WO2007099714A1 - 金属回収処理方法および高勾配磁気分別装置 - Google Patents

金属回収処理方法および高勾配磁気分別装置 Download PDF

Info

Publication number
WO2007099714A1
WO2007099714A1 PCT/JP2007/000150 JP2007000150W WO2007099714A1 WO 2007099714 A1 WO2007099714 A1 WO 2007099714A1 JP 2007000150 W JP2007000150 W JP 2007000150W WO 2007099714 A1 WO2007099714 A1 WO 2007099714A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
metal
powder
mixed
iron compound
Prior art date
Application number
PCT/JP2007/000150
Other languages
English (en)
French (fr)
Inventor
Takao Araki
Minoru Nishida
Original Assignee
Ehime University
First Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehime University, First Inc. filed Critical Ehime University
Priority to JP2008502670A priority Critical patent/JP5347091B2/ja
Publication of WO2007099714A1 publication Critical patent/WO2007099714A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a recovery process of a metal component contained in waste or the like.
  • Extraction separation involves putting fine powder containing valuable metals derived from waste into a pH-adjusted solvent (strong acid, strong alcohol), and the difference in solubility of any metal in the solvent due to the difference in pH.
  • This is a method of separating using. Distillation separation is performed by filling a certain container with fine powder containing valuable metals from waste and heating (adding depressurization in some cases) to use any boiling point and vapor pressure of any metal.
  • This is a method in which an arbitrary metal is vaporized under temperature (pressure) conditions and then condensed and recovered by a condenser.
  • pressure temperature
  • fine powder containing valuable metals derived from waste is melted at a high temperature, and any metal is recovered using the difference in melting point etc. of the arbitrary metal.
  • Patent Document 1 Japanese Patent Laid-Open No. 9_2 6 3 8 4 4
  • the metal recovery processing method of the present invention is to mix and heat a fine powder containing a metal with an iron compound, and magnetically treat the iron compound powder containing the metal component. It is characterized by making it.
  • iron oxide can be used as the iron compound.
  • the magnetized material and the non-magnetized material may be separated by a magnetic force.
  • the heating temperature is preferably lower than the melting point of the glass fiber.
  • the present invention it is possible to magnetize a valuable metal by subjecting the fine powder after mixing and homogenization to a magnetizing treatment (heating treatment) at a lower temperature than in the prior art. This has the effect of reducing energy input to the entire process.
  • the additive is also an inexpensive iron compound, which can reduce the total running cost.
  • FIG. 1 is a flowchart showing the steps of a metal recovery processing method.
  • FIG. 2 is an image showing the appearance of the mixed powder after heating.
  • FIG. 3 is a graph showing the recovery rate by fractionation by magnetic force.
  • FIG. 4 is a graph showing the XRD pattern of the PC B_FeO mixed powder after heating.
  • FIG. 6 is a graph showing the magnetic side distribution ratio of Cu.
  • FIG. 7 is a graph showing the magnetic side distribution ratio of Fe.
  • FIG. 8 is a graph showing the magnetic side distribution ratio of Ni.
  • FIG. 9 is a graph showing the magnetic side distribution ratio of Sn.
  • FIG. 10 is a graph showing the magnetic side distribution ratio of Pb.
  • FIG. 11 is a graph showing the magnetic side distribution ratio of the entire metal component.
  • FIG. 12 is a graph showing the results of a sample vibration type magnetization measurement.
  • FIG. 13 is a graph showing the distribution of ⁇ 0 -tan 0.
  • FIG. 14 Graph of SEM image and EDX point analysis of PC B powder.
  • FIG. 15 is a graph showing the average recovery rate of magnetized products.
  • FIG. 16 is a graph showing the average distribution ratio of metal components to the magnetic side.
  • FIG. 17 is a block diagram showing the structure of a high gradient magnetic sorting apparatus.
  • a fine powder containing valuable metals derived from waste is mixed with an iron compound and heated in the atmosphere to magnetize the valuable metals, and the magnetized magnetic and non-magnetic materials are separated by magnetic separation.
  • Iron compounds to be mixed with the fine powder containing valuable metals waste attributable are, Fe0 (2-valent), Fe 3 0 4 (FeO - Fe 2 0 3; 2 -valent, 3-valent), Fe 2 0 3 (trivalent ) And Fe (OH) (trivalent) and cheap iron compounds are used.
  • the particle size of the iron compound to be mixed with the fine powder containing the waste-derived valuable metal is determined by the fine powder containing the waste-derived valuable metal that is the object to be mixed. desirable.
  • the mixing ratio of iron compound mixed with fine powder containing valuable metal derived from waste is derived from the waste to be mixed. It is preferable to decide on the content of valuable metal to be recovered in the fine powder containing the valuable metal.
  • the heating temperature and time are determined by the type and content of the valuable metal contained in the fine powder containing the valuable metal derived from the waste, but are preferably lower than the melting point of the glass fiber. In case of heating temperature up to about 800 ° C and several minutes to several tens of minutes
  • the magnetic field strength for magnetic separation is preferably determined by the magnetic force of the obtained magnetic material. Magnetic separation is possible in both dry and wet atmospheres, and which is appropriate depends on impurities other than valuable metals contained in fine powder containing valuable metals derived from waste (mainly non-magnetic). It is preferable to determine the concentration according to the properties of the product.
  • Qf -Fe 2 0 3 which is a magnetic substance to be recovered, is highly stable against sunlight, air, water, and heat and has an ability to absorb ultraviolet rays. Therefore, abrasives, red pigments, cement colorants, pictures It can be used as a paint for materials, inks, tiles, and bricks. Also industrially used as a raw material for ferrimagnetic cores and magnets and magnetic recording materials
  • FIG. 1 is a flowchart showing a metal recovery process. It has a mixture of fine powder and iron compound, magnetic treatment (heat treatment), and magnetic separation process.
  • the mixing of the fine powder and the iron compound will be described.
  • the optimum iron compound powder is mixed and homogenized with the fine powder containing the valuable metal derived from waste.
  • Typical types of iron compounds are Fe0 (divalent), Fe 3 0 4 (FeO Fe 2 0 3 ; divalent and trivalent), Fe 2 0 3 (trivalent) and Fe (0H ) (Trivalent).
  • the particle size of the iron compound is determined by the fine powder containing valuable metals derived from waste, which is the object of mixing, and it is desirable that the particle size be the same or smaller.
  • the mixing ratio of the iron compound is determined by the content of valuable metals to be recovered in the fine powder containing valuable metals derived from waste, which is the subject of mixing.
  • the magnetizing process heating process
  • the iron compound mixed powder mixed and homogenized under the optimum conditions as described above is heated in the air.
  • the heating temperature depends on the type and content of the valuable metal contained in the fine powder containing the valuable metal resulting from the waste, but often requires a heating temperature of about 800 ° C.
  • the heating time depends on the type and content of the valuable metal contained in the fine powder containing the valuable metal from the waste, but it often requires several minutes to several tens of minutes of heating time. .
  • Magnetic separation will be described.
  • the iron compound mixed powder that has been heat-treated under the optimum conditions in the above step is separated into a magnetic material and a non-magnetic material using magnetic force.
  • the magnetic field strength is determined by the magnetic force of the magnetic material obtained by the reaction in the upper magnetizing process (heating process).
  • magnetic separation is possible in either dry or wet atmosphere, but which is suitable depends on the fineness including valuable metals derived from waste. It is desirable to determine the properties of impurities other than valuable metals contained in the powder (mainly concentrated to non-magnetic materials).
  • Table 2 shows the mixing homogenization and heat treatment conditions.
  • the magnetic materialized powder was subjected to magnetic separation, and the magnetic separation was performed by inserting a magnet into pure water containing the magnetized powder and stirring it with wet magnetic separation.
  • FIG. 2 is a photograph showing an example of the appearance of the powder after the magnetic materialization treatment.
  • the appearance of the PCB-iron oxide mixed powder changed from gray to reddish brown as the oxidation number of the mixed iron compound increased from 2 to 3 when treated with 1073K, and changed to Fe (0H) 3 mixed powder. It was particularly bright red.
  • the mixed powder after the 1073K treatment progressed as the valence decreased, and the sintering progressed under all conditions in the FeO mixed powder.
  • the powder mixed with Fe 3 0 4 was small in size compared with the FeO mixed powder at 1073K, but sintering proceeded.
  • the Fe 2 0 3 and Fe (0H) 3 mixed powder having a valence of 3 was powdery.
  • the mixed powder treated with 1273K was sintered under all conditions.
  • the 1073K treated powder which was easily broken when wet-stirred, was used as it was, and the 1273K treated powder was a strong sintered body and used for pulverization.
  • the magnetic content of FeO mixed powder tends to increase as the heating time decreases at a mixing ratio of 6: 4. It was.
  • the proportion of magnetic material in the FeO mixed powder was the same as that of 6: 4 when the mixing ratio was 5: 5, and the highest ratio was 92.38% at 10 minutes.
  • FeO mixed powder has a heating time Since the magnetic substance ratio did not increase even when the length was increased, it is considered that the oxidation reaction was completed in 10 minutes.
  • the magnetic substance ratio was 93.60%, and there was no effect due to an increase in heating temperature at 1073K or higher.
  • the Fe 3 0 4 mixed powder had the highest magnetic substance ratio at 86.01% under the 6: 4 mixing ratio and 10 min treatment conditions.
  • the heating temperature was increased to 1273K
  • the magnetic material ratio decreased to 82.6 7%
  • the Fe 2 0 3 mixed powder showed almost no difference in the proportion of the magnetic material due to the difference in the mixing ratio at the heating time of 10 min, but the heating temperature increased and the heating time extended. Showed a tendency for the ratio of magnetic substances to increase.
  • the highest magnetic substance ratio was 80.58% under the conditions of a mixing ratio of 6: 4, a heating temperature of 1073 K, and a heating time of 60 min.
  • the ratio of magnetic materials at the same 6: 4 mixing ratio and heating time of 1001 ⁇ was 107.52% at 10731, compared to 70.10% at 12731, indicating the effect of increasing temperature on magnetic properties. It was.
  • the Fe (0H) 3 mixed powder tended to increase in the magnetic material ratio as the heating temperature increased, but the maximum value was 6: 4, 1273K. It was 86.32% under the condition of 10min. Magnetic matter generation amount tends to valence of mixed iron compound is a high Runishitagatte decreased from divalent, when mixed with Fe 3 0 4 containing divalent FeO and FeO, the low heating temperatures The reaction was completed after a short treatment. On the other hand, since Fe 2 0 3 and Fe (0H) 3 are the most stable compounds with Fe oxidation number 3, they are considered to require a long heating time at a high temperature in order to have magnetism.
  • the most magnetic powder produced by mixing with PCB powder was FeO powder.
  • the appearance after the magnetic separation was stronger in the reddish brown of the magnetic material and the gray of the nonmagnetic material than before the magnetic separation. Therefore, it is expected that the magnetic material is a metal component mainly composed of iron oxide, and the non-magnetic material is mainly composed of glass fibers in the PCB powder.
  • Fig. 4 is a mixed powder with FeO as an example.
  • Fig. 4 is a mixed powder with FeO as an example.
  • all the peaks of hematite (Q? -Fe 2 0 3 ) were mainly
  • Hematai is a hexagonal structure, is a non-magnetic iron oxide, and usually has magnetism, and the peaks of spinel structure magnetite (Fe 3 0 4 ) and maghemite (r -Fe 2 0 3 ) are Not detected.
  • the powder that migrated to the non-magnetic side had a larger Matthew peak as the oxidation number of the mixed iron compound increased from 2 to 3.
  • the powder that migrated to the nonmagnetic side showed a large S i 0 2 peak and was mainly composed of glass fiber.
  • the nonmagnetic powder of the mixed powder was divided Fe 2 0 3 is amorphous broad were detected significantly.
  • the mixed powder after the magnetic separation was observed by SEM EDX as an example.
  • the mixed powder was FeO-added powder. As shown in Fig. 5, the grains were larger compared to 1073K after 1273K treatment. From the EDX analysis results, it became clear that the magnetic powder that had become hematized in the previous section incorporated the metal components contained in the PCB powder. Ni and noble metal components had low concentrations and small particle sizes, and no clear distribution was observed.
  • the Au peak detected by the EDX graph is the Au used for vapor deposition.
  • the distribution ratio of Cu to the magnetic side shows the highest value in the FeO mixed powder. It was 95.73% at 1073K and 95.06% at 1273K under the conditions of 6: 4 and 10min. there were.
  • Magnetic side distribution ratio of Fe is as shown in FIG. 7, FeO and Fe 3 0 4 and 6: showed a higher distribution ratio of 90% or more in all the heating conditions in mixed powder at a ratio of 4.
  • powders mixed with FeO all showed a distribution ratio of 97% or higher under the heating conditions of 6: 4, and the result was that Fe could be recovered as a magnetic substance at a very high ratio.
  • the maximum magnetic side partition ratio of Ni is 86.12% for 6 20 3 , 96. 37% for FeO, 94.03% for Fe 3 0 4 , except 100%. It was 89.27% for Fe (0H) 3.
  • Ni has a very low content of 0.05 mass% in the PCB powder, so the reliability of the analysis results is considered to be low. Since Fe was present in the PCB in the form of Fe-N i, it is thought that the distribution ratio of Fe greatly affects the distribution ratio of Ni.
  • the magnetic side distribution of Sn is 6: 4 in Fe0, Fe 3 0 4 and Fe (0H) 3 as shown in Fig. 9.
  • the mixing ratio was 90% or more. Since Sn is present in the PCB in the form of Cu-Sn, it is thought that it moves to the magnetic side in proportion to the magnetic materialization of Cu.
  • the magnetic side distribution of Pb was 92.61% at 6: 4 and 93.23% at 5: 5, and only 90% or more.
  • the magnetic side distribution of the metal component tended to decrease as the oxidation number of the mixed iron compound approached 3, similar to the magnetic material ratio described above.
  • FeO in particular, distributes the metal component to the magnetic side at a high rate of 90% or more by mixing with PCB. From the result of magnetic separation, it is optimal for mixing with PCB powder.
  • Fe 2 0 3 was prepared using the d, h, k, and I values measured by X-ray diffraction from the Miller index and the interplanar spacing formula, and the 0 value is the standard 0 value of 6 2 0 3 shown in Table 3.
  • the value of a was calculated assuming 13.7489 OA, which is the same as the formula of Miller index and interplanar spacing in hexagonal crystals.
  • the a value of the prepared Fe 2 0 3 calculated from Equation 3 was 5.04944A, which was found to be larger than the a value of standard Fe 2 0 3 shown in Table 3.
  • the atomic radius of the metal element to be measured in this example is 1.24A for Fe, 1.28A for Cu, 1.25A for Ni, 1.41 and 1.51A for Sn, and 1.76 for Pb.
  • the precious metal elements are 1.44A for Ag, 1.44A for Au, and 1.37A for Pd, and all the metal elements contained in the PCB powder have a larger atomic radius than Fe. It is thought that it is dissolved in the cocoon.
  • the magnetic hematite powder obtained in this example was enlarged by 2,000 times using 3 £! « ⁇ 0 ⁇ . From the point analysis results at the locations marked with + as shown in Fig. 14, simultaneous peaks of Fe, Cu and Sn were detected. Therefore, Cu and Sn elements were dissolved in the magnetic hematite powder.
  • the average magnetic substance recovery rate tended to increase most at a mixing ratio of 6: 4 for all the mixed powders.
  • the divalent FeO mixed powders were 91.18% and 91.84%, respectively, at a mixing ratio of 6: 4 and 5: 5, showing only 90% or more.
  • “Powder mixed with 6 3 0 4 in a ratio of 6: 4 showed a high magnetic ratio of 81.81%.
  • Fe 2 0 3 mixed powder had the lowest ratio and the highest 6: 4 mixing conditions Even though the ratio of Fe (0H) 3 mixed powder was higher than that of Fe 2 0 3 mixed powder, the mixing ratio of 6: 4, which showed the highest value, was 77.4 6%. And it did not reach the powder mixed with Fe 3 0 4 .
  • the average distribution ratio of the metal component to the magnetic side is the highest distribution ratio in the powder mixed with FeO 6: 4, except for Ni, which has low reliability, and Cu,
  • the total amount of Fe, Sn, Pb and metal components was 90.11%, 97.50%, 86.83%, 82.71% and 94.88%, respectively.
  • the FeO mixed powder showed a magnetic side partitioning ratio of over 80% for all metal elements and all metal components.
  • Divalent Fe is easily oxidized and has the property of easily moving to trivalent, and Fe forms the most stable compound with trivalent.
  • the reason why the FeO mixed powder is most magnetized is the crystal structure of FeO.
  • FeO a divalent iron oxide, is an iron oxide that is not very balanced in terms of crystal structure, and because of its unstable state, it tends to bind and stabilize in various air molecules. It is believed that the most non-ferrous metal elements were adsorbed and reacted to generate the most magnetic material from the disorder of the crystal structure.
  • Magnetic material split after FeO Fe 3 0 4 which has a high magnetic side partition ratio of the alloy and metal elements, has a reverse spinel structure in which divalent and trivalent Fe coexist and has a black cubic crystal defect.
  • Fe 2 0 3 which is trivalent iron oxide, has the most stable dense cubic structure, and is considered to have exhibited the lowest magnetic substance production amount and magnetic side distribution ratio.
  • ferrite Act usually dry ferrite treatment, Fe 3 0 ignited the Fe 2 0 3 at least 1673K in air 4 is expected to require enormous costs.
  • trivalent Fe (0H) 3 used in this example even the most stable structure has taken, Fe 2 0 3 in followed lower magnetic matter generation amount and the magnetic side distribution of the metal components in the iron hydroxide It is thought that the rate was shown.
  • the optimum condition for performing the magnetic materialization process in which the metal components in the PCB powder are most efficiently concentrated is to mix the PCB powder and FeO at a ratio of 6: 4. Air oxidation at 1073K.
  • a high-gradient magnetic separation device is effective for separating magnetic and non-magnetic particles.
  • Conventional techniques for separating magnetic and non-magnetic materials include magnetic drum type and magnetic bell type magnetic separation devices, and wet high gradient magnetic separation devices.
  • magnetic drum-type and magnetic bell-type magnetic separators have the problem that even when trying to process fine particles of about 2500 m or less, they are scattered.
  • components other than valuable metals are melted in the liquid to be used, so that the process of removing them is necessary and the work becomes complicated.
  • FIG. 17 is a block diagram showing the structure of the high gradient magnetic separation device.
  • This high-gradient magnetic separation apparatus 1 includes a sample loading unit 2, a blower unit 3 for blowing a gas to the loaded sample to disperse the sample uniformly, a magnetic head (not shown), and a matrix 4 of a fibrous metal mesh.
  • the sample exiting the high gradient magnetic separation unit 5 is sent to the magnetized material recovery unit 7, or the non-magnetized product recovery unit 8 Can be switched to send to.
  • the air blowing unit 3 is provided between the sample feeding unit 2 and the high gradient magnetic separation unit 5, and evenly disperses the loaded sample by mixing a gas such as air with the loaded sample. It is.
  • the matrix 4 provided in the high-gradient magnetic separation unit 5 is a member configured in a mesh shape with steel filler or fibrous metal.
  • the vibrating unit 6 is operated to vibrate the matrix 4, and a sample in which the remagnetized material and the non-magnetized material are mixed is loaded from the sample loading unit 2 in a state where a magnetic force is applied to the matrix 4 by the magnetic head.
  • a sample it is preferable to introduce a powder of about 2500 m or so.
  • the input sample is uniformly dispersed by the gas supplied from the air blowing unit 3, and is in a state where it efficiently contacts the matrix 4.
  • the matrix 4 is magnetized, and the magnetized material supplied to the matrix 4 adheres to the matrix 4.
  • the non-magnetized material passes through the matrix 4 and a part of the non-magnetized material adhering to the matrix 4 together with the magnetized material is detached from the matrix by the vibration of the matrix 4 and discharged from the high gradient magnetic separation unit 5. Is done. Here, it is set so that the sample exiting the high gradient magnetic separation unit 5 is sent to the non-magnetized substance recovery unit 8. In this way, the non-magnetized material that has passed through the matrix 4 is recovered in the non-magnetized material recovery unit 8.
  • the matrix 4 is made free of magnetic force. If necessary, the vibrating part 6 is activated to vibrate the matrix 4. When the magnetic force is lost and the matrix 4 vibrates, the magnetized material adhering to the matrix 4 is detached from the matrix 4 and recovered by the magnetized material recovery unit 7. When the magnetized material adhering to the matrix 4 is roughly recovered, the sample is loaded again. As described above, the magnetized product and the non-magnetized product can be separately collected by repeating this operation alternately.
  • a magnetized product and a non-magnetized product can be efficiently separated and recovered by the dry treatment process. Since no liquid is used, the post-treatment process for extracting valuable metals from the magnetized material is simplified.
  • This high gradient magnetic fractionator is about 2500 m. It is also suitable for small powders and is particularly suitable for application to the metal recovery processing method of the present invention.
  • a valuable metal magnetized by subjecting the fine powder after mixing and homogenization to magnetizing treatment (heating treatment) at a lower temperature than the conventional technology. It can be used as a metal recovery treatment method that can reduce the energy input to the battery.
  • valuable metals such as gold Au can be recovered from waste such as used personal computers and recycled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

この発明は、廃棄物起因の有価金属を含む微粉体から従来試みられてきた複雑で高エネルギーを用いず、有価金属に磁性を持たせ、単純な分離方法である磁力を用いて有価金属を回収することを目的とする。このために、この発明の金属回収処理方法は、金属を含む微粉体を鉄化合物と混合して加熱し、その金属成分を含む鉄化合物の粉体を磁性化させ、磁性化物と非磁性化物を磁力により分離して回収し、この磁性化物より有価金属を回収する。

Description

明 細 書
金属回収処理方法および高勾配磁気分別装置
技術分野
[0001] 本発明は、 廃棄物等に含まれる金属成分の回収処理に関する。
背景技術
[0002] 廃棄物リサイクルとして大きくサーマルリサイクルとマテリアルリサイクル があり、 サーマルリサイクルは、 c o2削減等への対応から進んできているが 、 マテリアルリサイクル、 特に有価金属回収は種々の方法で行われつつある が、 例えば特許文献 1に記載されているように、 複雑な工程で、 且つ高エネ ルギー (特に熱エネルギー) を用いたプロセスが主たるものである。 廃棄物 起因の有価金属を含む微粉体からの有価金属回収の代表的な従来技術として は、 以下のものある。
[0003] 抽出分離は、 廃棄物起因の有価金属を含む微粉体を p H調整 (強酸、 強アル力 リ) した溶媒中に投入し、 p Hの違いによる任意金属の溶媒への溶解度の差を 用いて分離する方法である。 蒸留分離は、 一定容器内に廃棄物起因の有価金 属を含む微粉体を充填し、 加熱 (場合によっては減圧も加え) することで、 任意の金属の沸点および蒸気圧を用いて、 任意の温度 (圧力) 条件下で、 任 意の金属を蒸気化した後、 凝縮器 (コンデンサー) で凝縮回収する方法であ る。 また、 金属精鍊工程に準ずるもので、 高温で廃棄物起因の有価金属を含 む微粉体を溶融し、 任意金属の融点等の差を用いて任意の金属を回収する方 法がある。
特許文献 1 :特開平 9 _ 2 6 3 8 4 4
発明の開示
発明が解決しょうとする課題
[0004] 抽出分離においては、 p Hの違いだけでは、 溶解する金属を分別することはで きず、 高濃度であるがその他不純物も同時に溶解し含有した品位の回収物と なってしまう。 また、 p H調整に用いる溶媒が強酸、 強アルカリであるため取 リ极ぃ複雑、 注意が必要な機器構成で、 廃溶媒の廃棄処理にコストおよび環 境負荷がかかってしまう。 蒸留分離は、 蒸気化に高温が必要な金属 (主に貴 金属) には不向きであり、 また廃棄物中に含まれる不純物 (低沸点の非金属 ) も蒸発してしまうため、 その他不純物も同時に溶解し含有した品位の回収 物となってしまう。 これも、 上記抽出分離と同じく複雑な機器構成となる。
[0005] 一方、 融点等の差を用いて金属を回収する方法においては、 融点の高い金属
(主に貴金属) に対して高温が必要であり、 また金属同士で金属間化合物 ( 合金) となってしまう場合もあり、 機器構成としては大規模な設備 (精鍊プ 口セス) となる。
[0006] 有価金属回収は、 今後の廃棄物リサイクル市場において必要不可欠な項目に なると考えられ、 本発明では、 廃棄物起因の有価金属を含む微粉体から従来 試みられてきた複雑で高エネルギーを用いず、 有価金属に磁性を持たせ、 単 純な分離方法である磁力を用いて、 有価金属を回収することを目的としてい る。
課題を解決するための手段
[0007] 上記の目的を解決するために、 本発明の金属回収処理方法は、 金属を含む微 粉体を鉄化合物と混合して加熱し、 その金属成分を含む鉄化合物の粉体を磁 性化させることを特徴とする。 鉄化合物としては、 例えば、 鉄酸化物が使用 できる。 さらに、 磁性化物と非磁性化物を磁力により分離してもよい。 加熱 温度は、 ガラス繊維の融点よリも低い温度が好ましい。
発明の効果
[0008] 本発明は、 混合均質化後の微粉体に対して、 従来技術に比較し、 より低温で の磁性化処理 (加熱処理) を施すことで有価金属に磁性を帯びさせることが 可能で、 プロセス全体への投入エネルギーの低減ができるという効果を有す る。 添加剤も安価な鉄化合物であり、 トータルのランニングコストを低減で きる。 本発明は、 従来技術と比較して機器構成が個別の単純な 3工程のみで あり、 各工程の機器操作因子は、 他の機器操作と独立しており実施操作しや すく、 また各工程そのものを切り離しても実施可能である。 複雑な機器構成 でない点、 高温を使用しない点および添加剤の取り扱いの容易さ、 処理回収 物中の有価金属の溶出防止による環境負荷低減からも、 従来技術に比較し、 プロセス全体の安全性が向上される。 回収される磁性物中への有価金属の濃 縮による原価価値アップに加え、 かつ磁性を帯び、 かつ微粉体であるため、 回収磁性物そのもので中間もしくは最終工業製品の代替となり得る。
図面の簡単な説明
[0009] [図 1]金属回収処理方法の工程を示すフローチヤ一卜である。
[図 2]加熱後の混合粉末の外観を示す画像である。
[図 3]磁力による分別での回収率を示すグラフある。
[図 4]加熱後の PC B_ F eO混合粉末の XRDパターンを示すグラフある。
[図 5]加熱後の PCB_ F eO混合粉末の S EM画像および EDX解析のダラ フある。
[図 6] C uの磁性側配分率を示すグラフである。
[図 7] F eの磁性側配分率を示すグラフである。
[図 8]N iの磁性側配分率を示すグラフである。
[図 9] S nの磁性側配分率を示すグラフである。
[図 10] P bの磁性側配分率を示すグラフである。
[図 11 ]金属成分全体の磁性側配分率を示すグラフである。
[図 12]試料振動型磁化測定の結果を示すグラフある。
[図 13]Δ 0 - t a n 0の散布を示すグラフである。
[図 14] PC B粉末の S EM画像および EDXポイント解析のグラフある。
[図 15]磁性化物の平均回収率を示すグラフある。
[図 16]金属成分の磁性側への平均分配率を示すグラフある。
[図 17]高勾配磁気分別装置の構造を示すブロック図である。
符号の説明
[0010] 1. 高勾配磁気分別装置
2. 試料投入部
3. 送風部 4 . マトリクス
5 . 高勾配磁気分離部
6 . 振動部
7 . 磁性化物回収部
8 . 非磁性化物回収部
発明を実施するための最良の形態
[0011 ] この発明を実施するための最良の形態について説明する。 廃棄物起因の有価 金属を含む微粉体を鉄化合物と混合し、 大気中で加熱することで有価金属を 磁性化し、 磁性化後の磁性物と非磁性物とを磁力選別で分離する。 廃棄物起 因の有価金属を含む微粉体と混合する鉄化合物は、 Fe0 ( 2価)、 Fe304 (FeO - Fe2 03 ; 2価, 3価)、 Fe203 ( 3価)および Fe (OH) ( 3価)で代表される安価な鉄化合 物を用いる。
[0012] 廃棄物起因の有価金属を含む微粉体と混合する鉄化合物の粒度は、 混合対象 物である廃棄物起因の有価金属を含む微粉体により決まり、 同程度粒度もし くは、 それ以下が望ましい。 磁性化後の磁性物と非磁性物とを磁力選別で分 離する方法において、 廃棄物起因の有価金属を含む微粉体と混合する鉄化合 物の混合比率は、 混合対象物である廃棄物起因の有価金属を含む微粉体中の 回収対象有価金属の含有量等によリ決めるのが好ましい。
[0013] 加熱する温度および時間は、 廃棄物起因の有価金属を含む微粉体に含まれる 回収対象有価金属の種類および含有量によリ決まるが、 ガラス繊維の融点よ リ低いことが好ましく、 多くの場合 8 0 0 °C程度までの加熱温度と数分〜数 十分の加熱時間である
[0014] 磁力分離する磁界強度は、 得られる磁性物の磁力により決めるのが好ましい 。 磁力分離する分離形式は、 乾式、 湿式のいずれの雰囲気でも磁力分離可能 であり、 どちらが適するかは、 廃棄物起因の有価金属を含む微粉体に含まれ る有価金属以外の不純物 (主に非磁性物に濃縮) の性状によって決めること が好ましい。
[0015] 回収される磁性物および非磁性物中の有価金属の溶出防止が図られ、 環境負 荷に対する安全性があることが好ましい。
[0016] 回収される磁性物である Qf -Fe203は、 日光、 空気、 水、 熱に対する安定性が大 きく紫外線吸収能力を持っため、 研磨材や赤色顔料、 セメントの着色剤、 絵 の具、 インク、 タイル, レンガの原料など塗料としての用途がある。 また、 工業的にフェライ卜磁心および磁石、 磁気記録材の原料としての用途がある
[0017] 図 1は金属回収処理の工程を示すフローチャートである。 微粉体と鉄化合物 の混合、 磁性化処理 (加熱処理) 、 磁力分離プロセスを有する。
[0018] 微粉体と鉄化合物の混合について説明する。 この工程では、 廃棄物起因の有 価金属を含む微粉体に対し、 最適な鉄化合物粉体とを混合均質化する。 鉄化 合物の種類は、 代表的なものとして Fe0 ( 2価)、 Fe304 (FeO■ Fe203; 2価, 3価 )、 Fe203 ( 3価)および Fe (0H) ( 3価)があげられる。 鉄化合物の粒度は、 混合 対象物である廃棄物起因の有価金属を含む微粉体により決まり、 同程度粒度 もしくは、 それ以下が望ましい。 鉄化合物の混合比率は、 混合対象物である 廃棄物起因の有価金属を含む微粉体中の回収対象有価金属の含有量等により 決まる。
[0019] つぎに、 磁性化処理 (加熱処理) について説明する。 本工程は、 上記のよう に最適条件で混合均質化された鉄化合物混合粉体を、 大気中で加熱する。 加 熱温度は、 廃棄物起因の有価金属を含む微粉体に含まれる回収対象有価金属 の種類および含有量によリ決まるが、 8 0 0 °C程度までの加熱温度が必要で ある場合が多い。 加熱時間は、 廃棄物起因の有価金属を含む微粉体に含まれ る回収対象有価金属の種類および含有量によリ決まるが、 数分〜数十分の加 熱時間が必要である場合が多い。
[0020] 磁力分離について説明する。 本工程は、 上記工程において最適条件で加熱処 理された鉄化合物混合粉体を、 磁力を用いて磁性物と非磁性物とに分離する 。 磁界強度は、 上磁性化処理 (加熱処理) における反応で得られる磁性物の 磁力により決まる。 分離形式としては、 乾式、 湿式のいずれの雰囲気でも磁 力分離可能であるが、 どちらが適するかは、 廃棄物起因の有価金属を含む微 粉体に含まれる有価金属以外の不純物 (主に非磁性物に濃縮) の性状によつ て決めるのが望ましい。
実施例
[0021] この発明の実施例について説明する。 廃棄物起因の有価金属を含む微粉体は 、 表 1に示す組成の廃棄プリント基板 (以下 PCB: Print Circuit Board) か ら有機分を取り除いた後の粉末を用いた。 この粉末中には有価金属として Cu, Fe,Ni,Sn,Pbに加え貴金属として Au,Ag,Pdを含んでいる。 また、 混合する鉄化 合物は、 酸化数が 2から高くなるほど安定になり、 Fe0(2価)、 Fe304(FeO- Fe20 3; 2価, 3価)、 Fe203 ( 3価)および Fe(0H)3(3価)を種々用い、 比較した。 用 いた鉄化合物粉末は、 全て粒径 250 m以下とした。 なお、 磁性を持つ鉄化合 物は FeOおよび Fe304であった。
[表 1]
Figure imgf000008_0001
[0022] 混合均質化および加熱処理条件は、 表 2に示す。 磁性物化処理を行った粉末 は磁力分離に供し、 磁力分離は、 磁性化処理粉末を入れた純水中に磁石を揷 入し、 攪拌させながら湿式磁力分離とした。 [表 2]
Figure imgf000009_0001
[0023] 図 2は、 磁性物化処理後粉末の外観の一例を示す写真である。 PCB-酸化鉄混 合粉末の外観は、 1073Kで処理した場合に混合した鉄化合物の酸化数が 2から 3 へと高くなるにしたがって灰色から赤褐色へと変化し、 Fe (0H) 3混合粉末にお いて特に鮮やかな赤色を呈していた。 また、 1073K処理後混合粉末は、 価数が 低くなるほど焼結が進行しており、 FeO混合粉末において、 全ての条件で焼結 が進行していた。 Fe304を混合した粉末は、 1073Kにおいて FeO混合粉末と比較 すると小さい粒であつたが焼結が進行していた。 価数が 3である Fe203および Fe (0H) 3混合粉末は、 粉末状であった。 また、 1273K処理を施した混合粉末は全て の条件で焼結していた。
[0024] FeOおよび Fe304混合粉末において 1073K処理で生成した塊状物は全て容易に崩 れる程度であった。 しかし、 1273K処理において生成した焼結体は、 焼結が進 行し、 粒結合を伴っていた。 PCB粉末の主成分であるガラス繊維は、 活性雰囲 気において 1 123Kの軟化点である。 したがって混合粉末は、 PCB粉末のガラス 繊維のため、 1 123Kを超えて繊維の形態を保持できなくなり、 1273Kにおいて 焼結が進行していた。 また、 本実施例で用いた鉄化合物は、 単独で 873Kにて 加熱処理した結果、 FeOのみが焼結し、 さらに磁性を示した。
[0025] 磁力分離を行う際、 湿式で攪拌すると容易に崩れる程度だった 1073K処理粉末 はそのまま用い、 1273K処理粉末は強固な焼結体となっていたため粉砕して用 いた。 FeO混合粉末の磁性物割合は図 3 (a)に示すように、 6 : 4の混合比におい て、 加熱時間が短いほど高くなる傾向を示し、 10«1 ^にぉぃて93. 83%でぁった 。 FeO混合粉末の磁性物割合は、 混合比 5 : 5の場合も 6 : 4の混合比と同じ傾向に あり、 10m i nで 92. 38%と最も高い割合を示した。 FeO混合粉末は、 加熱時間を 長くしても磁性物割合が増加しなかったことから、 10minで酸化反応が終了し ていると考えられる。 次に加熱温度 1273Kで 10minの処理を施した結果、 磁性 物割合は 93.60%であり、 1073K以上で加熱温度の上昇による効果が無かった。
[0026] Fe304混合粉末は図 3 (b)に示すように、 6:4の混合比、 10min処理条件で磁性物 割合が 86.01%で最も高かった。 磁性物割合は加熱温度を 1273Kに上げると 82.6 7%に減少し、 FeO混合粉末と同様に 1073K以上で加熱温度の上昇による効果が 無かった。
[0027] Fe203混合粉末は図 3 (c)に示すように、 加熱時間 10minにおいて混合比の違い による磁性物割合の差はほとんど無かったが、 加熱温度の上昇および加熱時 間の延長によって磁性物割合が増加する傾向を示した。 最も高い磁性物割合 は、 混合比 6:4、 加熱温度 1073K、 加熱時間 60minの条件で 80.58%をであった。 また、 同じ 6:4の混合比、 加熱時間1001^での磁性物割合が10731で52.58%だっ たのに対し、 12731で70.10%を示し、 温度の上昇による磁性物化への効果が認 められた。
[0028] Fe(0H)3混合粉末は図 3 (d)に示すように、 加熱温度が上昇するにしたがって磁 性物割合が増加する傾向が見られたが、 最高値は 6:4、 1273K. 10minの条件で 86.32%であった。 磁性物生成量は、 混合する鉄化合物の価数が 2価から高くな るにしたがって減少する傾向にあり、 2価の FeOおよび FeOを含む Fe304を混合し た場合、 低い加熱温度における短時間の処理で反応が終了していた。 一方で F e203および Fe(0H)3は、 Feの酸化数 3で最も安定した化合物であるため、 磁性を 帯びるために高い温度で長い加熱時間を要すると考えられる。
[0029] 得られた結果から、 PCB粉末と混合することで最も磁性物を生成した粉末は、 FeO粉末であった。 また、 磁力分離後の外観は、 磁力分離前と比較して、 磁性 物の赤褐色、 非磁性物の灰色が強くなつていた。 したがって磁性物は酸化鉄 を主成分とする金属成分、 非磁性物は、 PCB粉末中のガラス繊維が主成分であ ることが予想される。
[0030] 磁力分離において磁性側に移行した混合粉末の X線回折は、 一例として FeO添 加混合粉末である図 4に示すように、 混合した鉄化合物の違いによつて強度 の違いがあったものの、 全てへマタイト (Q? -Fe203) のピークが主体であった
。 へマタイ卜は六方晶構造であり、 磁性の無い酸化鉄であり、 通常磁性を持 ち、 スピネル構造であるマグネタイト (Fe304) およびマグへマイト (r -Fe203 ) のピークは検出されなかった。 また、 非磁性側に移行した粉末は、 図 4に 示すように、 混合した鉄化合物の酸化数が 2から 3へと高くなるほどへマタイ 卜ピークが大きく検出された。 FeO混合粉末において非磁性側に移行した粉末 は、 S i 02ピークが大きく検出され、 ガラス繊維主体であった。 また、 Fe203を除 いた混合粉末の非磁性粉末は非晶質のブロードが大きく検出された。
[0031 ] 磁力分離後の混合粉末は SEM■ EDX観察は、 一例として FeO添加混合粉末である 図 5に示すように、 1273K処理後で 1073Kと比較して粒が大きくなっていた。 また EDX分析結果から、 前項でへマタイ卜となっていた磁性粉末は、 PCB粉末 に含まれていた金属成分を取リ込んでいることが明らかとなつた。 N iおよび 貴金属成分は、 濃度が低く粒径が小さく、 明確な分布を認められなかった。 なお、 EDXグラフで検出した Auのピークは、 蒸着に用いた Auである。
[0032] PCB粉末中金属成分の磁性側および非磁性側分配率は、 磁力分離で回収した粉 末重量および EDX面分析結果から算出して、 図 6〜図 1 1に示した。
Cuの磁性側への分配率は図 6に示すように、 FeO混合粉末で最も高い値を示し 、 6 : 4、 10m i nの条件下において 1073Kで 95. 73%、 1273Kで 95. 06%であった。
Feの磁性側分配率は図 7に示すように、 FeOおよび Fe304を 6 : 4の割合で混合し た粉末において全ての加熱条件で 90%以上の高い分配率を示した。 特に FeOを 混合した粉末は、 6 : 4での加熱条件下で全て 97%以上の分配率を示し、 Feを非 常に高い割合で磁性物として回収し得る結果が得られた。
N iの最高磁性側分配率は図 8に示すように、 100%を除ぃて「6203で86. 12%、 FeO で 96. 37%、 Fe304で 94. 03%、 Fe (0H) 3で 89. 27%であった。 N iは、 PCB粉末中の含有 率が 0. 05mass%と非常に低かったために分析結果の信頼度は低いと考えられる 。 しかし、 N iは Fe-N iの形態で PCB中に存在していたため、 Feの分配率が N iの 分配率に大きく影響していると考えられる。
Snの磁性側分配率は図 9に示すように、 Fe0、 Fe304および Fe (0H) 3において 6 : 4 の混合比で 90%以上を示した。 Snは Cu-Snの形態で PCB中に存在するため、 Cuの 磁性物化に比例して磁性側に移行すると考えられる。
Pbの磁性側分配率は図 1 0に示すように、 FeO混合粉末において 6:4で 92.61% 、 5 :5で 93.23%と唯一 90%以上を示した。
金属成分全体の磁性側分配率は図 1 1に示すように、 FeOの 6:4全てと 5: 5の 12 73K、 10min、 「6304の6:4で90%以上を示した。 金属成分の磁性側分配率は、 上 述の磁性物割合と同様に、 混合鉄化合物の酸化数が 3に近づくほど少なくなる 傾向を示した。
図 6から図 1 1に示した磁性側分配率のデータにおいて、 いずれも一定以上 の効果が確認されており、 ここに特に示されていない混合比の範囲も含めて 、 本発明は広く適用できるものである。
その中でも特に FeOは、 PCBと混合することで金属成分を 90%以上の高い割合で 磁性側に分配しており、 磁力分離の結果からも、 PCB粉末と混合する上で最適 とされる。
[0033] Fe203標準試薬粉末および磁力分離で磁性側に移行した混合粉末は、 試料振動 型磁化測定装置 (VSM: Vibrating Sample Magenetometer) を用いて磁化測定 を行った。 標準 Fe203は図 1 2 (a)に示すように、 0.61emu/gの飽和磁化であり 、 ほとんど磁性を示さなかった。 しかし、 本実施例で得られた Fe203粉末は図 1 2 (b)に示すように、 7.54 emu/gの飽和磁化を示し、 残留磁化および保磁力 が 1.01 emu/g. 0.19K0eと小さいものの、 通常磁性を持たないへマタイ卜と同 じ構造であるにも関わらず磁性体の特性を示した。
[0034] 本実施例で得られたへマタイト粉末が磁性を持つ理由について、 図 4に示し た X線回折結果より、 結晶格子のひずみに着目し詳細を検討した。 Braggの回 折条件式は、 次式で与えられる。
2 d - s i n 0 = n A (式 1 )
上式を全微分すると
△ d - s i n 0 + d - c o s 0 - A 0 = O
.■■ Δ dZd =_Δ t a n 0 (式 2) 格子面間隔の変化すなわち格子ひずみ Ad/dは、 回折角 0の変化量 Δ0/ tan 0の傾きより求められる。 また式 2より、 格子ひずみは tan 6»すなわち回折角 0の値が大きいほど感度が向上する。 したがって標準へマタイトは、 本実施 例で得られた磁性へマタイト粉末の X線回折結果と比較して Δ 0 -tan 0の散布 図を作成した。
a軸が関与しない (0 1 2)および (024)面の Δ 6»は図 1 3に示すように、 0.01 85で一定であった。 一方で a軸が関与している面における傾きは、 (1 04)→( 208)で- 0.04405、 (1 1 0)→(2 20)で- 0.04977、 (1 1 3)→(2 2 6)で- 0.03 154であり、 負の勾配を示した。 したがって式より、 Ad/dは a軸が関与してい る面において正の勾配を示すことになリ、 a軸が伸びたとされる。
したがって、 作製 Fe203はミラー指数と面間隔の式より、 X線回折によって測定 した d、 h、 kおよび I値を用い、 0値を表3に示す標準「6203の0値と同じ13.7489 OAと仮定して、 a値を算出した。 六方晶におけるミラー指数と面間隔の式は 、 次式で与えられる。
1Zd2= (3Z4) { (h2+h k + k2) Za2} + I 2Zc2 (式 3) [表 3]
Figure imgf000013_0001
[0035] 式 3より算出した作製 Fe203の a値は 5.04944Aとなり、 表 3に示す標準 Fe203の a 値と比較して大きくなつていることが明らかとなった。 ここで、 本実施例に て測定の対象とした金属元素の原子半径は、 Feが 1.24Aであるのに対し、 Cu が 1.28A、 Niが 1.25A、 Snが 1.41および 1.51 A、 Pbが 1.76Aである。 また貴 金属元素も、 Agが 1.44A、 Auが 1.44A、 Pdが 1.37 Aであり、 PCB粉末中に含ま れる金属元素は全て Feと比べて原子半径が大きく、 これらの金属元素がへマ タイ卜中に固溶していると考えられる。
[0036] 本実施例で得られた磁性へマタイト粉末は3£!«^0乂を用ぃて2,000倍に拡大し 、 図 1 4に示す +印の個所での点分析結果から、 Fe、 Cuおよび Snの同時ピー クが検出された。 したがって、 磁性へマタイ卜粉末に、 Cuおよび Sn元素が固 溶していた。
[0037] 立方スピネル型構造を持つ Fe304および r-Fe203はペレット化において、 焼成温 度が低く、 時間が短い場合、 六方稠密型の a- Fe203への変換が完全に行われ ず、 何らかの格子欠陥を伴った不安定なひ- Fe203とされる。 したがって、 本 実施例において混合粉末は、 完全に六方稠密型への変態が伴われなかったこ と、 および前述の通り PCB中の金属元素が鉄中に固溶したことが起因して、 格 子欠陥へマタイ卜結晶内に反磁性配列の均衡の乱れが生じ、 弱い強磁性にな つたとされる。
[0038] 平均磁性物回収率は図 1 5に示すように、 どの混合粉末も 6:4の混合比で最も 多くなる傾向にあった。 2価 FeO混合粉末は 6:4および 5:5の混合比で各々 91.18 %、 91.84%であり、 唯一 90%以上を示した。 次いで、 「6304を6:4の割合で混合し た粉末が 81.81%と高い磁性割合を示した。 Fe203混合粉末は最も割合が低く、 最も高かった 6:4の混合条件でも 66.15%であった。 Fe(0H)3混合粉末は、 Fe203混 合粉末よりも割合は高かったものの、 最高値を示した 6:4の混合割合でも 77.4 6%であり、 FeO および Fe304を混合した粉末には及ばなかった。
[0039] 金属成分の磁性側への平均分配率は図 1 6に示すように、 信頼度の低い Niを 除いて、 FeOを 6:4で混合した粉末において最高の分配率であり、 Cu 、 Fe、 S n、 Pbおよび金属成分全体でそれぞれ 90.11%、 97.50%、 86.83%、 82.71%およ び 94.88%であった。 FeO混合粉末は、 唯一全ての金属元素および金属成分全体 において 80%以上の磁性側分配率を示した。
[0040] 2価の Feは酸化されやすく、 3価に移りやすい性質を持ち、 Feは 3価で最も安定 した化合物を形成する。 FeO混合粉末が最も磁性化した理由は、 FeOの結晶構 造にある。 2価酸化鉄である FeOは、 結晶構造的に非常にバランスが取れてい ない酸化鉄で、 その不安定な状態のために、 空気中でも様々な分子と結びつ き安定となる傾向があることから、 最も多く非鉄金属元素を吸着、 反応し、 結晶構造の乱れから最も磁性物を生成したと考えられる。 FeOの次に磁性物割 合および金属元素の磁性側分配率が高かった Fe304は、 2価と 3価の Feが共存し ており、 黒色の立方晶系結晶で欠陥を持つ逆スピネル型構造である。
[0041 ] 一方、 3価の酸化鉄である Fe203は最も安定した稠密立方構造であり、 最も低い 磁性物生成量および磁性側分配率を示したと考えられる。 Fe203を混合して磁 性物として回収する処理法に、 フェライト化法があるが、 通常、 乾式フェラ イト処理は、 空気中にて Fe203を 1673K以上で強熱し Fe304とするため、 莫大なコ ストを要すると予想される。 また、 本実施例で用いた 3価の Fe (0H) 3は、 水酸化 鉄の中でも最も安定した構造を取っており、 Fe203に次いで低い磁性物生成量 および金属成分の磁性側分配率を示したと考えられる。
[0042] 本実施例において以上の点から、 PCB粉末中の金属成分を最も効率よく濃縮し た磁性物化処理を行う上での最適条件は、 PCB粉末と FeOを 6 : 4の割合で混合し 1073Kで空気酸化させることであった。
[0043] 続いて、 高勾配磁気分別装置の例について説明する。 磁性体と非磁性体の粒 子を分別するには、 高勾配磁気分別装置が有効である。 磁性体と非磁性体を 分別する従来の技術としては、 磁気ドラム式や磁気ベル卜式の磁気分離装置 や、 湿式の高勾配磁気分別装置などがある。 しかし、 磁気ドラム式や磁気べ ル卜式の磁気分離装置では、 2 5 0 m程度以下の微粒子を処理しょうとし ても飛散させてしまうという問題がある。 湿式の高勾配磁気分別装置におい ては、 使用する液体には有価金属以外の成分も溶融するので、 これらを除去 する処理が必要となるなど、 作業が煩雑となる。
[0044] そこで、 この実施例では液体を使用しない乾式の高勾配磁気分別装置の例に ついて説明する。 図 1 7は、 高勾配磁気分別装置の構造を示すブロック図で ある。 この高勾配磁気分別装置 1は試料投入部 2と、 投入された試料に対し て気体を吹き付けて試料を均等に分散させる送風部 3と、 磁気ヘッド (図示 省略) と繊維状金属メッシュのマトリクス 4を備えた高勾配磁気分離部 5と 、 繊維状金属メッシュのマトリクス 4に振動を付与する振動部 6と、 磁性化 物回収部 7と、 非磁性化物回収部 8とを有する。 また、 高勾配磁気分離部 5 を出た試料が磁性化物回収部 7へ送られるか、 あるいは非磁性化物回収部 8 へ送られるかを切り替えることができるようになつている。
[0045] 送風部 3は、 試料投入部 2と高勾配磁気分離部 5の間に設けられ、 空気など の気体を投入された試料と混合することで投入される試料を均等に分散させ るものである。 高勾配磁気分離部 5に設けられるマトリクス 4はスティール ヮィヤーや繊維状の金属によってメッシュ状に構成された部材である。
[0046] 振動部 6を作動させて、 マトリクス 4を振動させ、 磁気ヘッドによってマト リクス 4に磁力をかけた状態で、 試料投入部 2よリ磁性化物と非磁性化物の 混合した試料を投入する。 ここで、 試料としては、 2 5 0 m程度またはそ れょリ小さい粉体を投入するのが好ましい。 投入された試料は、 送風部 3よ リ供給される気体によって均一に分散されており、 マトリクス 4に効率的に 接触するような状態になる。 マトリクス 4は磁性化されており、 このマトリ クス 4に供給された磁性化物は、 マトリクス 4中に付着する。 一方、 非磁性 化物は、 マトリクス 4を通過し、 また磁性化物と一緒にマトリクス 4に付着 する一部の非磁性化物は、 マトリクス 4の振動によりマトリクスから離脱し 、 高勾配磁気分離部 5より排出される。 ここで、 高勾配磁気分離部 5を出た 試料は非磁性化物回収部 8へ送られるように設定しておく。 こうして、 マト リクス 4を通過した非磁性化物は非磁性化物回収部 8に回収される。
[0047] 次に、 試料の投入を停止し、 高勾配磁気分離部 5を出た試料は磁性化物回収 部 7へ送られるように設定しておく。 そして、 マトリクス 4に磁力がかから ない状態にする。 必要に応じ振動部 6は作動させて、 マトリクス 4を振動さ せておく。 磁力がなくなつたこと、 および マトリクス 4が振動することに よって、 マトリクス 4に付着していた磁性化物はマトリクス 4から離脱し、 磁性化物回収部 7に回収される。 マトリクス 4に付着していた磁性化物を概 ね回収したら、 再度、 試料の投入を行う。 以上、 この作業を交互に繰り返す ことによって、 磁性化物と非磁性化物を分別回収することができる。
[0048] 以上、 乾式の処理工程によって、 効率的に磁性化物と非磁性化物を分別回収 することができる。 液体を使用しないため、 磁性化物から有価金属を抽出す る後処理工程も簡易になる。 この高勾配磁気分別装置は、 2 5 0 m程度ま たはそれよリ小さい粉体にも適しておリ、 この発明の金属回収処理方法に適 用するのに特に適している。
産業上の利用可能性
本発明は、 混合均質化後の微粉体に対して、 従来技術に比較し、 より低温で の磁性化処理 (加熱処理) を施すことで有価金属に磁性を帯びさせることが 可能で、 プロセス全体への投入エネルギーの低減ができる金属回収処理方法 として利用でき、 たとえば、 使用済みパーソナルコンピュータなどの廃棄物 から金 A uなどの有価金属を回収■ リサイクルすることができる。

Claims

請求の範囲
[1 ] 金属を含む微粉体を鉄化合物と混合して加熱し、 その金属成分を含む鉄化合 物の粉体を磁性化させることを特徴とする金属回収処理方法。
[2] 前記鉄化合物が鉄酸化物である請求項 1に記載の金属回収処理方法。
[3] 磁性化物と非磁性化物を磁力により分離する請求項 1または請求項 2に記載 の金属回収処理方法。
[4] ガラス繊維の融点よりも低い温度で加熱する請求項 1ないし請求項 3のいず れかに記載の金属回収処理方法。
[5] 試料投入部と、 導入された試料に対して気体を吹き付けて試料を均等に分散 させる送風部と、 磁気へッドと繊維状金属メッシュを備えた高勾配磁気分離 部と、 繊維状金属メッシュに振動を付与する振動部と、 磁性物回収部と、 非 磁性物回収部とを有する高勾配磁気分別装置。
PCT/JP2007/000150 2006-03-03 2007-03-01 金属回収処理方法および高勾配磁気分別装置 WO2007099714A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008502670A JP5347091B2 (ja) 2006-03-03 2007-03-01 金属回収処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-058532 2006-03-03
JP2006058532 2006-03-03

Publications (1)

Publication Number Publication Date
WO2007099714A1 true WO2007099714A1 (ja) 2007-09-07

Family

ID=38458835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000150 WO2007099714A1 (ja) 2006-03-03 2007-03-01 金属回収処理方法および高勾配磁気分別装置

Country Status (3)

Country Link
JP (1) JP5347091B2 (ja)
TW (1) TW200736404A (ja)
WO (1) WO2007099714A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100577300C (zh) * 2008-05-15 2010-01-06 长沙矿冶研究院 连续式离散型稀土永磁高梯度磁选机
JP2013147702A (ja) * 2012-01-19 2013-08-01 Univ Of Tokyo 貴金属含有スクラップ処理物とその製造方法、及び貴金属の回収方法
WO2014175094A1 (ja) * 2013-04-24 2014-10-30 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法
JP2015219948A (ja) * 2014-05-14 2015-12-07 松田産業株式会社 リチウムイオン二次電池からの有価物回収方法
US9914648B2 (en) 2013-07-03 2018-03-13 Sumitomo Metal Mining Co., Ltd. Process for producing hematite for ironmaking
US9981858B2 (en) 2014-01-17 2018-05-29 Sumitomo Metal Mining Co., Ltd. Process for producing hemataite for ironmaking

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201250064A (en) * 2011-06-10 2012-12-16 Son King Entpr Co Ltd Apparatus containing heavy metal liquid to be recycled as metal solid

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118824A (ja) * 1982-12-22 1984-07-09 シエル・インタ−ナシヨナル・リサ−チ・マ−トスハツペイ・ベ−・ヴエ− フエロニツケル精鉱の製法
JPS62254851A (ja) * 1986-04-28 1987-11-06 Nittetsu Mining Co Ltd 微粉の乾式磁力選別方法
JPH06174383A (ja) * 1992-05-08 1994-06-24 Techno Toriito:Kk 電気炉ダスト類の処理法
JPH073345A (ja) * 1993-06-16 1995-01-06 Nippon Steel Corp 製鋼スラグからの有価成分の回収方法
JPH08287967A (ja) * 1995-04-18 1996-11-01 Sumitomo Metal Mining Co Ltd 使用済みリチウム二次電池からのコバルト、銅、リチウムの回収方法
JPH1015519A (ja) * 1996-07-02 1998-01-20 Mitsubishi Heavy Ind Ltd 廃棄物処理装置
JPH1074539A (ja) * 1996-09-02 1998-03-17 Nikko Kinzoku Kk 使用済みリチウム電池からの有価物回収方法
JPH11323447A (ja) * 1998-05-14 1999-11-26 Hitachi Chemical Techno Plant Co Ltd 廃棄物中の金属を回収する方法
JP2001132930A (ja) * 1999-11-05 2001-05-18 Mitsubishi Heavy Ind Ltd 焼却灰の資源化方法とその装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0143182Y2 (ja) * 1986-04-30 1989-12-14

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118824A (ja) * 1982-12-22 1984-07-09 シエル・インタ−ナシヨナル・リサ−チ・マ−トスハツペイ・ベ−・ヴエ− フエロニツケル精鉱の製法
JPS62254851A (ja) * 1986-04-28 1987-11-06 Nittetsu Mining Co Ltd 微粉の乾式磁力選別方法
JPH06174383A (ja) * 1992-05-08 1994-06-24 Techno Toriito:Kk 電気炉ダスト類の処理法
JPH073345A (ja) * 1993-06-16 1995-01-06 Nippon Steel Corp 製鋼スラグからの有価成分の回収方法
JPH08287967A (ja) * 1995-04-18 1996-11-01 Sumitomo Metal Mining Co Ltd 使用済みリチウム二次電池からのコバルト、銅、リチウムの回収方法
JPH1015519A (ja) * 1996-07-02 1998-01-20 Mitsubishi Heavy Ind Ltd 廃棄物処理装置
JPH1074539A (ja) * 1996-09-02 1998-03-17 Nikko Kinzoku Kk 使用済みリチウム電池からの有価物回収方法
JPH11323447A (ja) * 1998-05-14 1999-11-26 Hitachi Chemical Techno Plant Co Ltd 廃棄物中の金属を回収する方法
JP2001132930A (ja) * 1999-11-05 2001-05-18 Mitsubishi Heavy Ind Ltd 焼却灰の資源化方法とその装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100577300C (zh) * 2008-05-15 2010-01-06 长沙矿冶研究院 连续式离散型稀土永磁高梯度磁选机
JP2013147702A (ja) * 2012-01-19 2013-08-01 Univ Of Tokyo 貴金属含有スクラップ処理物とその製造方法、及び貴金属の回収方法
WO2014175094A1 (ja) * 2013-04-24 2014-10-30 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法
JP2014214338A (ja) * 2013-04-24 2014-11-17 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法
AU2014258565B2 (en) * 2013-04-24 2016-12-15 Sumitomo Metal Mining Co., Ltd. Method for producing hematite for ironmaking
US9752209B2 (en) 2013-04-24 2017-09-05 Sumitomo Metal Mining Co., Ltd. Method for producing hematite for ironmaking
US9914648B2 (en) 2013-07-03 2018-03-13 Sumitomo Metal Mining Co., Ltd. Process for producing hematite for ironmaking
US9981858B2 (en) 2014-01-17 2018-05-29 Sumitomo Metal Mining Co., Ltd. Process for producing hemataite for ironmaking
JP2015219948A (ja) * 2014-05-14 2015-12-07 松田産業株式会社 リチウムイオン二次電池からの有価物回収方法

Also Published As

Publication number Publication date
JPWO2007099714A1 (ja) 2009-07-16
JP5347091B2 (ja) 2013-11-20
TW200736404A (en) 2007-10-01

Similar Documents

Publication Publication Date Title
Walton et al. The use of hydrogen to separate and recycle neodymium–iron–boron-type magnets from electronic waste
WO2007099714A1 (ja) 金属回収処理方法および高勾配磁気分別装置
Lobato et al. Characterization and chemical stability of hydrophilic and hydrophobic magnetic nanoparticles
US20210363608A1 (en) Method For Extracting Rare Earth Elements Contained In Permanent Magnets
Tu et al. Conversion of waste Mn–Zn dry battery as efficient nano-adsorbents for hazardous metals removal
Toma Magnetic nanohydrometallurgy: a nanotechnological approach to elemental sustainability
Sakiewicz et al. Purification of halloysite by magnetic separation
Bentli et al. Magnesite concentration technology and caustic–calcined product from Turkish magnesite middlings by calcination and magnetic separation
Erwin et al. Magnetic iron oxide particles (Fe3O4) fabricated by ball milling for improving the environmental quality
WO2010031619A1 (de) Verfahren zum trennen von werterzpartikeln aus agglomeraten, die werterzpartikel und an diese angelagerte magnetisierbare partikel, insbesondere fe3o4, enthalten
Gunanto et al. High purity Fe3O4 from local iron sand extraction
Wu et al. Surface magnetization of siderite mineral
Ahalya et al. Effect of sintering on structural, morphological, magnetic properties and Cr (VI) adsorption of cobalt substituted MnFe2O4 nanoparticles
Chen et al. PREPARATION AND RECOVERY OF IRON CARBIDE FROM PYRITE CINDER VIA A CARBURIZATION-MAGNETIC SEPARATION TECHNOLOGY
Barnwal et al. Physical processing of discarded integrated circuits for recovery of metallic values
Zhang et al. Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties
DE3889151T2 (de) Verfahren zur Herstellung, Konzentration und Trennung von Werkstoffen mit gesteigertem magnetischem Parameter von anderen magnetischen Nebenprodukten.
Tu et al. Recycling of neodymium enhanced by functionalized magnetic ferrite
Liliou et al. Selective leaching of scandium and yttrium from red mud induced by hydrothermal treatment
Liu et al. Enhancing magnetism of ferrite via regulation of Ca out of sit A from spinel-type structure by adjusting the CaO/SiO2 mass ratio: Clean and value-added utilization of minerals
Shoumkova Physico-chemical characterization and magnetic separation of coal fly ashes from “Varna”,“Bobov Dol” and “Maritza-Istok I” power plants, Bulgaria. II—Magnetic separation
Hino et al. Ferritization of waste printed circuit boards for magnetic separation of common metals
Su et al. Synthesis and characterization of Fe3-xSnxO4 (X= 0–0.5) soft magnetic materials by low-temperature solid state method
Kwon et al. Removal of Cationic and Anionic Heavy Metal Ions From Aqueous Phase by a HGMS and Magnetized Zeolite
Nazlan et al. Structural and magnetic characteristics evaluation of iron oxide extracted from printer toner wastes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008502670

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07713532

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)