JP6570255B2 - 還元剤噴射装置の制御装置及び制御方法 - Google Patents

還元剤噴射装置の制御装置及び制御方法 Download PDF

Info

Publication number
JP6570255B2
JP6570255B2 JP2015021700A JP2015021700A JP6570255B2 JP 6570255 B2 JP6570255 B2 JP 6570255B2 JP 2015021700 A JP2015021700 A JP 2015021700A JP 2015021700 A JP2015021700 A JP 2015021700A JP 6570255 B2 JP6570255 B2 JP 6570255B2
Authority
JP
Japan
Prior art keywords
injection
control
reducing agent
amount
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015021700A
Other languages
English (en)
Other versions
JP2016145520A (ja
Inventor
菊地 敦
敦 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to JP2015021700A priority Critical patent/JP6570255B2/ja
Priority to DE102016200304.6A priority patent/DE102016200304A1/de
Publication of JP2016145520A publication Critical patent/JP2016145520A/ja
Application granted granted Critical
Publication of JP6570255B2 publication Critical patent/JP6570255B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/11Adding substances to exhaust gases the substance or part of the dosing system being cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1493Purging the reducing agent out of the conduits or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1811Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1821Injector parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、内燃機関の排気通路に還元剤を供給する還元剤噴射装置を制御するための還元剤噴射装置の制御装置及び制御方法に関する。
車両に搭載されるディーゼルエンジン等の内燃機関の排気中にはNOX(窒素酸化物)が含まれている。かかるNOXを還元して窒素や水等に分解することにより排気を浄化するための装置として、尿素SCR(Selective Catalystic Reduction)システムが実用化されている。尿素SCRシステムは、還元剤として尿素水溶液を使用して、排気中のNOXをアンモニアと反応させることにより、NOXを分解するシステムである。
かかる尿素SCRシステムは、排気通路に配置された選択還元触媒と、選択還元触媒よりも上流側の排気通路に尿素水溶液を供給するための還元剤噴射装置とを備える。選択還元触媒は、尿素水溶液が分解して生成されるアンモニアを吸着し、流入する排気中のNOXとアンモニアとの還元反応を促進する機能を有する触媒である。また、還元剤噴射装置は、貯蔵タンク内に収容された尿素水溶液を圧送するポンプと、ポンプにより圧送される尿素水溶液を噴射する噴射弁と、ポンプ及び噴射弁の制御を行う制御装置とを備える。
尿素SCRシステムで使用される尿素水溶液は、濃度によって凝固点が異なる。最も低い凝固点でも、その温度はマイナス11℃程度である。そのため、停車中に尿素水溶液の凝固が発生し、体積が膨張することによって、ポンプや噴射弁、尿素水溶液を流通させる配管等が破損しないように、内燃機関の停止時には尿素水溶液がシステム内から貯蔵タンクに回収される。回収された尿素水溶液は、次回の内燃機関の始動時にシステム内に再充填される。
尿素SCRシステムでは、内燃機関の運転中であっても、尿素水溶液の噴射が長期間行われない場合には、噴射弁に付着している尿素水溶液が排気管から伝達される熱により加熱されると、水分が蒸発して尿素水溶液が結晶化する場合がある。かかる尿素水溶液の結晶化を生じると、噴射弁の弁体が固着し、噴射弁の作動不良の原因となり得る。そのため、所定量の尿素水溶液を噴射弁から噴射させ、噴射弁の熱を尿素水溶液に移動させることにより噴射弁を冷却する技術が提案されている。
例えば、特許文献1には、エンジンが停止されたときの排気ガス温度に基づいて、噴射弁が尿素水の変質しにくい温度まで低下するに要するクーリング時間を設定し、エンジンが停止されてからクーリング時間が経過するまで、噴射弁から所定量の尿素水を噴射するクーリングを行うSCRシステムが開示されている。
特開2012−17687号公報
SCRシステムでは、尿素水溶液が分解して生成されるアンモニアが、選択還元触媒よりも下流側に流出しないように、尿素水溶液の噴射量が求められる。例えば、尿素水溶液の噴射量は、内燃機関の排気中のNOX量に対応するアンモニア量と、選択還元触媒の温度に応じたアンモニアの吸着可能量と、現在の選択還元触媒におけるアンモニア吸着量とに基づき算出される。具体的には、例えば、選択還元触媒の温度に応じたアンモニアの吸着可能量の70〜80%程度を目標吸着率として、実際の吸着率が目標吸着率となるように、還元剤の吸着量が算出される。
しかしながら、特許文献1に記載のクーリング制御は、所定量の尿素水を噴射するクーリング制御が、噴射弁の温度を低下させるためのクーリング時間のみに基づいて行われるようになっている。そのため、クーリング制御の結果、選択還元触媒におけるアンモニアの吸着可能量を超えてアンモニアが生成され、アンモニアが選択還元触媒の下流側に流出するおそれがある。
本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、還元剤を噴射することによって噴射弁を冷却する制御を実行する際に、還元触媒の下流側に還元成分が流出しないようにすることが可能な、還元剤噴射装置の制御装置及び制御方法を提供することにある。
上記課題を解決するために、本発明のある観点によれば、内燃機関の排気管に取り付けられた噴射弁を介して、排気通路に配設された還元触媒の上流側に、前記内燃機関の排気中のNOXを浄化するための還元剤を供給する還元剤噴射装置を制御するための制御装置において、前記噴射弁の温度に関連する情報に基づき、前記噴射弁の温度を求める噴射弁温度算出部と、前記噴射弁の温度が所定の上限閾値を超えたか否かを判定する噴射弁温度判定部と、前記噴射弁の温度が前記上限閾値を超えたときに、前記内燃機関の排気中のNOX量を増大させるNOX量増大制御を行うNOX量増大制御部と、前記噴射弁の温度が前記上限閾値を超えたときに、前記噴射弁を冷却するための前記還元剤を噴射する冷却用噴射制御を行う冷却用噴射制御部と、を備える、還元剤噴射装置の制御装置が提供される。
前記冷却用噴射制御部は、前記NOX量増大制御の実行から所定時間経過後に、前記冷却用噴射制御を実行してもよい。
前記上限閾値は、前記噴射弁の使用可能温度範囲の上限値よりも小さい値であってもよい。
前記噴射弁温度判定部は、さらに前記噴射弁の温度が所定の解除閾値を下回ったか否かを判定し、前記冷却用噴射制御部は、前記噴射弁の温度が前記解除閾値を下回るまでの期間、前記冷却用噴射制御を繰り返してもよい。
前記解除閾値は、前記上限閾値よりも小さい値であってもよい。
少なくとも前記内燃機関の排気中のNOX量に基づいて前記還元剤の噴射量を求め、前記排気中のNOXを浄化するための前記還元剤を噴射するNOX浄化用噴射制御を行うNOX浄化用噴射制御部を備え、前記NOX浄化用噴射制御部は、前記冷却用噴射制御の終了後、前記NOX量増大制御により増大されたNOX量と、前記冷却用噴射制御により噴射された前記還元剤の噴射量と、に基づき、前記還元剤の噴射量を求めてもよい。
前記還元触媒が、前記還元剤由来の還元成分を保持するとともに、流入する前記排気中のNOXを前記還元成分により浄化する触媒である場合、前記NOX浄化用噴射制御部は、前記冷却用噴射制御の終了後、前記NOX量増大制御により増大された量の前記NOXの浄化に必要な前記還元成分の量に対応する前記還元剤の量と、前記冷却用噴射制御により噴射された前記還元剤の噴射量と、の差分を考慮して、前記還元剤の噴射量を求めてもよい。
内燃機関の排気管に取り付けられた噴射弁を介して、排気通路に配設された還元触媒の上流側に、前記内燃機関の排気中のNOXを浄化するための還元剤を供給する還元剤噴射装置における、前記噴射弁を冷却するための還元剤噴射装置の制御方法において、前記噴射弁の温度に関連する情報に基づいて求められる前記噴射弁の温度が所定の上限閾値を超えたか否かを判定するステップと、前記噴射弁の温度が前記上限閾値を超えたときに、前記内燃機関の排気中のNOX量を増大させるNOX量増大制御を行うステップと、前記噴射弁の温度が前記上限閾値を超えたときに、前記噴射弁を冷却するための前記還元剤を噴射する冷却用噴射制御を行うステップと、を備える、還元剤噴射装置の制御方法が提供される。
以上説明したように本発明によれば、還元剤を噴射することによって噴射弁を冷却する制御を実行する際に、還元触媒の下流側に還元成分が流出しないようにすることができる。
第1の実施の形態にかかる還元剤噴射装置を備えた排気浄化システムを示す概略図である。 同実施形態にかかる還元剤噴射装置の制御装置の構成例を示すブロック図である。 同実施形態にかかる還元剤噴射装置の制御方法を示すフローチャートである。 同実施形態にかかる還元剤噴射装置の制御方法を説明するためのタイムチャートである。 第2の実施の形態にかかる還元剤噴射装置の制御方法を示すフローチャートである。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<<1.第1の実施の形態>>
<1−1.排気浄化システムの全体構成>
まず、図1を参照して、本発明の実施の形態にかかる還元剤噴射装置20を備えた排気浄化システム10の全体構成について説明する。図1は、排気浄化システム10の概略構成を示す説明図である。排気浄化システム10は、排気中の粒子状物質(PM:Particulate Material)を捕集するためのパティキュレートフィルタ17と、排気中のNOXを還元するための尿素SCRシステムとを備える。尿素SCRシステムは、還元触媒13と、還元触媒13の上流側の排気通路内に還元剤を供給する還元剤噴射装置20とにより構成される。かかる排気浄化システム10は、排気中のPMを捕集するとともに、排気中のNOXを還元して、排気を浄化するシステムとして構成されている。
(1−1−1.パティキュレートフィルタ)
パティキュレートフィルタ17は、排気がパティキュレートフィルタ17を通過する際に、排気中に含まれる煤等のPMを捕集する。かかるパティキュレートフィルタ17は、例えば、セラミック材料により構成された、ハニカム構造のフィルタとすることができるが、かかるフィルタに限定されるものではなく、公知のものを用いることができる。パティキュレートフィルタ17では、時間の経過に伴って、捕集されたPMによりフィルタの目詰まりを生じないように、適宜の時期に、PMを燃焼(酸化)させる再生制御が実行される。
例えば、パティキュレートフィルタ17の上流側及び下流側の圧力差が所定の閾値を超えたときに、パティキュレートフィルタ17におけるPMの捕集量が所定量に到達したものと判断して、再生制御が実行されるようにしてもよい。また、内燃機関5の運転状態に基づいて、パティキュレートフィルタ17におけるPMの捕集量が所定量に到達したと推定されたときに、再生制御が実行されるようにしてもよい。さらには、車両の使用終了時に、イグニッションスイッチがオフにされたときに、再生制御が実行されるようにしてもよい。
再生制御は、パティキュレートフィルタ17に高温の排気を通過させたり、パティキュレートフィルタ17を電熱ヒータや火炎バーナ等の加熱装置で加熱したりすることにより行われる。ただし、再生制御の手段は特に限定されない。例えば、パティキュレートフィルタ17の上流側に配設された酸化触媒19を用いて、高温の排気をパティキュレートフィルタ17に通過させることにより、パティキュレートフィルタ17中のPMを燃焼させることができる。
具体的には、パティキュレートフィルタ17を再生する際には、内燃機関5において、主噴射に遅れて後噴射を行うことによって、排気中に含まれる未燃の燃料を増加させる。かかる未燃の燃料は酸化触媒19において酸化されるため、このときの酸化熱により、排気温度が上昇する。この高温の排気がパティキュレートフィルタ17に流入することにより、パティキュレートフィルタ17に捕集されているPMが燃焼され、パティキュレートフィルタ17が再生される。
(1−1−2.尿素SCRシステム)
尿素SCRシステムは、還元剤として尿素水溶液を用いて排気中のNOXを還元し分解するシステムである。尿素水溶液は、例えば凍結温度が最も低い、32.5%濃度の尿素水溶液とすることができる。この場合の凍結温度は、約マイナス11℃である。かかる尿素水溶液は、水分が蒸発する等によって、結晶化することが知られている。
還元触媒13は、内燃機関5の排気中に含まれるNOXを、還元剤を用いて選択的に還元する。本実施形態では、還元剤噴射装置20により噴射される尿素水溶液が分解して生成されるアンモニアが還元触媒13に吸着され、還元触媒13に流入する排気中のNOXがアンモニアと反応することにより還元される。かかる還元触媒13は、触媒温度が高いほどアンモニアの吸着可能量が減少する特性を有する。また、還元触媒13は、吸着可能量に対する実際のアンモニアの吸着率が高いほど、NOXの還元効率が高くなる特性を有する。なお、本明細書において、噴射弁31から排気通路内に噴射される尿素水溶液だけでなく、尿素水溶液が分解して生成されたアンモニアについても、「還元剤」と表記する場合がある。
還元剤噴射装置20は、還元触媒13よりも上流側の排気通路内に、還元剤としての尿素水溶液を噴射する。尿素水溶液の噴射量は、排気中に含まれるNOXの濃度や、還元触媒13におけるアンモニアの吸着可能量等に基づいて、還元触媒13の下流側にNOXあるいはアンモニアが流出しないように制御される。
還元触媒13よりも上流側の排気管11には、排気温度Tgasを検出するための温度センサ15が取り付けられている。温度センサ15によって検出される排気温度Tgasは、還元触媒13の温度推定にも用いられる。これ以外に、排気管11には、図示しないNOX濃度センサやアンモニアセンサ等が設けられていてもよい。
(1−1−3.還元剤噴射装置の構成例)
次に、還元剤噴射装置20の構成の一例について詳細に説明する。図1に示すように、還元剤噴射装置20は、還元触媒13よりも上流側で排気管11に固定された噴射弁31と、貯蔵タンク50内の尿素水溶液を吸い上げ、噴射弁31に向けて圧送するポンプ41とを備える。ポンプ41及び噴射弁31は、制御装置60によって駆動制御される。制御装置60は、内燃機関5の燃料噴射量や噴射タイミング、エンジン回転数等の運転状態に関する情報を取得可能になっている。
なお、図1に示した排気浄化システム10では、制御装置60が内燃機関5から直接情報を取得するようになっているが、例えばCAN(Controller Area Network)等のバス配線を介して、内燃機関5の制御装置から情報を取得するようになっていてもよい。
ポンプ41は、例えば電動式のダイヤフラムポンプやモータポンプからなる。ポンプ41の出力は、制御装置60から出力される制御信号に基づいて制御される。本実施形態では、制御装置60は、図示しない圧力センサにより検出される、噴射弁31に供給される尿素水溶液の圧力が所定の目標値に維持されるように、ポンプ41の出力をフィードバック制御する。
噴射弁31は、通電制御により開弁及び閉弁が切り替えられる電磁式噴射弁が用いられる。かかる噴射弁31はコイルを備え、当該コイルへの通電により発生する磁力によって弁体が移動して開弁する構造を有している。上述のとおり、本実施形態では、噴射弁31に供給される尿素水溶液の圧力は一定の圧力で維持されるため、制御装置60は、尿素水溶液の目標噴射量に応じて開弁時間を調節する。この噴射弁31は、使用可能温度が制限される。使用可能温度は、例えば、コイル部分の耐熱温度や、コイル部分を被覆する樹脂部分等の耐熱温度、さらには、尿素水溶液が変性し得る温度等に起因して、制限され得る。
そのため、噴射弁31は、図示しない冷却カバー内に保持され、当該冷却カバーには、内燃機関5の冷却水が流通可能になっている。冷却カバー内の冷却水の通路は、冷却水循環通路35の一部を構成する。冷却水循環通路35は、内燃機関5に設けられた冷却装置の冷却通路から分岐し、噴射弁の冷却カバーを経由して、再び内燃機関5の冷却通路に合流する。内燃機関5の始動後、冷却水循環通路35には、常時冷却水が流れる。したがって、内燃機関5の運転中、高温の排気熱等により噴射弁31が加熱される状況において、冷却水循環通路35に冷却水が流れ、噴射弁31の過熱が抑制される。
ただし、パティキュレートフィルタ17の再生制御時等、排気温度が高温に制御される期間において、冷却水循環通路35内を循環する冷却水のみでは、噴射弁31の過熱を抑制できない場合がある。このような場合、本実施形態にかかる制御装置60は、噴射弁31から尿素水溶液を噴射させ、熱伝達によって噴射弁31を冷却させる冷却用噴射を実行する。なお、本実施形態では、上記の使用可能温度は、制御装置60が推定する噴射弁31の温度によって規定される。
<1−2.制御装置>
次に、本実施形態にかかる還元剤噴射装置20の制御に用いられる制御装置60の構成例について説明する。図2は、制御装置60の構成のうち、噴射弁31の冷却用噴射制御に関連する部分を機能的に示すブロック図である。かかる制御装置60は、主として、公知のマイクロコンピュータ等により構成される。
制御装置60は、噴射弁温度算出部101と、噴射弁温度判定部103と、NOX量増大制御部105と、冷却用噴射制御部107と、NOX浄化用噴射制御部109とを備える。これらの各部は、具体的には、マイクロコンピュータによるプログラムの実行により実現される。本実施形態にかかる制御装置60には、直接、あるいは、CAN等のバス配線を介して、温度センサ15の検出信号や、内燃機関5の運転状態に関連する情報が入力される。また、制御装置60は、RAM(Random Access Memory)やROM(Read Only Memory)等の図示しない記憶素子を備える。これらの記憶素子は、マイクロコンピュータにより実行されるプログラムや、演算結果、検出結果等を記憶する。
(1−2−1.NOX浄化用噴射制御部)
NOX浄化用噴射制御部109は、内燃機関5の排気中に含まれるNOXを浄化するために、尿素水溶液を噴射するNOX浄化用噴射制御を実行する。以下、還元剤の噴射量の算出方法の一例を説明する。
例えば、NOX浄化用噴射制御部109は、内燃機関5の排気中のNOX量に基づき、当該NOXを還元するために必要なアンモニア量を求めるとともに、還元触媒13の目標吸着量に対して過不足のアンモニア量を求め、これらの総和に対応する尿素水溶液の量を目標噴射量とすることができる。排気中のNOX量は、内燃機関5の運転状態に基づき推定されるNOX濃度Nu、あるいは、NOXセンサにより検出されるNOX濃度Nuに、排気流量を乗じて求められるNOX量を用いることができる。そして、NOX浄化用噴射制御部109は、算出されたNOX量に対応するアンモニア量を求める。
また、NOX浄化用噴射制御部109は、推定される触媒温度から現在の還元触媒13の吸着可能量を求め、例えば吸着可能量の70〜80%を目標吸着量とする。例えば、NOX浄化用噴射制御部109は、温度センサ15、あるいは図示されていないその他の温度センサの検出情報等に基づいて、還元触媒13の温度を推定する。目標とする吸着率を70〜80%とすることにより、吸着率が比較的高く維持されて、NOXの還元効率が高くなる一方、触媒温度が急激に上昇した場合であっても、アンモニアの吸着可能量が、現在のアンモニアの吸着量を下回らないようにすることができる。
そして、NOX浄化用噴射制御部109は、これまでの積算結果から現在のアンモニアの吸着量を読み込み、目標吸着量に対する過不足のアンモニア量を求め、先に求めたアンモニア量に加算する。現在のアンモニアの吸着量が目標吸着量に対して不足する場合には、過不足のアンモニア量は正の値であり、現在のアンモニアの吸着量が目標吸着量に対して過剰である場合には、過不足のアンモニア量は負の値である。
NOX浄化用噴射制御部109は、算出されたアンモニア量に対応する尿素水溶液の量を目標噴射量として、噴射弁31を駆動制御する。上述のとおり、噴射弁31に供給される尿素水溶液の圧力は一定に保たれるように制御されるため、NOX浄化用噴射制御部109は、目標噴射量に応じて、噴射時間を調節する。このようにしてNOX浄化用噴射制御を実行することにより、還元触媒13の下流側へのアンモニアの流出が抑制されつつ、還元触媒13におけるアンモニアの吸着率が高く維持され、NOXの還元効率が向上する。
なお、NOX浄化用噴射制御における還元剤の噴射量の求め方は、上記の例に限定されない。
(1−2−2.噴射弁温度算出部)
噴射弁温度算出部101は、温度センサ15により検出される、排気温度Tgに関連する情報に基づき、噴射弁31の温度Tdvを推定する。噴射弁31は、排気の熱量が、直接的あるいは間接的に伝達されることによって、加熱され得る。したがって、温度センサ15により検出される情報は、噴射弁31の温度Tdvに関連する情報に相当する。噴射弁31の配置位置や、排気管11のレイアウト等に応じて、排気温度Tgと噴射弁31の温度Tdvとの関係は様々である。また、推定する噴射弁31の温度Tdvは、例えば、噴射弁31のコイル部分の温度であってもよいし、噴射弁31の先端温度であってもよい。温度センサ15により検出される情報と、噴射弁31の温度Tdvとの関係は、あらかじめ実機を用いたシミュレーション等によって求めることができる。
なお、噴射弁31の温度Tdvの推定の仕方は、上記の例に限定されない。噴射弁温度算出部101は、温度センサ15により検出される情報を用いて、噴射弁31への被熱量を求めて、噴射弁31の温度Tdvを推定してもよい。また、噴射弁31の所定の位置に温度センサを取り付けられるのであれば、噴射弁温度算出部101は、当該温度センサの検出情報に基づき噴射弁31の温度Tdvを推定してもよい。さらには、噴射弁温度算出部101は、内燃機関5の運転状態や冷却水の循環量等の関係に基づいて、噴射弁31の温度を推定してもよい。
(1−2−3.噴射弁温度判定部)
噴射弁温度判定部103は、噴射弁温度算出部101で推定された噴射弁31の温度Tdvが、所定の上限閾値Tthre_xを超えたか否かを判定する。上限閾値Tthre_xは、上述した噴射弁31の使用可能温度に基づいて設定することができる。かかる上限閾値Tthre_xは、冷却用噴射制御の実行開始の判定閾値であり、使用可能温度の上限値よりも小さい値とすることが好ましい。これにより、冷却用噴射制御の開始時期と噴射弁31の温度Tdvが低下し始める時期とがずれる場合であっても、噴射弁31の温度Tdvが使用可能温度を超えないようにすることができる。
(1−2−4.NOX量増大制御部)
NOX量増大制御部105は、噴射弁31の温度Tdvが上限閾値Tthre_xを超えたときに、内燃機関5の排気中のNOX量を増大させるNOX量増大制御を実行させる。かかるNOX量増大制御が実行されれば、還元触媒13に吸着されているアンモニアがNOXの還元反応に用いられ、還元触媒13におけるアンモニアの吸着量を減少させることができる。したがって、冷却用噴射制御を実行して、噴射弁31を冷却するための尿素水溶液が噴射された場合であっても、生成されるアンモニアは還元触媒13に吸着されて、還元触媒13の下流側へのアンモニアの流出が抑制される。
NOX量増大制御部105は、例えば、内燃機関5の制御装置に制御指令を送り、内燃機関5の運転状態を制御して、燃焼効率を向上させることによって、排気中のNOX量を増大させることができる。具体的には、NOX量増大制御部105は、燃料の噴射時期を制御したり、EGRガスの還流量を減少させたり等することにより、燃焼効率を向上させて、NOX量を増やすことができる。なお、NOX量を増大させる方法は特に限定されない。
このとき、還元触媒13における現在のアンモニアの吸着量を考慮して、増大させるNOX量を想定し、NOX量増大制御を実行してもよい。このようにすれば、アンモニアの吸着量がゼロになることによってNOXが還元触媒の下流側に流出することを抑制することができる。一方、本実施形態では、噴射弁31を冷却するための尿素水溶液の噴射を、あらかじめ設定した回数実行するようになっている。したがって、NOX量増大制御部105は、冷却用噴射制御により噴射される尿素水溶液により浄化され得るNOX量以上のNOXが排出されるようにNOX量増大制御を実行させるようにしてもよい。
(1−2−5.冷却用噴射制御部)
冷却用噴射制御部107は、噴射弁31の温度Tdvが上限閾値Tthre_xを超えたときに、前記噴射弁を冷却するために、尿素水溶液の噴射制御を実行する。具体的に、上述のとおり、NOX浄化用噴射制御部109は、冷却用噴射制御が実行されない期間、排気中のNOXを浄化するために、尿素水溶液の目標噴射量を算出して、尿素水溶液の噴射制御を実行している。冷却用噴射制御部107は、かかるNOX浄化用噴射制御とは別に尿素水溶液を噴射することによって、噴射弁31の熱を尿素水溶液に移動させて、噴射弁31の温度Tdvを低下させる。
NOX浄化用噴射制御部109による尿素水溶液の噴射制御時には、還元触媒13におけるアンモニアの吸着率が70〜80%に制御されているため、冷却用噴射制御によりアンモニアの量が増加しても、すぐにアンモニアが還元触媒13の下流側に流出することはない。また、NOX量増大制御も開始されることから、所定時間経過後には、増大したNOXによって、還元触媒13に吸着されたアンモニアが減少し得る。したがって、冷却用噴射制御を実行した場合であっても、還元触媒13の下流側へのアンモニアの流出は抑制され得る。
ただし、NOX量増大制御により、還元触媒13中のアンモニアの吸着量が低下した後に冷却用噴射が行われるよう、NOX量増大制御の実行から所定時間経過後に冷却用噴射が実行されるようにしてもよい。このようにすれば、冷却用噴射により噴射された尿素水溶液から生成されたアンモニアによって、還元触媒13におけるアンモニアの吸着量が吸着可能量に到達するとともに還元触媒13の下流側に流出することを抑制することができる。冷却用噴射の実行を遅らせる時間は、例えば、NOX量増大制御の実行指令の出力から、還元触媒13に増大されたNOXが流入し始めるまでの時間等を考慮して設定することができる。例えば、冷却用噴射の実行を遅らせる時間は、3〜10秒であってもよい。
また、冷却用噴射の実行により低下する噴射弁31の温度は、あらかじめ実機を用いたシミュレーション等により求めることができる。したがって、噴射弁31の温度Tdvが上限閾値Tthre_xを超えた状態から、噴射弁31の温度Tdvを上限閾値Tthre_xよりも十分に低い温度にするために必要な噴射量は、あらかじめ求めることができる。そのため、本実施形態では、冷却用噴射制御部107は、あらかじめ設定した噴射時間の噴射を、あらかじめ設定した回数で実行する。
なお、冷却用噴射制御部107は、冷却用噴射制御における尿素水溶液の噴射量の情報をNOX浄化用噴射制御部109に送る。また、NOX浄化用噴射制御部109は、NOX量増大制御時に排出されたNOX量についても演算を継続する。したがって、NOX浄化用噴射制御部109は、冷却用噴射制御後においては、NOX量増大制御により増大されたNOX量と、冷却用噴射制御により噴射された尿素水溶液の噴射量とに基づいて、尿素水溶液の噴射量を求める。すなわち、NOX浄化用噴射制御部109は、NOX量増大制御により増大された量のNOXの浄化に必要なアンモニアの量に対応する尿素水溶液の量から、冷却用噴射制御により噴射された尿素水溶液の噴射量を減算した差分が補てんされるよう、尿素水溶液の噴射量を求める。これにより、冷却用噴射制御後においても、還元触媒13におけるアンモニアの吸着率を高く維持して、NOXを効率的に浄化することができる。
<1−3.還元剤噴射装置の制御方法>
次に、図3及び図4を参照して、本実施形態にかかる制御装置60により実行される還元剤噴射装置の制御方法の例について説明する。図3は、本実施形態にかかる還元剤噴射装置の制御方法を示すフローチャートであり、図4は、本実施形態にかかる還元剤噴射装置の制御方法を実行した場合のNOX量、噴射弁31の温度及びアンモニアスリップ量の推移を示すタイムチャートである。また、図4には、本実施形態にかかる還元剤噴射装置の制御方法を実行しない場合のNOX量及びアンモニアスリップ量の推移が破線で示されている。
まず、制御装置60は、ステップS10において、推定される噴射弁31の温度Tdvが、あらかじめ設定した上限閾値Tthre_xを超えているか否かを判別する。噴射弁31の温度Tdvが上限閾値Tthre_x以下である場合、制御装置60は、噴射弁31の温度Tdvの判別を繰り返す(図4のt1までの期間)。t1の時点において、噴射弁31の温度Tdvが上限閾値Tthre_xを超えると(S10:Yes)、制御装置60は、ステップS20に進み、NOX量増大制御の実行を指示する。例えば、内燃機関5の制御装置に対して、排気中のNOX量が増大する運転状態となるよう、制御指令を出力する。次いで、制御装置60は、ステップS30において、噴射弁31の温度Tdvを低下させるための冷却用噴射制御を開始する。
NOX量増大制御の開始を指示した後、少し遅れて、t2の時点で、排気中のNOX量が増大する。このt1の時点からt2の時点の間、冷却用噴射の実行は開始されるものの、還元触媒13におけるアンモニアの吸着量が吸着可能量に到達するまでは、アンモニアが還元触媒13の下流側に流出することはない。したがって、t2の時点以降においても、アンモニアスリップ量がすぐには増加していない。その後、冷却用噴射制御の効果により、噴射弁31の温度Tdvは低下し始める。
本実施形態では、あらかじめ設定されたt1の時点からt3の時点までの期間において、NOX量増大制御及び冷却用噴射制御が実行される。これらの制御が停止されるt3の時点では、噴射弁31の温度は、相対的に低い温度に戻されている。したがって、噴射弁31において、尿素水溶液の結晶化を生じることがない。
一方、図4中に破線で示したように、NOX量増大制御を実行しないで、冷却用噴射制御のみを実行した場合、冷却用噴射制御の実行を開始した後、噴射弁31の温度Tdvは低下するものの、アンモニアの吸着量が吸着可能量に達した後、アンモニアが還元触媒13の下流側に流出している。したがって、アンモニアスリップ量は増加している。
以上説明したように、第1の実施の形態にかかる還元剤噴射装置の制御装置及び制御方法によれば、噴射弁31の温度Tdvが上限閾値Tthre_xを超えたときに、噴射弁31を冷却するための冷却用噴射と併せて、排気中のNOX濃度を増大させる制御が行われる。したがって、還元触媒13に吸着されていたアンモニアは、増大されたNOXの還元に用いられることによって減少する。これにより、冷却用噴射によって供給された尿素水溶液から生成されるアンモニアにより、還元触媒13におけるアンモニアの吸着可能量が吸着可能量を超えることを確実に抑制することができる。
<<2.第2の実施の形態>>
次に、第2の実施の形態にかかる還元剤噴射装置の制御装置及び制御方法について説明する。本実施形態にかかる制御装置が適用可能な排気浄化システムの構成は、第1の実施の形態にかかる排気浄化システムの構成と同一とすることができる。第1の実施の形態にかかる制御装置は、NOX量増大制御及び冷却用噴射制御を、あらかじめ設定した期間で実行したのに対して、本実施形態にかかる制御装置は、噴射弁31の温度Tdvが所定の解除閾値Tthre_yを下回るまで、少なくとも冷却用噴射制御を繰り返す。以下、還元剤噴射装置20の制御装置60及び制御方法について、主として第1の実施の形態の場合と異なる点について説明する。
本実施形態では、噴射弁温度判定部103は、冷却用噴射制御の開始後、噴射弁31の温度Tdvが、所定の解除閾値Tthre_yを下回ったか否かを判定する。解除閾値Tthre_yは、上限閾値Tthre_yよりも小さい値であることが好ましい。これにより、例えば、温度センサ15により検出される排気温度Tgが極短い周期で変動を繰り返している場合等、噴射弁31の温度Tdvが上限閾値Tthre_xを跨いで上下動することによって、冷却用噴射制御のオンオフが繰り返されることを防ぐことができる。例えば、上限閾値Tthre_xと解除閾値Tthre_yとの差は10度に設定することができるが、この例に限定されない。
また、本実施形態では、NOX量増大制御部105は、還元触媒13におけるアンモニアの吸着率が、比較的大幅に低下するよう、排気中のNOXを増大させるようにしてもよい。このようにすれば、噴射弁31の温度が低下するまで、追加的にNOX量を増大させることなく冷却用噴射制御を繰り返し実行することができる。
また、本実施形態では、冷却用噴射制御部107は、噴射弁31の温度Tdvが解除閾値Tthre_yを下回るまでの期間、冷却用噴射制御を繰り返し実行する。ただし、NOX量増大制御により増大されたNOXによって減少したアンモニアの吸着量を大きく上回るアンモニアが生成され得る量の尿素水溶液が噴射されると、アンモニアが還元触媒13の下流側に流出するおそれがある。したがって、冷却用噴射制御部107は、冷却用噴射制御における尿素水溶液の噴射量が、NOX量増大制御により増大されたNOXによって減少したアンモニアの吸着量に対応する量を上回る場合には、NOX量増大制御が追加的に行われるのを待って、冷却用噴射を実行することが好ましい。
図5は、本実施形態にかかる還元剤噴射装置の制御装置60により実行される還元剤噴射装置の制御方法を示すフローチャートである。かかるフローチャートにおいて、ステップS10〜ステップS30までは、第1の実施の形態にかかる還元剤噴射装置の制御方法と同様の手順に沿って実施することができる。本実施形態では、ステップS30において、冷却用噴射制御を実行した後、制御装置60は、ステップS40において、噴射弁31の温度Tdvが解除閾値Tthre_yを下回ったか否かを判別する。
噴射弁31の温度Tdvが解除閾値Tthre_yを下回っている場合(S40:Yes)、冷却用噴射制御をこれ以上実行することなく、ステップS10に戻る。一方、噴射弁31の温度Tdvが解除閾値Tthre_y以上の場合(S40:No)、制御装置60は、ステップS30に戻って、冷却用噴射制御を繰り返す。制御装置60は、噴射弁31の温度Tdvが解除閾値Tthre_yを下回るまで、冷却用噴射制御を繰り返し実行する。この間にも、NOX量が増大させられたことによって、還元触媒13中のアンモニアの吸着量が、吸着可能量を超えにくくなっている。
図4に示すタイムチャートにおいて、本実施形態にかかる制御を適用した場合、噴射弁31の温度Tdvが解除閾値Tthre_yを下回った時点t4で、冷却用噴射制御はオフにされる。したがって、あらかじめ設定した所定時間の間、冷却用噴射制御を実行する場合と比較して、冷却用の尿素水溶液の噴射量の低減につながる可能性もある。
以上説明したように、第2の実施の形態にかかる還元剤噴射装置の制御装置及び制御方法によれば、噴射弁31の温度Tdvが上限閾値Tthre_xを超えたときに、噴射弁31を冷却するための冷却用噴射と併せて、排気中のNOX濃度を増大させる制御が行われる。したがって、還元触媒13に吸着されていたアンモニアは、増大されたNOXの還元に用いられることによって減少する。これにより、冷却用噴射によって供給された尿素水溶液から生成されるアンモニアにより、還元触媒13におけるアンモニアの吸着可能量が吸着可能量を超えることを確実に抑制することができる。
また、第2の実施の形態にかかる還元剤噴射装置の制御装置及び制御方法は、噴射弁31の温度Tdvが解除閾値Tthre_yを下回ったときに、NOX量増大制御及び冷却用噴射制御が停止される。したがって、噴射弁31の温度Tdvを確実に低下させることができるとともに、場合によっては、尿素水溶液の噴射量を低減することもできる。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
5 エンジン
10 排気浄化システム
11 排気管
13 還元触媒
15 温度センサ
17 パティキュレートフィルタ
19 酸化触媒
20 還元剤噴射装置
31 噴射弁
41 ポンプ
50 貯蔵タンク
60 制御装置
101 噴射弁温度算出部
103 噴射弁温度判定部
105 NOX量増大制御部
107 冷却用噴射制御部
109 NOX浄化用噴射制御部

Claims (7)

  1. 内燃機関の排気管に取り付けられた噴射弁を介して、排気通路に配設された還元触媒の上流側に、前記内燃機関の排気中のNOxを浄化するための還元剤を供給する還元剤噴射装置を制御するための制御装置において、
    前記噴射弁の温度に関連する情報に基づき、前記噴射弁の温度を求める噴射弁温度算出部と、
    前記噴射弁の温度が所定の上限閾値を超えたか否かを判定する噴射弁温度判定部と、
    前記噴射弁の温度が前記上限閾値を超えたときに、前記内燃機関の排気中のNOx量を増大させるNOx量増大制御を行うNOx量増大制御部と、
    前記噴射弁の温度が前記上限閾値を超えたときに、前記噴射弁を冷却するための前記還元剤を噴射する冷却用噴射制御を行う冷却用噴射制御部と、
    を備え
    前記冷却用噴射制御部は、前記NOx量増大制御の実行から前記還元触媒に吸着されたアンモニアが減少する状態となる所定時間経過後に、前記冷却用噴射制御を実行する、還元剤噴射装置の制御装置。
  2. 前記上限閾値は、前記噴射弁の使用可能温度範囲の上限値よりも小さい値である、請求項1に記載の還元剤噴射装置の制御装置。
  3. 前記噴射弁温度判定部は、さらに前記噴射弁の温度が所定の解除閾値を下回ったか否かを判定し、
    前記冷却用噴射制御部は、前記噴射弁の温度が前記解除閾値を下回るまでの期間、前記冷却用噴射制御を繰り返す、請求項1または2に記載の還元剤噴射装置の制御装置。
  4. 前記解除閾値は、前記上限閾値よりも小さい値である、請求項に記載の還元剤噴射装置の制御装置。
  5. 少なくとも前記内燃機関の排気中のNOx量に基づいて前記還元剤の噴射量を求め、前記排気中のNOxを浄化するための前記還元剤を噴射するNOx浄化用噴射制御を行うNOx浄化用噴射制御部を備え、
    前記NOx浄化用噴射制御部は、前記冷却用噴射制御の終了後、前記NOx量増大制御により増大されたNOx量と、前記冷却用噴射制御により噴射された前記還元剤の噴射量と、に基づき、前記還元剤の噴射量を求める、請求項1〜のいずれか1項に記載の還元剤噴射装置の制御装置。
  6. 前記還元触媒が、前記還元剤由来の還元成分を保持するとともに、流入する前記排気中のNOxを前記還元成分により浄化する触媒である場合、
    前記NOx浄化用噴射制御部は、前記冷却用噴射制御の終了後、前記NOx量増大制御により増大された量の前記NOxの浄化に必要な前記還元成分の量に対応する前記還元剤の量と、前記冷却用噴射制御により噴射された前記還元剤の噴射量と、の差分を考慮して、前記還元剤の噴射量を求める、請求項に記載の還元剤噴射装置の制御装置。
  7. 内燃機関の排気管に取り付けられた噴射弁を介して、排気通路に配設された還元触媒の上流側に、前記内燃機関の排気中のNOxを浄化するための還元剤を供給する還元剤噴射装置における、前記噴射弁を冷却するための還元剤噴射装置の制御方法において、
    前記噴射弁の温度に関連する情報に基づいて求められる前記噴射弁の温度が所定の上限閾値を超えたか否かを判定するステップと、
    前記噴射弁の温度が前記上限閾値を超えたときに、前記内燃機関の排気中のNOx量を増大させるNOx量増大制御を行うステップと、
    前記噴射弁の温度が前記上限閾値を超えたときに、前記噴射弁を冷却するための前記還元剤を噴射する冷却用噴射制御を行うステップと、
    を備え
    前記NOx量増大制御の実行から前記還元触媒に吸着されたアンモニアが減少する状態となる所定時間経過後に、前記冷却用噴射制御を実行する、還元剤噴射装置の制御方法。
JP2015021700A 2015-02-06 2015-02-06 還元剤噴射装置の制御装置及び制御方法 Active JP6570255B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015021700A JP6570255B2 (ja) 2015-02-06 2015-02-06 還元剤噴射装置の制御装置及び制御方法
DE102016200304.6A DE102016200304A1 (de) 2015-02-06 2016-01-13 Steuergerät und Steuerungsverfahren für Reduktionsmitteleinspritzgerät

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015021700A JP6570255B2 (ja) 2015-02-06 2015-02-06 還元剤噴射装置の制御装置及び制御方法

Publications (2)

Publication Number Publication Date
JP2016145520A JP2016145520A (ja) 2016-08-12
JP6570255B2 true JP6570255B2 (ja) 2019-09-04

Family

ID=56498267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015021700A Active JP6570255B2 (ja) 2015-02-06 2015-02-06 還元剤噴射装置の制御装置及び制御方法

Country Status (2)

Country Link
JP (1) JP6570255B2 (ja)
DE (1) DE102016200304A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6960241B2 (ja) * 2017-05-18 2021-11-05 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 還元剤噴射弁の冷却制御装置及び冷却制御方法
JP2019105188A (ja) * 2017-12-12 2019-06-27 ボッシュ株式会社 還元剤供給装置、排気浄化システム及び還元剤供給装置の制御方法
FR3126237B1 (fr) * 2021-08-23 2023-11-03 Vitesco Technologies Procede de refroidissement d’un conduit d’acheminement d’uree

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022729A (ja) * 2004-07-08 2006-01-26 Hino Motors Ltd 排気浄化装置の制御方法
JP5310166B2 (ja) * 2009-03-23 2013-10-09 マツダ株式会社 エンジンの排気浄化装置
JP5912232B2 (ja) 2010-07-08 2016-04-27 いすゞ自動車株式会社 Scrシステム
JP2013144938A (ja) * 2012-01-13 2013-07-25 Toyota Motor Corp 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
JP2016145520A (ja) 2016-08-12
DE102016200304A1 (de) 2016-08-11

Similar Documents

Publication Publication Date Title
JP5087188B2 (ja) 排気浄化システム及び排気浄化システムの制御方法
US10138793B2 (en) Exhaust gas purification system and method for controlling the same
US10371029B2 (en) Exhaust gas control apparatus for internal combustion engine
JP4900002B2 (ja) 内燃機関の排気浄化システム
JP2008057364A (ja) 内燃機関の排気浄化システム
JP2010261423A (ja) 内燃機関の排気浄化装置
JP5653208B2 (ja) 還元剤供給装置およびその制御方法
JP6570255B2 (ja) 還元剤噴射装置の制御装置及び制御方法
JP5062780B2 (ja) 排気浄化システム及び排気浄化システムの制御方法
JP2010090852A (ja) 排気浄化装置の制御装置及び排気浄化装置の制御方法並びに内燃機関の排気浄化装置
JP5900653B2 (ja) 内燃機関の排気浄化システム
JP5698525B2 (ja) 排気浄化システム及び排気浄化システムの制御方法
JP6202600B2 (ja) 制御装置、内燃機関の排気浄化装置、及び排気浄化装置の制御方法
JP2010043597A (ja) 内燃機関の排気浄化装置
JP2016176428A (ja) エンジンの排気浄化装置
JP7403274B2 (ja) 還元剤供給制御装置
JP2007154794A (ja) 内燃機関の排気浄化システム
JP2013092075A (ja) 内燃機関の排気浄化装置
JP2021134730A (ja) 排気浄化システムおよびその制御方法
JP6108534B2 (ja) 排気浄化システム及び排気浄化システムの制御方法
JP2008121571A (ja) 内燃機関の排気浄化システム
JP2016176430A (ja) エンジンの排気浄化装置
JP6960241B2 (ja) 還元剤噴射弁の冷却制御装置及び冷却制御方法
JP2018178934A (ja) 車両の制御装置及び制御方法
JP2018044498A (ja) 排気浄化装置及び排気浄化方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190806

R150 Certificate of patent or registration of utility model

Ref document number: 6570255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250