WO2014169743A1 - 立式空调送风方法 - Google Patents

立式空调送风方法 Download PDF

Info

Publication number
WO2014169743A1
WO2014169743A1 PCT/CN2014/073417 CN2014073417W WO2014169743A1 WO 2014169743 A1 WO2014169743 A1 WO 2014169743A1 CN 2014073417 W CN2014073417 W CN 2014073417W WO 2014169743 A1 WO2014169743 A1 WO 2014169743A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchange
annular
guide body
vertical
Prior art date
Application number
PCT/CN2014/073417
Other languages
English (en)
French (fr)
Inventor
王永涛
付裕
徐荣吉
矫立涛
王晶晶
于世鹏
张明杰
袁俊军
王晓刚
Original Assignee
海尔集团公司
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔集团公司, 青岛海尔空调器有限总公司 filed Critical 海尔集团公司
Priority to EP14785039.0A priority Critical patent/EP2988072B1/en
Publication of WO2014169743A1 publication Critical patent/WO2014169743A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/01Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station in which secondary air is induced by injector action of the primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/005Indoor units, e.g. fan coil units characterised by mounting arrangements mounted on the floor; standing on the floor

Definitions

  • the invention belongs to the technical field of air conditioning, and in particular to a vertical air conditioning air supply method. Background technique
  • the vertical air conditioning duct structure on the existing market generally consists of an air inlet, a centrifugal fan, an evaporator and an air outlet.
  • the indoor air enters the air conditioner from the air inlet, and after centrifugal acceleration by the centrifugal fan, the air is exchanged for heat through the evaporator, and the air after the heat exchange is blown into the room by the air outlet to achieve the purpose of air conditioning.
  • the existing vertical air conditioner can only send out the air after heat exchange by the evaporator, the wind sent out is not soft enough.
  • the air temperature sent by the air conditioner is low, and the cold air with a lower temperature is directly blown to the user, which makes the user, especially the chilly elderly user, feel extremely uncomfortable.
  • the applicant has proposed an air-conditioning air supply device that can be applied to a vertical air conditioner. After the air-conditioning air supply device is installed in the vertical air conditioner, part of the air-conditioned environment can be introduced, and the air-conditioning heat exchange is not directly performed. The non-heat exchanged wind of the device is mixed with the heat exchanged air after the heat exchange to form a mixed air, and then sent out from the air outlet of the air conditioner. Since the air-conditioning air supply device is installed in the vertical air conditioner, the air supply mode of the conventional vertical air conditioner is subverted. For this new air supply method, how to properly configure the heat exchange wind and the non-heat exchange wind to provide users with better use comfort is a key technical problem to be studied. At the same time, how to design the structure of the air-conditioning air supply device to meet the requirements of the air conditioning mode is also one of the technical problems that need to be studied. The present invention has been made in view of the above-mentioned technical problems to be studied.
  • the present invention provides a vertical air conditioning air supply method according to the above problems existing in the prior art, and the air is exchanged at a certain ratio by the heat exchange air inside the air conditioner and the non-heat exchange air outside the air conditioner. It can increase the air intake of the air conditioner, accelerate the indoor air flow, and improve the softness of the air conditioner and improve the user's comfort experience.
  • a vertical air-conditioning air supply method the method is provided with an air-conditioning air supply device in an internal air passage of an air-conditioning main body, wherein the air-sending device includes at least two air-conducting bodies with intermediate through and front and rear openings, each of which is The air guiding body is a single component, the rear opening of the air guiding body is an air inlet, and the front opening is an air outlet.
  • the at least two air guiding bodies are arranged in sequence before and after, and a through air passage is formed in the middle and the front, and two adjacent air passages are adjacent to each other.
  • a heat exchange air duct is formed between the air guiding bodies, and an air inlet of the rear air guiding body at the rear end is a non-heat exchange air inlet of the air blowing device, and an air outlet of the front air guiding body at the front end is a wind outlet a mixing air outlet of the air blowing device, wherein the vertical air conditioner sends heat exchange air exchanged by a heat exchanger in an internal air passage from the heat exchange air duct to the through air duct, and external to the vertical air conditioner Non-heat exchanged air is drawn into the through air passage from the non-heat exchanged air inlet, and the heat exchanged wind and the non-heat exchanged air form a mixed air, and then sent out from the mixed air outlet through the through air duct , the non-heat exchange
  • the flow rate was 0. 05-0. 5 times the flow rate of the air heat exchanger.
  • the flow rate of the heat exchange air is 0. 15-0. 35 times.
  • the air guiding body is an annular air guiding body
  • the heat exchange air channel is an annular heat exchange air channel.
  • the annular air guiding body is at least partially tapered from the rear to the front.
  • the annular air guiding body is a sheet-like structure, and the plurality of the annular air guiding bodies are arranged in sequence before and after, forming a telescopic cylindrical structure.
  • the radial cross-sectional contour of the annular air guiding body is a curve of a variable radius of curvature.
  • the front air guiding body is a front end annular air guiding body.
  • the minimum inner diameter of the front end annular air guiding body is smaller than the minimum inner diameter of all other annular air guiding bodies.
  • the minimum inner diameter of the front end annular air guide body is not less than 0.95 times the minimum inner diameter of all other annular air guiding bodies.
  • the air blowing device comprises four annular air guiding bodies.
  • the vertical air conditioning air supply method as described above in order to effectively guide the wind direction, among the four annular air guiding bodies
  • the inner diameter of the front end annular air guiding body is gradually tapered and gradually expanded from the air inlet to the air outlet thereof, and the neck having the smallest inner diameter is formed in the middle, and the tapered portion of the front end annular air guiding body is adjacent to the annular ring.
  • An annular heat exchange air duct is formed between the air guiding bodies, and the inner diameters of the other three annular air guiding bodies except the front end annular air guiding body are tapered from the air inlet to the air outlet.
  • the air blowing method of the present invention can also be implemented by the following technical solution: a vertical air conditioning air supply method, wherein the method provides an air conditioning air supply device in an internal air passage of the air conditioning body, and the sending
  • the wind device comprises a first air guiding body and a second air guiding body, wherein the first air guiding body is continuous in the middle and has a front and rear opening, the front opening of the first air guiding body is a mixed air outlet, and the rear opening of the first air guiding body is The air inlet, the second air guiding body is continuous in the middle, has a front and rear opening, the front opening of the second air guiding body is an air outlet, the rear opening of the second air guiding body is a non-heat exchange air inlet, the first air guiding body and the second
  • the air guiding body is arranged in sequence before and after, and a through air passage penetrating through the front and the middle is formed in the middle, and a heat exchange air duct is formed between the first air
  • the air-conditioning air blowing device has a first air guiding body and a second air guiding body.
  • the first air guiding body and the second air guiding body are both annular air guiding bodies, and the heat exchange air duct is an annular heat exchange air duct.
  • the first air guiding body is at least partially tapered from the rear to the front
  • the second air guiding body is at least partially tapered from the rear to the front.
  • the first air guiding body and the second air guiding body are arranged in sequence before and after, forming a jacketed cylinder, and the radial cross-sectional contours of the first air guiding body and the second air guiding body are both A curve that changes the radius of curvature.
  • the advantages and positive effects of the present invention are: using the air-conditioning air supply method of the present invention, the negative pressure suction and heat exchange generated by the heat exchange air flow while the heat exchange air inside the air conditioner is sent out
  • the flow rate of the wind is a non-heat exchanged wind outside the air conditioner of a specific proportion, and the two parts of the wind form a mixed air and are simultaneously sent out.
  • the temperature of the mixed air conforms to the temperature required for the body to feel comfortable, and the user feels more comfortable and improves when it is blown to the user. User comfort experience.
  • the air that is not heat exchanged in the suction part is taken into the final air supply of the air conditioner by the negative pressure generated by the air blowing device, thereby increasing the overall air intake of the air conditioner, accelerating the flow of the indoor air, and further improving the indoor air. Overall uniformity.
  • Figure 1 is a front elevational view showing an embodiment of a vertical air conditioner to which the air supply method of the present invention is applied;
  • Figure 2 is a partial side cross-sectional structural view of the vertical air conditioner of Figure 1;
  • FIG 3 is a perspective view of the air conditioning air supply device of the vertical air conditioner of Figure 1;
  • Figure 4 and Figure 5 are schematic views of the radial cross-sectional structure of the air-conditioning air supply device of Figure 3;
  • Figure 6 is a side cross-sectional structural view showing another embodiment of a vertical air conditioner to which the air supply method of the present invention is applied;
  • Figure 7 is a schematic cross-sectional structural view of the air-conditioning air supply device of the vertical air conditioner of Figure 6.
  • the technical solutions of the present invention are further described in detail below with reference to the accompanying drawings and specific embodiments.
  • the following refers to the position of the structural member relative to the user in the normal use state before or after the reference to each structural member.
  • the following heat exchange wind refers to the wind from the inside of the air conditioner and after heat exchange by the heat exchanger; the non-heat exchange wind refers to the wind from the environmental space where the air conditioner is located, and is not directly derived from the heat exchange wind.
  • Partial wind of the heat exchanger; mixed wind refers to the wind formed by the combination of heat exchange wind and non-heat exchange wind.
  • the ring below refers to the formation of the surrounding Closed structure is not limited to rings.
  • Fig. 1 is a front elevational view showing an embodiment of a vertical air conditioner to which the air supply method of the present invention is applied
  • Fig. 2 is a partial side sectional structural view showing the vertical air conditioner.
  • the vertical air conditioner of this embodiment includes an indoor unit including a front panel 2, a rear panel 3, a left side panel, a right side panel, and a top panel and a bottom panel constituting an air conditioner housing. (not shown), the housing defines the internal air duct 4 of the air conditioner.
  • a mixed air outlet 21 is opened in the upper portion of the front panel 2
  • a non-heat exchange air inlet 31 is opened at an upper portion of the rear panel 3 at a position corresponding to the mixed air outlet 21 on the front panel 2.
  • a fan 5, a heat exchanger 6, and an air-conditioning air supply device 1 are disposed in the inner duct 4 from the bottom up, and the fan 5 is disposed such that the wind in the air-conditioning internal duct 4 is blown out from the mixed air outlet 21 on the front panel 2. .
  • the structure of the air-conditioning air supply device 1 is shown in Fig. 3 to Fig. 5.
  • the air-conditioning air supply device 1 includes four annular air guiding bodies, which are respectively front and rear annular wind guides.
  • the four annular air guiding bodies are all in a sheet-like structure, which are arranged in sequence in front and rear to form a telescopic cylindrical structure.
  • Each of the four annular air guiding bodies arranged in sequence is a single component and is independently formed.
  • the front end annular air guiding body 11 is located at the foremost end, and has two front and rear openings, respectively being a mixed air outlet 111 and an air inlet 112.
  • the first intermediate annular air guiding body 13 is continuous in the middle and has two openings at the front and the rear, respectively It is an air outlet 131 and an air inlet 132;
  • the first intermediate annular air guiding body 14 is continuous in the middle, and has two front and rear openings, respectively an air outlet 141 and an air inlet 142; and a rear end annular air guiding body 12 at the last end penetrates through
  • the front and rear two openings are an air outlet 121 and a non-heat exchange air inlet 122, respectively.
  • the front end annular air guiding body 11, the first intermediate annular air guiding body 13, the second intermediate annular air guiding body 14, and the rear end annular air guiding body 12 are arranged one behind the other, and the middle and the middle of the four annular air guiding bodies are formed in the middle and the front. Wind tunnel 18.
  • a first annular heat exchange air duct 15 is formed between the front end annular air guiding body 11 and the first intermediate annular air guiding body 13, and between the first intermediate annular air guiding body 13 and the second intermediate annular air guiding body 14 Forming a second annular heat exchange air duct 16, the second intermediate annular air guiding body 14 and A third annular heat exchange air duct 17 is formed between the rear annular air guiding bodies 12, and the internal air ducts 4 in the indoor unit will pass through the three annular heat exchange air ducts and the through air in the air conditioning air blowing device 1.
  • Road 18 is connected.
  • the air outlet 111 of the front end annular air deflector 11 serves as an air outlet of the entire air-conditioning air blower 1, and is closed and assembled with the air outlet 21 of the front panel 2.
  • the non-heat exchange air inlet 122 in the rear annular air guiding body 12 serves as a non-heat exchange air inlet of the entire air conditioning air supply device 1, and will be closedly assembled with the non-heat exchange air inlet 31 on the rear plate 3.
  • the air-conditioning air blower 1 is provided with the air blowing method of the vertical air conditioner of the present embodiment.
  • the indoor air enters the air conditioner, and under the action of the blower 5, the air blows to the heat exchanger 6 to perform heat exchange.
  • the heat exchanged air after the heat exchange is blown from the internal air duct 4 to the air-conditioning air supply device 1, and passes through the first annular heat exchange air duct 15, the second annular heat exchange air duct 16, and the third annular heat exchange air duct 17 enters the through air duct 18, and is blown out from the mixed air outlet 111 on the front end annular air guiding body 11 and the mixed air outlet 21 on the front panel 2 via the through air duct 18.
  • the surface pressure of the corresponding annular air deflector is reduced to form a negative pressure in the through air duct 18, and the indoor air outside the air conditioner is used as the non-heat exchange wind.
  • the non-heat exchanged air inlet 31 on the back plate 3 and the non-heat exchanged air inlet 122 of the rear annular air guide body 12 enter the through air duct 18, and exchange heat exchange with the annular air duct.
  • the blown heat exchanged air forms a mixed air and is sent to the room together. 5 ⁇
  • the heat exchange air flow from the non-heat exchanged air inlets of the air is 0. 05-0. 5 times. 5 ⁇
  • the flow rate of the non-heat exchanged air is 0. 15-0. 35 times.
  • the mixed air sent by the method is softer, and it is more comfortable to be blown to the user, which can improve the user's comfort experience.
  • the air that is not heat-exchanged in the suction part is taken into the final air outlet of the air conditioner by the negative pressure generated by the air blowing device 1, which increases the overall air intake of the air conditioner, accelerates the flow of the indoor air, and further improves the flow.
  • the overall uniformity of the indoor air is softer, and it is more comfortable to be blown to the user, which can improve the user's comfort experience.
  • the air guiding capability of the heat exchange air so that The mixed wind is uniformly sent along the surface of the annular air guiding body, and the surfaces of the four annular air guiding bodies are all curved surfaces. That is, the radial cross-sectional contour of the annular air guiding body is a curve, and is preferably a curve of a variable radius of curvature. Moreover, in the four annular air guiding bodies of the vertical air conditioner of the embodiment, the inner diameter of the front end annular air guiding body 11 is gradually tapered from the air inlet 112 to the air outlet thereof, that is, the direction of the mixed air outlet 111.
  • the tapered portion 113 and the diverging portion 114 are formed.
  • the transition between the tapered portion 113 and the diverging portion 114 is the neck portion 115 of the front end annular air guiding body 11, and the neck portion 115 is the inner diameter of the front end annular air guiding body 11.
  • the inner diameter of the air inlet 112 of the front end annular air deflector 11 is also larger than the inner diameter of the mixed air outlet 111 as the air outlet.
  • the first heat exchange air duct 15 is formed by the tapered portion 113 of the front end annular air guiding body 11 and the adjacent first intermediate annular air guiding body 13.
  • the inner diameters of the first intermediate annular air guiding body 13, the second intermediate annular air guiding body 14, and the rear annular air guiding body 12 are tapered from the air inlet to the air outlet. That is, the inner diameter of the air inlet 132 is larger than the inner diameter of the air outlet 131, the inner diameter of the air inlet 142 is larger than the inner diameter of the air outlet 141, and the inner diameter of the non-heat exchange air inlet 122 is larger than the inner diameter of the air outlet 121.
  • the annular air guiding body with such a structure can effectively guide the airflow to flow forward along the surface of the annular air guiding body, thereby facilitating the improvement of the air supply volume and the improvement of the uniformity of the air supply.
  • the inner diameter of the neck portion 115 of the front end annular air guiding body 11 serves as the minimum inner diameter of the entire front end annular air guiding body 11, which is smaller than the minimum inner diameter of the remaining three annular air guiding bodies. That is, the inner diameter of the neck portion 115 is smaller than the minimum value of the inner diameter of the air outlets of the remaining three annular air guiding bodies.
  • the inner diameter referred to above refers to the inner circumference of the inner wall of the circular wind guide.
  • the air-conditioning air supply device 1 Since the minimum inner diameter of the air-conditioning air supply device 1 is located on the front end annular air guiding body 11, and the front end annular air guiding body 11 is located at the foremost end of the air-conditioning air supply device 1, the air-conditioning air supply device 1 is assembled to the air-conditioning indoor unit.
  • the user In the middle view, as shown in the front view of FIG. 1, the user can only see the diverging portion 114 and the neck portion 115 of the front end annular air guiding body 11 from the front surface of the indoor unit, and the remaining structures are not visible, and the appearance is good. , improve the user's visual experience. Therefore, it can be flexibly and arbitrarily set according to actual needs.
  • the flared portion 114 of the end annular air deflector 11 and other configurations of the air-conditioning air blower 1 other than the neck portion 115 improve the overall air blowing performance of the air-conditioning air blower 1.
  • the air-conditioning air supply device 1 can be configured to have four annular air guiding bodies to reduce the gap between adjacent annular air guiding bodies, that is, to narrow the annular heat exchange air ducts, thereby improving When the air exchange speed of the air is exchanged, the negative pressure generated in the through air passage can be increased, so that more non-heat exchange air can be introduced in the case of low noise, the overall air supply volume can be increased, and the air conditioning can be improved.
  • the air supply device 1 has uniform air supply in the circumferential direction.
  • the inner diameter of the neck 115 is too small, the wind will be affected.
  • the inner diameter of the neck 115 is smaller than the minimum inner diameter of the other three annular air guiding bodies, it is not less than the remaining three rings. 95 ⁇ The minimum inner diameter of the air deflector is 0.95 times.
  • the inner diameter of the air outlets of the other three annular air guiding bodies except the front end annular air guiding body 11 The tape is tapered in the direction of the rear annular wind guide body 12 to the front end annular air guiding body 11. That is, the inner diameter of the air outlet 141 of the second intermediate annular air guiding body 14 is smaller than the inner diameter of the air outlet 121 of the rear annular air guiding body 12, and the inner diameter of the air outlet 131 of the first intermediate annular air guiding body 13 is smaller than The inner diameter of the air outlet 141 of the second intermediate annular air guiding body 14. Further, it is preferable that the inner diameter of the three air outlets is tapered by a reduction ratio of 2-5% in consideration of the fact that the tapered ratio excessively obstructs the flow of the airflow.
  • the air-conditioning air blower 1 capable of forming the mixed air by the heat exchange air exchanged by the heat exchanger 6 and the external non-heat exchanged air
  • the structure of the annular heat exchange air duct reduces the wind resistance and reduces the pressure loss. It is important to reduce the noise, which in turn affects the air volume of the external non-heat exchanged air taken in by the air-conditioning air supply device 1 and the temperature of the mixed air outlet, and the structure of the heat exchange air duct mainly depends on the formation of the air passage.
  • the structure of each annular heat exchange air duct is as follows:
  • the air duct has an air outlet end 152 which is close to the through air duct of the air conditioner air blower 1 and is far away from the through air duct.
  • the first annular heat exchange air duct 15 tapers from its air inlet end 151 to its air outlet end 152.
  • the first annular heat exchange air duct 15 formed by the intermediate annular air guiding body 13 has an inscribed circle between the surface of the plurality of tapered portions 113 and the surface of the first intermediate annular air guiding body 13, such as an inscribed circle 153.
  • the diameter of these inscribed circles is gradually reduced in the direction from the air inlet end 151 to the air outlet end 152. That is, as shown in FIG. 5, the inscribed circles 153, 154, 155, and 156 are inscribed circles drawn from the air inlet end 151 toward the air outlet end 152 in turn, and the diameter D1 of the inscribed circle 153, the inscribed circle
  • the diameter D2 of 154, the diameter D3 of the inscribed circle 155, and the diameter D4 of the inscribed circle 156 satisfy the following relationship: D1>D2>D3>D4.
  • the air inlet end 151 is a direction in which the air blowing direction in the up and down direction is changed, and the air blowing direction in the air outlet end 152 is small, and the diameter of each inscribed circle is tapered.
  • the ratio is preferably non-equalized, and the reduction in the diameter of the inscribed circle near the inlet end 151 is greater than the reduction in the diameter of the inscribed circle near the outlet end 152.
  • the inscribed circle 153 is the inscribed end of the inlet end 151
  • the inscribed circle 154 is the inscribed circle immediately adjacent the inscribed circle 153
  • the inscribed circle 156 is the outlet end at the outlet end 152
  • the inscribed circle, the inscribed circle 155 is an inscribed circle immediately adjacent to the inscribed circle 156, and the following relationship is satisfied between D1, D2, D3, and D4: (1-D2/D1) > (1-D4/D3).
  • the second annular heat exchange air duct 16 and the third annular heat exchange air duct 17 are also disposed in accordance with the above conditions of the first annular heat exchange air duct 15.
  • the air-exchange air supply device 1 adopts the heat exchange air duct of the above structure, which not only facilitates the uniformity of the air in the circumferential direction of the heat exchange air duct, but also changes the direction of the heat exchange wind, so that the heat exchange wind and the non-heat exchange wind are both.
  • the blowing along the surface of each of the annular air guiding bodies effectively avoids the occurrence of problems such as a decrease in wind speed, noise, and condensation due to the collision of the two portions of the wind at the surface of the annular air guiding body in the through air passage.
  • FIG. 6 and 7 show another embodiment of a vertical air conditioner to which the air blowing method of the present invention is applied, wherein Fig. 6 is a side sectional structural view of the embodiment, and Fig. 7 is an air conditioning air blowing device of the embodiment. Schematic diagram of the radial section structure.
  • the basic structure of the vertical air conditioner of this embodiment is similar to that of the embodiment of Figs. 1 to 5, except that the structure of the air conditioning air blowing device is different.
  • the upper portion of the vertical air conditioner of this embodiment is provided with an air-conditioning air blowing device 7.
  • the air-conditioning air supply device 7 includes two annular air guiding bodies, which are a first air guiding body 71 and a second air guiding body 72, respectively.
  • the first annular air guiding body 71 is continuous in the middle and has two openings at the front and the rear, respectively It is a mixed air outlet 711 as a front opening and an air inlet 712 as a rear opening;
  • the second annular air guiding body 72 is continuous in the middle and has two front and rear openings, respectively, an air outlet 721 as a front opening and a non-heating as a rear opening.
  • the two annular air guiding bodies are all in a sheet-like structure, which are arranged in sequence in front and rear to form a telescopic cylindrical structure, and a through air passage 74 which penetrates the two annular air guiding bodies before and after is formed in the middle.
  • the first annular air guiding body 71 and the second annular air guiding body 72 are each a single component and are independently formed.
  • An annular heat exchange air duct 73 is formed between the first annular air guiding body 71 and the second annular air guiding body 72.
  • the internal duct (shown in Fig. 2) in the indoor unit communicates with the through duct 74 in the air-conditioning blower 7 through the annular heat exchange duct 73.
  • the mixed air is evenly sent along the surface of the annular air guiding body, the first annular air guiding
  • the surfaces of the body 71 and the second annular air guiding body 72 are both curved surfaces. That is, the radial profile of the two annular air guides is a curve, and preferably a curve of a variable radius of curvature. Moreover, as shown in FIG.
  • the inner diameter of the first annular air guiding body 71 is gradually tapered from the air inlet 712 to the direction of its mixed air outlet 711, and the inner diameter of the second annular air guiding body 72 is The air inlet 722 and its air outlet 721 are tapered to form a preferred structure for facilitating air guiding.
  • the air-conditioning air supply device 7 based on the above structure is similar to the embodiment of Fig. 1 in the air supply method of the vertical air conditioner of the embodiment, and is simply as follows:
  • the indoor air enters the interior of the air conditioner, and under the action of the fan, the heat is blown to the heat exchanger for heat exchange.
  • the heat exchanged air after the heat exchange is blown from the internal air passage to the air-conditioning air supply device 7, and enters the through air duct 74 via the annular heat exchange air duct 73, and then passes through the air passage 74 from the first annular air guiding body 71.
  • the mixed air outlet 71 1 and the mixed air outlet on the front panel are blown out.
  • a negative pressure is formed in the through air duct 74, and the indoor air outside the air conditioner is used as the non-heat exchange air, and the non-heat exchange air inlet and the second annular air guide body 72 from the back panel are under the action of the negative pressure.
  • the non-heat exchanged air inlet 722 enters the through duct 74 and is mixed with the heat exchange air blown by the annular heat exchange duct 73 to be sent to the room. 5 ⁇
  • the flow rate of the heat exchanged air flow is 0. 05-0. 5 times.
  • non-heat exchanged wind 5 ⁇ The flow rate is 0. 15-0. 35 times.
  • the mixed air sent by the method is softer, and it is more comfortable to be blown to the user, which can improve the user's comfort experience.
  • the air that is not heat exchanged in the suction part is taken into the final air outlet of the air conditioner by the negative pressure generated by the air blowing device 7, which increases the overall air intake of the air conditioner, accelerates the flow of the indoor air, and further improves the airflow.
  • the overall uniformity of the indoor air is softer, and it is more comfortable to be blown to the user, which can improve the user's comfort experience.
  • the flow rate of the heat exchange air and the flow rate of the non-heat exchange wind can be detected by the air volume test, and the heat can be detected by the temperature detection. Exchange the temperature of the wind and the temperature of the mixed air.
  • the specific detection process can be carried out by the following methods:
  • the mixed air outlet 111 of the air-conditioning air blower 1 or the mixed air outlet 711 of the air-conditioning air blower 7 is connected to the air volume test receiving chamber through a connecting pipe, and the air flow blown from the mixed air outlet is detected by the receiving chamber.
  • the specific detection process can be performed according to relevant detection standards, which is a prior art and will not be specifically described herein. It should be noted that if the non-heat exchanged air inlet 31 at the back panel 3 of the air conditioner is sealed by a baffle, the amount of air blown from the mixed air outlet will be the flow rate of all the heat exchanged air, which is defined as the heat exchange wind.
  • the air-conditioning air supply device will drive the non-heat exchange air outside the air conditioner to be blown out from the mixed air outlet, that is, the air volume blown by the mixed air outlet will be heat exchange air and non-heat exchange.
  • the total amount of wind is defined as the total air volume.
  • the heat exchange air volume and total air volume are easily obtained through the receiving chamber.
  • the difference between the total air volume obtained under the same conditions and the amount of heat exchanged air is the flow rate of the non-heat exchanged air sucked under the negative pressure, which is defined as the amount of non-heat exchanged wind.
  • the same conditions as mentioned here refer to the detection conditions in which the same air conditioner is used in the same vertical air conditioner and the motor operates at the same speed.
  • Air supply test test example 1
  • the front and rear depth of the air-conditioning air supply unit is 400 ⁇ (the thickness of the upper part of the air-conditioning housing is also 400), Adjusted to 3 machines (7200W) o
  • the heat exchange air volume, the total air volume, and the non-heat exchange air volume are 1053 m7h, 1274 m7h, and 221 m 3 /h, respectively, and the non-heat exchanged air volume is 0. 21 of the heat exchange wind volume at a fan motor speed of 550 rpm. Times.
  • the heat exchange air volume, total air volume and non-heat exchange air volume are 982m 3 /h, 1178m7h and 196m 3 /h respectively, and the non-heat exchanged wind volume is the heat exchange wind volume. 0. 20 times.
  • the heat exchange air volume, the total air volume, and the non-heat exchange air volume are 928 m7h, 1104 m7h, and 176 m 3 /h, respectively, and the non-heat exchange air volume is 0. 19 Times.
  • the room temperature is about 27 ° C
  • the detected heat exchange air temperature is about 13 ° C
  • the mixed air temperature is about 19. 5 ° C
  • the mixed air temperature is more in line with the human body temperature comfort. Requirements.
  • the front and rear depth of the air-conditioning air supply unit is 400 ⁇ (the thickness of the upper part of the air-conditioning housing is also 400), and the air-conditioning is 2 (5000W).
  • the amount of heat exchange air volume, total air volume and non-heat exchange air volume are 982m7h, 1178m 3 /h, 196m 3 /h, respectively.
  • the non-heat exchanged air volume is the heat exchange air volume. 0. 20 times.
  • the heat exchange air volume, the total air volume, and the non-heat exchange air volume are 928 m7h, 1104 m7h, and 176 m 3 /h, respectively, and the non-heat exchange air volume is 0. 19 Times.
  • the heat exchange air volume, the total air volume, and the non-heat exchange air volume are 864m7h, 1016m7h, and 152m 3 /h, respectively, and the non-heat exchange air volume is 0. 18 Times.
  • the room temperature is around 26 ° C
  • the detected heat exchange temperature is 13 Around °C
  • the mixed air temperature is about 19 °C
  • the temperature of the mixed air is more in line with the requirements of human body temperature comfort.
  • Air supply test test example three Air supply test test example three:
  • the front and rear depth of the air-conditioning air supply unit is 260mm (the thickness of the upper part of the air-conditioning housing is also 260mm), and the air-conditioning is 3 machines (7200W) o
  • the heat exchange air volume, the total air volume, and the non-heat exchange air volume are 1005m7h, 1331m7h, and 326m 3 /h, respectively, and the non-heat exchange air volume is 0.32 of the heat exchange air volume. Times.
  • the amount of heat exchange air volume, total air volume and non-heat exchange air volume are 951m7h, 1236m 3 /h, 285m 3 /h, respectively.
  • the non-heat exchanged wind volume is the heat exchange air volume. 0. 30 times.
  • the heat exchange air volume is 0.29m7h, 1158m7h, 260m 3 /h, and the non-heat exchange air volume is 0. 29 Times.
  • the room temperature is about 30 °C
  • the detected heat exchange air temperature is about 14 °C
  • the mixed air temperature is about 20 °C.
  • the temperature of the mixed air is more in line with the requirements of human body temperature and temperature comfort. .
  • the front and rear depth of the air-conditioning air supply unit is 260mm (the thickness of the upper part of the air-conditioning housing is also 260mm), and the air-conditioning is 2 machine (5000W).
  • the amount of heat exchange air volume, total air volume and non-heat exchange air volume are 951m7h, 1236m 3 /h, 285m 3 /h, respectively.
  • the non-heat exchanged wind volume is the heat exchange air volume. 0. 30 times.
  • the heat exchange air volume is 0.29m7h, 1158m7h, 260m 3 /h, and the non-heat exchange air volume is 0. 29 Times.
  • the amount of heat exchange air volume, total air volume and non-heat exchange air volume are 836m7h, 1070m 3 /h, 234m 3 /h, respectively.
  • the non-heat exchange air volume is the heat exchange air volume. 0. 28 times.
  • the room temperature is about 30 °C
  • the detected heat exchange air temperature is about 14 °C
  • the mixed air temperature is about 20 °C.
  • the temperature of the mixed air is more in line with the requirements of human body temperature and temperature comfort. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Duct Arrangements (AREA)

Abstract

一种立式空调送风方法,所述方法在空调本体的内部风道中设置空调送风装置,所述立式空调将内部风道中经热交换器交换后的热交换风从所述热交换风风道送至所述贯通风道,将立式空调外部的非热交换风从所述非热交换风进口吸入至所述贯通风道,所述热交换风与所述非热交换风形成混合风后一起经所述贯通风道从所述混合风出口送出,所述非热交换风的流量是所述热交换风流量的0.05−0.5倍。通过将空调内部的热交换风及空调外部的非热交换风按照一定的比例混合形成混合风同时送出,不仅可以增大空调的进风量、加速室内空气流动,而且能够提高空调出风的柔和性,改善用户舒适性体验效果。

Description

立式空调送风方法 技术领域
本发明属于空气调节技术领域,具体地说,是涉及一种立式空调送风方法。 背景技术
现有市场上的立式空调风道结构一般都由进风口、 离心风机、 蒸发器和出 风口组成。 室内空气从进风口进入空调内部, 经过离心风机离心加速后, 空气 经过蒸发器进行热交换, 热交换后的空气再由出风口吹向室内, 实现空调送风 的目的。 由于现有立式空调仅能将经蒸发器热交换后的空气送出来, 送出的风 不够柔和。 尤其是在制冷模式下, 空调所送出的风温度较低, 这种温度较低的 凉风直接吹到用户身上, 会使得用户、 尤其是畏寒的老人用户感觉极不舒适。
本申请人曾提出了一种可以应用在立式空调上的空调送风装置, 在立式空 调中设置该空调送风装置后, 可以引入部分来自空调所处环境空间、 不直接经 过空调热交换器的非热交换风, 该部分非热交换风与热交换后的热交换风混合 形成混合风后从空调出风口送出。 由于在立式空调中设置这种空调送风装置之 后, 颠覆了传统立式空调的送风方式。 对于这种新的送风方式, 如何对热交换 风与非热交换风进行合理的配置, 以便为用户提供较佳的使用舒适性, 是需要 研究的一个关键技术问题。 同时, 如何设计空调送风装置的结构, 使其满足空 调新的送风方式的要求, 也是需要研究的技术问题之一。 而本发明正是针对上 述这些要研究的技术问题而进行的。
发明内容
本发明针对现有技术存在的上述问题而提供了一种立式空调送风方法, 通 过将空调内部的热交换风及空调外部的非热交换风按照一定的比例混合形成混 合风同时送出, 不仅可以增大空调的进风量、 加速室内空气流动, 而且能够提 高空调出风的柔和性, 改善用户舒适性体验效果。
为实现上述发明目的, 本发明采用下述技术方案予以实现: 一种立式空调送风方法, 所述方法在空调本体的内部风道中设置空调送风 装置, 所述送风装置包括有至少两个中间贯通、 具有前后开口的导风体, 每一 所述导风体为单体部件, 所述导风体的后开口为进风口、 前开口为出风口, 所 述至少两个导风体前后依次排列、 中间形成前后贯通的贯通风道, 相邻两所述 导风体之间形成热交换风风道, 位于后端的后端导风体的进风口为所述送风装 置的非热交换风进口, 位于前端的前端导风体的出风口为所述送风装置的混合 风出口, 所述立式空调将内部风道中经热交换器交换后的热交换风从所述热交 换风风道送至所述贯通风道, 将立式空调外部的非热交换风从所述非热交换风 进口吸入至所述贯通风道, 所述热交换风与所述非热交换风形成混合风后一起 经所述贯通风道从所述混合风出口送出, 所述非热交换风的流量是所述热交换 风流量的 0. 05-0. 5倍。
优选的, 所述非热交换风的流量是所述热交换风流量的 0. 15-0. 35倍。 优选的, 所述导风体为环形导风体, 所述热交换风风道为环形热交换风风 道。
优选的, 所述环形导风体至少部分从后向前渐缩。
优选的,所述环形导风体为片状结构,多个所述环形导风体前后依次排列, 形成套叠筒型结构。
优选的, 所述环形导风体的径向剖面轮廓线为变曲率半径的曲线。
如上所述的立式空调送风方法, 为方便灵活设置其他环形导风体的数量及 结构来提高送风风量、 送风速度及送风均匀性, 所述前端导风体为前端环形导 风体, 所述前端环形导风体的最小内口径小于其他所有环形导风体的最小内口 径。
优选的, 所述前端环形导风体的最小内口径不小于其他所有环形导风体中 最小内口径的 0. 95倍。
优选的, 所述送风装置包括有四个所述环形导风体。
如上所述的立式空调送风方法, 为有效引导风向, 四个所述环形导风体中 的前端环形导风体的内口径从其进风口至其出风口先渐缩再渐扩, 中间形成内 口径最小的颈部, 所述前端环形导风体内口径渐缩的部分与其相邻的环形导风 体之间形成环形热交换风风道, 除所述前端环形导风体之外的其他三个环形导 风体的内口径从进风口至出风口渐缩。
为实现前述发明目的, 本发明的送风方法还可采用下述技术方案来实现: 一种立式空调送风方法, 所述方法在空调本体的内部风道中设置空调送风 装置, 所述送风装置包括有第一导风体和第二导风体, 第一导风体中间贯通、 具有前后开口, 第一导风体的前开口为混合风出口, 第一导风体的后开口为进 风口, 第二导风体中间贯通、 具有前后开口, 第二导风体的前开口为出风口, 第二导风体的后开口为非热交换风进口, 第一导风体和第二导风体前后依次排 列、 中间形成前后贯通的贯通风道, 第一导风体和第二导风体之间形成热交换 风风道, 所述立式空调将内部风道中经热交换器交换后的热交换风从所述热交 换风风道送至所述贯通风道, 将立式空调外部的非热交换风从所述非热交换风 进口吸入至所述贯通风道, 所述热交换风与所述非热交换风形成混合风后一起 经所述贯通风道从所述混合风出口送出, 所述非热交换风的流量是所述热交换 风流量的 0. 05-0. 5倍。
优选的, 所述非热交换风的流量是所述热交换风流量的 0. 15-0. 35倍。 优选的, 所述空调送风装置具有第一导风体和第二导风体。
优选的, 所述第一导风体和所述第二导风体均为环形导风体, 所述热交换 风风道为环形热交换风风道。
优选的, 所述第一导风导风体至少部分从后向前渐缩, 所述第二导风体至 少部分从后向前渐缩。
更优选的, 所述第一导风体和所述第二导风体前后依次排列, 形成套叠筒 优选的, 第一导风体和所述第二导风体的径向剖面轮廓线均为变曲率半径 的曲线。 与现有技术相比, 本发明的优点和积极效果是: 采用本发明的空调送风方 法, 在将空调内部的热交换风送出的同时, 利用热交换风流动产生的负压吸入 与热交换风的流量呈特定比例的空调外部的非热交换风, 将两部分风形成混合 风同时送出, 这样的混合风的温度符合人体体感舒适所需的温度, 吹到用户身 上会感觉更加舒适, 提高了用户舒适性体验效果。 同时, 利用送风装置所产生 的负压作用吸入部分外部未热交换的风参与到空调最后的送风中, 增大了空调 的整体进风量,加快了室内空气的流动,进一步提高了室内空气的整体均匀性。
结合附图阅读本发明的具体实施方式后, 本发明的其他特点和优点将变得 更加清楚。
附图说明:
图 1是应用本发明送风方法的立式空调一个实施例的主视图;
图 2是图 1立式空调的局部侧剖结构示意图;
图 3是图 1立式空调中空调送风装置的立体图;
图 4和图 5均是图 3空调送风装置的径向剖面结构示意图;
图 6 是应用本发明送风方法的立式空调另一个实施例的侧剖结构示意图 图;
图 7是图 6立式空调中空调送风装置的径向剖面结构示意图。
具体实施方式:
下面结合附图和具体实施方式对本发明的技术方案作进一步详细的说明。 首先, 对该具体实施方式中所涉及到的技术术语作一简要说明: 下述在提 到每个结构件的前或后时, 是以结构件正常使用状态下相对于使用者的位置来 定义的; 对于多个结构件的排列位置进行前或后的描述时, 也是以多个结构件 构成的装置在正常使用状态下相对于使用者的位置所做的定义。 下述的热交换 风是指来自空调内部、 经热交换器热交换后的风; 非热交换风是指来自空调所 处环境空间的风,是相对于热交换风而言、不是直接来自于热交换器的部分风; 混合风是指热交换风与非热交换风混合形成的风。 下述的环, 是指环绕形成的 封闭结构, 并不局限于圆环。
请参考图 1和图 2, 该图 1所示为应用本发明送风方法的立式空调一个实 施例的主视图, 图 2是立式空调的局部侧剖结构示意图。
如图 1及图 2所示意, 该实施例的立式空调包括有室内机, 室内机包括有 构成空调壳体的前面板 2、 后背板 3、左侧面板、 右侧面板及顶板和底板(图中 未标注), 壳体限定了空调的内部风道 4。在前面板 2的上部开设有混合风出口 21,在后背板 3上部、与前面板 2上的混合风出口 21相对应的位置处开设有非 热交换风进口 31。 在内部风道 4中自下而上设置有风机 5、 热交换器 6和空调 送风装置 1, 且风机 5的设置使得空调内部风道 4中的风从前面板 2上的混合 风出口 21吹出。
其中, 空调送风装置 1的结构请参考图 3至图 5所示。
如图 3的立体图和图 4的径向剖面结构示意图所示意, 同时结合图 1和图 2所示意, 空调送风装置 1包括有四个环形导风体, 从前往后分别为前端环形 导风体 11、 第一中间环形导风体 13、 第二中间环形导风体 14和后端环形导风 体 12。 这四个环形导风体均为片状结构, 前后依次排列, 形成套叠筒型结构。 前后依次排列的这四个环形导风体中的每一个环形导风体均为单体部件, 独立 成型。 其中, 位于最前端的前端环形导风体 11中间贯通、 具有前后两个开口, 分别为混合风出口 111和进风口 112; 第一中间环形导风体 13中间贯通、 具有 前后两个开口, 分别为出风口 131和进风口 132 ; 第一中间环形导风体 14中间 贯通、 具有前后两个开口, 分别为出风口 141和进风口 142; 位于最后端的后 端环形导风体 12中间贯通、具有前后两个开口,分别为出风口 121和非热交换 风进口 122。 前端环形导风体 11、 第一中间环形导风体 13、 第二中间环形导风 体 14及后端环形导风体 12前后依次排列之后, 中间形成前后贯通所有四个环 形导风体的贯通风道 18。 而且, 前端环形导风体 11与第一中间环形导风体 13 之间形成有第一环形热交换风风道 15, 第一中间环形导风体 13与第二中间环 形导风体 14之间形成有第二环形热交换风风道 16,第二中间环形导风体 14与 后端环形导风体 12之间形成有第三环形热交换风风道 17, 室内机中的内部风 道 4将通过这三个环形热交换风风道与空调送风装置 1中的贯通风道 18相连 通。
在将空调送风装置 1装配到空调中时, 前端环形导风体 11 的混合风出口 111作为整个空调送风装置 1的出风口,将与前面板 2上的混合风出口 21进行 封闭装配,而后端环形导风体 12中的非热交换风进口 122作为整个空调送风装 置 1的非热交换风进风口,将与后背板 3上的非热交换风进口 31进行封闭装配。
基于上述结构的空调送风装置 1, 该实施例立式空调的送风方法如下: 空调运行时, 室内风进入空调内部, 在风机 5的作用下, 加速吹向热交换 器 6进行热交换。 热交换后的热交换风从内部风道 4吹向空调送风装置 1、 并 经第一环形热交换风风道 15、 第二环形热交换风风道 16及第三环形热交换风 风道 17进入贯通风道 18, 进而经贯通风道 18从前端环形导风体 11上的混合 风出口 111及前面板 2上的混合风出口 21吹出。由于从环形热交换风风道吹出 的热交换风风速变大,从而使得相应环形导风体表面压力减小而在贯通风道 18 内形成负压, 空调外部的室内风作为非热交换风, 在负压的作用下, 将从后背 板 3上的非热交换风进口 31及后端环形导风体 12的非热交换风进口 122进入 贯通风道 18,并与环形热交换风风道所吹出的热交换风形成混合风后一起送到 室内。 而且, 从非热交换风进口 122所吸入的非热交换风的流量是从所有环形 热交换风风道所吹出的热交换风流量的 0. 05-0. 5倍。作为优选实施方式,非热 交换风的流量是热交换风流量的 0. 15-0. 35倍。
经该方法所送出的混合风较为柔和, 吹到用户身上会感觉更加舒适, 能提 高用户舒适性体验效果, 具体可参考下面的送风试验检测结果。 同时, 利用空 气送风装置 1所产生的负压作用吸入部分外部未热交换的风参与到空调最后的 出风中, 增大了空调的整体进风量, 加快了室内空气的流动, 进一步提高了室 内空气的整体均匀性。
为提高空调送风装置 1的导风性能, 尤其是对热交换风的导风能力, 以使 得混合风沿环形导风体的表面均匀送出, 四个环形导风体的表面均为曲面。 也 即, 环形导风体的径向剖面轮廓线为曲线, 且优选为变曲率半径的曲线。而且, 在该实施例立式空调的四个环形导风体中,前端环形导风体 11的内口径从其进 风口 112至其出风口、即混合风出口 111的方向先渐缩再渐扩,形成渐缩部 113 和渐扩部 114,渐缩部 113与渐扩部 114的过渡处为前端环形导风体 11的颈部 115, 颈部 115是前端环形导风体 11各处内口径最小的地方。 前端环形导风体 11的进风口 112的内口径还大于其作为出风口的混合风出口 111的内口径。通 过将前端环形导风体 11设置成具有渐扩部 114的结构, 可以形成扩口导流部, 能增加气流流动的顺畅性、 尤其是混合风的顺畅流动。
对于上述这种结构的前端环形导风体 11, 第一热交换风风道 15是由前端 环形导风体 11的渐缩部 113与相邻的第一中间环形导风体 13所形成的。 而第 一中间环形导风体 13、第二中间环形导风体 14和后端环形导风体 12的内口径 均是从进风口至出风口的方向渐缩的。 也即, 进风口 132的内口径大于出风口 131的内口径, 进风口 142的内口径大于出风口 141的内口径, 非热交换风进 口 122的内口径大于出风口 121的内口径。 采用这样结构的环形导风体, 可以 有效引导气流沿环形导风体表面向前流动, 从而利于送风风量的提升及送风均 匀性的提高。
而且, 在该实施例中, 前端环形导风体 11 的颈部 115的内口径作为整个 前端环形导风体 11 的最小内口径, 比其余三个环形导风体中的最小内口径要 小。 也即, 颈部 115的内口径要比其余三个环形导风体的出风口内口径中的最 小值还要小。 上述所说的内口径, 是指圆环形导风体内壁各处的内周长。
由于空调送风装置 1 的最小内口径位于前端环形导风体 11上, 而前端环 形导风体 11位于整个空调送风装置 1的最前端,那么,在空调送风装置 1装配 到空调室内机中时, 如图 1的主视图所示, 用户从室内机正面仅能看到前端环 形导风体 11的渐扩部 114及颈部 115, 看不到后面其余的结构, 外观一致性较 好, 提高了用户的视觉感受。 因而, 可以根据实际需要灵活、 随意地设置除前 端环形导风体 11的渐扩部 114及颈部 115之外的空调送风装置 1的其他结构, 以提高空调送风装置 1的整体送风性能。 例如, 就可以将空调送风装置 1设置 成具有四个环形导风体的结构, 以减小相邻环形导风体之间的间隙, 也即使得 各环形热交换风风道变窄, 提高热交换风送风速度的同时, 还能够增加贯通风 道中所产生的负压, 以便在噪音较低的情况下引入较多的非热交换风, 提高整 体送风风量, 且还可以提高空调送风装置 1在周向方向上的送风均匀性。
考虑到若颈部 115的内口径过小会影响出风, 在该实施例中, 颈部 115的 内口径虽然小于其余三个环形导风体中的最小内口径, 但不小于其余三个环形 导风体中的最小内口径的 0. 95倍。
在该实施例中, 为避免用户从室内机的侧方向上看到空调送风装置 1的内 部结构,除前端环形导风体 11之外的其他三个环形导风体的出风口的内口径沿 后端环形导风体 12至前端环形导风体 11的方向渐缩。 也即, 第二中间环形导 风体 14的出风口 141的内口径小于后端环形导风体 12的出风口 121的内口径、 第一中间环形导风体 13的出风口 131的内口径小于第二中间环形导风体 14的 出风口 141的内口径。 而且, 考虑到若渐缩比例过大会阻碍气流的流动, 优选 这三个出风口的内口径按照 2-5%的缩减比例渐缩。
对于能够将经热交换器 6交换后的热交换风及外部非热交换风形成混合风 而送出的空调送风装置 1来说, 其环形热交换风风道的结构对减少风阻、 降低 压损、 降低噪音至关重要, 进而会影响到空调送风装置 1所吸入的外部非热交 换风的风量及混合风出风的温度, 而热交换风风道的结构主要取决于形成该风 道的相邻两个环形导风体的相对位置关系及导风体自身的结构。在该实施例中, 各环形热交换风风道的结构如下:
以第一环形热交换风风道 15为例, 如图 5的径向剖面结构示意图所示意, 该风道具有靠近空调送风装置 1的贯通风道的出风端 152和远离贯通风道的进 风端 151, 第一环形热交换风风道 15从其进风端 151至其出风端 152渐缩。 间环形导风体 13所形成的第一环形热交换风风道 15中存在着多个渐缩部 113 表面与第一中间环形导风体 13 表面之间的内切圆, 如内切圆 153、 154、 155 和 156,这些内切圆的直径沿从进风端 151至出风端 152的方向是逐渐缩小的。 即如图 5所示, 内切圆 153、 154、 155和 156是从进风端 151依次向出风端 152 方向所画出的内切圆, 则内切圆 153的直径 Dl、 内切圆 154的直径 D2、 内切圆 155的直径 D3及内切圆 156的直径 D4之间满足下述关系: D1>D2>D3>D4。而且, 考虑到送风方向变化的不同, 进风端 151是将上下方向的送风大角度变向、 而 出风端 152的送风方向变化较小, 各内切圆直径之间的渐缩比例优选是非等比 例渐缩, 且靠近进风端 151处的内切圆直径的缩减比例要大于靠近出风端 152 处的内切圆直径的缩减比例。 例如, 假设内切圆 153是进风端 151处的进风端 内切圆, 内切圆 154是紧邻内切圆 153的内切圆, 内切圆 156是出风端 152处 的出风端内切圆, 内切圆 155是紧邻内切圆 156的内切圆, 则 Dl、 D2、 D3、 D4 之间满足下述关系: (1-D2/D1 ) > (1-D4/D3)。
同样的, 第二环形热交换风风道 16及第三环形热交换风风道 17也按照与 第一环形热交换风风道 15的上述条件来设置。
空调送风装置 1中采用上述结构的热交换风风道之后, 不仅利于热交换风 风道周向方向出风均匀, 而且可以改变热交换风的方向, 使得热交换风及非热 交换风均沿各环形导风体的表面吹出, 有效避免了因两部分风在贯通风道内的 环形导风体表面处交汇碰撞而降低风速、 产生噪音及凝露等问题的发生。
图 6和图 7示出了应用本发明送风方法的立式空调的另一个实施例,其中, 图 6是该实施例的侧剖结构示意图, 图 7是该实施例中空调送风装置的径向剖 面结构示意图。
该实施例的立式空调的基本结构与图 1至图 5实施例的类似, 区别在于空 调送风装置的结构不同。 如图 6和图 7所示, 该实施例的立式空调上部设置有 空调送风装置 7。 空调送风装置 7包括有两个环形导风体, 分别是第一导风体 71和第二导风体 72。 第一环形导风体 71中间贯通、 具有前后两个开口, 分别 是作为前开口的混合风出口 711和作为后开口为进风口 712 ; 第二环形导风体 72中间贯通、 具有前后两个开口, 分别是作为前开口的出风口 721和作为后开 口的非热交换风进口 722。 这两个环形导风体均为片状结构, 前后依次排列, 形成套叠筒型结构, 中间形成前后贯通这两个环形导风体的贯通风道 74。第一 环形导风体 71和第二环形导风体 72均为单体部件, 独立成型。 第一环形导风 体 71和第二环形导风体 72之间形成有环形热交换风风道 73。室内机中的内部 风道(参见图 2所示)将通过环形热交换风风道 73与空调送风装置 7中的贯通 风道 74相连通。
与第一个实施例类似, 为提高空调送风装置 7的导风性能, 尤其是对热交 换风的导风能力, 以使得混合风沿环形导风体的表面均匀送出, 第一环形导风 体 71和第二环形导风体 72的表面均为曲面。 也即, 这两个环形导风体的径向 剖面轮廓线均为曲线, 且优选为变曲率半径的曲线。 而且, 如图 7所示, 第一 环形导风体 71的内口径从其进风口 712至其混合风出口 711的方向先渐缩再渐 扩,而第二环形导风体 72的内口径从其进风口 722至其出风口 721渐缩,形成 利于导风的较佳结构。
基于上述结构的空调送风装置 7, 该实施例立式空调的送风方法与图 1实 施例类似, 简单来说如下:
空调运行时, 室内风进入空调内部, 在风机的作用下, 加速吹向热交换器 进行热交换。 热交换后的热交换风从内部风道吹向空调送风装置 7、 并经环形 热交换风风道 73进入贯通风道 74, 进而经贯通风道 74从第一环形导风体 71 上的混合风出口 71 1及前面板上的混合风出口吹出。同时,贯通风道 74内形成 负压, 空调外部的室内风作为非热交换风, 在负压的作用下, 将从后背板上的 非热交换风进口及第二环形导风体 72的非热交换风进口 722进入贯通风道 74, 并与环形热交换风风道 73 所吹出的热交换风形成混合风后一起送到室内。 而 且, 从非热交换风进口 722所吸入的非热交换风的流量是从环形热交换风风道 73所吹出的热交换风流量的 0. 05-0. 5倍。 作为优选实施方式, 非热交换风的 流量是热交换风流量的 0. 15-0. 35倍。
经该方法所送出的混合风较为柔和, 吹到用户身上会感觉更加舒适, 能提 高用户舒适性体验效果, 具体可参考下面的送风试验检测结果。 同时, 利用空 气送风装置 7所产生的负压作用吸入部分外部未热交换的风参与到空调最后的 出风中, 增大了空调的整体进风量, 加快了室内空气的流动, 进一步提高了室 内空气的整体均匀性。
在立式空调中采用上述各实施例的空调送风装置 1 及空调送风装置 7 之 后, 可以通过风量测试来检测热交换风的流量和非热交换风的流量, 而通过温 度检测可以检测热交换风的温度及混合风的温度。 具体检测过程可采用下述方 法来进行:
将空调送风装置 1中的混合风出口 111或空调送风装置 7的混合风出口 711 通过连接管与风量测试用接收室相连接, 利用接收室来检测从混合空气出口所 吹出的空气流量。 具体检测过程可以根据有关检测标准来执行, 为现有技术, 在此不作具体阐述。 需要说明的是, 如果使用挡板封堵空调后背板 3处的非热 交换风进口 31, 此时, 从混合风出口所吹出的风量将是全部热交换风的流量, 定义为热交换风风量; 如果拿掉挡板, 如上所描述, 空调送风装置将带动空调 外部的非热交换风一起从混合风出口吹出, 也即混合风出口所吹出的风量将是 热交换风与非热交换风的总量, 定义为总风量。 热交换风风量和总风量是容易 通过接收室而获得的。 而在相同条件下所获得的总风量与热交换风风量之差就 是在负压作用下所吸入的非热交换风的流量, 定义为非热交换风风量。 这里所 说的相同条件, 是指同一立式空调内、 采用同一空调送风装置、 电机工作在相 同转速的检测条件。
应用上述检测方法对采用本发明空调送风装置的立式空调进行风量及出 风温度检测的结果例举如下。
送风检测试验实施例一:
空调送风装置的前后深度为 400匪(空调壳体上部的厚度也为 400皿), 空 调为 3匹机 ( 7200W) o
在风扇电机转速为 550r/min 的条件下, 热交换风风量、 总风量及非热交 换风风量分别为 1053m7h、 1274m7h、 221m3/h, 非热交换风风量是热交换风风 量的 0. 21倍。
在风扇电机转速为 500r/min 的条件下, 热交换风风量、 总风量及非热交 换风气风量分别为 982m3/h、 1178m7h、 196m3/h, 非热交换风风量是热交换风风 量的 0. 20倍。
在风扇电机转速为 450r/min 的条件下, 热交换风风量、 总风量及非热交 换风风量分别为 928m7h、 1104m7h、 176m3/h, 非热交换风风量是热交换风风量 的 0. 19倍。
在各种不同转速下, 如果室温为 27°C左右, 检测到的热交换风温度为 13 °C左右, 混合风温度为 19. 5°C左右, 混合风的温度更符合人体体感温度舒适性 的要求。
送风检测试验实施例二:
空调送风装置的前后深度为 400匪(空调壳体上部的厚度也为 400皿), 空 调为 2匹机 (5000W)。
在风扇电机转速为 550r/min 的条件下, 热交换风风量、 总风量及非热交 换风风量分别为 982m7h、 1178m3/h、 196m3/h, 非热交换风风量是热交换风风量 的 0. 20倍。
在风扇电机转速为 500r/min 的条件下, 热交换风风量、 总风量及非热交 换风风量分别为 928m7h、 1104m7h、 176m3/h, 非热交换风风量是热交换风风量 的 0. 19倍。
在风扇电机转速为 450r/min 的条件下, 热交换风风量、 总风量及非热交 换风风量分别为 864m7h、 1016m7h、 152m3/h, 非热交换风风量是热交换风风量 的 0. 18倍。
在各种不同转速下, 如果室温为 26°C左右, 检测到的热交换风温度为 13 °C左右, 混合风温度为 19°C左右, 混合风的温度更符合人体体感温度舒适性的 要求。
送风检测试验实施例三:
空调送风装置的前后深度为 260mm (空调壳体上部的厚度也为 260mm), 空 调为 3匹机 ( 7200W) o
在风扇电机转速为 550r/min 的条件下, 热交换风风量、 总风量及非热交 换风风量分别为 1005m7h、 1331m7h、 326m3/h, 非热交换风风量是热交换风风 量的 0. 32倍。
在风扇电机转速为 500r/min 的条件下, 热交换风风量、 总风量及非热交 换风风量分别为 951m7h、 1236m3/h、 285m3/h, 非热交换风风量是热交换风风量 的 0. 30倍。
在风扇电机转速为 450r/min 的条件下, 热交换风风量、 总风量及非热交 换风风量分别为 898m7h、 1158m7h、 260m3/h, 非热交换风风量是热交换风风量 的 0. 29倍。
在各种不同转速下, 如果室温为 30°C左右, 检测到的热交换风温度为 14 °C左右, 混合风温度为 20°C左右, 混合风的温度更符合人体体感温度舒适性的 要求。
送风检测试验实施例四:
空调送风装置的前后深度为 260mm (空调壳体上部的厚度也为 260mm), 空 调为 2匹机 (5000W)。
在风扇电机转速为 550r/min 的条件下, 热交换风风量、 总风量及非热交 换风风量分别为 951m7h、 1236m3/h、 285m3/h, 非热交换风风量是热交换风风量 的 0. 30倍。
在风扇电机转速为 500r/min 的条件下, 热交换风风量、 总风量及非热交 换风风量分别为 898m7h、 1158m7h、 260m3/h, 非热交换风风量是热交换风风量 的 0. 29倍。 在风扇电机转速为 450r/min 的条件下, 热交换风风量、 总风量及非热交 换风风量分别为 836m7h、 1070m3/h、 234m3/h, 非热交换风风量是热交换风风量 的 0. 28倍。
在各种不同转速下, 如果室温为 30°C左右, 检测到的热交换风温度为 14 °C左右, 混合风温度为 20°C左右, 混合风的温度更符合人体体感温度舒适性的 要求。
以上实施例仅用以说明本发明的技术方案, 而非对其进行限制; 尽管参照 前述实施例对本发明进行了详细的说明, 对于本领域的普通技术人员来说, 依 然可以对前述实施例所记载的技术方案进行修改, 或者对其中部分技术特征进 行等同替换; 而这些修改或替换, 并不使相应技术方案的本质脱离本发明所要 求保护的技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种立式空调送风方法, 其特征在于, 所述方法在空调本体的内部风 道中设置空调送风装置, 所述送风装置包括有至少两个中间贯通、 具有前后开 口的导风体, 每一所述导风体为单体部件, 所述导风体的后开口为进风口、 前 开口为出风口, 所述至少两个导风体前后依次排列、 中间形成前后贯通的贯通 风道, 相邻两所述导风体之间形成热交换风风道, 位于后端的后端导风体的进 风口为所述送风装置的非热交换风进口, 位于前端的前端导风体的出风口为所 述送风装置的混合风出口, 所述立式空调将内部风道中经热交换器交换后的热 交换风从所述热交换风风道送至所述贯通风道, 将立式空调外部的非热交换风 从所述非热交换风进口吸入至所述贯通风道, 所述热交换风与所述非热交换风 形成混合风后一起经所述贯通风道从所述混合风出口送出, 所述非热交换风的 流量是所述热交换风流量的 0. 05-0. 5倍。
2、 根据权利要求 1所述的立式空调送风方法, 其特征在于, 所述非热交 换风的流量是所述热交换风流量的 0. 15-0. 35倍。
3、 根据权利要求 1所述的立式空调送风方法, 其特征在于, 所述导风体 为环形导风体, 所述热交换风风道为环形热交换风风道。
4、 根据权利 3所述的立式空调送风方法, 其特征在于, 所述环形导风体 至少部分从后向前渐缩。
5、 根据权利要求 4所述的立式空调送风方法, 其特征在于, 所述环形导 风体为片状结构, 多个所述环形导风体前后依次排列, 形成套叠筒型结构。
6、 根据权利要求 4所述的立式空调送风方法, 其特征在于, 所述环形导 风体的径向剖面轮廓线为变曲率半径的曲线。
7、 根据权利要求 3至 6中任一项所述的立式空调送风方法, 其特征在于, 所述前端导风体为前端环形导风体, 所述前端环形导风体的最小内口径小于其 他所有环形导风体的最小内口径。
8、 根据权利要求 7所述的立式空调送风方法, 其特征在于, 所述前端环 形导风体的最小内口径不小于其他所有环形导风体中最小内口径的 0. 95倍。
9、 根据权利要求 3所述的立式空调送风方法, 其特征在于, 所述送风装 置包括有四个所述环形导风体。
10、 根据权利要求 9所述的立式空调送风方法, 其特征在于, 四个所述环 形导风体中的前端环形导风体的内口径从其进风口至其出风口先渐缩再渐扩, 中间形成内口径最小的颈部, 所述前端环形导风体内口径渐缩的部分与其相邻 的环形导风体之间形成环形热交换风风道, 除所述前端环形导风体之外的其他 三个环形导风体的内口径从进风口至出风口渐缩。
11、 一种立式空调送风方法, 其特征在于, 所述方法在空调本体的内部风 道中设置空调送风装置, 所述送风装置包括有第一导风体和第二导风体, 第一 导风体中间贯通、 具有前后开口, 第一导风体的前开口为混合风出口, 第一导 风体的后开口为进风口, 第二导风体中间贯通、 具有前后开口, 第二导风体的 前开口为出风口, 第二导风体的后开口为非热交换风进口, 第一导风体和第二 导风体前后依次排列、 中间形成前后贯通的贯通风道, 第一导风体和第二导风 体之间形成热交换风风道, 所述立式空调将内部风道中经热交换器交换后的热 交换风从所述热交换风风道送至所述贯通风道, 将立式空调外部的非热交换风 从所述非热交换风进口吸入至所述贯通风道, 所述热交换风与所述非热交换风 形成混合风后一起经所述贯通风道从所述混合风出口送出, 所述非热交换风的 流量是所述热交换风流量的 0. 05-0. 5倍。
12、 根据权利要求 11所述的立式空调送风方法, 其特征在于, 所述非热 交换风的流量是所述热交换风流量的 0. 15-0. 35倍。
13、 根据权利要求 11所述的立式空调送风方法, 其特征在于, 所述空调 送风装置具有第一导风体和第二导风体。
14、 根据权利要求 13所述的立式空调送风方法, 其特征在于, 所述第一 导风体和所述第二导风体均为环形导风体, 所述热交换风风道为环形热交换风 风道。
15、 根据权利 14所述的立式空调送风方法, 其特征在于, 所述第一导风 导风体至少部分从后向前渐缩, 所述第二导风体至少部分从后向前渐缩。
16、 根据权利要求 15所述的立式空调送风方法, 其特征在于, 所述第一 导风体和所述第二导风体前后依次排列, 形成套叠筒型结构。
17、 根据权利要求 14所述的立式空调送风方法, 其特征在于, 所述第一 导风体和所述第二导风体的径向剖面轮廓线均为变曲率半径的曲线。
PCT/CN2014/073417 2013-04-17 2014-03-14 立式空调送风方法 WO2014169743A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14785039.0A EP2988072B1 (en) 2013-04-17 2014-03-14 Air supply method of vertical air conditioner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310132602 2013-04-17
CN201310132602.8 2013-04-17
CN201310388289.4 2013-08-31
CN201310388289.4A CN103604203B (zh) 2013-04-17 2013-08-31 立式空调送风方法

Publications (1)

Publication Number Publication Date
WO2014169743A1 true WO2014169743A1 (zh) 2014-10-23

Family

ID=50122450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073417 WO2014169743A1 (zh) 2013-04-17 2014-03-14 立式空调送风方法

Country Status (3)

Country Link
EP (1) EP2988072B1 (zh)
CN (1) CN103604203B (zh)
WO (1) WO2014169743A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110878967A (zh) * 2018-08-22 2020-03-13 青岛海尔空调器有限总公司 具有异向导风结构的空调器及其出风控制方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604203B (zh) * 2013-04-17 2015-06-10 海尔集团公司 立式空调送风方法
CN104976684A (zh) * 2014-04-14 2015-10-14 中山市雅西环保科技有限公司 一种能卷吸气流的空调
CN104976683A (zh) * 2014-04-14 2015-10-14 中山市雅西环保科技有限公司 一种使用环状气流喷口的空调
CN105091084B (zh) * 2014-04-30 2017-09-01 青岛海尔空调器有限总公司 一种空调室内机
CN105333495B (zh) * 2014-07-31 2018-07-13 青岛海尔空调器有限总公司 一种立式空调
CN104807080B (zh) * 2014-08-29 2017-08-01 青岛海尔空调器有限总公司 一种壁挂式空调器室内机
US10295200B2 (en) * 2014-08-29 2019-05-21 Qingdao Haier Air Conditioner General Corp., Ltd. Wall-mounted air conditioner indoor unit
CN104807079B (zh) * 2014-08-29 2018-04-27 青岛海尔空调器有限总公司 一种壁挂式空调器
CN105135523A (zh) * 2015-09-08 2015-12-09 芜湖美智空调设备有限公司 空调器
CN105605736B (zh) * 2016-01-06 2019-03-12 广东美的制冷设备有限公司 空调送风方法
CN107816788B (zh) * 2016-09-12 2024-03-29 珠海格力电器股份有限公司 一种出风装置及空调柜机
CN110726178B (zh) * 2018-07-16 2021-04-20 青岛海尔空调器有限总公司 送风组件及空调室内机
CN111912008B (zh) * 2020-07-16 2022-02-18 青岛海尔空调器有限总公司 立式空调室内机
CN112902423B (zh) * 2021-02-06 2022-07-08 西安建筑科技大学 一种圆形散流装置
CN114294711B (zh) * 2021-12-08 2023-07-04 约克广州空调冷冻设备有限公司 风机盘管
CN114909722A (zh) * 2022-03-25 2022-08-16 北京小米移动软件有限公司 桌面空调

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141751A (ja) * 1996-11-12 1998-05-29 Shinko Kogyo Co Ltd 空調用の誘引式吹出装置
CN2286294Y (zh) * 1995-08-07 1998-07-15 明盈塑胶钢模有限公司 轻钢架方型叶片组合式扩散出风口装置
CN1207476A (zh) * 1996-11-20 1999-02-10 三菱电机株式会社 换气送风装置及换气送风系统
CN2384157Y (zh) * 1999-07-23 2000-06-21 张永龙 可形成多向扰流之出风栅板
CN201041399Y (zh) * 2007-04-24 2008-03-26 崔国华 一种风口装置
CN201983401U (zh) * 2010-07-21 2011-09-21 木村工机株式会社 变风量吹出装置
CN103591674A (zh) * 2013-07-16 2014-02-19 海尔集团公司 空调送风装置及立式空调
CN103604203A (zh) * 2013-04-17 2014-02-26 海尔集团公司 立式空调送风方法
CN203478537U (zh) * 2013-07-16 2014-03-12 海尔集团公司 空调送风装置及立式空调

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5351111B2 (ja) * 2010-08-17 2013-11-27 木村工機株式会社 誘引吹出口
CN102840627B (zh) * 2011-12-08 2013-10-30 Lg电子株式会社 空气调节器
KR101234065B1 (ko) * 2011-12-20 2013-02-15 엘지전자 주식회사 공기조화기
CN202675472U (zh) * 2011-12-20 2013-01-16 Lg电子株式会社 空气调节器
KR101203540B1 (ko) * 2011-12-20 2012-11-21 엘지전자 주식회사 공기조화기

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2286294Y (zh) * 1995-08-07 1998-07-15 明盈塑胶钢模有限公司 轻钢架方型叶片组合式扩散出风口装置
JPH10141751A (ja) * 1996-11-12 1998-05-29 Shinko Kogyo Co Ltd 空調用の誘引式吹出装置
CN1207476A (zh) * 1996-11-20 1999-02-10 三菱电机株式会社 换气送风装置及换气送风系统
CN2384157Y (zh) * 1999-07-23 2000-06-21 张永龙 可形成多向扰流之出风栅板
CN201041399Y (zh) * 2007-04-24 2008-03-26 崔国华 一种风口装置
CN201983401U (zh) * 2010-07-21 2011-09-21 木村工机株式会社 变风量吹出装置
CN103604203A (zh) * 2013-04-17 2014-02-26 海尔集团公司 立式空调送风方法
CN103591674A (zh) * 2013-07-16 2014-02-19 海尔集团公司 空调送风装置及立式空调
CN203478537U (zh) * 2013-07-16 2014-03-12 海尔集团公司 空调送风装置及立式空调

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110878967A (zh) * 2018-08-22 2020-03-13 青岛海尔空调器有限总公司 具有异向导风结构的空调器及其出风控制方法
CN110878967B (zh) * 2018-08-22 2023-12-22 青岛海尔空调器有限总公司 具有异向导风结构的空调器及其出风控制方法

Also Published As

Publication number Publication date
CN103604203B (zh) 2015-06-10
CN103604203A (zh) 2014-02-26
EP2988072A4 (en) 2016-12-21
EP2988072A1 (en) 2016-02-24
EP2988072B1 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
WO2014169743A1 (zh) 立式空调送风方法
WO2014194764A1 (zh) 空调送风装置防凝露的方法
CN104896704B (zh) 一种壁挂式空调器
WO2014194769A1 (zh) 利用空调送风装置送风的方法
CN203478539U (zh) 立式空调送风装置
WO2019057040A1 (zh) 空调室内机
CN104807077B (zh) 一种空调室内机
WO2016029678A1 (zh) 壁挂式空调器室内机
WO2019062626A1 (zh) 壁挂式空调器室内机
WO2023246706A1 (zh) 立式空调室内机
WO2019062625A1 (zh) 壁挂式空调器室内机
WO2019085943A1 (zh) 壁挂式空调器室内机
WO2014194705A1 (zh) 立式空调及立式空调送风装置
WO2022037723A1 (zh) 壁挂式空调室内机
WO2019085731A1 (zh) 壁挂式空调器室内机
WO2017190343A1 (zh) 一种混合出风空调室内机
CN105091084B (zh) 一种空调室内机
WO2023246547A1 (zh) 立式空调室内机
WO2019057037A1 (zh) 空调室内机
CN105423417B (zh) 空调室内机
WO2019085944A1 (zh) 壁挂式空调器室内机
CN105627427B (zh) 一种壁挂式空调器
CN104807076B (zh) 空调室内机
CN105485762B (zh) 一种分体壁挂式空调器
WO2014194767A1 (zh) 一种立式空调中的空调送风装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785039

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014785039

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE