WO2014175094A1 - 製鉄用ヘマタイトの製造方法 - Google Patents

製鉄用ヘマタイトの製造方法 Download PDF

Info

Publication number
WO2014175094A1
WO2014175094A1 PCT/JP2014/060612 JP2014060612W WO2014175094A1 WO 2014175094 A1 WO2014175094 A1 WO 2014175094A1 JP 2014060612 W JP2014060612 W JP 2014060612W WO 2014175094 A1 WO2014175094 A1 WO 2014175094A1
Authority
WO
WIPO (PCT)
Prior art keywords
hematite
iron
separating
magnetic
overflow
Prior art date
Application number
PCT/JP2014/060612
Other languages
English (en)
French (fr)
Inventor
小原 剛
秀紀 佐々木
康雅 菅
今村 正樹
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to AU2014258565A priority Critical patent/AU2014258565B9/en
Priority to CN201480023084.9A priority patent/CN105164286A/zh
Priority to US14/784,336 priority patent/US9752209B2/en
Priority to EP14788065.2A priority patent/EP3000903B1/en
Priority to CA2908767A priority patent/CA2908767C/en
Publication of WO2014175094A1 publication Critical patent/WO2014175094A1/ja
Priority to PH12015502424A priority patent/PH12015502424A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/28Washing granular, powdered or lumpy materials; Wet separating by sink-float separation
    • B03B5/30Washing granular, powdered or lumpy materials; Wet separating by sink-float separation using heavy liquids or suspensions
    • B03B5/32Washing granular, powdered or lumpy materials; Wet separating by sink-float separation using heavy liquids or suspensions using centrifugal force
    • B03B5/34Applications of hydrocyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B7/00Combinations of wet processes or apparatus with other processes or apparatus, e.g. for dressing ores or garbage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation whereby the particles to be separated are in solid form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing hematite for iron making. More specifically, the present invention relates to a technology for recovering hematite for iron making by separating tailing slurry obtained from a final neutralization step of a hydrometallurgical plant by high-temperature acid leaching (HPAL) method of nickel oxide ore.
  • HPAL high-temperature acid leaching
  • Nickel is widely used as a raw material for stainless steel. With the trend of exhaustion of the sulfide ore used as the raw material, technology for refining low-grade oxide ore has been developed and put into practical use. Specifically, nickel oxide ores such as limonite and saprolite are put together with a sulfuric acid solution into a pressure device such as an autoclave, and nickel is leached under a high temperature and high pressure of about 240 to 300 ° C. High pressure acid leaching (High Pressure Acid leaching) (Leach, hereinafter referred to as HPAL.) A manufacturing process called a process has been put into practical use.
  • FIG. 3 shows a schematic flow diagram of the manufacturing process.
  • the nickel leached into the sulfuric acid solution in the HPAL process is neutralized with excess acid by adding a neutralizing agent, and then separated into a leaching residue by solid-liquid separation. Thereafter, nickel is recovered as an intermediate raw material in the form of hydroxide, sulfide, etc. through a process of separating impurities, and is further obtained in the form of nickel metal, nickel chloride, etc. by further purification of the intermediate raw material.
  • the leachate is adjusted to a pH suitable for solid-liquid separation, and in the next solid-liquid separation step, the solid content is measured by equipment called CCD (Counter Current Decantation). Concentration and solid-liquid separation are performed. Usually, a CCD having a plurality of continuous thickeners is used.
  • the liquid component obtained from the CCD (hereinafter sometimes referred to as “overflow”) is sent to the neutralization step in order to adjust to a pH suitable for the sulfidation step.
  • the pH is adjusted and fine solids generated are precipitated and removed, and then, for example, a sulfidation treatment is performed to produce an intermediate raw material called nickel sulfide.
  • the target metal can be obtained by concentrating the target metal to the same level as that of the conventional raw material, and by the purification method and process substantially similar to those of the conventional raw material.
  • this HPAL process can be applied not only to nickel oxide ore but also to other raw materials such as nickel sulfide ore, copper sulfide ore and copper oxide ore.
  • the main component of the leaching residue obtained by the HPAL process is iron oxide
  • the iron content in the leaching residue solids is about 40-50%
  • the amount of leaching residue produced is the amount of intermediate raw material produced.
  • the raw material nickel oxide ore or sulfide ore contains iron in an amount far exceeding the nickel content.
  • iron oxide is abundant in iron ore, and iron ore is widely used as a raw material for refined steel.
  • steel refining iron ore containing iron oxide is charged into a blast furnace together with a reducing agent such as coke, and reduced and melted by heating to form crude steel.
  • the target steel is manufactured by refining this crude steel in a converter.
  • iron ore as a raw material is a limited resource, and it is becoming increasingly difficult to obtain high-quality iron ore necessary for maintaining the quality of steel. For this reason, the examination which uses a leaching residue as an iron ore is made
  • the leaching residue of the HPAL process contains gangue and impurities, particularly sulfur, in addition to iron oxide, it was not suitable as a raw material used in conventional iron making processes. Specifically, the quality of sulfur is high.
  • the sulfur grade in iron oxide that can be used as a raw material for iron making varies depending on the facility capacity, production amount, etc. of each ironworks, but generally it is necessary to suppress it to less than 1%.
  • the leach residue solids contain about 5-8% sulfur.
  • the source of sulfur in the leach residue is calcium sulfate (gypsum), most of which is mixed in the HPAL process.
  • This gypsum is free sulfuric acid remaining in the leaching slurry obtained by high-pressure acid leaching (free sulfuric acid is an acid that remains unreacted among sulfuric acid added excessively to perform sufficient leaching in the HPAL process.
  • free sulfuric acid is an acid that remains unreacted among sulfuric acid added excessively to perform sufficient leaching in the HPAL process.
  • Is generated by the reaction of calcium and free sulfuric acid contained in the neutralizing agent by adding a general and inexpensive calcium-based neutralizing agent such as limestone or slaked lime. which is mixed in the leach residue.
  • a part (about 1%) of sulfur contained in the solid content of the leaching residue is taken into the generated hematite particles.
  • the solid content in the residue after leaching of nickel obtained at this time is composed of particles mainly of hematite of about 1 ⁇ m, and the iron quality in the solid content is about 30 to 40% and the sulfur quality is about 5 to 8%. .
  • the moisture content of the leaching residue obtained at this time is 60%.
  • the iron grade in the leaching residue solid content is 50% or more and the sulfur grade is 1% or less.
  • Patent Document 1 describes a technique for removing impurities in a hematite mixture by subjecting a leaching residue to separation by sieving, separation by a wet cyclone, separation by magnetism, A certain effect was observed to remove impurities in hematite.
  • it is not a satisfactory method for use alone as the above-mentioned hematite for iron making, and it can be improved only to about 40 to 45% even if the iron quality is high. Therefore, in order to use as hematite for iron manufacture, it was necessary to mix with the raw material for iron manufacture containing higher grade iron. Note that the moisture content of the leaching residue obtained after physical separation is about 40%.
  • the present invention has been made to solve such a situation, and proposes a method for separating a leaching residue capable of obtaining a hematite-containing material that can be used as a raw material for iron making. From the leaching residue, hematite for iron making is proposed. The manufacturing method which produces
  • the present inventors have found that the above-described problems of iron quality and sulfur quality can be solved simultaneously by sequentially performing a separation step using a wet cyclone and an appropriate magnetic separation step, and the present invention has been completed. is there.
  • 1st invention of this invention is a manufacturing method of the hematite for iron manufacture from the leaching residue obtained from the wet refining plant of the nickel oxide ore using the high pressure acid leaching method, Comprising:
  • the leaching residue uses a wet cyclone
  • a hematite cake is prepared by sequentially performing at least two steps of separating the overflow into an underflow and separating the separated overflow into a strong and weak magnet using a magnetic force.
  • the method for producing hematite for iron making is characterized in that the step of separating using magnetic force uses a strong magnetic field magnetic separation device.
  • the classification size of the wet cyclone in the step of separating using the wet cyclone in the first invention is not less than a setting where the overflow is 1 ⁇ m or less and not more than a setting where the overflow is 2 ⁇ m or less.
  • the method for producing hematite for iron making is characterized in that the magnetic field strength in the step of separating using s is 5 to 20 [kGauss].
  • the third invention of the present invention includes the dehydration step of adjusting the moisture content of the water contained in the hematite cake in the first and second inventions to 10 wt% to 17 wt%. Is the method.
  • the method for producing hematite for iron making of the present invention it is possible to easily obtain a quality hematite-containing material that can be used as a raw material for iron making from the refining process of oxide ore, and has an industrially significant effect. is there.
  • FIG. 1 is a manufacturing process flow diagram for manufacturing the iron-made hematite of the present invention.
  • the present invention is a leaching residue discharged from a nickel oxide ore hydrorefining plant using a high-pressure acid leaching (HPAL) method as shown in the flow chart of the manufacturing process of the HPAL process in FIG. Means a “final neutralization residue (tailing slurry)” stored in a “tailing dam”.), And the process is a process in which the tailing slurry is a leach residue.
  • HPAL high-pressure acid leaching
  • a hematite for iron making of high iron grade low sulfur product of about 53% by weight of iron grade and about 1% of S grade from leaching residue containing iron: 30 to 35% and sulfur (S): 3 to 10% It is possible to obtain With such a grade composition, it can be used alone for iron making, and even when mixed with other iron making raw materials, there is a large adjustment margin and it is easy to use.
  • iron is included as hematite and S as gypsum.
  • the particle size is, for example, about 1 ⁇ m for hematite and about 30 ⁇ m for gypsum, and the magnetism has a weak magnetism and no other magnetism.
  • such a leaching residue is charged into a wet cyclone, and most of the gypsum having a large particle size is removed as an underflow. Hematite with a small particle size is concentrated in the overflow.
  • the obtained overflow is separated using a “strong magnetic field magnetic separation device” that can be magnetized to such an extent that hematite and chromite can be separated.
  • the magnetic force used in normal magnetic separation is at most about 2000 [Gauss].
  • the magnetic force when passing through the mesh with respect to the powder is at most about 2000 [Gauss]. Since the method of applying is applied, a very strong magnetic force can be applied.
  • This mesh is set so as to have an optimal opening for the powder to be separated.
  • the method for producing hematite for iron making according to the present invention has the greatest feature in that it is first separated by a wet cyclone, and then separated by a strong magnetic field magnetic separator, but is separated by a wet cyclone.
  • Separation is also difficult by the method of applying the magnetic force of the strong magnetic field separation device to be used.
  • the ⁇ strong magnetic field magnetic separation device '' used in the embodiment that applies a magnetic force to the powder when passing through the mesh gypsum having a large particle size clogs the mesh immediately after operation, This is because the separation operation does not proceed.
  • a feature of the method for producing hematite for iron making according to the present invention is that the separation by the wet cyclone is performed by setting the classification size in the wet cyclone to an appropriate range. Next, separation is performed using a magnetic force with the magnetic field strength set to an appropriate range. Therefore, as the setting size of the wet cyclone classification, the overflow setting may be adjusted as appropriate according to the particle size of the hematite and gypsum contained, but the wet cyclone classification size is more than the setting at which the overflow is 1 ⁇ m or less. It is preferable to set it to be equal to or less than the setting of 2 ⁇ m or less.
  • nickel oxide ore is processed by HPAL wet refining, and the hematite contained in the solid content of the leach residue obtained from the final neutralization step is generally about 1 ⁇ m and gypsum has a particle size of about 30 ⁇ m. From the above range, it is possible to enhance the classification effect in the wet cyclone.
  • the preferable condition of the magnetic field strength when separating using magnetic force is 10 to 15 [kGauss]. Basically, a stronger magnetic field strength is preferable, but if it is less than 5 [kGauss], the hematite is not sufficiently separated. On the other hand, if it is larger than 20 [kGauss], not only the effect cannot be expected, but it is not preferable economically.
  • the hematite cake obtained by subjecting the leach residue (water content of about 40%) obtained after the physical separation treatment to the general dehydration treatment in the production method of the present invention has a low sulfur content of less than 1%.
  • a relatively high water content of about 22 wt% is obtained.
  • the transportable moisture value (Transportable Moisture Limit: TML) of hematite was 17 wt% or less. For this reason, when carrying a ship, when manufacturing the hematite cake by this invention, it is necessary to reduce the moisture content.
  • the particle size of hematite is very fine, about 1 ⁇ m, so the possibility of dust generation is very high.
  • This dust generation decreases as the water content increases.
  • the water content is preferably 10 to 17 wt%, and dust-proof measures such as using a flexible container during handling are possible.
  • the moisture content is preferably lower.
  • a dehydration treatment is performed to remove moisture from the hematite cake.
  • the dehydration method includes a heating method, a filter press method, a centrifugal separation method, and the like, but a method using a filter press is desirable from the viewpoint of high water removal efficiency and economy.
  • the hematite cake obtained by the production method of the present invention has a non-uniform mixed state when mixed with other iron ores in an iron manufacturer from the viewpoint of non-uniformity of shape, easy occurrence of powdering, poor fluidity, etc.
  • the problem suggested by granulating and making it a uniform granulated product is suggested because of problems such as low formation efficiency due to low fluidity, and easy generation of dust. Eliminate the point.
  • a well-known granulation method such as rolling granulation, compression granulation, extrusion granulation or the like may be used, and a granulated product having uniform and good fluidity can be obtained.
  • the occurrence of powdering is lower than that of hematite cake.
  • the present invention to the hematite for iron making according to the present invention, the total amount of sulfur derived from gypsum is removed, and the sulfuric acid component incorporated into the hematite particles in the process of high-temperature pressure acid leaching is removed. About 1% of sulfur that is considered to be derived remains. Therefore, by applying a combination of the following known methods, it is possible to obtain a better raw material for iron making. Specifically, as described in “Special Table 2012-517523”, the feed material is dried and calcined to remove sulfur and water of crystal hydration contained in the feed material.
  • hematite obtained by the present invention by roasting the hematite obtained by the present invention at a predetermined temperature, sulfur in the hematite particles can be removed as SOx, and the sulfur quality can be lowered.
  • hematite having a concentration of sulfur of 0.5% or less can be obtained.
  • a heat treatment exceeding 1400 ° C. results in a sulfur concentration of 0.05% or less, and a sulfur concentration equivalent to that of conventional iron ore is obtained.
  • Hematite with a low sulfur concentration can be obtained by heat treatment at a temperature higher than 1400 ° C. However, if the heat treatment temperature is increased, energy consumption is increased and the life of the furnace wall material is shortened. The heat treatment is preferable.
  • Table 1 summarizes the production conditions and characteristic measurement conditions common to the examples and comparative examples.
  • the present invention When separating the leaching residue, the present invention was applied, and first, the wet cyclone shown in Table 1 was treated, and the obtained overflow was subsequently separated by a magnetic beneficiation device.
  • the processing amount of the solid content was 10 tons of leach residue, and the resulting overflow slurry weight was 9.1 tons.
  • 2.2 tons of hematite having an iron content of 53% and an S content of 0.7% was obtained.
  • the present invention When separating the leaching residue, the present invention was applied, and first, the wet cyclone shown in Table 1 was treated, and the obtained overflow was subsequently separated by a magnetic beneficiation device.
  • the processing amount of the solid content was 10 tons of leach residue, and the resulting overflow slurry weight was 9.1 tons.
  • iron content 52%, S: 0.8%, moisture content 15%, 2. 0 ton of hematite was obtained.
  • the present invention When separating the leaching residue, the present invention was applied, and first, the wet cyclone shown in Table 1 was treated, and the obtained overflow was subsequently separated by a magnetic beneficiation device.
  • the processing amount of the solid content was 10 tons of leach residue, and the resulting overflow slurry weight was 9.1 tons.
  • iron content 52%, S: 0.8%, moisture content 15%, 2. 0 ton of hematite was obtained.
  • heat-treating this cake at 1400 ° C. a hematite granulated product having a moisture content of 0% and a sulfur concentration of 0.05% was obtained.
  • the processing was performed in the same manner except that the wet cyclone setting was 1 ⁇ m or less and the magnetic field strength of the magnetic separator was 5 [kGauss] under the processing conditions of Example 1.
  • the obtained overflow slurry weight was 8 tons.
  • hematite with iron content 52%, S: 0.8%, and solid content weight 1.6 tons was obtained.
  • the processing was performed in the same manner except that the wet cyclone setting was 2 ⁇ m or less and the magnetic field strength of the magnetic separator was 20 [kGauss] under the processing conditions of Example 1.
  • the obtained overflow slurry weight was 9.3 tons.
  • hematite with iron content: 55%, S: 0.9%, and solid content weight 2.3 tons was obtained.
  • Example 1 The same operation as in Example 1 was performed except that the present invention was not applied and separation by the above magnetic separator was not performed. As a result, a solid content of 7.9 tons was obtained with an iron content of 37% and an S content of 5%, but it could not be used alone as an iron-made hematite.
  • Example 2 The same operation as in Example 1 was performed except that the present invention was not applied and separation by the wet cyclone was not performed. As a result, the mesh to which the magnetic force was applied was clogged immediately after the operation, and the operation could not be continued.
  • Example 3 The processing was performed in the same manner except that the wet cyclone setting was 0.4 ⁇ m or less and the magnetic field strength of the magnetic separator was 4 [kGauss] under the processing conditions of Example 1. The resulting overflow slurry weight was 0.5 tons. When magnetic separation was performed, a very small amount of low-grade hematite was obtained with iron content: 49%, S: 1.2%, and solid content weight of 0.01 ton.
  • Example 4 The processing was performed in the same manner except that the wet cyclone setting was 2.5 ⁇ m or less and the magnetic field strength of the magnetic separator was 22 [kGauss] under the processing conditions of Example 1.
  • the obtained overflow slurry weight was 9.3 tons.
  • hematite with high S quality was obtained: iron content: 52%, S: 1.5%, solid content weight: 2.1 tons.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Iron (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

 製鉄用原料として使用可能なヘマタイト含有物を得ることが可能な浸出残渣の分離方法を提案し、浸出残渣から製鉄用ヘマタイトを生成する製造方法を提供する。 高圧酸浸出法を利用したニッケル酸化鉱石の湿式精錬プラントから得られる浸出残渣を原料とする製鉄用ヘマタイトの製造方法であって、その浸出残渣を湿式サイクロンを使用してオーバーフローとアンダーフローとに分離するステップと、分離したオーバーフローを、磁性の強いものと弱いものとに磁力を利用して分離するステップの少なくとも2ステップを順次行い、且つ磁力を利用して分離するステップが強磁場磁気分離装置を使用することを特徴とする製鉄用ヘマタイトの製造方法。

Description

製鉄用ヘマタイトの製造方法
 本発明は製鉄用ヘマタイトの製造方法に関する。
 詳しくは、ニッケル酸化鉱石の高温酸浸出(HPAL)法による湿式精錬プラントの最終中和工程から得られるテーリングスラリーを分離して、製鉄用ヘマタイトを回収する技術に関する。
 ニッケルはステンレスの原料として幅広く用いられているが、その原料となる硫化鉱石の資源枯渇傾向に伴い、低品位の酸化鉱石を精製する技術が開発、実用化されてきている。
 具体的には、リモナイトやサプロライトなどのニッケル酸化鉱石を硫酸溶液とともにオートクレーブなどの加圧装置に入れ、240~300℃程度の高温高圧下においてニッケルを浸出する、高温加圧酸浸出(High Pressure Acid Leach、以下HPALと表記する。)プロセスと呼ばれる製造プロセスが実用化されている。図3に、その製造工程の概略フロー図を示す。
 このHPALプロセスにおける硫酸溶液中に浸出されたニッケルは、中和剤を添加して余剰の酸を中和し、次いで固液分離して浸出残渣と分離される。
 その後ニッケルは、不純物を分離する工程を経て、水酸化物や硫化物などの形態の中間原料として回収され、この中間原料をさらに精製することにより、ニッケルメタルやニッケル塩化物などの形態で得られるものである。
 なお、その余剰の酸を中和する工程では、浸出物は固液分離に適したpHに調整され、次工程の固液分離工程において、CCD(Counter Current Decantation)と呼ばれる設備で、固形分の濃縮および固液分離が行われる。通常CCDでは、連続する複数段のシックナーが使用されている。
 そのCCDから得られる液体成分(以下、オーバーフローという場合がある。)は、硫化工程に適したpHに調整するために中和工程に回される。そこではpHを調整し、発生する微細な固形物を沈殿除去した後、例えば硫化処理が供され、ニッケル硫化物という中間原料が生成される。
 このようなHPALプロセスでは、例えばニッケル酸化鉱の場合、回収目的の有価金属が1~2重量%以下の低品位鉱石(以下、重量%を%で表記する。)であっても、ほぼ完全にニッケルを浸出できる。即ち、目的金属を従来原料と同程度まで濃縮し、従来原料とほぼ同様の精製方法および工程で目的金属を得ることが出来る。また、このHPALプロセスは、ニッケル酸化鉱のみでなく、ニッケル硫化鉱や硫化銅鉱石、酸化銅鉱石など他の原料にも適用できる。
 さらに、HPALプロセスで得られる浸出残渣の主な成分は、酸化鉄であり、浸出残渣固形分中の鉄分はおよそ40~50%程度であり、また、浸出残渣の生産量は中間原料の生産量に対しておよそ50倍から100倍である。これは原料のニッケル酸化鉱石や硫化鉱石に、ニッケルの含有量をはるかに超える量の鉄を含有しているためである。
 この浸出残渣は、高温で生成されているため科学的環境的には安定な酸化物の状態であるが、現状では特段の利用価値もなく、残渣堆積置場に積立保管されている。
 従って、HPALプロセスの操業に伴って発生する、膨大な量の浸出残渣を積立保管するための広大な残渣積立置場が必要である。
 ところで、酸化鉄は鉄鉱石に多く含まれ、精鋼の原料に鉄鉱石が広く利用されている。
 鉄鋼精錬では酸化鉄が含まれた鉄鉱石を、コークスなどの還元剤と共に高炉に装入、加熱により還元溶融して粗鋼を形成する。この粗鋼を転炉で精錬して目的とする鋼を製造している。
 一般に、その原料となる鉄鉱石は限られた資源であり、しかも鋼の品質維持に必要な良質な鉄鉱石の入手は次第に難しくなってきている。このため、浸出残渣を鉄鉱石として使用する検討がなされている。
 しかしながら、HPALプロセスの浸出残渣を製鉄原料用に直接用いることは、以下の理由から困難であった。
 HPALプロセスの浸出残渣には、酸化鉄以外にも脈石や不純物、特に硫黄が含まれるため、従来の製鉄プロセスに用いる原料には適さなかった。具体的には硫黄の品位が高いためである。
 特に製鉄原料に利用できる酸化鉄中の硫黄品位は、個々の製鉄所の設備能力、生産量などによって異なるが、一般的には1%未満に抑制することが必要とされている。
 しかしながら、浸出残渣固形分中には5~8%程度の硫黄が含有されている。この浸出残渣中の硫黄の由来は、その大部分がHPALプロセスで混入する硫酸カルシウム(石膏)である。
 この石膏は、高圧酸浸出で得られた浸出スラリーに残留する遊離硫酸(遊離硫酸とはHPALプロセスで十分な浸出を行うために過剰に加えた硫酸のうち、未反応で残留する酸のことである。)を中和する際に、一般的で安価なカルシウム系の中和剤、例えば、石灰石や消石灰を添加することにより、中和剤に含まれるカルシウムと遊離硫酸が反応することで生成し、浸出残渣中に混入しているものである。
 なお、浸出残渣固形分中に含有される硫黄の一部(1%程度)は、生成したヘマタイトの粒子中に取り込まれている。
 この時点で得られるニッケル浸出後の残渣中の固形分は1μm程度のヘマタイトを主とする粒子からなり、固形分中の鉄品位はおよそ30~40%、硫黄品位はおよそ5~8%となる。なお、この時点で得られる浸出残渣の水分率は60%である。
 この浸出残渣を製鉄用のヘマタイトとして使用するには、浸出残渣固形分中の鉄品位を50%以上、硫黄品位を1%以下とすることが必要である。
 そのための技術としては、例えば、特許文献1に、浸出残渣を、篩い分けによる分離、湿式サイクロンによる分離、磁性による分離に付して、ヘマタイト混合物中の不純物を除去する技術が記載されており、ヘマタイト中の不純物を除去するために一定の効果が認められた。
 しかし、上記の製鉄用ヘマタイトとして単独で使用するためには満足できる方法ではなく、特に鉄品位は高くても40~45%程度までしか向上できなかった。そのため、製鉄用ヘマタイトとして使用するには、より高品位の鉄を含む製鉄用原料と混合する必要があった。なお、物理分離後に得られる浸出残渣の水分率は40%程度である。
特開2010-095788号公報
 本発明は、このような状況を解決するためになされたものであり、製鉄用原料として使用可能なヘマタイト含有物を得ることが可能な浸出残渣の分離方法を提案し、浸出残渣から製鉄用ヘマタイトを生成する製造方法を提供する。
 本発明者らは、湿式サイクロンによる分離ステップと、適正な磁性分離のステップを順次おこなうことで、前記した鉄品位、硫黄品位の問題を同時に解決できることを見出し、本発明の完成に至ったものである。
 本発明の第1の発明は、高圧酸浸出法を利用したニッケル酸化鉱石の湿式精錬プラントから得られる浸出残渣を原料とする製鉄用ヘマタイトの製造方法であって、その浸出残渣を湿式サイクロンを使用して、オーバーフローとアンダーフローとに分離するステップと、分離したオーバーフローを、磁性の強いものと弱いものとに磁力を利用して分離するステップの少なくとも2ステップを順次行って、ヘマタイトケーキを作製し、且つ、磁力を利用して分離するステップが強磁場磁気分離装置を使用することを特徴とする製鉄用ヘマタイトの製造方法である。
 本発明の第2の発明は、第1の発明における湿式サイクロンを用いて分離するステップにおける湿式サイクロンの分級サイズが、オーバーフローが1μm以下となる設定以上、2μm以下となる設定以下で、且つ、磁力を利用して分離するステップにおける磁場強度が、5~20[kGauss]であることを特徴とする製鉄用ヘマタイトの製造方法である。
 本発明の第3の発明は、第1及び第2の発明におけるヘマタイトケーキが含有する水分の水分率を、10wt%~17wt%に調整する脱水工程を含むことを特徴とする製鉄用ヘマタイトの製造方法である。
 本発明の製鉄用ヘマタイトの製造方法によれば、製鉄用原料として使用可能な品位のヘマタイト含有物を、酸化鉱石の精錬工程から容易に得ることを可能とし、工業上顕著な効果を奏するものである。
本発明のテーリングスラリーから製鉄用ヘマタイトを製造する製造工程フロー図である。 従来のテーリングスラリーから製鉄用ヘマタイトを製造する製造工程フロー図である。 HPALプロセスの製造工程における概略フロー図である。
 以下、本発明の、製鉄用ヘマタイトの製造方法を、図面を参照しながら詳細する。
 図1は本発明の製鉄用ヘマタイトを製造する製造工程フロー図である。
 本発明は、図3のHPALプロセスの製造工程概略フロー図に示されるような高圧酸浸出(HPAL)法を利用したニッケル酸化鉱石の湿式精錬プラントから排出される浸出残渣(以下、図3の「テーリングダム」に貯留される「最終中和残渣(テーリングスラリー)」を意味する。)から有益な成分組成を有する材料を分離するものであり、その工程が、浸出残渣であるところのテーリングスラリーを湿式サイクロンを使用して、オーバーフローとアンダーフローとに分離するステップと、分離したオーバーフローを、磁力を利用して、磁性の強いもの(製鉄用ヘマタイト)と、弱いものとに分離するステップの少なくとも2ステップを順次行うもので、さらに、磁力を利用して分離するステップでは、強磁場磁気分離装置を使用することを特徴とするものである。
 このため、例えば、鉄:30~35%、硫黄(S):3~10%を含む浸出残渣から、鉄品位53重量%程度、S品位1%程度の高鉄品位低硫黄品の製鉄用ヘマタイトを得ることが可能である。
 このような品位の組成であれば、単独で製鉄用に供することが可能であり、他の製鉄原料と混合して使用する場合も調整の余裕が大きく使用しやすい。
 HPALプロセスにおける浸出残渣の固形分において、鉄はヘマタイト、Sは石膏の形として含まれている。
 その粒径は、例えば、それぞれ、ヘマタイトが1μm、石膏は30μm程度であり、また、磁性はヘマタイトが弱い磁性をもち、他には磁性は無い。
 本発明では、このような浸出残渣は湿式サイクロンに装入され、粒径の大きな石膏の大部分がアンダーフローとして除去される。オーバーフローには粒径の小さいヘマタイトが濃縮される。
 次に、得られたオーバーフローを、ヘマタイトとクロマイトを分離可能な程度に磁化可能な「強磁場磁気分離装置」を用いて分離処理する。
 通常の磁力選鉱において使用する磁力は、高々2000[Gauss]程度であるが、例えば、実施例で使用している「強磁場磁気分離装置」では、粉体に対してメッシュを通過する際に磁力を掛ける方式を採用しているため、非常に強力な磁力を掛けることができる。なお、このメッシュは分離対象の粉体に最適な目開きとなるように設定されている。
 このような構成により通常の磁力選鉱では実質的に分離が不可能な、ヘマタイトとクロマイトを分離可能となる。また、少量残留している石膏も磁性が無いため、ヘマタイトから分離可能である。
 その結果、最終的に、磁力選鉱装置の磁性体側の排出物(着磁物)として、鉄:53重量%程度、S:1重量%程度の製鉄用ヘマタイトが回収される。
 これまで述べたように本発明の製鉄用ヘマタイトの製造方法では、まず湿式サイクロンで分離し、次いで強磁場磁気分離装置で分離することに最大の特徴を有しているが、湿式サイクロンで分離するステップと、強磁場磁気分離装置で分離するステップとを、単純に組み合わせただけ、例えば、上記と逆の順番では製鉄用ヘマタイトを効率良く回収することは困難である。
 即ち、強磁場磁気分離装置での分離ステップを先に行うと、粒径が大きく異なる石膏が存在するために、小粒径のヘマタイトとクロマイトに対して、両者を分離するのに十分な磁力を与えることが難しくなるためである。また使用する強磁場磁気分離装置の磁力を掛ける方式によっても分離が難しくなる。例えば、粉体に対してメッシュを通過する際に磁力を掛ける方式である実施例でも使用した「強磁場磁気分離装置」では、運転直後から粒径の大きな石膏が上記したメッシュを目詰まりさせ、分離操作が進行しなくなるからである。
 本発明の製鉄用ヘマタイトの製造方法の特徴は、先ず、湿式サイクロンによる分離は、湿式サイクロンにおける分級サイズを適正範囲設定して行う。
 次いで、磁界強度を適正な範囲に設定した磁力を利用した分離を行うものである。
 そこで、湿式サイクロンの分級サイズの設定として、先ずオーバーフローの設定は、含まれているヘマタイトおよび石膏の粒径によって適宜調整すればよいが、湿式サイクロンの分級サイズが、オーバーフローが1μm以下となる設定以上、2μm以下となる設定以下となるように設定することが好ましい。
 特にニッケル酸化鉱石をHPAL方式の湿式精錬で処理し、最終中和工程から得られる浸出残渣の固形分に含まれるヘマタイトは1μm程度、石膏は30μm程度の粒径となることが一般的であることから上記範囲において、湿式サイクロンでの分級効果を高めることが可能となる。
 また、磁力を利用して分離する際の好ましい磁界強度の条件は、10~15[kGauss]である。
 基本的に磁界強度は強いほうが好ましいが、5[kGauss]未満だと、ヘマタイトの分離が不充分になるからである。また、20[kGauss]より大きい場合、それ以上の効果が期待できないばかりでなく、経済的にも好ましくない。
 一方、本発明の製造方法において前記の物理分離処理後に得られる浸出残渣(水分率40%程度)を一般的な脱水処理をして得られるヘマタイトケーキは、その硫黄分は1%未満と低いが、水分含有率22wt%程度と比較的高いものが得られる。
 一般的に固体物質の運送においては、水分含有量が多いと船舶輸送中に液状化現象を引き起こし、船舶の転覆を引き起こす可能性があると言われ、日本海事検定協会の調査結果では、本発明ヘマタイトの運送許容水分値(Transportable Moisture Limit:TML)は17wt%以下であった。このため、船舶搬送する場合、本発明によるヘマタイトケーキを製造する場合、その水分含有率を下げる必要がある。
 同時にヘマタイトの粒子径は1μm程度と非常に細かいので、発塵の可能性が非常に高い。この発塵は、水分量が多くなると少なくなる。水分量を17wt%から下げていくと10wt%程度から細粒子が著しく多くなる傾向がみられるので、水分含有量は10~17wt%が好ましく、ハンドリング時にフレコンを使用するなど防塵対策が可能である場合には、その水分含有量はより低い方が好ましい。
 そこで、水分含有量の調整を行うと良い。本発明ではヘマタイトケーキから水分を除去する脱水処理を行う。
 その脱水方法には加熱法、フィルタープレス法、遠心分離法などがあるが、水分除去効率の高さや経済性からフィルタープレスによる方法が望ましい。
 また、これまで述べてきた製造方法で製造された製鉄用ヘマタイトを造粒して造粒物とすることが好ましい.
 本発明の製造方法で得られるヘマタイトケーキは、形状の不均一性、粉立ちが発生しやすい、流動性の悪さなどの観点から製鉄メーカーにおいて他の鉄鉱石と混合する場合に不均一な混合状態を形成し易い、流動性の低さによる装入効率の低下、粉塵が発生しやすいなどの問題点が示唆されるために、造粒を行い均一な造粒物にすることで示唆される問題点を解消する。
 造粒に際しては、転動造粒、圧縮造粒、押出造粒などの広く知られた造粒法を用いると良く、均一で流動性の良い造粒物が得られる。同時にヘマタイトケーキよりも粉立ちの発生は低く抑えられる。
 さらに、本発明による製鉄用ヘマタイトには、本発明を適用することによって石膏由来の硫黄は、その全量が除去され、高温加圧酸浸出の工程で、ヘマタイト粒子の中に取り込まれた硫酸成分に由来すると考えられる硫黄が1%前後残留している。
 そこで、以下に示す公知の方法を組み合わせて適用することにより、更に良好な製鉄用原料とすることが可能である。
 具体的には「特表2012-517523号公報」に記載があるように、供給材料を乾燥、焼成して、供給材料に含まれている硫黄および結晶水和水を除去することにより、ヘマタイト中に残留する硫黄を除去し、次いで、例えば「特開2004-269960号公報」にあるように粉末状の鉄原料をプリケット化する、または「特開2012-211363号公報」にあるように粉末状の鉄原料をペレット化するなどの方法を組み合わせて適用することにより、更に良好な製鉄用原料とすることが期待できる。
 また、本発明により得られたヘマタイトを、所定の温度で焙焼することにより、ヘマタイト粒子中の硫黄をSOxとして除去し、その硫黄品位を低くすることが出来る。
 具体的には600℃以上の熱処理を行うことにより、硫黄が0.5%以下の濃度のヘマタイトを得ることが可能となる。1400℃を超えた熱処理では0.05%以下の硫黄濃度になり、従来の鉄鉱石と同等の硫黄濃度が得られる。
 1400℃よりも高い温度での熱処理で低硫黄濃度のヘマタイトを得ることが出来るが、熱処理温度を高くすると消費エネルギーの増加、炉壁材質の短寿命化を引き起こすため、経済的に1400℃以下での熱処理が好ましい。
 以下、実施例、比較例により本発明をより詳細に説明する。実施例、比較例に共通の製造条件及び特性測定条件を表1に纏めて示す。
Figure JPOXMLDOC01-appb-T000001
 上記、浸出残渣を分離する際に、本発明を適用し、まず、表1に示す湿式サイクロンで処理し、得られたオーバーフローを引き続き、磁力選鉱装置で分離した。
 固形分の処理量は、10トンの浸出残渣を処理し、得られたオーバーフロースラリー重量は9.1トンであった。
 磁力選鉱の結果、鉄分:53%、S:0.7%の品位を示す2.2トンのヘマタイトを得た。
 上記、浸出残渣を分離する際に、本発明を適用し、まず、表1に示す湿式サイクロンで処理し、得られたオーバーフローを引き続き、磁力選鉱装置で分離した。
 固形分の処理量は、10トンの浸出残渣を処理し、得られたオーバーフロースラリー重量は9.1トンであった。
 磁力選鉱および脱水処理で得られたヘマタイトケーキ2.2トンを、高圧フィルタープレス(高圧加熱濾過装置)をすることで、鉄分:52%、S:0.8%、水分率15%、2.0トンのヘマタイトを得た。
 上記、浸出残渣を分離する際に、本発明を適用し、まず、表1に示す湿式サイクロンで処理し、得られたオーバーフローを引き続き、磁力選鉱装置で分離した。
 固形分の処理量は、10トンの浸出残渣を処理し、得られたオーバーフロースラリー重量は9.1トンであった。
 磁力選鉱および脱水処理で得られたヘマタイトケーキ2.2トンを、高圧フィルタープレス(高圧加熱濾過装置)をすることで、鉄分:52%、S:0.8%、水分率15%、2.0トンのヘマタイトを得た。
 このケーキを1400℃で加熱処理することで、水分含有率0%、硫黄濃度0.05%のヘマタイト造粒物が得られた。
 実施例1の処理条件において、湿式サイクロンの設定を1μm以下、磁力選鉱装置の磁界の強度を5[kGauss]とした以外は、全て同じ方法で処理を行った。
 得られたオーバーフロースラリー重量は8トンであった。
 磁選処理を行ったところ、鉄分:52%、S:0.8%、固形分重量1.6トンのヘマタイトが得られた。
 実施例1の処理条件において、湿式サイクロンの設定を2μm以下、磁力選鉱装置の磁界の強度を20[kGauss]とした以外は、全て同じ方法で処理を行った。
 得られたオーバーフロースラリー重量は9.3トンであった。
 磁選処理を行ったところ、鉄分:55%、S:0.9%、固形分重量2.3トンのヘマタイトが得られた。
(比較例1)
 本発明を適用せず、上記の磁力選鉱装置による分離をしなかったこと以外は、実施例1と同様の操業を行った。
 その結果、鉄分:37%、S:5%で、7.9トンの固形分を得ることができたが、製鉄用ヘマタイトとしては単独では利用不可能であった。
(比較例2)
 本発明を適用せず、上記の湿式サイクロンによる分離をしなかったこと以外は、実施例1と同様の操業を行った。
 その結果、磁力を印加するメッシュが運転直後に目詰まりしたため、操業を継続することが出来なかった。
(比較例3)
 実施例1の処理条件において、湿式サイクロンの設定を0.4μm以下、磁力選鉱装置の磁界の強度を4[kGauss]とした以外は、全て同じ方法で処理を行った。
 得られたオーバーフロースラリー重量は0.5トンであった。
 磁選処理を行ったところ、鉄分:49%、S:1.2%、固形分重量0.01トンと、非常に少量の低品位ヘマタイトが得られた。
(比較例4)
 実施例1の処理条件において、湿式サイクロンの設定を2.5μm以下、磁力選鉱装置の磁界の強度を22[kGauss]とした以外は、全て同じ方法で処理を行った。
 得られたオーバーフロースラリー重量は9.3トンであった。
 磁選処理を行ったところ、鉄分:52%、S:1.5%、固形分重量2.1トンと、S品位が高いヘマタイトが得られた。

Claims (3)

  1.  高圧酸浸出法を利用したニッケル酸化鉱石の湿式精錬プラントから得られる浸出残渣を原料とする製鉄用ヘマタイトの製造方法であって、
      前記浸出残渣を、湿式サイクロンを使用して、オーバーフローとアンダーフローとに分離するステップと、
      前記オーバーフローを、磁性の強いものと、弱いものとに磁力を利用して分離するステップの少なくとも2ステップを順次行って、ヘマタイトケーキを作製し、
      且つ、前記磁力を利用して分離するステップが、強磁場磁気分離装置を使用すること
    を特徴とする製鉄用ヘマタイトの製造方法。
  2.  前記、湿式サイクロンを用いて分離するステップにおける湿式サイクロンの分級サイズが、オーバーフローが1μm以下となる設定以上、2μm以下となる設定以下で、
      且つ、前記磁力を利用して分離するステップにおける磁場強度が、5~20[kGauss]であること
    を特徴とする、請求項1に記載の製鉄用ヘマタイトの製造方法。
  3.  前記ヘマタイトケーキが含有する水分の水分率を、10wt%~17wt%に調整する脱水工程を含むことを特徴とする請求項1又は2に記載の製鉄用ヘマタイトの製造方法。
PCT/JP2014/060612 2013-04-24 2014-04-14 製鉄用ヘマタイトの製造方法 WO2014175094A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2014258565A AU2014258565B9 (en) 2013-04-24 2014-04-14 Method for producing hematite for ironmaking
CN201480023084.9A CN105164286A (zh) 2013-04-24 2014-04-14 炼铁用赤铁矿的制造方法
US14/784,336 US9752209B2 (en) 2013-04-24 2014-04-14 Method for producing hematite for ironmaking
EP14788065.2A EP3000903B1 (en) 2013-04-24 2014-04-14 Method for producing hematite for iron manufacturing
CA2908767A CA2908767C (en) 2013-04-24 2014-04-14 Method for producing hematite for ironmaking
PH12015502424A PH12015502424A1 (en) 2013-04-24 2015-10-21 Method for producing hematite for ironmaking

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-091814 2013-04-24
JP2013091814A JP5772869B2 (ja) 2013-04-24 2013-04-24 製鉄用ヘマタイトの製造方法

Publications (1)

Publication Number Publication Date
WO2014175094A1 true WO2014175094A1 (ja) 2014-10-30

Family

ID=51791673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060612 WO2014175094A1 (ja) 2013-04-24 2014-04-14 製鉄用ヘマタイトの製造方法

Country Status (8)

Country Link
US (1) US9752209B2 (ja)
EP (1) EP3000903B1 (ja)
JP (1) JP5772869B2 (ja)
CN (1) CN105164286A (ja)
AU (1) AU2014258565B9 (ja)
CA (1) CA2908767C (ja)
PH (1) PH12015502424A1 (ja)
WO (1) WO2014175094A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063762A (ja) * 2015-01-06 2015-04-09 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法
WO2015107985A1 (ja) * 2014-01-17 2015-07-23 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法
CN114589002A (zh) * 2022-03-08 2022-06-07 深圳市中金岭南有色金属股份有限公司 高铜锌比硫化铜锌矿选矿分离方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772214B (zh) * 2015-04-14 2017-03-01 东北大学 一种粉煤灰高效除铁的方法
KR101579157B1 (ko) * 2015-09-15 2015-12-22 한국지질자원연구원 함니켈 사프로라이트광의 분리선별 방법
CN107377205B (zh) * 2017-07-11 2019-03-12 甘肃酒钢集团宏兴钢铁股份有限公司 一种铁矿石悬浮焙烧磁选浮选尾矿循环式非倾倒利用工艺
CN107377207A (zh) * 2017-07-11 2017-11-24 甘肃酒钢集团宏兴钢铁股份有限公司 一种难选铁矿石在线闭路回转窑焙烧干磨干选工艺
CN107377206A (zh) * 2017-07-11 2017-11-24 甘肃酒钢集团宏兴钢铁股份有限公司 一种回转窑焙烧磁选铁矿石尾矿闭路回收利用工艺
CN110216007A (zh) * 2019-05-29 2019-09-10 煤炭科学研究总院唐山研究院 处理油页岩矿泥水的方法
CN113713964A (zh) * 2021-07-29 2021-11-30 四川谨而睿科技有限公司 一种从钛磁铁矿回收流程中的次铁矿中回收钛精矿的方法
CN114405675B (zh) * 2021-12-31 2023-05-16 玉溪大红山矿业有限公司 一种铁矿石混合矿选矿工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254851A (ja) * 1986-04-28 1987-11-06 Nittetsu Mining Co Ltd 微粉の乾式磁力選別方法
JP2004269960A (ja) 2003-03-07 2004-09-30 Koyo Seiko Co Ltd 製鉄原料用ブリケット
WO2007099714A1 (ja) * 2006-03-03 2007-09-07 Ehime University 金属回収処理方法および高勾配磁気分別装置
JP2010095788A (ja) 2008-09-19 2010-04-30 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2012517523A (ja) 2009-02-11 2012-08-02 オウトクンプ オサケイティオ ユルキネン ニッケル含有合金鉄の製造方法
JP2012211363A (ja) 2011-03-31 2012-11-01 Nippon Steel Corp 高炉用非焼成含炭塊成鉱の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920016348A (ko) * 1991-02-05 1992-09-24 도오사끼 시노부 고순도 산화철 및 그 제조방법
JP5287016B2 (ja) * 2008-08-07 2013-09-11 住友金属鉱山株式会社 亜鉛硫化物の分離方法
AU2009212947B2 (en) * 2008-09-19 2014-06-05 Sumitomo Metal Mining Co., Ltd. Hydrometallurgical process of nickel laterite ore
AU2012245294B2 (en) * 2011-04-20 2015-10-29 Magglobal, Llc Iron ore separation device
EP2910655B1 (en) * 2013-02-12 2018-07-18 Sumitomo Metal Mining Co., Ltd. Wet-mode nickel oxide ore smelting method
JP5569611B1 (ja) * 2013-03-08 2014-08-13 住友金属鉱山株式会社 ニッケル酸化鉱石の湿式製錬プラント、並びにその湿式製錬プラントの操業方法
JP5757442B2 (ja) * 2013-04-23 2015-07-29 住友金属鉱山株式会社 ニッケル酸化鉱石の湿式製錬方法
JP5679372B2 (ja) * 2013-07-03 2015-03-04 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法
JP5776913B2 (ja) * 2014-01-17 2015-09-09 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法
JP5800255B2 (ja) * 2014-02-27 2015-10-28 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254851A (ja) * 1986-04-28 1987-11-06 Nittetsu Mining Co Ltd 微粉の乾式磁力選別方法
JP2004269960A (ja) 2003-03-07 2004-09-30 Koyo Seiko Co Ltd 製鉄原料用ブリケット
WO2007099714A1 (ja) * 2006-03-03 2007-09-07 Ehime University 金属回収処理方法および高勾配磁気分別装置
JP2010095788A (ja) 2008-09-19 2010-04-30 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2012517523A (ja) 2009-02-11 2012-08-02 オウトクンプ オサケイティオ ユルキネン ニッケル含有合金鉄の製造方法
JP2012211363A (ja) 2011-03-31 2012-11-01 Nippon Steel Corp 高炉用非焼成含炭塊成鉱の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3000903A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107985A1 (ja) * 2014-01-17 2015-07-23 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法
US9981858B2 (en) 2014-01-17 2018-05-29 Sumitomo Metal Mining Co., Ltd. Process for producing hemataite for ironmaking
JP2015063762A (ja) * 2015-01-06 2015-04-09 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法
CN114589002A (zh) * 2022-03-08 2022-06-07 深圳市中金岭南有色金属股份有限公司 高铜锌比硫化铜锌矿选矿分离方法

Also Published As

Publication number Publication date
CN105164286A (zh) 2015-12-16
EP3000903B1 (en) 2018-11-21
CA2908767C (en) 2016-09-27
EP3000903A1 (en) 2016-03-30
EP3000903A4 (en) 2017-05-10
PH12015502424B1 (en) 2016-02-22
EP3000903A9 (en) 2016-06-22
US9752209B2 (en) 2017-09-05
JP5772869B2 (ja) 2015-09-02
US20160115565A1 (en) 2016-04-28
PH12015502424A1 (en) 2016-02-22
JP2014214338A (ja) 2014-11-17
AU2014258565B2 (en) 2016-12-15
AU2014258565A1 (en) 2015-11-12
AU2014258565B9 (en) 2017-01-05
CA2908767A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP5772869B2 (ja) 製鉄用ヘマタイトの製造方法
JP2014214338A5 (ja)
JP5776913B2 (ja) 製鉄用ヘマタイトの製造方法
JP5679372B2 (ja) 製鉄用ヘマタイトの製造方法
JP5800106B2 (ja) 製鉄用ヘマタイトの製造方法
JP5743305B2 (ja) 製鉄用ヘマタイトの製造方法
US9828256B2 (en) Method for producing hematite for ironmaking
JP5858189B2 (ja) 製鉄用ヘマタイトの製造方法
JP2017125239A (ja) 製鉄用ヘマタイトの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480023084.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788065

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014788065

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2908767

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14784336

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12015502424

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014258565

Country of ref document: AU

Date of ref document: 20140414

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201507613

Country of ref document: ID