WO2014171222A1 - 磁気軸受装置、及び該磁気軸受装置を備えた真空ポンプ - Google Patents

磁気軸受装置、及び該磁気軸受装置を備えた真空ポンプ Download PDF

Info

Publication number
WO2014171222A1
WO2014171222A1 PCT/JP2014/056054 JP2014056054W WO2014171222A1 WO 2014171222 A1 WO2014171222 A1 WO 2014171222A1 JP 2014056054 W JP2014056054 W JP 2014056054W WO 2014171222 A1 WO2014171222 A1 WO 2014171222A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnet
current
magnetic bearing
power supply
voltage
Prior art date
Application number
PCT/JP2014/056054
Other languages
English (en)
French (fr)
Inventor
敏明 川島
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Priority to US14/783,740 priority Critical patent/US10371159B2/en
Priority to KR1020157021129A priority patent/KR102196603B1/ko
Priority to EP14786042.3A priority patent/EP2988009B1/en
Priority to CN201480020398.3A priority patent/CN105121875B/zh
Publication of WO2014171222A1 publication Critical patent/WO2014171222A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control
    • F16C32/0455Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control including digital signal processing [DSP] and analog/digital conversion [A/D, D/A]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0457Details of the power supply to the electromagnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing

Definitions

  • the present invention relates to a magnetic bearing device and a vacuum pump provided with the magnetic bearing device, and in particular, omits a DC / DC converter used to obtain a control power supply voltage of the magnetic bearing, thereby reducing the cost of the circuit.
  • the present invention relates to a miniaturized magnetic bearing device and a vacuum pump equipped with the magnetic bearing device.
  • Magnetic bearings are used in rotating equipment such as turbomolecular pumps used in semiconductor manufacturing processes.
  • a conventional magnetic bearing excitation circuit will be described based on a configuration example of a magnetic bearing of a turbo molecular pump.
  • FIG. 4 shows a cross-sectional view of a turbo molecular pump as a configuration example of the magnetic bearing.
  • the turbo molecular pump includes a rotating body 103 including a plurality of rotating blades 101a, 101b, 101c,... By turbine blades for exhausting gas.
  • an upper radial direction electromagnet 105a, a lower radial direction electromagnet 107a, and an axial direction electromagnet 109a are provided to constitute a magnetic bearing. Further, an upper radial direction sensor 105b, a lower radial direction sensor 107b, and an axial direction sensor 109b are provided.
  • the upper radial direction electromagnet 105a and the lower radial direction electromagnet 107a are composed of four electromagnets by the electromagnet windings configured as shown in FIG. These four electromagnets are arranged so as to face each other, and constitute a biaxial magnetic bearing in the X-axis direction and the Y-axis direction. *
  • one electromagnet is formed by arranging electromagnet windings 111 and 111 wound around two adjacent core convex portions as a pair and having opposite polarities. This electromagnet constitutes one pair with the electromagnets 113 and 113 of the core convex portions facing each other across the rotating body 103, and each attracts the rotating body 103 in the positive or negative direction of the X axis.
  • the two electromagnet windings 115 and 115 and the two electromagnet windings 117 and 117 facing the same are also opposed in the Y-axis direction as described above.
  • One pair is configured as an electromagnet.
  • the axial direction electromagnets 109a and 109a are configured as one pair by two electromagnet windings 121 and 123 sandwiching the armature 103a of the rotating body 103 as shown in FIG.
  • the two electromagnets 109a and 109a formed by the electromagnet windings 121 and 123 act to attract the armature 103a in the positive or negative direction of the rotation axis.
  • the upper radial direction sensor 105b and the lower radial direction sensor 107b are composed of four sensing coils arranged on the XY2 axes corresponding to the electromagnets 105a and 107a, and detect the radial displacement of the rotating body 103.
  • the axial direction sensor 109b detects the axial displacement of the rotating body 103.
  • the magnetic bearing control device individually applies the attraction force of a total of ten electromagnets constituting the upper radial electromagnet 105a, the lower radial electromagnet 107a, and the axial electromagnets 109a, 109a by PID control or the like.
  • the rotating body 103 is configured to support magnetic levitation.
  • FIG. 7 shows an example of a magnetic bearing excitation circuit that controls the current flowing through the electromagnet winding by the pulse width modulation method.
  • one end of an electromagnet winding 111 constituting one electromagnet is connected to the positive electrode of the power supply 133 via the transistor 131, and the other end is connected to the negative electrode of the power supply 133 via the transistor 132. . *
  • the cathode of the current regeneration diode 135 is connected to one end of the electromagnet winding 111, and the anode is connected to the negative electrode of the power supply 133.
  • the cathode of the diode 136 is connected to the positive electrode of the power supply 133, and the anode is connected to the other end of the electromagnet winding 111.
  • An electrolytic capacitor 141 is connected between the positive electrode and the negative electrode of the power supply 133 for stabilization.
  • a current detection circuit 139 is interposed on the source side of the transistor 132, and a current detected by the current detection circuit 139 is input to the control circuit 137.
  • the excitation circuit 110 configured as described above corresponds to the electromagnet winding 111, and the same excitation circuit 110 is configured for the other electromagnet windings 113, 115, 117, 121, and 123. . Therefore, in the case of a 5-axis control type magnetic bearing, a total of ten excitation circuits 110 are connected in parallel with the electrolytic capacitor 141. *
  • the current increases when both transistors 131 and 132 are turned on, and the current decreases when both transistors 131 and 132 are turned off.
  • the flywheel current is held. By passing the flywheel current, hysteresis loss can be reduced and power consumption can be kept low.
  • the control circuit 137 compares the current command value and the detection value by the current detection circuit 139 to determine the pulse width within one cycle by pulse width modulation, and sends a signal to the gates of the transistors 131 and 132.
  • both the transistors 131 and 132 are turned off for the time corresponding to the pulse width time Tp only once in one cycle Ts as shown in FIG. At this time, the electromagnet current IL decreases.
  • the pulse width Tp is obtained from the current command value IR, the electromagnet current IL, the electromagnet inductance Lm, the electromagnet resistance Rm, and the power supply voltage Vd. According to Kirchhoff's law, Equation 1 is established between the electromagnet current IL flowing through the electromagnet winding 111 and the power supply voltage Vd. *
  • the power supply voltage Vd is lowered from the AC input power supply 1 through the AC / DC main power supply 3 and the DC / DC converter 5.
  • the power supply voltage Vd is input to the electromagnet power amplifier 7 and used as a power supply for the excitation circuit 110 (see Patent Document 1). *
  • the output of the AC / DC main power source 3 is also input to the motor drive circuit 9 and supplied to the motor 121.
  • the output of the DC / DC converter 5 is input to the small auxiliary power supply 11 and then generated as a control power supply of 5V, + 15V, ⁇ 15V, etc. and sent to the control circuit 137.
  • the control circuit 137 includes a DSP 15 (digital signal processor). *
  • the power supply voltage Vd is a voltage that has been lowered through the DC / DC converter 5
  • the output voltage of the AC / DC main power supply 3 varies greatly depending on the rotational state of the motor 121 such as acceleration or deceleration.
  • the power supply voltage Vd is always stable. Therefore, conventionally, the output of the electromagnet power amplifier 7 can be stably controlled without much consideration of fluctuations in the power supply voltage.
  • the DC / DC converter 5 since the DC / DC converter 5 was mounted to obtain the power supply voltage Vd, the cost of the circuit was high and the dimensions were large. In addition, the failure rate was high due to the large number of parts. *
  • the present invention has been made in view of such a conventional problem. By omitting the DC / DC converter used to obtain the control power supply voltage of the magnetic bearing, the cost and size of the circuit can be reduced. It is an object of the present invention to provide a magnetic bearing device and a vacuum pump including the magnetic bearing device.
  • the present invention includes a rotating body, position detecting means for detecting a radial position or an axial position of the rotating body, and a magnetic bearing for controlling the radial position or the axial position by an electromagnet.
  • Means an excitation circuit including a switching element for connecting and disconnecting between the electromagnet and the power source, an electromagnet current detecting unit for detecting a current flowing through the electromagnet, a power source voltage detecting unit for detecting the voltage of the power source, and the switching Pulse width calculating means for calculating a pulse width for pulse-controlling the element at each timing, and the pulse width is obtained by detecting the voltage detected by the power supply voltage detecting means and the current detected by the electromagnet current detecting means. It is calculated based on the basis. *
  • the pulse width is calculated based on the voltage of the power supply detected by the power supply voltage detection means and the current detected by the electromagnet current detection means. For this reason, the change of the pulse width can be reduced by the increase of the voltage, and the magnetic bearing control can be stabilized. That is, stability can be ensured by changing the electromagnet amplifier control characteristics in accordance with the power supply voltage.
  • the DC / DC converter is omitted, and the electromagnet power amplifier can be driven in a high voltage state. For this reason, the cost and size of the circuit can be reduced. In addition, the failure rate of the circuit can be reduced.
  • a first correction calculation is performed based on a current error between the current value of the current detected by the electromagnet current detecting means and a current command value, and based on the current pulse width.
  • a second correction calculation is performed, a third correction calculation is performed based on a voltage drop due to the resistance of the electromagnet, and an error of a DC component included in the third correction calculation and the second correction calculation is integrated.
  • the correction calculation is performed by the following. *
  • An error of direct current generated by performing the second correction calculation and the third correction calculation is corrected by integration. That is, an integral compensation term is added separately from the prediction control loop in order to reduce the direct current error of the current caused by the error in the prediction control of the PWM control pulse width.
  • the present invention (Claim 3) is characterized in that the switching frequency for connecting and disconnecting the switching element of the excitation circuit is an even multiple of the carrier frequency of the position detecting means.
  • the noise mixed in the position detecting means is suppressed by synchronizing the switching frequency for connecting / disconnecting the switching element of the excitation circuit with twice the carrier frequency of the position detecting means.
  • the DC / DC converter is omitted, and stable magnetic bearing control can be performed even when the power supply voltage becomes high.
  • the present invention provides a rotating body, position detecting means for detecting a radial position or an axial position of the rotating body, and a magnetic bearing for controlling the radial position or the axial position by an electromagnet.
  • an excitation circuit including a switching element for connecting / disconnecting between the electromagnet and the power source, and an electromagnet current detecting means for detecting a current flowing through the electromagnet, wherein the electromagnet current detecting means is on the ground side of the switching element. It is arranged.
  • the electromagnet current detection means By arranging the electromagnet current detection means on the ground side of the switching element, even when the power supply voltage is high, it is difficult to be affected by the voltage swing of the electromagnet when detecting the current flowing through the electromagnet. For this reason, an electromagnet current with low noise and low noise can be obtained. Also, since the electromagnet current detection means is arranged on the ground side of the switching element, a high voltage is not applied at the time of current detection, and it is not necessary to use a current measurement means corresponding to the high voltage.
  • the electromagnet current detection means is arranged on the ground side of the switching element, so that a noise filter is not used. It is possible to obtain a highly accurate electromagnet current at low cost.
  • the DC / DC converter is omitted, and the electromagnet power amplifier can be driven in a high voltage state. For this reason, the cost and size of the circuit can be reduced. In addition, the failure rate of the circuit can be reduced.
  • the electromagnet current detecting means comprises at least a resistance element and a differential amplifier, and the voltage across the resistance element caused by a voltage drop of the resistance element due to a current flowing through the electromagnet A current is input to the differential amplifier, and a current flowing through the electromagnet is detected based on an output voltage of the differential amplifier.
  • invention 6 is an invention of a vacuum pump, characterized in that it comprises the magnetic bearing device according to any one of claims 1 to 5.
  • the vacuum pump can be used in a place with a small installation space.
  • the pulse width is calculated based on the power supply voltage detected by the power supply voltage detection means and the current detected by the electromagnet current detection means.
  • the change of the pulse width can be reduced by the increased amount, and the magnetic bearing control can be stabilized. That is, stability can be ensured by changing the electromagnet amplifier control characteristics in accordance with the power supply voltage.
  • the DC / DC converter is omitted, and the electromagnet power amplifier can be driven in a high voltage state. For this reason, the cost and size of the circuit can be reduced. In addition, the failure rate of the circuit can be reduced.
  • FIG. 10 is a conventional general block diagram
  • the DC / DC converter 5 conventionally provided is omitted in the embodiment of the present invention.
  • the output voltage of the AC / DC main power supply 3 is directly input to the electromagnet power amplifier 7 and the small auxiliary power supply 11 without being lowered.
  • the power supply voltage Vd is in a high voltage state of about 120V to 140V.
  • the reason why the voltage fluctuates from 120 V during normal operation to about 140 V is that the voltage may increase to about 140 V depending on the regeneration state from the motor 121.
  • the power supply voltage Vd which is the output voltage of the AC / DC main power supply 3
  • the A / D converter 17 of the control circuit 137 is input to the A / D converter 17 of the control circuit 137 and subjected to analog / digital conversion, and then input to the DSP 15. It is like that.
  • the pulse width signal calculated based on the power supply voltage Vd by the DSP 15 of the control circuit 137 is transmitted to the gates of the transistors 131 and 132 shown in the magnetic bearing excitation circuit 110 of the electromagnet power amplifier 7 of FIG. It has become.
  • Equation 5 is established from Equation 3 and Equation 4. *
  • Equation 7 When the pulse width Tp (n + 1) is recombined, Equation 7 is obtained. *
  • KA is a feedback gain
  • current command value IR (n + 1) is a current command value at the timing next to timing n
  • IL (n) is an electromagnet current value actually measured this time.
  • the polarity of P (n + 1) may be set so that the pulse width Tp (n + 1) is positive. Therefore, if P (n + 1)> 0, the mode 1 is set, while if P (n + 1) ⁇ 0, the mode 2 is set. *
  • the electromagnet inductance Lm is derived as shown in Equation 8 using the number of coil turns N, the gap length l, the gap area S, and the magnetic permeability ⁇ . *
  • the pulse width Tp (n + 1) can be expressed in another form as shown in Equation 9. *
  • KL is an inductance correction gain, which is a correction coefficient for correcting the reference value L 0 of the electromagnet inductance based on the magnitude of the detected electromagnet current IL. Since the electromagnet inductance Lm decreases as the steady current value of the electromagnet current IL increases, it is necessary to decrease the inductance correction gain.
  • KL The relationship between KL and the electromagnet current IL is shown in FIG.
  • the term corresponding to (IR (n + 1) ⁇ IL (n)) ⁇ KL is the current command value IR calculated by the DSP 15 and the actually detected electromagnetic current IL. It has a function of correcting the current error between the two.
  • the term corresponding to P (n) ⁇ Vd ⁇ Tp (n) / L 0 which is the second item in Equation 9 is a term that is corrected with the current pulse width and determines the next pulse width.
  • the microcomputer performs sampling operation at regular intervals. For this reason, there is a time lag in calculation, and there is a possibility that the current actually flowing between the calculation and the time of the next calculation will change. It has a function of correcting the deviation during that time with the second item of the previous pulse width.
  • the correction of the second item may not reflect the calculation result instantaneously at the timing immediately following the current timing. For example, the calculation result may be reflected after calculating several cycles and confirming that there is no influence of noise or the like.
  • Equation 9 actually has a resistance component in the electromagnet winding 111, and a voltage drop is caused by the resistance component. For this reason, it has a function of correcting the voltage drop due to the resistance.
  • Equation 9 ideally functions as theoretically for the AC component.
  • the reference value L 0 and the electromagnet resistance Rm of the electromagnet inductance it is difficult in practice to define precisely, the error from the theoretical value due to manufacturing variations and operating environments choice occurs.
  • Yi (n) is obtained by accumulating, at each timing, a value obtained by multiplying the current error between the current command value IR calculated by the DSP 15 and the actually detected electromagnet current IL by Ki. is there. *
  • Ki is an integral coefficient shown in Equation 12, and is determined empirically.
  • the sampling time Ts is, for example, 40 ⁇ s
  • the frequency f is, for example, about 1 hertz.
  • the magnetic bearing is controlled by software of the DSP 15.
  • the power supply voltage Vd is analog / digital converted by the AD converter 17 and taken into the DSP 15.
  • the PWM control pulse width corresponding to the power supply voltage Vd is calculated as shown in Equation 10, and the electromagnet 111 is driven.
  • the DC / DC converter is omitted, and the electromagnet power amplifier 7 can also be driven in a high voltage state. For this reason, the cost and size of the circuit can be reduced. In addition, the failure rate of the circuit can be reduced. Further, since the dimensions of the controller and the vacuum pump integrated product can be reduced, the vacuum pump can be employed even in a place with a small installation space. *
  • displacement sensors are driven at a carrier frequency of 25 kHz, for example.
  • a synchronous detection method for modulating the displacement signal with a rectangular synchronous detection pulse having the same frequency as the carrier frequency is used.
  • the influence of the electromagnet current IL on current detection when the DC / DC converter 5 is omitted and the high voltage of the AC / DC main power supply 3 is used as the power supply voltage Vd will be considered.
  • the current detection circuit 139 on the ground side of the transistor 132, the voltage swing of the electromagnet 111 can be detected when the electromagnet current IL is detected even when the power supply voltage Vd of the present embodiment is high. Can be less affected. Also, with this arrangement, a high voltage is not applied to the current detection circuit 139, and the current detection circuit 139 does not require a high voltage countermeasure.
  • the noise due to the voltage swing applied to the electromagnet 111 is a periodic waveform of the detected electromagnet current, so a noise filter (for example, a low-pass filter) cannot be used to measure an accurate current value.
  • a noise filter for example, a low-pass filter
  • the voltage extracted from the current detection circuit 139 is not input to the A / D converter as it is when the conventional DC / DC converter 5 is provided, but the current detection interface in the magnetic bearing excitation circuit of FIG. As can be seen, the difference between the voltage once extracted from the current detection circuit 139 by the differential amplifier 27 and the voltage of the ground 21 is taken.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • General Physics & Mathematics (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

【課題】磁気軸受の制御電源電圧を得るのに使われていたDC/DCコンバータを省略することで、回路の低コスト化、小型化を図った磁気軸受装置、及び該磁気軸受装置を備えた真空ポンプを提供する。【解決手段】回転体の半径方向位置と軸方向位置を検出する位置検出手段と、位置検出手段で検出された半径方向位置と軸方向位置を基に半径方向位置と軸方向位置を電磁石により制御する磁気軸受手段と、電磁石と電源との間を断接するスイッチング素子を含む励磁回路と、電磁石を流れる電流を信号検出する電磁石電流検出手段と、電源の電圧を信号検出する電源電圧検出手段と、スイッチング素子をパルス制御するパルス幅をタイミング毎に演算するパルス幅演算手段とを備え、パルス幅が、電源電圧検出手段で検出された電源の電圧及び電磁石電流検出手段で検出された電流を基に演算される。

Description

磁気軸受装置、及び該磁気軸受装置を備えた真空ポンプ
本発明は磁気軸受装置、及び該磁気軸受装置を備えた真空ポンプに係わり、特に磁気軸受の制御電源電圧を得るのに使われていたDC/DCコンバータを省略することで、回路の低コスト化、小型化を図った磁気軸受装置、及び該磁気軸受装置を備えた真空ポンプに関する。
磁気軸受は半導体製造工程で使用されるターボ分子ポンプ等の回転機器に使用される。ターボ分子ポンプの磁気軸受の構成例に基づき、従来の磁気軸受励磁回路について説明する。 
磁気軸受の構成例としてターボ分子ポンプの断面図を図4に示す。図4において、ターボ分子ポンプは、ガスを排気するためのタービンブレードによる複数の回転翼101a、101b、101c…を多段に備えた回転体103を備える。 
この回転体103を軸承するために、上側ラジアル方向電磁石105a、下側ラジアル方向電磁石107a及びアキシャル方向電磁石109aを配設することにより磁気軸受が構成されている。また、上側ラジアル方向センサ105b、下側ラジアル方向センサ107b、アキシャル方向センサ109bを備える。 
上側ラジアル方向電磁石105a及び下側ラジアル方向電磁石107aは、それぞれの横断面図を示す図5のように構成された電磁石巻線により4個の電磁石が構成される。これらの4個の電磁石は、2個ずつ対向配置され、X軸方向及びY軸方向の2軸の磁気軸受を構成する。 
詳細には、隣接する2個のコア凸部にそれぞれ巻回された電磁石巻線111、111を1組として互いに逆極性に配置することにより1つの電磁石が形成される。この電磁石は、回転体103を挟んで対向するコア凸部の電磁石巻線113、113による電磁石と1つの対を構成し、それぞれが回転体103をX軸の正方向又は負方向に吸引する。 
また、X軸と直交するY軸方向においては、2個の電磁石巻線115、115と、これに対向する2個の電磁石巻線117、117についても、上記同様に、Y軸方向について対向する電磁石として1つの対を構成する。 
アキシャル方向電磁石109a、109aは、その縦断面図を示す図6のように、回転体103のアーマチャ103aを挟む2つの電磁石巻線121、123により、1つの対として構成される。各電磁石巻線121、123による2個の電磁石109a、109aは、それぞれアーマチャ103aを回転軸線の正方向又は負方向に吸引力を作用する。 
また、上側ラジアル方向センサ105b、下側ラジアル方向センサ107bは、上記電磁石105a、107aと対応するXY2軸に配置された4個のセンシングコイルからなり、回転体103の径方向変位を検出する。アキシャル方向センサ109bは回転体103の軸方向変位を検出する。これらセンサは、それぞれの検出信号を図示せぬ磁気軸受制御装置に送るように構成されている。 
これらのセンサ検出信号に基づき、磁気軸受制御装置がPID制御等により上側ラジアル方向電磁石105a、下側ラジアル方向電磁石107a及びアキシャル方向電磁石109a、109aを構成する計10個の電磁石の吸引力を個々に調節することにより、回転体103を磁気浮上支持するように構成されている。 
次に、上述のように構成される磁気軸受の各電磁石を励磁駆動する磁気軸受励磁回路について説明する。電磁石巻線に流れる電流をパルス幅変調方式により制御する磁気軸受励磁回路の例を図7に示す。 
図7において、1個の電磁石を構成する電磁石巻線111は、その一端がトランジスタ131を介して電源133の正極に接続され、他端がトランジスタ132を介して電源133の負極に接続されている。 
そして、電流回生用のダイオード135のカソードが電磁石巻線111の一端に接続され、アノードが電源133の負極に接続されている。同様に、ダイオード136のカソードが電源133の正極に接続され、アノードが電磁石巻線111の他端に接続されている。電源133の正極と負極間には安定化のため電解コンデンサ141が接続されている。 
また、トランジスタ132のソース側には電流検出回路139が介設され、この電流検出回路139で検出された電流が制御回路137に入力されるようになっている。 
以上のように構成される励磁回路110は、電磁石巻線111に対応されるものであり、他の電磁石巻線113、115、117、121、123に対しても同じ励磁回路110が構成される。従って、5軸制御型磁気軸受の場合には、合計10個の励磁回路110が電解コンデンサ141と並列に接続されている。 
かかる構成において、トランジスタ131、132の両方をonすると電流が増加し、両方をoffすると電流が減少する。そして、どちらか1個onするとフライホイール電流が保持される。フライホイール電流を流すことで、ヒステリシス損を減少させ、消費電力を低く抑えることができる。 
また、高調波等の高周波ノイズを低減できる。そして、このフライホイール電流を電流検出回路139で測定することで電磁石巻線111を流れる電磁石電流ILが検出可能である。制御回路137は、電流指令値と電流検出回路139による検出値とを比較してパルス幅変調による1周期内のパルス幅を決め、トランジスタ131、132のゲートに信号送出する。 
電流指令値が検出値より大きい場合には、図8に示すように1周期Ts(例えばTs=100μs)中で1回だけパルス幅時間Tpに相当する時間分、トランジスタ131、132の両方をonする。このとき電磁石電流ILが増加する。 
一方、電流指令値が検出値より小さい場合には、図9に示すように1周期Ts中で1回だけパルス幅時間Tpに相当する時間分、トランジスタ131、132の両方をoffする。このとき電磁石電流ILが減少する。 
ここに、パルス幅Tpは電流指令値IR、電磁石電流IL、電磁石インダクタンスLm、電磁石抵抗Rm、電源電圧Vdから求める。キルヒホッフの法則によれば、電磁石巻線111を流れる電磁石電流ILと電源電圧Vdの間には、数1が成立する。 
Figure JPOXMLDOC01-appb-M000001
従って、IR-ILだけ電流値を変化させるのに必要なパルス幅Tpは、数2のように求められる。 
Figure JPOXMLDOC01-appb-M000002
ここに、電源電圧Vdは図10に示すように、AC入力電源1よりAC/DC主電源3及びDC/DCコンバータ5を経て低電圧化されたものである。そして、この電源電圧Vdは電磁石パワーアンプ7に入力され励磁回路110の電源として使用されている(特許文献1参照)。 
なお、AC/DC主電源3の出力はモータ駆動回路9にも入力されモータ121に電力供給されている。また、DC/DCコンバータ5の出力は小型補助電源11に入力された後、5V、+15V、-15V等の制御電源として生成され制御回路137に送られている。この制御回路137にはDSP15(ディジタルシグナルプロセッサー)が内蔵されている。 
このように、電源電圧VdはDC/DCコンバータ5を経て低電圧化されたものを用いているため、AC/DC主電源3の出力電圧はモータ121の加速若しくは減速等の回転状態で大きく変動するが、電源電圧Vdは常に安定している。 従って、従来は、電源電圧変動をあまり考慮しなくても電磁石パワーアンプ7の出力を安定に制御できた。 このように、従来の電源装置では電源電圧Vdを得るのにDC/DCコンバータ5を搭載していたので、回路のコストが高く、寸法も大きかった。また、部品点数が多いので、故障率も高くなっていた。 
更に、現在主流となりつつある制御装置と真空ポンプの一体型の製品では回路実装スペースが少ないので、寸法の小型化が特に重要になっている。 この点、ベアリングレスモータで、電磁石パワーアンプをDC/DCコンバータを介さずに主電源の高い電圧で駆動している例(特許文献2参照)もあるが、この例では特に電圧電源変動を考慮しておらず、磁気軸受の安定性が劣るおそれがあった。
特開2003-293980号公報 特開2010-200524号公報 特開2003-172354号公報
本発明はこのような従来の課題に鑑みてなされたもので、磁気軸受の制御電源電圧を得るのに使われていたDC/DCコンバータを省略することで、回路の低コスト化、小型化を図った磁気軸受装置、及び該磁気軸受装置を備えた真空ポンプを提供することを目的とする。
このため本発明(請求項1)は、回転体と、該回転体の半径方向位置又は軸方向位置を検出する位置検出手段と、該半径方向位置又は該軸方向位置を電磁石により制御する磁気軸受手段と、前記電磁石と電源との間を断接するスイッチング素子を含む励磁回路と、前記電磁石を流れる電流を検出する電磁石電流検出手段と、前記電源の電圧を検出する電源電圧検出手段と、前記スイッチング素子をパルス制御するパルス幅をタイミング毎に演算するパルス幅演算手段とを備え、前記パルス幅が、前記電源電圧検出手段で検出された前記電圧及び前記電磁石電流検出手段で検出された前記電流を基に演算されるものであることを特徴とする。 
パルス幅が、電源電圧検出手段で検出された電源の電圧及び電磁石電流検出手段で検出された電流を基に演算される。このため、電圧が上がった分パルス幅の変化を減らすことができ磁気軸受制御を安定させることができる。即ち、電源電圧に応じて電磁石アンプ制御特性を変更することで、安定性の確保が可能である。 以上により、DC/DCコンバータを省略し、電磁石パワーアンプも高電圧の状態で駆動可能である。このため、回路の低コスト化、小型化が図れる。また、回路の故障率を減少できる。 
また、本発明(請求項2)は、前記電磁石電流検出手段で検出された前記電流の電流値と電流指令値との電流誤差に基づき第1の補正演算がされ、現在の前記パルス幅に基づき第2の補正演算がされ、前記電磁石の抵抗分による電圧降下に基づき第3の補正演算がされ、該第3の補正演算と前記第2の補正演算に含まれている直流分の誤差が積分により補正演算されることを特徴とする。 
第2の補正演算と第3の補正演算を行うことに伴い生ずる直流分の誤差を積分により補正演算する。即ち、PWM制御パルス幅の予測制御の誤差により生じる電流の直流誤差を減少するため、予測制御ループとは別に積分補償項を追加する。 
更に、本発明(請求項3)は、前記励磁回路の前記スイッチング素子を断接するスイッチング周波数が前記位置検出手段のキャリア周波数の偶数倍とされたことを特徴とする。 
電源電圧が高電圧の場合、PWM制御によるノイズの発生もその分大きくなることが想定される。そこで、励磁回路のスイッチング素子を断接するスイッチング周波数を位置検出手段のキャリア周波数の2倍に同期させることで位置検出手段に混入するノイズを抑制する。 以上により、DC/DCコンバータを省略し、電源電圧が高電圧となる場合でも安定した磁気軸受制御が行える。 
更に、本発明(請求項4)は、回転体と、該回転体の半径方向位置又は軸方向位置を検出する位置検出手段と、該半径方向位置又は該軸方向位置を電磁石により制御する磁気軸受手段と、前記電磁石と電源との間を断接するスイッチング素子を含む励磁回路と、前記電磁石を流れる電流を検出する電磁石電流検出手段とを備え、前記電磁石電流検出手段が前記スイッチング素子のアース側に配置されたことを特徴
とする。 
スイッチング素子のアース側に電磁石電流検出手段を配置したことで、電源電圧が高電圧であった場合でも電磁石を流れる電流の検出に際して電磁石の電圧スイングの影響を受け難くできる。このため、低コストでノイズの少ない電磁石電流が得られる。 また、スイッチング素子のアース側に電磁石電流検出手段を配置したことで、電流検出時には高電圧が掛からず、高電圧に対応した電流計測手段を使用しなくても良い。 また、電磁石に掛かる電圧スイングにより、ノイズが発生するが、検出される電磁石の電流が周期的な波形であるため、正確な電流値を計測する為には、ノイズフィルタ(例えば、ローパス・フィルタ)が使用出来ない。その為、ノイズの影響を受けやすくなるおそれがあったが、本発明(請求項4)のように、電磁石電流検出手段をスイッチング素子のアース側に配置したことによって、ノイズフィルタを用いずに、低コストで精度の高い電磁石電流の取得が可能となる。 以上により、DC/DCコンバータを省略し、電磁石パワーアンプも高電圧の状態で駆動可能である。このため、回路の低コスト化、小型化が図れる。また、回路の故障率を減少できる。 
更に、本発明(請求項5)は、前記電磁石電流検出手段は、少なくとも抵抗素子と差動増幅器からなり、前記電磁石に流れる電流による前記抵抗素子の電圧降下によって生じる前記抵抗素子両端の電圧を前記差動増幅器に入力し、該差動増幅器の出力電圧に基づいて、前記電磁石に流れる電流を検出することを特徴とする。 
このことにより、電源電圧が高電圧の場合であってもノイズに影響されることなく精度の高い電磁石電流が得られる。 
更に、本発明(請求項6)は真空ポンプの発明であって、請求項1~5のいずれか1項に記載の磁気軸受装置を備えたことを特徴とする。 
制御装置と真空ポンプ一体型の製品の寸法を小型化することができるので、設置スペースの少ない場所にも真空ポンプを採用できる。
以上説明したように本発明によれば、パルス幅が、電源電圧検出手段で検出された電源の電圧及び電磁石電流検出手段で検出された電流を基に演算されるように構成したので、電圧が上がった分パルス幅の変化を減らすことができ磁気軸受制御を安定させることができる。即ち、電源電圧に応じて電磁石アンプ制御特性を変更することで、安定性の確保が可能である。 
そして、DC/DCコンバータを省略し、電磁石パワーアンプも高電圧の状態で駆動可能である。このため、回路の低コスト化、小型化が図れる。また、回路の故障率を減少できる。
本発明の実施形態の全体ブロック図 磁気軸受励磁回路(電流検出インターフェース部分を含む) KLと電磁石電流ILの関係を示す図 ターボ分子ポンプの断面図 ラジアル方向電磁石の横断面図 アキシャル方向電磁石の縦断面図 従来の磁気軸受励磁回路の例 電流指令値が検出値より大きい場合の制御を示すタイムチャート 電流指令値が検出値より小さい場合の制御を示すタイムチャート 従来の全体ブロック図
以下、本発明の実施形態について説明する。本発明の実施形態の全体ブロック図を図1に示す。従来の全体ブロック図である図10と比較すると分かるように、本発明の実施形態では従来備えていたDC/DCコンバータ5を省略している。そして、AC/DC主電源3の出力電圧は低電圧化されないまま電磁石パワーアンプ7及び小型補助電源11に直接入力されるようになっている。 
即ち、電源電圧Vdは120V~140V程度の高電圧の状態である。このように通常運転時の120Vより140V程度にまで変動するのは、モータ121からの回生状況次第で140V程度まで電圧が上昇することがあるためである。 
また、図1に示すようにこのAC/DC主電源3の出力電圧である電源電圧Vdは制御回路137のA/Dコンバータ17に入力されてアナログ/ディジタル変換された後、DSP15に入力されるようになっている。制御回路137のDSP15でこの電源電圧Vdを基に演算されたパルス幅信号は、図2の電磁石パワーアンプ7の磁気軸受励磁回路110に示すトランジスタ131、132のゲートに対し信号送出されるようになっている。 
まず、電流指令値IRが検出された電磁石電流ILより大きい場合(モード1)について、数1を基に制御回路137のソフトウェアにより展開された演算式は数3のようになる。 
Figure JPOXMLDOC01-appb-M000003
ここに、P(n)は極性であり、IL(記号ハット)(n+1)はタイミングnの次のタイミングにおける電磁石電流の推定値を意味する。同様に、電流指令値IRが検出された電磁石電流ILより小さい場合(モード2)における制御回路137のソフトウェアにより展開される演算式は数4のようになる。 
Figure JPOXMLDOC01-appb-M000004
従って、数3と数4より数5が成立する。 
Figure JPOXMLDOC01-appb-M000005
これより、タイミングnにおけるパルス幅Tp(n)が小だとモード1でも電流が減る。また、数6が成立する。 
Figure JPOXMLDOC01-appb-M000006
パルス幅Tp(n+1)をまとめなおすと、数7のようになる。 
Figure JPOXMLDOC01-appb-M000007
但し、KAはフィードバックゲイン、電流指令値IR(n+1)はタイミングnの次のタイミングにおける電流指令値、IL(n)は今回実測された電磁石電流値である。 
このP(n+1)の極性をパルス幅Tp(n+1)が正になるようにすればよい。従って、P(n+1)>0ならばモード1とし、一方P(n+1)≦0ならばモード2とする。 
電磁石インダクタンスLmはコイル巻数N、ギャップ長l、ギャップ面積S、透磁率μを用いて数8のように導出される。 
Figure JPOXMLDOC01-appb-M000008
透磁率μはヒステリシス特性により、電磁石電流ILにより大きく変化するので、パルス幅Tp(n+1)を別の形に表現すると、数9のようになる。 
Figure JPOXMLDOC01-appb-M000009
KLはインダクタンス補正ゲインで、検出される電磁石電流ILの大きさにより電磁石インダクタンスの基準値L0を補正するための補正係数である。電磁石電流ILの定常電流値が大きいほど電磁石インダクタンスLmが減少するので、インダクタンス補正ゲインを減少させる必要がある。 
KLと電磁石電流ILの関係を図3に示す。 ここに、数9中の第1項目である(IR(n+1)-IL(n))×KLに相当する項は、DSP15で演算された電流指令値IRと実際に検出された電磁石電流ILとの間の電流の誤差を補正する機能を有している。 
また、数9中の第2項目であるP(n)×Vd×Tp(n)/L0に相当する項は、現在のパルス幅をもって補正して次のパルス幅を決める項である。 DSP15ではマイコンが一定時間毎にサンプリング的に演算している。このため、演算の時間ずれがあり、演算から次の演算の時間までの間に実際に流れている電流が変わってしまう可能性がある。その時間の間のずれをこの前回パルス幅の第2項目で補正する機能を有している。 但し、この第2項目の補正は、現在のタイミングのすぐ次のタイミングにおいて瞬時には演算結果を反映しないようにしてもよい。例えば、何サイクルか演算して、ノイズ等による影響が無いことを確認してから演算結果を反映するようにしてもよい。 
更に、数9中の第3項目である2RmTsIL(n)/L0に相当する項は、電磁石巻線111には現実には抵抗分があり、その抵抗分により電圧降下を生ずる。このため、その抵抗分による電圧降下を補正する機能を有している。 
なお、数9中の第2項目、第3項目による補正は交流成分に対しては理想的に理論通りに機能する。但し、電磁石インダクタンスの基準値L0や電磁石抵抗Rmは現実的には正確に規定することは難しく、製造上のばらつきや使用環境上等による理論値からの誤差が生じている。 
このため、直流成分に対してはこの誤差がオフセット分として残ってしまう。このような数9中の第2項目、第3項目で補正を行うことにより生ずる直流誤差を数10のように第4項目として積分項を加えることで補正する。 即ち、PWM制御パルス幅の予測制御の誤差により生じる電流の直流誤差を減少するため、予測制御ループとは別に積分補償項を追加する。 
Figure JPOXMLDOC01-appb-M000010
但し、Yi(n)は数11の通りDSP15で演算された電流指令値IRと実際に検出された電磁石電流ILとの間の電流の誤差をKi倍したものを各タイミング毎に蓄積したものである。 
Figure JPOXMLDOC01-appb-M000011
Kiは数12に示す積分係数であり、経験的に定めるものである。ここに、サンプリング時間Tsは例えば40μsであり、周波数fは例えば約1ヘルツ程度である。 
Figure JPOXMLDOC01-appb-M000012
なお、このYi(n)については上限値、下限値を定めクランプする。また、電源電圧Vdは、一定以下とならないようにクランプする。数10で分かるように電源電圧Vdを分母に有する項があるため、発振し制御不能となるのを防止するためである。 
かかる構成において、磁気軸受をDSP15のソフトウェアで制御する。電源電圧VdをADコンバータ17でアナログ/ディジタル変換してDSP15に取り込む。そして、数10のように電源電圧Vdに応じたPWM制御パルス幅を演算し、電磁石111を駆動する。 
例えば電源電圧Vdがモータ121のブレーキ動作により1.2倍になった場合、電源電圧Vdを考慮しないで制御すると同じパルス幅で電流が1.2倍に増えてしまう。そして、制御ループのゲインが上がり磁気軸受制御が不安定になるおそれがある。 
しかしながら、数10で制御すると電圧が上がった分パルス幅の変化を減らすことができ磁気軸受制御が安定する。即ち、電源電圧に応じて電磁石アンプ制御特性を変更することで、安定性の確保が可能である。 
以上により、DC/DCコンバータを省略し、電磁石パワーアンプ7も高電圧の状態で駆動可能である。このため、回路の低コスト化、小型化が図れる。また、回路の故障率を減少できる。更に、制御装置と真空ポンプ一体型の製品の寸法を小型化することができるので、設置スペースの少ない場所にも真空ポンプを採用できる。 
なお、本実施形態はDSP15のソフトウェアで構成するとして説明したが、電子回路にて構成されてもよい。 
次に、DC/DCコンバータ5を省略し、AC/DC主電源3の高電圧をもって電源電圧Vdとした場合の上側ラジアル方向センサ105b、下側ラジアル方向センサ107b、アキシャル方向センサ109bへの影響について考察する。 
これらの変位センサは例えばキャリア周波数が25kHzで駆動されている。ここに、変位センサの変位信号抽出に際しては、変位センサの変位信号を精度高く抽出するため、この変位信号に対してキャリア周波数と周波数を等しくする矩形波の同期検波パルスをもって変調する同期検波方式を採用する。 
しかしながら、この同期検波方式による場合、基本波以外でも3倍波、5倍波・・でも感度を有する。一方
、2倍波、4倍波・・では逆に感度を有しない。本実施形態の電源電圧Vdは高電圧のため、PWM制御によるノイズの発生もその分従来よりも大きいことが想定される。 
そこで、電磁石111のスイッチング周波数を変位センサのキャリア周波数の2倍に同期させることで変位センサに混入するノイズを抑制する。 以上により、DC/DCコンバータ5を省略し、電源電圧Vdが高電圧であった場合でも安定した磁気軸受制御が行える。 
次に、DC/DCコンバータ5を省略し、AC/DC主電源3の高電圧をもって電源電圧Vdとした場合の電磁石電流ILの電流検出への影響について考察する。図2のように、トランジスタ132のアース側に電流検出回路139を配置することで、本実施形態の電源電圧Vdが高電圧であった場合でも電磁石電流ILの電流検出に際して電磁石111の電圧スイングの影響を受け難くできる。 また、この配置により、電流検出回路139に高電圧が掛からず、電流検出回路139に高電圧対策が不要となる。 電磁石111に掛かる電圧スイングによるノイズは検出される電磁石の電流が周期的な波形であるため、正確な電流値を計測する為には、ノイズフィルタ(例えば、ローパス・フィルタ)が使用出来ない。 しかしながら、トランジスタ132のアース側に電流検出回路139を配置することで、ノイズフィルタを使わなくてもノイズの影響を低減することが可能となる。 このため、低コストでノイズの少ない電磁石電流ILが得られる。 
また、このとき電源電圧Vdが高電圧であるため、励磁回路110の電源電圧Vd側のアース21にノイズが重畳すると共に、制御回路137側のアース23にもノイズが重畳しアース間に電位が生じ易い状態になっている。 
そこで、従来のDC/DCコンバータ5を有していたときのように電流検出回路139より抽出した電圧をそのままA/Dコンバータに入力するのではなく、図2の磁気軸受励磁回路における電流検出インターフェース部分を見て分かるように、一旦差動増幅器27にて電流検出回路139より抽出した電圧とアース21の電圧との差をとることにした。 
このことにより、電源電圧Vdが高電圧の場合であっても、ノイズに影響されることなく精度の高い電磁石電流ILが得られる。 また上記説明では、差動増幅器27にて電流検出回路139より抽出した電圧とアース21の電圧との差をとることにしたが、-電源の電圧との差をとることにしても良い。 
なお、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、上述した実施形態及び各変形例は、種々組み合わせることができる。
1 入力電源  3 主電源  5 DC/DCコンバータ  7 電磁石パワーアンプ  9 モータ駆動回路 11 小型補助電源 15 DSP 17 A/Dコンバータ 21、23 アース 27 差動増幅器103 回転体105a 上側ラジアル方向電磁石105b 上側ラジアル方向センサ107a 下側ラジアル方向電磁石107b 下側ラジアル方向センサ109a アキシャル方向電磁石109b アキシャル方向センサ110 励磁回路111 電磁石121 モータ131、132 トランジスタ133 電源135、136 ダイオード137 制御回路139 電流検出回路

Claims (6)

  1. 回転体と、該回転体の半径方向位置又は軸方向位置を検出する位置検出手段と、該半径方向位置又は該軸方向位置を電磁石により制御する磁気軸受手段と、前記電磁石と電源との間を断接するスイッチング素子を含む励磁回路と、前記電磁石を流れる電流を検出する電磁石電流検出手段と、前記電源の電圧を検出する電源電圧検出手段と、前記スイッチング素子をパルス制御するパルス幅をタイミング毎に演算するパルス幅演算手段とを備え、前記パルス幅が、前記電源電圧検出手段で検出された前記電圧及び前記電磁石電流検出手段で検出された前記電流を基に演算されるものであることを特徴とする磁気軸受装置。
  2. 前記電磁石電流検出手段で検出された前記電流の電流値と電流指令値との電流誤差に基づき第1の補正演算がされ、現在の前記パルス幅に基づき第2の補正演算がされ、前記電磁石の抵抗分による電圧降下に基づき第3の補正演算がされ、該第3の補正演算と前記第2の補正演算に含まれている直流分の誤差が積分により補正演算されることを特徴とする請求項1記載の磁気軸受装置。
  3. 前記励磁回路の前記スイッチング素子を断接するスイッチング周波数が前記位置検出手段のキャリア周波数の偶数倍とされたことを特徴とする請求項1又は請求項2記載の磁気軸受装置。
  4. 回転体と、該回転体の半径方向位置又は軸方向位置を検出する位置検出手段と、該半径方向位置又は該軸方向位置を電磁石により制御する磁気軸受手段と、前記電磁石と電源との間を断接するスイッチング素子を含む励磁回路と、前記電磁石を流れる電流を検出する電磁石電流検出手段とを備え、前記電磁石電流検出手段が前記スイッチング素子のアース側に配置されたことを特徴とする磁気軸受装置。
  5. 前記電磁石電流検出手段は、少なくとも抵抗素子と差動増幅器からなり、前記電磁石に流れる電流による前記抵抗素子の電圧降下によって生じる前記抵抗素子両端の電圧を前記差動増幅器に入力し、該差動増幅器の出力電圧に基づいて、前記電磁石に流れる電流を検出することを特徴とする請求項1、2、3又は4記載の磁気軸受装置。
  6. 請求項1~5のいずれか1項に記載の磁気軸受装置を備えたことを特徴とする真空ポンプ。
PCT/JP2014/056054 2013-04-16 2014-03-07 磁気軸受装置、及び該磁気軸受装置を備えた真空ポンプ WO2014171222A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/783,740 US10371159B2 (en) 2013-04-16 2014-03-07 Magnetic bearing device, and vacuum pump having same
KR1020157021129A KR102196603B1 (ko) 2013-04-16 2014-03-07 자기 베어링 장치, 및 상기 자기 베어링 장치를 구비한 진공 펌프
EP14786042.3A EP2988009B1 (en) 2013-04-16 2014-03-07 Magnetic bearing device, and vacuum pump provided with said magnetic bearing device
CN201480020398.3A CN105121875B (zh) 2013-04-16 2014-03-07 磁力轴承装置和具备该磁力轴承装置的真空泵

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-086143 2013-04-16
JP2013086143A JP6144527B2 (ja) 2013-04-16 2013-04-16 磁気軸受装置、及び該磁気軸受装置を備えた真空ポンプ

Publications (1)

Publication Number Publication Date
WO2014171222A1 true WO2014171222A1 (ja) 2014-10-23

Family

ID=51731181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056054 WO2014171222A1 (ja) 2013-04-16 2014-03-07 磁気軸受装置、及び該磁気軸受装置を備えた真空ポンプ

Country Status (6)

Country Link
US (1) US10371159B2 (ja)
EP (1) EP2988009B1 (ja)
JP (1) JP6144527B2 (ja)
KR (1) KR102196603B1 (ja)
CN (1) CN105121875B (ja)
WO (1) WO2014171222A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10495145B2 (en) * 2016-04-22 2019-12-03 Ingersoll-Rand Company Active magnetic bearing controller
KR102573122B1 (ko) * 2017-01-06 2023-08-30 엘지전자 주식회사 압축기 구동장치 및 이를 구비한 칠러
KR102573123B1 (ko) * 2017-01-06 2023-08-30 엘지전자 주식회사 압축기 구동장치 및 이를 구비한 칠러
JP7148230B2 (ja) * 2017-08-31 2022-10-05 エドワーズ株式会社 真空ポンプ及び制御装置
KR102047876B1 (ko) * 2017-10-24 2019-12-02 엘지전자 주식회사 자기 베어링 제어장치, 제어방법 및 이를 이용한 고속회전용 모터
JP7164471B2 (ja) 2019-03-15 2022-11-01 エドワーズ株式会社 制御装置、及び該制御装置を備えた真空ポンプ
WO2020217407A1 (ja) * 2019-04-25 2020-10-29 株式会社島津製作所 真空ポンプ
CN112502960B (zh) * 2021-02-07 2021-04-30 天津飞旋科技有限公司 磁悬浮制冷压缩机自检系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874849A (ja) * 1994-09-06 1996-03-19 Hitachi Ltd 磁気軸受の励磁制御装置
JP2003172354A (ja) * 2001-12-04 2003-06-20 Boc Edwards Technologies Ltd 磁気軸受制御装置
JP2003293980A (ja) 2002-04-01 2003-10-15 Shimadzu Corp 磁気軸受形ターボ分子ポンプ
JP2004286045A (ja) * 2003-03-19 2004-10-14 Boc Edwards Kk 磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置
JP2004301322A (ja) * 2003-03-19 2004-10-28 Boc Edwards Kk 磁気軸受装置及び該磁気軸受装置を搭載したターボ分子ポンプ
JP2007252094A (ja) * 2005-03-30 2007-09-27 Matsushita Electric Ind Co Ltd インバータ装置
JP2010200524A (ja) 2009-02-26 2010-09-09 Meidensha Corp モータ制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274192A (ja) * 1988-09-08 1990-03-14 Toshiba Corp 電力変換装置
US5373457A (en) * 1993-03-29 1994-12-13 Motorola, Inc. Method for deriving a piecewise linear model
US5627421A (en) * 1994-10-28 1997-05-06 Barber-Colman Company High efficiency drive circuit for an active magnetic bearing system
JPH10225167A (ja) * 1997-02-06 1998-08-21 Zexel Corp ブラシレスモータの駆動制御装置
KR20040082954A (ko) 2003-03-19 2004-09-30 비오씨 에드워즈 가부시키가이샤 자기 베어링 장치 및 이 자기 베어링 장치를 탑재한 터보분자 펌프
CN1291545C (zh) 2005-07-08 2006-12-20 北京航空航天大学 一种用于永磁偏置电磁轴承的低纹波开关功率放大器
US7878765B2 (en) * 2005-12-02 2011-02-01 Entegris, Inc. System and method for monitoring operation of a pump
US7835887B2 (en) * 2008-05-12 2010-11-16 Xerox Corporation Determining real-time performance of a sub-assembly driven by a DC motor
KR102020693B1 (ko) * 2012-04-24 2019-09-10 에드워즈 가부시키가이샤 배기 펌프의 퇴적물 검지 장치 및 배기 펌프
JP6077286B2 (ja) * 2012-11-30 2017-02-08 エドワーズ株式会社 電磁回転装置及び該電磁回転装置を備えた真空ポンプ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874849A (ja) * 1994-09-06 1996-03-19 Hitachi Ltd 磁気軸受の励磁制御装置
JP2003172354A (ja) * 2001-12-04 2003-06-20 Boc Edwards Technologies Ltd 磁気軸受制御装置
JP2003293980A (ja) 2002-04-01 2003-10-15 Shimadzu Corp 磁気軸受形ターボ分子ポンプ
JP2004286045A (ja) * 2003-03-19 2004-10-14 Boc Edwards Kk 磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置
JP2004301322A (ja) * 2003-03-19 2004-10-28 Boc Edwards Kk 磁気軸受装置及び該磁気軸受装置を搭載したターボ分子ポンプ
JP2007252094A (ja) * 2005-03-30 2007-09-27 Matsushita Electric Ind Co Ltd インバータ装置
JP2010200524A (ja) 2009-02-26 2010-09-09 Meidensha Corp モータ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2988009A4 *

Also Published As

Publication number Publication date
US10371159B2 (en) 2019-08-06
EP2988009B1 (en) 2021-09-01
JP2014209016A (ja) 2014-11-06
CN105121875B (zh) 2019-06-18
KR20150140630A (ko) 2015-12-16
EP2988009A4 (en) 2017-08-30
US20160252099A1 (en) 2016-09-01
JP6144527B2 (ja) 2017-06-07
CN105121875A (zh) 2015-12-02
EP2988009A1 (en) 2016-02-24
KR102196603B1 (ko) 2020-12-30

Similar Documents

Publication Publication Date Title
JP6144527B2 (ja) 磁気軸受装置、及び該磁気軸受装置を備えた真空ポンプ
JP4746619B2 (ja) 磁気軸受装置および磁気軸受方法
US10619669B2 (en) Magnetic bearing control device and vacuum pump
JP6351400B2 (ja) 改良された能動型磁気軸受制御システム
JP6131602B2 (ja) 磁気軸受装置および真空ポンプ
JP5795980B2 (ja) 電動機制御装置
KR102106659B1 (ko) 전자 회전 장치 및 그 전자 회전 장치를 구비한 진공 펌프
US10968949B2 (en) Magnetic bearing control device and vacuum pump
US20190249677A1 (en) Magnetic levitation control device and vacuum pump
JP4017383B2 (ja) 磁気軸受制御装置
US9850945B2 (en) Position detection device of AMB
JP7164471B2 (ja) 制御装置、及び該制御装置を備えた真空ポンプ
KR102655982B1 (ko) 자기 베어링 제어 장치 및 진공 펌프
JP4059313B2 (ja) 磁気軸受制御装置
Hofer et al. Analysis of a Current Biased Eight-Pole Radial Active Magnetic Bearing Regarding Self-Sensing
JP2006325334A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14786042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157021129

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014786042

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14783740

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE