WO2023276297A1 - 鋼材 - Google Patents

鋼材 Download PDF

Info

Publication number
WO2023276297A1
WO2023276297A1 PCT/JP2022/011081 JP2022011081W WO2023276297A1 WO 2023276297 A1 WO2023276297 A1 WO 2023276297A1 JP 2022011081 W JP2022011081 W JP 2022011081W WO 2023276297 A1 WO2023276297 A1 WO 2023276297A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
steel material
steel
hardenability
Prior art date
Application number
PCT/JP2022/011081
Other languages
English (en)
French (fr)
Inventor
靖之 荻巣
恭平 石川
武 豊田
啓督 川原
裕行 安達
祐一 日平
翔 深尾
康裕 上月
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2023531405A priority Critical patent/JPWO2023276297A1/ja
Publication of WO2023276297A1 publication Critical patent/WO2023276297A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to steel materials.
  • the critical cooling rate V c at which the volume fraction of martensite becomes 90% or more is used as an index of hardenability.
  • Alloying elements that increase hardenability are, for example, C, Si, Mn, Ni, Cr, Mo and B.
  • Molybdenum (Mo) is an element that acts relatively effectively to improve the hardenability of steel, but it is also an expensive element. Therefore, there is a need for steel materials containing elements such as boron (B) that can improve hardenability even when contained in small amounts.
  • the present invention has been made in view of such circumstances, and its purpose is to provide a steel material with improved hardenability due to a novel configuration.
  • the inventors investigated elements that can improve the hardenability of steel. As a result, the present inventors have found that a specific element significantly enhances the hardenability of steel, and completed the present invention.
  • the steel materials that have achieved the above objectives are as follows. (1) in mass %, C: 0.001 to 1.000%, Si: 0.01 to 3.00%, Mn: 0.10-4.50%, P: 0.300% or less, S: 0.0300% or less, Al: 0.001 to 5.000%, N: 0.2000% or less, O: 0.0100% or less, Pr: 0-0.8000%, Sm: 0-0.8000%, Eu: 0-0.8000%, Gd: 0-0.8000%, Tb: 0-0.8000%, Dy: 0-0 .8000%, Ho: 0-0.8000%, Er: 0-0.8000%, Tm: 0-0.8000%, Yb: 0-0.8000%, Lu: 0-0.8000%, and Sc: at least one X element selected from the group consisting of 0 to 0.8000%, Nb: 0 to 3.000%, Ti: 0 to 0.500%, Ta: 0 to 0.500%, V: 0 to 1.00%, Cu: 0 to 3.00%
  • a steel material with enhanced hardenability can be provided.
  • the steel material according to the embodiment of the present invention is mass%, C: 0.001 to 1.000%, Si: 0.01 to 3.00%, Mn: 0.10-4.50%, P: 0.300% or less, S: 0.0300% or less, Al: 0.001 to 5.000%, N: 0.2000% or less, O: 0.0100% or less, Pr: 0-0.8000%, Sm: 0-0.8000%, Eu: 0-0.8000%, Gd: 0-0.8000%, Tb: 0-0.8000%, Dy: 0-0 .8000%, Ho: 0-0.8000%, Er: 0-0.8000%, Tm: 0-0.8000%, Yb: 0-0.8000%, Lu: 0-0.8000%, and Sc: at least one X element selected from the group consisting of 0 to 0.8000%, Nb: 0 to 3.000%, Ti: 0 to 0.500%, Ta: 0 to 0.500%, V: 0 to 1.00%, Cu: 0 to 3
  • the present inventors have investigated new elements capable of improving the hardenability of steel.
  • specific elements dissolved in steel namely Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc elements (hereinafter referred to as "X element")
  • X element specific elements dissolved in steel
  • the amount of the inclusions formed in the steel by those elements more specifically, considering the relationship with the oxides, nitrides and sulfides of these elements, (that is, by satisfying Equation 2 with the effective amount [X] eff of the X element determined by Equation 1 being 0.0003% or more)
  • the steel It was found that the hardenability of can be significantly improved.
  • the present inventors have determined the relationship between the hardenability index Vc determined by the effective amount of X element [X] eff and the content of other specific hardenability elements and the thickness t [mm] of the steel material. (that is, the hardenability index V determined by formula 4 or formula 5 depending on the B content and the thickness t [mm] of the steel material satisfy formula 3 ), it was found that even if the thickness of the steel material is large, a martensite area ratio of 90% or more can be achieved relatively easily at a position half the thickness of the steel material. Therefore, according to the present invention, it is possible to transform the metal structure into martensite, improve the strength, and reduce the manufacturing cost of the steel material.
  • the above-mentioned X element according to the embodiment of the present invention segregates at the grain boundaries of austenite, for example, during cooling after hot rolling It is thought that this suppresses the ferrite transformation of the steel and promotes the transformation to martensite. More specifically, in the cooling process after hot rolling, the metal structure transforms from austenite to ferrite or other structures.
  • the X element segregates at the grain boundaries of austenite, the energy of the grain boundaries can be relatively stabilized, so the frequency of ferrite formation from the grain boundaries is greatly reduced.
  • the X element is likely to combine with O (oxygen), N (nitrogen) and S (sulfur) present in the steel to form inclusions composed of oxides, nitrides and sulfides. If the X element forms such inclusions in the steel, the solid solution amount of the X element that can contribute to the improvement of hardenability decreases, and the hardenability improvement effect cannot be sufficiently obtained.
  • the solid-solution amount of element X taking such inclusions into consideration is calculated as the effective amount [X] ] By setting eff within the range of the above formula 2, that is, 0.0003% or more, it is possible to remarkably improve the hardenability of the steel even with a relatively small amount of the X element contained.
  • the X element in the present invention is likely to combine with O, N, and S to form inclusions, and therefore it is generally difficult to secure a predetermined solid solution amount in steel.
  • the effect of improving the hardenability of the X element has not been known in the past.
  • due to recent advances in refining technology it has become possible to reduce the content of elements such as O, N and S, which are generally present in steel as impurities, to very low levels.
  • a solid solution within the predetermined range of the X element was able to be realized. Therefore, the effect of improving the hardenability resulting from the solid solution of the X element was revealed by the present inventors for the first time this time, which is extremely unexpected and surprising.
  • the X element has a sufficiently high effect of improving hardenability even when it is contained in a small amount.
  • the X element forms sulfides as inclusions as described above, which consumes the S present in the steel, resulting in suppression of the formation of MnS.
  • Mn is an element that effectively acts not only to improve strength but also to improve hardenability. It is possible to increase the amount.
  • the hardenability index V c is calculated from the effective amount of the X element [X] eff and the content of other specific hardenability elements by the above formula 4 Alternatively, it is newly defined by Equation 5, and the hardenability index V c is appropriate in relation to the thickness t [mm] of the steel material, that is, the hardenability index V c and the thickness t [mm] of the steel material By satisfying Equation 3, it is possible to reliably achieve a martensite area ratio of 90% or more even in the interior of the steel material, which is more difficult to harden, for example, at a position half the thickness of the steel material. .
  • the metal structure can be made to have a uniform structure that is closer to a single phase than that mainly composed of martensite. Obtainable.
  • Carbon (C) is an element necessary for enhancing the hardenability of steel and stabilizing hardness and/or ensuring strength. In order to sufficiently obtain these effects, the C content is 0.001% or more. The C content may be 0.005% or more, 0.010% or more, or 0.020% or more. On the other hand, an excessive C content may reduce toughness, bendability and/or weldability. Therefore, the C content is 1.000% or less. The C content may be 0.800% or less, 0.600% or less, or 0.500% or less.
  • Si is a deoxidizing element that enhances the hardenability of steel and contributes to the improvement of strength.
  • the Si content is 0.01% or more.
  • the Si content may be 0.05% or more, 0.10% or more, or 0.30% or more.
  • the toughness may be lowered, and surface quality defects called scale defects may occur. Therefore, the Si content is 3.00% or less.
  • the Si content may be 2.00% or less, 1.00% or less, or 0.60% or less.
  • Manganese (Mn) is an effective element for improving hardenability and/or strength, and is also an effective austenite stabilizing element. In order to sufficiently obtain these effects, the Mn content is 0.10% or more. The Mn content may be 0.50% or more, 0.70% or more, or 1.00% or more. On the other hand, when Mn is contained excessively, MnS harmful to toughness may be generated or oxidation resistance may be lowered. Therefore, the Mn content is 4.50% or less. The Mn content may be 4.00% or less, 3.50% or less, or 3.00% or less.
  • Phosphorus (P) is an element mixed in during the manufacturing process.
  • the P content may be 0%.
  • the P content may be 0.0001% or more, 0.0005% or more, 0.001% or more, 0.003% or more, or 0.005% or more.
  • the P content may be 0.007% or more from the viewpoint of manufacturing cost.
  • the P content is 0.300% or less.
  • the P content may be 0.100% or less, 0.030% or less, or 0.010% or less.
  • S Sulfur
  • S is an element that is mixed in during the manufacturing process, and from the viewpoint of reducing inclusions formed between the element X according to the embodiment of the present invention and MnS harmful to toughness, the less
  • the S content may be 0%.
  • the S content may be 0.0001% or more, 0.0005% or more, 0.0010% or more, 0.0015% or more, or 0.0020% or more.
  • the S content is 0.0300% or less.
  • the S content is preferably 0.0100% or less, more preferably 0.0050% or less, most preferably 0.0030% or less.
  • Aluminum (Al) is a deoxidizing element and is also an effective element for improving corrosion resistance and/or heat resistance.
  • the Al content is 0.001% or more.
  • the Al content may be 0.010% or more, 0.100% or more, or 0.200% or more.
  • the Al content may be 1.000% or more, 2.000% or more, or 3.000% or more.
  • the Al content is 5.000% or less.
  • the Al content may be 4.500% or less, 4.000% or less, or 3.500% or less.
  • the Al content may be 1.500% or less, 1.000% or less, or 0.300% or less.
  • N Nitrogen (N) is an element that is mixed in during the manufacturing process, and from the viewpoint of reducing inclusions formed between the X element according to the embodiment of the present invention, the smaller the amount, the better. Therefore, the N content is 0%. There may be. However, in order to reduce the N content to less than 0.0001%, refining takes time, resulting in a decrease in productivity. Therefore, the N content is 0.0001% or more, 0.0005% or more, 0.0010% or more, 0.0015% or more, 0.0020% or more, 0.0025% or more, or 0.0030% or more good too. On the other hand, N is also an element effective in stabilizing austenite, and may be intentionally contained as necessary.
  • the N content is preferably 0.0100% or more, and may be 0.0200% or more and 0.0500% or more.
  • the N content is 0.2000% or less.
  • the N content may be 0.1500% or less, 0.1000% or less, or 0.0800% or less.
  • Oxygen (O) is an element that is mixed in the manufacturing process, and from the viewpoint of reducing inclusions formed between the X element according to the embodiment of the present invention, the smaller the amount, the better. Therefore, the O content is 0%. There may be. However, in order to reduce the O content to less than 0.0001%, refining takes time, resulting in a decrease in productivity. Therefore, the O content is 0.0001% or more, 0.0005% or more, 0.0010% or more, 0.0015% or more, 0.0020% or more, 0.0025% or more, or 0.0030% or more good too.
  • an excessive O content may form coarse inclusions, lower the effective amount of the X element [X] eff , and lower the formability and/or toughness of the steel material. Therefore, the O content is 0.0100% or less.
  • the O content may be 0.0080% or less, 0.0060% or less, or 0.0040% or less.
  • the X element according to the embodiment of the present invention is Pr: 0 to 0.8000%, Sm: 0 to 0.8000%, Eu: 0 to 0.8000%, Gd: 0 to 0.8000%, Tb: 0 ⁇ 0.8000%, Dy: 0-0.8000%, Ho: 0-0.8000%, Er: 0-0.8000%, Tm: 0-0.8000%, Yb: 0-0.8000%, Lu: 0-0.8000%, and Sc: at least one X element selected from the group consisting of 0 to 0.8000%]
  • the X element according to the embodiment of the present invention is Pr: 0 to 0.8000%, Sm: 0 to 0.8000%, Eu: 0 to 0.8000%, Gd: 0 to 0.8000%, Tb: 0 ⁇ 0.8000%, Dy: 0-0.8000%, Ho: 0-0.8000%, Er: 0-0.8000%, Tm: 0-0.8000%, Yb: 0-0.8000% , Lu: 0 to 0.8000%, and
  • the effect of improving the hardenability is expressed by the X element segregating at the grain boundaries of austenite, for example, by suppressing ferrite transformation during cooling after hot rolling and promoting transformation to martensite. it is conceivable that.
  • ferrite transformation can be suppressed until the martensite transformation start temperature is reached, so the transformation to martensite is significantly promoted.
  • any one of the X elements may be used alone, or two or more of the above elements may be used in any specific combination.
  • the X element may be present in an amount that can ensure an effective amount, which will be described in detail later, and the lower limit thereof is not particularly limited.
  • the content of each X element or the total content may be 0.0010% or more, preferably 0.0050% or more, more preferably 0.0150% or more, and still more It is preferably 0.0300% or more, and most preferably 0.0500% or more.
  • the X element is contained excessively, the effect is saturated, and therefore, containing the X element in the steel material more than necessary may lead to an increase in manufacturing cost.
  • the content of each X element is 0.8000% or less, for example, 0.7000% or less, 0.6000% or less, 0.5000% or less, 0.4000% or less, or 0.3000% or less. good too.
  • the total content of the X element is 9.6000% or less, for example, 6.0000% or less, 5.0000% or less, 4.0000% or less, 2.0000% or less, 1.0000% or less, or 0 It may be 0.5000% or less.
  • the steel material may contain one or more of the following optional elements, if necessary.
  • the steel material is Nb: 0 to 3.000%, Ti: 0 to 0.500%, Ta: 0 to 0.500%, V: 0 to 1.00%, Cu: 0 to 3.00%, Ni: 0-16.00%, Cr: 0-15.00%, Mo: 0-5.00%, W: 0-2.00%, B: 0-0.0200%, Co: 0-3 00%, Be: 0 to 0.050%, and Ag: 0 to 0.500%.
  • the steel materials are Zr: 0 to 0.5000%, Hf: 0 to 0.5000%, Ca: 0 to 0.0500%, Mg: 0 to 0.0500%, and La, Ce, Nd, Pm and At least one of Y: may contain one or more of 0 to 0.5000% in total. Further, the steel material may contain one or two of Sn: 0 to 0.300% and Sb: 0 to 0.300%. In addition, the steel material is Te: 0 to 0.100%, Se: 0 to 0.100%, As: 0 to 0.050%, Bi: 0 to 0.500%, and Pb: 0 to 0.500% You may contain 1 type(s) or 2 or more types among. These optional elements are described in detail below.
  • Niobium (Nb) is an element that contributes to precipitation strengthening, suppression of recrystallization, and the like.
  • the Nb content may be 0%, the Nb content is preferably 0.003% or more in order to obtain these effects.
  • the Nb content may be 0.005% or more, 0.010% or more, 0.150% or more, or 0.200% or more.
  • the Nb content may be 1.000% or more or 1.500% or more.
  • an excessive Nb content saturates the effect and may reduce workability and/or toughness. Therefore, the Nb content is 3.000% or less.
  • the Nb content may be 2.800% or less, 2.500% or less, or 2.000% or less.
  • the Nb content is preferably 0.100% or less, 0.080% or less, 0.050% or less, or 0.030%. % or less.
  • the Nb content may be less than 0.005%, 0.004% or less, 0.003% or less, or 0.002% or less.
  • Titanium (Ti) is an element that contributes to improving the strength of steel materials through precipitation strengthening and the like. Although the Ti content may be 0%, the Ti content is preferably 0.005% or more in order to obtain such effects. The Ti content may be 0.010% or more, 0.050% or more, or 0.080% or more. On the other hand, if Ti is contained excessively, a large amount of precipitates may be generated to lower the toughness. Therefore, the Ti content is 0.500% or less. The Ti content may be 0.300% or less, 0.200% or less, or 0.100% or less.
  • Tantalum (Ta) is an effective element for controlling the morphology of carbides and increasing the strength.
  • the Ta content may be 0%, but in order to obtain these effects, the Ta content is preferably 0.001% or more.
  • the Ta content may be 0.005% or more, 0.010% or more, or 0.050% or more.
  • the Ta content is 0.500% or less.
  • the Ta content may be 0.300% or less, 0.100% or less, or 0.080% or less.
  • Vanadium (V) is an element that contributes to improving the strength of steel through precipitation strengthening and the like.
  • the V content may be 0%, the V content is preferably 0.001% or more in order to obtain such effects.
  • the V content may be 0.01% or more, 0.02% or more, 0.05% or more, or 0.10% or more.
  • the V content is 1.00% or less.
  • the V content may be 0.80% or less, 0.60% or less, or 0.50% or less.
  • Copper (Cu) is an element that contributes to improving strength and/or corrosion resistance.
  • the Cu content may be 0%, but in order to obtain these effects, the Cu content is preferably 0.001% or more.
  • the Cu content may be 0.01% or more, 0.10% or more, 0.15% or more, 0.20% or more, 0.30% or more, or 0.60% or more.
  • an excessive Cu content may lead to deterioration of toughness and weldability. Therefore, the Cu content is 3.00% or less.
  • the Cu content may be 2.00% or less, 1.50% or less, 1.00% or less, or 0.70% or less.
  • the Cu content may be less than 0.01%, 0.009% or less, 0.008% or less, or 0.006% or less.
  • Nickel (Ni) is an element that enhances the hardenability of steel, contributes to improvement in strength and/or heat resistance, and is also an effective austenite stabilizing element.
  • the Ni content may be 0%, the Ni content is preferably 0.001% or more in order to obtain these effects.
  • the Ni content may be 0.01% or more, 0.10% or more, 0.50% or more, 0.70% or more, 1.00% or more, or 3.00% or more.
  • the Ni content is 16.00% or less.
  • the Ni content is 15.00% or less, 10.00% or less, 6.00% or less, or 4.00% or less. may
  • Chromium (Cr) is an element that increases the hardenability of steel and contributes to the improvement of strength and/or corrosion resistance.
  • the Cr content may be 0%, the Cr content is preferably 0.001% or more in order to obtain these effects.
  • the Cr content may be 0.01% or more, 0.05% or more, 0.10% or more, or 0.50% or more.
  • an excessive Cr content may increase the alloy cost and reduce the toughness. Therefore, the Cr content is 15.00% or less.
  • the Cr content is 10.00% or less, 9.00% or less, 7.50% or less, 5.00% or less, or 2.50% % or less.
  • Molybdenum is an element that enhances the hardenability of steel, contributes to an improvement in strength, and is an element that also contributes to an improvement in corrosion resistance.
  • the Mo content may be 0%, but in order to obtain these effects, the Mo content is preferably 0.001% or more.
  • the Mo content may be 0.01% or more, 0.02% or more, 0.50% or more, or 1.00% or more.
  • Mo content is 5.00% or less.
  • the Mo content may be 4.50% or less, 4.00% or less, 3.00% or less, or 1.50% or less.
  • Tungsten is an element that increases the hardenability of steel and contributes to the improvement of strength.
  • the W content may be 0%, the W content is preferably 0.001% or more in order to obtain such effects.
  • the W content may be 0.01% or more, 0.02% or more, 0.05% or more, 0.10% or more, or 0.50% or more.
  • an excessive W content may reduce ductility and weldability. Therefore, the W content is 2.00% or less.
  • the W content may be 1.80% or less, 1.50% or less, or 1.00% or less.
  • B is an element that enhances the hardenability of steel and contributes to the improvement of strength.
  • the B content may be 0%, the B content is preferably 0.0001% or more in order to obtain such effects.
  • the B content may be 0.0003% or more, 0.0005% or more, or 0.0007% or more.
  • an excessive B content may reduce toughness and/or weldability. Therefore, the B content is 0.0200% or less.
  • the B content may be 0.0100% or less, 0.0050% or less, 0.0030% or less, or 0.0020% or less.
  • Co is an element that contributes to improvement of hardenability and/or heat resistance.
  • the Co content may be 0%, the Co content is preferably 0.001% or more in order to obtain these effects.
  • the Co content may be 0.01% or more, 0.02% or more, 0.05% or more, 0.10% or more, or 0.50% or more.
  • the Co content is 3.00% or less.
  • the Co content may be 2.50% or less, 2.00% or less, 1.50% or less, or 0.80% or less.
  • Beryllium (Be) is an element effective in increasing the strength of the base material and refining the structure.
  • the Be content may be 0%, the Be content is preferably 0.0003% or more in order to obtain such effects.
  • the Be content may be 0.0005% or more, 0.001% or more, or 0.010% or more.
  • the Be content is 0.050% or less.
  • the Be content may be 0.040% or less, 0.030% or less, or 0.020% or less.
  • Silver (Ag) is an element effective in increasing the strength of the base material and refining the structure.
  • the Ag content may be 0%, the Ag content is preferably 0.001% or more in order to obtain such effects.
  • the Ag content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more.
  • the Ag content is 0.500% or less.
  • the Ag content may be 0.400% or less, 0.300% or less, or 0.200% or less.
  • Zirconium is an element that can control the morphology of sulfides. Although the Zr content may be 0%, the Zr content is preferably 0.0001% or more in order to obtain such effects. On the other hand, even if Zr is contained excessively, the effect is saturated. Therefore, containing Zr more than necessary in the steel material may lead to an increase in manufacturing cost. Therefore, the Zr content is 0.5000% or less.
  • Hafnium (Hf) is an element that can control the morphology of sulfides. Although the Hf content may be 0%, the Hf content is preferably 0.0001% or more in order to obtain such effects. On the other hand, even if Hf is excessively contained, the effect is saturated. Therefore, containing Hf more than necessary in the steel material may lead to an increase in manufacturing cost. Therefore, the Hf content is 0.5000% or less.
  • Ca 0 to 0.0500%
  • Ca is an element that can control the morphology of sulfide.
  • the Ca content may be 0%, the Ca content is preferably 0.0001% or more in order to obtain such effects.
  • the Ca content is 0.0500% or less.
  • Magnesium (Mg) is an element that can control the morphology of sulfides. Although the Mg content may be 0%, the Mg content is preferably 0.0001% or more in order to obtain such effects. Mg content is over 0.0015%, 0.0016% or more, 0.0017% or more, 0.0018% or more, 0.0019% or more, 0.0020% or more, 0.0022% or more, 0.0025% Above, it may be 0.0028% or more or 0.0030% or more. On the other hand, even if Mg is contained excessively, the effect is saturated, and the cold formability and/or toughness may deteriorate due to the formation of coarse inclusions. Therefore, the Mg content is 0.0500% or less. The Mg content may be 0.0400% or less, 0.0300% or less, or 0.0200% or less.
  • La, Ce, Nd, Pm and Y 0 to 0.5000% in total
  • Lanthanum (La), cerium (Ce), neodymium (Nd), promethium (Pm) and yttrium (Y) are elements capable of controlling the morphology of sulfides as well as Ca and Mg.
  • the total content of at least one of La, Ce, Nd, Pm and Y may be 0%, but is preferably 0.0001% or more in order to obtain such effects.
  • the total content of at least one of La, Ce, Nd, Pm and Y may be 0.0002% or more, 0.0003% or more, or 0.0004% or more.
  • the total content of at least one of La, Ce, Nd, Pm and Y is 0.5000% or less, even if it is 0.4000% or less, 0.3000% or less or 0.2000% or less good.
  • Tin (Sn) is an element effective in improving corrosion resistance.
  • the Sn content may be 0%, the Sn content is preferably 0.001% or more in order to obtain such effects.
  • the Sn content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more.
  • an excessive Sn content may lead to a decrease in toughness, particularly low temperature toughness. Therefore, the Sn content is 0.300% or less.
  • the Sn content may be 0.250% or less, 0.200% or less, or 0.150% or less.
  • the Sn content may be less than 0.005%, 0.004% or less, 0.003% or less, or 0.002% or less.
  • Antimony (Sb) is an element effective in improving corrosion resistance.
  • antimony (Sb) can increase the effect by containing it in combination with Sn.
  • the Sb content may be 0%, the Sb content is preferably 0.001% or more in order to obtain the effect of improving corrosion resistance.
  • the Sb content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more.
  • an excessive Sb content may lead to a decrease in toughness, particularly low temperature toughness. Therefore, the Sb content is 0.300% or less.
  • the Sb content may be 0.250% or less, 0.200% or less, or 0.150% or less.
  • Te 0 to 0.100%
  • Tellurium (Te) is an effective element for improving the machinability of steel because it forms a low melting point compound with Mn, S, etc. to enhance the lubricating effect.
  • the Te content may be 0%, the Te content is preferably 0.001% or more in order to obtain such effects.
  • the Te content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.040% or more.
  • Te content is 0.100% or less.
  • the Te content may be 0.090% or less, 0.080% or less, or 0.070% or less.
  • Se is an element effective in improving the machinability of steel because selenides generated in steel change the shear plastic deformation of the work material, making chips easier to crush. .
  • the Se content may be 0%, the Se content is preferably 0.001% or more in order to obtain such effects.
  • the Se content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.040% or more.
  • the Se content is 0.100% or less.
  • the Se content may be 0.090% or less, 0.080% or less, or 0.070% or less.
  • Arsenic (As) is an effective element for improving the machinability of steel.
  • the As content may be 0%, the As content is preferably 0.001% or more in order to obtain such effects.
  • the As content may be 0.005% or more or 0.010% or more.
  • the As content is 0.050% or less.
  • the As content may be 0.040% or less, 0.030% or less, or 0.020% or less.
  • Bismuth (Bi) is an effective element for improving the machinability of steel.
  • the Bi content may be 0%, the Bi content is preferably 0.001% or more in order to obtain such effects.
  • the Bi content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more.
  • the Bi content is 0.500% or less.
  • the Bi content may be 0.400% or less, 0.300% or less, or 0.200% or less.
  • Pb 0 to 0.500%
  • Lead (Pb) is an element effective in improving the machinability of steel because it melts when the temperature rises due to cutting and accelerates the propagation of cracks.
  • the Pb content may be 0%, the Pb content is preferably 0.001% or more in order to obtain such effects.
  • the Pb content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more.
  • the Pb content is 0.500% or less.
  • the Pb content may be 0.400% or less, 0.300% or less, or 0.200% or less.
  • the balance other than the above elements consists of Fe and impurities.
  • Impurities are components and the like that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when steel materials are industrially manufactured.
  • the effective amount of the X element consisting of Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc, [X] eff , is determined by the following formula 1: and its value satisfies Equation 2 below.
  • [X] eff 0.40 [Pr] + 0.37 [Sm] + 0.37 [Eu] + 0.36 [Gd] + 0.35 [Tb] + 0.34 [Dy] + 0.34 [Ho] + 0.33 [Er] + 0.33 [Tm] + 0.32 [Yb] + 0.32 [Lu] + 1.24 [Sc] - 2.33 [O] - 3.99 [N] - 1.74 [S] . ⁇ Formula 1 [X] eff ⁇ 0.0003 Equation 2
  • [Pr], [Sm], [Eu], [Gd], [Tb], [Dy], [Ho], [Er], [Tm], [Yb], [Lu], [Sc] , [O], [N], and [S] are the content [% by mass] of each element, and are 0 when the element is not contained.
  • these elements present in the steel in a solid solution state can be increased, the hardenability can be improved. More specifically, these X elements (hereinafter also simply referred to as “X”) combine with O (oxygen), N (nitrogen) and S (sulfur) present in the steel to form oxides (X 2 O 3 ), tending to form inclusions consisting of nitrides (XN) and sulfides (XS). Once such inclusions are formed, at least the X element in these inclusions cannot contribute to the improvement of hardenability. Therefore, in order to improve the hardenability, it is necessary to increase the amount of element X present in the steel in a solid solution state without forming inclusions (that is, the amount of element X in solid solution in the steel). be.
  • the solid solution amount of the X element in the steel is obtained by subtracting the maximum amount that can be consumed to form inclusions (oxides, nitrides and sulfides) from the amount of the X element contained in the steel. It is possible to approximate Therefore, in the embodiment of the present invention, the solid solution amount of the X element estimated in this way is defined as the amount of the X element effective for improving the hardenability [X] eff , specifically defined by the following formula A do.
  • [X] eff [atomic %] ⁇ (M [Fe] / M [X] ) x [X] - (M [Fe] / M [O] ) x [O] x 2/3 - (M [Fe ] /M [N] ) ⁇ [N] ⁇ (M [Fe] /M [S] ) ⁇ [S]
  • X represents each X element of Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc
  • M [X] is the atomic weight of the X element
  • M [Fe] is the atomic weight of Fe
  • M [O] is the atomic weight of O
  • M [N] is the atomic weight of N
  • M [S] is the atomic weight of S
  • [X], [O], [N] and [S] are , is the content [mass %] of the corresponding element, and is 0 when the element is not contained.
  • the steel material according to the embodiment of the present invention contains various alloying elements, the steel material as a whole is mostly composed of Fe, or an optional element
  • the steel material as a whole is mostly composed of Fe, or an optional element
  • Ni and/or Cr in addition to Fe is.
  • the atomic weights of Ni and Cr are comparable to that of Fe.
  • each of the X elements Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc is approximately obtained by multiplying the content [mass%] of each X element by the ratio of the atomic weight of Fe and the atomic weight of each X element, that is, (M [Fe] / M [X] ) ⁇ It can be calculated by [X].
  • the amount of the X element in the steel that can effectively improve hardenability can be calculated.
  • the maximum amount (atomic %) of element X that can be consumed to form oxides ( X2O3 ) , nitrides (XN) and sulfides (XS) are the same as explained above.
  • [X] eff [atomic %] ⁇ (M [Fe] / M [X] ) x [X] - (M [Fe] / M [O] ) x [O] x 2/3 - (M [Fe ] /M [N] ) ⁇ [N] ⁇ (M [Fe] /M [S] ) ⁇ [S]
  • [S] Formula A
  • the atomic weights of Fe, O, N and S and each X element are Fe: 55.845, O: 15.9994, N: 14.0069, S: 32.068, Pr: 140.908, Sm : 150.36, Eu: 151.964, Gd: 157.25, Tb: 158.925, Dy: 162.500, Ho: 164.930, Er: 167.259, Tm: 168.934, Yb: 173 .045, Lu: 174.967, Sc: 44.9559. Therefore, by substituting the atomic weight of each element into the above formula A and arranging it, the effective amount [X] eff in terms of atomic % of the X element can be approximately represented by the following formula 1.
  • [X] eff 0.40 [Pr] + 0.37 [Sm] + 0.37 [Eu] + 0.36 [Gd] + 0.35 [Tb] + 0.34 [Dy] + 0.34 [Ho] + 0.33 [Er] + 0.33 [Tm] + 0.32 [Yb] + 0.32 [Lu] + 1.24 [Sc] - 2.33 [O] - 3.99 [N] - 1.74 [S] . ⁇ Formula 1
  • [Pr], [Sm], [Eu], [Gd], [Tb], [Dy], [Ho], [Er], [Tm], [Yb], [Lu], [Sc] , [O], [N], and [S] are the content [% by mass] of each element, and are 0 when the element is not contained.
  • the effective amount of the X element [X] eff obtained by the above formula 1 is 0.0003%. It is necessary to satisfy the above, that is, the following formula 2.
  • [X] eff may be, for example, 0.0005% or more or 0.0007% or more, preferably 0.0010% or more, more preferably 0.0015% or more, still more preferably 0.0030% or more , most preferably 0.0050% or more or 0.0100% or more.
  • [X] eff is 0.0200% or more, 0.0300% or more, 0.0500% or more, 0.0800% or more, 0.1000% or more, 0.1200% or more, 0.1500% or more, 0.1500% or more. It may be 1800% or more or 0.2000% or more.
  • the upper limit of [X] eff is not particularly limited . /or an increase in refining costs for O, N and S), which is not necessarily preferable. Therefore, [X] eff is preferably 2.0000% or less, for example 1.8000% or less, 1.5000% or less, 1.2000% or less, 1.0000% or less or 0.8000% or less. good too.
  • V c1 represents the hardenability index V c when the B content is less than 0.0003%
  • V c2 represents the hardenability index V c when the B content is 0.0003% or more
  • [ B], [C], [Si], [Mn], [Ni], [Cr], and [Mo] are the content [% by mass] of each element
  • the hardenability index Vc was obtained by examining the effect of [X] eff on the hardenability of steel in relation to other specific hardenability elements by the Jominy test using steel materials having various chemical compositions. is the formula. Specifically, the term [X] eff obtained by experiments is added to the formula for the critical cooling rate V c90 at which 90% or more of the metal structure becomes martensite.
  • the hardenability index V c becomes V c1 when the B content is less than 0.0003% and is determined by Equation 4, and when the B content is 0.0003% or more, becomes V c2 and is determined by Equation 5.
  • Formula 4 is a formula when there is no effect of B on improving hardenability
  • formula 5 is a formula when there is an effect of B on improving hardenability.
  • Formula 3 is an empirical formula obtained by consideration of the relationship between the thickness of the steel material and the cooling rate at the half thickness position. Referring to Equations 4 and 5 above, the coefficients of [X] eff are 28 in Equation 4 and 37.9 in Equation 5, which are very large compared to the coefficients of other hardenable elements. Since the smaller the value of the hardenability index V c , the better the hardenability, it is clear from the above formulas 4 and 5 that [X] eff has an extremely high effect of improving the hardenability.
  • the transformation from austenite to martensite is promoted by the X element present in the steel in a solid solution state, and the X element
  • V c the hardenability index
  • the content of other specific hardenability elements By setting the hardenability index V c determined by the effective amount [X] eff of and the content of other specific hardenability elements to satisfy the formula 3 in relation to the thickness t [mm] of the steel material
  • V c /(9773 ⁇ t ⁇ 1.8 ) is not particularly limited and may be zero.
  • V c /(9773 ⁇ t ⁇ 1.8 ) may be 0.01 or greater, 0.05 or greater, or 0.10 or greater.
  • the thickness t of the steel material is not particularly limited and may be any appropriate thickness.
  • the thickness t of the steel material is 0.1 mm or more, 0.6 mm or more, 1.2 mm or more, 1.5 mm or more, 1.8 mm or more, 2 mm or more, 2.2 mm or more, 2.5 mm or more, 2.8 mm 3 mm or more, 3.5 mm or more, 4 mm or more, 5 mm or more, 6 mm or more, 8 mm or more, 10 mm or more, or more than 16 mm, and/or 250 mm or less, 200 mm or less, 150 mm or less, 120 mm or less, 100 mm or less , 90 mm or less, 80 mm or less, 50 mm or less, 30 mm or less, or 20 mm or less.
  • the steel material may be a steel plate such as a thick steel plate or a thin steel plate, and may be a steel bar, a wire rod, a shaped steel, or a steel pipe.
  • the thickness t means the thickness of the steel plate.
  • the thickness t means the diameter of the cross section perpendicular to the longitudinal direction of the steel bar or wire rod.
  • the thickness t means the thickness of the flange of the shaped steel.
  • the thickness t means the thickness of the cross section perpendicular to the longitudinal direction of the steel pipe.
  • Vc/ 455exp( -0.36t) ⁇ 1.00 Although the above formula 3 can be applied to any thickness t of the steel material, for example, when the thickness t of the steel material is 16 mm or less, the hardenability index V c may further satisfy the following formula 6 in addition to the above formula 3.
  • V c /455exp( ⁇ 0.36t) ⁇ 1.00 Equation 6 Equation 6 is an experiment obtained by limiting the thickness of the steel material to a thickness of 16 mm or less, and considering the relationship between the thickness of the steel material and the cooling rate at the position of 1/2 of the thickness. is the formula. The smaller the value of V c /455exp ( ⁇ 0.36t) in Formula 6, the better the hardenability. It may be 80 or less.
  • V c /455exp( ⁇ 0.36t) is not particularly limited and may be zero.
  • V c /455exp(-0.36t) may be 0.01 or greater, 0.05 or greater, or 0.10 or greater.
  • the purity of A-type inclusions defined in JIS G 0555:2020 is preferably 0.010% or less at a position of 1/4 of the thickness of the steel material.
  • A-type inclusions mean A-type inclusions defined in JIS G 0555: 2020, and soft inclusions such as MnS are stretched in the rolling direction by hot rolling. , in a stretched form.
  • the presence of A-based inclusions extending in the rolling direction causes material anisotropy. For example, such A-based inclusions cause cracks in a specific direction, which causes toughness anisotropy. or increase the anisotropy of toughness.
  • the X element forms sulfides as inclusions as described above, the S present in the steel is consumed due to this.
  • the sulfide of the X element is relatively hard, and unlike A-based inclusions such as MnS, it is not elongated in the rolling direction or is not elongated significantly in the rolling direction. For this reason, the cleanliness of the A-type inclusions can be improved by including the X element in the steel material in a sufficient amount. can be reduced. From the viewpoint of reducing the anisotropy of toughness, the lower the cleanliness of the A-based inclusions, the better. may The lower limit of cleanliness of A-system inclusions is not particularly limited, and may be 0%. For example, the cleanliness of A-based inclusions may be 0.001% or more, or 0.002% or more.
  • the cleanliness of A-type inclusions is measured optically with a measurement field number of 60 and a magnification of 400, as described in JIS G 0555:2020 "Microscopic test method for non-metallic inclusions in steel”. It is determined by the so-called “point counting method” with microscopy.
  • a martensite area ratio of 90% or more can be achieved at the half thickness position of the steel material.
  • the 1/2 thickness of the steel is the slowest cooling rate and therefore the most difficult to harden.
  • the steel material according to the embodiment of the present invention has a chemical composition that satisfies the formula 2, and the hardenability index V c and the thickness t [mm] satisfy the formula 3, so that extremely high hardenability By effectively acting the X element, which has an improvement effect, it is possible to remarkably suppress ferrite transformation until the martensite transformation start temperature is reached even at a relatively slow cooling rate.
  • a high martensite area fraction can be achieved at the position of 1/2 of .
  • the martensite area ratio at the half thickness position of the steel material is preferably 92% or more, more preferably 95% or more, still more preferably 98% or more, and most preferably 100%.
  • the area ratio of martensite is determined as follows. First, the L cross section (cross section parallel to the rolling direction and thickness direction of the steel material) at the position of 1/2 of the thickness of the steel material is mirror-polished, then corroded with nital, and observed with an optical microscope at 500 ⁇ m ⁇ 500 ⁇ m. It is determined by randomly selecting 3 visual fields, measuring the area ratio of martensite in each observation visual field, and averaging them.
  • martensite is a lath-like structure observed by the above method, and is not limited to fresh martensite, but also includes tempered martensite and lower bainite.
  • the metal structure can be made into a uniform structure that is closer to a single phase than that mainly composed of martensite, so despite being hard, excellent toughness is achieved. can do.
  • the average value of Charpy absorbed energy (KV2) at ⁇ 20° C. is 20 J or more, preferably 30 J or more, more preferably 40 J or more, and most preferably 45 J or more.
  • the upper limit of the average value of the Charpy absorbed energy is not particularly limited, it may be 100 J, for example.
  • the average value of the Charpy absorbed energy is obtained from the 1/4 position of the thickness of the steel material, and is based on a V-notch test piece in which the notch is placed in the width direction (C direction) of the steel material, according to JIS Z 2242:2018. It is calculated by measuring three Charpy absorbed energies at ⁇ 20° C. using an impact blade with a radius of 2 mm and averaging them according to regulations. When a sub-sized test piece is used, it is converted to a full-sized Charpy absorbed energy according to the thickness of the test piece.
  • the cleanliness of the A-system inclusions by setting the cleanliness of the A-system inclusions to 0.010% or less, it is possible to improve the material isotropy. More specifically, by setting the cleanliness of the A-type inclusions to 0.010% or less, the L / C ratio of the Charpy absorbed energy in the rolling direction (L direction) and the width direction (C direction) in the Charpy impact test is 0.6 to 1.2, and the anisotropy of toughness can be significantly reduced. From the viewpoint of improving material isotropy or reducing toughness anisotropy, the closer the L/C ratio is to 1.0, the better, for example, it may be 0.7 or more, and/or 1.1 or less, or It may be 1.0 or less.
  • the L/C ratio is determined as follows. First, a V-notch test piece was prepared by taking a sample from the 1/4 position of the thickness of the steel material and making a notch in the rolling direction (L direction) or width direction (C direction) of the steel material, then JIS Z 2242: 2018 In accordance with the regulations, a Charpy impact test was performed at -20 ° C using an impact blade with a radius of 2 mm, and the Charpy absorbed energy of the V notch test piece notched in the L direction (average of three measured values) and C The L/C ratio is determined by calculating the ratio to the Charpy absorbed energy (average of three measurements) of the directionally notched V-notch specimen.
  • the steel material according to the embodiment of the present invention may be any steel material, and is not particularly limited.
  • Steel materials according to embodiments of the present invention include, for example, thick steel plates, thin steel plates, steel bars, wire rods, shaped steels, steel pipes, and the like.
  • the thickness t of the steel material according to the embodiment of the present invention is, for example, 0.1 mm to 250 mm.
  • the thickness t is, for example, 3 mm to 250 mm or 6 mm to 250 mm.
  • the thickness t is, for example, 0.1 mm to 16 mm.
  • the cross-sectional diameter perpendicular to the longitudinal direction is, for example, 1.0 mm to 250 mm.
  • the flange thickness is, for example, 20 mm to 150 mm.
  • the thickness (wall thickness) of the section perpendicular to the longitudinal direction is, for example, 1.0 mm to 160 mm.
  • the steel material according to the embodiment of the present invention can be manufactured by any suitable method known to those skilled in the art, depending on the shape of the final product.
  • the manufacturing method includes the steps generally applied in manufacturing thick steel plate, such as casting a slab having the chemical composition described above, cast It includes a step of hot rolling the slab and a step of cooling the obtained rolled material, and may further include an appropriate heat treatment step, tempering step, and the like as necessary.
  • the manufacturing method thereof includes steps generally applied in manufacturing thin steel plate, for example, a step of casting a slab having the chemical composition described above, a cast It may further include a step of hot rolling the slab, a step of cooling and winding the obtained rolled material, a cold rolling step, an annealing step, and the like as necessary.
  • the method of manufacturing steel bars and other steel products includes processes generally applied in manufacturing steel bars and other steel products, such as the steelmaking process of forming molten steel having the chemical composition described above, forming casting slabs, billets, blooms, etc. from molten steel; hot rolling the cast slabs, billets, blooms, etc.; and cooling the obtained rolled material. Appropriate processes known to those skilled in the art for manufacturing steel can be appropriately selected and implemented.
  • the steel material according to the embodiment of the present invention has significantly improved hardenability, it is possible to sufficiently harden the inside of the steel material even at a relatively slow cooling rate in cooling after hot rolling or cooling after annealing. It is possible.
  • cooling after hot rolling or cooling after annealing should Considering the specific value of , select an appropriate average cooling rate from the range of 0.3 to 200 ° C./sec to reduce the temperature below the martensitic transformation start temperature, such as 400 ° C. or lower, 300 ° C. or lower or 200 ° C. C. or below.
  • Specific conditions for other steps are not particularly limited, and appropriate conditions may be appropriately selected according to the steel type, the type and shape of the steel material, and the like.
  • it is important to secure an effective amount [X] eff of the X element that contributes to the improvement of hardenability. It is very important to sufficiently reduce the content of O, N and S obtained in the refining process.
  • Example A slabs with various chemical compositions were first cast, cut to obtain billets, then hot rolled at a rolling reduction of 50% or more and cooled. Next, the obtained rolled material is heated to a predetermined temperature within the range of 950 to 1100 ° C., and then the temperature is appropriately selected from the range of 0.5 to 150 ° C./sec depending on the thickness t (mm). A steel material was obtained by cooling to 400 ° C. or less at an average cooling rate (when the thickness of the rolled material is thick, a higher average cooling rate is applied, and when the thickness is the same, the same average cooling rate is applied. ). The chemical compositions obtained by analyzing the samples taken from each of the obtained steel materials are as shown in Table 1 below.
  • the thickness of each steel material obtained is also shown in Table 1 below.
  • the metallographic structure of a sample taken from a position half the thickness of each steel material obtained was observed with an optical microscope, and the area ratio of martensite was measured.
  • the L cross section of the sample was mirror-polished, then corroded with nital, three observation fields of 500 ⁇ m ⁇ 500 ⁇ m were randomly selected using an optical microscope, and the area ratio of martensite (lath-like structure) was determined in each observation field.
  • the area ratio of martensite (M area ratio) was determined by measuring and averaging them, and shown in Table 1.
  • Example B In this example, billets taken from some of the slabs of Example A were hot-rolled at a higher rolling reduction than in Example A, and then cooled. The obtained rolled material is heated to a predetermined temperature within the range of 950 to 1100 ° C., and then the average cooling rate appropriately selected from the range of 0.7 to 60 ° C./sec depending on the thickness t (mm) The steel material was obtained by cooling to 400 ° C. or less at (when the thickness of the rolled material is thick, a higher average cooling rate is applied, and when the thickness is the same, the same average cooling rate is applied). The thickness of each steel material obtained is as shown in Table 2 below.
  • the martensite area ratio (M area ratio) of each obtained steel material was measured in the same manner as in Example A.
  • a sample is taken from a position of 1/4 of the thickness of the steel material, and an optical microscope is observed with a measurement field number of 60 and a magnification of 400 times in the L cross section, and the "point counting method" is specified in JIS G 0555: 2020.
  • the cleanliness of A-series inclusions was determined.
  • Using a full-size V-notch test piece with a notch in the L direction or C direction of the steel material, taken from the 1/4 position of the thickness of the steel material, in accordance with the provisions of JIS Z 2242: 2018, radius 2 mm A Charpy impact test was performed at -20°C using an impact blade.
  • Example A also in this example, when the area ratio of martensite (M area ratio) was 90% or more, it was evaluated as a steel material with improved hardenability.
  • M area ratio the area ratio of martensite
  • Comparative Examples 135 and 136 the effective amount of the X element [X] eff is low and the formula 3 is not satisfied, so the hardenability is insufficient and the martensite area ratio is 90% or more.
  • the average value (KV2) of the Charpy absorbed energy in Comparative Example 135 is lowered.
  • the content of the X element was relatively small, so it is considered that the S in the steel was not sufficiently consumed. degree exceeds 0.010%, and the L/C ratio is lowered.
  • the average value (KV2) of Charpy absorbed energy at ⁇ 20° C. is 20 J or more, and the L/C ratio is 0.6 to 1.0 while achieving excellent toughness. 2, the anisotropy of toughness could be reduced.
  • Example C steel with a thickness of 16 mm or less
  • a steel material having a thickness of 16 mm or less was manufactured and its characteristics were investigated. Specifically, billets taken from some of the slabs of Example A were hot-rolled at a higher rolling reduction than Example A, and then cooled. The obtained rolled material is heated to a predetermined temperature within the range of 950 to 1100 ° C., and then the average cooling rate appropriately selected from the range of 2.0 to 160 ° C./sec depending on the thickness t (mm) The steel material was obtained by cooling to 400 ° C. or less at (when the thickness of the rolled material is thick, a higher average cooling rate is applied, and when the thickness is the same, the same average cooling rate is applied).
  • each steel material obtained is as shown in Table 3 below.
  • the martensite area ratio (M area ratio) and cleanliness of A-type inclusions of each of the obtained steel materials were measured in the same manner as in Example B.
  • Charpy absorption was performed in the same manner as in Example B.
  • the average value of energy (KV2) and the L/C ratio were determined.
  • the average value of Charpy absorbed energy is a numerical value converted to full size. Table 3 shows the results.
  • the average value (KV2) of Charpy absorbed energy at ⁇ 20° C. is 20 J or more, and the L/C ratio is 0.6 to 1.0 while achieving excellent toughness. 2, the anisotropy of toughness could be reduced.
  • a steel material according to an embodiment of the present invention is, for example, a steel material after hot rolling.
  • Steel materials after hot rolling include, for example, thick steel plates used for applications such as bridges, construction, shipbuilding and pressure vessels, thin steel plates used for applications such as automobiles and home appliances, as well as steel bars, wire rods, and shaped steel. , and steel pipes.
  • high-strength steel material can be produced due to the effect of improving the hardenability.
  • the metal structure can be a uniform structure that is closer to a single phase than that mainly composed of martensite, it is possible to remarkably improve, for example, toughness in spite of high strength.

Abstract

[X]effが0.0003以上である所定の化学組成を有し、焼入れ性指標Vcと、厚さt[mm]とが、Vc/(9773×t-1.8)<1.00を満たす鋼材が提供される。[X]eff=0.40[Pr]+0.37[Sm]+0.37[Eu]+0.36[Gd]+0.35[Tb]+0.34[Dy]+0.34[Ho]+0.33[Er]+0.33[Tm]+0.32[Yb]+0.32[Lu]+1.24[Sc]-2.33[O]-3.99[N]-1.74[S](式中、[Pr]、[Sm]、[Eu]、[Gd]、[Tb]、[Dy]、[Ho]、[Er]、[Tm]、[Yb]、[Lu]、[Sc]、[O]、[N]、及び[S]は各元素の含有量[質量%])。

Description

鋼材
 本発明は、鋼材に関する。
 鋼材に求められる材料特性、とりわけ強度を向上させるためには、焼入れ処理によって金属組織をマルテンサイト及び/又はベイナイトに変態させることが有効であることが一般に知られている。これに関連して、従来、焼入れ性を高める合金元素を鋼材に含有させて、オーステナイトからマルテンサイト及び/又はベイナイトへの変態を促進させることが行われている(例えば、特許文献1~特許文献5参照)。
 特許文献1~5に記載の発明では、マルテンサイトの体積率が90%以上になる臨界冷却速度Vcを焼入れ性の指標として使用している。Vcは、小さいほど鋼の焼入れ性が高くなり、冷却速度が遅くなってもマルテンサイト組織を確保できる。焼入れ性を高める合金元素は、例えばC、Si、Mn、Ni、Cr、Mo及びBである。
特開2018-70970号公報 国際公開第2013-175821号 国際公開第2012-144248号 特開2007-291468号公報 特開2007-56283号公報
 モリブデン(Mo)は、鋼の焼入れ性の向上に比較的有効に作用する元素であるが、高価な元素でもある。それゆえ、ホウ素(B)のように、少量の含有でも、焼入れ性を改善することができる元素を含む鋼材に対してニーズがある。
 本発明は、このような実情に鑑みてなされたものであり、その目的とするところは、新規な構成により、焼入れ性が改善された鋼材を提供することにある。
 本発明者らは、上記目的を達成するために、鋼の焼入れ性を高めることができる元素について検討を行った。その結果、本発明者らは、特定元素が鋼の焼入れ性を顕著に高めることを見出し、本発明を完成させた。
 上記目的を達成し得た鋼材は、以下のとおりである。
 (1)質量%で、
 C:0.001~1.000%、
 Si:0.01~3.00%、
 Mn:0.10~4.50%、
 P:0.300%以下、
 S:0.0300%以下、
 Al:0.001~5.000%、
 N:0.2000%以下、
 O:0.0100%以下、
 Pr:0~0.8000%、Sm:0~0.8000%、Eu:0~0.8000%、Gd:0~0.8000%、Tb:0~0.8000%、Dy:0~0.8000%、Ho:0~0.8000%、Er:0~0.8000%、Tm:0~0.8000%、Yb:0~0.8000%、Lu:0~0.8000%、及びSc:0~0.8000%からなる群より選択される少なくとも1種のX元素、
 Nb:0~3.000%、
 Ti:0~0.500%、
 Ta:0~0.500%、
 V:0~1.00%、
 Cu:0~3.00%、
 Ni:0~16.00%、
 Cr:0~15.00%、
 Mo:0~5.00%、
 W:0~2.00%、
 B:0~0.0200%、
 Co:0~3.00%、
 Be:0~0.050%、
 Ag:0~0.500%、
 Zr:0~0.5000%、
 Hf:0~0.5000%、
 Ca:0~0.0500%、
 Mg:0~0.0500%、
 La、Ce、Nd、Pm及びYの少なくとも1種:合計で0~0.5000%、
 Sn:0~0.300%、
 Sb:0~0.300%、
 Te:0~0.100%、
 Se:0~0.100%、
 As:0~0.050%、
 Bi:0~0.500%、
 Pb:0~0.500%、並びに
 残部:Fe及び不純物からなり、
 下記式1によって求められる[X]effが下記式2を満たす化学組成を有し、
 焼入れ性指標Vcと、厚さt[mm]とが下記式3を満たす、鋼材。
 [X]eff=0.40[Pr]+0.37[Sm]+0.37[Eu]+0.36[Gd]+0.35[Tb]+0.34[Dy]+0.34[Ho]+0.33[Er]+0.33[Tm]+0.32[Yb]+0.32[Lu]+1.24[Sc]-2.33[O]-3.99[N]-1.74[S]   ・・・式1
 [X]eff≧0.0003   ・・・式2
 Vc/(9773×t-1.8)<1.00   ・・・式3
 ただし、[B]<0.0003%のとき、
 logVc=logVc1=3.6-0.7×(2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.8[Cr]+[Mo]+28[X]eff)   ・・・式4
 [B]≧0.0003%のとき、
 logVc=logVc2=2.8-0.7×(2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.8[Cr]+2[Mo]+37.9[X]eff)   ・・・式5
 ここで、Vc1はB含有量が0.0003%未満の場合の焼入れ性指標Vcを表し、Vc2はB含有量が0.0003%以上の場合の焼入れ性指標Vcを表し、[Pr]、[Sm]、[Eu]、[Gd]、[Tb]、[Dy]、[Ho]、[Er]、[Tm]、[Yb]、[Lu]、[Sc]、[O]、[N]、[S]、[B]、[C]、[Si]、[Mn]、[Ni]、[Cr]、及び[Mo]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
 (2)t≦16mmのとき、前記焼入れ性指標Vcと、前記厚さt[mm]とが下記式6をさらに満たす、上記(1)に記載の鋼材。
 Vc/455exp(-0.36t)<1.00   ・・・式6
 (3)前記鋼材の厚さの1/4の位置において、JIS G 0555:2020に規定するA系介在物の清浄度が0.010%以下である、上記(1)又は(2)に記載の鋼材。
 (4)N含有量が0.0010%以上であり、O含有量が0.0010%以上である、上記(1)~(3)のいずれか1項に記載の鋼材。
 (5)前記化学組成が、質量%で、
 Nb:0.003~3.000%、
 Ti:0.005~0.500%、
 Ta:0.001~0.500%、
 V:0.001~1.00%、
 Cu:0.001~3.00%、
 Ni:0.001~16.00%、
 Cr:0.001~15.00%、
 Mo:0.001~5.00%、
 W:0.001~2.00%、
 B:0.0001~0.0200%、
 Co:0.001~3.00%、
 Be:0.0003~0.050%、
 Ag:0.001~0.500%、
 Zr:0.0001~0.5000%、
 Hf:0.0001~0.5000%、
 Ca:0.0001~0.0500%、
 Mg:0.0001~0.0500%、
 La、Ce、Nd、Pm及びYの少なくとも1種:合計で0.0001~0.5000%、
 Sn:0.001~0.300%、
 Sb:0.001~0.300%、
 Te:0.001~0.100%、
 Se:0.001~0.100%、
 As:0.001~0.050%、
 Bi:0.001~0.500%、並びに
 Pb:0.001~0.500%
のうち1種又は2種以上を含む、上記(1)~(4)のいずれかに記載の鋼材。
 (6)Mg含有量が0%であるか又は0.0016~0.0500%である、上記(1)~(4)のいずれか1項に記載の鋼材。
 (7)Sn含有量が0.004%以下である、上記(1)~(6)のいずれか1項に記載の鋼材。
 (8)前記鋼材の厚さの1/2の位置におけるマルテンサイト面積率が90%以上である、上記(1)~(7)のいずれか1項に記載の鋼材。
 (9)前記鋼材の厚さが2.5mm以上である、上記(1)~(8)のいずれか1項に記載の鋼材。
 本発明によれば、焼入れ性が高められた鋼材を提供することができる。
<鋼材>
 本発明の実施形態に係る鋼材は、質量%で、
 C:0.001~1.000%、
 Si:0.01~3.00%、
 Mn:0.10~4.50%、
 P:0.300%以下、
 S:0.0300%以下、
 Al:0.001~5.000%、
 N:0.2000%以下、
 O:0.0100%以下、
 Pr:0~0.8000%、Sm:0~0.8000%、Eu:0~0.8000%、Gd:0~0.8000%、Tb:0~0.8000%、Dy:0~0.8000%、Ho:0~0.8000%、Er:0~0.8000%、Tm:0~0.8000%、Yb:0~0.8000%、Lu:0~0.8000%、及びSc:0~0.8000%からなる群より選択される少なくとも1種のX元素、
 Nb:0~3.000%、
 Ti:0~0.500%、
 Ta:0~0.500%、
 V:0~1.00%、
 Cu:0~3.00%、
 Ni:0~16.00%、
 Cr:0~15.00%、
 Mo:0~5.00%、
 W:0~2.00%、
 B:0~0.0200%、
 Co:0~3.00%、
 Be:0~0.050%、
 Ag:0~0.500%、
 Zr:0~0.5000%、
 Hf:0~0.5000%、
 Ca:0~0.0500%、
 Mg:0~0.0500%、
 La、Ce、Nd、Pm及びYの少なくとも1種:合計で0~0.5000%、
 Sn:0~0.300%、
 Sb:0~0.300%、
 Te:0~0.100%、
 Se:0~0.100%、
 As:0~0.050%、
 Bi:0~0.500%、
 Pb:0~0.500%、並びに
 残部:Fe及び不純物からなり、
 下記式1によって求められる[X]effが下記式2を満たす化学組成を有し、
 焼入れ性指標Vcと、厚さt[mm]とが下記式3を満たすことを特徴としている。
 [X]eff=0.40[Pr]+0.37[Sm]+0.37[Eu]+0.36[Gd]+0.35[Tb]+0.34[Dy]+0.34[Ho]+0.33[Er]+0.33[Tm]+0.32[Yb]+0.32[Lu]+1.24[Sc]-2.33[O]-3.99[N]-1.74[S]   ・・・式1
 [X]eff≧0.0003   ・・・式2
 Vc/(9773×t-1.8)<1.00   ・・・式3
 ただし、[B]<0.0003%のとき、
 logVc=logVc1=3.6-0.7×(2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.8[Cr]+[Mo]+28[X]eff)   ・・・式4
 [B]≧0.0003%のとき、
 logVc=logVc2=2.8-0.7×(2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.8[Cr]+2[Mo]+37.9[X]eff)   ・・・式5
 ここで、Vc1はB含有量が0.0003%未満の場合の焼入れ性指標Vcを表し、Vc2はB含有量が0.0003%以上の場合の焼入れ性指標Vcを表し、[Pr]、[Sm]、[Eu]、[Gd]、[Tb]、[Dy]、[Ho]、[Er]、[Tm]、[Yb]、[Lu]、[Sc]、[O]、[N]、[S]、[B]、[C]、[Si]、[Mn]、[Ni]、[Cr]、及び[Mo]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
 焼入れ処理によって金属組織をオーステナイトから、マルテンサイト及び/又はベイナイトに変態させるためには、先に述べたとおり、焼入れ性を高める合金元素を鋼材に含有させることが必要である。しかしながら、例えば、鋼の焼入れ性の向上に比較的有効に作用するモリブデン(Mo)は、高価な元素である。したがって、ホウ素(B)のように、少量の含有でも、焼入れ性を高めることができる合金元素が好ましい。
 そこで、このような観点から、本発明者らは、鋼の焼入れ性を向上させることのできる新たな元素について検討を行った。その結果、本発明者らは、鋼中に固溶している特定元素、すなわちPr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの元素(以下、「X元素」ともいう)の量をそれらの元素が鋼中で形成する介在物、より具体的にはこれらの元素の酸化物、窒化物及び硫化物との関係を考慮しつつ、所定の範囲内とすることにより(すなわち、式1によって求められる当該X元素の有効量[X]effを0.0003%以上として式2を満足させことにより)、比較的少ないX元素の含有においてさえも鋼の焼入れ性を顕著に向上させることができることを見出した。さらに、本発明者らは、X元素の有効量[X]effと他の特定の焼入れ性元素の含有量とによって決定される焼入れ性指標Vcを鋼材の厚さt[mm]との関係において適切なものとすることにより(すなわち、B含有量に応じて式4又は式5によって決定される焼入れ性指標Vcと鋼材の厚さt[mm]とが式3を満たすようにすることにより)、鋼材の厚さが厚い場合であっても比較的容易に当該鋼材の厚さの1/2の位置において90%以上のマルテンサイト面積率を達成することができることを見出した。したがって、本発明によれば、金属組織をマルテンサイトに変態させ、例えば強度を向上させるとともに、鋼材の製造コストの低減などを実現することも可能となる。
 何ら特定の理論に束縛されることを意図するものではないが、本発明の実施形態に係る上記のX元素は、オーステナイトの結晶粒界などに偏析し、例えば、熱間圧延終了後の冷却中のフェライト変態を抑制してマルテンサイトへの変態を促進させるものと考えられる。より詳しく説明すると、熱間圧延終了後の冷却過程において、金属組織はオーステナイトからフェライトや他の組織に変態するが、例えば、オーステナイトからフェライトへの変態は、主としてオーステナイトの結晶粒界から生じることが知られている。これに関連して、X元素がオーステナイトの結晶粒界に偏析した場合には、結晶粒界のエネルギーを比較的安定化させることができるため、当該結晶粒界からフェライトが生成する頻度を大きく低下させることが可能になると考えられる。したがって、X元素を鋼材に含有させることにより、熱間圧延終了後の冷却過程において、マルテンサイト変態開始温度に達するまでの間のフェライト変態を抑制することができ、その結果としてオーステナイトからマルテンサイトへの変態を顕著に促進させることが可能になるものと考えられる。
 しかしながら、X元素は、鋼中に存在するO(酸素)、N(窒素)及びS(硫黄)と結びついて、酸化物、窒化物及び硫化物からなる介在物を形成しやすいという問題がある。X元素が鋼中でこのような介在物を形成してしまうと、焼入れ性の向上に寄与することができるX元素の固溶量が少なくなり、焼入れ性向上効果が十分に得られなくなる。本発明においては、このような介在物を考慮したX元素の固溶量を、後で詳しく説明する上記式1によって当該X元素の有効量[X]effとして算出し、そして当該有効量[X]effを上記式2の範囲内、すなわち0.0003%以上とすることで、比較的少ないX元素の含有においてさえも鋼の焼入れ性を顕著に向上させることが可能となる。
 本発明におけるX元素は、上記のとおりO、N及びSと結びついて介在物を形成しやすく、それゆえ鋼中で所定の固溶量を確保することは一般に困難である。このような事情から、上記X元素による焼入れ性向上効果は従来知られていなかった。しかしながら、近年の精錬技術の進歩により、一般に不純物として鋼中に存在するO、N及びSなどの元素の含有量を非常に低いレベルにまで低減することが可能となったこともあり、今回、上記X元素の所定範囲内における固溶を実現することができた。したがって、上記X元素の固溶に起因する焼入れ性向上効果は、今回、本発明者らによって初めて明らかにされたことであり、極めて意外であり、また驚くべきことである。
 上記のとおり、X元素は少量の含有においても十分に高い焼入れ性向上効果を有するものであるが、鋼材全体として高いレベルでの焼入れ性、より具体的には焼入れがより難しい鋼材内部において高いマルテンサイト面積率を確実に達成するためには、X元素と他の特定の焼入れ性元素との量的関係を鋼材の厚さとの関係において適切なものとすることが重要である。これに関連して、X元素は、上記のように介在物として硫化物を形成するため、これに起因して鋼中に存在するSが消費され、結果としてMnSの形成が抑制されることになる。Mnは強度の向上に加えて焼入れ性の向上にも有効に作用する元素であるため、X元素の含有に起因してMnSの形成が抑制されることで、焼入れ性向上に寄与し得るMnの量を増加させることが可能となる。本発明においては、このような焼入れ性元素同士間の影響も考慮して、X元素の有効量[X]effと他の特定の焼入れ性元素の含有量から焼入れ性指標Vcを上記式4又は式5によって新たに規定し、当該焼入れ性指標Vcを鋼材の厚さt[mm]との関係において適切なものとすること、すなわち焼入れ性指標Vcと鋼材の厚さt[mm]とが式3を満たすようにすることにより、焼入れがより難しい鋼材内部、例えば鋼材の厚さの1/2の位置においても90%以上のマルテンサイト面積率を確実に達成することが可能となる。また、本発明によれば、金属組織を主としてマルテンサイトから構成されるより単相に近い均一な組織とすることができるため、硬質であるにもかかわらず、靭性の観点でも改善された鋼材を得ることができる。
 以下、本発明の実施形態に係る鋼材についてより詳しく説明する。以下の説明において、各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味するものである。また、本明細書において、数値範囲を示す「~」とは、特に断りがない場合、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
[C:0.001~1.000%]
 炭素(C)は、鋼の焼入れ性を高め、硬さの安定化及び/又は強度の確保に必要な元素である。これらの効果を十分に得るために、C含有量は0.001%以上である。C含有量は0.005%以上、0.010%以上又は0.020%以上であってもよい。一方で、Cを過度に含有すると、靭性、曲げ性及び/又は溶接性が低下する場合がある。したがって、C含有量は1.000%以下である。C含有量は0.800%以下、0.600%以下又は0.500%以下であってもよい。
[Si:0.01~3.00%]
 ケイ素(Si)は脱酸元素であり、鋼の焼入れ性を高め、強度の向上にも寄与する元素である。これらの効果を十分に得るために、Si含有量は0.01%以上である。Si含有量は0.05%以上、0.10%以上又は0.30%以上であってもよい。一方で、Siを過度に含有すると、靭性が低下したり、スケール疵と呼ばれる表面品質不良を発生したりする場合がある。したがって、Si含有量は3.00%以下である。Si含有量は2.00%以下、1.00%以下又は0.60%以下であってもよい。
[Mn:0.10~4.50%]
 マンガン(Mn)は、焼入れ性及び/又は強度の向上に有効な元素であり、有効なオーステナイト安定化元素でもある。これらの効果を十分に得るために、Mn含有量は0.10%以上である。Mn含有量は0.50%以上、0.70%以上又は1.00%以上であってもよい。一方で、Mnを過度に含有すると、靭性に有害なMnSが生成したり、耐酸化性を低下させたりする場合がある。したがって、Mn含有量は4.50%以下である。Mn含有量は4.00%以下、3.50%以下又は3.00%以下であってもよい。
[P:0.300%以下]
 リン(P)は製造工程で混入する元素である。P含有量は0%であってもよい。しかしながら、P含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、P含有量は0.0001%以上、0.0005%以上、0.001%以上、0.003%以上、又は、0.005%以上であってもよい。P含有量は、製造コストの観点から、0.007%以上であってもよい。一方で、Pを過度に含有すると、鋼材の加工性及び/又は靭性が低下する場合がある。したがって、P含有量は0.300%以下である。P含有量は0.100%以下、0.030%以下又は0.010%以下であってもよい。
[S:0.0300%以下]
 硫黄(S)は製造工程で混入する元素であり、本発明の実施形態に係るX元素との間で形成される介在物、さらには靭性に有害なMnSの生成を低減する観点からは少ないほど好ましく、よってS含有量は0%であってもよい。しかしながら、S含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、S含有量は0.0001%以上、0.0005%以上、0.0010%以上、0.0015%以上又は0.0020%以上であってもよい。一方で、Sを過度に含有すると、X元素の有効量[X]effが低下するとともに、靭性が低下する場合がある。したがって、S含有量は0.0300%以下である。S含有量は好ましくは0.0100%以下、より好ましくは0.0050%以下、最も好ましくは0.0030%以下である。
[Al:0.001~5.000%]
 アルミニウム(Al)は、脱酸元素であり、耐食性及び/又は耐熱性を向上させるのに有効な元素でもある。これらの効果を得るために、Al含有量は0.001%以上である。Al含有量は0.010%以上、0.100%以上又は0.200%以上であってもよい。とりわけ、耐熱性を十分に向上させる観点からは、Al含有量は1.000%以上、2.000%以上又は3.000%以上であってもよい。一方で、Alを過度に含有すると、粗大な介在物が生成して靭性を低下させたり、製造過程で割れなどのトラブルが発生したり、及び/又は耐疲労特性を低下させたりする場合がある。したがって、Al含有量は5.000%以下である。Al含有量は4.500%以下、4.000%以下又は3.500%以下であってもよい。とりわけ、靭性の低下を抑制するという観点からは、Al含有量は1.500%以下、1.000%以下又は0.300%以下であってもよい。
[N:0.2000%以下]
 窒素(N)は製造工程で混入する元素であり、本発明の実施形態に係るX元素との間で形成される介在物を低減する観点からは少ないほど好ましく、よってN含有量は0%であってもよい。しかしながら、N含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、N含有量は0.0001%以上、0.0005%以上、0.0010%以上、0.0015%以上、0.0020%以上、0.0025%以上又は0.0030%以上であってもよい。一方で、Nはオーステナイトの安定化に有効な元素でもあり、必要に応じて意図的に含有させてもよい。この場合には、N含有量は0.0100%以上であることが好ましく、0.0200%以上、0.0500%以上であってもよい。しかしながら、Nを過度に含有すると、X元素の有効量[X]effが低下するとともに、靭性が低下する場合がある。したがって、N含有量は0.2000%以下である。N含有量は0.1500%以下、0.1000%以下又は0.0800%以下であってもよい。
[O:0.0100%以下]
 酸素(O)は製造工程で混入する元素であり、本発明の実施形態に係るX元素との間で形成される介在物を低減する観点からは少ないほど好ましく、よってO含有量は0%であってもよい。しかしながら、O含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、O含有量は0.0001%以上、0.0005%以上、0.0010%以上、0.0015%以上、0.0020%以上、0.0025%以上又は0.0030%以上であってもよい。一方で、Oを過度に含有すると、粗大な介在物が形成され、X元素の有効量[X]effが低下するとともに、鋼材の成形性及び/又は靭性が低下する場合がある。したがって、O含有量は0.0100%以下である。O含有量は0.0080%以下、0.0060%以下又は0.0040%以下であってもよい。
[Pr:0~0.8000%、Sm:0~0.8000%、Eu:0~0.8000%、Gd:0~0.8000%、Tb:0~0.8000%、Dy:0~0.8000%、Ho:0~0.8000%、Er:0~0.8000%、Tm:0~0.8000%、Yb:0~0.8000%、Lu:0~0.8000%、及びSc:0~0.8000%からなる群より選択される少なくとも1種のX元素]
 本発明の実施形態に係るX元素は、Pr:0~0.8000%、Sm:0~0.8000%、Eu:0~0.8000%、Gd:0~0.8000%、Tb:0~0.8000%、Dy:0~0.8000%、Ho:0~0.8000%、Er:0~0.8000%、Tm:0~0.8000%、Yb:0~0.8000%、Lu:0~0.8000%、及びSc:0~0.8000%であり、プラセオジム(Pr)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、及びスカンジウム(Sc)はオーステナイト中に固溶状態で存在することにより焼入れ性向上効果を発現することができる。当該焼入れ性向上効果は、X元素がオーステナイトの結晶粒界などに偏析し、例えば、熱間圧延終了後の冷却中のフェライト変態を抑制してマルテンサイトへの変態を促進させることで発現するものと考えられる。焼入れ性向上効果を発現することで、比較的遅い冷却速度であっても、マルテンサイト変態開始温度に達するまでの間のフェライト変態を抑制することができるため、マルテンサイトへの変態を顕著に促進させることができる。
 上記X元素は、いずれか1つの元素を単独で使用してもよいし、又は上記元素のうち2種以上のあらゆる特定の組み合わせにおいて使用してもよい。また、当該X元素は、後で詳しく説明する有効量を確保できる量において存在すればよく、その下限値は特に限定されない。しかしながら、例えば、各X元素の含有量又は合計の含有量は0.0010%以上であってもよく、好ましくは0.0050%以上であり、より好ましくは0.0150%以上であり、さらにより好ましくは0.0300%以上であり、最も好ましくは0.0500%以上である。一方で、X元素を過度に含有しても効果が飽和し、それゆえ当該X元素を必要以上に鋼材中に含有させることは製造コストの上昇を招く虞がある。したがって、各X元素の含有量は0.8000%以下であり、例えば0.7000%以下、0.6000%以下、0.5000%以下、0.4000%以下又は0.3000%以下であってもよい。また、X元素の含有量の合計は9.6000%以下であり、例えば6.0000%以下、5.0000%以下、4.0000%以下、2.0000%以下、1.0000%以下又は0.5000%以下であってもよい。
 本発明の実施形態に係る鋼材の基本化学組成は上記のとおりである。さらに、当該鋼材は、必要に応じて以下の任意選択元素のうち1種又は2種以上を含有してもよい。例えば、鋼材は、Nb:0~3.000%、Ti:0~0.500%、Ta:0~0.500%、V:0~1.00%、Cu:0~3.00%、Ni:0~16.00%、Cr:0~15.00%、Mo:0~5.00%、W:0~2.00%、B:0~0.0200%、Co:0~3.00%、Be:0~0.050%、及びAg:0~0.500%のうち1種又は2種以上を含有してもよい。また、鋼材は、Zr:0~0.5000%、Hf:0~0.5000%、Ca:0~0.0500%、Mg:0~0.0500%、並びにLa、Ce、Nd、Pm及びYの少なくとも1種:合計で0~0.5000%のうち1種又は2種以上を含有してもよい。また、鋼材は、Sn:0~0.300%、及びSb:0~0.300%のうち1種又は2種を含有してもよい。また、鋼材は、Te:0~0.100%、Se:0~0.100%、As:0~0.050%、Bi:0~0.500%、及びPb:0~0.500%のうち1種又は2種以上を含有してもよい。以下、これらの任意選択元素について詳しく説明する。
[Nb:0~3.000%]
 ニオブ(Nb)は、析出強化及び再結晶の抑制等に寄与する元素である。Nb含有量は0%であってもよいが、これらの効果を得るためには、Nb含有量は0.003%以上であることが好ましい。例えば、Nb含有量は0.005%以上、0.010%以上、0.150%以上又は0.200%以上であってもよい。とりわけ、析出強化を十分に図る観点からは、Nb含有量は1.000%以上又は1.500%以上であってもよい。一方で、Nbを過度に含有すると、効果が飽和し、加工性及び/又は靭性を低下させる場合がある。したがって、Nb含有量は3.000%以下である。Nb含有量は2.800%以下、2.500%以下又は2.000%以下であってもよい。とりわけ、溶接熱影響部(HAZ)の靭性低下を抑制するという観点からは、Nb含有量は0.100%以下であることが好ましく、0.080%以下、0.050%以下又は0.030%以下であってもよい。例えば、Nb含有量は0.005%未満、0.004%以下、0.003%以下又は0.002%以下であってもよい。
[Ti:0~0.500%]
 チタン(Ti)は、析出強化等により鋼材の強度向上に寄与する元素である。Ti含有量は0%であってもよいが、このような効果を得るためには、Ti含有量は0.005%以上であることが好ましい。Ti含有量は0.010%以上、0.050%以上又は0.080%以上であってもよい。一方で、Tiを過度に含有すると、多量の析出物が生成して靭性を低下させる場合がある。したがって、Ti含有量は0.500%以下である。Ti含有量は0.300%以下、0.200%以下又は0.100%以下であってもよい。
[Ta:0~0.500%]
 タンタル(Ta)は、炭化物の形態制御と強度の増加に有効な元素である。Ta含有量は0%であってもよいが、これらの効果を得るためには、Ta含有量は0.001%以上であることが好ましい。Ta含有量は0.005%以上、0.010%以上又は0.050%以上であってもよい。一方で、Taを過度に含有すると、微細なTa炭化物が多数析出し、鋼材の過度な強度上昇を招き、結果として延性の低下及び冷間加工性を低下させる場合がある。したがって、Ta含有量は0.500%以下である。Ta含有量は、0.300%以下、0.100%以下又は0.080%以下であってもよい。
[V:0~1.00%]
 バナジウム(V)は、析出強化等により鋼材の強度向上に寄与する元素である。V含有量は0%であってもよいが、このような効果を得るためには、V含有量は0.001%以上であることが好ましい。V含有量は0.01%以上、0.02%以上、0.05%以上又は0.10%以上であってもよい。一方で、Vを過度に含有すると、多量の析出物が生成して靭性を低下させる場合がある。したがって、V含有量は1.00%以下である。V含有量は0.80%以下、0.60%以下又は0.50%以下であってもよい。
[Cu:0~3.00%]
 銅(Cu)は強度及び/又は耐食性の向上に寄与する元素である。Cu含有量は0%であってもよいが、これらの効果を得るためには、Cu含有量は0.001%以上であることが好ましい。Cu含有量は0.01%以上、0.10%以上、0.15%以上、0.20%以上、0.30%以上又は0.60%以上であってもよい。一方で、Cuを過度に含有すると、靭性や溶接性の劣化を招く場合がある。したがって、Cu含有量は3.00%以下である。Cu含有量は2.00%以下、1.50%以下、1.00%以下又は0.70%以下であってもよい。例えば、Cu含有量は0.01%未満、0.009%以下、0.008%以下又は0.006%以下であってもよい。
[Ni:0~16.00%]
 ニッケル(Ni)は鋼の焼入れ性を高め、強度及び/又は耐熱性の向上に寄与する元素であり、有効なオーステナイト安定化元素でもある。Ni含有量は0%であってもよいが、これらの効果を得るためには、Ni含有量は0.001%以上であることが好ましい。Ni含有量は0.01%以上、0.10%以上、0.50%以上、0.70%以上、1.00%以上又は3.00%以上であってもよい。一方で、Niを過度に含有すると、合金コストの増加に加えて熱間加工時の変形抵抗が増大し、設備負荷が大きくなる場合がある。したがって、Ni含有量は16.00%以下である。とりわけ、経済性の観点及び/又は溶接性の低下を抑制するという観点からは、Ni含有量は15.00%以下、10.00%以下、6.00%以下又は4.00%以下であってもよい。
[Cr:0~15.00%]
 クロム(Cr)は鋼の焼入れ性を高め、強度及び/又は耐食性の向上に寄与する元素である。Cr含有量は0%であってもよいが、これらの効果を得るためには、Cr含有量は0.001%以上であることが好ましい。Cr含有量は0.01%以上、0.05%以上、0.10%以上又は0.50%以上であってもよい。一方で、Crを過度に含有すると、合金コストの増加に加えて靭性が低下する場合がある。したがって、Cr含有量は15.00%以下である。とりわけ、溶接性及び/又は加工性の低下を抑制するという観点からは、Cr含有量は10.00%以下、9.00%以下、7.50%以下、5.00%以下又は2.50%以下であってもよい。
[Mo:0~5.00%]
 モリブデン(Mo)は鋼の焼入れ性を高め、強度の向上に寄与する元素であり、耐食性の向上にも寄与する元素である。Mo含有量は0%であってもよいが、これらの効果を得るためには、Mo含有量は0.001%以上であることが好ましい。Mo含有量は0.01%以上、0.02%以上、0.50%以上又は1.00%以上であってもよい。一方で、Moを過度に含有すると、熱間加工時の変形抵抗が増大し、設備負荷が大きくなる場合がある。したがって、Mo含有量は5.00%以下である。Mo含有量は4.50%以下、4.00%以下、3.00以下又は1.50%以下であってもよい。
[W:0~2.00%]
 タングステン(W)は鋼の焼入れ性を高め、強度の向上に寄与する元素である。W含有量は0%であってもよいが、このような効果を得るためには、W含有量は0.001%以上であることが好ましい。W含有量は0.01%以上、0.02%以上、0.05%以上、0.10%以上又は0.50%以上であってもよい。一方で、Wを過度に含有すると、延性や溶接性が低下する場合がある。したがって、W含有量は2.00%以下である。W含有量は1.80%以下、1.50%以下又は1.00%以下であってもよい。
[B:0~0.0200%]
 ホウ素(B)は鋼の焼入れ性を高め、強度の向上に寄与する元素である。B含有量は0%であってもよいが、このような効果を得るためには、B含有量は0.0001%以上であることが好ましい。B含有量は0.0003%以上、0.0005%以上又は0.0007%以上であってもよい。一方で、Bを過度に含有すると、靭性及び/又は溶接性が低下する場合がある。したがって、B含有量は0.0200%以下である。B含有量は0.0100%以下、0.0050%以下、0.0030%以下又は0.0020%以下であってもよい。
[Co:0~3.00%]
 コバルト(Co)は焼入れ性及び/又は耐熱性の向上に寄与する元素である。Co含有量は0%であってもよいが、これらの効果を得るためには、Co含有量は0.001%以上であることが好ましい。Co含有量は0.01%以上、0.02%以上、0.05%以上、0.10%以上又は0.50%以上であってもよい。一方で、Coを過度に含有すると、熱間加工性が低下する場合があり、原料コストの増加にも繋がる。したがって、Co含有量は3.00%以下である。Co含有量は2.50%以下、2.00%以下、1.50%以下又は0.80%以下であってもよい。
[Be:0~0.050%]
 ベリリウム(Be)は、母材の強度の上昇及び組織の微細化に有効な元素である。Be含有量は0%であってもよいが、このような効果を得るためには、Be含有量は0.0003%以上であることが好ましい。Be含有量は0.0005%以上、0.001%以上又は0.010%以上であってもよい。一方で、Beを過度に含有すると、成形性が低下する場合がある。したがって、Be含有量は0.050%以下である。Be含有量は0.040%以下、0.030%以下又は0.020%以下であってもよい。
[Ag:0~0.500%]
 銀(Ag)は、母材の強度の上昇及び組織の微細化に有効な元素である。Ag含有量は0%であってもよいが、このような効果を得るためには、Ag含有量は0.001%以上であることが好ましい。Ag含有量は0.010%以上、0.020%以上、0.030%以上又は0.050%以上であってもよい。一方で、Agを過度に含有すると、成形性が低下する場合がある。したがって、Ag含有量は0.500%以下である。Ag含有量は0.400%以下、0.300%以下又は0.200%以下であってもよい。
[Zr:0~0.5000%]
 ジルコニウム(Zr)は、硫化物の形態を制御できる元素である。Zr含有量は0%であってもよいが、このような効果を得るためには、Zr含有量は0.0001%以上であることが好ましい。一方で、Zrを過度に含有しても効果が飽和し、それゆえZrを必要以上に鋼材中に含有させることは製造コストの上昇を招く虞がある。したがって、Zr含有量は0.5000%以下である。
[Hf:0~0.5000%]
 ハフニウム(Hf)は、硫化物の形態を制御できる元素である。Hf含有量は0%であってもよいが、このような効果を得るためには、Hf含有量は0.0001%以上であることが好ましい。一方で、Hfを過度に含有しても効果が飽和し、それゆえHfを必要以上に鋼材中に含有させることは製造コストの上昇を招く虞がある。したがって、Hf含有量は0.5000%以下である。
[Ca:0~0.0500%]
 カルシウム(Ca)は、硫化物の形態を制御できる元素である。Ca含有量は0%であってもよいが、このような効果を得るためには、Ca含有量は0.0001%以上であることが好ましい。一方で、Caを過度に含有しても効果が飽和し、それゆえCaを必要以上に鋼材中に含有させることは製造コストの上昇を招く虞がある。したがって、Ca含有量は0.0500%以下である。
[Mg:0~0.0500%]
 マグネシウム(Mg)は、硫化物の形態を制御できる元素である。Mg含有量は0%であってもよいが、このような効果を得るためには、Mg含有量は0.0001%以上であることが好ましい。Mg含有量は0.0015%超、0.0016%以上、0.0017%以上、0.0018%以上、0.0019%以上、0.0020%以上、0.0022%以上、0.0025%以上、0.0028%以上又は0.0030%以上であってもよい。一方で、Mgを過度に含有しても効果が飽和し、粗大な介在物の形成に起因して冷間成形性及び/又は靭性が低下する場合がある。したがって、Mg含有量は0.0500%以下である。Mg含有量は0.0400%以下、0.0300%以下又は0.0200%以下であってもよい。
[La、Ce、Nd、Pm及びYの少なくとも1種:合計で0~0.5000%]
 ランタン(La)、セリウム(Ce)、ネオジム(Nd)、プロメチウム(Pm)及びイットリウム(Y)は、Ca及びMgと同様に硫化物の形態を制御できる元素である。La、Ce、Nd、Pm及びYの少なくとも1種の含有量の合計は0%であってもよいが、このような効果を得るためには0.0001%以上であることが好ましい。La、Ce、Nd、Pm及びYの少なくとも1種の含有量の合計は0.0002%以上、0.0003%以上又は0.0004%以上であってもよい。一方で、これらの元素を過度に含有しても効果が飽和し、粗大な酸化物等が形成して冷間成形性が低下する場合がある。したがって、La、Ce、Nd、Pm及びYの少なくとも1種の含有量の合計は0.5000%以下であり、0.4000%以下、0.3000%以下又は0.2000%以下であってもよい。
[Sn:0~0.300%]
 錫(Sn)は耐食性の向上に有効な元素である。Sn含有量は0%であってもよいが、このような効果を得るためには、Sn含有量は0.001%以上であることが好ましい。Sn含有量は0.010%以上、0.020%以上、0.030%以上又は0.050%以上であってもよい。一方で、Snを過度に含有すると、靭性、特には低温靭性の低下を招く場合がある。したがって、Sn含有量は0.300%以下である。Sn含有量は0.250%以下、0.200%以下又は0.150%以下であってもよい。例えば、Sn含有量は0.005%未満、0.004%以下、0.003%以下又は0.002%以下であってもよい。
[Sb:0~0.300%]
 アンチモン(Sb)は、Snと同様に耐食性の向上に有効な元素であり、特にSnと複合して含有させることにより効果を増大させることができる。Sb含有量は0%であってもよいが、耐食性向上の効果を得るためには、Sb含有量は0.001%以上であることが好ましい。Sb含有量は0.010%以上、0.020%以上、0.030%以上又は0.050%以上であってもよい。一方で、Sbを過度に含有すると、靭性、特には低温靭性の低下を招く場合がある。したがって、Sb含有量は0.300%以下である。Sb含有量は0.250%以下、0.200%以下又は0.150%以下であってもよい。
[Te:0~0.100%]
 テルル(Te)は、MnやSなどと低融点化合物を形成して潤滑効果を高めるため、鋼の被削性を改善するのに有効な元素である。Te含有量は0%であってもよいが、このような効果を得るためには、Te含有量は0.001%以上であることが好ましい。Te含有量は0.010%以上、0.020%以上、0.030%以上又は0.040%以上であってもよい。一方で、Teを過度に含有しても効果が飽和し、合金コストの増加を招く。したがって、Te含有量は0.100%以下である。Te含有量は0.090%以下、0.080%以下又は0.070%以下であってもよい。
[Se:0~0.100%]
 セレン(Se)は、鋼中に生成するセレン化物が被削材のせん断塑性変形に変化を与え、切りくずが破砕されやすくなるため、鋼の被削性を改善するのに有効な元素である。Se含有量は0%であってもよいが、このような効果を得るためには、Se含有量は0.001%以上であることが好ましい。Se含有量は0.010%以上、0.020%以上、0.030%以上又は0.040%以上であってもよい。一方で、Seを過度に含有しても効果が飽和し、合金コストの増加を招く。したがって、Se含有量は0.100%以下である。Se含有量は0.090%以下、0.080%以下又は0.070%以下であってもよい。
[As:0~0.050%]
 ヒ素(As)は、鋼の被削性を改善するのに有効な元素である。As含有量は0%であってもよいが、このような効果を得るためには、As含有量は0.001%以上であることが好ましい。As含有量は0.005%以上又は0.010%以上であってもよい。一方で、Asを過度に含有すると、熱間加工性が低下する場合がある。したがって、As含有量は0.050%以下である。As含有量は0.040%以下、0.030%以下又は0.020%以下であってもよい。
[Bi:0~0.500%]
 ビスマス(Bi)は、鋼の被削性を改善するのに有効な元素である。Bi含有量は0%であってもよいが、このような効果を得るためには、Bi含有量は0.001%以上であることが好ましい。Bi含有量は0.010%以上、0.020%以上、0.030%以上又は0.050%以上であってもよい。一方で、Biを過度に含有しても効果が飽和し、合金コストの増加を招く。したがって、Bi含有量は0.500%以下である。Bi含有量は0.400%以下、0.300%以下又は0.200%以下であってもよい。
[Pb:0~0.500%]
 鉛(Pb)は、切削による温度上昇で溶融してクラックの進展を促進するため、鋼の被削性を改善するのに有効な元素である。Pb含有量は0%であってもよいが、このような効果を得るためには、Pb含有量は0.001%以上であることが好ましい。Pb含有量は0.010%以上、0.020%以上、0.030%以上又は0.050%以上であってもよい。一方で、Pbを過度に含有すると、熱間加工性が低下する場合がある。したがって、Pb含有量は0.500%以下である。Pb含有量は0.400%以下、0.300%以下又は0.200%以下であってもよい。
 本発明の実施形態に係る鋼材において、上記の元素以外の残部は、Fe及び不純物からなる。不純物とは、鋼材を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分等である。
[X元素の有効量[X]eff
 本発明の実施形態によれば、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScからなるX元素の有効量[X]effは、下記式1によって求められ、そしてその値は下記式2を満たすようにする。
 [X]eff=0.40[Pr]+0.37[Sm]+0.37[Eu]+0.36[Gd]+0.35[Tb]+0.34[Dy]+0.34[Ho]+0.33[Er]+0.33[Tm]+0.32[Yb]+0.32[Lu]+1.24[Sc]-2.33[O]-3.99[N]-1.74[S]   ・・・式1
 [X]eff≧0.0003   ・・・式2
 ここで、[Pr]、[Sm]、[Eu]、[Gd]、[Tb]、[Dy]、[Ho]、[Er]、[Tm]、[Yb]、[Lu]、[Sc]、[O]、[N]、及び[S]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
 上記式1によって求められるX元素の有効量[X]effを上記式2を満たすようにする(すなわち0.0003以上にする)ことで、鋼中に固溶状態で存在しているこれらの元素の量を増加させることができるので、焼入れ性を向上させることができる。より詳しく説明すると、これらのX元素(以下、単に「X」ともいう)は、鋼中に存在するO(酸素)、N(窒素)及びS(硫黄)と結びついて、酸化物(X23)、窒化物(XN)及び硫化物(XS)からなる介在物を形成する傾向がある。当該介在物を形成してしまうと、少なくともこれらの介在物中のX元素は焼入れ性の向上に寄与することはできない。したがって、焼入れ性を向上させるためには、介在物を形成せずに鋼中に固溶状態で存在しているX元素の量(すなわち鋼中のX元素の固溶量)を増加させる必要がある。
 ここで、鋼中のX元素の固溶量は、鋼中に含まれるX元素の量から介在物(酸化物、窒化物及び硫化物)を形成するのに消費され得る最大量を差し引くことによって概算することが可能である。そこで、本発明の実施形態においては、このようにして概算されるX元素の固溶量を焼入れ性の向上に有効なX元素の量[X]effとし、具体的には下記式Aによって定義する。
 [X]eff[原子%]=Σ(M[Fe]/M[X])×[X]-(M[Fe]/M[O])×[O]×2/3-(M[Fe]/M[N])×[N]-(M[Fe]/M[S])×[S]   ・・・式A
 ここで、XはPr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの各X元素を表し、M[X]はX元素の原子量、M[Fe]はFeの原子量、M[O]はOの原子量、M[N]はNの原子量、M[S]はSの原子量を表し、[X]、[O]、[N]及び[S]は、それぞれ対応する元素の含有量[質量%]であり、元素を含有しない場合は0である。
 上記式Aについて以下に詳しく説明すると、まず、本発明の実施形態に係る鋼材には種々の合金元素が含有されているものの、鋼材全体としてはほぼFeによって構成されているか、あるいは任意選択元素であるNi及び/又はCrを比較的多く含む場合(それぞれの最大含有量は16.00%及び15.00%)には、Feに加えてNi及び/又はCrによってほぼ構成されていることが明らかである。一方で、Ni及びCrの原子量はFeの原子量と同等であることが周知である。このため、たとえ鋼材がNi及び/又はCrを比較的多く含む場合であっても、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの各X元素の原子%は、近似的には各X元素の含有量[質量%]にFeの原子量と当該各X元素の原子量の比を掛け算すること、すなわち(M[Fe]/M[X])×[X]によって算出することができる。したがって、(M[Fe]/M[X])×[X]によって算出される各X元素の量を合計することで(すなわちΣ(M[Fe]/M[X])×[X]を計算することで)、X元素全体の原子%を算出することができる。
 次に、X元素全体の原子%のうち、酸化物(X23)、窒化物(XN)及び硫化物(XS)を形成するのに消費され得る最大量(原子%)を差し引くことで、焼入れ性の向上に有効に作用し得る鋼中のX元素の量を算出することができる。ここで、酸化物(X23)、窒化物(XN)及び硫化物(XS)を形成するのに消費され得るX元素の最大量(原子%)は、上で説明したのと同様の理由から近似的には鋼中のFe、O、N及びSの原子量並びにO、N及びSの含有量を用いて、それぞれ(M[Fe]/M[o])×[O]×2/3、(M[Fe]/M[N])×[N]、及び(M[Fe]/M[S])×[S]として算出することが可能である。したがって、焼入れ性を向上させるためのX元素の有効量[X]effは、下記式Aによって定義することができる。
 [X]eff[原子%]=Σ(M[Fe]/M[X])×[X]-(M[Fe]/M[O])×[O]×2/3-(M[Fe]/M[N])×[N]-(M[Fe]/M[S])×[S]   ・・・式A
 ここで、Fe、O、N及びS並びに各X元素の原子量は、それぞれFe:55.845、O:15.9994、N:14.0069、S:32.068、Pr:140.908、Sm:150.36、Eu:151.964、Gd:157.25、Tb:158.925、Dy:162.500、Ho:164.930、Er:167.259、Tm:168.934、Yb:173.045、Lu:174.967、Sc:44.9559である。したがって、上記式Aに各元素の原子量を代入して整理すると、X元素の原子%による有効量[X]effは近似的には下記式1によって表すことが可能となる。
 [X]eff=0.40[Pr]+0.37[Sm]+0.37[Eu]+0.36[Gd]+0.35[Tb]+0.34[Dy]+0.34[Ho]+0.33[Er]+0.33[Tm]+0.32[Yb]+0.32[Lu]+1.24[Sc]-2.33[O]-3.99[N]-1.74[S]   ・・・式1
 ここで、[Pr]、[Sm]、[Eu]、[Gd]、[Tb]、[Dy]、[Ho]、[Er]、[Tm]、[Yb]、[Lu]、[Sc]、[O]、[N]、及び[S]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
 本発明の実施形態においては、焼入れ性の向上に寄与する固溶状態のX元素の量を確保するためには、上記式1によって求められるX元素の有効量[X]effは0.0003%以上、すなわち下記式2を満たすことが必要である。
 [X]eff≧0.0003   ・・・式2
 [X]effは、例えば0.0005%以上又は0.0007%以上であってもよく、好ましくは0.0010%以上、より好ましくは0.0015%以上、さらにより好ましくは0.0030%以上、最も好ましくは0.0050%以上又は0.0100%以上である。[X]effは、0.0200%以上、0.0300%以上、0.0500%以上、0.0800%以上、0.1000%以上、0.1200%以上、0.1500%以上、0.1800%以上又は0.2000%以上であってもよい。また、上記式1からも明らかなように、[X]effを安定的に確保するためには、鋼中のO、N及びSの含有量を極力低減することが好ましい。ここで、[X]effの上限は特に限定されないが、[X]effを過度に増加させても効果が飽和するとともに、製造コストの上昇(X元素の含有量増加に伴う合金コストの上昇及び/又はO、N及びSに関する精錬コストの上昇)を招くことになり必ずしも好ましくない。したがって、[X]effは好ましくは2.0000%以下であり、例えば1.8000%以下、1.5000%以下、1.2000%以下、1.0000%以下又は0.8000%以下であってもよい。
[Vc/(9773×t-1.8)<1.00]
 本発明の実施形態においては、鋼材全体として高いレベルでの焼入れ性、より具体的には焼入れがより難しい鋼材内部において高いマルテンサイト面積率を確実に達成するためには、上記式2を満たすことに加えて、焼入れ性指標Vcと、鋼材の厚さt[mm]とが下記式3を満たすことが必要である。
 Vc/(9773×t-1.8)<1.00   ・・・式3
 ただし、[B]<0.0003%のとき、
 logVc=logVc1=3.6-0.7×(2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.8[Cr]+[Mo]+28[X]eff)   ・・・式4
 [B]≧0.0003%のとき、
 logVc=logVc2=2.8-0.7×(2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.8[Cr]+2[Mo]+37.9[X]eff)   ・・・式5
 ここで、Vc1はB含有量が0.0003%未満の場合の焼入れ性指標Vcを表し、Vc2はB含有量が0.0003%以上の場合の焼入れ性指標Vcを表し、[B]、[C]、[Si]、[Mn]、[Ni]、[Cr]、[Mo]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
 焼入れ性指標Vcは、種々の化学組成を有する鋼材を用いたジョミニー試験によって[X]effが他の特定の焼入れ性元素との関係で鋼の焼入れ性に及ぼす影響を検討し、得られた式である。具体的には、金属組織の90%以上がマルテンサイトとなる臨界冷却速度Vc90の式に、実験によって得られた[X]effの項を加えている。焼入れ性指標Vcは、B含有量が0.0003%未満の場合はVc1となり式4によって決定され、B含有量が0.0003%以上の場合はVc2となり式5によって決定される。式4はBの焼入れ性向上効果の影響がない場合の式であり、式5はBの焼入れ性向上効果の影響を受ける場合の式である。式3は、鋼材の厚さと当該厚さの1/2位置における冷却速度との関係を考慮した検討によって得られた実験式である。上記式4及び5を参照すると、[X]effの係数は式4で28そして式5で37.9であり、他の焼入れ性元素の係数と比較して非常に大きいことがわかる。焼入れ性指標Vcの値が小さいほど、焼入れ性は優れるため、上記式4及び5からも[X]effが極めて高い焼入れ性向上効果を有していることが明らかである。
 したがって、本発明の実施形態によれば、先に説明した式2を満たすことで、鋼中に固溶状態で存在しているX元素によってオーステナイトからマルテンサイトへの変態を促進し、さらにX元素の有効量[X]effと他の特定の焼入れ性元素の含有量とによって決定される焼入れ性指標Vcを鋼材の厚さt[mm]との関係において式3を満たすようにすることで、鋼材の厚さが厚い場合であっても比較的容易に当該鋼材の厚さの1/2の位置において90%以上のマルテンサイト面積率を達成することが可能となる。式3におけるVc/(9773×t-1.8)の値は小さいほど焼入れ性に優れることを意味し、それゆえ当該値は0.95以下、0.90以下、0.85以下、又は0.80以下であってもよい。一方で、Vc/(9773×t-1.8)の下限値は特に限定されず0であってもよい。例えば、Vc/(9773×t-1.8)は0.01以上、0.05以上、又は0.10以上であってもよい。
 鋼材の厚さtは、特に限定されず、任意の適切な厚さであってよい。例えば、鋼材の厚さtは、0.1mm以上、0.6mm以上、1.2mm以上、1.5mm以上、1.8mm以上、2mm以上、2.2mm以上、2.5mm以上、2.8mm以上、3mm以上、3.5mm以上、4mm以上、5mm以上、6mm以上、8mm以上、10mm以上若しくは16mm超であってもよく、及び/又は250mm以下、200mm以下、150mm以下、120mm以下、100mm以下、90mm以下、80mm以下、50mm以下、30mm以下若しくは20mm以下であってもよい。鋼材は、厚鋼板又は薄鋼板などの鋼板であってよく、棒鋼、線材、形鋼又は鋼管であってもよい。鋼材が鋼板である場合には、厚さtは鋼板の板厚を意味する。鋼材が棒鋼又は線材である場合には、厚さtは棒鋼又は線材の長手方向に垂直な断面の直径を意味する。鋼材が形鋼である場合には、厚さtは形鋼のフランジの厚さを意味する。鋼材が鋼管である場合には、厚さtは鋼管の長手方向に垂直な断面における肉厚を意味する。
[Vc/455exp(-0.36t)<1.00]
 上記式3は鋼材の任意の厚さtに対して適用できるものであるが、例えば鋼材の厚さtが16mm以下の場合には、焼入れ性指標Vcと、鋼材の厚さt[mm]とは、上記式3に加えて、下記式6をさらに満たすようにしてもよい。
 Vc/455exp(-0.36t)<1.00 ・・・式6
 式6は、特に鋼材の厚さを16mm以下の厚さに限定して、このような鋼材の厚さと当該厚さの1/2位置における冷却速度との関係を考慮した検討によって得られた実験式である。式6におけるVc/455exp(-0.36t)の値は小さいほど焼入れ性に優れることを意味し、それゆえ当該値は0.95以下、0.90以下、0.85以下、又は0.80以下であってもよい。一方で、Vc/455exp(-0.36t)の下限値は特に限定されず0であってもよい。例えば、Vc/455exp(-0.36t)は0.01以上、0.05以上、又は0.10以上であってもよい。
[A系介在物の清浄度:0.010%以下]
 本発明の実施形態においては、好ましくは、鋼材の厚さの1/4の位置において、JIS G 0555:2020に規定するA系介在物の清浄度が0.010%以下である。本発明において、A系介在物とは、JIS G 0555:2020において規定されるA系介在物を意味するものであり、MnSなどの軟質な介在物が熱間圧延によって圧延方向に引き延ばされ、延伸状になったものである。圧延方向に延伸したA系介在物が存在すると材質異方性が生じ、例えば、このようなA系介在物は、特定方向へのき裂の起点となることから靭性の異方性を生じさせてしまうか又は靭性の異方性を強くしてしまうことがある。X元素は、先に述べたとおり介在物として硫化物を形成するため、これに起因して鋼中に存在するSが消費される。X元素の硫化物は比較的硬く、MnSなどのA系介在物とは異なり、圧延方向に引き延ばされることがないか又は圧延方向に大きく引き延ばされることがない。このため、X元素を鋼材中に十分な量で含有させることによりA系介在物の清浄度を改善することができ、その結果として鋼材の材質異方性、より具体的には靭性の異方性を低減することができる。靭性の異方性を低減する観点からは、A系介在物の清浄度は低いほど好ましく、例えば0.009%以下、0.008%以下、0.007%以下又は0.005%以下であってもよい。A系介在物の清浄度の下限値は特に限定されず0%であってもよい。例えば、A系介在物の清浄度は0.001%以上又は0.002%以上であってもよい。
 本発明において、A系介在物の清浄度は、JIS G 0555:2020の「鋼の非金属介在物の顕微鏡試験方法」に記載されるように、測定視野数を60、倍率を400倍として光学顕微鏡観察するいわゆる「点算法」によって決定される。
[金属組織]
 本発明の実施形態によれば、鋼材の厚さの1/2の位置において、90%以上のマルテンサイト面積率を達成することができる。鋼材の厚さの1/2の位置は、冷却速度が最も遅くなる部位であり、それゆえ焼入れが最も難しい部位である。しかしながら、本発明の実施形態に係る鋼材では、式2を満たす化学組成を有し、焼入れ性指標Vcと厚さt[mm]とが式3を満たすようにすることで、極めて高い焼入れ性向上効果を有するX元素を有効に作用させて、比較的遅い冷却速度であってもマルテンサイト変態開始温度に達するまでの間のフェライト変態を顕著に抑制することが可能となる。したがって、本発明の実施形態によれば、厚さが比較的薄い鋼材だけでなく、焼入れがより難しい厚い鋼材であっても、その内部まで十分に焼入れを行うことが可能となり、鋼材の厚さの1/2の位置において高いマルテンサイト面積率を達成することができる。鋼材の厚さの1/2の位置におけるマルテンサイト面積率は、好ましくは92%以上、より好ましくは95%以上、さらにより好ましくは98%以上、最も好ましくは100%である。
 マルテンサイトの面積率は、以下のようにして決定される。まず、鋼材の厚さの1/2の位置のL断面(鋼材の圧延方向及び厚さ方向に平行な断面)を鏡面研磨し、次いでナイタールで腐食させ、光学顕微鏡を用いて500μm×500μmの観察視野を無作為に3視野選択し、各観察視野においてマルテンサイトの面積率を測定し、それらを平均することにより決定される。ここで、マルテンサイトは、上記の方法で観察されるラス状の組織であり、フレッシュマルテンサイトに限られず、焼戻しマルテンサイト、下部ベイナイトも含まれる。
[機械特性]
 本発明の実施形態によれば、上記のとおり金属組織を主としてマルテンサイトから構成されるより単相に近い均一な組織とすることができるため、硬質であるにもかかわらず、優れた靭性を達成することができる。より具体的には、-20℃でのシャルピー吸収エネルギーの平均値(KV2)が20J以上、好ましくは30J以上、より好ましくは40J以上、最も好ましくは45J以上の靭性を達成することができる。当該シャルピー吸収エネルギーの平均値の上限は、特に限定されないが、例えば100Jであってよい。また、シャルピー吸収エネルギーの平均値は、鋼材の厚さの1/4位置から採取し、ノッチを鋼材の幅方向(C方向)に入れたVノッチ試験片に基づいて、JIS Z 2242:2018の規定に準拠して、半径2mmの衝撃刃を用いて-20℃でのシャルピー吸収エネルギーを3本測定し、それらを平均することにより算出される。サブサイズの試験片を使用した場合は、試験片の厚さに応じてフルサイズのシャルピー吸収エネルギーに換算する。
 また、本発明の好ましい実施形態によれば、A系介在物の清浄度を0.010%以下とすることで、材質等方性の向上を実現することができる。より具体的には、A系介在物の清浄度を0.010%以下とすることで、シャルピー衝撃試験におけるシャルピー吸収エネルギーの圧延方向(L方向)と幅方向(C方向)のL/C比が0.6~1.2となり、靭性の異方性を顕著に低減することができる。材質等方性の向上又は靭性の異方性低減の観点からは、L/C比は1.0に近づくほど好ましく、例えば0.7以上であってもよく、及び/又は1.1以下若しくは1.0以下であってもよい。L方向にノッチを入れたVノッチ試験片では、ノッチ底から発生した亀裂がL方向に沿って進展するので、A系介在物の影響を受けるとシャルピー吸収エネルギーが低下する。L/C比が1.0を超える場合は、L方向及びC方向のシャルピー吸収エネルギーは同等であり、測定誤差が原因であると考えてよい。
 L/C比は、以下のようにして決定される。まず、鋼材の厚さの1/4位置から採取し、ノッチを鋼材の圧延方向(L方向)又は幅方向(C方向)に入れたVノッチ試験片を作製し、次いでJIS Z 2242:2018の規定に準拠して、半径2mmの衝撃刃を用いて-20℃でシャルピー衝撃試験を行い、L方向にノッチを入れたVノッチ試験片のシャルピー吸収エネルギー(3本の測定値の平均)とC方向にノッチを入れたVノッチ試験片のシャルピー吸収エネルギー(3本の測定値の平均)との比を算出することによりL/C比が決定される。
 本発明の実施形態に係る鋼材は、任意の鋼材であってよく、特に限定されない。本発明の実施形態に係る鋼材は、例えば、厚鋼板、薄鋼板、さらには棒鋼、線材、形鋼、及び鋼管等をも包含するものである。本発明の実施形態に係る鋼材の厚さtは、例えば0.1mm~250mmである。本発明の実施形態に係る鋼材が厚鋼板である場合、厚さtは、例えば3mm~250mm又は6mm~250mmである。薄鋼板の場合、厚さtは、例えば0.1mm~16mmである。棒鋼、線材の場合は、長手方向に垂直な断面の直径が例えば1.0mm~250mmである。形鋼の場合は、フランジの厚さが例えば20mm~150mmである。鋼管の場合は、長手方向に垂直な断面の厚さ(肉厚)が例えば1.0mm~160mmである。
 本発明の実施形態に係る鋼材は、最終的な製品の形態等に応じて、当業者に公知の任意の適切な方法によって製造することが可能である。例えば、鋼材が厚鋼板の場合には、その製造方法は、一般に厚鋼板を製造する際に適用される工程を含み、例えば、上で説明した化学組成を有するスラブを鋳造する工程、鋳造されたスラブを熱間圧延する工程、及び得られた圧延材を冷却する工程を含み、必要に応じて適切な熱処理工程及び焼戻し工程等をさらに含んでいてもよい。
 また、鋼材が薄鋼板の場合には、その製造方法は、一般に薄鋼板を製造する際に適用される工程を含み、例えば、上で説明した化学組成を有するスラブを鋳造する工程、鋳造されたスラブを熱間圧延する工程、及び得られた圧延材を冷却して巻き取る工程、必要に応じて冷間圧延工程、焼鈍工程等をさらに含んでいてもよい。棒鋼や他の鋼材の製造方法においても同様に、一般に棒鋼や他の鋼材を製造する際に適用される工程を含み、例えば、上で説明した化学組成を有する溶鋼を形成する製鋼工程、形成された溶鋼からスラブ、ビレット、ブルーム等を鋳造する工程、鋳造されたスラブ、ビレット、ブルーム等を熱間圧延する工程、及び得られた圧延材を冷却する工程を含み、他の工程は、それらの鋼材を製造するのに当業者に公知の適切な工程を適宜選択し、実施することができる。
 本発明の実施形態に係る鋼材は、焼入れ性が顕著に改善されているため、熱間圧延後の冷却又は焼鈍後の冷却において比較的遅い冷却速度であっても鋼材の内部まで十分に焼入れを行うことが可能である。例えば、鋼材の厚さの1/2の位置において90%以上のマルテンサイト面積率を達成するためには、熱間圧延後の冷却又は焼鈍後の冷却は、焼入れ指標Vc及び鋼材の厚さの具体的な値を考慮して、0.3~200℃/秒の範囲から適切な平均冷却速度を選択して、マルテンサイト変態開始温度以下の温度、例えば400℃以下、300℃以下又は200℃以下の温度まで実施すればよい。他の各工程の具体的な条件については、特には限定されず、鋼種、鋼材の種類及び形状等に応じて適切な条件を適宜選択すればよい。本発明の実施形態に係る鋼材の製造では、焼入れ性向上に寄与するX元素の有効量[X]effを確保することが重要であり、そのためにはX元素と鋼中で介在物を形成し得るO、N及びSの含有量を精錬工程において十分に低減しておくことが極めて重要である。
 以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
[例A]
 本例では、まず、種々の化学組成を有するスラブを鋳造し、切断して鋼片を採取し、次いで熱間圧延を圧下率50%以上で実施し、冷却した。次に、得られた圧延材を950~1100℃の範囲内の所定の温度に加熱し、次いで厚さt(mm)に応じて0.5~150℃/秒の範囲から適切に選択された平均冷却速度にて400℃以下まで冷却して鋼材を得た(圧延材の厚さが厚い場合にはより高い平均冷却速度が適用され、同じ厚さの場合には同じ平均冷却速度が適用される)。得られた各鋼材から採取した試料を分析した化学組成は、下表1に示すとおりである。また、得られた各鋼材の厚さも下表1に示すとおりである。得られた各鋼材の厚さの1/2の位置から採取した試料の金属組織を光学顕微鏡によって観察し、マルテンサイトの面積率を測定した。試料のL断面を鏡面研磨し、次いでナイタールで腐食させ、光学顕微鏡を用いて500μm×500μmの観察視野を無作為に3視野選択し、各観察視野においてマルテンサイト(ラス状組織)の面積率を測定し、それらを平均することによりマルテンサイトの面積率(M面積率)を決定し、表1に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本例では、マルテンサイトの面積率(M面積率)が90%以上の場合に、焼入れ性が改善された鋼材として評価した。表1を参照すると、比較例84~89では、X元素の有効量[X]effが低く、また式3を満足しないため、焼入れ性が不十分になり、マルテンサイトの面積率が90%未満になっている。一方、比較例90~92では、X元素の有効量[X]effは0.0003%よりも高く、それゆえ式2を満足するものであったが、他の焼入れ性元素との関係で式3を満足せず、結果として焼入れ性が不十分になり、マルテンサイトの面積率が90%未満であった。これとは対照的に、本発明に係る全ての実施例において、式2及び3を満足することで90%以上のマルテンサイト面積率を達成することができ、高い焼入れ性を示すことができた。
[例B]
 本例では、例Aの一部のスラブから採取した鋼片を用いて、圧下率を例Aよりも大きくして熱間圧延を行い、冷却した。得られた圧延材を950~1100℃の範囲内の所定の温度に加熱し、次いで厚さt(mm)に応じて0.7~60℃/秒の範囲から適切に選択された平均冷却速度にて400℃以下まで冷却して鋼材を得た(圧延材の厚さが厚い場合にはより高い平均冷却速度が適用され、同じ厚さの場合には同じ平均冷却速度が適用される)。得られた各鋼材の厚さは下表2に示すとおりである。得られた各鋼材のマルテンサイトの面積率(M面積率)を例Aと同様にして測定した。鋼材の厚さの1/4の位置から試料を採取し、L断面において測定視野数を60、倍率を400倍として光学顕微鏡観察を行い、「点算法」によって、JIS G 0555:2020に規定するA系介在物の清浄度を決定した。鋼材の厚さの1/4位置から採取し、ノッチを鋼材のL方向又はC方向に入れたフルサイズのVノッチ試験片を使用し、JIS Z 2242:2018の規定に準拠して、半径2mmの衝撃刃を用いて-20℃でシャルピー衝撃試験を行った。C方向のシャルピー吸収エネルギーを3本測定し、それらを平均することによりシャルピー吸収エネルギーの平均値(KV2)を求めた。同様に、L方向及びC方向のシャルピー吸収エネルギーを、それぞれ3本の試験片の測定値を平均して算出し、L/C比を求めた。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 例Aと同様に、本例においても、マルテンサイトの面積率(M面積率)が90%以上の場合に、焼入れ性が改善された鋼材として評価した。表2を参照すると、比較例135及び136では、X元素の有効量[X]effが低く、また式3を満足しないため、焼入れ性が不十分になり、マルテンサイトの面積率が90%以上の単相に近い均一な組織とすることができず、結果として比較例135においてシャルピー吸収エネルギーの平均値(KV2)が低下している。また、比較例135及び136では、X元素の含有量が比較的少なかったために鋼中のSが十分に消費されなかったと考えられ、その結果としてMnS等のA系介在物が増加してその清浄度が0.010%超となり、L/C比が低下している。一方、比較例137では、X元素の有効量[X]effは0.0003%よりも高く、それゆえ式2を満足するものであったが、他の焼入れ性元素との関係で式3を満足せず、結果として焼入れ性が不十分になり、同様にマルテンサイトの面積率が90%以上の単相に近い均一な組織とすることができず、結果としてシャルピー吸収エネルギーの平均値(KV2)が低下している。これとは対照的に、本発明に係る全ての実施例において、式2及び3を満足することで90%以上のマルテンサイト面積率を達成することができ、高い焼入れ性を示すことができた。また、本発明に係る全ての実施例において、-20℃におけるシャルピー吸収エネルギーの平均値(KV2)が20J以上であり、優れた靭性を達成しつつ、L/C比を0.6~1.2の範囲内として靭性の異方性を低減することができた。
[例C:厚さ16mm以下の鋼材]
 本例では、特に厚さが16mm以下の鋼材を製造し、その特性について調べた。具体的には、例Aの一部のスラブから採取した鋼片を用いて、圧下率を例Aよりも大きくして熱間圧延を行い、冷却した。得られた圧延材を950~1100℃の範囲内の所定の温度に加熱し、次いで厚さt(mm)に応じて2.0~160℃/秒の範囲から適切に選択された平均冷却速度にて400℃以下まで冷却して鋼材を得た(圧延材の厚さが厚い場合にはより高い平均冷却速度が適用され、同じ厚さの場合には同じ平均冷却速度が適用される)。得られた各鋼材の厚さは下表3に示すとおりである。得られた各鋼材のマルテンサイトの面積率(M面積率)及びA系介在物の清浄度を例Bと同様にして測定した。鋼材の厚さの1/4位置から採取し、ノッチを鋼材のL方向又はC方向に入れたサブサイズ(2.5mm)のVノッチ試験片を使用し、例Bと同様にして、シャルピー吸収エネルギーの平均値(KV2)及びL/C比を求めた。シャルピー吸収エネルギーの平均値は、フルサイズに換算した数値である。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 例A及びBと同様に、本例においても、マルテンサイトの面積率(M面積率)が90%以上の場合に、焼入れ性が改善された鋼材として評価した。表3を参照すると、比較例227では、X元素の有効量[X]effが低く、また式3及び6を満足しないため、焼入れ性が不十分になり、90%以上のマルテンサイト面積率を達成することができなかった。また、比較例227では、X元素の含有量が比較的少なかったために鋼中のSが十分に消費されなかったと考えられ、その結果としてMnS等のA系介在物が増加してその清浄度が0.010%超となり、L/C値が低下している。一方、比較例228では、X元素の有効量[X]effは0.0003%よりも高く、それゆえ式2を満足するものであったが、他の焼入れ性元素との関係で式3及び6を満足せず、結果として焼入れ性が不十分になり、同様にマルテンサイトの面積率が90%以上の単相に近い均一な組織とすることができず、結果としてシャルピー吸収エネルギーの平均値(KV2)が低下している。これとは対照的に、本発明に係る全ての実施例において、式2及び3、さらには式6を満足することで90%以上のマルテンサイト面積率を達成することができ、高い焼入れ性を示すことができた。また、本発明に係る全ての実施例において、-20℃におけるシャルピー吸収エネルギーの平均値(KV2)が20J以上であり、優れた靭性を達成しつつ、L/C比を0.6~1.2の範囲内として靭性の異方性を低減することができた。
 本発明の実施形態に係る鋼材は、例えば、熱間圧延後の鋼材である。熱間圧延後の鋼材としては、例えば、橋梁、建築、造船及び圧力容器等の用途に使用される厚鋼板、自動車及び家電等の用途に使用される薄鋼板、さらには棒鋼、線材、形鋼、及び鋼管等をも包含するものである。これらの材料において本発明の実施形態に係る鋼材を適用した場合には、焼入れ性向上効果により高強度の鋼材を製造することができる。また、金属組織を主としてマルテンサイトから構成されるより単相に近い均一な組織とすることができるため、高強度であるにもかかわらず、例えば靭性を顕著に向上させることが可能である。

Claims (9)

  1.  質量%で、
     C:0.001~1.000%、
     Si:0.01~3.00%、
     Mn:0.10~4.50%、
     P:0.300%以下、
     S:0.0300%以下、
     Al:0.001~5.000%、
     N:0.2000%以下、
     O:0.0100%以下、
     Pr:0~0.8000%、Sm:0~0.8000%、Eu:0~0.8000%、Gd:0~0.8000%、Tb:0~0.8000%、Dy:0~0.8000%、Ho:0~0.8000%、Er:0~0.8000%、Tm:0~0.8000%、Yb:0~0.8000%、Lu:0~0.8000%、及びSc:0~0.8000%からなる群より選択される少なくとも1種のX元素、
     Nb:0~3.000%、
     Ti:0~0.500%、
     Ta:0~0.500%、
     V:0~1.00%、
     Cu:0~3.00%、
     Ni:0~16.00%、
     Cr:0~15.00%、
     Mo:0~5.00%、
     W:0~2.00%、
     B:0~0.0200%、
     Co:0~3.00%、
     Be:0~0.050%、
     Ag:0~0.500%、
     Zr:0~0.5000%、
     Hf:0~0.5000%、
     Ca:0~0.0500%、
     Mg:0~0.0500%、
     La、Ce、Nd、Pm及びYの少なくとも1種:合計で0~0.5000%、
     Sn:0~0.300%、
     Sb:0~0.300%、
     Te:0~0.100%、
     Se:0~0.100%、
     As:0~0.050%、
     Bi:0~0.500%、
     Pb:0~0.500%、並びに
     残部:Fe及び不純物からなり、
     下記式1によって求められる[X]effが下記式2を満たす化学組成を有し、
     焼入れ性指標Vcと、厚さt[mm]とが下記式3を満たす、鋼材。
     [X]eff=0.40[Pr]+0.37[Sm]+0.37[Eu]+0.36[Gd]+0.35[Tb]+0.34[Dy]+0.34[Ho]+0.33[Er]+0.33[Tm]+0.32[Yb]+0.32[Lu]+1.24[Sc]-2.33[O]-3.99[N]-1.74[S]   ・・・式1
     [X]eff≧0.0003   ・・・式2
     Vc/(9773×t-1.8)<1.00   ・・・式3
     ただし、[B]<0.0003%のとき、
     logVc=logVc1=3.6-0.7×(2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.8[Cr]+[Mo]+28[X]eff)   ・・・式4
     [B]≧0.0003%のとき、
     logVc=logVc2=2.8-0.7×(2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.8[Cr]+2[Mo]+37.9[X]eff)   ・・・式5
     ここで、Vc1はB含有量が0.0003%未満の場合の焼入れ性指標Vcを表し、Vc2はB含有量が0.0003%以上の場合の焼入れ性指標Vcを表し、[Pr]、[Sm]、[Eu]、[Gd]、[Tb]、[Dy]、[Ho]、[Er]、[Tm]、[Yb]、[Lu]、[Sc]、[O]、[N]、[S]、[B]、[C]、[Si]、[Mn]、[Ni]、[Cr]、及び[Mo]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
  2.  t≦16mmのとき、前記焼入れ性指標Vcと、前記厚さt[mm]とが下記式6をさらに満たす、請求項1に記載の鋼材。
     Vc/455exp(-0.36t)<1.00   ・・・式6
  3.  前記鋼材の厚さの1/4の位置において、JIS G 0555:2020に規定するA系介在物の清浄度が0.010%以下である、請求項1又は2に記載の鋼材。
  4.  N含有量が0.0010%以上であり、O含有量が0.0010%以上である、請求項1~3のいずれか1項に記載の鋼材。
  5.  前記化学組成が、質量%で、
     Nb:0.003~3.000%、
     Ti:0.005~0.500%、
     Ta:0.001~0.500%、
     V:0.001~1.00%、
     Cu:0.001~3.00%、
     Ni:0.001~16.00%、
     Cr:0.001~15.00%、
     Mo:0.001~5.00%、
     W:0.001~2.00%、
     B:0.0001~0.0200%、
     Co:0.001~3.00%、
     Be:0.0003~0.050%、
     Ag:0.001~0.500%、
     Zr:0.0001~0.5000%、
     Hf:0.0001~0.5000%、
     Ca:0.0001~0.0500%、
     Mg:0.0001~0.0500%、
     La、Ce、Nd、Pm及びYの少なくとも1種:合計で0.0001~0.5000%、
     Sn:0.001~0.300%、
     Sb:0.001~0.300%、
     Te:0.001~0.100%、
     Se:0.001~0.100%、
     As:0.001~0.050%、
     Bi:0.001~0.500%、並びに
     Pb:0.001~0.500%
    のうち1種又は2種以上を含む、請求項1~4のいずれか1項に記載の鋼材。
  6.  Mg含有量が0%であるか又は0.0016~0.0500%である、請求項1~4のいずれか1項に記載の鋼材。
  7.  Sn含有量が0.004%以下である、請求項1~6のいずれか1項に記載の鋼材。
  8.  前記鋼材の厚さの1/2の位置におけるマルテンサイト面積率が90%以上である、請求項1~7のいずれか1項に記載の鋼材。
  9.  前記鋼材の厚さが2.5mm以上である、請求項1~8のいずれか1項に記載の鋼材。
PCT/JP2022/011081 2021-06-28 2022-03-11 鋼材 WO2023276297A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023531405A JPWO2023276297A1 (ja) 2021-06-28 2022-03-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-106895 2021-06-28
JP2021106895 2021-06-28

Publications (1)

Publication Number Publication Date
WO2023276297A1 true WO2023276297A1 (ja) 2023-01-05

Family

ID=84691176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011081 WO2023276297A1 (ja) 2021-06-28 2022-03-11 鋼材

Country Status (2)

Country Link
JP (1) JPWO2023276297A1 (ja)
WO (1) WO2023276297A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226150A (ja) * 2004-02-16 2005-08-25 Daido Steel Co Ltd 工具鋼の焼きなまし方法、及び工具鋼の焼きなまし材の製造方法、工具鋼の焼きなまし材、並びにそれを用いた工具鋼、工具
WO2006112428A1 (ja) * 2005-04-18 2006-10-26 Sumitomo Metal Industries, Ltd. 低合金鋼
WO2014175381A1 (ja) * 2013-04-25 2014-10-30 新日鐵住金株式会社 鋼板
JP2018024908A (ja) * 2016-08-09 2018-02-15 新日鐵住金株式会社 鋼板および鋼板の製造方法
JP2018024907A (ja) * 2016-08-09 2018-02-15 新日鐵住金株式会社 鋼板およびその鋼板の製造方法
JP2020186423A (ja) * 2019-05-10 2020-11-19 日本製鉄株式会社 オーステナイト系ステンレス鋼

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226150A (ja) * 2004-02-16 2005-08-25 Daido Steel Co Ltd 工具鋼の焼きなまし方法、及び工具鋼の焼きなまし材の製造方法、工具鋼の焼きなまし材、並びにそれを用いた工具鋼、工具
WO2006112428A1 (ja) * 2005-04-18 2006-10-26 Sumitomo Metal Industries, Ltd. 低合金鋼
WO2014175381A1 (ja) * 2013-04-25 2014-10-30 新日鐵住金株式会社 鋼板
JP2018024908A (ja) * 2016-08-09 2018-02-15 新日鐵住金株式会社 鋼板および鋼板の製造方法
JP2018024907A (ja) * 2016-08-09 2018-02-15 新日鐵住金株式会社 鋼板およびその鋼板の製造方法
JP2020186423A (ja) * 2019-05-10 2020-11-19 日本製鉄株式会社 オーステナイト系ステンレス鋼

Also Published As

Publication number Publication date
JPWO2023276297A1 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
EP2050832B1 (en) Two-phase stainless steel
CN103108974B (zh) 韧性优良的高强度热轧钢板及其制造方法
JP5177310B2 (ja) 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
KR101846759B1 (ko) 강판 및 그 제조 방법
KR102309644B1 (ko) 고 Mn 강판 및 그 제조 방법
JP5846311B2 (ja) 溶接熱影響部ctod特性に優れた厚肉高張力鋼およびその製造方法
WO2010032428A1 (ja) 高強度厚鋼板およびその製造方法
KR20070095373A (ko) 내지연파괴특성이 우수한 고장력 강재 및 그 제조방법
KR20150056656A (ko) 내열성이 우수한 페라이트계 스테인리스 강판
TW201333223A (zh) 雙相不銹鋼、雙相不銹鋼鑄片、及雙相不銹鋼鋼材
KR20120099520A (ko) 인성이 우수한 고내식성 페라이트계 스테인레스 냉연 강판 및 그 제조 방법
KR102405388B1 (ko) 고 Mn 강 및 그 제조 방법
CN111051553A (zh) 高Mn钢及其制造方法
KR20210113682A (ko) 고Mn강 및 그의 제조 방법
JP2008088547A (ja) 高温強度、靭性及び耐再熱脆化特性に優れた耐火鋼材並びにその製造方法
KR20220131996A (ko) 강재 및 그의 제조 방법, 그리고 탱크
KR20190044689A (ko) 강판
JP7469714B2 (ja) 鋼材
EP4166680A1 (en) Precipitation-hardening type martensitic stainless steel sheet having excellent fatigue resistance
EP4269642A1 (en) Steel material
WO2022145068A1 (ja) 鋼材
WO2022145070A1 (ja) 鋼材
JP4757858B2 (ja) 高温強度、靭性及び耐再熱脆化特性に優れた耐火鋼材並びにその製造方法
WO2023276297A1 (ja) 鋼材
KR100825632B1 (ko) 용접부의 가공성 및 강재의 내식성이 우수한 페라이트계스테인리스강 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023531405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE