大きくしてミクロボイドの連結を抑制することを目的としている。同様の考えで、特許文献2も炭化物粒径を大きくすることを提案している。さらに、特許文献2は、鋼板中の(圧延時に)延伸したMnSが割れ起点になることに着目して、鋼中MnSの生成を抑制するためにCaを含有することを提示している。特許文献3は延伸した酸化物系介在物(ASTM-D法のB系)と非延伸酸化物系介在物(ASTM-D法のD系)が鍛造性を悪化させる原因として、それらの大きさと、長さと、数の総量とをASTM-D法の分類に基づき規定している。
 しかし、上記の従来技術では、加工性、そして加工後の製品の靭性について次の課題が残る。
 特許文献1に記載される鋼では、炭化物の粒径を制御することで打ち抜き加工性を改善しているが、介在物の組成または形態を制御していないので、鋼の圧延時に延伸したMnSが鋼中に残存している。このため、この鋼では、より複雑な形状に加工するための厳しい加工条件における加工時に、延伸MnS(加工方向に延伸しているのでA系介在物に分類される)が起点となって割れが発生する。割れが生じることなく製造できた場合も、延伸したMnSが製品中に残存すると、加工後の製品の靭性が低下する。
 特許文献2に記載される鋼では、Caを含有することによりMnSの形状が球状化するので、A系介在物の存在個数が低減される。しかし、本発明者らの検討によれば、特許文献2に記載される鋼では、A系介在物が減少する代わりに、加工方向に集団をなして不連続的に粒状に並んだ介在物(以後、B系介在物と呼ぶ)や、不規則に分散する介在物(以後、C系介在物と呼ぶ)が、鋼中に多数残存することが見出された。そして、これらが破壊起点となり、加工性および製品の靭性が悪化することが見出された。また、特許文献2に記載される鋼では、Tiを含有させている。しかし、鋼中に粗大なTi含有炭窒化物(C系介在物に分類される)が単独で生成する場合、このTi含有炭窒化物が割れ起点となり、加工性や靭性が劣化し易いという問題がある。
 特許文献3は、延伸酸化物系介在物および非延伸酸化物系介在物の大きさと、長さと、数の総量とを規定しているが、この規定を実現するための具体的な方策を示していない。
 特許文献4では、Caおよび/またはREMの添加によって介在物個数密度を制御している。しかし、特許文献4に記載の鋼のC含有量は0.08質量%~0.22質量%であり、複雑な形状を有する機械構造部品の材料として用いた場合、強度(引張強さ、耐摩耗性、および硬度など)が不足する場合がある。Cを0.25質量%超含有することが求められる鋼において介在物個数密度を好ましい水準に制御するための方法が、特許文献4には示されていない。
 本発明は、上述した問題点に鑑みて案出されたものであり、Cを質量%で0.25%超0.50%未満含有し、ギア類をはじめとする複雑形状の製品の製造に適するような加工性を有する炭素鋼板の提供を課題とする。
 本発明は、鋼板の加工性、および製品の靭性等の特性を劣化させる主要割れ起点として、鋼中のA系、B系、およびC系の各介在物に着目した。これらA系、B系、およびC系の各介在物の含有量を低減することで、加工性に優れる鋼板が提供される。そして、割れ起点となる介在物が少ない本発明による鋼板を使用して製造した製品は、高い靭性を有する。このように、介在物を低減することは、鋼板の加工性と共に(鋼板を素材として製造した)製品の靭性を向上させることができる。
 本発明の要旨は、以下の通りである。
(1)本発明の一態様に係る鋼板は、化学成分が、質量%で、C:0.25%超0.50%未満、Si:0.10%~0.60%、Mn:0.40%~0.90%、Al:0.003%~0.070%、Ca:0.0005%~0.0040%、REM:0.0003%~0.0050%、Cu:0%~0.05%、Nb:0%~0.05%、V:0%~0.05%、Mo:0%~0.05%、Ni:0%~0.05%、Cr:0%~0.50%、B:0%~0.0050%、を含有し、P:0.020%以下、S:0.0070%以下、Ti:0.050%以下、O:0.0040%以下、N:0.0075%以下、に制限し、残部が鉄及び不純物からなり、前記化学成分中の各元素の質量%で示した含有量が、下記の式1と下記の式2とを同時に満たし、単独で存在する、長辺が5μm以上であるTi含有炭窒化物の個数密度が5個/mm以下に制限される。
  0.3000≦{Ca/40.88+(REM/140)/2}/(S/32.07) ・・・(式1)
  Ca≦0.0058-0.0050×C ・・・(式2)
(2)上記(1)に記載の鋼板は、前記化学成分が、さらに、質量%で、Cu:0.01%~0.05%、Nb:0.01%~0.05%、V:0.01%~0.05%、Mo:0.01%~0.05%、Ni:0.01%~0.05%、Cr:0.01%~0.50%、B :0.0010%~0.0050%、のうちの1種以上を含有してもよい。
(3)上記(1)または(2)に記載の鋼板は、さらに、Al、Ca、O、S、及びREMを含む複合介在物と、この複合介在物の表面に前記Ti含有炭窒化物が付着した介在物とを含んでもよい。
(4)上記(1)または(2)に記載の鋼板は、前記化学成分中の前記各元素の質量%で示した含有量が、下記の式3を満たしてもよい。
  18×(REM/140)-O/16≧0 ・・・(式3)
(5)上記(3)に記載の鋼板は、前記化学成分中の前記各元素の質量%で示した含有量が、下記の式4を満たしてもよい。
  18×(REM/140)-O/16≧0 ・・・(式4)
 本発明の上記態様によれば、鋼中のA系介在物の個数密度と、B系介在物の個数密度と、C系介在物の個数密度と、粗大であり角形状を有し且つ単独で存在するTi含有炭窒化物の個数密度とを低減することで、打ち抜き加工性、穴拡げ性、および鍛造性等の加工性に優れ、かつ加工後の靭性にも優れた鋼板を提供することができる。
Sに結合するCaおよびREMの化学当量の合計値と、A系介在物の個数密度との関係を示すグラフである。 鋼中のCa含有量と、B系介在物及びC系介在物の合計の個数密度との関係を示すグラフである。 鋼中のC含有量と鋼の引張強さとの関係を示すグラフである。
 以下、本発明の好適な実施形態について説明する。ただし、本発明は本実施形態に開示の構成のみに限定されない。本発明は、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
 まず、本実施形態に係る鋼板に含まれる介在物について説明する。
 鋼板の加工性を低下させる原因として、非金属介在物および炭窒化物等が挙げられる。これらは、鋼板に応力が加わった場合に、鋼板の割れの起点となる。介在物とは、溶鋼中に存在するか、あるいは溶鋼の凝固時に生成する酸化物および硫化物などである。介在物のサイズ(長辺)は、数μmから、圧延によって延伸した場合には数百μmに及ぶ。したがって、鋼板の加工性を向上させるためには、介在物の含有量を低減することが重要である。このように、鋼板中の介在物のサイズが小さく、個数も少ない状態、すなわち鋼板の「清浄性が高い」状態が好ましい。
 介在物はその形状や分布状態などが多様であるが、例えばJIS G 0555において介在物はA系介在物、B系介在物、およびC系介在物と区別されている。本実施形態では、以後、次に示す定義に従い介在物を3種類に分類する。
 A系介在物:鋼中の非金属介在物のうち、加工によって粘性変形したものである。高延伸性を有し、加工を受けた鋼板においては加工方向に沿って延伸していることが多い。本実施形態では、アスペクト比(長径/短径)が3.0以上である介在物をA系介在物と定義する。
 B系介在物:鋼中の非金属介在物のうち、加工方向に集団をなして不連続的に粒状の介在物がならんだものであり、角張った形状を有する場合が多く、低延伸性である。本実施形態では、加工方向に沿って3個以上の介在物が整列してなる介在物群であって、介在物同士の離間距離が50μm以下である介在物群を形成し、且つアスペクト比(長径/短径)が3.0未満である介在物をB系介在物と定義する。
 C系介在物:粘性変形をしないで不規則に分散するものであり、角張った形状または球状形状を有する場合が多く、低延伸性である。本実施形態では、アスペクト比(長径/短径)が3.0未満であり、ランダムに分布する介在物をC系介在物と定義する。
 非常に硬く、且つ角形状であるTi含有炭窒化物は、一般的にはこのC系介在物に分類されるが、本実施形態においてはC系介在物とは区別される場合がある。Ti含有炭窒化物は、単独で存在する場合、鋼板の特性に与える影響がその他のC系介在物(Ti含有炭窒化物ではないC系介在物)と比較して大きい。ここで「単独で存在するTi含有炭窒化物」とは、Tiを含有しない介在物に付着していない状態で存在するTi含有炭窒化物を示す。一方、Ti含有炭窒化物が他の介在物(例えばAl、Ca、O、S、及びREMを含む複合介在物)に付着した状態で存在する場合、Ti含有炭窒化物が鋼板の特性に与える影響は、その他のC系介在物と比較して同水準になる。本実施形態において、他の介在物に付着しているTi含有炭窒化物は、Ti含有炭窒化物ではないC系介在物であるとみなされる。
 本実施形態において、「C系介在物の個数密度」とは、「Ti含有炭窒化物ではないC系介在物(C系介在物にTi含有炭窒化物が付着するものを含む)の個数密度」と、「単独で存在しているTi含有炭窒化物の個数密度」との合計である。Ti含有炭窒化物は、その形状およびその色調により他のC系介在物と区別することが可能である。
 なお、本実施形態に係る鋼板では、粒径(形状が略球状の介在物の場合)または長径(変形している介在物の場合)が1μm以上の介在物のみを考慮する。粒径または長径が1μm未満の介在物は、たとえ鋼中に含まれていても、鋼の加工性に与える影響が小さいので、本実施形態ではこのような介在物を考慮しない。また、上記した長径とは、観察面上の介在物の断面輪郭での、隣り合わない各頂点を結ぶ線分のうちの最大長となる線分と定義する。同様に、上記した短径とは、観察面上の介在物の断面輪郭での、隣り合わない各頂点を結ぶ線分のうちの最小長となる線分と定義する。また、後述する長辺とは、観察面上の介在物の断面輪郭での、隣り合う各頂点を結ぶ線分のうちの最大長となる線分と定義する。以降、「粒径(形状が略球状の介在物の場合)または長径(変形している介在物の場合)」との記載を「粒径または長径」と略す場合がある。
 従来、鋼中の介在物の存在量および/または形態の制御のために、Caおよび/またはREM(Rare Earth Metal)の添加が行われてきた。上述のように、本発明者らも、質量%で、Cを0.08%~0.22%含有する構造用厚鋼板にCaとREMとを添加することで、鋼中に生成する酸化物(介在物)を高融点相と低融点相との混合相に制御し、この酸化物(介在物)が圧延中に延伸することを防止し、そして、連続鋳造ノズルの溶損や内部介在物欠陥を発生させないようにした技術を、特許文献4で提案している。
 本発明者らは、さらに、質量%で、Cを0.25%超0.50%未満を含有する鋼に関しても、CaとREMとを含有させることで、上記のA系介在物と、B及びC系介在物とを減らす条件について検討した。その結果、A系介在物と、B及びC系介在物とを同時に減らすことができる条件を見出した。その具体的な内容を以下に示す。
 (A系介在物について)
 本発明者らは、質量%で、Cを0.25%超0.50%未満を含有する鋼に対して、さらにCaとREMとを含有させることについて検討した。その結果、化学成分中の各元素の質量%で示した含有量が、下記の式Iを満たすときに、鋼中のA系介在物、特に、A系介在物を構成するMnSを大きく低減できることを見出した。
 0.3000≦{Ca/40.88+(REM/140)/2}/(S/32.07) ・・・(式I)
 以下、この知見の基となった実験について説明する。
 真空溶解炉で、C含有量が、質量%で、0.45%であり、そして、トータルO(T.O.)、N、S、Ca、及びREMの含有量を表1に示す範囲で種々変更した化学成分を有する複数種類の鋼を、50kgインゴットとして作製した。これらのインゴットを、5mm厚となるように、仕上圧延温度が860℃の条件で熱間圧延し、そして、空冷して熱延鋼板を得た。
 この熱延鋼板の圧延方向と板厚方向とに平行な断面を観察面として、熱延鋼板中の介在物を、光学顕微鏡により倍率400倍(ただし、介在物形状を詳細に測定する際は倍率1000倍)で、合計60視野にて観察した。各観察視野で、粒径(形状が球状の介在物の場合)または長径(変形している介在物の場合)が1μm以上の介在物を観察し、それらの介在物を、A系介在物、B系介在物、C系介在物に分類し、それらの個数密度を計測した。また、C系介在物のうち、単独で存在する角形状のTi含有炭窒化物の個数密度も計測した。また、EPMA(電子線マイクロ分析、Electron Probe Micro Analysis)、またはEDX(エネルギー分散型X線分析、Energy Dispersive X-Ray Analysis)を備えるSEM(走査型電子顕微鏡、Scanning Electron Microscope)を用いて熱延鋼板の金属組織を観察すれば、介在物中の、Ti含有炭窒化物、REM含有複合介在物、MnS、及びCaO-Al系介在物などを同定することが可能である。
 加えて、上記で得られた熱延鋼板の加工性の指標として、室温(約25℃)におけるシャルピー衝撃値を測定した。シャルピー衝撃値は鋼板の靭性を示す数値である。鋼板中に、割れ起点となる介在物が多いほど、または介在物のサイズが大きいほど、シャルピー衝撃値が低下する。つまり、シャルピー衝撃値と加工性との間には強い相関がある。実際に各種加工を行った場合、割れが発生する限界ひずみの値自体はそれぞれの加工方法に依存し変化するが、シャルピー衝撃値と相関がある。
 上記実験の結果、シャルピー衝撃値と、介在物の個数密度とが、相関関係を有することが判明した。具体的には、鋼中のA系介在物の個数密度が6個/mmを超えると、シャルピー衝撃値が急激に悪化することが明らかになった。また、B系介在物及びC系介在物の個数密度が、合計で、6個/mmを超えても、衝撃値が急激に悪化することが明らかになった。加えて、C系介在物であるTi含有炭窒化物について、単独で存在する、長辺が5μm以上である粗大なTi含有炭窒化物の個数密度が5個/mmを超えると、衝撃値が急激に悪化することが明らかになった。
Figure JPOXMLDOC01-appb-T000001
 次いで発明者らは、上述のような介在物個数密度を達成するための具体的な方法について検討した。
 鋼中で、CaはSと結合してCaSを形成し、REMはS及びOと結合してREMS(オキシサルファイド)を形成すると想定される。Sと結合するCaおよびREMの化学当量の合計R1は、Sの原子量を32.07、Caの原子量を40.88、REMの原子量を140とし、そして、化学成分中の各元素の質量%で示した含有量を用いて、
 R1={Ca/40.88+(REM/140)/2}/(S/32.07)と表現することができる。
 そこで、上記した各熱延鋼板で測定されたA系介在物の個数密度と、各熱延鋼板の上記R1との関係を調査した。その結果を図1に示す。図1中で、丸印は、Caを含有し、REMを含有しない化学成分(以後、Ca単独含有と呼ぶ)を有する鋼の結果を示し、また、四角印(図1中では「REM+Ca」と説明されている)は、Caを含有し、REMも含有する化学成分(以後、REM及びCaの複合含有と呼ぶ)を有する鋼の結果を示す。なお、Ca単独含有の場合、上記R1を、REM含有量が0であるとして計算した。この図1より、Ca単独含有の場合と、REM及びCaの複合含有の場合との両方において、A系介在物の個数密度と上記R1との間に相関関係があることがわかった。
 具体的には、上記R1の値が0.3000以上となるとき、A系介在物の個数密度が低減し、その個数密度が6個/mm以下となる。その結果、シャルピー衝撃値が向上する。
 なお、Ca単独含有の場合の方が、REM及びCaの複合含有の場合よりも、鋼中のA系介在物の長径が長くなる。Ca単独含有の場合、CaO-Al系の低融点酸化物がA系介在物として生成し、この酸化物が圧延時に延伸しているためと考えられる。したがって、鋼板の特性に悪影響を与える介在物の長径も考慮すると、Ca単独含有より、REM及びCaの複合含有が好ましい。
 これらの結果から、上記の式Iを満たす条件で、かつ、REM及びCaの複合含有の場合に、好ましく鋼中のA系介在物の個数密度を6個/mm以下に低減することができることが分かった。
 なお、R1の値が1.000であるとき、平均組成として、鋼中のSに結合する1当量のCaとREMとが鋼中に存在することになる。しかし実際には、R1の値が1.000であっても、デンドライト樹枝間のミクロ偏析部にMnSが生成するおそれがある。R1の値が2.000以上であるとき、デンドライト樹枝間のミクロ偏析部でのMnS生成を好ましく防止できる。一方、CaおよびREMを多量に含有させることにより、R1の値が5.000を超えると、最大長が20μmを超える粗大なB系またはC系介在物が生成する傾向がある。よって、R1の値は5.000以下であることが好ましい。すなわち、上記の式Iの右辺の上限値は、5.000であることが好ましい。
 (B系介在物及びC系介在物について)
 上記したように、熱延鋼板の上記観察面を観察して、アスペクト比(長径/短径)が3未満であり、粒径または長径が1μm以上であるB系介在物及びC系介在物の個数密度を計測した。その結果、Ca単独含有の場合、またはREM及びCaの複合含有の場合のいずれでも、Ca含有量が多いほど、B系介在物及びC系介在物の個数密度が増加することを発明者らは見出した。一方、REM含有量は、これらの介在物の個数密度に大きく影響しないことを発明者らは見出した。
 図2に、Ca単独含有の場合、そしてREM及びCaの複合含有の場合の、鋼中のCa含有量と、B系介在物及びC系介在物の合計の個数密度との関係を示す。図2中で、丸印は、Ca単独含有の結果を示し、また、四角印(図2中では「REM+Ca」と説明されている)は、REM及びCaの複合含有の結果を示す。この図2より、Ca単独含有の場合、またはREM及びCaの複合含有の場合のいずれも、鋼中のCa含有量が増加すると、B系介在物及びC系介在物の合計の個数密度が増加することがわかった。また、Ca単独含有の場合のCa含有量とREM及びCaの複合含有の場合のCa含有量とを同じCa含有量で比較すると、B系介在物及びC系介在物の合計の個数密度は、ほぼ同等の値となった。つまり、鋼にREM及びCaを複合的に含有させても、このREMは、B系介在物及びC系介在物の合計の個数密度に影響を与えないことがわかった。
 上述したように、A系介在物を低減するためには、上記の範囲内で、鋼中のCa含有量とREM含有量とを高めることが好ましい。一方で、A系介在物を減らすためにCa含有量を増加させると、上述したように、B系介在物及びC系介在物が増加してしまうという問題が生じる。すなわち、Ca単独含有の場合、A系介在物と、B系介在物及びC系介在物とを、同時に低減することができない。これに対して、REM及びCaの複合含有の場合、Sに結合するREMとCaとの化学当量(R1の値)を確保しながら、Ca含有量を減らすことができるので好ましい。すなわち、REM及びCaの複合含有の場合、B系介在物及びC系介在物の合計の個数密度を増加させることなく、A系介在物の個数密度を好ましく減らすことができることが判明した。
 このように、B系介在物及びC系介在物の合計の個数密度がCa含有量に依存する理由は、次のように推察される。
 上述のように、Ca単独含有の場合、鋼中にCaO-Al系介在物が生成する。この介在物は低融点酸化物であるので、溶鋼中で液相であり、溶鋼中で凝集および合体しない傾向がある。つまり、CaO-Al系介在物を溶鋼から浮上分離することが難しい。そのため、大きさが数μmとなるこの介在物が鋳片内に多数分散して残存するので、B系介在物及びC系介在物の合計の個数密度が増加する。
 また、上述の通り、REM及びCaの複合含有の場合も、そのCa含有量に応じて、同様に、B系介在物及びC系介在物の合計の個数密度が増加する。REM含有率が高い介在物の融点は、CaO-Al系介在物の融点よりも高く、REM含有率が高い介在物は溶鋼中で固体として存在する。しかし、REM及びCaの複合含有の場合、REM含有率が高い介在物を核として、その周囲に、Ca含有率が高い介在物が生成する。この介在物をCa-REM複合介在物と称する。この場合においても、Ca含有率が高い介在物は溶鋼中で液相状態である。すなわち、Ca-REM複合介在物の表面は溶鋼中で液相であり、その凝集・合体挙動は、Ca単独含有時に生成するCaO-Al系介在物と類似すると推察される。そのため、Ca-REM複合介在物が鋳片内に多数分散して残存し、B系介在物及びC系介在物の合計の個数密度が増加すると考えられる。
 なお、CaO-Al系介在物は、その粒径または長径が約4μmを超えると、圧延によって延伸してA系介在物となる。一方、CaO-Al系介在物は、その粒径または長径が約4μm未満である場合、圧延によってほとんど延伸しない(長径/短径比が3未満にとどまる)ので、圧延後にB系介在物またはC系介在物となる。また、REM及びCaの複合含有の場合に生成されるREM含有率が高い介在物は、圧延によってほとんど延伸しない。さらに、REM含有率が高い介在物の周囲に生成されるCa含有率が高い介在物も、圧延時にほとんど延伸しない。すなわち、REMとCaの複合含有の場合、REM含有率が高い介在物がCa含有率が高い介在物の延伸を防ぐので、介在物はB系介在物またはC系介在物が主となる。
 また、本発明者らは、B系介在物及びC系介在物の個数密度が、鋼のC含有量にも影響を受けることを見出した。以下、鋼のC含有量が与えるこの影響について説明する。
 C含有量が、質量%で、0.26%であるインゴットを作製し、上述と同方法の実験を行って、B系介在物及びC系介在物の個数密度を測定した。そして、C含有量が0.26%である鋼の実験結果と、上記したC含有量が0.45%である鋼の実験結果とを比較した。
 この比較の結果、B系介在物及びC系介在物の合計の個数密度は、Ca含有量とC含有量とに対する相関関係を有することが明らかとなった。具体的には、同一のCa含有量でも、C含有量が高いほど、B系介在物及びC系介在物の合計の個数密度が増加することを本発明者らは見出した。さらに具体的には、B系介在物及びC系介在物の合計の個数密度を6個/mm以下にするためには、化学成分中の各元素の質量%で示した含有量を、下記の式IIで表わされる範囲に制御する必要があることを見出した。
 Ca≦0.0058-0.0050×C ・・・(式II)
 この式IIは、Ca含有量の上限値をC含有量により変化させる必要があること、すなわち、C含有量が高くなるほどCa含有量の上限値を低下させる必要があることを示している。なお、上記の式IIの下限値は、特に限定されるものではないが、質量%でのCa含有量の下限値である0.0005が上記の式IIの右辺の実質的な下限値となる。
 C含有量が高くなるほど、B系介在物及びC系介在物の合計の個数密度が増加する理由は、溶鋼中のC濃度が高くなるほど、液相線温度から固相線温度までの凝固温度範囲が広くなり、デンドライト組織の長さが増大することに起因すると考えられる。すなわち、デンドライト組織が長く発達する結果、デンドライト樹枝間に介在物が捕捉され易くなる(デンドライト樹枝間から、バルク溶鋼中に排出されにくくなる)ためであると推定される。したがって、C含有量が高く、これにより凝固中のデンドライト組織が長く発達しやすい鋼ほど、上記の式IIを満たすように、Ca含有量の上限を低くする必要が生じる。
 なお、上述した炭素濃度範囲(C:0.25%超0.50%未満)を有する鋼の凝固時の相は、平衡状態図によると、包晶温度以上では液相+δ相であり、包晶温度以下では液相+γ相である。つまり、包晶温度を境に、S等の溶質元素のミクロ偏析度が異なる。ここで着目すべきは、界面活性元素であるので介在物捕捉に影響するSの固液分配係数は、相が液相+δ相である場合よりも、相が液相+γ相である場合の方が小さいということである。Sの固液分配係数が小さい場合、固相に分配されるSの量が少なくなり、液相に分配されるSの量が多くなる。液相に、界面活性元素であるSが多く分配された場合、液相と固相との間の界面エネルギーが低下するので、介在物が液相と固相との間の界面に捕捉されやすくなる。
 鋼の温度が包晶温度以下(即ち、鋼の相が液相+γ相)である場合、Sが比較的多く液相に分配される。これにより、デンドライト樹枝(γ相)の間のSのミクロ偏析度が高くなる。したがって、包晶温度以下では特に介在物が捕捉されやすいと予想される。そして、C濃度が高いほどδ相が減少し、且つγ相が増加するので、介在物がデンドライト樹枝間に捕捉されやすくなる。式IIは、この効果も含めた評価、および観察結果に基づいて決定された。式IIは、鋼中のC濃度が包晶点よりも高い0.25%超0.50%未満である場合に成立する。
 以上のように、C含有量に応じて、REMとCaとを適正量含有させることにより、A系介在物と、B系介在物及びC系介在物とのいずれをも、効果的に低減することができることが分かった。これらの知見に加えて、本発明者らは、さらに、割れ起点になりやすいTi含有炭窒化物の形態についても検討した。
(Ti含有炭窒化物について)
 合金やスクラップ等の副原料からTiが混入すると、鋼中にTiNなどのTi含有炭窒化物が生成する。このTi含有炭窒化物は、その硬度が高く、さらにその形状が角形状である。そのため、鋼中に単独で粗大なTi含有炭窒化物が生成すると、この炭窒化物が破壊の起点となり易いので、鋼のシャルピー衝撃値、ひいては加工性が劣化する。
 上述したように、Ti含有炭窒化物の含有量と鋼板の加工性との関係を検討した結果、単独で存在する、長辺の長さが5μm以上であるTi含有炭窒化物の個数密度が5個/mm以下であれば、破壊が起きにくくなり、加工性の劣化が防止できることが分かった。ここで、Ti含有炭窒化物には、Ti炭化物、Ti窒化物、Ti炭窒化物のほか、選択元素であるNbを含有する場合のTiNb炭化物、TiNb窒化物、TiNb炭窒化物なども含まれる。
 このような粗大なTi含有炭窒化物を減らすためには、Ti含有量を低減することが考えられる。しかし、本実施形態に係る鋼のC濃度範囲では、Ti含有量が微量であってもTi含有炭化物が生成しやすく、さらに、一旦生成したTi含有炭窒化物は、鋼の加熱処理中に粗大化し易い。つまり、C濃度が0.25%超0.50%未満である場合、たとえ鋼の成分としてTiを含有させなかったとしても、不純物として混入したTiに起因して、Ti含有炭窒化物の個数密度が5個/mm超となり、鋼の加工性が低下する場合がある。この問題を解決するための手段として、製造段階におけるTi混入を防止し、Ti含有量を10ppm程度に抑制することが考えられる。しかし、設備能力および製造効率を考慮すると、このような手段の採用は好ましくない。
 そこで、このような粗大なTi含有炭窒化物に起因する悪影響を減らすための別の手段について検討した結果、REM及びCaの複合含有が有効であることが本発明者らによって見出された。
 REM及びCaの複合含有が行われた場合、まずAl、Ca、O、S、及びREMを含む複合介在物が鋼中に生成し、このREM含有複合介在物上に優先的に、Ti含有炭窒化物が複合析出する。REM含有複合介在物上にTi含有炭窒化物を優先的に複合析出させることにより、鋼中に単独で生成する角形状のTi含有炭窒化物を少なくすることができる。つまり、長辺の長さが5μm以上である粗大な単独のTi含有炭窒化物の個数密度を好ましく5個/mm以下に減少させることができる。
 このREM含有複合介在物上に複合析出したTi含有炭窒化物は、破壊の起点になりにくい。この理由は、Ti含有炭窒化物がREM含有複合介在物上に複合析出することで、このTi含有炭窒化物の角形状部が少なくなるためと考えられる。例えば、Ti含有炭窒化物は、その形状が立方体もしくは直方体なので、鋼中に単独で存在する場合、Ti含有炭窒化物の8ヶ所の角の全てがマトリックスに接する。角は破壊の起点となるので、8ヶ所の角を有するTi含有炭窒化物は、8ヶ所の破壊の起点を有する。これに対し、Ti含有炭窒化物がREM含有複合介在物上に複合析出して、例えば、Ti含有炭窒化物の半分だけがマトリックスに接する場合、Ti含有炭窒化物の4ヶ所だけがマトリックスに接する。つまり、マトリックスに接するTi含有炭窒化物の角は8ヶ所から4ヶ所に減ることになる。その結果、Ti含有炭窒化物に起因する破壊の起点が8ヶ所から4ヶ所に減ることになる。
 また、Ti含有炭窒化物がREM含有複合介在物上に優先的に複合析出し易い理由は、REM複合介在物の特定の結晶面にTi含有炭窒化物が析出していることから鑑みて、REM複合介在物の特定の結晶面とTi含有炭窒化物との格子整合性が良好であるためと推定される。
 Ti含有炭窒化物とREM含有介在物との複合物(すなわち、Al、Ca、O、S、及びREMを含む複合介在物の表面にTi含有炭窒化物が付着した介在物)は、単独で存在するTi含有炭窒化物よりも鋼板の諸特性に及ぼす悪影響が少ないので、単独で存在するTi含有炭窒化物ではないC系介在物であると見なされる。
 次に、本実施形態に係る鋼板の化学成分について説明する。
 まず、本実施形態に係る鋼板の基本成分について、数値限定範囲とその限定理由とについて説明する。ここで、記載する%は、質量%である。
(C:0.25%超0.50%未満)
 C(炭素)は、鋼板の強度(硬度)を確保するうえで重要な元素である。C含有量を0.25%超とすることにより、鋼板の強度を確保する。C含有量が0.25%以下では、鋼板の焼入れ性が低下するので、この鋼板を素材として製造する製品、例えばギア類等に必要な強度が得られない。一方、C含有量が0.50%以上になると、加工性を確保する熱処理に長時間を要するので、熱処理を長時間化しなければ鋼板の加工性が悪化するおそれがある。さらに、C含有量が増大すると、B系介在物及びC系介在物の合計の個数密度が増加する。この原因は、C含有量が高い場合、溶鋼の凝固の際にデンドライト組織が長く発達し、デンドライト樹枝間に介在物が捕捉されやすくなるからであると推定される。よって、C含有量を0.25%超0.50%未満に制御する。
 なお、C含有量の好ましい下限値は0.27%である。一般に、C含有量が高いほど、熱処理(焼入れ及び焼き戻し)を行った後の硬度および引張強さが増加する。特に、C含有量が0.27%以上であると、焼入れおよび低温焼き戻し処理を行った後に、1300MPa以上の強度を十分に確保できる。図3は、C含有量と引張強さとの関係を示すグラフである。本発明者らは、C含有量以外の条件を本実施形態に係る鋼板の条件を満たすようにし、且つC含有量を様々に異ならせた鋼板の引張強さを測定した。その結果、C含有量が0.27%以上である場合、鋼板が確実に1300MPaの引張強さを有することが明らかになった。さらに本実施形態に係る鋼板では、C含有量の下限を、好ましくは0.30%、C含有量の上限を、好ましくは0.48%とする。
(Si:0.10%~0.60%)
 Si(ケイ素)は、脱酸剤として作用し、また、焼入れ性を高めて鋼板の強度(硬度)を向上させるのに有効な元素である。Si含有量が0.10%未満では、上記含有効果が得られない。一方、Si含有量が0.60%を超えると、熱間圧延時のスケール疵に起因する鋼板の表面性状の劣化を招くおそれがある。よって、Si含有量を0.10%~0.60%に制御する。Si含有量の下限を、好ましくは0.15%、Si含有量の上限を、好ましくは0.55%とする。
(Mn:0.40%~0.90%)
 Mn(マンガン)は、脱酸剤として作用する元素であるとともに、焼入れ性を高めて鋼板の強度(硬度)を向上させるのに有効な元素である。Mn含有量が0.40%未満では、その効果が十分得られない。一方、Mn含有量が0.90%を超えると、鋼板の加工性が劣化するおそれがある。よって、Mn含有量を0.40%~0.90%に制御する。Mn含有量の下限を、好ましくは0.50%、Mn含有量の上限を、好ましくは0.75%とする。
(Al:0.003%~0.070%)
 Al(アルミニウム)は、脱酸剤として作用する元素であるとともに、Nを固定することで鋼板の加工性を高めるのに有効な元素である。Al含有量が0.003%未満では、上記含有効果が十分に得られないので、0.003%以上を含有させる必要がある。一方、Al含有量が0.070%を超えると、上記含有効果は飽和し、さらに、粗大な介在物が増加する。この粗大な介在物によって、加工性が劣化する、または表面疵が発生し易くなるおそれがある。よって、Al含有量を0.003%~0.070%に制御する。Al含有量の下限を、好ましくは0.010%とし、Al含有量の上限を、好ましくは0.040%とする。
(Ca:0.0005%~0.0040%)
 Ca(カルシウム)は、介在物の形態を制御し、これにより鋼板の加工性を向上させるために有効な元素である。Ca含有量が0.0005%未満では、上記効果が十分に得られない。介在物の形態の制御はREMによっても可能であるが、Ca含有量が0.0005%未満では、後述のREMを単独含有させた時と同様に、連続鋳造時にノズル詰まりが生じることにより操業の安定が妨げられ、さらに、高比重介在物が鋳片の下面側に堆積することにより鋼板の加工性が劣化するおそれがある。一方、Ca含有量が0.0040%を超えると、例えば、CaO-Al系介在物などの粗大な低融点酸化物、および/またはCaS系介在物など圧延時に延伸し易い介在物が生成しやすくなり、これらによって鋼板の加工性が悪化するおそれがある。さらに、Ca含有量が0.0040%を超えると、ノズル耐火物が溶損しやすくなることにより連続鋳造の操業が安定しなくなるおそれがある。よって、Ca含有量を0.0005%~0.0040%に制御する。Ca含有量の下限を、好ましくは0.0007%、さらに好ましくは0.0010%とする。Ca含有量の上限を、好ましくは0.0030%、さらに好ましくは0.0025%とする。
 さらに、Ca含有量の上限値を、C含有量に応じて、制御する必要がある。具体的には、化学成分中のCおよびCaの質量%で示した含有量を、下記の式IIIで表わされる範囲に制御する必要がある。Ca含有量が下記の式IIIを満たさない場合、B系介在物及びC系介在物の合計の個数密度が5個/mmを超える。
  Ca≦0.0058-0.0050×C ・・・(式III)
(REM:0.0003%~0.0050%)
 REM(Rare Earth Metal)は希土類元素を意味し、スカンジウムSc(原子番号21)、イットリウムY(原子番号39)およびランタノイド(原子番号57のランタンから原子番号71のルテシウムまでの15元素)の17元素の総称である。本実施形態に係る鋼板では、これらのうちから選ばれる少なくとも1種以上の元素を含有する。一般的に、REMとして、入手のし易さから、Ce(セリウム)、La(ランタン)、Nd(ネオジム)、Pr(プラセオジム)などから選ばれることが多い。添加方法としては、例えば、鋼中にこれらの元素の混合物であるミッシュメタルとして添加することが広く行われている。ミッシュメタルの主成分はCe、La、Nd、およびPrである。本実施形態に係る鋼板では、鋼板に含有されるこれら希土類元素の合計量を、REM含有量とする。なお、上述したCaおよびREMの化学当量の合計R1の算出方法においては、ミッシュメタルの平均原子量が約140であるので、REMの原子量が140とされる。
 REMは、介在物の形態を制御し、鋼板の加工性を向上させるために有効な元素である。REM含有量が0.0003%未満では、上記効果が十分に得られず、また、Ca単独含有時と同様の問題が生じる。すなわち、REM含有量が0.0003%未満では、CaO-Al系介在物や一部のCaSが圧延によって延伸して、これにより鋼板特性(加工性および加工後の靱性)の低下が生じるおそれがある。さらに、REM含有量が0.0003%未満では、Ti含有炭窒化物が優先的に複合し易いAl、Ca、O、S及びREMを含む複合介在物が少ないので、鋼板中に単独で生成するTi含有炭窒化物が多くなり、加工性が劣化し易い。一方、REM含有量が0.0050%を超えると、連続鋳造時のノズル詰まりが起こりやすくなる。また、REM含有量が0.0050%を超えると、生成するREM系介在物(酸化物やオキシサルファイド)の個数密度が比較的高くなるので、鋳片の連続鋳造時に湾曲する鋳片の下面側にこれらREM系介在物が堆積する。このことが、鋳片を圧延して得られた製品に内部欠陥を引き起こし、さらに、鋼板の加工性を悪化させるおそれがある。よって、REM含有量を0.0003%~0.0050%に制御する。REM含有量の下限を、好ましくは0.0005%、さらに好ましくは0.0010%とする。REM含有量の上限を、好ましくは0.0040%、さらに好ましくは0.0030%とする。
 さらに、Ca及びREMの含有量を、S含有量に応じて、制御する必要がある。具体的には、化学成分中の各元素の質量%で示した含有量を、下記の式IVで表わされる範囲に制御する必要がある。Ca含有量、REM含有量、及びS含有量が下記の式IVを満たさない場合、A系介在物の個数密度が6個/mmを超える。なお、下記の式IVの右辺の値が2以上であると、介在物の形態をさらに好ましく制御できる。また、下記の式IVの上限は特に限定しないが、下記の式IVの右辺の値が5を超えると、最大長が20μmを超える粗大なB系またはC系介在物が生成する傾向がある。よって、下記の式IVの上限値は5であることが好ましい。
 0.3000≦{Ca/40.88+(REM/140)/2}/(S/32.07) ・・・(式IV)
 本実施形態に係る鋼板は、上記した基本成分の他に、不純物を含有する。ここで、不純物とは、スクラップ等の副原料や、製造工程からに混入する、P、S、Ti、O、N、Cd、Zn、Sb、W、Mg、Zr、As、Co、Sn、およびPb等の元素を意味する。これら元素の含有は必須ではないので、これら元素の含有量の下限値は0%である。この中で、P、S、Ti、O、及びNは、上記効果を好ましく発揮させるために、以下のように制限する。また、P、S、O、及びTiとN以外の上記不純物は、それぞれ0.01%以下に制限することが好ましい。ただ、これらの不純物が、0.01%以下含まれても、上記効果を失するものではない。ここで、記載する%は、質量%である。
(P:0.020%以下)
 P(リン)は、固溶強化の機能を有する。しかし、過剰な量のPの含有は、鋼板の加工性を阻害する。よって、P含有量を0.020%以下に制限する。P含有量の下限は0%でもよい。また、現行の一般的な精錬(二次精錬を含む)を考慮すると、P含有量の下限は0.005%であってもよい。
(S:0.0070%以下)
 S(硫黄)は、非金属介在物を形成することにより、鋼板の加工性を阻害する不純物元素である。よって、S含有量を0.0070%以下に制限し、好ましくは、0.0050%以下に制限する。S含有量の下限は0%でもよい。また、現行の一般的な精錬(二次精錬を含む)を考慮すると、S含有量の下限は0.0003%であってもよい。
(Ti:0.050%以下)
 Ti(チタン)は、硬い角形状の炭窒化物を形成することにより、鋼板の加工性を劣化させる元素である。本実施形態においては、上述したようにREM含有介在物上に優先析出させることによって、加工性に及ぼす有害性を緩和する事が可能であるが、Ti含有量が0.050%を超えると加工性の劣化が顕在化する。よって、Ti含有量を0.050%以下に制限する。Ti含有量の下限は0%でもよい。また、現行の一般的な精錬(二次精錬を含む)を考慮すると、Ti含有量の下限は0.0005%であってもよい。
(O:0.0040%以下)
 O(酸素)は、酸化物(非金属介在物)を形成し、この酸化物が凝集および粗大化することにより、鋼板の加工性を低下させる不純物元素である。よって、O含有量を0.0040%以下に制限する。O含有量の下限は0%でもよい。また、現行の一般的な精錬(二次精錬を含む)を考慮すると、O含有量の下限は0.0010%であってもよい。本実施形態に係る鋼板のO含有量は、鋼中に固溶するOや、介在物中に存在するOなどの、すべてのO含有量を合計したトータルO含有量(T.O含有量)を意味する。
 さらに、O含有量とREM含有量とを、各元素の質量%で示した含有量を用いて、下記の式Vで表される範囲に制御することが好ましい。下記の式Vを満たすとき、A系介在物の個数密度がさらに減少するので好ましい。なお、下記の式Vの上限値は特に限定されるものではないが、O含有量及びREM含有量の上限値及び下限値から、0.000643が下記の式Vの左辺の上限値となる。
 18×(REM/140)-O/16≧0 ・・・(式V)
 式Vに基づいたO含有量及びREM含有量の制御により、REM・11Al(REMとAlのモル比1:11)とREM・Al(REMとAlのモル比1:1)との2種類の複合酸化物の混合形態が生成されると、A系介在物がさらに好ましく減少する。上記の式V中で、REM/140はREMのモル数を示し、O/16はOのモル数を示す。REM・11AlとREM・Alとの混合形態を生成するためには、REM含有量を上記の式Vを満たすように含有させることが好ましい。REM含有量が少ないので上記の式Vが満たされない場合、AlとREM・11Alとの混合形態が生成される場合がある。この混合形態に含まれるAlの部位とCaOとが反応してCaO-Al系介在物が生成され、このCaO-Al系介在物が圧延によって延伸されるおそれがある。
(N:0.0075%以下)
 N(窒素)は、窒化物(非金属介在物)を形成し、鋼板の加工性を低下させる不純物元素である。よって、N含有量を0.0075%以下に制限する。N含有量の下限は0%でもよい。また、現行の一般的な精錬(二次精錬を含む)を考慮すると、N含有量の下限は0.0010%であってもよい。
 本実施形態に係る鋼板は、上記の基本成分が制御され、残部が鉄及び上記の不純物よりなる。しかし、本実施形態に係る鋼板は、この基本成分に加えて、残部のFeの一部の代わりに、さらに必要に応じて以下の選択成分を鋼中に含有させてもよい。
 すなわち、本実施形態に係る熱延鋼板は、上記した基本成分及び不純物の他に、更に、選択成分として、Cu、Nb、V、Mo、Ni、Bのうちの1種以上を含有してもよい。以下に、選択成分の数値限定範囲とその限定理由とを説明する。ここで、記載する%は、質量%である。
(Cu:0.05%以下)
 Cu(銅)は、鋼板の強度(硬度)を向上させる効果を有する選択元素である。そのため、必要に応じて、Cuを0.05%以下の範囲内で含有させても良い。また、Cu含有量の下限値を、0.01%とすると、好ましく上記効果を得ることができる。一方、Cu含有量が0.05%を超えると、溶融金属脆化(Cu割れ)によって熱間圧延時に熱間加工割れが生じる恐れがある。Cu含有量の好ましい範囲は0.02%~0.04%である。
(Nb:0.05%以下)
 Nb(ニオブ)は、炭窒化物を形成し、結晶粒の粗大化防止および鋼板の加工性の改善に有効な選択元素である。そのため、必要に応じて、Nbを0.05%以下の範囲内で含有させても良い。また、Nb含有量の下限値を、0.01%とすると、好ましく上記効果を得ることができる。一方、Nb含有量が0.05%を超えると、粗大なNb炭窒化物が析出して鋼板の加工性の低下を招く恐れがある。Nb含有量の好ましい範囲は0.02%~0.04%である。
(V:0.05%以下)
 V(バナジウム)は、Nbと同様に炭窒化物を形成し、結晶粒の粗大化防止や加工性の改善に有効な選択元素である。そのため、必要に応じて、Vを0.05%以下の範囲内で含有させても良い。また、V含有量の下限値を、0.01%とすると、好ましく上記効果を得ることができる。一方、V含有量が0.05%を超えると、粗大な介在物が生成して鋼板の加工性の低下を招く恐れがある。好ましい範囲は、0.02%~0.04%である。
(Mo:0.05%以下)
 Mo(モリブデン)は、焼入れ性の向上と焼戻し軟化抵抗性の向上とにより、鋼板の強度(硬度)を向上させる効果を有する選択元素である。そのため、必要に応じて、Moを0.05%以下の範囲内で含有させても良い。また、Mo含有量の下限値を、0.01%とすると、好ましく上記効果を得ることができる。一方、Mo含有量が0.05%を超えると、コストが増加し、且つ含有効果は飽和する。さらに、Mo含有量が0.05%を超えると、鋼板の加工性、特に冷間加工性が低下し、これにより、鋼板を複雑な形状(例えばギヤ形状など)に加工することが困難になる。以上の理由により、Mo含有量の上限を0.05%とする。Mo含有量の好ましい範囲は、0.01%~0.05%である。
(Ni:0.05%以下)
 Ni(ニッケル)は、焼入れ性の向上による鋼板の強度(硬度)の向上や、加工性の向上に有効な選択元素である。また、Cu含有時の溶融金属脆化(Cu割れ)を防止する効果も有する選択元素である。そのため、必要に応じて、Niを0.05%以下の範囲内で含有させても良い。また、Ni含有量の下限値を、0.01%以上とすると、好ましく上記効果を得ることができる。一方、Ni含有量が0.05%を超えると、コストが増加する一方で、含有効果は飽和するので、Ni含有量の上限を0.05%とする。Ni含有量の好ましい範囲は、0.02%~0.05%である。
(Cr:0.50%以下)
 Cr(クロム)は、焼入れ性を高めて鋼板の強度(硬度)を向上させるのに有効な元素である。そのため、必要に応じて、Crを0.50%以下の範囲内で含有させても良い。また、Cr含有量の下限値を0.01%とすると、好ましく上記効果を得ることができる。Cr含有量が0.50%を超えると、コストが増える一方で、含有効果は飽和する。よって、Cr含有量を0.50%以下に制御する。
(B:0.0050%以下)
 B(ホウ素)は、焼入れ性を高めて鋼板の強度(硬度)を向上させる効果を有する選択元素である。そのため、必要に応じて、Bを0.0050%以下の範囲内で含有させても良い。また、B含有量の下限値を、0.0010%とすると、好ましく上記効果を得ることができる。一方、B含有量が0.0050%を超えると、B系化合物が生成して鋼板の加工性が低下するので上限を0.0050%とする。B含有量の好ましい範囲は、0.0020%~0.0040%である。
 次に、本実施形態に係る鋼板の製造方法について説明する。
 本実施形態に係る鋼板は、一般的な鋼板と同様に、例えば高炉溶銑を原料とし、転炉精錬や二次精錬を行って製造した溶鋼を、連続鋳造によって鋳片とした後、その鋳片に熱間圧延、必要に応じて冷間圧延、および/または焼鈍などを行って鋼板にする。その際、転炉における脱炭処理の後、取鍋での二次精錬で、鋼の成分調整とともに、Ca及びREMの添加による介在物制御を行う。なお、高炉溶銑のほか、鉄スクラップを原料として電気炉で溶解した溶鋼を原料として用いても良い。
 CaおよびREMは、他の含有元素の成分を調整し、さらに、Al脱酸により生じるAlを溶鋼から浮上させてから、添加する。Alが溶鋼中に多量に残存していると、CaやREMがAlの還元によって消費される。そのため、Sの固定に使われるCaおよびREMの含有量が減少し、MnSの生成を十分に防止出来なくなる。
 Caは、蒸気圧が高いので、歩留を上げるために、Ca-Si合金、Fe―Ca-Si合金、およびCa-Ni合金等として添加するのがよい。これらの合金添加のために、これら合金から構成される合金ワイヤーを用いてもよい。REMは、Fe-Si-REM合金、およびミッシュメタル等の形で添加すればよい。ミッシュメタルとは希土類元素の混合物であり、具体的には、Ceを40%~50%程度、Laを20%~40%程度含有することが多い。例えば、Ce45%、La35%、Nd9%、Pr6%、他不純物からなるミッシュメタルなどが入手できる。
 Ca及びREMの添加順序は特に制限されるものではない。しかし、REM添加後にCa添加すると、介在物のサイズがやや小さくなる傾向が見られる。従って、REM添加後にCaを添加するのが好ましい。
 Al脱酸後にAlが生成し、このAlのうち一部がクラスター化する。しかし、REM添加をCa添加よりも先に行うと、クラスターの一部が還元・分解され、クラスターのサイズを低減できる。一方、Ca添加をREM添加よりも先に行うと、Alが低融点のCaO-Al系介在物に変化し、上記Alクラスターが一つの粗大なCaO-Al系介在物となってしまうおそれがある。このため、REM添加後にCa添加することが好ましい。
 実施例により本発明の一態様の効果を更に具体的に詳細に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限り、種々の条件を採用し得る。
 高炉溶銑を原料とし、溶銑予備処理、転炉における脱炭処理の後、取鍋精錬で成分調整を行って表2Aに示す成分の溶鋼300トンを溶製した。取鍋精錬では、まずAlを添加して脱酸を行い、次にTiなどのその他の元素の成分を調整した後、Al脱酸で生じたAlを浮上させるため5分間以上保持した後に、REMを添加し、均一に混合するために3分間保持してから、Caを添加した。REMはミッシュメタルを用いた。このミッシュメタルに含まれるREM元素は、Ce50%、La25%、Nd10%であり、残部が不純物であった。よって、得られる鋼板に含まれる各REM元素の比率は、上記した各REM元素の比率とほぼ同一となる。Caは蒸気圧が高いため、歩留を上げるためにCa-Si合金を添加した。
 精錬後の上記溶鋼を連続鋳造により厚み250mmの鋳片とした。その後、この鋳片を1250℃に加熱して1時間保持し、次いで仕上げ温度が850℃となるように熱間圧延して板厚を5mmにした後、巻取温度が580℃となる状態で巻き取った。この熱延鋼板を酸洗した後、700℃で72hrの熱延板焼鈍を行った。この熱延鋼板に、900℃で30分の焼入れを行い、さらに100℃で30分の焼戻しを行った。
 得られた焼入れおよび焼戻し後の熱延鋼板について、介在物の組成と変形挙動(圧延後の長径/短径の比;アスペクト比)とを調査した。光学顕微鏡を用いて、圧延方向と板厚方向とに平行な断面を観察面として、光学顕微鏡により倍率400倍(ただし、介在物形状を詳細に測定する際は倍率1000倍)で60視野観察した。各観察視野で、粒径(形状が球状の介在物の場合)または長径(変形している介在物の場合)が1μm以上の介在物を観察し、それらの介在物を、A系介在物、B系介在物、及び、C系介在物に分類し、また、それらの個数密度を計測した。また、鋼中に単独で析出した角形状のTi含有炭窒化物であって、長辺が5μmを超えるものの個数密度も同時に測定した。Ti含有炭窒化物は、形状および色が他のC系介在物とは異なるので、観察により判断可能である。または、EPMA(電子線マイクロ分析、Electron Probe Micro Analysis)や、EDX(エネルギー分散型X線分析、Energy Dispersive X-Ray Analysis)を備えるSEM(走査型電子顕微鏡、Scanning Electron Microscope)を用いて熱延鋼板の金属組織を観察すればよい。この場合、介在物中の、Ti含有炭窒化物、REM含有複合介在物、MnS、及びCaO-Al系介在物などを同定することが可能である。
 介在物の評価基準は以下の通りとした。
 A系介在物の個数密度、ならびにB系介在物及びC系介在物の合計個数密度それぞれに関し、個数密度が6個/mmを超える場合をB(Bad)、4個/mm超6個/mm以下の場合をG(Good)、2個/mm超4個/mm以下の場合をVG(Very Good)、2個/mm以下の場合をGG(Greatly Good)とした。
 B系及びC系であって最大長さ20μm以上の粗大介在物に関し、6個/mmを超える場合をB(Bad)、3個/mm超6個/mm以下の場合をG(Good)、3個/mm以下の場合をVG(Very Good)とした。
 鋼中で単独に存在する長辺が5μm以上であるTi含有炭窒化物に関し、個数密度が5個/mmを超える場合をB(Bad)、3個/mm超5個/mm以下の場合をG(Good)、3個/mm以下の場合をVG(Very Good)とした。
 得られた焼入れおよび焼戻し後の熱延鋼板の、引張強さ(MPa)と、室温(約25℃)におけるシャルピー衝撃値(J/cm)と、穴拡げ性(%)とを評価した。1200MPa以上の引張強さを有する鋼板を、引張強さに関し合格基準を満たす鋼板とみなした。室温におけるシャルピー衝撃値は、靱性を示し、鋼板の加工性を評価する指標の一つである。また、鋼板を加工することにより得られる製品の靭性も、シャルピー衝撃値によって評価することができる。6J/cm以上の室温におけるシャルピー衝撃値を有する鋼板を、靱性に関し合格基準を満たす鋼板とみなした。穴拡げ性は、加工性を評価する別の指標である。まず150mm×150mmの鋼板の中央に直径10mmの打ち抜き穴を開け、次いで打ち抜き穴を60°の円錐パンチで押し拡げた。この押し拡げ処理によって板厚貫通亀裂が鋼板に生じた時点での穴径D(mm)を測定した。そして、穴拡げ値λ(%)を、「λ=(D-10)/10×100」との式により算出し、λ(%)が80%以上である鋼板を、穴拡げ性に関し合格基準を満たす鋼板とみなした。
 また、得られた熱延鋼板の化学成分について、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry:誘導結合プラズマ発光分光分析)、又はICP-MS(Inductively Coupled Plasma-Mass Spectrometry:誘導結合プラズマ質量分析)を用いて定量分析した。なお、REM元素のうち微量のものは分析限界を下回る場合があり、その場合は、上記ミッシュメタル中の含有量(Ce50%、La25%、Nd10%)に比例するものとして、含有量が最も多いCeの分析値に対する比率を用いて算出した。
 結果を表2Bに示す。表中で、本発明範囲から外れる数値にはアンダーラインを付している。全ての実施例は、本発明の規定範囲を満足する構成を有していたので、引張強さ、およびシャルピー衝撃値と穴拡げ性λとで示される加工性が優れた。一方、比較例は、本発明の規定条件を満たさなかったので、引張強さ、または加工性が十分ではなかった。
 比較例1は、Ca含有量が下限未満であったので、Caをほとんど含有しない介在物が生成した。これにより、比較例1にはB系介在物、C系介在物および粗大介在物が多数生成し、B系+C系介在物の個数密度の評価および20μm以上の粗大介在物の個数密度の評価が「B」であった。さらに、比較例1の鋳造中にノズル詰まりが生じた。
 比較例2は、Ca含有量が上限を超えたので、粗大なCaO-Al系低融点酸化物が生じた。これにより、比較例2のA系介在物の個数密度、B系+C系介在物の個数密度、および粗大介在物の個数密度の評価が「B」であった。
 比較例3は、REM含有量が下限未満であり、且つ式3を満たさなかったので、マトリックス中に、粗大Ti含有炭窒化物が単独で多数生成した。これにより、比較例3のTi含有炭窒化物の個数密度の評価が「B」であった。
 比較例4は、REM含有量が上限を超えたので、B系+C系介在物の個数密度の評価および粗大介在物の個数密度の評価が「B」であった。さらに、比較例4の鋳造中にノズル詰まりが生じた。
 比較例5は、式1の右辺の値が0.3未満であったので、A系介在物の個数密度の評価が「B」であった。さらに、比較例5は、C含有量が過剰であったので、加工性が低かった。これにより、比較例5の衝撃値は不足した。
 比較例6は、が式2を満たさなかったので、B系+C系介在物の個数密度の評価が「B」であった。
 比較例7は、C含有量が不足していたので、引張強さが不足した。
 比較例8は、介在物の個数密度が適切な水準であるが、C含有量が過剰であったので、加工性が低下した。このため、比較例8の穴拡げ性は不合格であった。
 比較例9は、S含有量が過剰であったので、粗大なMnS介在物が生成し、A系介在物の個数密度の評価が「B」となった。さらに、比較例9の衝撃値および穴拡げ性は不十分であった。
 比較例10は、Ti含有量が過剰であったので、Ti含有炭窒化物の個数密度の評価が「B」となった。これにより、比較例10の衝撃値および穴拡げ性は不十分であった。
 比較例11は、Ca含有量が過剰であったので、CaO含有率が高い粗大酸化物が生成および延伸した。これにより、比較例11のA系介在物、およびB+C系粗大介在物の個数密度の評価が「B」となった。さらに比較例11では、CaO含有率が高いので、酸化物の表面にTi含有炭窒化物が付着する効果が低下した。これにより、比較例11のTi含有炭窒化物の個数密度の評価が「B」であった。以上の理由により、比較例11の衝撃値および穴拡げ性は不足した。
 比較例12は、REM含有量が不足していたので、酸化物の表面にTi含有炭窒化物が付着する効果が低下した。これにより、比較例12のTi含有炭窒化物の個数密度の評価が「B」であった。そのため、比較例12の衝撃値および穴拡げ性は不足した。
 比較例13は、REM含有量が過剰であったので、粗大介在物の個数密度の評価が「B」であった。そのため、比較例13の衝撃値および穴拡げ性は不足した。
 比較例14は、Mo含有量が過剰であったので、介在物の個数密度評価が良好であるにもかかわらず、加工性が劣化した。これにより、比較例14の衝撃値および穴拡げ性は不足した。
 比較例15は、式1を満たさなかったので、A系介在物の個数密度の評価が「B」であった。これにより、比較例15の衝撃値および穴拡げ性は不足した。
 比較例16は、式2を満たさなかったので、B+C系介在物の個数密度の評価が「B」となった。そのため、比較例16の衝撃値および穴拡げ性は不足した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明に係る鋼板のC含有量、Ca含有量、およびREM含有量は「0.3000≦{Ca/40.88+(REM/140)/2}/(S/32.07)」との式と「Ca≦0.0058-0.0050×C」との式とを満たす。これにより、本発明に係る鋼板の1μm以上の長辺を有するA系介在物の個数密度が6個/mm以下に制限され、且つ本発明に係る鋼板の1μm以上の長辺を有するB系介在物およびC系介在物の合計個数密度が6個/mm以下に制限されている。さらに本発明に係る鋼板の、5μm以上の長辺を有し且つ単独で存在するTi炭窒化物の個数密度が5個/mm以下に制限されている。本発明の上記態様によれば、鋼中のA系介在物、B系介在物、及びC系介在物を低減するともに、単独で存在する粗大なTi含有炭窒化物の生成を防止することで、加工性に優れる鋼板の提供が可能となるので、産業上の利用可能性が高い。本発明の炭素鋼板は、様々な形状の機械部品、例えば、車両のギア類、クラッチ、ワッシャーなどの製造に用いることができる。

Claims (5)

  1.  化学成分が、質量%で、
      C :0.25%超0.50%未満、
      Si:0.10%~0.60%、
      Mn:0.40%~0.90%、
      Al:0.003%~0.070%、
      Ca:0.0005%~0.0040%、
      REM:0.0003%~0.0050%、
      Cu:0%~0.05%、
      Nb:0%~0.05%、
      V :0%~0.05%、
      Mo:0%~0.05%、
      Ni:0%~0.05%、
      Cr:0%~0.50%、
      B :0%~0.0050%、
     を含有し、
      P :0.020%以下、
      S :0.0070%以下、
      Ti:0.050%以下、
      O :0.0040%以下、
      N :0.0075%以下、
     に制限し、
     残部が鉄及び不純物からなり、
     前記化学成分中の各元素の質量%で示した含有量が、下記の式1と下記の式2とを同時に満たし、
     単独で存在する、長辺が5μm以上であるTi含有炭窒化物の個数密度が5個/mm以下に制限されることを特徴とする鋼板。
      0.3000≦{Ca/40.88+(REM/140)/2}/(S/32.07) ・・・(式1)
      Ca≦0.0058-0.0050×C ・・・(式2)
  2.  前記化学成分が、さらに、質量%で、
      Cu:0.01%~0.05%、
      Nb:0.01%~0.05%、
      V :0.01%~0.05%、
      Mo:0.01%~0.05%、
      Ni:0.01%~0.05%、
      Cr:0.01%~0.50%、
      B :0.0010%~0.0050%、
     のうちの1種以上を含有することを特徴とする請求項1に記載の鋼板。
  3.  前記鋼板が、さらに、Al、Ca、O、S、及びREMを含む複合介在物と、この複合介在物の表面に前記Ti含有炭窒化物が付着した介在物とを含むことを特徴とする請求項1または2に記載の鋼板。
  4.  前記化学成分中の前記各元素の質量%で示した含有量が、下記の式3を満たすことを特徴とする請求項1または2に記載の鋼板。
      18×(REM/140)-O/16≧0 ・・・(式3)
  5.  前記化学成分中の前記各元素の質量%で示した含有量が、下記の式4を満たすことを特徴とする請求項3に記載の鋼板。
      18×(REM/140)-O/16≧0 ・・・(式4)
PCT/JP2014/061573 2013-04-25 2014-04-24 鋼板 WO2014175381A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PL14788723T PL2990500T3 (pl) 2013-04-25 2014-04-24 Blacha stalowa cienka
JP2015513831A JP5920531B2 (ja) 2013-04-25 2014-04-24 鋼板
CN201480022841.0A CN105143490B (zh) 2013-04-25 2014-04-24 钢板
ES14788723.6T ES2688180T3 (es) 2013-04-25 2014-04-24 Hoja de acero
EP14788723.6A EP2990500B1 (en) 2013-04-25 2014-04-24 Steel sheet
US14/785,788 US10337092B2 (en) 2013-04-25 2014-04-24 Steel sheet
CA2909984A CA2909984C (en) 2013-04-25 2014-04-24 Steel sheet
BR112015026643A BR112015026643A2 (pt) 2013-04-25 2014-04-24 chapa de aço
KR1020157030918A KR101729881B1 (ko) 2013-04-25 2014-04-24 강판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013092408 2013-04-25
JP2013-092408 2013-04-25

Publications (1)

Publication Number Publication Date
WO2014175381A1 true WO2014175381A1 (ja) 2014-10-30

Family

ID=51791947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061573 WO2014175381A1 (ja) 2013-04-25 2014-04-24 鋼板

Country Status (10)

Country Link
US (1) US10337092B2 (ja)
EP (1) EP2990500B1 (ja)
JP (1) JP5920531B2 (ja)
KR (1) KR101729881B1 (ja)
CN (1) CN105143490B (ja)
BR (1) BR112015026643A2 (ja)
CA (1) CA2909984C (ja)
ES (1) ES2688180T3 (ja)
PL (1) PL2990500T3 (ja)
WO (1) WO2014175381A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193595A (ja) * 2017-05-19 2018-12-06 新日鐵住金株式会社 炭素鋼鋳片及び炭素鋼鋳片の製造方法
JP2020084281A (ja) * 2018-11-28 2020-06-04 日本製鉄株式会社 鋼板
JP2020084250A (ja) * 2018-11-21 2020-06-04 日本製鉄株式会社 継目無鋼管用鋼材
WO2023276297A1 (ja) * 2021-06-28 2023-01-05 日本製鉄株式会社 鋼材

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110823938A (zh) * 2019-11-14 2020-02-21 南京钢铁股份有限公司 一种统计分析钢铁材料中TiN和TiC夹杂物的方法
CN113528939A (zh) * 2021-06-10 2021-10-22 江苏利淮钢铁有限公司 一种高性能汽车转向系统中横拉杆接头用钢

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265238A (ja) 1999-03-16 2000-09-26 Nisshin Steel Co Ltd 鋼製リクライニングシートギア
JP2000265239A (ja) 1999-03-16 2000-09-26 Nisshin Steel Co Ltd 打抜き性に優れた高炭素鋼板
JP2001329339A (ja) 2000-05-17 2001-11-27 Sanyo Special Steel Co Ltd 冷間鍛造性に優れた歯車用鋼
JP2008081823A (ja) * 2006-09-29 2008-04-10 Jfe Steel Kk ファインブランキング加工性に優れた鋼板およびその製造方法
JP2011026659A (ja) * 2009-07-24 2011-02-10 Sumitomo Metal Ind Ltd 溶鋼中ランタノイド濃度の制御方法、溶鋼中ランタノイド濃度と溶鋼中非金属介在物組成の同時制御方法および溶鋼の処理方法
JP2011068949A (ja) 2009-09-25 2011-04-07 Nippon Steel Corp 高靭性鋼板
JP2012197506A (ja) * 2011-03-10 2012-10-18 Nippon Steel Corp 伸びフランジ性と曲げ加工性に優れた高強度鋼板およびその溶鋼の溶製方法
WO2013061652A1 (ja) * 2011-10-25 2013-05-02 新日鐵住金株式会社 鋼板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4347999B2 (ja) 2000-08-30 2009-10-21 新日本製鐵株式会社 捩り疲労特性に優れた高周波焼入れ用鋼ならびに高周波焼入れ部品
JP3918787B2 (ja) 2003-08-01 2007-05-23 住友金属工業株式会社 低炭素快削鋼
JP4959402B2 (ja) 2007-03-29 2012-06-20 新日本製鐵株式会社 耐表面割れ特性に優れた高強度溶接構造用鋼とその製造方法
ES2731643T3 (es) 2009-01-16 2019-11-18 Nippon Steel Corp Acero para endurecimiento de superficies para uso estructural en máquinas y componente para uso estructural en máquinas
US9238848B2 (en) 2010-05-10 2016-01-19 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet and method for producing same
JP5158271B2 (ja) 2011-02-24 2013-03-06 新日鐵住金株式会社 伸びフランジ性と曲げ加工性に優れた高強度鋼板およびその溶鋼の溶製方法
CN103080358B (zh) 2011-02-24 2015-12-23 新日铁住金株式会社 延伸凸缘性和弯曲加工性优良的高强度钢板及其钢水的熔炼方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265238A (ja) 1999-03-16 2000-09-26 Nisshin Steel Co Ltd 鋼製リクライニングシートギア
JP2000265239A (ja) 1999-03-16 2000-09-26 Nisshin Steel Co Ltd 打抜き性に優れた高炭素鋼板
JP2001329339A (ja) 2000-05-17 2001-11-27 Sanyo Special Steel Co Ltd 冷間鍛造性に優れた歯車用鋼
JP2008081823A (ja) * 2006-09-29 2008-04-10 Jfe Steel Kk ファインブランキング加工性に優れた鋼板およびその製造方法
JP2011026659A (ja) * 2009-07-24 2011-02-10 Sumitomo Metal Ind Ltd 溶鋼中ランタノイド濃度の制御方法、溶鋼中ランタノイド濃度と溶鋼中非金属介在物組成の同時制御方法および溶鋼の処理方法
JP2011068949A (ja) 2009-09-25 2011-04-07 Nippon Steel Corp 高靭性鋼板
JP2012197506A (ja) * 2011-03-10 2012-10-18 Nippon Steel Corp 伸びフランジ性と曲げ加工性に優れた高強度鋼板およびその溶鋼の溶製方法
WO2013061652A1 (ja) * 2011-10-25 2013-05-02 新日鐵住金株式会社 鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2990500A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193595A (ja) * 2017-05-19 2018-12-06 新日鐵住金株式会社 炭素鋼鋳片及び炭素鋼鋳片の製造方法
JP2020084250A (ja) * 2018-11-21 2020-06-04 日本製鉄株式会社 継目無鋼管用鋼材
JP7230454B2 (ja) 2018-11-21 2023-03-01 日本製鉄株式会社 継目無鋼管用鋼材
JP2020084281A (ja) * 2018-11-28 2020-06-04 日本製鉄株式会社 鋼板
JP7303414B2 (ja) 2018-11-28 2023-07-05 日本製鉄株式会社 鋼板
WO2023276297A1 (ja) * 2021-06-28 2023-01-05 日本製鉄株式会社 鋼材

Also Published As

Publication number Publication date
KR20150133847A (ko) 2015-11-30
EP2990500B1 (en) 2018-08-08
PL2990500T3 (pl) 2018-12-31
JPWO2014175381A1 (ja) 2017-02-23
CN105143490A (zh) 2015-12-09
EP2990500A4 (en) 2017-01-18
US10337092B2 (en) 2019-07-02
CA2909984C (en) 2017-08-22
US20160076123A1 (en) 2016-03-17
ES2688180T3 (es) 2018-10-31
JP5920531B2 (ja) 2016-05-18
BR112015026643A2 (pt) 2017-07-25
CN105143490B (zh) 2017-03-08
EP2990500A1 (en) 2016-03-02
KR101729881B1 (ko) 2017-04-24
CA2909984A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP5206910B1 (ja) 鋼板
JP5920531B2 (ja) 鋼板
KR101235448B1 (ko) 열처리용 강
US9200344B2 (en) High strength hot rolled steel sheet having excellent bendability and method for manufacturing the same
KR101830023B1 (ko) 스프링강 및 그 제조 방법
WO2016068009A1 (ja) オーステナイトステンレス鋼及びその製造方法
JP6032881B2 (ja) 熱間金型用鋼
TW201333223A (zh) 雙相不銹鋼、雙相不銹鋼鑄片、及雙相不銹鋼鋼材
KR102405388B1 (ko) 고 Mn 강 및 그 제조 방법
WO2012115181A1 (ja) 伸びフランジ性と曲げ加工性に優れた高強度鋼板及びその溶鋼の溶製方法
JP6642237B2 (ja) 冷間鍛造用鋼およびその製造方法
CN112912530A (zh) 屈服强度优异的奥氏体高锰钢材及其制备方法
KR102569352B1 (ko) 자동차 브레이크 디스크 로터용 페라이트계 스테인리스 강판, 자동차 브레이크 디스크 로터 및 자동차 브레이크 디스크 로터용 핫 스탬프 가공품
JP6520617B2 (ja) オーステナイト系ステンレス鋼
WO2022145067A1 (ja) 鋼材
WO2022145065A1 (ja) 鋼材
JP7303414B2 (ja) 鋼板
WO2022145066A1 (ja) 鋼材
WO2022145063A1 (ja) 鋼材
JP6950071B2 (ja) Ni−Cr−Mo−Nb合金
WO2011039885A1 (ja) 冷延鋼板
CN112654727A (zh) 焊接部的低温韧性优异的添加ti和nb的铁素体不锈钢

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: IDP00201507008

Country of ref document: ID

Ref document number: 201480022841.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513831

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2909984

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14785788

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014788723

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157030918

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015026643

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015026643

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151021