WO2014171261A1 - 排気浄化システム及び排気浄化システムの制御方法 - Google Patents

排気浄化システム及び排気浄化システムの制御方法 Download PDF

Info

Publication number
WO2014171261A1
WO2014171261A1 PCT/JP2014/057925 JP2014057925W WO2014171261A1 WO 2014171261 A1 WO2014171261 A1 WO 2014171261A1 JP 2014057925 W JP2014057925 W JP 2014057925W WO 2014171261 A1 WO2014171261 A1 WO 2014171261A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection valve
reducing agent
temperature
aqueous solution
purification system
Prior art date
Application number
PCT/JP2014/057925
Other languages
English (en)
French (fr)
Inventor
匡教 渡辺
宮本 武司
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to JP2015512372A priority Critical patent/JPWO2014171261A1/ja
Publication of WO2014171261A1 publication Critical patent/WO2014171261A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • F01N2610/105Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1493Purging the reducing agent out of the conduits or nozzle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust purification system and an exhaust purification system control method.
  • the present invention relates to an exhaust purification system and an exhaust purification system control method capable of avoiding clogging or breakage of a reducing agent injection valve and a reducing agent supply path due to solidification of an aqueous urea solution.
  • exhaust gas of an internal combustion engine mounted on a vehicle includes nitrogen oxides (hereinafter referred to as “NOx”) and particulate matter (hereinafter also referred to as “PM”).
  • NOx nitrogen oxides
  • PM particulate matter
  • a urea SCR system as a device for purifying exhaust gas by reducing NOx.
  • the urea SCR system is a kind of a reducing agent supply device for supplying a urea aqueous solution as a reducing agent pumped up from a storage tank by a pressure pump into an exhaust pipe and an exhaust purification catalyst capable of adsorbing ammonia. And a certain SCR catalyst.
  • ammonia generated by decomposition of an aqueous urea solution is adsorbed on the SCR catalyst, and NOx in the exhaust gas is reacted with ammonia in the SCR catalyst to purify the exhaust gas.
  • DPF diesel particulate filter
  • the DPF is disposed in the exhaust pipe of the internal combustion engine, and collects PM in the exhaust gas when the exhaust gas passes through the DPF.
  • forced regeneration control is performed in a timely manner in which the temperature of the DPF is raised to about 500 ° C. to 600 ° C. and the PM deposited on the DPF is forcibly burned. Done.
  • the urea SCR system is generally configured to recover the urea aqueous solution remaining in the reducing agent supply path when the internal combustion engine is stopped (see, for example, Patent Document 1). As a result, the urea aqueous solution is frozen while remaining in the reducing agent supply path, and it is intended to avoid clogging or breakage of the reducing agent supply path.
  • the reducing agent that is, the urea aqueous solution cannot be completely recovered due to its structure.
  • the urea aqueous solution remaining in the reducing agent supply path is heated and concentrated after the internal combustion engine is stopped, so that the solidification temperature rises and the urea aqueous solution is solidified in the process of cooling thereafter.
  • the exhaust purification system described in Patent Document 1 has a problem in that the supply of urea aqueous solution is hindered when the internal combustion engine is started, and the exhaust purification efficiency decreases.
  • a purge process is generally performed in which the urea aqueous solution filled in the reducing agent supply path of the reducing agent supply device is collected in the storage tank. Due to the structure of the reducing agent passage connecting the reducing agent injection valve or the like, the urea aqueous solution filled in the reducing agent supply path cannot normally be completely recovered in the storage tank.
  • the circulation of the cooling water which is the heat radiation function of the reducing agent injection valve, is stopped. If it does so, the water
  • FIG. 8 is a graph showing the relationship between the concentration of the urea aqueous solution and the solidification temperature T0.
  • the concentration of the urea aqueous solution as the reducing agent used in the reducing agent supply apparatus is normally adjusted to about 32.5%, which is about ⁇ 11 ° C., which has the lowest solidification temperature.
  • the solidification temperature of the urea aqueous solution is about ⁇ 11 ° C. when the concentration of the urea aqueous solution is about 32.5%, and the concentration of the urea aqueous solution is about 32.5%.
  • the solidification temperature of the urea aqueous solution has a characteristic that it rises regardless of whether it becomes higher or lower.
  • the remaining urea aqueous solution in the reducing agent injector whose concentration has increased due to evaporation of moisture due to high temperature is likely to solidify when the temperature subsequently decreases, and injection of the reducing agent injector is performed when the internal combustion engine is restarted. In the worst case, the reducing agent injection valve may be damaged.
  • the present invention has been made in view of such a problem. Even when the urea aqueous solution once heated is solidified in the cooling process after the internal combustion engine is stopped, the solidified urea aqueous solution is dissolved.
  • the above-mentioned problem is solved by operating the reducing agent supply device after waiting.
  • An object of the present invention is to provide an exhaust purification system and an exhaust purification system control method.
  • An exhaust purification system includes a diesel particulate filter that collects exhaust particulates in exhaust gas of an internal combustion engine, and a urea aqueous solution as a reducing agent supplied from a storage tank to a reducing agent injection valve.
  • the reducing agent supply device that recovers the urea aqueous solution in the supply path to the storage tank, and the urea aqueous solution is used to supply the urea aqueous solution to the storage tank.
  • An exhaust gas purification system comprising an SCR catalyst for purifying NOx of the exhaust gas sequentially from the exhaust upstream side, After detecting that the ignition switch for stopping the internal combustion engine is turned off, the maximum reached temperature of the reducing agent injection valve is identified, and then the dissolution temperature of the urea aqueous solution remaining in the reducing agent injection valve is reached.
  • a melting temperature calculation part for calculating based on the temperature;
  • An injection valve operation permission unit for permitting the operation of the reducing agent injection valve after the injection valve temperature of the reducing agent injection valve reaches the melting temperature after detection of turning on of an ignition switch for starting the internal combustion engine; , It is characterized by providing the control apparatus which has, and the said subject can be solved by providing the said structure.
  • an exhaust purification system control method includes: A diesel particulate filter that collects exhaust particulates in the exhaust gas of an internal combustion engine and a urea aqueous solution as a reducing agent are supplied from the storage tank to the reducing agent injection valve by being injected and supplied into the exhaust gas.
  • a reducing agent supply device that recovers the urea aqueous solution in the supply path to the storage tank and an SCR catalyst that purifies NOx in the exhaust gas using the urea aqueous solution are exhausted upstream.
  • the exhaust gas purification system and the control method thereof are provided with the above-described configurations, so that the reducing agent injection valve and the reducing agent supply path are clogged or damaged due to solidification of the urea aqueous solution. As a result, it is possible to prevent a decrease in exhaust purification efficiency.
  • the calculation of the melting temperature may be performed after detecting the ignition switch being turned on. Alternatively, the melting temperature may be calculated after detecting the ignition switch OFF and before detecting the ON.
  • the detection of the injection valve temperature of the reducing agent injection valve for specifying the maximum temperature reached may be performed in parallel with the recovery of the urea aqueous solution to the storage tank.
  • the identification of the maximum temperature is preferably performed after the recovery of the urea aqueous solution into the storage tank.
  • the calculation of the melting temperature may be performed based on the highest temperature reached, one or both of the temperature gradient of the reducing agent injection valve and the outside air temperature.
  • 1 is an overall configuration diagram of an exhaust purification system according to an embodiment of the present invention.
  • 1 is a block diagram of a control device provided in an exhaust purification system according to an embodiment of the present invention. It is a graph which shows an example of changes, such as a reducing agent injection valve temperature and a reducing agent solidification temperature, in an exhaust gas purification system concerning one embodiment of the present invention.
  • It is a flowchart for demonstrating the exhaust gas purification system which concerns on one Embodiment of this invention, and its control method.
  • It is a flowchart for demonstrating the exhaust gas purification system which concerns on one Embodiment of this invention, and its control method.
  • FIG. 1 is an overall configuration diagram of an exhaust purification system 10 according to an embodiment of the present invention.
  • the exhaust purification system 10 performs an exhaust purification unit 20 having a DPF 22 and an SCR catalyst 24, a reducing agent supply device 40 including a reducing agent injection valve 43, a forced regeneration control of the DPF 22, and an operation control of the reducing agent supply device 40.
  • a control device 60 is provided as a main component.
  • Such an exhaust purification system 10 collects particulate matter (PM) in the exhaust gas by the DPF 22 and selectively uses the aqueous urea solution as the reducing agent to selectively remove NOx in the exhaust gas in the SCR catalyst 24. It is comprised as an apparatus for purifying.
  • the exhaust purification unit 20 includes an oxidation catalyst 21, a DPF 22, and an SCR catalyst 24 sequentially from the exhaust upstream side.
  • the oxidation catalyst 21 oxidizes unburned fuel supplied into the exhaust pipe 11 by post-injection or the like in the internal combustion engine 5 to generate oxidation heat. Thereby, the temperature of the exhaust gas flowing into the DPF 22 can be raised to heat the DPF 22.
  • the oxidation catalyst 21 may be a known catalyst, for example, a catalyst in which platinum is supported on alumina and a predetermined amount of rare earth element such as cerium is added.
  • the DPF 22 collects PM in the exhaust gas when the exhaust gas passes through the DPF 22.
  • the DPF 22 is disposed on the exhaust upstream side of the SCR catalyst 24, and there is no possibility that PM adheres to the SCR catalyst 24.
  • a known filter for example, a honeycomb structure filter made of a ceramic material can be used.
  • the SCR catalyst 24 adsorbs ammonia generated by the decomposition of the urea aqueous solution injected into the exhaust gas by the reducing agent injection valve 43, and reduces NOx in the inflowing exhaust gas.
  • a zeolite-based reduction catalyst having an ammonia adsorption function and capable of selectively reducing NOx can be used.
  • the exhaust purification unit 20 described above includes pressure sensors 51 and 52 before and after the DPF 22, respectively, and temperature sensors 53 and 54 before and after the SCR catalyst 24, respectively. Further, a NOx sensor 55 is provided on the exhaust downstream side of the SCR catalyst 24. Further, an outside air temperature sensor for detecting the outside air temperature is disposed around the exhaust purification unit.
  • the sensor values of these sensors are sent to the control device 60, and the pressure, temperature, and NOx concentration at each position are detected.
  • these sensors can be omitted if they can be estimated by calculation.
  • the exhaust purification unit 20 described above includes a connecting pipe 12 that branches from the first bent portion 23a of the exhaust pipe 11 and fixes the reducing agent injection valve 43. Via this connecting pipe 12, urea aqueous solution as a reducing agent is injected from the reducing agent injection valve 43 in a direction substantially coinciding with the flow direction of the exhaust gas.
  • the exhaust purification system 10 of this embodiment includes forced regeneration means for performing forced regeneration control of the DPF 22. This is because the DPF 22 is heated to about 500 ° C. to 600 ° C., and forced regeneration is performed in which the PM deposited on the DPF 22 is forcibly burned.
  • a fuel injection valve (not shown) that supplies unburned fuel into the exhaust pipe 11 by post-injection or the like in the internal combustion engine 5, fuel injection amount from the fuel injection valve, fuel injection timing, etc.
  • the control part of the control device 60 for instructing the control of the valve and the oxidation catalyst 21 that oxidizes unburned fuel and generates heat of oxidation constitute a forced regeneration means.
  • the forced regeneration means is not limited to the above configuration example, and any means that can raise the temperature of the exhaust gas to about 500 ° C. to 600 ° C. may be used.
  • the forced regeneration means may be configured using an apparatus that supplies unburned fuel to the oxidation catalyst 21 without relying on post injection.
  • a heating device such as a burner or a heating wire may be provided to heat the DPF 22 directly.
  • the reducing agent supply device 40 includes a storage tank 41 that stores an aqueous urea solution, a pressure pump 42, and a reducing agent injection valve 43 as main components.
  • the storage tank 41 and the pressure feed pump 42 are connected by the first supply passage 44, and the pressure feed pump 42 and the reducing agent injection valve 43 are connected by the second supply passage 45.
  • a pressure sensor 56 is provided in the second supply passage 45, the sensor value is transmitted to the control device 60, and the pressure in the second supply passage 45 is detected.
  • the second supply passage 45 and the storage tank 41 are connected by the third supply passage 46, whereby the excess urea aqueous solution supplied to the second supply passage 45 is returned to the storage tank 41. Can do.
  • the reducing agent supply device 40 has a function of switching the flow path of the urea aqueous solution from the forward direction from the storage tank 41 to the reducing agent injection valve 43 to the reverse direction from the reducing agent injection valve 43 to the storage tank 41.
  • a reverting valve 47 is provided. That is, the exhaust purification system 10 of this embodiment has a configuration in which the urea aqueous solution filled in the reducing agent supply device 40 can be collected in the storage tank 41 when the internal combustion engine 5 is stopped.
  • the pumping pump 42 pumps up the urea aqueous solution in the storage tank 41 so that the pressure in the second supply path 45 is maintained at a predetermined value, and the reducing agent injection valve. 43 is pumped.
  • the pressure pump 42 an electric pump is typically used.
  • the reducing agent injection valve 43 injects an aqueous urea solution into the exhaust pipe 11 when the reducing agent injection valve 43 is opened by a control signal output from the control device 60.
  • the reducing agent injection valve 43 for example, an ON-OFF valve whose ON / OFF is controlled by DUTY control is used.
  • the electronic part, the resin part, and the like constituting the reducing agent injection valve 43 are relatively weak against heat, and the heat-resistant temperature T lim is about 140 ° C. to 150 ° C., while the exhaust gas temperature during normal operation is 200 ° C. It is about 300 to 300 ° C.
  • the reducing agent supply device 40 includes a cooling water passage 35 provided in the housing of the reducing agent injection valve 43 and a cooling water circulation passage 33 that branches from the cooling water passage 33 of the internal combustion engine 5 and communicates with the cooling water passage 35. 34, and cooling water flow rate control valves 31 and 32 for adjusting the flow rate of the cooling water flowing through the cooling water circulation passages 33 and 34 are provided.
  • the cooling water of the internal combustion engine 5 is circulated through the cooling water passage 35 of the reducing agent injection valve 43, the temperature of the reducing agent injection valve 43 is maintained at about 70 ° C. to 80 ° C., and thermal damage to the reducing agent injection valve 43 is prevented. Can be prevented.
  • the relatively low temperature urea aqueous solution in the storage tank 41 is pumped to the reducing agent injection valve 43, so that the urea from the reducing agent injection valve 43 is reduced.
  • the heat transfer to the aqueous solution also promotes heat dissipation of the reducing agent injection valve 43.
  • the circulation of the engine cooling water and the heat dissipation of the reducing agent injection valve 43 by heat transfer to the urea aqueous solution are performed particularly during the operation of the internal combustion engine 5.
  • the control device 60 provided in the exhaust purification system 10 includes a temperature detection unit 62, a forced regeneration control unit 63, and the control device 60.
  • the melting temperature calculation unit 64 and the injection valve operation permission unit 65 will be described in detail. Each of these units is typically realized by executing a program by a microcomputer.
  • FIG. 2 shows, in a functional block, a part related to control for eliminating clogging of the reducing agent injection valve 43 caused by solidification of the urea aqueous solution in the control device 60 provided in the exhaust purification system 10.
  • This is a configuration example.
  • the control device 60 includes a signal of the ignition switch 57, each pressure sensor and each temperature sensor, a rotational speed sensor that detects the engine rotational speed Ne, a vehicle speed sensor that detects the vehicle speed V of the vehicle, and an accelerator pedal operation amount Acc.
  • Various sensor signals such as an accelerator sensor to detect and a brake sensor to detect an operation amount Brk of the brake pedal can be read.
  • the control device 60 is provided with a RAM (Random Access Memory) (not shown) for storing calculation results and detection results at each unit. Further, the control device 60 detects an on / off signal from the ignition switch 57 for starting and stopping the internal combustion engine.
  • control device 60 When the control device 60 detects the off signal, the control device 60 specifies the maximum temperature T udvmax of the reducing agent injection valve 43. When the ON signal is detected, the operation of the reducing agent injection valve 43 is permitted after the temperature of the reducing agent injection valve 43 reaches the melting temperature T str of the remaining reducing agent calculated from the maximum attained temperature T udmax. It is configured as follows.
  • control device 60 controls the driving of the pumping pump 42 so that the pressure in the second supply path 45 is maintained at a predetermined value, and the engine speed Ne. Further, the driving of the reducing agent injection valve 43 is controlled based on the sensor value of the NOx sensor 55 provided on the exhaust downstream side of the SCR catalyst.
  • control device 60 performs a purge process when the internal combustion engine 5 is stopped. That is, a signal for switching the flow path of the urea aqueous solution from the forward direction to the reverse direction is output to the reverting valve 47, and the signal for opening the reducing agent injection valve 43 and driving the pressure feed pump 42. Is output to the pressure feed pump 42 and the reducing agent injection valve 43 to recover the reducing agent present in the reducing agent injection valve 43 and the reducing agent supply path in the storage tank 41.
  • Temperature detection part The temperature detection part 62 is for detecting the reducing agent injection valve temperature T udv using the temperature sensor 53, but when it cannot be directly detected, the temperature T downstream of the DPF 22 in the vicinity thereof is detected.
  • the forced regeneration control unit 63 estimates the PM deposition amount Vpm based on the differential pressure obtained from the pressure sensors 51 and 52 provided before and after the DPF 22. When the estimated PM accumulation amount Vpm exceeds a predetermined threshold value Vpm0, it is determined that the forced regeneration of the DPF 22 is necessary, and a signal for executing the forced regeneration is transmitted to the forced regeneration means.
  • the forced regeneration control unit 63 stops the signal for executing the forced regeneration, which has been transmitted to the forced regeneration means, triggered by the estimated PM accumulation amount Vpm being reduced to a predetermined amount.
  • the melting temperature calculation unit 64 detects that the ignition switch 57 is turned off in order to stop the internal combustion engine, the melting temperature calculation unit 64 starts detecting the injection valve temperature Tudv of the reducing agent injection valve 43 through the temperature detection unit 62.
  • the maximum temperature T udvmax of the injection valve 43 is specified.
  • the injection valve temperature T UDV is to some extent It rises over time and then falls.
  • the melting temperature calculation unit 64 updates the injection valve maximum temperature T max that is the maximum value of the injection valve temperature T udv as the injection valve temperature T udv increases, and the injection valve temperature T udv stops increasing.
  • the injection valve maximum temperature T max is identified as the highest temperature T Udvmax of the reducing agent injection valve 43.
  • This maximum temperature T udmax is used to calculate the solidification temperature (freezing point) T0, that is, the dissolution temperature (melting point) T str , of the urea aqueous solution that is the reducing agent remaining in the reducing agent injection valve 43. 60 is stored in a predetermined storage means.
  • the injection valve temperature T udv rises, so the temperature of the urea aqueous solution remaining in the reducing agent injection valve 43 also rises, and the water content of the urea aqueous solution is vaporized to a concentration.
  • the solidification temperature T0 of the residual urea aqueous solution that is, the dissolution temperature Tstr also increases.
  • the volume of the urea aqueous solution remaining in the reducing agent injection valve 43 after the reducing agent recovery processing (purge processing) is substantially constant according to the structure of the reducing agent injection valve 43, If the maximum temperature T udmaxmax can be specified, the concentration of the concentrated residual aqueous urea solution can be calculated. Therefore, the solidification temperature T0, that is, the dissolution temperature T str of the residual aqueous urea solution can also be calculated.
  • the concentration of the remaining urea aqueous solution in addition to the maximum temperature T udvmax of the reducing agent injection valve 43, various conditions unique to the actual machine to be implemented may affect the actual machine in advance. It is desirable that the concentration of the remaining urea aqueous solution can be calculated with sufficient accuracy simply by performing a test and specifying the maximum temperature T udvmax .
  • the highest temperature T the temperature gradient of the reducing agent injection valve 43 upon reaching the udvmax ⁇ T udv, outside air temperature T It is preferable to calculate the concentration of the remaining urea aqueous solution and the solidification temperature T0, that is, the dissolution temperature Tstr by appropriately combining out and other conditions as necessary. That is, when the temperature gradient ⁇ T udv is steep or the outside air temperature T out is high, the concentration of the residual urea aqueous solution becomes higher, and the solidification temperature T0 of the residual urea aqueous solution, that is, the dissolution temperature T str tends to be higher. Because there is.
  • FIG. 3 is a graph showing an example of changes in the reducing agent injection valve temperature, the reducing agent solidification temperature, and the like in the exhaust purification system according to the embodiment of the present invention.
  • the solidification temperature T0 of the remaining urea aqueous solution rises so as to follow the rise of the injection valve temperature T uv with a slight delay. As described above, this is due to the increase in the concentration of the remaining urea aqueous solution due to the increase in the injection valve temperature Tudv .
  • the residual urea aqueous solution of the reducing agent injection valve 43 is solidified, that is, solidified.
  • FIG. 7 is a graph showing another example of changes in the reducing agent injection valve temperature, the reducing agent solidification temperature, and the like in an exhaust purification system according to another embodiment of the present invention.
  • the forced regeneration control of the DPF 22 is started at a time t0 before the time t1 when the ignition switch 57 is turned off, and the accompanying increase in the injection valve temperature T udv and the downstream temperature T dpf of the DPF 22
  • the other points are almost the same as in the example of FIG.
  • the calculation of the solidification temperature T0 of the residual urea aqueous solution may be performed after the ignition switch 57 for stopping the internal combustion engine is turned off until the power supply to the control device 60 is cut off. Alternatively, it may be performed when it is detected that the ignition switch 57 for starting the internal combustion engine is turned on after detecting that the ignition switch 57 is turned off.
  • (5) Injection valve operation permission unit When it is detected that the ignition switch 57 is turned on, the injection valve operation permission unit 65 starts detecting the injection valve temperature T udv of the reducing agent injection valve 43 through the temperature detection unit 62. To do.
  • the "detection of the injection valve temperature T UDV" in addition to measuring the injection valve temperature T UDV directly, for example, also be calculated or inferred from DPF22 downstream temperature T dpf etc. injector 43 near Including.
  • the injection valve operation permission unit 65 determines whether to permit the operation of the reducing agent injection valve 43 based on the current injection valve temperature T udv and the calculated dissolution temperature T str of the remaining urea aqueous solution. To do. That is, depending on whether or not the current injection valve temperature T udv has reached the dissolution temperature T str of the remaining urea aqueous solution (T udv ⁇ T str ), the injection valve operation permission unit 65 operates the reducing agent injection valve 43. It is determined whether or not to allow. When the operation permission determination by the injection valve operation permission unit 65 is made, the operation of the reducing agent injection valve 43 is started.
  • the reducing agent injection valve 43 does not inject the reducing agent until the operation permission determination by the injection valve operation permission unit 65 is made, but the SCR catalyst 24 of the exhaust purification unit 20 has The ammonia adsorbed during the previous operation remains, and the time until the start of the operation of the reducing agent injection valve 43 is relatively short. Usually, there is a problem that the environmental standard is not satisfied. Does not occur. 3. Control Method Hereinafter, a specific example of an exhaust purification system and a control method thereof according to an embodiment of the present invention will be described using a flowchart.
  • FIG. 4 is a flowchart for explaining an exhaust purification system and a control method thereof according to an embodiment of the present invention, and in particular, a flowchart schematically showing the entire operation procedure of the control method of the exhaust purification system. .
  • the melting temperature calculation unit 64 sets the injection valve temperature T udv of the reducing agent injection valve 43 through the temperature detection unit 62. Detection is started, and the maximum temperature T udvmax is specified (step S2).
  • the injection valve operation permission unit 65 calculates the reducing agent from the maximum temperature T udvmax of the reducing agent injection valve 43. reducing agent remaining in the injection valve 43, in particular one to calculate the melting temperature T str of the urea aqueous solution starts detecting the injection valve temperature T UDV of the reducing agent injection valve 43 through the temperature detector 62 (step S4).
  • the injection valve operation permission unit 65 continuously compares the current injection valve temperature T udv with the dissolution temperature T str of the residual urea aqueous solution, and the injection valve temperature T udv reaches the dissolution temperature T str of the residual urea aqueous solution. (T udv ⁇ T str ) or not (step S5).
  • the injection valve operation permission unit 65 determines that the current injection valve temperature T udv has reached the dissolution temperature T str of the remaining urea aqueous solution. Accordingly, the operation of the reducing agent injection valve 43 is started.
  • the urea aqueous solution once heated is solidified in the process of being cooled after the internal combustion engine is stopped, it is solidified by the operation procedure of the exhaust purification system and the control method thereof according to the embodiment of the present invention.
  • the reducing agent supply device By operating the reducing agent supply device after waiting for the urea aqueous solution to dissolve, it is possible to avoid clogging or breakage of the reducing agent injection valve or reducing agent supply path due to solidification of the urea aqueous solution. As a result, it is possible to prevent the exhaust purification efficiency from being lowered.
  • FIG. 5 is a flowchart for explaining an exhaust purification system and a control method thereof according to an embodiment of the present invention, and in particular, the highest temperature reached by the reducing agent injection valve 43 in response to detection of the ignition switch 57 being turned off. It is a flowchart which shows more specifically the operation
  • Step S11 when the control device 60 including the melting temperature calculation unit 64 detects that the ignition switch 57 is turned off (step S11), the control device 60 starts a reducing agent recovery process in the reducing agent supply device 40 provided in the exhaust purification system. (Step S12).
  • the melting temperature calculation unit 64 starts detecting the injection valve temperature T udv of the reducing agent injection valve 43 through the temperature detection unit 62 in response to detection of the ignition switch 57 being turned off (step S13).
  • injection valve maximum temperature T max injection valve temperature T udv ” is set, the injection valve temperature T udv is continuously detected, and the current injection valve temperature T udv and the injection valve maximum until then are detected. The temperature T max is compared to determine whether or not the current injector valve temperature T udv exceeds the injector injector maximum temperature T max (T udv > T max ) (step S14).
  • injection valve temperature T max injection valve temperature T udv at the time ”.
  • T max is specified as the maximum temperature T udvmax reached by the reducing agent injection valve 43 and stored in a predetermined storage means in the control device 60 (step S15).
  • control device 60 determines whether or not the reducing agent recovery process in the reducing agent supply device 40 provided in the exhaust gas purification system has been completed. A blocking process is performed, and the operation procedure is terminated (step S16).
  • the reducing agent recovery process is a normal that the injection valve temperature T UDV of the reducing agent injection valve 43 is before reaching the injector maximum temperature T max, it is terminated during the detection of the injection valve temperature T UDV Therefore, the determination here is performed in order to confirm that the reducing agent recovery process has been reliably completed when the process of shutting off the power supply to the control device 60 is performed.
  • FIG. 6 is a flowchart for explaining the exhaust purification system and the control method thereof according to the embodiment of the present invention.
  • the operation of the reducing agent injection valve 43 is permitted in response to detection of the ignition switch 57 being turned on. It is a flowchart which shows more specifically the operation
  • the melting temperature calculation unit 64 is stored in a predetermined storage unit in the control device 60.
  • the concentration C of the urea aqueous solution remaining and concentrated in the reducing agent injection valve 43 is calculated from the maximum reached temperature T udmax of the reducing agent injection valve 43, and the solidification temperature T0 of the residual urea aqueous solution, that is, the dissolution temperature, is calculated from the concentration C.
  • T str is calculated (step S22).
  • the injection valve operation permission unit 65 starts detecting the injection valve temperature T udv of the reducing agent injection valve 43 through the temperature detection unit 62 in response to the detection of the ignition switch 57 being turned on (step S22).
  • the injection valve operation permission unit 65 determines whether or not to permit the operation of the reducing agent injection valve 43 based on the current injection valve temperature T udv and the calculated dissolution temperature T str of the remaining urea aqueous solution. That is, depending on whether or not the current injection valve temperature T udv has reached the dissolution temperature T str of the remaining urea aqueous solution (T udv ⁇ T str ), the injection valve operation permission unit 65 operates the reducing agent injection valve 43. It is determined whether or not to permit (step S23).
  • step S24 When the operation permission is determined by the injection valve operation permission unit 65, the operation of the reducing agent injection valve 43 is started (step S24).
  • the calculation of the solidification temperature T0 of the residual urea aqueous solution may be performed when the ignition switch 57 is first detected after detecting the ignition switch 57 being turned off, or The process may be performed after detecting that the ignition switch 57 is turned off until the power supply to the control device 60 is interrupted, that is, between step S15 and step S16 in the flowchart of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 還元剤の固化に起因した還元剤噴射弁の詰まりや破損等の発生を回避し、排気浄化効率の低下を防止し得る排気浄化システム及びその制御方法を提供する。 本発明の一態様に係る排気浄化システム及びその制御方法は、イグニッションスイッチのオフの検出後に、還元剤噴射弁の最高到達温度を特定し、その後、還元剤噴射弁内に残存する尿素水溶液の溶解温度を最高到達温度に基づいて算定し、イグニッションスイッチのオンの検出後に、還元剤噴射弁の噴射弁温度が溶解温度に到達してから還元剤噴射弁の動作を許可する構成を備える。

Description

排気浄化システム及び排気浄化システムの制御方法
 本発明は、排気浄化システム及び排気浄化システムの制御方法に関する。特に、尿素水溶液の固化に起因した還元剤噴射弁や還元剤供給経路の詰まりや破損等の発生を回避し得る排気浄化システム及び排気浄化システムの制御方法に関する。
 従来、車両に搭載される内燃機関の排気ガス中には、窒素酸化物(以下、「NOx」と称する。)や微粒子状物質(以下、「PM」と称することがある。)が含まれている。このうち、NOxを還元して排気ガスを浄化するための装置として尿素SCRシステムがある。尿素SCRシステムは、圧送ポンプによって貯蔵タンク内から汲み上げた還元剤としての尿素水溶液を還元剤噴射弁から排気管内に供給するための還元剤供給装置と、アンモニアを吸着可能な排気浄化触媒の一種であるSCR触媒とを備えて構成される。斯かる尿素SCRシステムでは、尿素水溶液の分解により生成されるアンモニアをSCR触媒に吸着させ、排気ガス中のNOxをSCR触媒中でアンモニアと反応させて、排気ガスを浄化する。
 一方、PMを捕集して排気ガスを浄化するための装置としてディーゼルパティキュレートフィルタ(以下、「DPF」と称する。)がある。DPFは、内燃機関の排気管に配設され、排気ガスが当該DPFを通過する際に排気ガス中のPMを捕集する。DPFを備えた排気浄化システムでは、DPFの目詰まりを防止するために、DPFの温度を500℃乃至600℃程度に上昇させてDPFに堆積したPMを強制的に燃焼させる強制再生制御が適時に行われる。
 近年、排気ガスの浄化基準が高められていることに伴い、DPF及びSCR触媒の両方を備えた排気浄化システムが増えてきている。
 尿素SCRシステムにおいては、通常、内燃機関が停止した際に還元剤供給経路に残存する尿素水溶液を回収するように構成されている(例えば、特許文献1を参照)。これにより、尿素水溶液が還元剤供給経路に残存したまま凍結し、還元剤供給経路に詰まりや破損等が発生するのを回避しようとするものである。
特開2008-101564号公報
 しかしながら、還元剤供給装置においては、その構造上、還元剤即ち尿素水溶液を完全には回収できないのが通常である。
 そのため、還元剤供給経路、特に還元剤噴射弁内に残存した尿素水溶液が内燃機関の停止後に加熱されて濃縮されることにより固化温度が上昇し、その後に冷却される過程で尿素水溶液が固化してしまい、その結果、例えば、特許文献1に記載された排気浄化システムでは、内燃機関の始動時に、尿素水溶液の供給が阻害され、排気浄化効率が低下してしまうという問題があった。
 具体的に説明すると、排気浄化システムでは、内燃機関の停止時に、還元剤供給装置の
還元剤供給経路に充填されていた尿素水溶液を貯蔵タンクに回収するパージ処理が一般に行われるものの、貯蔵タンク及び還元剤噴射弁を接続する還元剤通路等の構造上、還元剤供給経路内に充填された尿素水溶液を、通常は、完全には貯蔵タンクに回収し切ることができない。
 一方、内燃機関の停止とともに還元剤噴射弁の放熱機能である冷却水の循環等は停止するため、特に還元剤噴射弁の温度は上昇する。そうすると、上述の還元剤噴射弁内に残存した尿素水溶液中の水分が気化により蒸発し、その濃度は上昇する。その後、排気管や周囲の温度が低下するにつれて、尿素水溶液の温度は低下するが、通常の濃度に比べ高い濃度となっているため、固化する温度は上昇しており、残存尿素水溶液が固化して還元剤噴射弁に詰まりが発生してしまう虞がある。
 図8は、尿素水溶液の濃度と固化温度T0との関係を表したグラフである。
 還元剤供給装置において使用される還元剤としての尿素水溶液の濃度は、通常、固化温度が最も低い約-11℃となる約32.5%に調整されている。
 図8のグラフに示されるように、尿素水溶液の固化温度は、尿素水溶液の濃度が約32.5%のときに最低の約-11℃であり、尿素水溶液の濃度が約32.5%より高くなっても低くなっても、尿素水溶液の固化温度は上昇する特性を有している。
 従って、高温により水分が蒸発して濃度が高くなった還元剤噴射弁内の残存尿素水溶液は、その後に温度が低下した時に固化し易く、内燃機関の再始動時において還元剤噴射弁の噴射が阻害され、最悪の場合、還元剤噴射弁の破損等が発生する可能性がある。
 本発明はこのような問題に鑑みてなされたものであり、一旦加熱された尿素水溶液が内燃機関停止後の冷却される過程で固化した場合であっても、固化した尿素水溶液が溶解するのを待ってから還元剤供給装置を動作させることにより、上記問題を解決するものである。
 即ち、本発明は、尿素水溶液の固化に起因した還元剤噴射弁や還元剤供給経路の詰まりや破損等の発生を回避することが可能であり、その結果として排気浄化効率の低下を防止し得る排気浄化システム及び排気浄化システムの制御方法を提供することを目的とする。
 本発明の一態様に係る排気浄化システムは、内燃機関の排気ガス中の排気微粒子を捕集するディーゼルパティキュレートフィルタと、還元剤としての尿素水溶液を貯蔵タンクから還元剤噴射弁へ供給することにより前記排気ガス中に噴射して供給すると共に前記内燃機関を停止する際には供給経路内の前記尿素水溶液を前記貯蔵タンクへ回収する還元剤供給装置と、前記尿素水溶液を用いて前記排気ガス中のNOxを浄化するSCR触媒と、を排気上流側から順次に備えた排気浄化システムにおいて、
 前記内燃機関を停止するためのイグニッションスイッチのオフの検出後に、前記還元剤噴射弁の最高到達温度を特定し、その後、前記還元剤噴射弁内に残存する前記尿素水溶液の溶解温度を前記最高到達温度に基づいて算定する溶解温度算定部と、
 前記内燃機関を始動するためのイグニッションスイッチのオンの検出後に、前記還元剤噴射弁の噴射弁温度が前記溶解温度に到達してから前記還元剤噴射弁の動作を許可する噴射弁動作許可部と、
を有する制御装置を備えることを特徴とし、当該構成を備えることにより、上記課題を解決することができる。
 また、本発明の一態様に係る排気浄化システムの制御方法は、
 内燃機関の排気ガス中の排気微粒子を捕集するディーゼルパティキュレートフィルタと、還元剤としての尿素水溶液を貯蔵タンクから還元剤噴射弁へ供給することにより前記排気ガス中に噴射して供給すると共に前記内燃機関を停止する際には供給経路内の前記尿素水溶液を前記貯蔵タンクへ回収する還元剤供給装置と、前記尿素水溶液を用いて前記排気ガス中のNOxを浄化するSCR触媒と、を排気上流側から順次に備えた排気浄化システムの制御方法において、
 前記内燃機関を停止するためのイグニッションスイッチのオフの検出後に、前記還元剤噴射弁の最高到達温度を特定する過程と、
 前記還元剤噴射弁内に残存する前記尿素水溶液の溶解温度を前記最高到達温度に基づいて算定する過程と、
 前記内燃機関を始動するためのイグニッションスイッチのオンの検出後に、前記還元剤噴射弁の噴射弁温度が前記溶解温度に到達してから前記還元剤噴射弁の動作を許可する過程と、
を有することを特徴とし、当該構成を備えることにより、上記課題を解決することができる。
 即ち、本発明の一態様に係る排気浄化システム及びその制御方法は、上記各構成を備えることにより、尿素水溶液の固化に起因した還元剤噴射弁や還元剤供給経路の詰まりや破損等の発生を回避することができ、その結果として排気浄化効率の低下を防止することができる。
 前記溶解温度の算定は、イグニッションスイッチのオンの検出後に行うものとするとよい。又は、前記溶解温度の算定は、イグニッションスイッチのオフの検出後、オンの検出前に行うものとしてもよい。
 前記最高到達温度を特定するための前記還元剤噴射弁の噴射弁温度の検出は、前記尿素水溶液の前記貯蔵タンクへの回収と並行して行うものとするとよい。
 前記最高到達温度の特定は、前記尿素水溶液の前記貯蔵タンクへの回収終了後に行うものとするとよい。
 前記溶解温度の算定は、前記最高到達温度と、前記還元剤噴射弁の温度勾配及び外気温度のうちの一方又は両方とに基づいて行うものとするとよい。
本発明の実施の一形態に係る排気浄化システムの全体構成図である。 本発明の実施の一形態に係る排気浄化システムに備えられる制御装置のブロック図である。 本発明の実施の一形態に係る排気浄化システムにおける還元剤噴射弁温度及び還元剤固化温度等の変化の一例を示すグラフである。 本発明の実施の一形態に係る排気浄化システム及びその制御方法について説明するためのフローチャートである。 本発明の実施の一形態に係る排気浄化システム及びその制御方法について説明するためのフローチャートである。 本発明の実施の一形態に係る排気浄化システム及びその制御方法について説明するためのフローチャートである。 本発明の実施の一形態に係る排気浄化システムにおける還元剤噴射弁温度及び還元剤固化温度等の変化の他の例を示すグラフである。 尿素水溶液の濃度と固化温度T0との関係を表したグラフである。
 以下、図面を参照して、本発明に係る排気浄化システム及び排気浄化システムの制御方法の実施の形態について、具体的に説明する。
 但し、以下の実施の形態は、本発明の一態様を示すものであって本発明を限定するものではなく、本発明の範囲内で任意に変更することができる。
 尚、各図において同符号を付してあるものは同一の部材乃至部分を示しており、適宜説明が省略されている。
1.排気浄化システム
(1)全体構成
 図1は、本発明の実施の一形態に係る排気浄化システム10の全体構成図である。
 この排気浄化システム10は、DPF22及びSCR触媒24を有する排気浄化ユニット20と、還元剤噴射弁43を含む還元剤供給装置40と、DPF22の強制再生制御や還元剤供給装置40の動作制御を行う制御装置60とを主たる構成要素として備えている。
 斯かる排気浄化システム10は、排気ガス中の微粒子状物質(PM)をDPF22によって捕集し、かつ、還元剤としての尿素水溶液を用いて排気ガス中のNOxをSCR触媒24中で選択的に浄化するための装置として構成されたものである。
(2)排気浄化ユニット
 排気浄化ユニット20は、酸化触媒21と、DPF22と、SCR触媒24とを排気上流側から順次に備えている。
 この排気浄化ユニット20の構成要素のうち、酸化触媒21は、内燃機関5でのポスト噴射等によって排気管11内に供給された未燃燃料を酸化し、酸化熱を発生させる。これにより、DPF22に流入する排気ガスを昇温させてDPF22を加熱することができる。酸化触媒21は、公知のもの、例えば、アルミナに白金を担持させたものに所定量のセリウム等の希土類元素を添加したものを用いることができる。
 また、DPF22は、排気ガスがDPF22を通過する際に排気ガス中のPMを捕集する。図1に示す排気浄化システム10では、DPF22がSCR触媒24よりも排気上流側に配設されており、PMがSCR触媒24に付着するおそれがない。DPF22は、公知のもの、例えば、セラミック材料から構成されたハニカム構造のフィルタを用いることができる。
 また、SCR触媒24は、還元剤噴射弁43によって排気ガス中に噴射される尿素水溶液の分解により生成されるアンモニアを吸着し、流入する排気ガス中のNOxを還元する。SCR触媒24としては、例えば、アンモニアの吸着機能を有し、かつ、NOxを選択的に還元可能なゼオライト系の還元触媒を用いることができる。
 以上に説明した排気浄化ユニット20は、DPF22の前後にそれぞれ圧力センサ51、52を備え、SCR触媒24の前後にそれぞれ温度センサ53、54を備えている。また、SCR触媒24の排気下流側にはNOxセンサ55を備えている。さらに、排気浄化ユニットの周囲には外気温度を検出する外気温度センサが配置されている。
 これらセンサのセンサ値は制御装置60に送られて、それぞれの位置での圧力や温度、NOx濃度が検出される。
 尚、演算によって推定可能であるならば、これらセンサは省略可能である。
 また、以上に説明した排気浄化ユニット20は、排気管11の第1屈曲部23aから分岐して、還元剤噴射弁43を固定するための接続管12を備えている。この接続管12を介して、排気ガスの流れ方向と略一致する方向に、還元剤噴射弁43から還元剤としての尿素水溶液が噴射される。
 従って、排気管11に還元剤噴射弁43を直接固定する場合と比較して、排気管11や排気ガス等から還元剤噴射弁43への熱を伝わり難くすることができる。
(3)強制再生手段
 本実施形態の排気浄化システム10は、DPF22の強制再生制御を行うための強制再生手段を備える。DPF22を500℃乃至600℃程度に昇温させ、DPF22に堆積したPMを強制的に燃焼させる強制再生を行うためである。
 本実施形態では、内燃機関5でのポスト噴射等によって排気管11内に未燃燃料を供給する燃料噴射弁(図示せず)と、燃料噴射弁からの燃料噴射量や噴射タイミング等、燃料噴射弁の制御を指示するための制御装置60の制御部と、未燃燃料を酸化して酸化熱を発生させる酸化触媒21とが、強制再生手段を構成する。
 尚、強制再生手段は上記構成例に限られず、排気ガスを500℃乃至600℃程度に昇温させることができるものであればよい。例えば、ポスト噴射に拠らずに酸化触媒21に未燃燃料を供給する装置を利用して強制再生手段を構成してもよい。また、バーナや電熱線等の加熱装置を備え、直接DPF22を加熱するようにしてもよい。
(4)還元剤供給装置
 還元剤供給装置40は、尿素水溶液を貯蔵する貯蔵タンク41と、圧送ポンプ42と、還元剤噴射弁43とを主たる構成要素として備えている。
 このうち、貯蔵タンク41及び圧送ポンプ42が第1の供給通路44によって接続され、圧送ポンプ42及び還元剤噴射弁43が第2の供給通路45によって接続されている。この第2の供給通路45には圧力センサ56が設けられており、センサ値が制御装置60に送信され、第2の供給通路45内の圧力が検出される。
 また、第2の供給通路45及び貯蔵タンク41が第3の供給通路46によって接続されており、これにより、第2の供給経路45に供給された余剰の尿素水溶液を、貯蔵タンク41に戻すことができる。
 また、還元剤供給装置40は、尿素水溶液の流路を、貯蔵タンク41から還元剤噴射弁43へ向かう順方向から、還元剤噴射弁43から貯蔵タンク41へ向かう逆方向に切り換える機能を持ったリバーティングバルブ47を備えている。即ち、本実施形態の排気浄化システム10は、内燃機関5の停止時に、還元剤供給装置40に充填されていた尿素水溶液を貯蔵タンク41に回収可能な構成を有している。
 この還元剤供給装置40の構成要素のうち、圧送ポンプ42は、第2の供給経路45内の圧力が所定値で維持されるように、貯蔵タンク41内の尿素水溶液を汲み上げて還元剤噴射弁43に圧送する。圧送ポンプ42として、代表的には電動式ポンプが用いられる。
 また、還元剤噴射弁43は、制御装置60から出力される制御信号によって還元剤噴射弁43が開かれたときに、尿素水溶液を排気管11中に噴射する。還元剤噴射弁43としては、例えばDUTY制御によって開弁のON-OFFが制御されるON-OFF弁が用いられる。
 このような還元剤噴射弁43を構成する電子部分や樹脂部分等は比較的熱に弱く、その耐熱温度Tlimは140℃乃至150℃程度である一方、通常運転時における排気ガス温度は、200℃乃至300℃程度である。
 そのため、この還元剤供給装置40は、還元剤噴射弁43のハウジングに設けられた冷却水通路35と、内燃機関5の冷却水通路33から分岐して冷却水通路35に連通する冷却水循環通路33・34と、冷却水循環通路33・34を流れる冷却水の流量を調節する冷却水流量制御弁31・32とを備えている。
 これにより、内燃機関5の冷却水を還元剤噴射弁43の冷却水通路35に循環させ、還元剤噴射弁43の温度を70℃乃至80℃程度に保ち、還元剤噴射弁43の熱損傷を防止することができる。
 また、還元剤噴射弁43からの還元剤の噴射を行うために、貯蔵タンク41内の相対的に低温である尿素水溶液が還元剤噴射弁43に圧送されるので、還元剤噴射弁43から尿素水溶液への熱移動によっても、還元剤噴射弁43の放熱が促される。
 上述のエンジン冷却水の循環や、尿素水溶液への熱移動による還元剤噴射弁43の放熱は、特に、内燃機関5の運転中において行われる。
 内燃機関5の運転中にエンジン冷却水が循環し、また、内燃機関5の運転中に還元剤噴射弁43へ尿素水溶液が圧送されるためである。
2.制御装置
(1)全体構成
 次に、図2を参照して、本発明の実施の一形態に係る排気浄化システム10に備えられる制御装置60を、温度検出部62と、強制再生制御部63と、溶解温度算定部64と、噴射弁動作許可部65とに大別して、具体的に説明する。これらの各部は、典型的には、マイクロコンピュータによるプログラムの実行によって実現される。
 即ち、図2は、排気浄化システム10に備えられた制御装置60のうち、尿素水溶液の固化に起因した還元剤噴射弁43の詰まりを解消するための制御に関する部分を、機能的なブロックで表した構成例である。
 制御装置60は、イグニッションスイッチ57の信号や各圧力センサや各温度センサをはじめとして、機関回転数Neを検出する回転数センサ、車両の車速Vを検出する車速センサ、アクセルペダルの操作量Accを検出するアクセルセンサ、ブレーキペダルの操作量Brkを検出するブレーキセンサ等の各種センサ信号が読込み可能に構成されている。また、制御装置60には、各部での演算結果や検出結果を記憶するための図示しないRAM(Random Access Memory)が備えられている。さらに制御装置60は、内燃機関を始動及び停止するためのイグニッションスイッチ57によるオン及びオフの信号を検出し、オフの信号を検出したときには、還元剤噴射弁43の最高到達温度Tudvmaxを特定し、オンの信号を検出したときには、当該最高到達温度Tudvmaxから算定された残存還元剤の溶解温度Tstrに還元剤噴射弁43の温度が到達してから還元剤噴射弁43の動作を許可するように構成されている。
 尚、制御装置60は、内燃機関5の運転中にあっては、第2の供給経路45内の圧力が所定値で維持されるように圧送ポンプ42の駆動を制御するとともに、機関回転数NeやSCR触媒の排気下流側に設けられたNOxセンサ55のセンサ値等に基づいて、還元剤噴射弁43の駆動を制御する。
 また、制御装置60は、内燃機関5の停止時にパージ処理を実行する。即ち、尿素水溶液の流路を順方向から逆方向に切り換えるための信号を、リバーティングバルブ47に対して出力するとともに、還元剤噴射弁43を開弁させて圧送ポンプ42を駆動させるための信号を、圧送ポンプ42及び還元剤噴射弁43に対して出力することにより、還元剤噴射弁43及び還元剤供給経路の内部に存在する還元剤を貯蔵タンク41に回収する。
(2)温度検出部
 温度検出部62は、温度センサ53を用いて還元剤噴射弁温度Tudvを検出するためのものであるが、直接検出できない場合には、その近傍のDPF22下流側温度Tdpf等から算出乃至推測してもよい。
(3)強制再生制御部
 強制再生制御部63は、DPF22の前後に設けられた圧力センサ51、52から求められる差圧に基づいて、PMの堆積量Vpmを推定する。そして、推定PM堆積量Vpmが所定の閾値Vpm0を超えたときに、DPF22の強制再生が必要であると判定し、強制再生手段に対して、強制再生を実行するための信号を送信する。
 また、強制再生制御部63は、推定PM堆積量Vpmが所定量まで低下したことをきっかけとして、強制再生手段に対して送信していた、強制再生を実行するための信号を停止する。
(4)溶解温度算定部64
 溶解温度算定部64は、内燃機関を停止するためにイグニッションスイッチ57がオフされたことを検知すると、温度検出部62を通じて還元剤噴射弁43の噴射弁温度Tudvの検出を開始し、還元剤噴射弁43の最高到達温度Tudvmaxを特定する。
 また、上述のように、「噴射弁温度Tudvの検出」には、噴射弁温度Tudvを直接検出することの他、例えば噴射弁43近傍のDPF22下流側温度Tdpf等から算出乃至推測することも含む。
 イグニッションスイッチ57がオフされた後、内燃機関5が停止すると、内燃機関5の冷却水の循環も停止して還元剤噴射弁43の放熱効率が低下するために、噴射弁温度Tudvはある程度の時間に亘って上昇し、その後に低下する。
 そこで、溶解温度算定部64は、噴射弁温度Tudvの最高値である噴射弁最高温度Tmaxを噴射弁温度Tudvの上昇と共に更新していき、噴射弁温度Tudvが上昇しなくなったときの噴射弁最高温度Tmaxを、還元剤噴射弁43の最高到達温度Tudvmaxとして特定する。
 この最高到達温度Tudvmaxは、還元剤噴射弁43内に残存する還元剤である尿素水溶液の固化温度(凝固点)T0即ち溶解温度(融点)Tstrを算定するために使用されるので、制御装置60内の所定の記憶手段に記憶しておく。
 上述のように、イグニッションスイッチ57がオフされた後、噴射弁温度Tudvは上昇するので、還元剤噴射弁43内に残存する尿素水溶液の温度も上昇し、尿素水溶液の水分が気化して濃度が上昇し、その結果として、当該残存尿素水溶液の固化温度T0即ち溶解温度Tstrも上昇する。
 ここで、還元剤の回収処理(パージ処理)後に還元剤噴射弁43内に残存する尿素水溶液の体積は、還元剤噴射弁43の構造に応じてほぼ一定であるので、還元剤噴射弁43の最高到達温度Tudvmaxを特定することができれば、濃縮された残存尿素水溶液の濃度を算定することができ、従って、当該残存尿素水溶液の固化温度T0即ち溶解温度Tstrも算定することができる。
 尚、残存尿素水溶液の濃度の算定においては、還元剤噴射弁43の最高到達温度Tudvmaxの他に、実施の対象となる実機に固有の種々の条件が影響することがあり得るので、予め実機で試験を行い、最高到達温度Tudvmaxを特定するだけで残存尿素水溶液の濃度を十分な精度で算定できるようにしておくことが望ましい。
 より高精度な算定を行うためには、還元剤噴射弁43の最高到達温度Tudvmaxの他に、最高到達温度Tudvmaxに到達する際の還元剤噴射弁43の温度勾配δTudv、外気温度Tout、及び、必要に応じた他の条件を適宜組み合わせて、残存尿素水溶液の濃度、及び、固化温度T0即ち溶解温度Tstrの算定を行うようにするとよい。即ち、温度勾配δTudvが急である場合や外気温度Toutが高い場合は、残存尿素水溶液の濃度がより高くなり、当該残存尿素水溶液の固化温度T0即ち溶解温度Tstrもより高くなる傾向があるからである。
 図3は、本発明の実施の一形態に係る排気浄化システムにおける還元剤噴射弁温度及び還元剤固化温度等の変化の一例を示すグラフである。
 時刻t1においてイグニッションスイッチ57がオフされると、内燃機関5が停止して、内燃機関5の冷却水の循環も停止するので、その時点から噴射弁温度Tudvがある程度の時間に亘って上昇し、最高到達温度Tudvmaxに到達した後、低下していることが見て取れる。
 また、噴射弁温度Tudvの上昇に少し遅れて追従するようにして、残存尿素水溶液の固化温度T0が上昇することも、図3に示される通りである。これは、上述のように、噴射弁温度Tudvの上昇による残存尿素水溶液の濃度の上昇に起因するものである。
 そして、噴射弁温度Tudvが低下してきて、時刻t2において残存尿素水溶液の固化温度T0である固化ポイントまで低下すると、還元剤噴射弁43の残存尿素水溶液に固化即ち凝固が発生することとなる。
 図7は、本発明の実施の他の形態に係る排気浄化システムにおける還元剤噴射弁温度及び還元剤固化温度等の変化の他の例を示すグラフである。
 図7の例においては、イグニッションスイッチ57がオフされる時刻t1より前の時刻t0において、DPF22の強制再生制御が開始されており、それに伴う噴射弁温度Tudv及びDPF22下流側温度Tdpfの上昇が見て取れるが、その他の点については、上記図3の例とほぼ同様である。
 尿素水溶液の固化温度T0即ち溶解温度Tstrの算定は、還元剤噴射弁43の最高到達温度Tudvmaxから尿素水溶液の濃度を算定し、尿素水溶液の濃度に対応する固化温度T0即ち溶解温度Tstrを、図8のグラフと同様に尿素水溶液の濃度と固化温度T0との関係を表す特性マップに基づいて特定することにより行う。当該特性マップは、制御装置60内の所定の記憶手段に記憶されているものとするとよい。
 残存尿素水溶液の固化温度T0即ち溶解温度Tstrの算定は、内燃機関を停止するためのイグニッションスイッチ57のオフを検出した後、制御装置60への給電が遮断されるまでの間に行ってもよいし、又は、イグニッションスイッチ57のオフを検出した後、内燃機関を始動するためのイグニッションスイッチ57のオンを検出したときに行ってもよい。
(5)噴射弁動作許可部
 噴射弁動作許可部65は、イグニッションスイッチ57がオンされたことが検知されると、温度検出部62を通じて還元剤噴射弁43の噴射弁温度Tudvの検出を開始する。上述のように、「噴射弁温度Tudvの検出」には、噴射弁温度Tudvを直接測定することの他、例えば噴射弁43近傍のDPF22下流側温度Tdpf等から算出乃至推測することも含む。
 そして、噴射弁動作許可部65は、現在の噴射弁温度Tudv、及び、残存尿素水溶液の算定された溶解温度Tstrに基づいて、還元剤噴射弁43の動作を許可するか否かを判断する。即ち、現在の噴射弁温度Tudvが残存尿素水溶液の溶解温度Tstrに到達したか(Tudv≧Tstr)否かに応じて、噴射弁動作許可部65は、還元剤噴射弁43の動作を許可するか否かを判断する。噴射弁動作許可部65による動作許可の判断がなされると、還元剤噴射弁43の動作が開始される。
 尚、噴射弁動作許可部65による動作許可の判断がなされるまでの間は、還元剤噴射弁43による還元剤の噴射が行われないこととなるが、排気浄化ユニット20のSCR触媒24には、それ以前の動作時に吸着されたアンモニアが残存しており、また、還元剤噴射弁43の動作開始までの時間は比較的短時間であるため、通常は、環境基準を満たさなくなる等の問題は生じない。
3.制御方法
 以下、フローチャートを用いて、本発明の実施の一形態に係る排気浄化システム及びその制御方法の具体例について説明する。
 図4は、本発明の実施の一形態に係る排気浄化システム及びその制御方法について説明するためのフローチャートであり、特に、当該排気浄化システムの制御方法の動作手順全体を概略的に示すフローチャートである。
 先ず、制御装置60、特に溶解温度算定部64がイグニッションスイッチ57のオフを検出すると(ステップS1)、溶解温度算定部64は、温度検出部62を通じて還元剤噴射弁43の噴射弁温度Tudvの検出を開始し、その最高到達温度Tudvmaxを特定する(ステップS2)。
 その後、制御装置60、特に噴射弁動作許可部65がイグニッションスイッチ57のオンを検出すると(ステップS3)、噴射弁動作許可部65は、還元剤噴射弁43の最高到達温度Tudvmaxから、還元剤噴射弁43内に残存する還元剤、特に尿素水溶液の溶解温度Tstrを算定する一方、温度検出部62を通じて還元剤噴射弁43の噴射弁温度Tudvの検出を開始する(ステップS4)。
 噴射弁動作許可部65は、現在の噴射弁温度Tudvと残存尿素水溶液の溶解温度Tstrとを継続的に比較して、噴射弁温度Tudvが残存尿素水溶液の溶解温度Tstrに到達したか(Tudv≧Tstr)否かを判断する(ステップS5)。
 そして、噴射弁動作許可部65は、現在の噴射弁温度Tudvが残存尿素水溶液の溶解温度Tstrに到達したと判断すると、還元剤噴射弁43の動作を許可する判断を行い、当該判断に応じて還元剤噴射弁43の動作が開始される。
 一旦加熱された尿素水溶液が内燃機関停止後の冷却される過程で固化した場合であっても、本発明の実施の一形態に係る排気浄化システム及びその制御方法の斯かる動作手順によって、固化した尿素水溶液が溶解するのを待ってから還元剤供給装置を動作させることにより、尿素水溶液の固化に起因した還元剤噴射弁や還元剤供給経路の詰まりや破損等の発生を回避することが可能であり、その結果として排気浄化効率の低下を防止することができる。
 図5は、本発明の実施の一形態に係る排気浄化システム及びその制御方法について説明するためのフローチャートであり、特に、イグニッションスイッチ57のオフの検出に応じて還元剤噴射弁43の最高到達温度Tudvmaxを特定する際の当該排気浄化システムの制御方法の動作手順をより具体的に示すフローチャートである。
 先ず、溶解温度算定部64を含む制御装置60がイグニッションスイッチ57のオフを検出すると(ステップS11)、制御装置60は、排気浄化システムに備えられた還元剤供給装置40における還元剤回収処理を開始する(ステップS12)。
 また、溶解温度算定部64は、イグニッションスイッチ57のオフの検出に応じて、温度検出部62を通じて還元剤噴射弁43の噴射弁温度Tudvの検出を開始する(ステップS13)。
 具体的には、「噴射弁最高温度Tmax=噴射弁温度Tudv」に設定して、噴射弁温度Tudvを継続的に検出し、現在の噴射弁温度Tudvとそれまでの噴射弁最高温度Tmaxを比較して、現在の噴射弁温度Tudvがそれまでの噴射弁最高温度Tmaxを超えているか(Tudv>Tmax)否かを判断する(ステップS14)。
 現在の噴射弁温度Tudvがそれまでの噴射弁最高温度Tmaxを超えているときは、「噴射弁最高温度Tmax=当該時点の噴射弁温度Tudv」に更新して、噴射弁温度Tudvの検出を継続する。
 一方、現在の噴射弁温度Tudvがそれまでの噴射弁最高温度Tmaxを超えなくなったときは、噴射弁温度Tudvはさらに上昇することはないと判断できるので、それまでの噴射弁最高温度Tmaxを還元剤噴射弁43の最高到達温度Tudvmaxとして特定し、制御装置60内の所定の記憶手段に記憶する(ステップS15)。
 また、制御装置60は、排気浄化システムに備えられた還元剤供給装置40における還元剤回収処理が終了したか否かを判断し、終了したと判断したときは、制御装置60自体への給電の遮断処理を行って、動作手順を終了する(ステップS16)。
 尚、還元剤回収処理は、還元剤噴射弁43の噴射弁温度Tudvが噴射弁最高温度Tmaxに到達する以前の、噴射弁温度Tudvの検出中に終了しているのが通常であるので、ここでの判断は、制御装置60への給電の遮断処理を行うに際して、還元剤回収処理が確実に終了していることを確認するために行っている。
 図6は、本発明の実施の一形態に係る排気浄化システム及びその制御方法について説明するためのフローチャートであり、特に、イグニッションスイッチ57のオンの検出に応じて還元剤噴射弁43の動作許可を判断する際の当該排気浄化システムの制御方法の動作手順をより具体的に示すフローチャートである。
 溶解温度算定部64及び噴射弁動作許可部65を含む制御装置60がイグニッションスイッチ57のオンを検出すると(ステップS21)、溶解温度算定部64は、制御装置60内の所定の記憶手段に記憶された還元剤噴射弁43の最高到達温度Tudvmaxから、還元剤噴射弁43内に残存して濃縮された尿素水溶液の濃度Cを算定し、当該濃度Cから残存尿素水溶液の固化温度T0即ち溶解温度Tstrを算定する(ステップS22)。
 尿素水溶液の固化温度T0即ち溶解温度Tstrの算定は、残存尿素水溶液の濃度Cに対応する固化温度T0即ち溶解温度Tstrを、図8のグラフと同様に尿素水溶液の濃度と固化温度T0との関係を表す特性マップに基づいて特定することにより行う。当該特性マップは、制御装置60内の所定の記憶手段から読み出す。
 一方、噴射弁動作許可部65は、イグニッションスイッチ57のオンの検出に応じて、温度検出部62を通じて還元剤噴射弁43の噴射弁温度Tudvの検出を開始する(ステップS22)。
 噴射弁動作許可部65は、現在の噴射弁温度Tudvと、残存尿素水溶液の算定された溶解温度Tstrとに基づいて、還元剤噴射弁43の動作を許可するか否かを判断する。即ち、現在の噴射弁温度Tudvが残存尿素水溶液の溶解温度Tstrに到達したか(Tudv≧Tstr)否かに応じて、噴射弁動作許可部65は、還元剤噴射弁43の動作を許可するか否かを判断する(ステップS23)。
 そして、噴射弁動作許可部65による動作許可の判断がなされると、還元剤噴射弁43の動作が開始される(ステップS24)。
 上述のように、残存尿素水溶液の固化温度T0即ち溶解温度Tstrの算定は、イグニッションスイッチ57のオフを検出した後、最初にイグニッションスイッチ57のオンを検出したときに行ってもよいし、又は、イグニッションスイッチ57のオフを検出した後、制御装置60への給電が遮断されるまでの間、即ち、図5のフローチャートにおけるステップS15とステップS16との間に行ってもよい。
 一旦加熱された尿素水溶液が内燃機関停止後の冷却される過程で固化した場合であっても、以上の図5及び図6のフローチャートに示した本発明の実施の一形態に係る排気浄化システム及びその制御方法の斯かる動作手順によって、固化した尿素水溶液が溶解するのを待ってから還元剤供給装置を動作させることにより、尿素水溶液の固化に起因した還元剤噴射弁や還元剤供給経路の詰まりや破損等の発生を回避することが可能であり、その結果として排気浄化効率の低下を防止することができる。

Claims (11)

  1.  内燃機関の排気ガス中の排気微粒子を捕集するディーゼルパティキュレートフィルタと、還元剤としての尿素水溶液を貯蔵タンクから還元剤噴射弁へ供給することにより前記排気ガス中に噴射して供給すると共に前記内燃機関を停止する際には供給経路内の前記尿素水溶液を前記貯蔵タンクへ回収する還元剤供給装置と、前記尿素水溶液を用いて前記排気ガス中のNOxを浄化するSCR触媒と、を排気上流側から順次に備えた排気浄化システムにおいて、
     前記内燃機関を停止するためのイグニッションスイッチのオフの検出後に、前記還元剤噴射弁の最高到達温度を特定し、その後、前記還元剤噴射弁内に残存する前記尿素水溶液の溶解温度を前記最高到達温度に基づいて算定する溶解温度算定部と、
     前記内燃機関を始動するためのイグニッションスイッチのオンの検出後に、前記還元剤噴射弁の噴射弁温度が前記溶解温度に到達してから前記還元剤噴射弁の動作を許可する噴射弁動作許可部と、
    を有する制御装置を備えることを特徴とする排気浄化システム。
  2.  前記溶解温度算定部は、前記溶解温度の算定を、イグニッションスイッチのオンの検出後に行うことを特徴とする請求項1に記載の排気浄化システム。
  3.  前記溶解温度算定部は、前記溶解温度の算定を、イグニッションスイッチのオフの検出後、オンの検出前に行うことを特徴とする請求項1に記載の排気浄化システム。
  4.  前記溶解温度算定部は、前記最高到達温度の特定のための前記還元剤噴射弁の噴射弁温度の検出を、前記尿素水溶液の前記貯蔵タンクへの回収と並行して行うことを特徴とする請求項1乃至3のいずれか一項に記載の排気浄化システム。
  5.  前記溶解温度算定部は、前記最高到達温度の特定を、前記尿素水溶液の前記貯蔵タンクへの回収終了後に行うことを特徴とする請求項1乃至4のいずれか一項に記載の排気浄化システム。
  6.  前記溶解温度算定部は、前記溶解温度の算定を、前記最高到達温度と、前記還元剤噴射弁の温度勾配及び外気温度のうちの一方又は両方とに基づいて行うことを特徴とする請求項1乃至5のいずれか一項に記載の排気浄化システム。
  7.  内燃機関の排気ガス中の排気微粒子を捕集するディーゼルパティキュレートフィルタと、還元剤としての尿素水溶液を貯蔵タンクから還元剤噴射弁へ供給することにより前記排気ガス中に噴射して供給すると共に前記内燃機関を停止する際には供給経路内の前記尿素水溶液を前記貯蔵タンクへ回収する還元剤供給装置と、前記尿素水溶液を用いて前記排気ガス中のNOxを浄化するSCR触媒と、を排気上流側から順次に備えた排気浄化システムの制御方法において、
     前記内燃機関を停止するためのイグニッションスイッチのオフの検出後に、前記還元剤噴射弁の最高到達温度を特定する過程と、
     前記還元剤噴射弁内に残存する前記尿素水溶液の溶解温度を前記最高到達温度に基づいて算定する過程と、
     前記内燃機関を始動するためのイグニッションスイッチのオンの検出後に、前記還元剤噴射弁の噴射弁温度が前記溶解温度に到達してから前記還元剤噴射弁の動作を許可する過程と、
    を有することを特徴とする排気浄化システムの制御方法。
  8.  前記溶解温度を算定する過程を、イグニッションスイッチのオンの検出後に行うことを特徴とする請求項7に記載の排気浄化システムの制御方法。
  9.  前記溶解温度を算定する過程を、イグニッションスイッチのオフの検出後、オンの検出前に行うことを特徴とする請求項7に記載の排気浄化システムの制御方法。
  10.  前記最高到達温度を特定するための前記還元剤噴射弁の噴射弁温度の検出を、前記尿素水溶液の前記貯蔵タンクへの回収と並行して行うことを特徴とする請求項7乃至9のいずれか一項に記載の排気浄化システムの制御方法。
  11.  前記最高到達温度の特定を、前記尿素水溶液の前記貯蔵タンクへの回収終了後に行うことを特徴とする請求項7乃至10のいずれか一項に記載の排気浄化システムの制御方法。
PCT/JP2014/057925 2013-04-16 2014-03-21 排気浄化システム及び排気浄化システムの制御方法 WO2014171261A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015512372A JPWO2014171261A1 (ja) 2013-04-16 2014-03-21 排気浄化システム及び排気浄化システムの制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-085452 2013-04-16
JP2013085452 2013-04-16

Publications (1)

Publication Number Publication Date
WO2014171261A1 true WO2014171261A1 (ja) 2014-10-23

Family

ID=51731218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057925 WO2014171261A1 (ja) 2013-04-16 2014-03-21 排気浄化システム及び排気浄化システムの制御方法

Country Status (2)

Country Link
JP (1) JPWO2014171261A1 (ja)
WO (1) WO2014171261A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007151A (ja) * 2009-06-29 2011-01-13 Hitachi Constr Mach Co Ltd 排気浄化装置
WO2012090801A1 (ja) * 2010-12-27 2012-07-05 ボッシュ株式会社 排気浄化システム及び排気浄化システムの制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007151A (ja) * 2009-06-29 2011-01-13 Hitachi Constr Mach Co Ltd 排気浄化装置
WO2012090801A1 (ja) * 2010-12-27 2012-07-05 ボッシュ株式会社 排気浄化システム及び排気浄化システムの制御方法

Also Published As

Publication number Publication date
JPWO2014171261A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5087188B2 (ja) 排気浄化システム及び排気浄化システムの制御方法
US10138793B2 (en) Exhaust gas purification system and method for controlling the same
JP4978635B2 (ja) 排気浄化システムの制御装置
JP5880514B2 (ja) エンジンの排気浄化システム
JP5653208B2 (ja) 還元剤供給装置およびその制御方法
JP5546511B2 (ja) 還元剤噴射装置及びその制御方法
JP5136450B2 (ja) 排気浄化システムの異常診断装置
JP5062780B2 (ja) 排気浄化システム及び排気浄化システムの制御方法
JP6067894B2 (ja) 排気浄化システム及び排気浄化システムの制御方法
JPWO2014102932A1 (ja) 内燃機関の排気浄化システム
JP5698525B2 (ja) 排気浄化システム及び排気浄化システムの制御方法
JP6570255B2 (ja) 還元剤噴射装置の制御装置及び制御方法
JP2013130072A (ja) 内燃機関の排ガス浄化装置及び浄化方法
JP6108534B2 (ja) 排気浄化システム及び排気浄化システムの制御方法
JP2017106399A (ja) 内燃機関の排気浄化装置
JP6077114B2 (ja) 還元剤供給装置及び排気浄化システム
WO2014171261A1 (ja) 排気浄化システム及び排気浄化システムの制御方法
JP2015148224A (ja) 内燃機関の排気浄化装置
JP2010163886A (ja) 排気ガス浄化装置の尿素水噴射制御装置
JP2014206123A (ja) 排ガス後処理装置における還元剤のガス転換率判定方法
JP6960241B2 (ja) 還元剤噴射弁の冷却制御装置及び冷却制御方法
JP2008115712A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015512372

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785202

Country of ref document: EP

Kind code of ref document: A1