WO2019062625A1 - 壁挂式空调器室内机 - Google Patents

壁挂式空调器室内机 Download PDF

Info

Publication number
WO2019062625A1
WO2019062625A1 PCT/CN2018/106567 CN2018106567W WO2019062625A1 WO 2019062625 A1 WO2019062625 A1 WO 2019062625A1 CN 2018106567 W CN2018106567 W CN 2018106567W WO 2019062625 A1 WO2019062625 A1 WO 2019062625A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
wall
centrifugal fan
air supply
airflow
Prior art date
Application number
PCT/CN2018/106567
Other languages
English (en)
French (fr)
Inventor
李英舒
陈会敏
吴丽琴
王永涛
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019062625A1 publication Critical patent/WO2019062625A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/166Combinations of two or more pumps ; Producing two or more separate gas flows using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/081Air-flow control members, e.g. louvres, grilles, flaps or guide plates for guiding air around a curve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the present invention relates to an air conditioner, and more particularly to a wall-mounted air conditioner indoor unit.
  • the air conditioner is one of the necessary household appliances. As the user's requirements for comfort and health are getting higher and higher, the air supply method of the traditional air conditioner is to send the cold air into the room, and slowly convect the air with the surrounding air. Slower, can not give people a feeling of rapid cooling, and the air blower of the indoor unit blows directly to the person, which will adversely affect the health of the user, and is prone to air conditioning disease.
  • an indoor unit that ejects the air outlet with a gentle air supply which uses a small air outlet to drive the surrounding air to be blown, so that the air after the heat exchange is mixed with the surrounding air, but the air outlet is sprayed.
  • the requirements for the structure are high, so that the jet outlets are mostly used in cabinet-type indoor units with more space.
  • the casing In order to meet the structural requirements of the jet vent, it is often necessary to set the casing to a circular shape or other irregular shape in order to meet the structural requirements of the jet vent, on the one hand, the user's usage habits and the existing type of the hanging indoor unit. Cognitive gaps are not easily accepted by users; on the other hand, it also causes troubles for the installation of hanging indoor units. Therefore, the hanging indoor unit that uses the air outlet can not meet the user's requirements.
  • One object of the present invention is to provide a wall-mounted air conditioner indoor unit with a gentle heat transfer speed.
  • a further object of the present invention is to make the indoor unit of the wall-mounted air conditioner compact and conform to the user's usage habits.
  • Another further object of the present invention is to make the air supply mode of the wall-mounted air conditioner indoor unit flexible and meet the adjustment requirements of different requirements.
  • the present invention provides a wall-mounted air conditioner indoor unit, comprising: a housing having an air inlet and an air supply opening, the air supply opening being oblong, disposed at a lower portion of the housing; and a heat exchanger,
  • the air-jet assembly is disposed in the air supply opening, and includes a first air-jet portion and a second air-jet portion that are laterally arranged, and the first air-jet port is formed on the inner peripheral wall of the first air-jet portion and the second air-jet portion, respectively.
  • the first air outlet is used for jetting the airflow in the first air-jet portion forward, and driving the ambient air in the first air-venting hole defined by the inner peripheral wall of the first air-jet portion to be forwarded, the second air outlet
  • the airflow in the second air-jet portion is sprayed forward, and the ambient air in the second air-venting hole defined by the inner peripheral wall of the second air-jet portion is forwarded, and the first air-venting hole and the second air-venting hole are respectively supplied with air.
  • the upstream of the direction is in communication with the surrounding environment; the first air supply assembly and the second air supply assembly are laterally spaced apart from each other inside the housing, wherein the first air supply assembly is configured to enter from the air inlet and exchange heat with the heat exchanger. Supply a first heat exchange gas stream in a jet portion, the second air supply assembly is configured to generate a second heat exchange gas stream that enters from the air inlet and is supplied to the second air jet portion after heat exchange with the heat exchanger.
  • the first air-jet portion and the second air-jet portion are respectively formed by an annular inner wall and an annular outer wall, and the annular outer wall of the first air-jet portion and the annular inner wall together define a first air supply chamber, and the annular outer wall of the first air-jet portion is An edge of the annular inner wall is formed to form a first air outlet, and an end of the first air jet portion away from the second air jet portion is opened with a first air inlet communicating with the first air supply assembly, thereby the first heat exchange airflow Introducing a first air supply chamber; the annular outer wall of the second air jet portion and the annular inner wall together define a second air supply chamber, and an annular outer wall of the second air injection portion and the annular inner wall form a second air outlet, the second air jet portion An end of the side away from the first air jet portion is opened with a second air inlet communicating with the second air blowing assembly, thereby introducing the second heat exchange airflow into the second air supply chamber.
  • a rear side edge of the annular inner wall of the first air injection portion is recessed toward the inside of the first air supply chamber, and an annular outer wall of the first air injection portion has an outward flange at a position opposite to a rear side edge of the annular inner wall.
  • a gap between the annular outer wall of the first air injection portion and the rear side edge of the annular inner wall forms a first air blast opening; a rear side edge of the annular inner wall of the second air blast portion is recessed toward the interior of the second air supply chamber, and second
  • the annular outer wall of the air jet portion has an outward flange at a position opposite the rear side edge of the annular inner wall such that a gap between the annular outer wall of the second air jet portion and the rear side edge of the annular inner wall forms a second air vent.
  • the annular inner wall of the first air-jet portion extends forwardly from the rear side edge thereof to form a first Coanda surface that continuously expands outward; and the annular outer wall of the first air-jet portion is located at a portion of the rear side of the air-jet assembly.
  • the first air supply assembly comprises: a first centrifugal fan and a first air guiding component, the first centrifugal fan is used as a power source of the first heat exchange airflow, and the first air guiding component is connected to the exhaust of the first centrifugal fan Between the port and the first air inlet, the airflow discharged by the first centrifugal fan is guided into the first air supply chamber;
  • the second air supply assembly comprises: a second centrifugal fan and a second air guiding component, and the second centrifugal fan acts as a power source of the second heat exchange airflow, the second air guiding component is connected between the exhaust port of the second centrifugal fan and the second air inlet to guide the airflow discharged by the second centrifugal fan into the second air supply chamber.
  • the housing comprises: a cover and a front panel disposed in front of the cover;
  • the wall-mounted air conditioner indoor unit further includes a partition, the partition is longitudinally disposed above the air jet assembly inside the housing, and the partition and the front panel
  • the heat exchanger accommodating chamber is defined, and the heat exchanger is disposed in the heat exchanger accommodating chamber; and the impeller and the volute of the first centrifugal fan and the second centrifugal fan are disposed in the space defined by the partition and the casing.
  • a middle portion of the partition plate is disposed with a first through hole and a second through hole disposed at a lateral interval; a gas collecting port of the first centrifugal fan passes through the first through hole to take in air from the heat exchanger receiving chamber, and The exhaust port of the volute of the first centrifugal fan faces the side wall of the casing on the side of the first air inlet, and the air inlet of the first air guiding member is connected to the exhaust port of the volute of the first centrifugal fan; The gas collecting port of the second centrifugal fan passes through the second through hole to take in air from the heat exchanger accommodating chamber, and the venting port of the volute of the second centrifugal fan faces the side of the casing on the side of the second air inlet The wall, the air inlet of the second air guiding member is connected to the exhaust port of the volute of the second centrifugal fan.
  • the first air guiding component comprises: a first drainage section having an air inlet of the first air guiding component, and at least a part of the first drainage section is spirally shaped to guide the airflow direction of the first centrifugal fan
  • the first air supply section is connected to the first drainage section, and defines a first air collection chamber to receive the airflow discharged by the first centrifugal fan, and the first air supply section is opened with the first air intake section.
  • the second air guiding member includes: a second drainage portion having the air intake of the second air guiding member a port, and at least a portion of the second drainage section is spirally shaped to guide the direction of the airflow discharged by the second centrifugal fan downward;
  • the second air supply section is connected to the second drainage section, and the interior thereof defines a second gas collection a cavity for receiving the airflow discharged by the second centrifugal fan, the second air supply section is provided with a second exhaust port connected to the second air inlet, so that the airflow of the second air collection chamber is supplied to the second air supply cavity .
  • the first drainage section is tapered from the air inlet of the first air guiding component in the airflow direction, and the first air supply section forms a volute shape along the air outlet direction of the first drainage section, thereby reducing the first heat exchange airflow.
  • a wind resistance in the first air collection chamber the second drainage section is tapered from the air inlet of the second air guiding member in the airflow direction, and the second air supply section is formed in a volute shape along the air outlet direction of the second drainage section, reducing the number The wind resistance of the second heat exchange gas flow in the second gas collection chamber.
  • the cover and the lower portion of the front panel form a front and rear air supply opening
  • the rear side of the cover forms a position of the air supply opening, so that the air circulation area is behind the air supply opening.
  • the wall-mounted air conditioner indoor unit of the present invention is provided with an oblong air supply opening below the casing for arranging an annular jet assembly, and the jet assembly includes two independently disposed first and second jet portions, respectively
  • the first air supply assembly and the second air supply assembly supply airflow exchanged by the heat exchanger, so that the heat exchanged airflow is ejected from the air outlets of the first air jet portion and the second air jet portion, and the ambient air around the air supply port is sucked It mixes with the heat exchange airflow with severe temperature difference in the surrounding environment, so as to ensure that the airflow sent out is soft, and the feeling of blowing to the human body is more comfortable.
  • the air supply volume is increased, the flow of indoor air is accelerated, and the indoor temperature can be made uniform.
  • the air outlet of the indoor unit of the wall-mounted air conditioner of the present invention is in the shape of a long round raceway, and is disposed under the casing.
  • the overall structure is similar to the existing conventional hanging indoor unit, and is easily accepted by the user, and is easily replaced. Some traditional hanging indoor units have flexible installation positions.
  • two air supply components respectively supply the airflow after heat exchange to the two air jet portions of the air jet assembly, and finally are ejected from the air jet port, and the two air supply components cooperate with each other.
  • the air supply can be independently controlled according to the working conditions, for example, the air is supplied according to the same air volume at the same time; the air is separately supplied according to different air volumes; the air supply is selected according to the different air volume, so that the indoor air outlet meets the requirements of these different working conditions, and the control is further controlled. Flexible to meet the different requirements of users.
  • the indoor unit of the wall-mounted air conditioner of the present invention has a compact internal structure and makes full use of the space inside the casing, so that the indoor unit of the wall-mounted air conditioner can be made thinner.
  • the indoor unit of the wall-mounted air conditioner of the present invention improves the position and structure of components such as a heat exchanger, a centrifugal fan, a wind guiding member, etc., on the one hand, reduces the occupied space, and on the other hand, can also reduce The air supply wind resistance.
  • FIG. 1 is a schematic external view of a wall-mounted air conditioner indoor unit according to an embodiment of the present invention
  • FIG. 2 is a schematic exploded view of a wall-mounted air conditioner indoor unit according to an embodiment of the present invention
  • FIG. 3 is a schematic view of a jet assembly in a wall-mounted air conditioner indoor unit according to an embodiment of the present invention
  • Figure 4 is a front elevational view of the first air jet portion of the air jet assembly shown in Figure 3;
  • Figure 5 is a schematic cross-sectional flow diagram of the air flow taken along line A-A of Figure 4.
  • Figure 6 is a schematic view of internal components of a wall-mounted air conditioner indoor unit according to an embodiment of the present invention.
  • Fig. 7 is a structural schematic view showing the air supply to the air jet assembly by the first air blowing unit and the second air blowing unit in the indoor unit of the wall-mounted air conditioner according to an embodiment of the present invention.
  • the embodiment provides a wall-mounted air conditioner indoor unit 100.
  • the “upper”, “lower”, “front”, “rear”, “top” and “bottom” directions mentioned in the specification are in accordance with the wall-mounted air conditioner.
  • the spatial positional relationship in the normal operation state of the indoor unit 100 is limited.
  • the side facing the user of the wall-mounted air conditioner indoor unit 100 is the front side, and the side abutting against the mounting position is the rear side.
  • FIG. 1 is a schematic external view of a wall-mounted air conditioner indoor unit 100 according to an embodiment of the present invention
  • FIG. 2 is a schematic exploded view of a wall-mounted air conditioner indoor unit 100 according to an embodiment of the present invention.
  • the wall-mounted air conditioner indoor unit 100 generally includes a housing 110, a jet assembly 120, a heat exchanger 140, a first air supply assembly 130, and a second air supply assembly 150.
  • the housing 110 may include a cover 112 and a front panel 114 disposed in front of the cover 112.
  • the casing 112 is formed by a top wall, a side wall, and a back, which collectively define a space for accommodating internal components, and the front panel 114 is disposed in front of the casing 112 to close the internal space of the casing 112.
  • An air inlet 116 and an air supply opening 117 are defined in the housing 110.
  • the air supply port 117 is disposed in an oblong shape at a lower portion of the casing 110 and communicates with the surrounding environment upstream of the air blowing direction.
  • the air inlet 116 may be selected to be opened at any one or more of the following positions: the front panel 114, the top wall of the casing 112, and the side walls of the casing 112.
  • the position of the air inlet 116 affects the direction of the airflow
  • the position of the heat exchanger 140 and the position of the first air supply assembly 130 and the second air supply unit 150 may be configured, and the air inlet 116 may pass through A hole, a grid, or the like is formed on the casing 110.
  • the air supply opening 117 can be disposed through the lower portion of the housing 110 (the housing 112 and the front panel 114 are respectively provided with elongated circular through holes, thereby forming the front and rear through air outlets 117).
  • the rear side of the casing 112 forms a position where the air blowing port 117 is recessed forward so that there is an air flow area 118 behind the air blowing port 117, so that the inside of the air blowing port 117 communicates with the air flow area 118 for the jet assembly 120 to eject.
  • the heat exchange gas can be sucked from the air circulation area 118 to mix the ambient air, and the temperature difference between the mixed air flow and the surrounding environment is small, softer, and the air supply amount is larger, thereby accelerating the flow of the indoor air.
  • the air jet assembly 120 may also be disposed at a front position of the lower portion of the housing 110.
  • the housing 110 is open at the rear of the air jet assembly 120, that is, upstream of the air supply direction, with a hollow area communicating with the surrounding environment for the jet.
  • the heat exchange gas ejected from the assembly 120 can be extracted by pumping ambient air through the hollowed out area.
  • the heat exchanger 140 is disposed inside the housing 110.
  • the heat exchanger 140 exchanges heat with the air flowing therethrough to change the temperature of the air flowing therethrough.
  • the heat exchanger 140 is part of a refrigeration system, and the refrigeration system can be realized by a compression refrigeration cycle that utilizes a refrigerant in a compression phase change cycle of a compressor, a condenser, an evaporator, and a throttling device to achieve heat transfer.
  • the refrigeration system can also be provided with a four-way valve to change the flow direction of the refrigerant, so that the indoor unit heat exchanger 140 alternately functions as an evaporator or a condenser to realize a cooling or heating function. Since the compression refrigeration cycle in the air conditioner is well known to those skilled in the art, the working principle and configuration thereof will not be described herein.
  • the heat exchanger 140 is disposed against the front panel 114 of the housing 110.
  • the air jet assembly 120 is disposed in the air blowing port 117.
  • the air jet assembly 120 has two first air ejecting portions 128 and a second air ejecting portion 129 arranged in a lateral direction.
  • the first air ejecting portion 128 and the second air evaporating portion 129 are all oblong (or The racetrack shape may be symmetrically disposed with respect to the center of the air jet assembly 120.
  • the first air injection portion 128 has a first air bleed hole 1282 at the center
  • the second air blast portion 129 has a second air bleed hole 1292 at the center.
  • the first ventilation hole 1282 and the second ventilation hole 1292 communicate with the surrounding environment upstream of the air blowing direction, respectively.
  • a first air outlet 124 and a second air outlet are formed on the inner peripheral walls of the first air injection portion 128 and the second air injection portion 129, respectively, and the first air injection port 124 is used to be inside the first air injection portion 128.
  • the airflow is ejected forward, and the ambient air in the first air venting opening 1282 defined by the inner peripheral wall of the first air ejecting portion 128 is forwardly sent out, and the second air venting port is used to eject the airflow in the second air ejecting portion 129 forward. And driving the ambient air in the second ventilation hole 1292 defined by the inner peripheral wall of the second air injection portion 129 to be forwarded.
  • the first air injection portion 128 and the second air injection portion 129 may be respectively formed by respective annular inner walls and annular outer walls, and the annular outer wall of the first air injection portion 128 and the annular inner wall together define a first air supply chamber 125, the first air injection portion 128
  • the edge of the annular outer wall that meets the annular inner wall forms a first air outlet 124, and the end of the first air injection portion 128 away from the second air injection portion 129 has a first air inlet that communicates with the first air supply assembly 130. 1281, thereby introducing the first heat exchange gas stream into the first air supply chamber 125.
  • the second air ejecting portion 129 is identical in structure to the first air ejecting portion 128 and is symmetrically disposed, so that the annular outer wall of the second air ejecting portion 129 and the annular inner wall together define a second air supply chamber (not labeled), the second air ejecting portion An edge of the annular outer wall of the 129 that is in contact with the annular inner wall forms a second air vent (not shown), and an end of the second air blast 129 away from the side of the first air blast 128 is open to communicate with the second air supply unit 150.
  • the second air inlet 1291 introduces the second heat exchange airflow into the second air supply chamber.
  • the second air injection portion 129 is identical to the structure of the first air injection portion 128, the structure of the first air injection portion 128 will be described below with reference to the drawings.
  • the size and specifications of the first air injection portion 128 and its internal components can be set according to the air blowing capability of the first air blowing unit 130.
  • 3 is a schematic view of a jet assembly 120 in a wall-mounted air conditioner indoor unit 100 according to an embodiment of the present invention
  • FIG. 4 is a front view of the first air jet portion 128 in the air jet assembly 120 shown in FIG. 3, and
  • the first air injection portion 128 includes an annular inner wall 121 and an annular outer wall 122.
  • the annular inner wall 121 and the annular outer wall 122 together form the oblong shape, and the inner side of the annular inner wall 121 is the first ventilation hole 1282.
  • the edge of the annular outer wall 122 that meets the annular inner wall 121 forms a first air outlet 124, and the first air outlet 124 is used to spray the airflow of the first air supply chamber 125 forward, and the air is sucked at the rear of the air supply port 117. Pass through the air supply port 117.
  • the rear side edge 126 of the annular inner wall 121 is recessed toward the interior of the first air supply chamber 125, and the position of the annular outer wall 122 opposite the rear side edge 126 of the annular inner wall 121 has an outward flange 127 such that the annular outer wall 122 and the annular shape
  • the gap between the rear side edges 126 of the inner wall 121 forms a first air blast opening 124.
  • the rear side edge 126 of the annular inner wall 121 recessed toward the inside of the first air supply chamber 125 may also have a function of guiding the airflow direction so that the airflow in the first air supply chamber 125 is smoothly sent out from the first air outlet 124.
  • the annular inner wall 121 extends forwardly from its rear side edge 126 to form a Coanda surface that continuously expands outward; and the portion of the annular outer wall 122 that is located on the rear side of the jet assembly 120 is helical, such that the first supply chamber 125 After the airflow is ejected from the first air outlet 124 along the annular outer wall 122, the first Coanda surface formed along the annular inner wall 121 is forwardly sent to drive the ambient air behind the air outlet 117.
  • the annular inner wall 121 extends forwardly and continuously expands outwardly and has an extended inclination angle of 5 to 15 degrees.
  • the angle can be set between 6 and 10 degrees, which is more advantageous for mixing with ambient air in the first extraction aperture 1282.
  • the annular inner wall 121 and the annular outer wall 122 together define an annular first air supply chamber 125 inside the first air injection portion 128, and a lateral end of the annular outer wall 122 (one end away from the second air injection portion 128) is provided for supplying the first air supply
  • the chamber 125 provides a first inlet 1281 for the flow of gas after heat exchange by the heat exchanger 140.
  • the first air injection portion 128 may be generally circular in shape, and the annular inner wall 121 and the annular outer wall 122 respectively have two spaced horizontal sections and two arcuate sections connecting the two horizontal sections.
  • a first air inlet 1281 of the first air ejecting portion 128 is defined in the annular outer wall 122 of the two sections of the arcuate section away from the second air ejecting portion 128 for receiving the heat exchange provided by the first air blowing component 130. After the airflow.
  • the aforementioned sections of the annular inner wall 121 and the annular outer wall 122 may be formed by splicing a plurality of joined components.
  • the annular inner wall 121 and the annular outer wall 122 may also be formed from a unitary molded piece.
  • the first air vent 124 may be a continuous annular groove. In some alternative embodiments, the first vent 124 may also be formed on a portion of the annular inner wall 121 and the annular outer wall 122, or in multiple sections. For example, the first air outlet 124 may be disposed only on the horizontal section to make the air jet more uniform and effectively illuminate the ambient air in the first ventilation aperture 1282. In order to increase the jet velocity of the first air outlet 124, the width of the first air outlet 124 may be set to 1 to 3 mm. After a large number of tests, the width of the first air outlet 124 may preferably be set to about 2 mm, the first of which is the width.
  • the air outlet 124 not only ensures the injection speed of the heat exchange airflow, but also minimizes the windage loss of the heat exchange airflow and reduces the noise.
  • the solid arrow indicates the direction of the airflow of the ambient air
  • the dotted arrow indicates the direction of the airflow of the heat exchange gas jetted from the air outlet 124.
  • the second air injection portion 129 has the same structure as the first air injection portion 128, the rear side edge of the annular inner wall of the second air injection portion 129 is recessed toward the inside of the second air supply chamber, and the annular outer wall and the annular inner wall of the second air injection portion 129 The opposite side edges of the rear side edges have outward flanges such that a gap between the annular outer wall of the second gas jet portion 129 and the rear side edge of the annular inner wall forms a second air vent.
  • the annular inner wall of the second air injection portion 129 extends forward from its rear side edge to form a second Coanda surface that continuously expands outward; and the cross section of the annular outer wall of the second air injection portion 129 on the rear side of the air injection module 120 is spiraled So that the airflow of the second air supply chamber is ejected from the second air outlet along the annular outer wall of the second air ejecting portion 129, and is sent forward along the second Coanda surface, and is driven out of the second exhaust hole 1292. Ambient air.
  • the lateral end of the annular outer wall of the second air injection portion 129 (the end remote from the first air injection portion 128) is provided with a second air inlet 1291 for supplying the second air supply chamber with the air flow after heat exchange by the heat exchanger 140.
  • the air jet assembly 120 can also be driven by the motor and the transmission mechanism to achieve an overall up and down swing, adjust the air supply angle, and realize the oscillating air supply, thereby making the air outlet range wider.
  • the first air supply assembly 130 and the second air supply unit 150 are laterally spaced apart from each other inside the housing 110.
  • the first air supply unit 130 is configured to enter from the air inlet 116 and exchange heat with the heat exchanger 140.
  • An air inlet 1281 is supplied to the first heat exchange airflow of the first air supply chamber 125;
  • the second air supply unit 150 is configured to enter from the air inlet 116, exchange heat with the heat exchanger 140, and pass through the second air inlet.
  • 1291 is supplied to the second heat exchange gas flow of the second air supply chamber.
  • the first air supply assembly 130 and the second air supply assembly 150 are symmetrically disposed at the center of the heat exchanger 140, and the first air supply assembly 130 and the second air supply assembly 150 respectively reach the first air inlet 1281 on both sides of the air injection assembly 120. Air is supplied to the second air inlet 1291.
  • the first air blowing assembly 130 includes a first centrifugal fan 131 and a first air guiding member 136.
  • the first centrifugal fan 131 serves as a power source for the first heat exchange airflow, and may be configured such that the ambient air enters from the air inlet 116 and exchanges heat with the heat exchanger 140, passes through the first centrifugal fan 131, and is discharged to the downstream of the airflow, and finally The outside of the indoor unit 100 is sent out by the jet assembly 120.
  • the first air guiding member 136 is connected between the exhaust port of the first centrifugal fan 131 and the first air inlet 1281, and is configured to guide the airflow discharged by the first centrifugal fan 131 into the first air supply chamber 125.
  • the second air blowing assembly 150 includes a second centrifugal fan 151 and a second air guiding member 156.
  • the second centrifugal fan 151 serves as a power source for the second heat exchange airflow, and may be configured such that the ambient air enters from the air inlet 116 and exchanges heat with the heat exchanger 140, passes through the second centrifugal fan 151, and is discharged downstream of the airflow, and finally The outside of the indoor unit 100 is sent out through the second air injection unit 129.
  • the second air guiding member 156 is connected between the exhaust port of the second centrifugal fan 151 and the second air inlet 1291, and is configured to guide the airflow discharged by the second centrifugal fan 151 into the second air supply chamber.
  • FIG. 6 is a schematic illustration of internal components of a wall-mounted air conditioner indoor unit 100 in accordance with one embodiment of the present invention.
  • the interior of the wall-mounted air conditioner indoor unit 100 further includes a partition 143 disposed longitudinally above the interior of the housing 110, and defining a heat exchanger receiving cavity 144 between the partition 143 and the front panel 114.
  • the partition 143 may have a recess adapted to the outer shape of the heat exchanger 140 so that the heat exchanger 140 can be secured within the heat exchanger receiving cavity 144.
  • the heat exchanger 140 is disposed in the heat exchanger accommodating cavity 144, and may be formed in a shape of a plate, a multi-section, a U-shape, or the like.
  • the heat exchanger 140 may have a plurality of plates and a part of the heat exchanger 140
  • the front panel 114 is disposed, and the other portion is disposed against the top wall of the casing 112.
  • the position of the heat exchanger 140 can be set according to the position of the air inlet 116.
  • the first through hole 145 and the second through hole 146 are disposed in the center of the partition plate 143.
  • the first through hole 145 passes through the first air collecting port 132 of the first centrifugal fan 131, and the second through hole 146 is provided to the second centrifugal fan 151.
  • the second gas collection port 152 passes through.
  • the first centrifugal fan 131 and the second centrifugal fan 151 suck the air that exchanges heat with the heat exchanger 140 in the heat exchanger accommodating chamber 144, thereby forming a first heat exchange gas stream and a second heat exchange gas stream, respectively.
  • the first impeller 133 of the first centrifugal fan 131 and the first volute 134 are disposed in a space defined by the partition 143 and the casing 112, and the exhaust port of the first volute 134 faces the side wall of the casing 110;
  • the intake port of the air guiding member 136 is in contact with the exhaust port of the first volute 134.
  • the second impeller 153 and the second volute 154 of the second centrifugal fan 151 are disposed in the space defined by the partition 143 and the casing 112, and the exhaust port of the second volute 154 faces the other of the casing 110.
  • One side wall; the air inlet of the second air guiding member 156 is in contact with the exhaust port of the second volute 154.
  • FIG. 7 is a schematic view showing the structure in which the first air blowing unit 130 and the second air blowing unit 150 supply air to the air jet assembly 120 in the indoor unit 100 of the wall-mounted air conditioner according to an embodiment of the present invention.
  • the first air blowing assembly 130 includes a first centrifugal fan 131 and a first air guiding member 136.
  • the second air blowing assembly 150 includes a second centrifugal fan 151 and a second air guiding member 156.
  • the first air supply assembly 130 and the second air supply assembly 150 of the present embodiment each employ a centrifugal fan as a power source for the heat exchange airflow.
  • the first centrifugal fan 131 accelerates the gas by the first impeller 133 rotating at a high speed according to the principle that the kinetic energy is converted into potential energy, and then decelerates and changes the flow direction to convert the kinetic energy into potential energy.
  • the first centrifugal fan 131 generally includes a first gas collection port 132, a first impeller 133, and a first volute 134.
  • the first air collection port 132 of the first centrifugal fan 131 functions to ensure that the air flow can uniformly fill the inlet interface of the first impeller 133, thereby reducing the flow loss.
  • the first air collection port 132 of the first centrifugal fan 131 is oriented.
  • the direction of the first impeller 133 is tapered to form a bell mouth, and the air exchanged with the heat exchanger 140 in the heat exchanger accommodating chamber 144 can be sucked into the first impeller 133 as much as possible.
  • the first impeller 133 of the first centrifugal fan 131 is rotated by the first high-speed motor 135, the gas between the first impellers 133 is rotated by the first impeller 133 to obtain centrifugal force, and the gas is drawn out of the first impeller 133, and enters the first A volute 134, the gas pressure in the first volute 134 is increased and directed to discharge. After the gas between the blades is discharged, a negative pressure is formed; the heat exchanger 140 in the heat exchanger accommodating chamber 144 outside the first gas collection port 132 is continuously sucked in to form a continuous gas flow.
  • the first impeller 133 of the first centrifugal fan 131 and the first volute 134 are disposed in a space defined by the partition 143 and the casing 112, and the exhaust port of the first volute 134 faces the side wall of the casing 110;
  • the intake port of the air guiding member 136 is in contact with the exhaust port of the first volute 134.
  • the first volute 134 is spirally shaped to absorb the air drawn from the first impeller 133 and convert the dynamic pressure of the airflow into a static pressure through a wide cross-sectional area.
  • the first air guiding member 136 is connected between the exhaust port of the first centrifugal fan 131 and the first air inlet 1281, and is configured to guide the airflow discharged by the first centrifugal fan 131 into the first air supply chamber 125.
  • the first air guiding member 136 may include a first drainage section 137 and a first air supply section 138.
  • the first drainage section 137 has an intake port of the first air guiding member 136, and at least a part of the first drainage section 137 is spirally shaped, and the direction of the airflow discharged from the first centrifugal fan 131 is directed downward, and the first drainage section 137
  • the air inlet from the first air guiding member 136 is tapered in the airflow direction to accelerate the airflow into the first plenum 139 of the first air supply section 138.
  • the first air supply section 138 is in contact with the first drainage section 137, and defines a first air collection chamber 139 therein to receive the airflow discharged by the first centrifugal fan 131.
  • the first air supply section 138 is opened toward the first air inlet.
  • the port 1281 is configured to supply the airflow of the first plenum 139 to the first air supply chamber 125.
  • the first air supply section 138 forms a volute shape along the air outlet direction of the first drainage section 137, reducing the wind resistance of the airflow in the first air collection chamber 139, thereby forming a vortex in the first air collection chamber 139, which can smoothly
  • the ground passes from the first collecting chamber 139 to the first air supply chamber 125.
  • the first drainage section 137 may be disposed on one side of the first centrifugal fan 131. Due to the space limitation of the partition 143, the front and rear distances of the first drainage section 137 are small, and the first air supply section 138 is located in the heat exchanger receiving cavity. Below the 144 (that is, below the partition 143 and the heat exchanger 140), the distance in the front-rear direction is greater than the first drainage section 137, and the exhaust port of the first air supply section 138 is disposed in the first collection chamber 139. The front portion on the side of the first air injection portion 128 (corresponding to the position of the first air inlet 1281).
  • the structure of the second air blowing member 150 coincides with the first air blowing member 130.
  • the second centrifugal fan 151 generally includes a second gas collection port 152, a second impeller 153, and a second volute 154.
  • the second air collection port 152 of the second centrifugal fan 151 functions to ensure that the air flow can uniformly fill the inlet interface of the second impeller 153, reducing flow loss.
  • the second air collection port 152 of the second centrifugal fan 151 is tapered toward the second impeller 153 to form a bell mouth, and the air that exchanges heat with the heat exchanger 140 in the heat exchanger accommodating chamber 144 can be sucked into the second impeller 153 as much as possible.
  • the second impeller 153 and the second volute 154 of the second centrifugal fan 151 are disposed in the space defined by the partition 143 and the casing 112, and the exhaust port of the second volute 154 faces the side wall of the casing 110;
  • the intake port of the air guiding member 156 is in contact with the exhaust port of the second volute 154.
  • the second volute 154 is spirally shaped to absorb the air drawn from the second impeller 153 and convert the dynamic pressure of the airflow into a static pressure through a wide cross-sectional area.
  • the second air guiding member 156 is connected between the exhaust port of the second centrifugal fan 151 and the second air inlet 1291, and is configured to guide the airflow discharged by the second centrifugal fan 151 into the second air supply chamber.
  • the second air guiding member 156 may include a second drainage section 157 and a second air supply section 158.
  • the second drainage section 157 has an intake port of the second air guiding member 156, and at least a portion of the second drainage section 157 is spirally shaped to guide the direction of the airflow discharged from the second centrifugal fan 151 downward, and the second drainage section 157
  • the air inlet from the second air guiding member 156 is tapered in the airflow direction to accelerate the airflow into the second plenum 159 of the second air supply section 158.
  • the second air supply section 158 is in contact with the second drainage section 157, and defines a second air collection chamber 159 therein to receive the airflow discharged by the second centrifugal fan 151, and the second air supply section 158 is opened toward the second air intake.
  • the port 1281 is for supplying the airflow of the second plenum 159 to the second air supply chamber.
  • the second air supply section 158 forms a volute shape along the air outlet direction of the second drainage section 157, reducing the wind resistance of the airflow in the second air collection chamber 159, thereby forming a vortex in the second air collection chamber 159, which can be smoothly performed.
  • the ground passes from the second collecting chamber 159 to the second air supply chamber.
  • the second drainage section 157 may be disposed on one side of the second centrifugal fan 151. Due to the space limitation of the partition 143, the front and rear distances of the second drainage section 157 are small, and the second air supply section 158 is located in the heat exchanger receiving cavity. Below the 144 (that is, below the partition 143 and the heat exchanger 140), the distance in the front-rear direction is greater than the second drainage section 157, and the exhaust opening of the second air supply section 158 is disposed in the second collection chamber 159. The front portion on the side of the second air injection portion 129 (corresponding to the position of the second air inlet 1291).
  • the first air blowing component 130 and the second air blowing component 150 can cooperate with each other to realize air supply, and the two can be started at the same time, and can be separately activated.
  • the working modes of the first air blowing component 130 and the second air blowing component 150 can include: The two winds are operated at different wind speeds, the first air blowing member 130 is operated separately, the second air blowing member 150 is operated separately, and the first air blowing member 130 and the second air blowing member 150 are alternately operated.
  • the above working mode can be used in conjunction with various sensors of the indoor unit 100, and the operation of the indoor unit 100 is controlled to adjust the operation of the first air blowing member 130, the second air blowing member 150, and the heat exchanger 140 according to a preset control mode.
  • the first air blowing member 130 and the second air blowing member 150 can be simultaneously activated at the same wind speed (determined by the temperature difference between the set temperature and the actual temperature) Continuous operation; additionally, by setting the wind speeds of the first air blowing component 130 and the second air blowing component 150 to be different, the direction of the air supply airflow is adjusted accordingly to adapt to the indoor space; in some special working conditions (for example, When the air is blown separately on one side, the first air blowing component 130 and the second air blowing component 150 can be selectively activated, and the first air blowing component 130 and the second air blowing component 150 can also be alternately activated. It is similar to the effect of the left and right swing winds, and ensures the balanced operation of the internal components of the indoor unit 100.
  • the control mode is more flexible and convenient, and can meet the air supply requirements of different working conditions, thereby greatly improving the user experience.
  • the air supply port 117 under the housing 110 is configured to arrange the annular jet assembly 120, so that the airflow exchanged by the heat exchanger 140 is ejected from the jet assembly 120, and is sucked and sent.
  • the ambient air around the air outlet 117 is mixed with the heat exchange airflow with a sharp temperature difference in the surrounding environment, thereby ensuring that the airflow sent out is soft, and the feeling of blowing to the human body is more comfortable.
  • the air volume of the indoor unit 100 is increased, and the indoor air is accelerated.
  • the flow of the indoor temperature can be uniformly lowered as a whole, and the air outlet of the wall-mounted air conditioner indoor unit 100 of the present invention is an oblong (also referred to as a racetrack shape) disposed under the housing 110, and the overall structure and current Some traditional hanging indoor units are similar, easy to be accepted by users, and easy to replace the existing traditional hanging indoor units.
  • the installation position is flexible, the internal components are compact, and the space inside the housing 110 is fully utilized, so that the wall-mounted air conditioner can be made.
  • the indoor unit 100 becomes thinner.
  • the flow direction of the heat exchange airflow of the wall-mounted air conditioner indoor unit 100 of the present embodiment is such that after the first centrifugal fan 131 and the second centrifugal fan 151 are activated, the air around the indoor unit 100 is sucked into the heat exchanger accommodating chamber 144 from the air inlet 116. Internally, heat exchange is performed with the heat exchanger 140. A portion of the heat exchanged airflow enters the first centrifugal fan 131, is accelerated by the first impeller 133, enters the first air guiding member 136 via the first volute 134, and passes through the first guiding section 137 of the first air guiding member 136. And entering the first air collection chamber 139 of the first air supply section 138. The airflow vortexes in the first plenum 139 and finally passes through the exhaust port of the first air supply section 138 from the first air inlet 1281 into the annular first air supply chamber 125, thereby forming a first heat exchange airflow.
  • the other part of the heat exchanged airflow enters the second centrifugal fan 151, is accelerated by the second impeller 153, enters the second air guiding member 156 via the second volute 154, and passes through the second drainage section 157 of the second air guiding member 156. Guided into the second plenum 159 of the second supply section 158. The airflow vortexes in the second plenum 159 and finally passes through the exhaust port of the second air supply section 158 from the second air inlet 1291 into the annular second air supply chamber, thereby forming a second heat exchange airflow.
  • the high speed is ejected forward from the first air outlet 124, and the air circulation area 118 at the rear of the air supply port 117 is driven.
  • the air is sucked through the first ventilation hole 1282, mixed in the front of the indoor unit 100, and sent into the room, and the amount of airflow is greatly increased, and the airflow after the heat exchange is mixed with the ambient air to become a cool and cool airflow. Speed up the flow of indoor air.
  • the second heat exchange airflow After entering the second air supply chamber, the second heat exchange airflow is directed forward from the second air outlet under the guidance of the rear side edge of the annular inner wall of the second air injection portion 129, and drives the air at the rear of the air supply port 117.
  • the air in the circulation area 118 is drawn through the second ventilation holes 1292.

Abstract

一种壁挂式空调器室内机(100),包括:壳体(110),开设有进风口(116)以及送风口(117),送风口(117)为呈长圆形,设置于壳体(110)的下部;换热器(140),设置于壳体(110)内部;喷气组件(120),设置于送风口(117)内,其包括横向排列的第一喷气部(128)和第二喷气部(129),第一喷气部(128)和第二喷气部(129)的内周壁上形成有第一喷气口(124)和第二喷气口,分别用于将第一喷气部(128)、第二喷气部(129)内的气流向前喷出,带动第一喷气部(128)、第二喷气部(129)内周壁限定出的第一抽风孔(1282)、第二抽风孔(1292)中的环境空气向前送出;第一送风组件(130),用于产生从进风口(116)进入,与换热器(140)进行换热后供向第一喷气部(128)内的第一换热气流,第二送风组件(150),用于产生从进风口(116)进入,与换热器(140)进行换热后供向第二喷气部(129)内的第二换热气流。该壁挂式空调器室内机送风柔,换热速度快,结构紧凑,符合用户的使用习惯,送风模式灵活,能满足不同要求的调节要求。

Description

壁挂式空调器室内机 技术领域
本发明涉及空调器,特别是涉及壁挂式空调器室内机。
背景技术
空调器是必备的家用电器之一,随着用户对舒适性以及健康的要求也越来越高,传统空调的送风方式是将冷风送入室内后,与周围空气缓慢对流,换热速度较慢,不能给人迅速凉爽的感觉,而将室内机的送风口对人直吹,会对用户健康带来不利影响,容易出现空调病。
针对这一问题,现有技术中出现了柔和送风的喷射出风口的室内机,其利用较小的出风口带动周围空气吹出,使得换热后的空气与周围空气混合送出,然而喷射出风口对结构的要求较高,使得喷射出风口大多应用于空间较为充裕的柜式室内机中。而应用喷射出风口的挂式室内机为了满足喷射出风口的结构要求往往需要将机壳设置为圆形或者其他不规则的形状,一方面与用户的使用习惯以及对挂式室内机的已有认知存在差距,不容易被用户接受;另一方面也为挂式室内机的安装带来麻烦,因此应用喷射出风口的挂式室内机不能满足用户的使用要求。
发明内容
本发明的一个目的是要提供一种送风柔和换热速度快的壁挂式空调器室内机。
本发明一个进一步的目的是要使得壁挂式空调器室内机的结构紧凑,符合用户的使用习惯。
本发明另一个进一步的目的是要使得壁挂式空调器室内机送风模式灵活,满足不同要求的调节要求。
特别地,本发明提供了一种壁挂式空调器室内机,其包括:壳体,其开设有进风口以及送风口,送风口为呈长圆形,设置于壳体的下部;换热器,设置于壳体内部;喷气组件,设置于送风口内,其包括横向排列的第一喷气部和第二喷气部,第一喷气部和第二喷气部的内周壁上分别形成有第一喷气口和第二喷气口,第一喷气口用于将第一喷气部内的气流向前喷出,并带动 第一喷气部内周壁限定出的第一抽风孔中的环境空气向前送出,第二喷气口用于将第二喷气部内的气流向前喷出,并带动第二喷气部内周壁限定出的第二抽风孔中的环境空气向前送出,并且第一抽风孔和第二抽风孔分别在送风方向的上游与周围环境连通;第一送风组件以及第二送风组件,横向间隔设置于壳体内部,其中第一送风组件用于产生从进风口进入,与换热器进行换热后供向第一喷气部内的第一换热气流,第二送风组件用于产生从进风口进入,与换热器进行换热后供向第二喷气部内的第二换热气流。
可选地,第一喷气部和第二喷气部分别由环形内壁和环形外壁构成,并且第一喷气部的环形外壁与环形内壁共同限定出第一供风腔,第一喷气部的环形外壁与环形内壁相接的边缘形成第一喷气口,第一喷气部远离的第二喷气部一侧的端部开有与第一送风组件连通的第一进气口,从而将第一换热气流引入第一供风腔;第二喷气部的环形外壁与环形内壁共同限定出第二供风腔,第二喷气部的环形外壁与环形内壁相接的边缘形成第二喷气口,第二喷气部远离的第一喷气部一侧的端部开有与第二送风组件连通的第二进气口,从而将第二换热气流引入第二供风腔。
可选地,第一喷气部的环形内壁的后侧边缘向第一供风腔内部凹入,并且第一喷气部的环形外壁与环形内壁的后侧边缘相对的位置具有向外的翻边,从而使得第一喷气部的环形外壁与环形内壁的后侧边缘之间的缝隙形成第一喷气口;第二喷气部的环形内壁的后侧边缘向第二供风腔内部凹入,并且第二喷气部的环形外壁与环形内壁的后侧边缘相对的位置具有向外的翻边,从而使得第二喷气部的环形外壁与环形内壁的后侧边缘之间的缝隙形成第二喷气口。
可选地,第一喷气部的环形内壁从其后侧边缘向前延伸形成连续向外扩展的第一柯恩达表面;并且第一喷气部的环形外壁位于喷气组件后侧的部分的截面成螺旋状,从而使得第一供风腔的气流沿第一喷气部的环形外壁从第一喷气口喷出后,沿第一柯恩达表面向前送出,并带动抽出第一抽风孔内的环境空气;并且第二喷气部的环形内壁从其后侧边缘向前延伸形成连续向外扩展的第二柯恩达表面;并且第二喷气部的环形外壁位于喷气组件后侧的部分的截面成螺旋状,从而使得第二供风腔的气流沿第二喷气部的环形外壁从第二喷气口喷出后,沿第二柯恩达表面向前送出,并带动抽出第二抽风孔内的环境空气。
可选地,第一送风组件包括:第一离心风机以及第一导风部件,第一离心风机作为第一换热气流的动力源,第一导风部件连接于第一离心风机的排气口以及第一进气口之间,以将第一离心风机排出的气流引导进入第一供风腔;第二送风组件包括:第二离心风机以及第二导风部件,第二离心风机作为第二换热气流的动力源,第二导风部件连接于第二离心风机的排气口以及第二进气口之间,以将第二离心风机排出的气流引导进入第二供风腔。
可选地,壳体包括:罩壳以及设置于罩壳前方的前面板;壁挂式空调器室内机还包括隔板,隔板纵向设置于壳体内部喷气组件的上方,隔板与前面板之间限定出换热器容纳腔,换热器设置于换热器容纳腔内;并且第一离心风机和第二离心风机的叶轮与蜗壳均设置于隔板与罩壳限定的空间内。
可选地,隔板的中部设置有横向间隔设置的第一通孔和第二通孔;第一离心风机的集气口从第一通孔穿出,以从换热器容纳腔吸入空气,并且第一离心风机的蜗壳的排气口朝向第一进气口一侧的壳体的侧壁,第一导风部件的进气口与第一离心风机的蜗壳的排气口相接;第二离心风机的集气口从第二通孔穿出,以从换热器容纳腔吸入空气,并且第二离心风机的蜗壳的排气口朝向第二进气口一侧的壳体的侧壁,第二导风部件的进气口与第二离心风机的蜗壳的排气口相接。
可选地,第一导风部件包括:第一引流段,其具有第一导风部件的进气口,并且第一引流段的至少部分段体成螺旋状,将第一离心风机排出的气流方向引导为向下;第一供风段,与第一引流段相接,其内部限定出第一集气腔,以接纳第一离心风机排出的气流,第一供风段开有与第一进气口相接的第一排气口,以使第一集气腔的气流供向第一供风腔;并且第二导风部件包括:第二引流段,其具有第二导风部件的进气口,并且第二引流段的至少部分段体成螺旋状,将第二离心风机排出的气流方向引导为向下;第二供风段,与第二引流段相接,其内部限定出第二集气腔,以接纳第二离心风机排出的气流,第二供风段开有与第二进气口相接的第二排气口,以使第二集气腔的气流供向第二供风腔。
可选地,第一引流段从第一导风部件的进气口沿气流方向渐缩,第一供风段沿第一引流段的出风方向形成蜗壳状,减少第一换热气流在第一集气腔内的风阻;第二引流段从第二导风部件的进气口沿气流方向渐缩,第二供风段沿第二引流段的出风方向形成蜗壳状,减少第二换热气流在第二集气腔内 的风阻。
可选地,罩壳与前面板的下部形成前后贯穿的送风口,并且罩壳的后侧形成送风口的位置向前凹入,使得在送风口后方具有空气流通区域。
本发明的壁挂式空调器室内机,壳体下方设置有长圆形的送风口,用于布置环形的喷气组件,喷气组件包括两个独立设置的第一喷气部和第二喷气部,分别由第一送风组件以及第二送风组件供应经过换热器换热的气流,使得换热后的气流从第一喷气部和第二喷气部的喷气口喷出,抽吸送风口周围环境空气,与周围环境温差剧烈的换热气流进行混合,从而保证送出的气流柔和,吹至人体的感受更加舒适,一方面增大了送风量,加快了室内空气的流动,可以使室内温度整体均匀下降,而且本发明的壁挂式空调器室内机的出风口为长圆跑道形,设置于壳体的下方,整体结构与现有的传统挂式室内机较为相似,容易被用户接受,而且容易替换现有的传统挂式室内机,安装位置灵活。
进一步地,本发明的壁挂式室内机,两个送风组件,分别向喷气组件的两个喷气部提供换热后的气流,并最终从喷气口喷出,两个送风组件互相配合,共同送风,可以根据工况分别独立进行控制,例如选择同时按照相同风量送风;按照不同风量分别送风;择一启动送风,从而使得室内机出风满足这些不同工况的要求,控制更加灵活,满足用户的不同要求。
更进一步地,本发明的壁挂式空调器室内机,内部部件结构紧凑,充分利用壳体内的空间,可以使壁挂式空调器室内机变得更薄。
更进一步地,本发明的壁挂式空调器室内机,对换热器、离心风机、导风部件等部件的位置和构造均进行了改进,一方面减小了占用空间,另一方面也可以减少了送风风阻。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的壁挂式空调器室内机的示意性外观图;
图2是根据本发明一个实施例的壁挂式空调器室内机的示意性爆炸图;
图3是根据本发明一个实施例的壁挂式空调器室内机中喷气组件的示意图;
图4是图3所示的喷气组件中第一喷气部的正视图;
图5是沿图4中的剖切线A-A截取的示意性剖视的气流流向图;
图6是根据本发明一个实施例的壁挂式空调器室内机中内部部件的示意图;以及
图7是根据本发明一个实施例的壁挂式空调器室内机中第一送风组件和第二送风部件向喷气组件送风的结构示意图。
具体实施方式
本实施例提供了一种壁挂式空调器室内机100,为了便于描述,说明书中提及的“上”“下”“前”“后”“顶”“底”等方位均按照壁挂式空调器室内机100正常工作状态下的空间位置关系进行限定,例如壁挂式空调器室内机100面向用户的一侧为前,贴靠于安装位置的一侧为后。
图1是根据本发明一个实施例的壁挂式空调器室内机100的示意性外观图,以及图2是根据本发明一个实施例的壁挂式空调器室内机100的示意性爆炸图。壁挂式空调器室内机100一般性地可包括:壳体110、喷气组件120、换热器140、第一送风组件130、第二送风组件150。其中壳体110可以包括:罩壳112以及设置于罩壳112前方的前面板114。罩壳112由顶壁、侧壁、后背形成,这些部件共同限定出容纳内部部件的空间,前面板114布置于罩壳112的前方,从而封闭罩壳112的内部空间。壳体110上开设有进风口116以及送风口117。其中送风口117为呈长圆形设置于壳体110的下部,并在送风方向的上游与周围环境连通。进风口116可以选择开设在以下位置的任一处或多处:前面板114、罩壳112的顶壁、罩壳112的侧壁处。由于进风口116的位置会影响到进风气流的方向,可以根据换热器140的位置、形状以及第一送风组件130、第二送风组件150的位置进行配置,进风口116可以通过在壳体110上设置孔洞、格栅等形成。
在一些优选实施例中,送风口117可以前后贯穿设置于壳体110的下部(罩壳112以及前面板114的相应位置均开有长圆形的通孔,从而形成该前后贯穿的送风口117。罩壳112的后侧形成送风口117的位置向前凹入,使 得在送风口117后方具有空气流通区域118,从而使得送风口117内部与空气流通区域118连通,供喷气组件120喷出的换热气体可以从该空气流通区域118抽吸环境空气,进行混合,混合后的气流与周围环境的温差小,更加柔和,而且送风量更大,加快了室内空气的流动。
另外,喷气组件120也可以设置于壳体110的下部靠前的位置,壳体110在喷气组件120的后部,也即在送风方向的上游开有与周围环境连通的镂空区,供喷气组件120喷出的换热气体可以通过镂空区抽吸环境空气,进行混合。
换热器140,设置于壳体110内部。换热器140与流经其的空气进行热交换,以改变流经其的空气的温度。换热器140作为制冷系统的一部分,制冷系统可以利用压缩制冷循环来实现,压缩制冷循环利用制冷剂在压缩机、冷凝器、蒸发器、节流装置的压缩相变循环实现热量的传递。制冷系统还可以设置四通阀,改变制冷剂的流向,使室内机换热器140交替作为蒸发器或冷凝器,实现制冷或者制热功能。由于空调器中压缩制冷循环是本领域技术人员所习知,其工作原理和构造在此不做赘述。换热器140贴靠于壳体110的前面板114设置。
喷气组件120,设置于送风口117内,喷气组件120具有两个横向排列的第一喷气部128和第二喷气部129,第一喷气部128和第二喷气部129整体均呈长圆环形(或称跑道形),其可以相对于喷气组件120的中心对称设置,第一喷气部128的中央具有第一抽风孔1282,第二喷气部129的中央具有第二抽风孔1292。第一抽风孔1282和第二抽风孔1292分别在送风方向的上游与周围环境连通。
第一喷气部128和第二喷气部129的内周壁上分别形成有第一喷气口124和第二喷气口(图中未标记),第一喷气口124用于将第一喷气部128内的气流向前喷出,并带动第一喷气部128内周壁限定出的第一抽风孔1282中的环境空气向前送出,第二喷气口用于将第二喷气部129内的气流向前喷出,并带动第二喷气部129内周壁限定出的第二抽风孔1292中的环境空气向前送出。
第一喷气部128和第二喷气部129可以分别由各自的环形内壁和环形外壁构成,并且第一喷气部128的环形外壁与环形内壁共同限定出第一供风腔125,第一喷气部128的环形外壁与环形内壁相接的边缘形成第一喷气口 124,第一喷气部128远离的第二喷气部129一侧的端部开有与第一送风组件130连通的第一进气口1281,从而将第一换热气流引入第一供风腔125。
第二喷气部129与第一喷气部128的结构一致,并且对称设置,因此第二喷气部129的环形外壁与环形内壁共同限定出第二供风腔(图中未标记),第二喷气部129的环形外壁与环形内壁相接的边缘形成第二喷气口(图中未标记),第二喷气部129远离的第一喷气部128一侧的端部开有与第二送风组件150连通的第二进气口1291,从而将第二换热气流引入第二供风腔。
由于第二喷气部129与第一喷气部128的结构一致,以下结合附图对第一喷气部128的结构进行介绍。第一喷气部128及其内部部件的尺寸、规格,可以根据第一送风组件130的送风能力进行设置。图3是根据本发明一个实施例的壁挂式空调器室内机100中喷气组件120的示意图,图4是图3所示的喷气组件120中第一喷气部128的正视图,图5是沿图4中的剖切线A-A截取的示意性剖视的气流流向图。第一喷气部128包括环形内壁121和环形外壁122,环形内壁121和环形外壁122共同形成上述长圆形,并且环形内壁121的内侧为第一抽风孔1282。环形外壁122与环形内壁121相接的边缘形成第一喷气口124,第一喷气口124用于将第一供风腔125的气流向前喷出,并使得送风口117后部的空气抽吸穿过送风口117。
环形内壁121的后侧边缘126向第一供风腔125内部凹入,并且环形外壁122与环形内壁121的后侧边缘126相对的位置具有向外的翻边127,从而使得环形外壁122与环形内壁121的后侧边缘126之间的缝隙形成第一喷气口124。环形内壁121向第一供风腔125内部凹入的后侧边缘126还可以具有气流方向引导的作用,使第一供风腔125内的气流顺利地从第一喷气口124送出。
环形内壁121从其后侧边缘126向前延伸形成连续向外扩展的柯恩达表面;并且环形外壁122位于喷气组件120后侧的部分的截面成螺旋状,从而使得第一供风腔125的气流沿环形外壁122从第一喷气口124喷出后,沿环形内壁121形成的第一柯恩达表面向前送出,并带动抽出送风口117后方的环境空气。环形内壁121向前延伸连续向外扩展的扩展倾斜角度可以为5至15度,倾斜角度越大,喷气口124喷出的气流的扩展速度越快,经过大量的测试,环形内壁121的扩展倾斜角度可以设置为6至10度之间,这样更有利于与第一抽风孔1282中的环境空气进行混合。
环形内壁121和环形外壁122共同限定出第一喷气部128内部的环形的第一供风腔125,环形外壁122的横向一端(远离第二喷气部128的一端)设置有用于向第一供风腔125提供经换热器140换热后气流的第一进气口1281。
在一些可选实施例中,第一喷气部128整体可以成长圆形,环形内壁121和环形外壁122分别具有两段间隔的水平区段以及连接两段水平区段的两段弧形区段,其中两段弧形区段中远离第二喷气部128的一段的环形外壁122上开设有第一喷气部128的第一进气口1281,用于接收第一送风组件130提供的经过换热后的气流。
环形内壁121和环形外壁122的上述区段可以由多个连接的部件拼接形成,在一些优选实施例中,环形内壁121和环形外壁122也可以由整体的模制件形成。
第一喷气口124可以为连续的环形槽,在一些可选实施例中,第一喷气口124也可以在环形内壁121和环形外壁122的一部分区段上形成,或者为间隔的多段。例如第一喷气口124可以仅仅设置在水平区段上,使得喷气更加均匀,并且可以有效地带动第一抽风孔1282内的环境空气。为了提高第一喷气口124的射流速度,第一喷气口124的宽度可以设置为1至3mm,经过大量的测试,第一喷气口124的宽度可以优选设置为2mm左右,该尺寸宽度的第一喷气口124既保证换热气流的喷射速度,又可以尽量减少换热气流的风阻损失,减小噪音。在图5中实线箭头为环境空气的气流方向,虚线箭头为喷气口124喷出的换热气流的气流方向。
第二喷气部129具有与第一喷气部128相同的结构,第二喷气部129的环形内壁的后侧边缘向第二供风腔内部凹入,并且第二喷气部129的环形外壁与环形内壁的后侧边缘相对的位置具有向外的翻边,从而使得第二喷气部129的环形外壁与环形内壁的后侧边缘之间的缝隙形成第二喷气口。第二喷气部129的环形内壁从其后侧边缘向前延伸形成连续向外扩展的第二柯恩达表面;并且第二喷气部129的环形外壁位于喷气组件120后侧的部分的截面成螺旋状,从而使得第二供风腔的气流沿第二喷气部129的环形外壁从第二喷气口喷出后,沿第二柯恩达表面向前送出,并带动抽出第二抽风孔1292内的环境空气。第二喷气部129的环形外壁的横向一端(远离第一喷气部128的一端)设置有用于向第二供风腔提供经换热器140换热后气流的第二进气 口1291。
第二喷气部129的其他结构细节可以从第一喷气部128的描述中相应得出,在此不做重复。
在一些优选实施例中,喷气组件120还可以由电机与传动机构驱动,实现整体的上下摆动,调节送风角度,实现摆动送风,从而使得出风范围更宽广。
第一送风组件130以及第二送风组件150,横向间隔设置于壳体110内部,其中第一送风组件130用于产生从进风口116进入,与换热器140进行换热后通过第一进气口1281供入第一供风腔125的第一换热气流;第二送风组件150用于产生从进风口116进入,与换热器140进行换热后通过第二进气口1291供入第二供风腔的第二换热气流。
第一送风组件130和第二送风组件150以换热器140的中心对称设置,第一送风组件130和第二送风组件150分别向喷气组件120两侧的第一进气口1281和第二进气口1291送风。
第一送风组件130包括:第一离心风机131以及第一导风部件136。第一离心风机131作为第一换热气流流动的动力源,可以配置成使得环境空气从进风口116进入并与换热器140进行换热,经过第一离心风机131后向气流下游排出,最终通过喷气组件120送出室内机100外部。第一导风部件136连接于第一离心风机131的排气口以及第一进气口1281之间,并用于将第一离心风机131排出的气流引导进入第一供风腔125。
第二送风组件150包括:第二离心风机151以及第二导风部件156。第二离心风机151作为第二换热气流流动的动力源,可以配置成使得环境空气从进风口116进入并与换热器140进行换热,经过第二离心风机151后向气流下游排出,最终通过第二喷气部129送出室内机100外部。第二导风部件156连接于第二离心风机151的排气口以及第二进气口1291之间,并用于将第二离心风机151排出的气流引导进入第二供风腔。
图6是根据本发明一个实施例的壁挂式空调器室内机100中内部部件的示意图。壁挂式空调器室内机100的内部还包括隔板143,隔板143纵向设置于壳体110内部喷气组件120的上方,隔板143与前面板114之间限定出换热器容纳腔144。隔板143可以具有与换热器140外形相适配的凹陷,从而可以将换热器140固定在换热器容纳腔144内。换热器140设置于换热器 容纳腔144内,其形状可以设置为板状、多段式、U型等,在一些可选实施例中,换热器140可以为多段板状,一部分贴靠于前面板114设置,另一部分贴靠设置于罩壳112的顶壁。换热器140的位置可以根据进风口116的位置进行设置。
隔板143的中央设置有第一通孔145和第二通孔146,第一通孔145供第一离心风机131的第一集气口132穿过,第二通孔146供第二离心风机151的第二集气口152穿过。第一离心风机131和第二离心风机151吸入换热器容纳腔144内与换热器140换热的空气,从而分别形成第一换热气流和第二换热气流。第一离心风机131的第一叶轮133与第一蜗壳134设置于隔板143与罩壳112限定的空间内,并且第一蜗壳134的排气口朝向壳体110的侧壁;第一导风部件136的进气口与第一蜗壳134的排气口相接。
相类似地,第二离心风机151的第二叶轮153与第二蜗壳154设置于隔板143与罩壳112限定的空间内,并且第二蜗壳154的排气口朝向壳体110的另一侧壁;第二导风部件156的进气口与第二蜗壳154的排气口相接。
图7是根据本发明一个实施例的壁挂式空调器室内机100中第一送风组件130和第二送风部件150向喷气组件120送风的结构示意图。第一送风组件130包括:第一离心风机131以及第一导风部件136,第二送风组件150包括:第二离心风机151以及第二导风部件156。为了保证空气射流速度,本实施例的第一送风组件130和第二送风组件150均采用了离心风机作为换热气流的动力源。
第一离心风机131根据动能转换为势能的原理,利用高速旋转的第一叶轮133将气体加速,然后减速、改变流向,使动能转换成势能。第一离心风机131一般包括第一集气口132、第一叶轮133、第一蜗壳134。第一离心风机131的第一集气口132的作用为保证气流能均匀地充满第一叶轮133的进口界面,降低流动损失,在本实施例中,第一离心风机131的第一集气口132向第一叶轮133的方向渐缩,形成喇叭口,可以尽量将换热器容纳腔144内与换热器140换热的空气吸入第一叶轮133。第一离心风机131的第一叶轮133由第一高速电机135带动随轴旋转时,第一叶轮133间的气体随第一叶轮133旋转而获得离心力,气体被甩出第一叶轮133,进入第一蜗壳134,第一蜗壳134内的气体压强增高被导向排出。叶片间的气体被排出后,形成负压;第一集气口132外的换热器容纳腔144内的换热器140空气不断地被 吸入,从而形成连续气流。
第一离心风机131的第一叶轮133与第一蜗壳134设置于隔板143与罩壳112限定的空间内,并且第一蜗壳134的排气口朝向壳体110的侧壁;第一导风部件136的进气口与第一蜗壳134的排气口相接。第一蜗壳134成螺旋形,其吸集从第一叶轮133中甩出的空气,并通过渐阔的截面积,将气流的动压力转化为静压。
第一导风部件136连接于第一离心风机131的排气口以及第一进气口1281之间,并用于将第一离心风机131排出的气流引导进入第一供风腔125。第一导风部件136可以包括第一引流段137和第一供风段138。
第一引流段137具有第一导风部件136的进气口,并且第一引流段137的至少部分段体成螺旋状,将第一离心风机131排出的气流方向引导为向下,第一引流段137从第一导风部件136的进气口沿气流方向渐缩,从而加快气流进入第一供风段138的第一集气腔139的风速。
第一供风段138与第一引流段137相接,其内部限定出第一集气腔139,以接纳第一离心风机131排出的气流,第一供风段138开有朝向第一进气口1281,以使第一集气腔139的气流供向第一供风腔125。第一供风段138沿第一引流段137的出风方向形成蜗壳状,减少气流在第一集气腔139内的风阻,使其在第一集气腔139内形成涡旋,能够顺利地从第一集气腔139通向第一供风腔125。
上述第一引流段137可以设置在第一离心风机131的一侧,由于隔板143的空间限制,第一引流段137的前后距离较小,而第一供风段138位于换热器容纳腔144的下方(也即隔板143和换热器140的下方),因此其前后方向的距离大于第一引流段137,第一供风段138的排气口设置于第一集气腔139贴靠于第一喷气部128一侧的前部(与第一进气口1281的位置对应)。
第二送风部件150的结构与第一送风部件130一致。具体地,第二离心风机151一般包括第二集气口152、第二叶轮153、第二蜗壳154。第二离心风机151的第二集气口152的作用为保证气流能均匀地充满第二叶轮153的进口界面,降低流动损失。第二离心风机151的第二集气口152向第二叶轮153的方向渐缩,形成喇叭口,可以尽量将换热器容纳腔144内与换热器140换热的空气吸入第二叶轮153。第二离心风机151的第二叶轮153由第二高速电机155带动随轴旋转时,第二叶轮153间的气体随第二叶轮153旋转而 获得离心力,气体被甩出第二叶轮153,进入第二蜗壳154,第二蜗壳154内的气体压强增高被导向排出。叶片间的气体被排出后,形成负压;第二集气口152外的换热器容纳腔144内的换热器140空气不断地被吸入,从而形成连续气流。
第二离心风机151的第二叶轮153与第二蜗壳154设置于隔板143与罩壳112限定的空间内,并且第二蜗壳154的排气口朝向壳体110的侧壁;第二导风部件156的进气口与第二蜗壳154的排气口相接。第二蜗壳154成螺旋形,其吸集从第二叶轮153中甩出的空气,并通过渐阔的截面积,将气流的动压力转化为静压。
第二导风部件156连接于第二离心风机151的排气口以及第二进气口1291之间,并用于将第二离心风机151排出的气流引导进入第二供风腔。第二导风部件156可以包括第二引流段157和第二供风段158。
第二引流段157具有第二导风部件156的进气口,并且第二引流段157的至少部分段体成螺旋状,将第二离心风机151排出的气流方向引导为向下,第二引流段157从第二导风部件156的进气口沿气流方向渐缩,从而加快气流进入第二供风段158的第二集气腔159的风速。
第二供风段158与第二引流段157相接,其内部限定出第二集气腔159,以接纳第二离心风机151排出的气流,第二供风段158开有朝向第二进气口1281,以使第二集气腔159的气流供向第二供风腔。第二供风段158沿第二引流段157的出风方向形成蜗壳状,减少气流在第二集气腔159内的风阻,使其在第二集气腔159内形成涡旋,能够顺利地从第二集气腔159通向第二供风腔。
上述第二引流段157可以设置在第二离心风机151的一侧,由于隔板143的空间限制,第二引流段157的前后距离较小,而第二供风段158位于换热器容纳腔144的下方(也即隔板143和换热器140的下方),因此其前后方向的距离大于第二引流段157,第二供风段158的排气口设置于第二集气腔159贴靠于第二喷气部129一侧的前部(与第二进气口1291的位置对应)。
第一送风部件130和第二送风部件150可以互相配合实现送风,两者可以同时启动,可以单独启动,第一送风部件130和第二送风部件150的工作模式可以包括:两者以同一风速运行,两者以不同风速运行,第一送风部件130单独运行、第二送风部件150单独运行、第一送风部件130和第二送风 部件150交替运行。
以上工作模式可以配合室内机100的各种传感器使用,通过对室内机100工作环境的检测,按照预设控制模式调整第一送风部件130、第二送风部件150以及换热器140的运行状态,例如在需要对室内机100整体进行温度调整时,可以同时启动第一送风部件130和第二送风部件150,并以相同的风速(可以按照设定温度与实际温度的温差确定)持续运行;另外还可以通过将第一送风部件130和第二送风部件150的风速设置为不同,使得送风气流的方向相应调整,以适应室内空间;在一些特殊工况下(例如需要对某一侧单独送风时),第一送风部件130和第二送风部件150还可以择一启动,另外第一送风部件130和第二送风部件150还可以交替启动,从而实现类似于左右摆风的效果,并且保证室内机100内部部件的平衡运行。
由于第一送风部件130和第二送风部件150分别单独向不同的喷气部供风,其控制方式更加灵活方便,可以满足不同工况的送风要求,大大提高了用户的使用体验。
本实施例的壁挂式空调器室内机100,壳体110下方的送风口117,用于布置环形的喷气组件120,使经过换热器140换热的气流从喷气组件120喷出,抽吸送风口117周围环境空气,与周围环境温差剧烈的换热气流进行混合,从而保证送出的气流柔和,吹至人体的感受更加舒适,一方面增大了室内机100的送风量,加快了室内空气的流动,可以使室内温度整体均匀下降,而且本发明的壁挂式空调器室内机100的出风口为长圆形(亦可称为跑道形),设置于壳体110的下方,整体结构与现有的传统挂式室内机较为相似,容易被用户接受,而且容易替换现有的传统挂式室内机,安装位置灵活,内部部件结构紧凑,充分利用壳体110内的空间,可以使壁挂式空调器室内机100变得更薄。
本实施例的壁挂式空调器室内机100的换热气流的流向为:第一离心风机131和第二离心风机151启动后,室内机100周围的空气从进风口116吸入换热器容纳腔144内,与换热器140进行热交换。换热后的气流一部分进入第一离心风机131,经过第一叶轮133的加速,经第一蜗壳134进入第一导风部件136,经过第一导风部件136的第一引流段137的导向,进入第一供风段138的第一集气腔139。气流在第一集气腔139以涡流式行进最终经过第一供风段138的排气口从第一进气口1281进入环形的第一供风腔125, 从而形成第一换热气流。
换热后的气流另一部分进入第二离心风机151,经过第二叶轮153的加速,经第二蜗壳154进入第二导风部件156,经过第二导风部件156的第二引流段157的导向,进入第二供风段158的第二集气腔159。气流在第二集气腔159以涡流式行进最终经过第二供风段158的排气口从第二进气口1291进入环形的第二供风腔,从而形成第二换热气流。
第一换热气流进入第一供风腔125后,在环形内壁121的后侧边缘126的导向下,高速从第一喷气口124向前喷出,带动送风口117后部的空气流通区域118的空气抽吸穿过第一抽风孔1282,在室内机100前方混合后送入室内,出风风量大幅增加,同时换热后的气流与环境空气混合,变成凉而不冷的柔和气流,加快了室内空气的流动。第二换热气流在进入第二供风腔后,在第二喷气部129的环形内壁的后侧边缘的导向下,高速从第二喷气口向前喷出,带动送风口117后部的空气流通区域118的空气抽吸穿过第二抽风孔1292。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种壁挂式空调器室内机,包括:
    壳体,其开设有进风口以及送风口,所述送风口为呈长圆形,设置于所述壳体的下部;
    换热器,设置于所述壳体内部;
    喷气组件,设置于所述送风口内,其包括横向排列的第一喷气部和第二喷气部,所述第一喷气部和所述第二喷气部的内周壁上分别形成有第一喷气口和第二喷气口,所述第一喷气口用于将所述第一喷气部内的气流向前喷出,并带动所述第一喷气部内周壁限定出的第一抽风孔中的环境空气向前送出,所述第二喷气口用于将所述第二喷气部内的气流向前喷出,并带动所述第二喷气部内周壁限定出的第二抽风孔中的环境空气向前送出,并且所述第一抽风孔和所述第二抽风孔分别在送风方向的上游与周围环境连通;
    第一送风组件以及第二送风组件,横向间隔设置于所述壳体内部,其中所述第一送风组件用于产生从所述进风口进入,与所述换热器进行换热后供向所述第一喷气部内的第一换热气流,所述第二送风组件用于产生从所述进风口进入,与所述换热器进行换热后供向所述第二喷气部内的第二换热气流。
  2. 根据权利要求1所述的壁挂式空调器室内机,其中
    所述第一喷气部和所述第二喷气部分别由环形内壁和环形外壁构成,并且
    所述第一喷气部的环形外壁与环形内壁共同限定出第一供风腔,所述第一喷气部的环形外壁与环形内壁相接的边缘形成所述第一喷气口,所述第一喷气部远离所述的第二喷气部一侧的端部开有与所述第一送风组件连通的第一进气口,从而将所述第一换热气流引入所述第一供风腔;
    所述第二喷气部的环形外壁与环形内壁共同限定出第二供风腔,所述第二喷气部的环形外壁与环形内壁相接的边缘形成所述第二喷气口,所述第二喷气部远离所述的第一喷气部一侧的端部开有与所述第二送风组件连通的第二进气口,从而将所述第二换热气流引入所述第二供风腔。
  3. 根据权利要求2所述的壁挂式空调器室内机,其中
    所述第一喷气部的环形内壁的后侧边缘向所述第一供风腔内部凹入,并且所述第一喷气部的环形外壁与环形内壁的后侧边缘相对的位置具有向外 的翻边,从而使得所述第一喷气部的环形外壁与环形内壁的后侧边缘之间的缝隙形成所述第一喷气口;
    所述第二喷气部的环形内壁的后侧边缘向所述第二供风腔内部凹入,并且所述第二喷气部的环形外壁与环形内壁的后侧边缘相对的位置具有向外的翻边,从而使得所述第二喷气部的环形外壁与环形内壁的后侧边缘之间的缝隙形成所述第二喷气口。
  4. 根据权利要求3所述的壁挂式空调器室内机,其中
    所述第一喷气部的环形内壁从其后侧边缘向前延伸形成连续向外扩展的第一柯恩达表面;并且所述第一喷气部的环形外壁位于所述喷气组件后侧的部分的截面成螺旋状,从而使得所述第一供风腔的气流沿所述第一喷气部的环形外壁从所述第一喷气口喷出后,沿所述第一柯恩达表面向前送出,并带动抽出所述第一抽风孔内的环境空气;并且
    所述第二喷气部的环形内壁从其后侧边缘向前延伸形成连续向外扩展的第二柯恩达表面;并且所述第二喷气部的环形外壁位于所述喷气组件后侧的部分的截面成螺旋状,从而使得所述第二供风腔的气流沿所述第二喷气部的环形外壁从所述第二喷气口喷出后,沿所述第二柯恩达表面向前送出,并带动抽出所述第二抽风孔内的环境空气。
  5. 根据权利要求2所述的壁挂式空调器室内机,其中
    所述第一送风组件包括:第一离心风机以及第一导风部件,所述第一离心风机作为所述第一换热气流的动力源,所述第一导风部件连接于所述第一离心风机的排气口以及所述第一进气口之间,以将所述第一离心风机排出的气流引导进入所述第一供风腔;
    所述第二送风组件包括:第二离心风机以及第二导风部件,所述第二离心风机作为所述第二换热气流的动力源,所述第二导风部件连接于所述第二离心风机的排气口以及所述第二进气口之间,以将所述第二离心风机排出的气流引导进入所述第二供风腔。
  6. 根据权利要求5所述的壁挂式空调器室内机,其中
    所述壳体包括:罩壳以及设置于所述罩壳前方的前面板;
    所述壁挂式空调器室内机还包括隔板,所述隔板纵向设置于所述壳体内部所述喷气组件的上方,所述隔板与所述前面板之间限定出换热器容纳腔,所述换热器设置于所述换热器容纳腔内;并且
    所述第一离心风机和所述第二离心风机的叶轮与蜗壳均设置于所述隔板与所述罩壳限定的空间内。
  7. 根据权利要求6所述的壁挂式空调器室内机,其中
    所述隔板的中部设置有横向间隔设置的第一通孔和第二通孔;
    所述第一离心风机的集气口从所述第一通孔穿出,以从所述换热器容纳腔吸入空气,并且所述第一离心风机的蜗壳的排气口朝向所述第一进气口一侧的所述壳体的侧壁,所述第一导风部件的进气口与所述第一离心风机的蜗壳的排气口相接;
    所述第二离心风机的集气口从所述第二通孔穿出,以从所述换热器容纳腔吸入空气,并且所述第二离心风机的蜗壳的排气口朝向所述第二进气口一侧的所述壳体的侧壁,所述第二导风部件的进气口与所述第二离心风机的蜗壳的排气口相接。
  8. 根据权利要求7所述的壁挂式空调器室内机,其中
    所述第一导风部件包括:第一引流段,其具有所述第一导风部件的进气口,并且所述第一引流段的至少部分段体成螺旋状,将所述第一离心风机排出的气流方向引导为向下;第一供风段,与所述第一引流段相接,其内部限定出第一集气腔,以接纳所述第一离心风机排出的气流,所述第一供风段开有与所述第一进气口相接的第一排气口,以使所述第一集气腔的气流供向所述第一供风腔;并且
    所述第二导风部件包括:第二引流段,其具有所述第二导风部件的进气口,并且所述第二引流段的至少部分段体成螺旋状,将所述第二离心风机排出的气流方向引导为向下;第二供风段,与所述第二引流段相接,其内部限定出第二集气腔,以接纳所述第二离心风机排出的气流,所述第二供风段开有与所述第二进气口相接的第二排气口,以使所述第二集气腔的气流供向所述第二供风腔。
  9. 根据权利要求8所述的壁挂式空调器室内机,其中
    所述第一引流段从所述第一导风部件的进气口沿所述气流方向渐缩,所述第一供风段沿所述第一引流段的出风方向形成蜗壳状,减少所述第一换热气流在所述第一集气腔内的风阻;
    所述第二引流段从所述第二导风部件的进气口沿所述气流方向渐缩,所述第二供风段沿所述第二引流段的出风方向形成蜗壳状,减少所述第二换热 气流在所述第二集气腔内的风阻。
  10. 根据权利要求6所述的壁挂式空调器室内机,其中
    所述罩壳与所述前面板的下部形成前后贯穿的所述送风口,并且所述罩壳的后侧形成所述送风口的位置向前凹入,使得在所述送风口后方具有空气流通区域。
PCT/CN2018/106567 2017-09-28 2018-09-19 壁挂式空调器室内机 WO2019062625A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710901442.7 2017-09-28
CN201710901442.7A CN107747770B (zh) 2017-09-28 2017-09-28 壁挂式空调器室内机

Publications (1)

Publication Number Publication Date
WO2019062625A1 true WO2019062625A1 (zh) 2019-04-04

Family

ID=61254518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106567 WO2019062625A1 (zh) 2017-09-28 2018-09-19 壁挂式空调器室内机

Country Status (2)

Country Link
CN (1) CN107747770B (zh)
WO (1) WO2019062625A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795107A (zh) * 2021-09-17 2021-12-14 箭和自动化工程江苏有限公司 一种基于工业自动化控制仪表系统的控制柜及控制方法
CN114294711A (zh) * 2021-12-08 2022-04-08 约克广州空调冷冻设备有限公司 风机盘管

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107747770B (zh) * 2017-09-28 2024-03-19 青岛海尔空调器有限总公司 壁挂式空调器室内机
CN113865041B (zh) * 2021-08-31 2023-03-21 青岛海尔空调器有限总公司 壁挂空调器的送风控制方法与壁挂空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117643A (ja) * 2013-12-19 2015-06-25 パナソニックIpマネジメント株式会社 送風装置
CN105650743A (zh) * 2016-03-28 2016-06-08 广东美的制冷设备有限公司 空调室内机
CN105650745A (zh) * 2016-03-28 2016-06-08 广东美的制冷设备有限公司 空调室内机
CN105674406A (zh) * 2016-03-28 2016-06-15 美的集团武汉制冷设备有限公司 送风部件和空调室内机
CN107747770A (zh) * 2017-09-28 2018-03-02 青岛海尔空调器有限总公司 壁挂式空调器室内机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200181348Y1 (ko) * 1999-12-15 2000-05-15 정선엔지니어링주식회사 제트팬이 부착된 산업용 공기조화기
JP4358832B2 (ja) * 2005-03-14 2009-11-04 三菱電機株式会社 冷凍空調装置
JP2007191084A (ja) * 2006-01-20 2007-08-02 Denso Corp 空気吸引装置
CN102230482B (zh) * 2011-07-04 2013-04-17 李耀强 无叶风扇
JP5950810B2 (ja) * 2012-12-13 2016-07-13 三菱電機株式会社 空気調和機の室内機
CN204693612U (zh) * 2015-03-31 2015-10-07 四川长虹电器股份有限公司 一种空调室内主机
CN105864899B (zh) * 2016-06-01 2019-04-19 珠海格力电器股份有限公司 空调室内机和空调器
CN206113133U (zh) * 2016-09-23 2017-04-19 青岛海尔空调器有限总公司 空调室内机
CN207422413U (zh) * 2017-09-28 2018-05-29 青岛海尔空调器有限总公司 壁挂式空调器室内机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117643A (ja) * 2013-12-19 2015-06-25 パナソニックIpマネジメント株式会社 送風装置
CN105650743A (zh) * 2016-03-28 2016-06-08 广东美的制冷设备有限公司 空调室内机
CN105650745A (zh) * 2016-03-28 2016-06-08 广东美的制冷设备有限公司 空调室内机
CN105674406A (zh) * 2016-03-28 2016-06-15 美的集团武汉制冷设备有限公司 送风部件和空调室内机
CN107747770A (zh) * 2017-09-28 2018-03-02 青岛海尔空调器有限总公司 壁挂式空调器室内机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795107A (zh) * 2021-09-17 2021-12-14 箭和自动化工程江苏有限公司 一种基于工业自动化控制仪表系统的控制柜及控制方法
CN114294711A (zh) * 2021-12-08 2022-04-08 约克广州空调冷冻设备有限公司 风机盘管
CN114294711B (zh) * 2021-12-08 2023-07-04 约克广州空调冷冻设备有限公司 风机盘管

Also Published As

Publication number Publication date
CN107747770B (zh) 2024-03-19
CN107747770A (zh) 2018-03-02

Similar Documents

Publication Publication Date Title
CN107655075B (zh) 壁挂式空调器室内机
CN108050588B (zh) 壁挂式空调器室内机
WO2019062625A1 (zh) 壁挂式空调器室内机
CN108151138B (zh) 壁挂式空调器室内机
CN107655076B (zh) 壁挂式空调器室内机
WO2019085943A1 (zh) 壁挂式空调器室内机
WO2019062626A1 (zh) 壁挂式空调器室内机
WO2019085731A1 (zh) 壁挂式空调器室内机
CN107906599B (zh) 壁挂式空调器室内机
CN108050586B (zh) 壁挂式空调器室内机
CN107906598B (zh) 壁挂式空调器室内机
CN107747765B (zh) 壁挂式空调器室内机
WO2019085944A1 (zh) 壁挂式空调器室内机
CN107747768B (zh) 壁挂式空调器室内机
CN108036403B (zh) 壁挂式空调器室内机
CN107917464B (zh) 壁挂式空调器室内机
CN107747767B (zh) 壁挂式空调器室内机
CN107906605B (zh) 壁挂式空调器室内机
CN107869784B (zh) 壁挂式空调器室内机
CN107860062B (zh) 壁挂式空调器室内机
CN107940552B (zh) 壁挂式空调器室内机
CN110056963A (zh) 壁挂式空调器室内机
WO2019096315A1 (zh) 壁挂式空调器室内机
WO2019096313A1 (zh) 壁挂式空调器室内机
CN108072106B (zh) 壁挂式空调器室内机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862410

Country of ref document: EP

Kind code of ref document: A1