WO2014171509A1 - 液晶部材用ポリカーボネート樹脂、それを含む液晶部材用ポリカーボネート樹脂組成物及び液晶部材 - Google Patents

液晶部材用ポリカーボネート樹脂、それを含む液晶部材用ポリカーボネート樹脂組成物及び液晶部材 Download PDF

Info

Publication number
WO2014171509A1
WO2014171509A1 PCT/JP2014/060926 JP2014060926W WO2014171509A1 WO 2014171509 A1 WO2014171509 A1 WO 2014171509A1 JP 2014060926 W JP2014060926 W JP 2014060926W WO 2014171509 A1 WO2014171509 A1 WO 2014171509A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
liquid crystal
crystal member
mass
pentadecylphenol
Prior art date
Application number
PCT/JP2014/060926
Other languages
English (en)
French (fr)
Inventor
淳平 丸山
田代 裕統
利文 宮川
誠之 柴田
亜起 山田
菅 浩一
ユミ 中山
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2015512518A priority Critical patent/JPWO2014171509A1/ja
Priority to EP14785688.4A priority patent/EP2987816A1/en
Priority to KR1020157029701A priority patent/KR20150144751A/ko
Priority to US14/785,499 priority patent/US20160083513A1/en
Priority to CN201480021682.2A priority patent/CN105143305A/zh
Publication of WO2014171509A1 publication Critical patent/WO2014171509A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • C08G64/1616Aliphatic-aromatic or araliphatic polycarbonates saturated containing a chain-terminating or -crosslinking agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/06Alkylated phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/14Aromatic polycarbonates not containing aliphatic unsaturation containing a chain-terminating or -crosslinking agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements

Definitions

  • the present invention relates to a polycarbonate resin for a liquid crystal member, a polycarbonate resin composition for a liquid crystal member including the same, and a liquid crystal member formed by molding the polycarbonate resin. More specifically, the polycarbonate resin is produced using a specific phenol compound obtained from a natural product.
  • the present invention also relates to a polycarbonate resin for liquid crystal members having excellent fluidity and color tone, a polycarbonate resin composition for liquid crystal members including the same, and a liquid crystal member formed by molding the same.
  • Polycarbonate resins have excellent characteristics such as transparency, heat resistance, and mechanical properties, and are used in a wide range of applications such as OA and housings for home appliances, members in the field of electrical and electronic fields, and optical materials such as lenses.
  • OA and housings for home appliances members in the field of electrical and electronic fields
  • optical materials such as lenses.
  • a method of improving the fluidity of the polycarbonate resin a method of using a plasticizer or a resin having excellent fluidity such as a styrene resin such as ABS, HIPS, AS or the like is used.
  • Patent Document 1 describes that an alkylphenol, carboxylic acid or acid halide having an alkyl group having 8 to 20 carbon atoms is used as a terminal terminator.
  • Patent Document 2 describes that a polycarbonate having an m-pentadecylphenoxy end group is used as an optical recording medium, but it can be used for a liquid crystal member, particularly a liquid crystal member used for a thinned liquid crystal device. Is not listed.
  • An object of the present invention is to provide a polycarbonate for a liquid crystal member, particularly a polycarbonate for a liquid crystal member that can be suitably used for a thin-walled portion, using a terminal stopper containing 3-pentadecylphenol obtained from a natural product. To do.
  • a polycarbonate resin for a liquid crystal member which is produced using a terminal stopper containing 3-pentadecylphenol obtained from a natural product and has a YI value of 1.1 or less in the following measurement method.
  • a polycarbonate resin for a liquid crystal member which is produced using a terminal stopper containing 3-pentadecylphenol obtained from a natural product and has a light transmittance of 85% or more at a wavelength of 400 nm in the following measurement method.
  • ⁇ 3> The polycarbonate resin for a liquid crystal member according to the above ⁇ 1> or ⁇ 2>, wherein the OH-derived end group composition amount in all the end groups contained in the polycarbonate resin is 5.0 mol% or less.
  • ⁇ 4> The polycarbonate resin for a liquid crystal member according to any one of ⁇ 1> to ⁇ 3>, wherein the purity of 3-pentadecylphenol is 97.5% by mass or more.
  • ⁇ 5> The polycarbonate resin for a liquid crystal member according to any one of ⁇ 1> to ⁇ 3>, wherein the purity of 3-pentadecylphenol is 97.75% by mass or more.
  • ⁇ 6> The polycarbonate resin for a liquid crystal member according to any one of ⁇ 1> to ⁇ 3>, wherein the purity of 3-pentadecylphenol is 99.33% by mass or more.
  • ⁇ 7> The polycarbonate resin for a liquid crystal member according to any one of the above ⁇ 1> to ⁇ 6>, which is produced using a terminal terminator containing 3-pentadecylphenol obtained by distillation and crystallization .
  • ⁇ 8> The polycarbonate resin for a liquid crystal member according to ⁇ 7>, wherein crystallization is performed after distillation.
  • ⁇ 9> The polycarbonate resin for a liquid crystal member according to ⁇ 7> or ⁇ 8>, wherein a hydrocarbon solvent is used in the crystallization.
  • ⁇ 10> The polycarbonate resin for a liquid crystal member according to ⁇ 9>, wherein in the crystallization, at least one of hexane and heptane is used as a hydrocarbon solvent.
  • ⁇ 11> The polycarbonate for a liquid crystal member according to any one of the above ⁇ 7> to ⁇ 10>, wherein in the crystallization, a solvent of 2 parts by mass or more and 20 parts by mass or less is used with respect to 1 part by mass of 3-pentadecylphenol. resin.
  • ⁇ 12> The polycarbonate for a liquid crystal member according to any one of ⁇ 7> to ⁇ 10>, wherein in the crystallization, a solvent of 4 parts by mass to 10 parts by mass is used with respect to 1 part by mass of 3-pentadecylphenol. resin.
  • ⁇ 13> The polycarbonate resin for a liquid crystal member according to any one of the above ⁇ 1> to ⁇ 12>, wherein the terminal terminator includes pt-butylphenol or p-cumylphenol.
  • a polycarbonate resin composition for a light guide plate comprising the polycarbonate resin for a light guide plate according to the above ⁇ 16> and other aromatic polycarbonate resins.
  • the polycarbonate resin for a liquid crystal member of the present invention is excellent in fluidity and color tone, and thus has excellent moldability and is particularly suitable for the production of a thin liquid crystal member.
  • the polycarbonate resin composition for liquid crystal members comprising the polycarbonate resin for liquid crystal members of the present invention and other aromatic polycarbonate resins is also excellent in flowability and color tone, and thus has excellent moldability, and particularly a thin liquid crystal member. Suitable for manufacturing.
  • the polycarbonate resin for liquid crystal members of the present invention can be obtained by using a terminal terminator containing 3-pentadecylphenol obtained from a natural product.
  • the polycarbonate resin for liquid crystal members of the present invention obtained by using a terminal stopper containing 3-pentadecylphenol obtained from a natural product will be described.
  • the polycarbonate resin for liquid crystal members of the present invention uses a terminal terminator containing 3-pentadecylphenol obtained from a natural product.
  • cardanol which is an extract derived from natural products such as cashew nut shell liquid
  • Cardanol contained in cashew nut shell liquid is mainly a mixture of 3-pentadecylphenol, 3-pentadecylphenol monoene, 3-pentadecylphenoldiene, and 3-pentadecylphenoltriene described in the following formula (III) It is.
  • R 4 when R 4 is — (CH 2 ) 14 CH 3 , it is 3-pentadecylphenol, and R 4 is — (CH 2 ) 7 CH ⁇ CH (CH 2 ) 5 CH 3 Is 3-pentadecylphenol monoene, and when R 4 is — (CH 2 ) 7 CH ⁇ CHCH 2 CH ⁇ CH (CH 2 ) CH 3 , it is 3-pentadecylphenol diene, When R 4 is — (CH 2 ) 7 CH ⁇ CHCH 2 CH ⁇ CHCH 2 CH ⁇ CH 2 , it is 3-pentadecylphenoltriene.
  • the main component of cardanol contained in the cashew nut shell liquid is from a phenol derivative having 1 to 3 saturated and unsaturated double bonds and having a hydrocarbon group having 15 carbon atoms in the 3-position (meta-position).
  • 3-pentadecylphenol of the present invention among the natural products, 3-pentadecylphenol obtained by hydrogenation reaction of cardanol contained in cashew nut shell liquid is used. It can be used as a terminal terminator when producing a polycarbonate resin for a liquid crystal member.
  • 3-pentadecylphenol obtained by hydrogenation reaction of the cardanol contains about 7 to 10% by mass of a resorcinol derivative or a phenol derivative other than 3-pentadecylphenol as impurities.
  • liquid crystal members when used as a liquid crystal member in which transparency is important, for example, as a light guide plate or a light diffusion plate, it is preferable to reduce the impurities as much as possible.
  • the purity of 3-pentadecylphenol is preferably 97.5% by mass or more, more preferably 97.75% by mass or more, and further preferably 99.33% by mass or more.
  • the purity of 3-pentadecylphenol is ideally 100% by mass.
  • the hydrogenation reaction method of cardanol is not particularly limited, and a normal hydrogenation method can be used.
  • the catalyst include noble metals such as palladium, ruthenium, rhodium and platinum, or nickel or a metal selected from these metals supported on a support such as activated carbon, activated alumina or diatomaceous earth.
  • a reaction system a batch system in which a reaction is performed while suspending and stirring a powdered catalyst, or a continuous system using a reaction tower filled with a molded catalyst can be employed.
  • the solvent for hydrogenation may not be used depending on the method of hydrogenation. However, when a solvent is used, alcohols, ethers, esters, and saturated hydrocarbons are usually used.
  • the reaction temperature at the time of hydrogenation is not particularly limited, but can usually be set to 20 to 250 ° C., preferably 50 to 200 ° C. If the reaction temperature is too low, the hydrogenation rate will be slow, whereas if it is too high, the decomposition products will tend to increase.
  • the hydrogen pressure at the time of hydrogenation is usually from normal pressure to 80 kgf / cm 2 (normal pressure to 78.4 ⁇ 10 5 Pa), preferably from 3 to 50 kgf / cm 2 (2.9 ⁇ 10 5 to 49.0). ⁇ 10 5 Pa).
  • the 3-pentadecylphenol obtained by the above hydrogenation treatment method includes, as impurities, phenol derivatives other than resorcinol derivatives and 3-pentadecylphenol.
  • a method of increasing purity by distillation a method of increasing purity by crystallization, a method of increasing purity by crystallization after distillation, and the like. it can. Among them, it is preferable to perform crystallization after distillation.
  • a method for increasing the purity by distillation for example, there is a method of performing atmospheric distillation or vacuum distillation, and vacuum distillation is preferably used.
  • the main fraction is preferably treated at a temperature of 200 to 260 ° C. and a pressure of 1 to 10 mmHg and treated with a filler in the vacuum distillation column.
  • Distillation amount is preferably 0.5 to 10.
  • a filler used in the vacuum distillation column a filler such as McMahon packing, Dixon packing, Raschig ring, ball ring, coil pack, helipak or the like can be used, but it is preferable to use McMahon packing.
  • 3-pentadecylphenol for the purpose of increasing the purity is achieved by lowering the temperature of a solution obtained by dissolving 3-pentadecylphenol containing impurities in a crystallization solvent in a crystallization tank. Utilizing the difference between the supersaturated state of the solution and the saturated concentration of the compound, 3-pentadecylphenol is precipitated to form crystals of 3-pentadecylphenol, and then 3-pentadecylphenol in the crystalline state is added to the solution. By solid-liquid separation, 3-pentadecylphenol with increased purity can be obtained.
  • the crystallization operation can be performed in a wide temperature range from the boiling point to the melting point of the crystallization solvent used.
  • the crystallization solvent is not particularly limited as long as it can dissolve 3-pentadecylphenol, and acetone, ethyl acetate, hydrocarbon solvents, acetonitrile, methanol, ethanol, and the like can be used.
  • preferred solvents include hydrocarbon solvents, and more preferably one or more of hexane and heptane.
  • the cooling rate can be set as appropriate in reducing the temperature of a solution obtained by dissolving 3-pentadecylphenol containing impurities in a crystallization solvent in the crystallization tank.
  • the amount of the crystallization solvent can be appropriately set, but preferably 2 to 20 parts by mass, more preferably 4 to 10 parts by mass of the solvent is used with respect to 1 part by mass of 3-pentadecylphenol to ensure the desired purity. While producing efficiently. Further, although crystallization is possible without adding seed crystals, crystallization can be efficiently performed by introducing seed crystals.
  • a controlled cooling method, a linear cooling method, a natural cooling method, and the like are known for reducing the temperature of a solution obtained by dissolving crude pentadecylphenol in a crystallization solvent in a crystallization tank, but the cooling method is particularly limited. In addition, the cooling rate can be set as appropriate.
  • the controlled cooling method reduces the temperature change at the initial stage when the amount of crystals is small (slow cooling rate), and increases the temperature change at the end of the period when the amount of crystals increases (faster the cooling rate). Since the supersaturation degree is kept low and constant throughout, secondary nucleation is suppressed and only monodisperse particles are obtained, which is preferable.
  • the cooling rate is preferably set to 0 ° C. (constant temperature) to ⁇ 10 ° C./h in the initial stage, more preferably 0 ° C. (constant temperature) to ⁇ 5 ° C./h, and preferably to ⁇ 5 ° C./h at the final stage. It is preferable to lower the temperature at h to ⁇ 30 ° C./h, more preferably at ⁇ 10 ° C. to ⁇ 20 ° C./h.
  • 3-pentadecylphenol obtained from a natural product and having a purity of preferably 97.5% by mass or more can be obtained from crude pentadecylphenol.
  • the content of the resorcinol derivative represented by the following general formula (I) is 1% by mass or less and / or the content of the phenol derivative represented by the following general formula (II) Is 2.5% by mass or less, and the total amount of the resorcinol derivative and the phenol derivative is preferably 2.5% by mass or less.
  • the content of the resorcinol derivative and the phenol derivative is outside the above range, transparency and appearance may be deteriorated when used as a raw material for a polymer material such as a polycarbonate resin.
  • the purity of the high purity 3-pentadecylphenol is 99.2% by mass or more
  • the content of the resorcinol derivative is 0.8% by mass or less and / or the content of the phenol derivative is 0.8% by mass or less.
  • the total amount of the resorcinol derivative and the phenol derivative is preferably 0.8% by mass or less.
  • R 1 and R 2 are a hydrogen atom or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • R 3 is a hydrogen atom or a saturated or unsaturated aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • R 1 , R 2 and R 3 may be the same or different.
  • Examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms represented by R 1 or R 2 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group,
  • Examples of the alkyl group include a decyl group, a dodecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, and an octadecyl group.
  • Examples of the saturated or unsaturated aliphatic hydrocarbon group having 1 to 20 carbon atoms represented by R 3 include, in addition to the alkyl groups exemplified as R 1 and R 2 above, a carbon-carbon unsaturated group in the alkyl group. Examples thereof include unsaturated aliphatic hydrocarbon groups that are monoene, diene, and triene having one or more saturated double bonds.
  • Examples of the compound included in the general formula (I) include compounds in which R 1 and R 2 are both hydrogen atoms, such as 5-pentadecyl resorcinol, 5-methyl resorcinol, 5-ethyl resorcinol, 5-propyl resorcinol, 5 R 3 such as butylresorcinol, 5-hexylresorcinol, 5-octylresorcinol, 5-decylresorcinol, 5-dodecylresorcinol, 5-tetradecylresorcinol, 5-octadecylresorcinol, 5-nonyldecylresorcinol, etc. has 1 to 20 carbon atoms And an unsaturated aliphatic hydrocarbon such as a monoene, diene, or triene having one or more carbon-carbon unsaturated double bonds in the alkyl group. It may be a group.
  • R 1 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms
  • R 2 is a hydrogen atom
  • R 3 is a saturated or unsaturated fatty acid having 1 to 20 carbon atoms.
  • the compound which is an aromatic hydrocarbon group include 3-methoxy-5-pentadecylphenol, 3-ethoxy-5-pentadecylphenol, 3-propoxy-5-pentadecylphenol, 3-butoxy-5-pentadecylphenol , 3-methoxy-5-hexylphenol, 3-methoxy-5-octylphenol, 3-methoxy-5-decylphenol, 3-methoxy-5-dodecylphenol, 3-methoxy-5-tetradecylphenol, 3-methoxy- 5-heptadecylphenol, 3-methoxy-5-octadecylphenol, 3-methoxy-5-nonyldecylpheno , 3-ethoxy-5-hexylphenol
  • the compound contained in the general formula (II) is a compound in which R 1 is hydrogen and R 3 is a saturated or unsaturated aliphatic hydrocarbon group having 1 to 20 carbon atoms, such as 3-hexylphenol, Alkyl groups such as 3-octylphenol, 3-decylphenol, 3-dodecylphenol, 3-tridecylphenol, 3-tetradecylphenol, 3-hexadecylphenol, 3-octadecylphenol, 3-nonyldecylphenol, etc. in the 3rd position Or an unsaturated aliphatic hydrocarbon group such as monoene, diene, or triene having one or more carbon-carbon unsaturated double bonds in the alkyl group.
  • R 1 is hydrogen
  • R 3 is a saturated or unsaturated aliphatic hydrocarbon group having 1 to 20 carbon atoms, such as 3-hexylphenol, Alkyl groups such as 3-octylphenol, 3-decylphenol, 3-
  • R 1 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms
  • examples of the compound in which R 1 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms include, for example, 1-methoxy-3-hexylbenzene and 1-ethoxy-3-hexylbenzene when the 3-position is a hexyl group.
  • 3-position is a pentadecyl group, 1-methoxy-3-pentadecylbenzene, 1-ethoxy-3-pentadecylbenzene, 1-propoxy-3-pentadecylbenzene, 1-butoxy-3-pentadecylbenzene, -Pentoxy-3-pentadecylbenzene, 1-hexoxy-3-pentadecylbenzene, 1-octoxy-3-pentadecylbenzene, 1-deoxy-3-pentadecylbenzene, 1-dodecoxy-3-pentadecylbenzene, 1 There may be mentioned compounds such as -butyrodeoxy-3-pentadecylbenzene.
  • the exemplified alkyl group may be a linear alkyl group or a branched alkyl group.
  • phenol for example, phenol , P-cresol, pt-butylphenol, p-cumylphenol, tribromophenol, nonylphenol, pt-octylphenol, and the like.
  • end terminators may be used in combination with 3-pentadecylphenol obtained from the above natural product, and other end terminators when used in combination include pt-butylphenol and p- Cumylphenol is particularly preferred.
  • the use ratio is preferably a molar ratio of (3-pentadecylphenol) :( other terminal terminator). Is 99: 1 to 20:80, more preferably 90:10 to 30:70.
  • the OH-derived end group composition amount in all the end groups contained in the polycarbonate resin is preferably 5.0 mol% or less, more preferably 3.0 mol% or less, and particularly preferably 1.0 mol% or less.
  • the obtained polycarbonate resin exhibits higher thermal stability.
  • dihydric phenol for constituting the main chain.
  • Various known dihydric phenols can be used as the dihydric phenol, but it is preferable to use a dihydric phenol represented by the following general formula (1).
  • R 5 and R 6 are each independently an alkyl group or alkoxy group having 1 to 6 carbon atoms
  • X is a single bond, an alkylene group having 1 to 8 carbon atoms, or 2 to 2 carbon atoms.
  • a and b are An integer from 0 to 4 is shown.
  • the dihydric phenol represented by the general formula (1) is not particularly limited, but 2,2-bis (4-hydroxyphenyl) propane [common name: bisphenol A] is preferable.
  • dihydric phenols other than bisphenol A include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2 -Bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis (4- Hydroxyphenyl) naphthylmethane, 1,1-bis (4-hydroxy-t-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-) 3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorophenyl) Bis
  • a dihydric phenol not contained in the dihydric phenol represented by the general formula (1) a dihydric phenol containing a structural unit represented by the following formula (2) is represented by the general formula (1). It can be used in combination with a dihydric phenol. By setting it as the copolymer which has such a structural unit, the flame retardance of the polycarbonate resin for liquid crystal members of this invention obtained can be improved.
  • the dihydric phenol containing a structural unit represented by the following general formula (2) is represented by a polyorganosiloxane represented by the following general formula (2-1).
  • R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or 1 carbon atom.
  • Z represents a phenol residue having a trimethylene group, which is derived from a phenol compound having an allyl group.
  • n represents 70 to 1000.
  • the polyorganosiloxane represented by the general formula (2-1) is obtained by modifying the terminal of a polyorganosiloxane having a hydrogen end with a phenol compound having an allyl group such as 2-allylphenol and eugenol. .
  • the polyorganosiloxane modified with a phenol compound having an allyl group at the end can be synthesized by the method described in Japanese Patent No. 2662310.
  • polydimethylsiloxane is preferred.
  • a branching agent may be used in the main chain of the polycarbonate resin by using a branching agent for the dihydric phenol.
  • the amount of the branching agent added is preferably 0.01 to 3 mol%, more preferably 0.1 to 1.0 mol%, based on the dihydric phenol.
  • branching agent examples include 1,1,1-tris (4-hydroxyphenyl) ethane, 4,4 ′-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl ] Ethylidene] bisphenol, ⁇ , ⁇ ′, ⁇ ′′ -tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene, 1- [ ⁇ -methyl- ⁇ - (4′-hydroxyphenyl) ethyl]- Examples thereof include compounds having three or more functional groups such as 4- [ ⁇ ′, ⁇ ′-bis (4 ′′ -hydroxyphenyl) ethyl] benzene, phloroglysin, trimellitic acid, and isatin bis (o-cresol).
  • the polycarbonate resin of the present invention is produced by reacting a carbonate raw material with a dihydric phenol.
  • a carbonate raw material is a compound which can produce
  • generation reactions such as a condensation reaction and an exchange reaction.
  • Such compounds include phosgene, triphosgene, bromophosgene, bis (2,4,6-trichlorophenyl) carbonate, bis (2,4-dichlorophenyl) when producing polycarbonate by interfacial polycondensation. Examples thereof include carbonate, bis (2-cyanophenyl) carbonate, and trichloromethyl chloroformate.
  • a carbonate diester is used as the carbonate raw material, and examples of the carbonate diester include a diaryl carbonate compound, a carbon dialkyl compound, and an alkylaryl carbonate compound.
  • specific examples of the diaryl carbonate compound include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, bisphenol A bisphenyl carbonate, and the like.
  • dialkyl carbonate compound examples include diethyl carbonate, dimethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, bisphenol A bismethyl carbonate, and the like.
  • alkyl aryl carbonate compound examples include methyl phenyl carbonate, ethyl phenyl carbonate, butyl phenyl carbonate, cyclohexyl phenyl carbonate, bisphenol A methyl phenyl carbonate, and the like.
  • the polycarbonate resin for a liquid crystal member of the present invention is produced using a method commonly used in the production of a normal polycarbonate, for example, an interfacial polycondensation method using phosgene or a phosgene derivative and a transesterification method (melting method). Of these, the interfacial polycondensation method is preferred.
  • an interfacial polycondensation method using phosgene or a phosgene derivative for example, a polycarbonate oligomer of the dihydric phenol is synthesized in advance from the dihydric phenol and phosgene or a phosgene derivative, and an inert organic solvent solution of the oligomer is used.
  • the dihydric phenol is dissolved in an aqueous solution of an alkali metal hydroxide, and an aqueous alkaline solution of dihydric phenol (sodium hydroxide) is obtained. Etc.) is prepared. Subsequently, phosgene or a phosgene derivative is introduced into a mixed solution of the alkaline aqueous solution and an inert organic solvent (an organic solvent such as methylene chloride) to synthesize the polycarbonate oligomer of the dihydric phenol.
  • an organic solvent such as methylene chloride
  • the alkali concentration of the aqueous alkali solution is preferably in the range of 1 to 15% by mass, and the volume ratio of the organic phase to the aqueous phase is in the range of 5: 1 to 1: 7, preferably in the range of 2: 1 to 1: 4. It is desirable to be in
  • the reaction temperature is usually set in the range of 0 to 50 ° C., preferably 5 to 40 ° C. with cooling in a water bath, and the reaction time is about 15 minutes to 4 hours, preferably about 30 minutes to 2 hours.
  • the degree of polymerization of the polycarbonate oligomer thus obtained is usually 20 or less, preferably about 2 to 10.
  • an alkaline aqueous solution of the dihydric phenol, a terminal terminator containing 3-pentadecylphenol obtained from the natural product, and an inert organic solvent as required are added to the organic phase containing the polycarbonate oligomer thus obtained.
  • the mixture is brought into contact by stirring and the like, and is subjected to interfacial polycondensation usually at a temperature in the range of 0 to 50 ° C., preferably 5 to 40 ° C., for about 10 minutes to 6 hours.
  • the alkali concentration of the alkaline aqueous solution is preferably 1 to 15% by mass, and the volume ratio of the organic phase to the aqueous phase is 7: 1 to 1: 2, preferably 4: 1 to 1: 1.
  • the ratio of the dihydric phenol to the polycarbonate oligomer is such that the molar ratio of (dihydric phenol) / (chloroformate group of the polycarbonate oligomer) is usually 0.4 to 0.55, preferably 0.45 to 0. .5 is chosen.
  • the ratio of alkali metal hydroxide and polycarbonate oligomer is such that the molar ratio of (alkali metal hydroxide) / (chloroformate group of polycarbonate oligomer) is usually 1.0 to 2.0, preferably 1. It is selected to be 2 to 1.7.
  • the amount of the terminal stopper used is such that the molar ratio of (terminal stopper) / (chloroformate group of polycarbonate oligomer) is usually 0.02 to 0.20, preferably 0.04 to 0.17. So chosen.
  • a catalyst can be used as desired.
  • the amount of the catalyst used is such that the molar ratio of (catalyst) / (chloroformate group of the polycarbonate oligomer) is usually 1.0 ⁇ 10 ⁇ 3 to 10.0 ⁇ 10 ⁇ 3 , preferably 1.0 ⁇ 10 ⁇ 3. It is selected to be ⁇ 5.0 ⁇ 10 ⁇ 3 .
  • alkali metal hydroxide used in the production of the polycarbonate resin for a liquid crystal member of the present invention examples include sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide and the like. Of these, sodium hydroxide and potassium hydroxide are preferred. There are various kinds of inert organic solvents.
  • dichloromethane methylene chloride
  • chloroform 1,1-dichloroethane; 1,2-dichloroethane; 1,1,1-trichloroethane; 1,1,2-trichloroethane; 1,1,1,2-tetrachloroethane; 1,2,2,2-tetrachloroethane
  • chlorinated hydrocarbons such as pentachloroethane and chlorobenzene, and acetophenone.
  • organic solvents may be used alone or in combination of two or more.
  • chloroform and methylene chloride are preferable, and methylene chloride is particularly preferable.
  • Various catalysts can be used as the catalyst. Specifically, it is a quaternary ammonium salt, a quaternary phosphonium salt, or a tertiary amine.
  • the quaternary ammonium salt include trimethylbenzylammonium chloride, triethylbenzylammonium chloride, tributylbenzylammonium chloride, trioctylmethylammonium chloride, Examples include tetrabutylammonium chloride and tetrabutylammonium bromide.
  • the quaternary phosphonium salt include tetrabutylphosphonium chloride and tetrabutylphosphonium bromide.
  • tertiary amine examples include triethylamine, tributylamine, N, N-dimethylcyclohexylamine, pyridine, and dimethylaniline. Etc.
  • tertiary amines are preferable, and triethylamine is particularly preferable. From the organic solvent solution containing the polycarbonate resin thus obtained, the polycarbonate resin for a liquid crystal member of the present invention can be obtained by performing a recovery operation according to a usual method.
  • a terminal stopper containing dihydric phenol, carbonic acid diester, and 3-pentadecylphenol, and a branching agent, if necessary, are used in a molten state.
  • a polycarbonate resin can be obtained by performing a transesterification reaction and removing phenol as a by-product from the system under reduced pressure conditions.
  • a transesterification catalyst may be used to promote the reaction.
  • salts such as sodium, calcium and cesium, ammonium salts, and phosphonium salts are preferable.
  • the polycarbonate resin for a liquid crystal member of the present invention is obtained by using a terminal terminator containing 3-pentadecylphenol obtained from a natural product, and its viscosity average molecular weight is not particularly limited. From the viewpoint of maintaining fluidity and strength when the liquid crystal member is molded, 8,000 to 30,000, preferably 8,000 to 22,000, more preferably 8,000 to 19,000, particularly preferably 8, 000 to 14,000 is desirable.
  • the polycarbonate resin for liquid crystal members of the present invention is excellent in color tone, and the YI value in the following measurement method is preferably 1.1 or less, more preferably 1.0 or less. Further, the light transmittance at a wavelength of 400 nm in the following measurement method is preferably 85% or more, more preferably 87% or more, and still more preferably 88.1% or more.
  • the screw rotation speed was 100 rpm using a 40 mm ⁇ single screw extruder with a vent.
  • the mixture is melt kneaded and extruded to obtain pellets.
  • a molded product having a thickness of 3 mm is formed, and the total light transmittance is measured using a spectrophotometer.
  • the polycarbonate resin for a liquid crystal member of the present invention can be mixed with an aromatic polycarbonate resin other than the polycarbonate resin for a liquid crystal member at an arbitrary ratio to obtain a polycarbonate resin composition for a liquid crystal member.
  • an antioxidant, an ultraviolet absorber, a flame retardant, a release agent, an inorganic filler (glass fiber, talc, Titanium oxide, mica, etc.), colorants, light diffusing agents, and other additives can be used depending on the properties required for the intended liquid crystal member.
  • the polycarbonate resin for a liquid crystal member containing the polycarbonate resin for a liquid crystal member or the polycarbonate resin for a liquid crystal member and an aromatic polycarbonate resin other than the polycarbonate resin for the liquid crystal member is injection molding, injection compression molding, extrusion molding, blow molding, etc.
  • a liquid crystal member of a liquid crystal display device used for a mobile phone, a liquid crystal television, a personal computer, an electronic dictionary, an electronic book, or the like can be obtained.
  • the polycarbonate resin for a liquid crystal member and the polycarbonate resin composition for a liquid crystal member using the same of the present invention are excellent in fluidity and color tone, it can be molded by injection molding, particularly when a thin molded product is produced. Desirably, it can be suitably used as a resin for a light guide plate or a light diffusion plate of a liquid crystal display device.
  • the phenol derivative was obtained by using a column “VF-1” having a length of 30 m, an inner diameter of 250 ⁇ m and a film thickness of 0.25 ⁇ m in a gas chromatograph mass spectrometer (manufactured by JEOL Ltd., product name: “JMS-Q1000GC”). It was measured. ⁇ Measurement of end group composition amount> Using an NMR apparatus (manufactured by JEOL Ltd., product name: “JNM-LA500”), 1 H-NMR was measured to calculate the end group composition amount of the polycarbonate resin.
  • Adegastab PEP36 manufactured by ADEKA Corporation, bis (2,6-di-t-butyl-4-methylphenyl) Pentaerythritol phosphite] was added in an amount of 500 ppm by mass, and the mixture was melt-kneaded and extruded at a resin temperature of 280 ° C. and a screw speed of 100 rpm using a 40 mm ⁇ single-screw extruder with a vent to obtain each pellet.
  • a flat plate of 50 mm ⁇ 90 mm ⁇ 0.4 mm was formed using each of the obtained pellets, and the moldability was evaluated with ⁇ to ⁇ according to the following criteria.
  • Resin could be filled into 100% of the area of the flat plate of thickness 0.4mm, and the flat plate could be shape
  • Resin could be filled in a flat plate with a thickness of 0.4 mm in an area of 75% to less than 100%.
  • Resin could be filled only into a flat plate having a thickness of 0.4 mm with an area of less than 50% to less than 75%.
  • X Resin could be filled only into the flat plate of thickness 0.4mm less than 50% of area.
  • Adegastab PEP36 manufactured by ADEKA Corporation, bis (2,6-di-t-butyl-4-methylphenyl) Pentaerythritol phosphite] was added in an amount of 500 ppm by mass, and the mixture was melt-kneaded and extruded at a resin temperature of 280 ° C. and a screw speed of 100 rpm using a 40 mm ⁇ single-screw extruder with a vent to obtain pellets.
  • a molded product having a thickness of 3 mm was molded at 320 ° C., and measured with a spectrocolorimeter (manufactured by Nippon Denshoku Industries Co., Ltd., product name: “ ⁇ 90”), a transmission method using a C2 light source Measured with ⁇ Measurement method of light transmittance at wavelength of 400 nm>
  • Adegastab PEP36 manufactured by ADEKA Corporation, bis (2,6-di-t-butyl-4-methylphenyl) Pentaerythritol phosphite
  • Reference example 1 (1) Production of polycarbonate oligomer 0.2% by mass of sodium dithionite with respect to bisphenol A (BPA) to be dissolved later is added to a 5.6% by mass sodium hydroxide aqueous solution, and the BPA concentration is 13 BPA was dissolved so that it might become 5 mass%, and the sodium hydroxide aqueous solution of BPA was prepared.
  • a sodium hydroxide aqueous solution of BPA was continuously passed through a tubular reactor having an inner diameter of 6 mm and a pipe length of 30 m at a flow rate of 40 L / hr and methylene chloride at a flow rate of 15 L / hr, and phosgene was continuously supplied at a flow rate of 4.0 kg / hr.
  • the tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
  • the reaction liquid sent out from the tubular reactor was continuously introduced into a 40-liter baffled tank reactor equipped with a receding blade, and further BPA sodium hydroxide aqueous solution was added at 2.8 L / hr, 25 wt% aqueous sodium hydroxide solution 0.07 L / hr, water 17 L / hr, 1 wt% triethylamine aqueous solution 0.64 L / hr, and 20 wt% pt-butylphenol (PTBP) in methylene chloride 149 The reaction was carried out at 29-32 ° C.
  • the reaction liquid was continuously extracted from the tank reactor and allowed to stand to separate and remove the aqueous phase, and the methylene chloride phase was collected.
  • the polycarbonate oligomer solution thus obtained had an oligomer concentration of 315 g / L and a chloroformate group concentration of 0.75 mol / L.
  • the obtained methylene chloride solution of polycarbonate resin was washed successively with 15% by volume of 0.03 mol / L NaOH aqueous solution and 0.2 mol / L hydrochloric acid, and then the electric conductivity in the aqueous phase after washing. Was repeatedly washed with pure water until 0.05 ⁇ S / m or less.
  • the methylene chloride solution of the polycarbonate resin obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 100 ° C. under reduced pressure to obtain a polycarbonate resin.
  • the terminal composition of the polycarbonate resin derived from m-PDP and PTBP used as a terminal stopper was 6.87 mol% derived from m-PDP and 1.44 mol% derived from PTBP.
  • the obtained polycarbonate resin had a viscosity average molecular weight (Mv) of 8700, a flow value (Q value) of 165 ⁇ 10 ⁇ 2 mL / second, and a thin-wall moldability.
  • Reference example 2 The same procedure as in Reference Example 1 was performed except that the amount of m-PDP was changed to 8.8 g in Reference Example 1 (2). The measurement results are shown in Table 1.
  • Reference example 3 The same procedure as in Reference Example 1 was performed except that the amount of m-PDP was changed to 7.6 g in Reference Example 1 (2). The measurement results are shown in Table 1.
  • Reference example 4 In Reference Example 1 (2), 349 mL of the oligomer solution, 191 mL of methylene chloride, 1.6 g of m-PDP, 110 ⁇ L of triethylamine, 33 g of 6.4 mass% sodium hydroxide aqueous solution, and BPA sodium hydroxide aqueous solution of NaOH 14 g and 54 mg of sodium dithionite dissolved in 199 mL of water were replaced with 26.9 g of BPA dissolved in water, and an aqueous solution of BPA in sodium hydroxide was added at the same time as 2.4 g of PTBP dissolved in 10 mL of methylene chloride. The same procedure as in Reference Example 1 was carried out except for the addition. The measurement results are shown in Table 1.
  • Reference Example 5 In Reference Example 3, the same procedure as in Reference Example 3 was performed except that m-PDP was replaced with 3.2 g and PTBP was replaced with 1.6 g. The measurement results are shown in Table 1.
  • Reference Example 6 In Reference Example 5, the same procedure as in Reference Example 5 was performed except that m-PDP was changed to 4.9 g and PTBP was changed to 0.8 g. The measurement results are shown in Table 1.
  • Reference Example 7 13.4 L of the polycarbonate oligomer solution of (2) of Reference Example 1, 9.8 L of methylene chloride, 280 g of m-PDP, 4.1 mL of triethylamine, 85 g of a 6.4 mass% aqueous sodium hydroxide solution, and hydroxylation of BPA
  • the same procedure as in Reference Example 1 was carried out except that the sodium aqueous solution was replaced with an aqueous solution obtained by dissolving 545 g of NaOH and 2.2 g of sodium dithionite in 8 L of water and dissolving 1176 g of BPA.
  • the measurement results are shown in Table 1.
  • Reference Example 8 143 mL of the polycarbonate oligomer solution of Reference Example 1 (2), 82 mL of methylene chloride, 2 g of m-PDP, 2 ⁇ L of triethylamine, 26.8 g of 6.4 mass% aqueous sodium hydroxide, and NaOH aqueous solution of BPA in NaOH
  • the same procedure as in Reference Example 1 was conducted except that 9.8 g of BPA was dissolved in an aqueous solution of 4.7 g and 20 mg of sodium dithionite dissolved in 69 mL of water.
  • the measurement results are shown in Table 1.
  • Reference Example 10 (1) Production of polycarbonate oligomer 0.2% by weight of sodium dithionite was added to a 5.6% by weight sodium hydroxide aqueous solution with respect to BPA to be dissolved later, and the BPA concentration was 13.5% by weight.
  • the monomer aqueous solution of sodium hydroxide was prepared.
  • An aqueous sodium hydroxide solution of the above monomer was continuously passed through a tubular reactor having an inner diameter of 6 mm and a pipe diameter of 30 m at a flow rate of 40 L / hr and methylene chloride at a flow rate of 35 L / hr, and phosgene at a flow rate of 4.0 kg / hr. Threaded continuously.
  • the tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
  • the reaction liquid sent from the tubular reactor was allowed to stand to separate and remove the aqueous phase, and the methylene chloride phase was collected.
  • the polycarbonate oligomer solution thus obtained had an oligomer concentration of 225 g / L and a chloroformate group concentration of 0.73 mol / L.
  • the obtained methylene chloride solution of polycarbonate resin was washed successively with 15% by volume of 0.03 mol / L NaOH aqueous solution and 0.2 mol / L hydrochloric acid, and then the electric conductivity in the aqueous phase after washing. Was repeatedly washed with pure water until 0.05 ⁇ S / m or less.
  • the methylene chloride solution of the polycarbonate resin obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 100 ° C. under reduced pressure to obtain a polycarbonate resin.
  • Table 1 shows the results of evaluation of the terminal composition, viscosity average molecular weight (Mv), flow value (Q value), and thin moldability of the polycarbonate resin derived from m-PDP used as the terminal stopper for the obtained polycarbonate resin. Shown in
  • Reference Example 11 The same procedure as in Reference Example 10 was performed except that m-PDP was replaced with 10.1 g in Reference Example 10 (2). The measurement results are shown in Table 1.
  • Reference Example 12 In Reference Example 10 (2), 55 mL of methylene chloride, 7.9 g of m-PDP, 134.5 ⁇ L of triethylamine, 40.3 g of 6.4% by mass, 16.7 g of NaOH aqueous solution of BPA and 16.7 g of NaOH The same procedure as in Reference Example 10 was conducted except that 66 g of sodium dithionate was dissolved in 245 mL of water and the solution was changed to a solution of 33 g of BPA. The measurement results are shown in Table 1.
  • Comparative Example 1 In Reference Example 8, 2.61 g of PTBP instead of m-PDP, 35 ⁇ L of triethylamine, 15 g of NaOH aqueous solution of BPA and 15 g of sodium dithionite dissolved in 219 mL of water were added 25.7 g of BPA. The same procedure as in Reference Example 8 was performed except that the dissolved product was replaced. The measurement results are shown in Table 1.
  • Comparative Example 2 Comparative Example 1 was performed in the same manner as Comparative Example 1 except that PTBP was changed to 3.3 g in (2). The measurement results are shown in Table 1.
  • Example 1 Purification of 3-pentadecylphenol (m-PDP) A 2 L flask equipped with an internal temperature measuring device is packed with 6 mm McMahon Packing (Mc. MAHON Packing) in a column with an inner diameter of 30 mm and a volume of 500 mL. At the top of the packed column, an apparatus for adjusting the reflux ratio (reflux / outflow), an apparatus for measuring the tower top temperature, and a depressurization degree adjusting apparatus were attached. 1006.96 g of hydrogenated cardanol [3-pentadecylphenol: 92.10% by mass, resorcinol derivative: 2.15% by mass, phenol derivative: 5.11% by mass] manufactured by Tokyo Chemical Industry Co., Ltd.
  • McMahon Packing McMahon Packing
  • an aqueous sodium hydroxide solution of BPA (1.3 kg of BPA dissolved in an aqueous solution of 665 g of NaOH and 2.6 g of sodium dithionite in 9.7 L of water) was added, and a polymerization reaction was carried out for 50 minutes. . After adding methylene chloride for dilution and stirring for 10 minutes, the organic phase was separated into an organic phase containing the polycarbonate resin produced by the polymerization reaction and an aqueous phase containing excess bisphenol A and NaOH, and the organic phase was isolated.
  • the methylene chloride solution (organic phase) of the obtained polycarbonate resin was sequentially washed with 15% by volume of 0.03 mol / L ⁇ NaOH aqueous solution and 0.2 mol / L hydrochloric acid, and then in the aqueous phase after washing. Washing with pure water was repeated until the electrical conductivity of the sample became 0.05 ⁇ S / m or less.
  • the methylene chloride solution of the polycarbonate resin obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 100 ° C. under reduced pressure to obtain a polycarbonate resin.
  • the end group composition amount derived from m-PDP measured by 1 H-NMR is 4.53 mol%
  • the end group composition amount derived from PTBP is 2.92 mol%
  • the end group composition amount derived from OH is The amount of unreacted PDP was 6 mass ppm.
  • the obtained polycarbonate resin had a viscosity average molecular weight (Mv) of 11900, a flow value (Q value) at 280 ° C. of 123 ( ⁇ 10 ⁇ 2 mL / sec), and a thin-wall moldability was ⁇ . It was. Moreover, it was 1.1 when YI of the obtained polycarbonate resin for liquid crystal members was measured. Moreover, it was 88.1% when the total light transmittance in wavelength 400nm of the obtained polycarbonate resin for liquid crystal members was measured.
  • Example 2 In the production of the polycarbonate resin for the liquid crystal member of Example 1 (2), instead of 3-pentadecylphenol (m-PDP) having a purity of 97.75% by mass, the purity of 99 obtained in (1) of Example 1 was used.
  • a polycarbonate resin for a liquid crystal member was produced in the same manner as (2) of Example 1 except that 33% by mass of 3-pentadecylphenol (m-PDP) was used.
  • the end group composition amount derived from m-PDP measured by 1 H-NMR for the obtained polycarbonate resin for liquid crystal member was 4.54 mol%, and the end group composition amount derived from PTBP was 2.69 mol%.
  • the end group composition amount derived from OH was 0.04 mol%, and the amount of unreacted PDP was 6 ppm by mass.
  • the polycarbonate resin for liquid crystal member had a viscosity average molecular weight (Mv) of 11,500, a flow value (Q value) of 127 ( ⁇ 10 ⁇ 2 mL / sec), and a thin-wall moldability. Moreover, it was 1.0 when the obtained polycarbonate resin YI for liquid crystal members was measured. Moreover, it was 88.6% when the total light transmittance in wavelength 400nm of the obtained polycarbonate resin for liquid crystal members was measured.
  • the end group composition amount derived from OH was 0.06 mol%, and the amount of unreacted PDP was 7 mass ppm.
  • the polycarbonate resin for liquid crystal member had a viscosity average molecular weight (Mv) of 12000, a flow value (Q value) of 123 ( ⁇ 10 ⁇ 2 mL / sec), and a thin-wall moldability. Moreover, it was 4.6 when the obtained polycarbonate resin YI for liquid crystal members was measured. Moreover, it was 81.7% when the total light transmittance in wavelength 400nm of the obtained polycarbonate resin for liquid crystal members was measured.
  • the polycarbonate resins for liquid crystal members obtained in the above Reference Examples 1 to 12 and Examples 1 to 2 have a high flow value (Q value), particularly excellent thin-wall moldability, and are suitably used as polycarbonate resins for liquid crystal members. be able to. Also, from Examples 1 and 2, when high-purity m-PDP is used, it can be used as a polycarbonate resin for liquid crystal members having a low YI and excellent transparency, and can be suitably used for a light guide plate, a light diffusion plate, and the like. Can do.
  • the polycarbonate resin for liquid crystal members of the present invention is excellent in flowability and color tone, and thus has excellent moldability.
  • it is a thin molded article, a light guide plate of a liquid crystal display device, a light diffusing plate and other OA equipment material members. Suitable for.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Nonlinear Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

 天然物から得られる3-ペンタデシルフェノールを含む末端停止剤を用いて製造され、YI値が1.1以下であるか又は波長400nmの光線透過率が85%以上である、液晶部材用ポリカーボネート樹脂。

Description

液晶部材用ポリカーボネート樹脂、それを含む液晶部材用ポリカーボネート樹脂組成物及び液晶部材
 本発明は、液晶部材用ポリカーボネート樹脂、それを含む液晶部材用ポリカーボネート樹脂組成物及びそれを成形してなる液晶部材に関し、より詳細には、天然物から得られる特定のフェノール化合物を用いて製造された、流動性及び色調に優れる液晶部材用ポリカーボネート樹脂、それを含む液晶部材用ポリカーボネート樹脂組成物及びそれを成形してなる液晶部材に関する。
 ポリカーボネート樹脂は、透明性、耐熱性、機械特性など優れた特徴を有し、OA及び家電の筐体や電気電子分野の部材、レンズなどの光学材料など、幅広い用途に使用されている。一方、近年、成形品の薄型化、大型化や成形サイクルの向上といった要望に対し、さらにポリカーボネート樹脂の流動性を向上させることが必要となっている。ポリカーボネート樹脂の流動性を向上させる方法として、可塑剤を使用したり、ABS、HIPS、AS等のスチレン系樹脂のような流動性に優れる樹脂を使用したりする方法が用いられている。しかし、これらの方法は、ポリカーボネート樹脂の流動性を向上できるが、ポリカーボネート樹脂が本来有する優れた耐衝撃性を低下させるという問題があった。
 また、上記の問題点を回避するために、ポリカーボネート樹脂自体の構造を変えることにより流動性を向上させることが知られている。その方法の一つに、末端停止剤として長鎖アルキル基を有する一価フェノールを用い、長鎖アルキル末端基をポリカーボネートの末端に導入することで流動性を向上させることが知れている。例えば、特許文献1には、アルキル基の炭素数が8~20のアルキルフェノール、カルボン酸又は酸ハロゲン化物が末端停止剤として使用することが記載されている。しかしながら、その実施例には、アルキル基の炭素数が9~17の酸クロライドを用いた記載しかない。また、特許文献2には、m-ペンタデシルフェノキシ末端基を有するポリカーボネートを光学記録媒体とすることが記載されているが、液晶部材、特に薄肉化した液晶機器に使用される液晶部材に使用できることは記載されていない。
特公昭52-50078号公報 特開2003-041011号公報
 本発明は、天然物から得られる3-ペンタデシルフェノールを含む末端停止剤を用いてなる、液晶部材用ポリカーボネート、特に薄肉部に好適に用いることができる液晶部材用ポリカーボネートを提供することを目的とする。
<1>天然物から得られる3-ペンタデシルフェノールを含む末端停止剤を用いて製造され、以下の測定方法におけるYI値が1.1以下である、液晶部材用ポリカーボネート樹脂。
<YI値の測定方法>
 ポリカーボネート樹脂にビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイトを500質量ppm添加して、ベント付き40mmφの単軸押出機によって樹脂温280℃、スクリュー回転数100rpmで溶融混練押出し、ペレットを得、得られたペレットを用い、厚み3mmの成形品を成形し、分光測色計で測定面積30φ、C2光源の透過法で測定する。
<2>天然物から得られる3-ペンタデシルフェノールを含む末端停止剤を用いて製造され、以下の測定方法における波長400nmの光線透過率が85%以上である、液晶部材用ポリカーボネート樹脂。
<波長400nmの光線透過率の測定方法>
 ポリカーボネート樹脂にビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイトを500質量ppm添加して、ベント付き40mmφの単軸押出機によって樹脂温280℃、スクリュー回転数100rpmで溶融混練押出し、ペレットを得、得られたペレットを用い、厚み3mmの成形品を成形し、分光光度計を用い、全光線透過率を測定する。
<3>前記ポリカーボネート樹脂に含まれる全末端基に占めるOH由来の末端基組成量が5.0mol%以下である、上記<1>又は<2>に記載の液晶部材用ポリカーボネート樹脂。
<4>3-ペンタデシルフェノールの純度が97.5質量%以上である、上記<1>~<3>のいずれかに記載の液晶部材用ポリカーボネート樹脂。
<5>3-ペンタデシルフェノールの純度が97.75質量%以上である、上記<1>~<3>のいずれかに記載の液晶部材用ポリカーボネート樹脂。
<6>3-ペンタデシルフェノールの純度が99.33質量%以上である、上記<1>~<3>のいずれかに記載の液晶部材用ポリカーボネート樹脂。
<7>蒸留及び晶析を行うことによって得られた3-ペンタデシルフェノールを含む末端停止剤を用いて製造される、上記<1>~<6>のいずれかに記載の液晶部材用ポリカーボネート樹脂。
<8>蒸留の後に晶析を行う、上記<7>に記載の液晶部材用ポリカーボネート樹脂。
<9>前記晶析において、炭化水素系溶媒を用いる、上記<7>又は<8>に記載の液晶部材用ポリカーボネート樹脂。
<10>前記晶析において、炭化水素系溶媒としてヘキサン又はヘプタンのうち1種以上を用いる、上記<9>に記載の液晶部材用ポリカーボネート樹脂。
<11>前記晶析において、3-ペンタデシルフェノール1質量部に対して2質量部以上20質量部以下の溶媒を用いる、上記<7>~<10>のいずれかに記載の液晶部材用ポリカーボネート樹脂。
<12>前記晶析において、3-ペンタデシルフェノール1質量部に対して4質量部以上10質量部以下の溶媒を用いる、上記<7>~<10>のいずれかに記載の液晶部材用ポリカーボネート樹脂。
<13>前記末端停止剤が、p-t-ブチルフェノール又はp-クミルフェノールを含む、上記<1>~<12>のいずれかに記載の液晶部材用ポリカーボネート樹脂。
<14>上記<1>~<13>のいずれかに記載の液晶部材用ポリカーボネート樹脂及びそれ以外の芳香族ポリカーボネート樹脂を含む、液晶部材用ポリカーボネート樹脂組成物。
<15>上記<1>~<13>のいずれかに記載の液晶部材用ポリカーボネート樹脂又は上記<14>に記載の液晶部材用ポリカーボネート樹脂組成物を成形してなる、液晶部材。
<16>上記<1>~<13>のいずれかに記載の液晶部材用ポリカーボネート樹脂が導光板用である、導光板用ポリカーボネート樹脂。
<17>上記<16>に記載の導光板用ポリカーボネート樹脂及びそれ以外の芳香族ポリカーボネート樹脂を含む、導光板用ポリカーボネート樹脂組成物。
<18>上記<16>に記載の導光板用ポリカーボネート樹脂又は上記<17>に記載の導光板用ポリカーボネート樹脂組成物を成形してなる、導光板。
<19>天然物から得られ、純度が97.5質量%以上である3-ペンタデシルフェノールを末端停止剤として用いる、液晶部材用ポリカーボネート樹脂の製造方法。
<20>3-ペンタデシルフェノールの純度が97.75質量%以上である、上記<19>に記載の液晶部材用ポリカーボネート樹脂の製造方法。
<21>3-ペンタデシルフェノールの純度が99.33質量%以上である、上記<19>又は<20>に記載の液晶部材用ポリカーボネート樹脂の製造方法。
 本発明の液晶部材用ポリカーボネート樹脂は、流動性及び色調に優れるため、成形性に優れ、特に、厚みの薄い液晶部材の製造に適する。また、本発明の液晶部材用ポリカーボネート樹脂とそれ以外の芳香族ポリカーボネート樹脂を含む液晶部材用ポリカーボネート樹脂組成物も、流動性及び色調に優れるため、成形性に優れ、特に、厚みの薄い液晶部材の製造に適する。
[液晶部材用ポリカーボネート樹脂]
 本発明の液晶部材用ポリカーボネート樹脂は、天然物から得られる3-ペンタデシルフェノールを含む末端停止剤を用いて得られる。以下、天然物から得られる3-ペンタデシルフェノールを含む末端停止剤を用いて得られる本発明の液晶部材用ポリカーボネート樹脂について説明する。
<天然物から得られる3-ペンタデシルフェノールについて>
 本発明の液晶部材用ポリカーボネート樹脂は、天然物から得られる3-ペンタデシルフェノールを含む末端停止剤が用いられる。天然物から得られる3-ペンタデシルフェノールは、カシューナッツの殻液等の天然物に由来する抽出物であるカルダノールが用いられる。カシューナッツ殻液に含まれるカルダノールは、主に、下記式(III)に記載した、3-ペンタデシルフェノール、3-ペンタデシルフェノールモノエン、3-ペンタデシルフェノールジエン、および3-ペンタデシルフェノールトリエンの混合物である。
Figure JPOXMLDOC01-appb-C000001
 上記式(III)中、R4が-(CH214CH3である場合は、3-ペンタデシルフェノールであり、R4が-(CH27CH=CH(CH25CH3である場合は、3-ペンタデシルフェノールモノエンであり、R4が-(CH27CH=CHCH2CH=CH(CH2)CH3である場合は、3-ペンタデシルフェノールジエンであり、R4が-(CH27CH=CHCH2CH=CHCH2CH=CH2である場合は、3-ペンタデシルフェノールトリエンである。
 上述したとおり、カシューナッツ殻液に含まれるカルダノールの主成分は、飽和及び不飽和二重結合を1~3個有する、炭素数が15の炭化水素基を3位(メタ位)に有するフェノール誘導体からなる。
 本発明の3-ペンタデシルフェノールを効率的に得るためには、天然物の中でもカシューナッツ殻液に含まれるカルダノールを水素添加反応処理することにより得られる3-ペンタデシルフェノールを用いて、本発明の液晶部材用ポリカーボネート樹脂を製造する際の、末端停止剤とすることができる。また、前記カルダノールを水素添加反応処理することにより得られる3-ペンタデシルフェノール中には、不純物として、レゾルシノール誘導体や3-ペンタデシルフェノール以外のフェノール誘導体を7~10質量%程度含有しており、液晶部材の中でも透明性が重要となる液晶部材、例えば、導光板や光拡散板として用いる場合には、前記不純物をできるだけ低減させることが好ましい。3-ペンタデシルフェノールの純度は、好ましくは97.5質量%以上、より好ましくは97.75質量%以上、更に好ましくは99.33質量%以上である。なお、3-ペンタデシルフェノールの純度は理想的には100質量%である。
 前記カルダノールの水素添加反応方法としては、特に限定されるものではなく、通常の水素添加方法を用いることができる。触媒としては、パラジウム、ルテニウム、ロジウム、白金などの貴金属またはニッケル、或いはこれらから選ばれる金属を活性炭素、活性アルミナ、珪藻土などの担体上に担持したものが挙げられる。反応方式としては、粉末状の触媒を懸濁撹拌しながら反応を行うバッチ方式や、成形した触媒を充填した反応塔を用いた連続方式を採用することができる。水素添加の際の溶媒は、水素添加の方式によっては用いなくてもよいが、溶媒を使用する場合は、通常、アルコール類、エーテル類、エステル類、飽和炭化水素類が挙げられる。水素添加の際の反応温度は、特に限定されないが、通常20~250℃、好ましくは50~200℃に設定できる。反応温度が低すぎると水素化速度が遅くなり、逆に高すぎると分解生成物が多くなる傾向がある。水素添加の際の水素圧は、通常、常圧~80kgf/cm2(常圧~78.4×105Pa)、好ましくは3~50kgf/cm2(2.9×105~49.0×105Pa)に設定できる。
 上記の水素添加処理方法によって得られる3-ペンタデシルフェノール中には、不純物として、レゾルシノール誘導体や3-ペンタデシルフェノール以外のフェノール誘導体が含まれる。これらの不純物を除去して、3-ペンタデシルフェノールの純度を上げるには、蒸留によって純度を上げる方法、晶析によって純度を上げる方法、蒸留した後に晶析によって純度を上げる方法等を挙げることができる。中でも、蒸留の後に晶析を行うことが好ましい。
 蒸留によって純度を上げる方法としては、例えば常圧蒸留や減圧蒸留を行う方法があり、減圧蒸留を用いることが好ましい。減圧蒸留を行うに当っては、主分画を200~260℃の温度及び1~10mmHgの圧力とし、減圧蒸留塔内に充填剤を用いて処理することが好ましく、このとき還流比(還流量/留出量)を0.5~10とするのが好ましい。減圧蒸留塔内に用いられる充填剤としては、マクマホンパッキング、ディクソンパッキング、ラシヒリング、ボールリング、コイルパック、ヘリパック等の充填剤を用いることができるが、マクマホンパッキングを用いることが好ましい。
 晶析によって純度を上げる方法としては、晶析槽中で前記不純物を含む3-ペンタデシルフェノールを晶析溶媒に溶解した溶液の温度を低下させ、高純度化を目的とする3-ペンタデシルフェノール溶液の過飽和状態と、該化合物の飽和濃度との差を利用して、3-ペンタデシルフェノールを析出させて3-ペンタデシルフェノールの結晶を生成させ、次いで結晶状態の3-ペンタデシルフェノールを溶液から固液分離することにより、純度を上げた3-ペンタデシルフェノールを得ることができる。晶析操作は、用いる晶析溶媒の沸点から融点までの幅広い温度域で行なうことができる。また、晶析溶媒は3-ペンタデシルフェノールを溶解することのできる溶媒であれば、特に限定されず、アセトン、酢酸エチル、炭化水素系溶媒、アセトニトリル、メタノール、エタノールなどを用いることができる。これらの中でも好ましい溶媒としては、炭化水素系溶媒、更に好ましくはヘキサン又はへプタンのうち1種以上を挙げることができる。なお、晶析槽中で不純物を含む3-ペンタデシルフェノールを晶析溶媒に溶解した溶液の温度を低下させるに当たって、その冷却速度は適宜設定することができる。晶析溶媒量は適宜設定することができるが、好ましくは3-ペンタデシルフェノール1質量部に対し2~20質量部、さらに好ましくは4~10質量部の溶媒を用いることで所望の純度を確保しつつ効率よく生産できる。また、種晶を添加しなくても晶析は可能であるが、種晶を投入することで効率よく晶析が可能となる。
 また、晶析槽中で粗ペンタデシルフェノールを晶析溶媒に溶解した溶液の温度を低下させるに当たって、制御冷却法、直線冷却法、自然冷却法などが知られているが、冷却法は特に限定されず、また冷却速度は適宜設定することができる。その中でも、制御冷却法は結晶量が少ない初期には温度変化を小さく(冷却速度を遅く)し、結晶量が多くなる終期には温度変化を大きく(冷却速度を速く)することにより、飽和溶液の過飽和度が終始低く一定に保たれるので、二次核の発生が抑制されて、単分散粒子のみが得られるため好ましい。冷却速度として初期段階では好ましくは0℃(温度一定)~-10℃/h、さらには0℃(温度一定)~-5℃/hに設定することが好ましく、終期では好ましくは-5℃/h~-30℃/h、さらには-10℃~-20℃/hで降温させることが好ましい。
 上記に記載した高純度化方法により、粗ペンタデシルフェノールから、天然物から得られ、純度が好ましくは97.5質量%以上である3-ペンタデシルフェノールを得ることができる。
 本発明に用いられる3-ペンタデシルフェノール中には、下記一般式(I)で表わされるレゾルシノール誘導体の含有量が1質量%以下及び/又は下記一般式(II)で表わされるフェノール誘導体の含有量が2.5質量%以下であり、かつ該レゾルシノール誘導体と該フェノール誘導体との合計量が2.5質量%以下であることが好ましい。該レゾルシノール誘導体及び該フェノール誘導体の含有量が、上記範囲外であると、ポリカーボネート樹脂等の高分子材料の原料として用いた際に、透明性や外観を悪化させるおそれがある。また、高純度3-ペンタデシルフェノールの純度が99.2質量%以上の場合、該レゾルシノール誘導体の含有量が0.8質量%以下及び/又は該フェノール誘導体の含有量が0.8質量%以下であり、かつ該レゾルシノール誘導体と該フェノール誘導体との合計量が0.8質量%以下であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
[上記一般式(I)及び(II)中、R1及びR2は、水素原子、又は炭素数1~20の脂肪族炭化水素基である。R3は、水素原子、又は飽和もしくは不飽和の炭素数1~20の脂肪族炭化水素基である。R1、R2、R3は同一であっても異なっていてもよい。但し、一般式(II)において、R1=H、R3=C1531で表される3-ペンタデシルフェノールは除く。]
 R1又はR2で表される炭素数1~20の脂肪族炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等のアルキル基を例示することができる。R3で表される飽和もしくは不飽和の炭素数1~20の脂肪族炭化水素基としては、上記R1、R2で例示したアルキル基の他に、前記アルキル基中に炭素-炭素の不飽和二重結合を1個、もしくは複数個有するモノエン、ジエン、トリエンである不飽和脂肪族炭化水素基を例示することができる。
 上記一般式(I)に含まれる化合物としては、R1、R2が共に水素原子である化合物としては、5-ペンタデシルレゾルシノール、5-メチルレゾルシノール、5-エチルレゾルシノール、5-プロピルレゾルシノール、5-ブチルレゾルシノール、5-ヘキシルレゾルシノール、5-オクチルレゾルシノール、5-デシルレゾルシノール、5-ドデシルレゾルシノール、5-テトラデシルレゾルシノール、5-オクタデシルレゾルシノール、5-ノニルデシルレゾルシノール等のR3が炭素数1~20のアルキル基である化合物を例示することができ、また前記アルキル基中に、炭素-炭素の不飽和二重結合を1個、もしくは複数個有するモノエン、ジエン、トリエン等の不飽和脂肪族炭化水素基であってもよい。
 また、上記一般式(I)において、R1が炭素数1~20の脂肪族炭化水素基であり、R2が水素原子であり、R3が炭素数1~20の飽和もしくは不飽和の脂肪族炭化水素基である化合物として、例えば、3-メトキシ-5-ペンタデシルフェノール、3-エトキシ-5-ペンタデシルフェノール、3-プロポキシ-5-ペンタデシルフェノール、3-ブトキシ-5-ペンタデシルフェノール、3-メトキシ-5-ヘキシルフェノール、3-メトキシ-5-オクチルフェノール、3-メトキシ-5-デシルフェノール、3-メトキシ-5-ドデシルフェノール、3-メトキシ-5-テトラデシルフェノール、3-メトキシ-5-ヘプタデシルフェノール、3-メトキシ-5-オクタデシルフェノール、3-メトキシ-5-ノニルデシルフェノール、3-エトキシ-5-ヘキシルフェノール、3-エトキシ-5-オクチルフェノール、3-エトキシ-5-デシルフェノール、3-エトキシ-5-ドデシルフェノール、3-エトキシ-5-テトラデシルフェノール、3-エトキシ-5-ヘプタデシルフェノール、3-エトキシ-5-オクタデシルフェノール、3-エトキシ-5-ノニルデシルフェノール等の化合物を例示することができ、また前記5位のアルキル基中に、炭素-炭素の不飽和二重結合を1個、もしくは複数個有するモノエン、ジエン、トリエン等の不飽和脂肪族炭化水素基であってもよい。
 上記一般式(II)に含まれる化合物としては、R1が水素であり、R3が飽和もしくは不飽和の炭素数1~20の脂肪族炭化水素基である化合物としては、3-ヘキシルフェノール、3-オクチルフェノール、3-デシルフェノール、3-ドデシルフェノール、3-トリデシルフェノール、3-テトラデシルフェノール、3-ヘキサデシルフェノール、3-オクタデシルフェノール、3-ノニルデシルフェノール等のアルキル基を3位に有する化合物や前記アルキル基中に炭素-炭素の不飽和二重結合を1個、もしくは複数個有するモノエン、ジエン、トリエン等の不飽和脂肪族炭化水素基であってもよい。
 また、R1が炭素数1~20の脂肪族炭化水素基である化合物としては、例えば、3位がヘキシル基である場合、1-メトキシ-3-ヘキシルベンゼン、1-エトキシ-3-ヘキシルベンゼン、1-プロポキシ-3-ヘキシルベンゼン、1-ブトキシ-3-ヘキシルベンゼン、1-ペントキシ-3-ヘキシルベンゼン、1-ヘキトキシ-3-ヘキシルベンゼン、1-オクトキシ-3-ヘキシルベンゼン、1-デトキシ-3-ヘキシルベンゼン、1-ドデトキシ-3-ヘキシルベンゼン、1-ブチロデトキシ-3-ヘキシルベンゼン等の化合物を挙げることができる。3位がペンタデシル基である場合、1-メトキシ-3-ペンタデシルベンゼン、1-エトキシ-3-ペンタデシルベンゼン、1-プロポキシ-3-ペンタデシルベンゼン、1-ブトキシ-3-ペンタデシルベンゼン、1-ペントキシ-3-ペンタデシルベンゼン、1-ヘキトキシ-3-ペンタデシルベンゼン、1-オクトキシ-3-ペンタデシルベンゼン、1-デトキシ-3-ペンタデシルベンゼン、1-ドデトキシ-3-ペンタデシルベンゼン、1-ブチロデトキシ-3-ペンタデシルベンゼン等の化合物を挙げることができる。
 なお、前記一般式(I)及び一般式(II)中において、例示したアルキル基は、直鎖状アルキル基であってもよいし、分岐状アルキル基であってもよい。
<液晶部材用ポリカーボネート樹脂の製造方法>
 次に、本発明の液晶部材用ポリカーボネート樹脂の製造方法について説明する。本発明の液晶部材用ポリカーボネート樹脂を製造するためには、前記末端基となる天然物から得られる3-ペンタデシルフェノールを含む末端停止剤を用いることが必要である。特に、上述したように蒸留及び晶析を行うことによって得られた3-ペンタデシルフェノールを含む末端停止剤を用いることが好ましい。天然物から得られる3-ペンタデシルフェノール以外の末端停止剤(他の末端停止剤)としては、従来から使用されているポリカーボネート樹脂を製造するための末端停止剤を用いることができ、例えば、フェノール,p-クレゾール,p-t-ブチルフェノール,p-クミルフェノール,トリブロモフェノール,ノニルフェノール,p-t-オクチルフェノールなどが挙げられる。これらの他の末端停止剤を前記天然物から得られる3-ペンタデシルフェノールと併用して用いてもよく、併用して用いる場合の他の末端停止剤としては、p-t-ブチルフェノールとp-クミルフェノールが特に好ましい。天然物から得られる3-ペンタデシルフェノールと他の末端停止剤とを併用して用いる場合、その使用比率は、(3-ペンタデシルフェノール):(他の末端停止剤)のモル比は、好ましくは99:1~20:80、より好ましくは90:10~30:70である。
 また、ポリカーボネート樹脂に含まれる全末端基に占めるOH由来の末端基組成量は、好ましくは5.0mol%以下、さらに好ましくは3.0mol%以下、特に好ましくは1.0mol%以下である。OH由来の末端基組成量が前記の範囲内であれば、得られるポリカーボネート樹脂はより高い熱安定性を示す。
 本発明の液晶部材用ポリカーボネート樹脂を製造するためには、主鎖を構成するための二価フェノールを用いる必要がある。二価フェノールとしては、各種の公知の二価フェノールを用いることができるが、下記一般式(1)で表される二価フェノールを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 ここで、一般式(1)中、R5及びR6は、それぞれ独立に炭素数1~6のアルキル基又はアルコキシ基、Xは単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO2-、-O-又は-CO-、a及びbは0~4の整数を示す。
 一般式(1)で表される二価フェノールとしては、特に限定されないが、2,2-ビス(4-ヒドロキシフェニル)プロパン〔通称:ビスフェノールA〕が好適である。
 ビスフェノールA以外の二価フェノールとしては、例えば、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)ナフチルメタン、1,1-ビス(4-ヒドロキシ-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン等のビス(ヒドロキシアリール)シクロアルカン類、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルフェニルエーテル等のジヒドロキシアリールエーテル類、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類、4,4’-ジヒドロキシジフェニル等のジヒドロキシジフェニル類、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のジヒドロキシジアリールフルオレン類、1,3-ビス(4-ヒドロキシフェニル)アダマンタン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等のジヒドロキシジアリールアダマンタン類、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスフェノール、10,10-ビス(4-ヒドロキシフェニル)-9-アントロン、1,5-ビス(4-ヒドロキシフェニルチオ)-2,3-ジオキサペンタン等が挙げられる。
 これらの二価フェノールは、単独で又は二種以上を混合して用いてもよい。
 さらに、上記一般式(1)で表される二価フェノールに含まれない二価フェノールとして、下記式(2)で表される構成単位を含む二価フェノールを一般式(1)で表される二価フェノールと併用して用いることができる。このような構成単位を有する共重合体とすることにより、得られる本発明の液晶部材用ポリカーボネート樹脂の難燃性を向上させることができる。下記一般式(2)で表される構成単位を含む二価フェノールは、下記一般式(2-1)で表されるポリオルガノシロキサンで表わされる。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(2)又は一般式(2-1)中、R7、R8、R9及びR10は、それぞれ独立に水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を示す。Zは、アリル基を有するフェノール化合物から誘導される、トリメチレン基を有するフェノール残基を示す。nは70~1000を示す。
 上記一般式(2-1)で表されるポリオルガノシロキサンは、末端が水素のポリオルガノシロキサンの末端を、例えば、2-アリルフェノール及びオイゲノール等のアリル基を有するフェノール化合物で変性したものである。末端がアリル基を有するフェノール化合物で変性されたポリオルガノシロキサンは、特許第2662310号公報に記載の方法により合成することができる。
 上記ポリオルガノシロキサンとしては、ポリジメチルシロキサンが好適である。
 更に、上記の二価フェノールに対して、分岐化剤を用いて、該ポリカーボネート樹脂の主鎖中に分岐構造を有することもできる。この分岐化剤の添加量は、上記の二価フェノールに対して、好ましくは0.01~3モル%、より好ましくは0.1~1.0モル%である。
 分岐化剤としては、例えば、1,1,1-トリス(4-ヒドロキシフェニル)エタン、4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノール、α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、1-[α-メチル-α-(4’-ヒドロキシフェニル)エチル]-4-[α’,α’-ビス(4”-ヒドロキシフェニル)エチル]ベンゼン、フロログリシン、トリメリット酸、イサチンビス(o-クレゾール)等の官能基を3つ以上有する化合物が挙げられる。
 本発明のポリカーボネート樹脂は、カーボネート原料と二価フェノールとを反応させることによって製造される。カーボネート原料とは、縮合反応や交換反応などの重合体生成反応によってポリカーボネート主鎖中にカーボネート結合を生成し得る化合物のことである。このような化合物としては、界面重縮合法によりポリカーボネートを製造する場合には、ホスゲンをはじめ、トリホスゲン、ブロモホスゲン、ビス(2,4,6-トリクロロフェニル)カーボネート、ビス(2,4-ジクロロフェニル)カーボネート、ビス(2-シアノフェニル)カーボネート、クロロギ酸トリクロロメチルなどが挙げられる。
 また、エステル交換反応法(溶融法)によるポリカーボネートの製造においては、カーボネート原料としては炭酸ジエステルが使用され、炭酸ジエステルとしては、炭酸ジアリール化合物、炭素ジアルキル化合物、炭酸アルキルアリール化合物等が挙げられる。
 ここで、炭酸ジアリール化合物の具体例としては、ジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ビスフェノールAビスフェニルカーボネート等が挙げられる。炭酸ジアルキル化合物の具体例としては、ジエチルカーボネート、ジメチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネート、ビスフェノールAビスメチルカーボネート等が挙げられる。炭酸アルキルアリール化合物の具体例としては、メチルフェニルカーボネート、エチルフェニルカーボネート、ブチルフェニルカーボネート、シクロヘキシルフェニルカーボネート、ビスフェノールAメチルフェニルカーボネート等が挙げられる。
 本発明の液晶部材用ポリカーボネート樹脂は、通常のポリカーボネートの製造において慣用されている方法、例えば、ホスゲンまたはホスゲン誘導体を使用する界面重縮合法およびエステル交換法(溶融法)などを用いて製造することができるが、これらの中で界面重縮合法が好ましい。ホスゲンまたはホスゲン誘導体を用いる界面重縮合法としては、例えば、予め前記二価フェノールのポリカーボネートオリゴマーを前記二価フェノールとホスゲンまたはホスゲン誘導体とから合成しておき、このオリゴマーの不活性有機溶剤溶液に、前記二価フェノールを含有するアルカリ水溶液及び前記天然物から得られる3-ペンタデシルフェノールを含む末端停止剤を加えて反応させる方法、または、前記二価フェノールのアルカリ水溶液、前記天然物から得られる3-ペンタデシルフェノールを含む末端停止剤及び不活性有機溶剤との混合液にホスゲンまたはホスゲン誘導体を加えて反応させる方法などが挙げられるが、これらの中で前者のオリゴマー法が好適である。
 次に、オリゴマー法により本発明の液晶部材用ポリカーボネート樹脂を製造する方法について説明すると、先ず、アルカリ金属水酸化物の水溶液に前記二価フェノールを溶解させ、二価フェノールのアルカリ水溶液(水酸化ナトリウム等の水溶液)を調整する。次いで、このアルカリ水溶液と不活性有機溶剤(塩化メチレン等の有機溶剤)との混合液にホスゲンまたはホスゲン誘導体を導入して、前記二価フェノールのポリカーボネートオリゴマーを合成する。この際、該アルカリ水溶液のアルカリ濃度は1~15質量%の範囲が好ましく、また有機相と水相との容積比は5:1~1:7、好ましくは2:1~1:4の範囲にあるのが望ましい。反応温度は水浴冷却し、通常0~50℃、好ましくは5~40℃の範囲で選ばれ、反応時間は15分ないし4時間、好ましくは30分ないし2時間程度である。このようにして得られたポリカーボネートオリゴマーの重合度は、通常20以下、好ましくは2~10程度である。
 次いで、このようにして得られたポリカーボネートオリゴマーを含む有機相に、前記二価フェノールのアルカリ水溶液、前記天然物から得られる3-ペンタデシルフェノールを含む末端停止剤、所望により不活性有機溶剤を加えて撹拌等を行うことにより接触させて、通常0~50℃、好ましくは5~40℃の範囲の温度において、10分ないし6時間程度界面重縮合させる。この際、該アルカリ水溶液のアルカリ濃度は1~15質量%が好ましく、また有機相と水相との容積比は7:1~1:2、好ましくは4:1~1:1の範囲にあるのが望ましい。そして、前記二価フェノールとポリカーボネートオリゴマーとの割合は、(二価フェノール)/(ポリカーボネートオリゴマーのクロロホーメート基)のモル比が、通常0.4~0.55、好ましくは0.45~0.5になるように選ばれる。また、アルカリ金属水酸化物とポリカーボネートオリゴマーとの割合は、(アルカリ金属水酸化物)/(ポリカーボネートオリゴマーのクロロホーメート基)のモル比が、通常1.0~2.0、好ましくは1.2~1.7になるように選ばれる。また、末端停止剤の使用量は、(末端停止剤)/(ポリカーボネートオリゴマーのクロロホーメート基)のモル比が、通常0.02~0.20、好ましくは0.04~0.17になるように選ばれる。さらに、この反応において、所望に応じて触媒を用いることができる。触媒の使用量は、(触媒)/(ポリカーボネートオリゴマーのクロロホーメート基)のモル比が、通常1.0×10-3~10.0×10-3、好ましくは1.0×10-3~5.0×10-3になるように選ばれる。
 本発明の液晶部材用ポリカーボネート樹脂の製造において用いられるアルカリ金属の水酸化物としては、例えば、水酸化ナトリウム,水酸化カリウム,水酸化リチウム,水酸化セシウムなどが挙げられる。これらの中では、水酸化ナトリウムと水酸化カリウムが好適である。また、不活性有機溶剤としては、各種のものがある。例えば、ジクロロメタン(塩化メチレン);クロロホルム;1,1-ジクロロエタン;1,2-ジクロロエタン;1,1,1-トリクロロエタン;1,1,2-トリクロロエタン;1,1,1,2-テトラクロロエタン;1,1,2,2-テトラクロロエタン;ペンタクロロエタン,クロロベンゼンなどの塩素化炭化水素や、アセトフェノンなどが挙げられる。これらの有機溶剤はそれぞれ単独で用いてもよいし、二種以上を組み合わせて用いてもよい。これらの中では、クロロホルムや塩化メチレンが好ましく、特に塩化メチレンが好適である。
 前記触媒としては、各種のものを用いることができる。具体的には四級アンモニウム塩,四級ホスホニウム塩あるいは三級アミンなどで、例えば、四級アンモニウム塩としては、トリメチルベンジルアンモニウムクロライド,トリエチルベンジルアンモニウムクロライド,トリブチルベンジルアンモニウムクロライド,トリオクチルメチルアンモニウムクロライド,テトラブチルアンモニウムクロライド,テトラブチルアンモニウムブロマイドなどが挙げられる。また、四級ホスホニウム塩としては、例えば、テトラブチルホスホニウムクロライド,テトラブチルホスホニウムブロマイドなどが、そして、三級アミンとしては、例えば、トリエチルアミン,トリブチルアミン,N,N-ジメチルシクロヘキシルアミン,ピリジン,ジメチルアニリンなどが挙げられる。
 前記触媒の中では、三級アミンが好ましく、特にトリエチルアミンが好適である。
 このようにして得られたポリカーボネート樹脂を含む有機溶媒溶液から、通常の方法に従って回収操作を行うことにより、本発明の液晶部材用ポリカーボネート樹脂を得ることができる。
 エステル交換反応法(溶融法)によるポリカーボネートの製造においては、二価フェノール、炭酸ジエステル、及び前記3-ペンタデシルフェノールを含む末端停止剤と、必要に応じ分岐剤等とを用いて、溶融状態でエステル交換反応させ、副生するフェノールを減圧条件等で系外に除去することで、ポリカーボネート樹脂を得ることができる。エステル交換反応法では、反応促進のためエステル交換触媒を使用することもできる。エステル交換触媒としては、ナトリウム、カルシウム及びセシウム等の塩やアンモニウム塩、ホスホニウム塩が好ましい。
 本発明の液晶部材用ポリカーボネート樹脂は、天然物から得られる3-ペンタデシルフェノールを含む末端停止剤を用いてなるものであり、その粘度平均分子量は、特に限定されるものではないが、薄肉の液晶部材を成形する際の流動性と強度を保つ上から、8,000~30,000、好ましくは8,000~22,000、より好ましくは8,000~19,000、特に好ましくは8,000~14,000とすることが望ましい。
 本発明の液晶部材用ポリカーボネート樹脂は色調に優れ、以下の測定方法におけるYI値が好ましくは1.1以下、より好ましくは1.0以下である。また、以下の測定方法における波長400nmの光線透過率が好ましくは85%以上、より好ましくは87%以上、更に好ましくは88.1%以上である。
<YI値の測定方法>
 ポリカーボネート樹脂にビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイトを500質量ppm添加して、ベント付き40mmφの単軸押出機によって樹脂温280℃、スクリュー回転数100rpmで溶融混練押出し、ペレットを得、得られたペレットを用い、厚み3mmの成形品を成形し、分光測色計で測定面積30φ、C2光源の透過法で測定する。
<波長400nmの光線透過率の測定方法>
 ポリカーボネート樹脂にビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイトを500質量ppm添加して、ベント付き40mmφの単軸押出機によって樹脂温280℃、スクリュー回転数100rpmで溶融混練押出し、ペレットを得、得られたペレットを用い、厚み3mmの成形品を成形し、分光光度計を用い、全光線透過率を測定する。
 本発明の液晶部材用ポリカーボネート樹脂は、該液晶部材用ポリカーボネート樹脂以外の芳香族ポリカーボネート樹脂と任意の割合で混合して、液晶部材用ポリカーボネート樹脂組成物とすることができる。本発明の前記液晶部材用ポリカーボネート樹脂又は前記液晶部材用ポリカーボネート樹脂組成物には、必要に応じて、酸化防止剤、紫外線吸収剤、難燃剤、離型剤、無機充填材(ガラス繊維、タルク、酸化チタン、マイカ等)、着色剤、光拡散剤等の添加剤を目的とする液晶部材に必要とされる特性に応じて用いることができる。
 上記の液晶部材用ポリカーボネート樹脂又は液晶部材用ポリカーボネート樹脂と該液晶部材用ポリカーボネート樹脂以外の芳香族ポリカーボネート樹脂を含む液晶部材用ポリカーボネート樹脂組成物は、射出成形、射出圧縮成形、押出成形、ブロー成形等の各種成形方法により、携帯電話、液晶テレビ、パソコン、電子辞書、電子書籍等に用いられる液晶表示装置の液晶部材とすることができる。
 本発明の液晶部材用ポリカーボネート樹脂及びそれを用いた液晶部材用ポリカーボネート樹脂組成物は、流動性及び色調に優れるため、特に、厚みの薄い成形体を製造する場合は、射出成形により成形することが望ましく、液晶表示装置の導光板や光拡散板用の樹脂として好適に用いることができる。
 以下に実施例、比較例を挙げ、本発明を更に詳しく説明する。なお、本発明はこれらの例によって限定されるものではない。なお、実施例及び比較例中の測定評価は以下に示す方法で行った。
<粘度平均分子量(Mv)の測定>
 粘度平均分子量(Mv)は、ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、次式にて算出するものである。
 [η]=1.23×10-5Mv0.83
<3-ペンタデシルフェノールの純度及び不純物量の測定方法>
 3-ペンタデシルフェノール、及びレゾルシノール誘導体は、液体クロマトグラフィー(アジレント・テクノロジー社製、製品名:「AGILENT 1200」)を用い、カラムとして「L-column ODS」(一般財団法人化学物質評価研究機構製、4.6mmID×150mm,粒径3μm)、移動相としてアセトニトリル/ギ酸バッファー=95/5(vol/vol)を用いて測定した。
 フェノール誘導体は、ガスクロマトグラフ質量分析計(日本電子株式会社製、製品名:「JMS-Q1000GC」)にて、長さ30m×内径250μm×膜厚0.25μmのカラム「VF-1」を用いて測定した。
<末端基組成量の測定>
 NMR装置(日本電子株式会社製、製品名:「JNM-LA500」)を用い、1H-NMRを測定して、ポリカーボネート樹脂の末端基組成量を算出した。
<末反応PDP量の測定>
 ポリカーボネート樹脂ペレット2gをクロロホルム15mlで溶解し、ヘキサン25mlを加え、ポリカーボネート樹脂を析出させた。その後、上澄み液を20ml採取し、濃縮乾固し、THF、水、アセトニトリル=9/7/14(体積比)で混合した混合溶媒を10ml加えた。前記混合溶液中に含まれるPDP量を、高速液体クロマトグラフィー(日本分光株式会社製、製品名:「LC-2000」)を用いて定量し、ポリカーボネート樹脂中の未反応PDP量を算出した。
<流れ値(Q値)の測定>
 高架式フローテスターを用い、JIS K7210に準拠して、280℃、15.7MPaの圧力下で、直径1mm、長さ10mmのノズルより流出する溶融樹脂量(×10-2mL/秒)を測定した。
<薄肉成形性の評価>
 参考例1~12、実施例1~2及び比較例1~3で得られたポリカーボネート樹脂に、アデガスタブPEP36〔株式会社ADEKA製、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト〕を500質量ppm添加し、ベント付き40mmφの単軸押出機によって樹脂温度280℃、スクリュー回転数100rpmで溶融混練押出し、それぞれのペレットを得た。得られた各ペレットを用い、50mm×90mm×0.4mmの平板を成形し、その成形性を下記の判断基準により、◎~×で評価した。
 ◎:厚み0.4mmの平板の面積100%に樹脂を充填でき、平板を成形できた。
 ○:厚み0.4mmの平板の面積75%~100%未満に樹脂を充填できた。
 △:厚み0.4mmの平板に面積50%~75%未満しか樹脂を充填できなかった。
 ×:厚み0.4mmの平板に面積50%未満しか樹脂を充填できなかった。
<YI値の測定>
 参考例1~12、実施例1~2及び比較例1~3で得られたポリカーボネート樹脂に、アデガスタブPEP36〔株式会社ADEKA製、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト〕を500質量ppm添加し、ベント付き40mmφの単軸押出機によって樹脂温280℃、スクリュー回転数100rpmで溶融混練押出し、それぞれのペレットを得た。得られたペレットを用い、厚み3mmの成形品を320℃にて成形し、分光測色計(日本電色工業株式会社製、製品名:「Σ90」)で測定面積30φ、C2光源の透過法で測定した。
<波長400nmの光線透過率の測定方法>
 参考例1~12、実施例1~2及び比較例1~3で得られたポリカーボネート樹脂に、アデガスタブPEP36〔株式会社ADEKA製、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト〕を500質量ppm添加し、ベント付き40mmφの単軸押出機によって樹脂温280℃、スクリュー回転数100rpmで溶融混練押出し、それぞれのペレットを得た。得られたペレットを用い、厚み3mmの成形品を320℃にて成形し、分光光度計(株式会社日立ハイテクノロジーズ製、製品名:「U-4100」)を用い、全光線透過率を測定した。
参考例1
(1)ポリカーボネートオリゴマーの製造
 濃度5.6質量%水酸化ナトリウム水溶液に、後に溶解するビスフェノールA(BPA)に対して0.2質量%の亜二チオン酸ナトリウムを加え、ここにBPA濃度が13.5質量%になるようにBPAを溶解し、BPAの水酸化ナトリウム水溶液を調製した。内径6mm、管長30mの管型反応器に、上記BPAの水酸化ナトリウム水溶液を40L/hr及び塩化メチレンを15L/hrの流量で連続的に通すと共に、ホスゲンを4.0kg/hrの流量で連続的に通した。管型反応器はジャケット部分を有しており、ジャケットに冷却水を通して反応液の温度を40℃以下に保った。
 管型反応器から送出された反応液は、後退翼を備えた内容積40Lのバッフル付き槽型反応器へ連続的に導入され、ここにさらにBPAの水酸化ナトリウム水溶液を2.8L/hr、25質量%水酸化ナトリウム水溶液を0.07L/hr、水を17L/hr、1質量%トリエチルアミン水溶液を0.64L/hr、及び20質量%のp-t-ブチルフェノール(PTBP)の塩化メチレン溶液149.2kg/hrの流量で供給し、29~32℃で反応を行った。槽型反応器から反応液を連続的に抜き出し、静置することで水相を分離除去し、塩化メチレン相を採取した。このようにして得られたポリカーボネートオリゴマー溶液は、オリゴマー濃度315g/L、クロロホーメート基濃度0.75mol/Lであった。
(2)液晶部材用ポリカーボネート樹脂の製造
 邪魔板、パドル型撹拌翼を備えた内容積1Lの槽型反応器に上記ポリカーボネートオリゴマー溶液333mL、塩化メチレン217mLを仕込み、3-ペンタデシルフェノール(m-PDP)[東京化成工業株式会社製、純度:92.10質量%、レゾルシノール誘導体:2.15質量%、フェノール誘導体:5.11質量%]14gを溶解後、トリエチルアミン111μLを加え、ここに6.4質量%水酸化ナトリウム水溶液33.3gを撹拌下で添加し、10分間反応を行った。次いで、BPAの水酸化ナトリウム水溶液(NaOH 14gと亜二チオン酸ナトリウム55mgを水203mLに溶解した水溶液に、BPA 27.4gを溶解したもの)を添加し、50分間重合反応を行った。
 希釈のため塩化メチレン200mLを加え10分間撹拌した後、ポリカーボネート樹脂を含む有機相と過剰のビスフェノールA及びNaOHを含む水相に分離し、有機相を単離した。得られたポリカーボネート樹脂の塩化メチレン溶液を、その溶液に対し順次15容量%の0.03mol/L・NaOH水溶液と0.2mol/L塩酸で洗浄し、次いで洗浄後の水相中の電気伝導度が0.05μS/m以下になるまで純水で洗浄を繰り返した。洗浄により得られたポリカーボネート樹脂の塩化メチレン溶液を濃縮・粉砕し、得られたフレークを減圧下、100℃で乾燥し、ポリカーボネート樹脂を得た。得られたポリカーボネート樹脂について、末端停止剤として使用したm-PDP及びPTBPに由来するポリカーボネート樹脂の末端組成は、m-PDP由来が6.87mol%、PTBP由来が1.44mol%であった。また、得られたポリカーボネート樹脂の粘度平均分子量(Mv)は8700であり、流れ値(Q値)は165×10-2mL/秒であり、薄肉成形性は◎であった。これらの測定結果を表1に示す。
参考例2
 参考例1の(2)においてm-PDPの量を8.8gに代えた以外は参考例1と同様に行った。その測定結果を表1に示す。
参考例3
 参考例1の(2)においてm-PDPの量を7.6gに代えた以外は参考例1と同様に行った。その測定結果を表1に示す。
参考例4
 参考例1の(2)においてオリゴマー溶液を349mL、塩化メチレンを191mL、m-PDPを1.6g、トリエチルアミンを110μL、6.4質量%水酸化ナトリウム水溶液を33g、BPAの水酸化ナトリウム水溶液をNaOH 14gと亜二チオン酸ナトリウム54mgを水199mLに溶解した水溶液にBPA 26.9gを溶解したものに代え、BPAの水酸化ナトリウム水溶液を加えると同時にPTBP 2.4gを塩化メチレン10mLに溶解したものを添加した以外は参考例1と同様に行った。その測定結果を表1に示す。
参考例5
 参考例3において、m-PDPを3.2gに、PTBPを1.6gに代えた以外は参考例3と同様に行った。その測定結果を表1に示す。
参考例6
 参考例5において、m-PDPを4.9gに、PTBPを0.8gに代えた以外は参考例5と同様に行った。その測定結果を表1に示す。
参考例7
 参考例1の(2)のポリカーボネートオリゴマー溶液を13.4L、塩化メチレン9.8L、m-PDPを280g、トリエチルアミンを4.1mL、6.4質量%水酸化ナトリウム水溶液を85g、BPAの水酸化ナトリウム水溶液をNaOH 545gと亜二チオン酸ナトリウム2.2gを水8Lに溶解した水溶液にBPA 1176gを溶解したものに代えた以外は参考例1と同様に行った。その測定結果を表1に示す。
参考例8
 参考例1の(2)のポリカーボネートオリゴマー溶液を143mL、塩化メチレン82mL、m-PDPを2g、トリエチルアミンを2μL、6.4質量%水酸化ナトリウム水溶液を26.8g、BPAの水酸化ナトリウム水溶液をNaOH 4.7gと亜二チオン酸ナトリウム20mgを水69mLに溶解した水溶液にBPA 9.8gを溶解したものに代えた以外は参考例1と同様に行った。その測定結果を表1に示す。
参考例9
 参考例1の(2)において、ポリカーボネートオリゴマー溶液を286mL、塩化メチレンを164mL、m-PDPを4g、トリエチルアミンを90μLに代え、6.4質量%水酸化ナトリウム水溶液の代わりにBPAの水酸化ナトリウム水溶液をNaOH 12.9gと亜二チオン酸ナトリウム44mgを水188mLに溶解した水溶液にBPA 22gを添加し、重合を60分行った以外は参考例1と同様に行った。その測定結果を表1に示す。
参考例10
(1)ポリカーボネートオリゴマーの製造
 濃度5.6質量%水酸化ナトリウム水溶液に、後に溶解するBPAに対して0.2質量%の亜二チオン酸ナトリウムを加え、ここにBPA濃度が13.5質量%になるように溶解し、モノマーの水酸化ナトリウム水溶液を調製した。内径6mm、管径30mの管型反応器に、上記モノマーの水酸化ナトリウム水溶液を40L/hr及び塩化メチレンを35L/hrの流量で連続的に通すと共に、ホスゲンを4.0kg/hrの流量で連続的に通した。管型反応器はジャケット部分を有しており、ジャケットに冷却水を通して反応液の温度を40℃以下に保った。
 管型反応器から送出された反応液は、静置することで水相を分離除去し、塩化メチレン相を採取した。このようにして得られたポリカーボネートオリゴマー溶液は、オリゴマー濃度225g/L、クロロホーメート基濃度0.73mol/Lだった。
(2)液晶部材用ポリカーボネート樹脂の製造
 邪魔板、パドル型撹拌翼を備えた内容積1Lの槽型反応器に上記オリゴマー溶液489mL、塩化メチレン61mLを仕込み、3-ペンタデシルフェノール(m-PDP)[東京化成工業株式会社製、純度:92.10質量%]9.6gを溶解後、トリエチルアミン149μLを加え、ここに6.4質量%水酸化ナトリウム水溶液47gを撹拌下で添加し、10分間反応を行った。次いで、BPAの水酸化ナトリウム水溶液(NaOH 18.4gと亜二チオン酸ナトリウム73mgを水269mLに溶解した水溶液に、BPA 36.6gを溶解したもの)を添加し、50分間重合反応を行った。
 希釈のため塩化メチレン200mLを加え10分間撹拌した後、ポリカーボネートを含む有機相と過剰のビスフェノールA及びNaOHを含む水相に分離し、有機相を単離した。得られたポリカーボネート樹脂の塩化メチレン溶液を、その溶液に対し順次15容量%の0.03mol/L・NaOH水溶液と0.2mol/L塩酸で洗浄し、次いで洗浄後の水相中の電気伝導度が0.05μS/m以下になるまで純水で洗浄を繰り返した。洗浄により得られたポリカーボネート樹脂の塩化メチレン溶液を濃縮・粉砕し、得られたフレークを減圧下、100℃で乾燥し、ポリカーボネート樹脂を得た。得られたポリカーボネート樹脂について、末端停止剤として使用したm-PDPに由来するポリカーボネート樹脂の末端組成、粘度平均分子量(Mv)、流れ値(Q値)及び薄肉成形性の評価についての結果を表1に示す。
参考例11
 参考例10の(2)において、m-PDPを10.1gに代えた以外は参考例10と同様に行った。その測定結果を表1に示す。
参考例12
 参考例10の(2)において、塩化メチレンを55mL、m-PDPを7.9g、トリエチルアミン134.5μL、6.4質量%の40.3g、BPAの水酸化ナトリウム水溶液をNaOH 16.7gと亜二チオン酸ナトリウム66mgを水245mLに溶解した水溶液にBPA 33gを溶解したものに代えた以外は参考例10と同様に行った。その測定結果を表1に示す。
比較例1
 参考例8において、m-PDPの代わりにPTBPを2.61g、トリエチルアミンを35μL、BPAの水酸化ナトリウム水溶液をNaOH 15gと亜二チオン酸ナトリウム51mgを水219mLに溶解した水溶液にBPA 25.7gを溶解したものに代えた以外は参考例8と同様に行った。その測定結果を表1に示す。
比較例2
 比較例1の(2)においてPTBPを3.3gに代えた以外は比較例1と同様に行った。その測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
実施例1
(1)3-ペンタデシルフェノール(m-PDP)の精製
 内径30mm、容量500mLのカラムに6mmマクマホンパッキング(Mc.MAHON Packing)を充填して精留塔とし、内温測定装置の付いた2Lフラスコに取り付け、充填塔頂には還流比(還流量/流出量)を調整する器具と塔頂温度を測定する装置、更には減圧度調整装置を取り付けた。東京化成工業株式会社製の水添カルダノール[3-ペンタデシルフェノール:92.10質量%、レゾルシノール誘導体:2.15質量%、フェノール誘導体:5.11質量%]1006.96gをフラスコに供給し、窒素置換後、加熱減圧を開始した。減圧度2mmHg、還流量/流出量=1に設定し、塔頂温度205~210℃の留分を分取した。この時、フラスコ温度は230~245℃であった。分取量は825.71g(仕込みの82%)、3-ペンタデシルフェノールの純度は93.61%であった。
 次に、得られた粗3-ペンタデシルフェノール(純度:93.61%)を60℃の湯浴にて融解させ規格瓶に70g秤量した後、420gのn-ヘキサンを加え溶解させた。室温にて12時間静置し、析出した固体を減圧濾過した後、室温にて8時間減圧乾燥することにより対応する純度97.75質量%の3-ペンタデシルフェノール48gを得た。このとき、不純物として、レゾルシノール誘導体0.03質量%、フェノール誘導体2.04質量%を含有していた。
 この方法で得られた純度97.75質量%の3-ペンタデシルフェノール70gを60℃の湯浴にて融解させ、規格瓶に70g秤量した後、420gのn-ヘキサンを加え溶解させた。室温にて12時間静置し、析出した固体を減圧濾過した後、室温にて8時間減圧乾燥することにより、純度99.33質量%の3-ペンタデシルフェノール54gを得た。このとき、不純物として、レゾルシノール誘導体0.07質量%、フェノール誘導体0.28質量%を含有していた。
(2)液晶部材用ポリカーボネート樹脂の製造
 邪魔板、パドル型撹拌翼を備えた内容積50Lの槽型反応器に参考例1の(1)で得られたオリゴマー溶液18L、塩化メチレン10.1Lを仕込み、上記(1)3-ペンタデシルフェノール(m-PDP)の精製により得られた純度97.75質量%の3-ペンタデシルフェノール(m-PDP)381gを溶解後、トリエチルアミン5mLを加え、ここに6.4質量%水酸化ナトリウム水溶液1.6kgを撹拌下で添加し、10分間反応を行った。次いで、BPAの水酸化ナトリウム水溶液(NaOH 665gと亜ジチオン酸ナトリウム2.6gを水9.7Lに溶解した水溶液に、BPA 1.3kgを溶解したもの)を添加し、50分間重合反応を行った。
 希釈のため塩化メチレンを加え10分間撹拌した後、重合反応により生成したポリカーボネート樹脂を含む有機相と過剰のビスフェノールA及びNaOHを含む水相に分離し、有機相を単離した。得られたポリカーボネート樹脂の塩化メチレン溶液(有機相)を、その溶液に対し順次15容量%の0.03mol/L・NaOH水溶液と0.2mol/L塩酸で洗浄し、次いで洗浄後の水相中の電気伝導度が0.05μS/m以下になるまで純水で洗浄を繰り返した。洗浄により得られたポリカーボネート樹脂の塩化メチレン溶液を濃縮・粉砕し、得られたフレークを減圧下、100℃で乾燥し、ポリカーボネート樹脂を得た。1H-NMRにより測定したm-PDPに由来する末端基組成量は4.53mol%であり、PTBPに由来する末端基組成量は2.92mol%であり、OHに由来する末端基組成量は0.03mol%であり、未反応PDPの量は6質量ppmであった。また、得られたポリカーボネート樹脂の粘度平均分子量(Mv)は11900であり、280℃での流れ値(Q値)は123(×10-2mL/秒)であり、薄肉成形性は◎であった。また、得られた液晶部材用ポリカーボネート樹脂のYIを測定したところ、1.1であった。
 また、得られた液晶部材用ポリカーボネート樹脂の波長400nmにおける全光線透過率を測定したところ、88.1%であった。
実施例2
 実施例1の(2)液晶部材用ポリカーボネート樹脂の製造において、純度97.75質量%の3-ペンタデシルフェノール(m-PDP)に代えて、実施例1の(1)で得られた純度99.33質量%の3-ペンタデシルフェノール(m-PDP)を用いた以外は、実施例1の(2)と同様にして、液晶部材用ポリカーボネート樹脂を製造した。得られた液晶部材用ポリカーボネート樹脂を1H-NMRにより測定したm-PDPに由来する末端基組成量は4.54mol%であり、PTBPに由来する末端基組成量は2.69mol%であり、OHに由来する末端基組成量は0.04mol%であり、未反応PDPの量は6質量ppmであった。この液晶部材用ポリカーボネート樹脂の粘度平均分子量(Mv)は11500であり、流れ値(Q値)は127(×10-2mL/秒)であり、薄肉成形性は◎であった。また、得られた液晶部材用ポリカーボネート樹脂YIを測定したところ、1.0であった。
 また、得られた液晶部材用ポリカーボネート樹脂の波長400nmにおける全光線透過率を測定したところ、88.6%であった。
比較例3
 実施例1の(2)液晶部材用ポリカーボネート樹脂の製造において、純度97.75質量%の3-ペンタデシルフェノールに代えて、純度92.10質量%の3-ペンタデシルフェノール[東京化成工業株式会社製]を用いた以外は、実施例1の(2)と同様にして、液晶部材用ポリカーボネート樹脂を製造した。得られた液晶部材用ポリカーボネート樹脂を1H-NMRにより測定したm-PDPに由来する末端基組成量は4.55mol%であり、PTBPに由来する末端基組成量は2.90mol%であり、OHに由来する末端基組成量は0.06mol%であり、未反応PDPの量は7質量ppmであった。この液晶部材用ポリカーボネート樹脂の粘度平均分子量(Mv)は12000であり、流れ値(Q値)は123(×10-2mL/秒)であり、薄肉成形性は◎であった。また、得られた液晶部材用ポリカーボネート樹脂YIを測定したところ、4.6であった。
 また、得られた液晶部材用ポリカーボネート樹脂の波長400nmにおける全光線透過率を測定したところ、81.7%であった。
 上記の参考例1~12及び実施例1~2で得られた、液晶部材用ポリカーボネート樹脂は、流れ値(Q値)が高く、特に薄肉成形性に優れ、液晶部材用ポリカーボネート樹脂として好適に用いることができる。また、実施例1及び2から、高純度m-PDPを用いた場合、YIが低く、透明性に優れる液晶部材用ポリカーボネート樹脂とすることができ、導光板や光拡散板等に好適に用いることができる。
 本発明の液晶部材用ポリカーボネート樹脂は、流動性及び色調に優れるために、成形性に優れ、特に、厚みの薄い成形体、液晶表示装置の導光板、光拡散板やその他OA機器材料部材の製造に適する。

Claims (21)

  1.  天然物から得られる3-ペンタデシルフェノールを含む末端停止剤を用いて製造され、以下の測定方法におけるYI値が1.1以下である、液晶部材用ポリカーボネート樹脂。
    <YI値の測定方法>
     ポリカーボネート樹脂にビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイトを500質量ppm添加して、ベント付き40mmφの単軸押出機によって樹脂温280℃、スクリュー回転数100rpmで溶融混練押出し、ペレットを得、得られたペレットを用い、厚み3mmの成形品を成形し、分光測色計で測定面積30φ、C2光源の透過法で測定する。
  2.  天然物から得られる3-ペンタデシルフェノールを含む末端停止剤を用いて製造され、以下の測定方法における波長400nmの光線透過率が85%以上である、液晶部材用ポリカーボネート樹脂。
    <波長400nmの光線透過率の測定方法>
     ポリカーボネート樹脂にビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイトを500質量ppm添加して、ベント付き40mmφの単軸押出機によって樹脂温280℃、スクリュー回転数100rpmで溶融混練押出し、ペレットを得、得られたペレットを用い、厚み3mmの成形品を成形し、分光光度計を用い、全光線透過率を測定する。
  3.  前記ポリカーボネート樹脂に含まれる全末端基に占めるOH由来の末端基組成量が5.0mol%以下である、請求項1又は2に記載の液晶部材用ポリカーボネート樹脂。
  4.  3-ペンタデシルフェノールの純度が97.5質量%以上である、請求項1~3のいずれかに記載の液晶部材用ポリカーボネート樹脂。
  5.  3-ペンタデシルフェノールの純度が97.75質量%以上である、請求項1~3のいずれかに記載の液晶部材用ポリカーボネート樹脂。
  6.  3-ペンタデシルフェノールの純度が99.33質量%以上である、請求項1~3のいずれかに記載の液晶部材用ポリカーボネート樹脂。
  7.  蒸留及び晶析を行うことによって得られた3-ペンタデシルフェノールを含む末端停止剤を用いて製造される、請求項1~6のいずれかに記載の液晶部材用ポリカーボネート樹脂。
  8.  蒸留の後に晶析を行う、請求項7に記載の液晶部材用ポリカーボネート樹脂。
  9.  前記晶析において、炭化水素系溶媒を用いる、請求項7又は8に記載の液晶部材用ポリカーボネート樹脂。
  10.  前記晶析において、炭化水素系溶媒としてヘキサン又はヘプタンのうち1種以上を用いる、請求項9に記載の液晶部材用ポリカーボネート樹脂。
  11.  前記晶析において、3-ペンタデシルフェノール1質量部に対して2質量部以上20質量部以下の溶媒を用いる、請求項7~10のいずれかに記載の液晶部材用ポリカーボネート樹脂。
  12.  前記晶析において、3-ペンタデシルフェノール1質量部に対して4質量部以上10質量部以下の溶媒を用いる、請求項7~10のいずれかに記載の液晶部材用ポリカーボネート樹脂。
  13.  前記末端停止剤が、p-t-ブチルフェノール又はp-クミルフェノールを含む、請求項1~12のいずれかに記載の液晶部材用ポリカーボネート樹脂。
  14.  請求項1~13のいずれかに記載の液晶部材用ポリカーボネート樹脂及びそれ以外の芳香族ポリカーボネート樹脂を含む、液晶部材用ポリカーボネート樹脂組成物。
  15.  請求項1~13のいずれかに記載の液晶部材用ポリカーボネート樹脂又は請求項14に記載の液晶部材用ポリカーボネート樹脂組成物を成形してなる、液晶部材。
  16.  請求項1~13のいずれかに記載の液晶部材用ポリカーボネート樹脂が導光板用である、導光板用ポリカーボネート樹脂。
  17.  請求項16に記載の導光板用ポリカーボネート樹脂及びそれ以外の芳香族ポリカーボネート樹脂を含む、導光板用ポリカーボネート樹脂組成物。
  18.  請求項16に記載の導光板用ポリカーボネート樹脂又は請求項17に記載の導光板用ポリカーボネート樹脂組成物を成形してなる、導光板。
  19.  天然物から得られ、純度が97.5質量%以上である3-ペンタデシルフェノールを末端停止剤として用いる、液晶部材用ポリカーボネート樹脂の製造方法。
  20.  3-ペンタデシルフェノールの純度が97.75質量%以上である、請求項19に記載の液晶部材用ポリカーボネート樹脂の製造方法。
  21.  3-ペンタデシルフェノールの純度が99.33質量%以上である、請求項19又は20に記載の液晶部材用ポリカーボネート樹脂の製造方法。
PCT/JP2014/060926 2013-04-19 2014-04-17 液晶部材用ポリカーボネート樹脂、それを含む液晶部材用ポリカーボネート樹脂組成物及び液晶部材 WO2014171509A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015512518A JPWO2014171509A1 (ja) 2013-04-19 2014-04-17 液晶部材用ポリカーボネート樹脂、それを含む液晶部材用ポリカーボネート樹脂組成物及び液晶部材
EP14785688.4A EP2987816A1 (en) 2013-04-19 2014-04-17 Polycarbonate resin for liquid crystal members, polycarbonate resin composition for liquid crystal members which contains same, and liquid crystal member
KR1020157029701A KR20150144751A (ko) 2013-04-19 2014-04-17 액정 부재용 폴리카보네이트 수지, 그것을 함유하는 액정 부재용 폴리카보네이트 수지 조성물 및 액정 부재
US14/785,499 US20160083513A1 (en) 2013-04-19 2014-04-17 Polycarbonate resin for liquid crystal members, polycarbonate resin composition for liquid crystal members which contains same, and liquid crystal member
CN201480021682.2A CN105143305A (zh) 2013-04-19 2014-04-17 液晶部件用聚碳酸酯树脂、含有该树脂的液晶部件用聚碳酸酯树脂组合物和液晶部件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-088408 2013-04-19
JP2013-088426 2013-04-19
JP2013088426 2013-04-19
JP2013088408 2013-04-19

Publications (1)

Publication Number Publication Date
WO2014171509A1 true WO2014171509A1 (ja) 2014-10-23

Family

ID=51731445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060926 WO2014171509A1 (ja) 2013-04-19 2014-04-17 液晶部材用ポリカーボネート樹脂、それを含む液晶部材用ポリカーボネート樹脂組成物及び液晶部材

Country Status (7)

Country Link
US (1) US20160083513A1 (ja)
EP (1) EP2987816A1 (ja)
JP (1) JPWO2014171509A1 (ja)
KR (1) KR20150144751A (ja)
CN (1) CN105143305A (ja)
TW (1) TW201504278A (ja)
WO (1) WO2014171509A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147198A1 (ja) * 2014-03-28 2015-10-01 出光興産株式会社 3-ペンタデシルフェノールの塩化メチレン溶液、その製造方法、及び該溶液を用いるポリカーボネート樹脂の製造方法
WO2015152100A1 (ja) * 2014-03-31 2015-10-08 出光興産株式会社 ポリカーボネート樹脂組成物、及び成形体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102544571B1 (ko) * 2015-12-11 2023-06-19 미쯔비시 케미컬 주식회사 방향족 폴리카르보네이트 수지, 방향족 폴리카르보네이트 수지 조성물 및 방향족 폴리카르보네이트 수지 성형체의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250078B2 (ja) 1974-09-20 1977-12-21
JP2662310B2 (ja) 1989-07-07 1997-10-08 出光石油化学株式会社 ポリカーボネート―ポリジメチルシロキサン共重合体及びその製造方法
JP2003041011A (ja) 2001-07-31 2003-02-13 Teijin Chem Ltd 光学記録媒体
JP2004507585A (ja) * 2000-08-31 2004-03-11 ゼネラル・エレクトリック・カンパニイ 1,1−ビス(4−ヒドロキシフェニル)−3−アルキルシクロヘキサン、その製造方法、及びそれから製造したポリカーボネート
JP2004331688A (ja) * 2003-04-30 2004-11-25 Teijin Chem Ltd ポリカーボネート共重合体より形成された光学部材
JP2005511811A (ja) * 2001-10-10 2005-04-28 ゼネラル・エレクトリック・カンパニイ ポリカーボネート樹脂の末端封鎖法及び当該方法に用いられる組成物
WO2011096089A1 (ja) * 2010-02-05 2011-08-11 帝人株式会社 ポリカーボネート樹脂およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1363850A (en) * 1970-10-26 1974-08-21 Imp Chemocal Ind Ltd Purification ltd
JPS5250078A (en) 1975-10-20 1977-04-21 Santou Sangyo Kk Iorn powder press
JPH07228680A (ja) * 1994-02-16 1995-08-29 Mitsui Toatsu Chem Inc 芳香族ポリカーボネートの製造方法
DE19933132A1 (de) * 1999-07-19 2001-01-25 Bayer Ag Verfahren zur Herstellung von modifizierten Polycarbonaten
US6552107B1 (en) * 2000-03-24 2003-04-22 Council Of Scientific And Industrial Research Melt or solution processable highly conducting polyaniline and process for preparation thereof, and blends thereof with PVC and EVA
US6734277B2 (en) * 2002-05-09 2004-05-11 General Electric Company Method of enhancing pit replication in optical disks
JP5193995B2 (ja) * 2007-03-08 2013-05-08 帝人株式会社 末端変性ポリカーボネートおよびその製造方法
EP2820065B1 (en) * 2012-02-28 2017-01-11 SABIC Global Technologies B.V. Processes for preparing polycarbonates with enhanced optical properties

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250078B2 (ja) 1974-09-20 1977-12-21
JP2662310B2 (ja) 1989-07-07 1997-10-08 出光石油化学株式会社 ポリカーボネート―ポリジメチルシロキサン共重合体及びその製造方法
JP2004507585A (ja) * 2000-08-31 2004-03-11 ゼネラル・エレクトリック・カンパニイ 1,1−ビス(4−ヒドロキシフェニル)−3−アルキルシクロヘキサン、その製造方法、及びそれから製造したポリカーボネート
JP2003041011A (ja) 2001-07-31 2003-02-13 Teijin Chem Ltd 光学記録媒体
JP2005511811A (ja) * 2001-10-10 2005-04-28 ゼネラル・エレクトリック・カンパニイ ポリカーボネート樹脂の末端封鎖法及び当該方法に用いられる組成物
JP2004331688A (ja) * 2003-04-30 2004-11-25 Teijin Chem Ltd ポリカーボネート共重合体より形成された光学部材
WO2011096089A1 (ja) * 2010-02-05 2011-08-11 帝人株式会社 ポリカーボネート樹脂およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147198A1 (ja) * 2014-03-28 2015-10-01 出光興産株式会社 3-ペンタデシルフェノールの塩化メチレン溶液、その製造方法、及び該溶液を用いるポリカーボネート樹脂の製造方法
WO2015152100A1 (ja) * 2014-03-31 2015-10-08 出光興産株式会社 ポリカーボネート樹脂組成物、及び成形体

Also Published As

Publication number Publication date
CN105143305A (zh) 2015-12-09
KR20150144751A (ko) 2015-12-28
TW201504278A (zh) 2015-02-01
EP2987816A1 (en) 2016-02-24
JPWO2014171509A1 (ja) 2017-02-23
US20160083513A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
JP5547953B2 (ja) ポリカーボネート−ポリオルガノシロキサン共重合体、その製造方法及び該共重合体を含むポリカーボネート樹脂
JP5919294B2 (ja) ポリカーボネート−ポリオルガノシロキサン共重合体及びその製造方法
JP6711502B2 (ja) ポリカーボネート−ポリオルガノシロキサン共重合体の製造方法
JP6699860B2 (ja) ポリカーボネート系樹脂組成物及びその成形体
JP6913028B2 (ja) ポリカーボネート系樹脂組成物
JP6397645B2 (ja) ポリカーボネート樹脂組成物、及び成形体
WO2014171509A1 (ja) 液晶部材用ポリカーボネート樹脂、それを含む液晶部材用ポリカーボネート樹脂組成物及び液晶部材
JP4792202B2 (ja) ポリカーボネート共重合体、ポリカーボネート共重合体組成物及びそれらからなる光学成形品
JP2014224244A (ja) ポリカーボネート樹脂、ポリカーボネート樹脂組成物、及び成形体
WO2015147198A1 (ja) 3-ペンタデシルフェノールの塩化メチレン溶液、その製造方法、及び該溶液を用いるポリカーボネート樹脂の製造方法
WO2019022176A1 (ja) カーボネート-オレフィン系共重合体
JP2014224245A (ja) ポリカーボネート樹脂の製造方法
WO2015159958A1 (ja) ポリカーボネート樹脂の製造方法
JP2013147588A (ja) 末端変性ポリカーボネート樹脂
JP6357408B2 (ja) 分岐ポリカーボネートの製造方法
JP4071145B2 (ja) ポリカーボネート共重合体及びその製造方法
JP6035182B2 (ja) ポリカーボネート共重合体及びその製造方法
JP2014189683A (ja) ポリカーボネート共重合体及びその製造方法
WO2016080382A1 (ja) ポリカーボネート-ポリオルガノシロキサン共重合体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480021682.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015512518

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157029701

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014785688

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014785688

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14785499

Country of ref document: US