WO2014168257A1 - 配向膜形成用組成物 - Google Patents

配向膜形成用組成物 Download PDF

Info

Publication number
WO2014168257A1
WO2014168257A1 PCT/JP2014/060883 JP2014060883W WO2014168257A1 WO 2014168257 A1 WO2014168257 A1 WO 2014168257A1 JP 2014060883 W JP2014060883 W JP 2014060883W WO 2014168257 A1 WO2014168257 A1 WO 2014168257A1
Authority
WO
WIPO (PCT)
Prior art keywords
alignment film
film
resin substrate
liquid crystal
composition
Prior art date
Application number
PCT/JP2014/060883
Other languages
English (en)
French (fr)
Inventor
忠弘 小林
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US14/783,688 priority Critical patent/US20160054495A1/en
Priority to KR1020157031687A priority patent/KR20150143571A/ko
Priority to JP2015511325A priority patent/JPWO2014168257A1/ja
Publication of WO2014168257A1 publication Critical patent/WO2014168257A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133635Multifunctional compensators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a composition for forming an alignment film.
  • a member including an optically anisotropic film such as a polarizing plate or a retardation plate is used.
  • an optically anisotropic film an optically anisotropic film produced by applying a composition containing a liquid crystal compound onto a substrate is known.
  • Patent Document 1 describes an optically anisotropic film obtained by applying a composition containing a liquid crystal compound on a substrate subjected to an alignment treatment.
  • the present invention includes the following inventions.
  • An alignment film forming composition comprising an alignment film forming material, N-methyl-2-pyrrolidone, and a hydrocarbon having a boiling point of 100 to 200 ° C.
  • the content of N-methyl-2-pyrrolidone is 60% by mass to 99.9% by mass with respect to the total amount of the composition for forming an alignment film, and the content of hydrocarbon having a boiling point of 100 to 200 ° C.
  • the resin substrate with an alignment film according to [5] wherein the resin substrate is made of a polyolefin resin.
  • [7] A method for producing a resin substrate with an alignment film, wherein the alignment film forming composition according to any one of [1] to [4] is applied to a resin substrate and dried.
  • [8] A laminate having the alignment film-attached resin substrate according to [5] or [6] and an optically anisotropic film in the order of a resin substrate, an alignment film, and an optically anisotropic film.
  • the laminate according to [8] in which 80% or more of the alignment film does not peel from the substrate on an area basis in an adhesion test according to JIS-K5600.
  • the laminate according to [8] or [9] wherein the optically anisotropic film is a retardation film.
  • a resin base material with an alignment film is produced by applying the composition according to any one of [1] to [4] to a resin base material, and further on the alignment film surface of the resin base material with an alignment film.
  • the manufacturing method of the laminated body which has the resin base material, the oriented film, and the optically anisotropic film in this order characterized by apply
  • a display device comprising the laminate according to any one of [8] to [11].
  • composition for forming an alignment film of the present invention it is possible to improve the adhesion between the alignment film and the resin base material, and in the laminate having the resin base material, the alignment film and the optically anisotropic film, The adhesion between the resin base material, the alignment film, and the optically anisotropic film can be improved.
  • composition for forming an alignment film of the present invention includes an alignment film forming material, N-methyl-2-pyrrolidone, and a hydrocarbon having a boiling point of 100 to 200 ° C.
  • the alignment film forming material examples include an alignment polymer and a photoalignment polymer, and an alignment polymer is preferable.
  • the material for forming an alignment film is a solvent resistance that does not dissolve in a solvent used when a composition containing a liquid crystal compound described later is applied, and a heat resistance in a heat treatment for adjusting the removal of the organic solvent and the alignment of the liquid crystal compound. And have.
  • the alignment polymer examples include polyamides and gelatins having an amide bond in the molecule, polyimides having an imide bond in the molecule and polyamic acid, polyvinyl alcohol, alkyl-modified polyvinyl alcohol, polyacrylamide, polyoxazole, Examples include polyethyleneimine, polystyrene, polyvinylpyrrolidone, polyacrylic acid, and polyacrylic acid esters. Among these, at least one selected from polyamide, polyimide and polyamic acid is preferable.
  • the orientation polymer may be one type, a composition combining a plurality of types of polymers, or a copolymer combining a plurality of types of polymers.
  • polymers can be easily obtained by subjecting the monomer to polycondensation such as dehydration or dealcoholization, chain polymerization such as radical polymerization, anionic polymerization, and cationic polymerization, coordination polymerization, or ring-opening polymerization.
  • orientation polymers include Sanever (registered trademark, manufactured by Nissan Chemical Industries), Optomer (registered trademark, manufactured by JSR), and the like.
  • the alignment film formed from the alignment polymer facilitates liquid crystal alignment of the liquid crystal compound.
  • various liquid crystal alignments such as horizontal alignment, vertical alignment, hybrid alignment, and tilt alignment can be controlled depending on the type of alignment polymer and rubbing conditions, and can be used to improve the viewing angle of various liquid crystal panels.
  • Examples of the photo-alignment polymer include a polymer having a photosensitive structure.
  • a polymer having a photosensitive structure When a polymer having a photosensitive structure is irradiated with polarized light, the photosensitive structure in the irradiated portion is isomerized or cross-linked so that the photo-alignable polymer is aligned, and an alignment regulating force is imparted to the film made of the photo-alignable polymer.
  • the Examples of the photosensitive structure include an azobenzene structure, a maleimide structure, a chalcone structure, a cinnamic acid structure, a 1,2-vinylene structure, a 1,2-acetylene structure, a spiropyran structure, a spirobenzopyran structure, and a fulgide structure.
  • the photo-alignment polymer that forms the alignment film may be one type, a combination of a plurality of polymers having different structures, or a copolymer having a plurality of different photosensitive structures.
  • the photoalignable polymer is obtained by subjecting a monomer having a photosensitive structure to polycondensation such as dehydration or dealcoholization, chain polymerization such as radical polymerization, anion polymerization, or cationic polymerization, coordination polymerization, or ring-opening polymerization.
  • Examples of the photo-alignment polymer include light described in Japanese Patent No. 4450261, Japanese Patent No. 4011652, Japanese Patent Application Laid-Open No. 2010-49230, Japanese Patent No. 444090, Japanese Patent Application Publication No. 2007-156439, Japanese Patent Application Laid-Open No. 2007-232934, and the like.
  • An orientation polymer etc. are mentioned.
  • the photo-alignment polymer a polymer that forms a crosslinked structure by irradiation with polarized light is preferable from the viewpoint of durability.
  • N-methyl-2-pyrrolidone and hydrocarbon having a boiling point of 100 to 200 ° C. contained in the alignment film forming composition are solvents.
  • N-methyl-2-pyrrolidone has a tendency to sufficiently dissolve the alignment film forming material, and hydrocarbons having a boiling point of 100 to 200 ° C. are formed from the alignment film formed from the alignment film forming composition and the resin base material. There is a tendency to improve the adhesion.
  • the boiling point in this specification means the boiling point at 1 atm.
  • the hydrocarbon in this specification is a compound composed of a carbon atom and a hydrogen atom.
  • hydrocarbons having a boiling point of 100 to 200 ° C. include octane, nonane, decane, 2,4-dimethylhexane, 2,5-dimethylhexane, 2-methylheptane, 3-methylheptane, 2-methyloctane, 3
  • a chain aliphatic hydrocarbon such as methyloctane, an aromatic hydrocarbon such as ethylbenzene, n-propylbenzene, m-ethyltoluene, p-ethyltoluene, o-xylene, m-xylene, p-xylene, mesitylene, and the like;
  • cycloaliphatic hydrocarbons such as cycloheptane, cyclooctane, cyclononane, cyclodecane, methylcyclohex
  • cycloaliphatic hydrocarbons Preferred are cycloaliphatic hydrocarbons, more preferred are methylcyclohexane, ethylcyclohexane and propylcyclohexane, and even more preferred is ethylcyclohexane.
  • the content of N-methyl-2-pyrrolidone is preferably 60% by mass to 99.9% by mass, more preferably 65% by mass to 99% by mass, and still more preferably, with respect to the total amount of the composition for forming an alignment film. 70 mass% to 99 mass%.
  • the content of hydrocarbon having a boiling point of 100 to 200 ° C. is preferably 0.1% by mass to 40% by mass, more preferably 1% by mass to 30% by mass with respect to the total amount of the alignment film forming composition, More preferably, it is 5% by mass to 20% by mass.
  • the content ratio of N-methyl-2-pyrrolidone and hydrocarbon having a boiling point of 100 to 200 ° C. is usually 10: 1 to 3: 1, preferably 9: 1 to 5: 1.
  • the composition for forming an alignment film may contain a solvent other than N-methyl-2-pyrrolidone and a hydrocarbon having a boiling point of 100 to 200 ° C.
  • the solvent include water; alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, methyl cellosolve, butyl cellosolve; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, propylene glycol methyl ether.
  • Ester solvents such as acetate and ethyl lactate; Ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl amyl ketone, and methyl isobutyl ketone; Aliphatic hydrocarbon solvents such as pentane, hexane, and heptane; Aromatic carbonization such as benzene Hydrogen solvent (excluding hydrocarbons with a boiling point of 100 to 200 ° C); Nitrile solvents such as acetonitrile; Propylene glycol monomethyl ether, tetrahydro Rofuran, ether solvents such as dimethoxyethane; halogenated hydrocarbon solvents such as chloroform and the like. These organic solvents may be used alone or in combination. As the solvent, an alcohol solvent is preferable.
  • the content of the solvent is preferably 10 parts by mass to 100000 parts by mass, more preferably 1000 parts by mass to 50000 parts by mass, and still more preferably 2000 parts by mass to 20000 parts by mass with respect to 100 parts by mass of the alignment film forming material. It is.
  • the content of the alignment film forming composition excluding N-methyl-2-pyrrolidone, hydrocarbon having a boiling point of 100 to 200 ° C. and a solvent is 0.2% with respect to the total mass part of the alignment film forming composition.
  • the content is preferably 10% by mass to 10% by mass, and more preferably 0.5% to 5% by mass.
  • the present invention also relates to an alignment film-provided resin substrate obtained by applying an alignment film forming composition to a resin substrate.
  • An alignment film-attached resin substrate is one in which an alignment film is formed on the surface of a resin substrate.
  • An alignment film-attached resin substrate formed from the alignment film forming composition is less likely to cause peeling of the alignment film due to friction during transportation.
  • the resin substrate is usually a translucent resin substrate.
  • the translucent resin base material means a resin base material having translucency capable of transmitting light, particularly visible light, and the translucency is a transmissivity with respect to a light beam having a wavelength of 380 to 780 nm. % Or more.
  • the resin base is usually a film.
  • Examples of the resin constituting the translucent resin base material include polyolefins such as polyethylene, polypropylene, and norbornene polymers; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid ester; polyacrylic acid ester; cellulose ester; polyethylene naphthalate; Examples include sulfone; polyether sulfone; polyether ketone; polyphenylene sulfide; and polyphenylene oxide.
  • the resin substrate may be subjected to a surface treatment before applying the alignment film forming composition.
  • the surface treatment method include, for example, a method of treating the surface of the resin substrate with corona or plasma under vacuum or atmospheric pressure, a method of laser treating the resin substrate surface, a method of treating the surface of the resin substrate with ozone, A method of saponifying a resin substrate surface or a method of flame treating a resin substrate surface, a primer treatment method of applying a coupling agent to a resin substrate surface, a reactive monomer or a reactive polymer as a resin substrate Examples thereof include a graft polymerization method in which a reaction is performed by irradiating the surface with radiation, plasma or ultraviolet rays. Among these, a method of corona or plasma treatment of the resin substrate surface under vacuum or atmospheric pressure is preferable.
  • a resin substrate is placed between opposed electrodes, and corona or plasma is generated to treat the surface of the resin substrate, or a gas is flowed between the opposed electrodes.
  • a method is preferred in which the gas is plasmatized between the electrodes and the plasmatized gas is sprayed onto the resin substrate.
  • Such surface treatment with corona or plasma is usually performed by a commercially available surface treatment apparatus.
  • a method for producing an alignment film-attached resin substrate a method for applying an alignment film forming composition to a resin substrate and drying the resin substrate, applying an alignment film forming composition to a resin substrate, drying, and rubbing the surface thereof
  • Examples thereof include a method, a method of applying a composition for forming an alignment film on a resin base material, drying, and irradiating polarized light.
  • a method for applying and drying the alignment film-forming composition containing the alignment polymer, and application and drying. A method of rubbing the surface is preferred.
  • Examples of the method for applying the alignment film forming composition to the resin substrate include an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a CAP coating method, and a die coating method.
  • coating using coaters such as a dip coater, a bar coater, a spin coater, is also mentioned.
  • the resin substrate with an alignment film can be produced, for example, by applying a composition for forming an alignment film to a resin substrate and drying it to remove low boiling components such as a solvent.
  • Drying methods include natural drying, ventilation drying, heat drying, vacuum drying, and a combination of these.
  • the drying temperature is preferably 10 to 250 ° C, more preferably 25 to 200 ° C.
  • the drying time is preferably 5 seconds to 60 minutes, more preferably 10 seconds to 30 minutes, depending on the type of solvent.
  • alignment film forming material there are materials that exhibit the property of liquid crystal alignment of liquid crystal compounds only by coating and drying (hereinafter, sometimes referred to as alignment regulating force). There are some which show the alignment control force by doing.
  • a film formed by applying a composition for forming an alignment film on a resin substrate and drying a rotating rubbing roll wound with a rubbing cloth (hereinafter referred to as a dry film). There is a method of bringing it into contact.
  • the photo-alignment polymer is preferably a polymer that forms a crosslinked structure by light irradiation from the viewpoint of the durability of the alignment film.
  • Examples of the method of irradiating polarized light include a method performed using an apparatus described in JP-A-2006-323060.
  • a patterned alignment film can be formed by repeatedly irradiating polarized light such as linearly polarized ultraviolet light for each region through a photomask corresponding to a desired plurality of regions.
  • polarized light such as linearly polarized ultraviolet light
  • a photomask usually, a light shielding pattern provided on a film of quartz glass, soda lime glass or polyester is used. The portion covered with the light-shielding pattern blocks the irradiated polarized light, and the portion not covered transmits the irradiated polarized light. Quartz glass is preferable in that the influence of thermal expansion is small.
  • the irradiated polarized light is preferably ultraviolet light.
  • the thickness of the alignment film formed on the resin substrate with an alignment film is usually 10 nm to 10000 nm, preferably 10 nm to 1000 nm.
  • the liquid crystal compound can be aligned in a desired direction or angle on the alignment film, which is preferable.
  • the evaluation of adhesion can be performed by an adhesion test according to JIS-K5600.
  • the adhesion test may be performed using a commercially available apparatus such as a cross-cut guide I series (CCI-1, 1 mm interval, for 25 squares) manufactured by Cortec Corporation.
  • a cross-cut guide I series CCI-1, 1 mm interval, for 25 squares
  • the alignment film is peeled from the resin base material.
  • the mass held without being is usually 9 or more in 25 squares, and 36% or more of the alignment film is held in a state where it is not peeled from the resin base material on the basis of area.
  • the resin substrate with an alignment film is useful as a substrate for forming an optically anisotropic film such as a retardation film and a polarizing film, and further includes a polarizing plate and a circularly polarized light containing the optically anisotropic film. It is useful as a plate member. Among these, it is particularly useful as a base material for a retardation film.
  • a retardation film is obtained by aligning a liquid crystal compound on the surface of the alignment film of the resin substrate with an alignment film.
  • the orientation include vertical orientation, horizontal orientation, hybrid orientation, and tilted orientation.
  • the vertical alignment means that the major axis of the liquid crystal compound is in a direction perpendicular to the plane of the resin substrate
  • the horizontal alignment is the length of the liquid crystal compound in the direction parallel to the plane of the resin substrate. It represents having an axis.
  • the liquid crystal compound a polymerizable liquid crystal compound is preferable.
  • the polymerizable liquid crystal compound is a liquid crystal compound having a polymerizable group.
  • the polymerizable liquid crystal compound usually forms an optically anisotropic film by polymerizing after alignment of the liquid crystal on the alignment film surface.
  • the liquid crystal alignment of the liquid crystal compound is controlled by the properties of the alignment film and the liquid crystal compound.
  • the alignment film is a material that develops horizontal alignment as an alignment regulating force
  • the liquid crystal compound can form horizontal alignment or hybrid alignment
  • the alignment film is a material that expresses vertical alignment
  • the liquid crystal compound can be aligned vertically or A tilted orientation can be formed.
  • the alignment regulating force can be arbitrarily adjusted depending on the surface state and rubbing conditions when the alignment film is formed of an alignment polymer, and polarized irradiation conditions when it is formed of a photo-alignment polymer. It is possible to adjust arbitrarily by such as.
  • the liquid crystal alignment can also be controlled by selecting the physical properties of the liquid crystal compound such as surface tension and liquid crystallinity.
  • composition containing a liquid crystal compound (hereinafter sometimes referred to as an optical anisotropic layer forming composition) is usually used.
  • the composition may include two or more liquid crystal compounds.
  • liquid crystal compound examples include a compound containing a group represented by the formula (X) (hereinafter sometimes referred to as “compound (X)”).
  • compound (X) a compound containing a group represented by the formula (X)
  • P 11 represents a polymerizable group or a hydrogen atom.
  • a 11 represents a divalent alicyclic hydrocarbon group or a divalent aromatic hydrocarbon group.
  • the hydrogen atom contained in the divalent alicyclic hydrocarbon group and divalent aromatic hydrocarbon group is a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a cyano group or a nitro group.
  • the hydrogen atom contained in the alkyl group having 1 to 6 carbon atoms and the alkoxy group having 1 to 6 carbon atoms may be substituted with a fluorine atom.
  • B 11 is —O—, —S—, —CO—O—, —O—CO—, —O—CO—O—, —CO—NR 16 —, —NR 16 —CO—, —CO—, -CS- or a single bond is represented.
  • R 16 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • E 11 represents an alkanediyl group having 1 to 12 carbon atoms, and a hydrogen atom contained in the alkanediyl group may be substituted with an alkoxy group having 1 to 5 carbon atoms, and hydrogen contained in the alkoxy group The atom may be substituted with a halogen atom.
  • —CH 2 — constituting the alkanediyl group may be replaced by —O— or —CO—.
  • the number of carbon atoms of the aromatic hydrocarbon group and alicyclic hydrocarbon group of A 11 is preferably in the range of 3 to 18, more preferably in the range of 5 to 12, and preferably 5 or 6. Particularly preferred.
  • a 11 is preferably a cyclohexane-1,4-diyl group or a 1,4-phenylene group.
  • E 11 is preferably a linear alkanediyl group having 1 to 12 carbon atoms.
  • —CH 2 — constituting the alkanediyl group may be replaced by —O—.
  • a linear alkanediyl group having 1 to 12 carbon atoms such as: —CH 2 —CH 2 —O—CH 2 —CH 2 —, —CH 2 —CH 2 —
  • B 11 is preferably —O—, —S—, —CO—O—, or —O—CO—, and more preferably —CO—O—.
  • B 12 and B 13 are each independently —O—, —S—, —C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C ( ⁇ O) —, —O.
  • —C ( ⁇ O) —O— is preferable, and —O— or —O—C ( ⁇ O) —O— is more preferable.
  • P 11 is preferably a polymerizable group.
  • the polymerizable group is preferably a radically polymerizable group or a cationically polymerizable group in terms of high polymerization reactivity, particularly photopolymerization reactivity, and is easy to handle and easy to produce a liquid crystal compound.
  • the polymerizable group is preferably a group represented by the following formula (P-11) to formula (P-15). [In the formulas (P-11) to (P-13), R 17 to R 21 each independently represents an alkyl group having 1 to 6 carbon atoms or a hydrogen atom. ]
  • P 11 is preferably a group represented by formula (P-14) to formula (P-20), more preferably a vinyl group, a p-stilbene group, an epoxy group or an oxetanyl group. More preferably, the group represented by P 11 -B 11- is an acryloyloxy group or a methacryloyloxy group.
  • Examples of compound (X) include compounds represented by formula (I), formula (II), formula (III), formula (IV), formula (V) or formula (VI).
  • P 11 -B 11 -E 11 -B 12 -A 11 -B 13 -A 12 -B 14 -A 13 -B 15 -A 14 -B 16 -E 12 -B 17 -P 12 (I) P 11 -B 11 -E 11 -B 12 -A 11 -B 13 -A 12 -B 14 -A 13 -B 15 -A 14 -F 11 (II) P 11 -B 11 -E 11 -B 12 -A 11 -B 13 -A 12 -B 14 -A 13 -B 15 -E 12 -B 17 -P 12 (III) P 11 -B 11 -E 11 -B 12 -A 11 -B 13 -A 12 -B 14 -A 13 -F 11 (IV) P 11 -B 11 -E 11
  • F 11 is a hydrogen atom, an alkyl group having 1 to 13 carbon atoms, an alkoxy group having 1 to 13 carbon atoms, a cyano group, a nitro group, a trifluoromethyl group, a dimethylamino group, a hydroxy group, a methylol group, a formyl group, a sulfo group.
  • liquid crystal compounds include “3.8.6 Network (completely cross-linked type)”, “6.5” of Liquid Crystal Handbook (Edited by Liquid Crystal Handbook Editorial Committee, published by Maruzen Co., Ltd., October 30, 2000). .1 Liquid Crystal Material b. Polymerizable Nematic Liquid Crystal Material ”, JP 2010-31223 A, JP 2010-270108 A, JP 2011-6360 A, and JP 2011-207765 A And the like.
  • the compound (X) include the following formula (I-1) to formula (I-4), formula (II-1) to formula (II-4), formula (III-1) to formula (III- 26), compounds represented by formula (IV-1) to formula (IV-26), formula (V-1) to formula (V-2) and formula (VI-1) to formula (VI-6). It is done.
  • k1 and k2 each independently represents an integer of 2 to 12.
  • the composition for forming an optically anisotropic layer may contain, in addition to the liquid crystal compound, a polymerization initiator, a polymerization inhibitor, a photosensitizer, a leveling agent, a chiral agent, a reactive additive, a solvent, and the like.
  • the composition for forming an optically anisotropic layer preferably contains a polymerization initiator.
  • Polymerization initiator As the polymerization initiator, a photopolymerization initiator is preferable, and a photopolymerization initiator that generates radicals by light irradiation is preferable.
  • the photopolymerization initiator include benzoin compounds, benzophenone compounds, benzyl ketal compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, ⁇ -acetophenone compounds, triazine compounds, iodonium salts, and sulfonium salts.
  • Irgacure 907, Irgacure 184, Irgacure 651, Irgacure 819, Irgacure 250, Irgacure 369 (all are made by Ciba Japan Co., Ltd.), Sake All BZ, Sake All Z, Sake All BEE (all are all Seiko) Chemical Co., Ltd.), kayacure BP100 (manufactured by Nippon Kayaku Co., Ltd.), kayakure UVI-6992 (manufactured by Dow), Adekaoptomer SP-152, Adekaoptomer SP-170 (all above, ADEKA Corporation) Product), TAZ-A, TAZ-PP (manufactured by Nippon Siebel Hegner) and TAZ-104 (manufactured by Sanwa Chemical Co., Ltd.).
  • ⁇ -acetophenone compounds are preferable, and examples of ⁇ -acetophenone compounds include 2-methyl-2-morpholino-1- (4-methylsulfanylphenyl) propan-1-one, 2-dimethylamino-1- (4-morpholino Phenyl) -2-benzylbutan-1-one, 2-dimethylamino-1- (4-morpholinophenyl) -2- (4-methylphenylmethyl) butan-1-one and the like, more preferably 2- And methyl-2-morpholino-1- (4-methylsulfanylphenyl) propan-1-one and 2-dimethylamino-1- (4-morpholinophenyl) -2-benzylbutan-1-one.
  • Examples of commercially available products of ⁇ -acetophenone compounds include Irgacure 369, 379EG, 907 (above, manufactured by BASF Japan Ltd.), Sequol BEE (manufactured by Seiko Chemical Co., Ltd.), and the like.
  • the polymerization initiator is usually 0.1 to 30 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the liquid crystal compound. If it is in the said range, since it is hard to disturb the liquid crystal alignment of a liquid crystal compound, and it can superpose
  • Polymerization inhibitors include hydroquinones having substituents such as hydroquinone and alkyl ethers; catechols having substituents such as alkyl ethers such as butylcatechol; pyrogallols, 2,2,6,6-tetramethyl-1- Radical scavengers such as piperidinyloxy radicals; thiophenols; ⁇ -naphthylamines and ⁇ -naphthols.
  • the content of the polymerization inhibitor in the composition for forming an optically anisotropic layer is usually 0.1 to 30 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the liquid crystal compound. It is. If it is in the said range, since it is hard to disturb the liquid crystal alignment of a liquid crystal compound, and it can superpose
  • Examples of the photosensitizer include xanthones such as xanthone and thioxanthone; anthracene having a substituent such as anthracene and alkyl ether; phenothiazine; and rubrene.
  • xanthones such as xanthone and thioxanthone
  • anthracene having a substituent such as anthracene and alkyl ether
  • phenothiazine phenothiazine
  • rubrene a photosensitizer
  • the content of the photosensitizer is usually 0.1 to 30 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the liquid crystal compound.
  • Leveling agent examples include organic modified silicone oil-based, polyacrylate-based and perfluoroalkyl-based leveling agents. Specifically, DC3PA, SH7PA, DC11PA, SH28PA, SH29PA, SH30PA, ST80PA, ST86PA, SH8400, SH8700, FZ2123 (all are manufactured by Toray Dow Corning Co., Ltd.), KP321, KP323, KP324, KP326, KP340, KP341, X22-161A, KF6001 (all manufactured by Shin-Etsu Chemical Co., Ltd.), TSF400, TSF401, TSF410, TSF4300, TSF4440, TSF4445, TSF-4446, TSF4452, TSF4460 (all, Momentive Performance Materials Japan GK) Manufactured), Fluorinert (registered trademark) FC-72, FC-40, FC-43, FC-3283 (above, Manufactured by Sumitomo 3M Co
  • a smoother optical anisotropic layer can be obtained by the leveling agent. Further, in the process of producing the optical anisotropic layer, the fluidity of the composition for forming an optical anisotropic layer can be controlled, and the crosslinking density of the optical anisotropic layer can be adjusted.
  • the content of the leveling agent is usually 0.1 to 30 parts by mass, preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the liquid crystal compound.
  • chiral agent examples include known chiral agents (for example, liquid crystal device handbook, Chapter 3-4-3, TN, chiral agent for STN, 199 pages, edited by Japan Society for the Promotion of Science, 142nd Committee, 1989). It is done.
  • the chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent.
  • the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • PALIOCOLOR (registered trademark) LC756 manufactured by BASF Japan Ltd. are preferable.
  • the content thereof is usually 0.1 to 30 parts by mass, preferably 1.0 to 25 parts by mass with respect to 100 parts by mass of the liquid crystal compound. If it is in the said range, since it is hard to disturb the liquid crystal alignment of a liquid crystal compound, and it can superpose
  • the reactive additive preferably has a carbon-carbon unsaturated bond and an active hydrogen reactive group in the molecule.
  • the “active hydrogen reactive group” as used herein is a group reactive to a group having active hydrogen such as a carboxyl group (—COOH), a hydroxyl group (—OH), an amino group (—NH 2 ), and the like. Typical examples include glycidyl group, oxazoline group, carbodiimide group, aziridine group, imide group, isocyanato group, thioisocyanato group, maleic anhydride group and the like.
  • the reactive additive it is preferable that at least two active hydrogen reactive groups are present. In this case, a plurality of active hydrogen reactive groups may be the same or different.
  • the carbon-carbon unsaturated bond of the reactive additive may be a carbon-carbon double bond, a carbon-carbon triple bond, or a combination thereof, but is preferably a carbon-carbon double bond.
  • the reactive additive containing a carbon-carbon unsaturated bond as a vinyl group and / or a (meth) acryl group is preferable.
  • the active hydrogen reactive group is preferably at least one selected from the group consisting of an epoxy group, a glycidyl group and an isocyanato group, and a reactive additive having an acrylic group and an isocyanato group is particularly preferable.
  • reactive additives include compounds having (meth) acrylic groups and epoxy groups, such as methacryloxyglycidyl ether and acryloxyglycidyl ether; (meth) acrylic groups and oxetane, such as oxetane acrylate and oxetane methacrylate.
  • a compound having a group a compound having a (meth) acryl group and a lactone group, such as lactone acrylate and lactone methacrylate; a compound having a vinyl group and an oxazoline group, such as vinyl oxazoline and isopropenyl oxazoline; isocyanatomethyl acrylate , Oligomers of compounds having (meth) acrylic groups and isocyanato groups, such as isocyanatomethyl methacrylate, 2-isocyanatoethyl acrylate and 20 isocyanatoethyl methacrylate And the like. Moreover, the compound etc.
  • methacryloxyglycidyl ether methacryloxyglycidyl ether, acryloxyglycidyl ether, isocyanatomethyl acrylate, isocyanatomethyl methacrylate, vinyl oxazoline, 2-isocyanatoethyl acrylate, 2-isocyanatoethyl methacrylate and the above oligomers are preferred, isocyanatomethyl acrylate, 2-isocyanatoethyl acrylate and the aforementioned oligomers are particularly preferred.
  • This preferable reactive additive is represented by the following formula (Y), for example.
  • n represents an integer of 1 to 10
  • R 1 ′ represents a divalent aliphatic or alicyclic hydrocarbon group having 2 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having 5 to 20 carbon atoms.
  • Two R 2 ′ in each repeating unit is a group represented by one of —NH— and the other of> N—C ( ⁇ O) —R 3 ′ .
  • R 3 ′ represents a group having a hydroxyl group or a carbon-carbon unsaturated bond.
  • at least one R 3 ′ is a group having a carbon-carbon unsaturated bond.
  • a compound represented by the following formula (YY) (hereinafter, sometimes referred to as “compound (YY)”) is particularly preferred (where n is as defined above). The same meaning).
  • compound (YY) a commercially available product can be used as it is or after purification as necessary. Examples of commercially available products include Laromer (registered trademark) LR-9000 (manufactured by BASF).
  • the content of the reactive additive is usually 0.1 to 30 parts by mass, preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal compound.
  • the composition for forming an optically anisotropic layer preferably contains a solvent, particularly an organic solvent, in order to improve the operability in producing the optically anisotropic layer.
  • a solvent particularly an organic solvent
  • an organic solvent capable of dissolving the constituent components of the optical anisotropic layer forming composition such as a liquid crystal compound is preferable, and when the optical anisotropic layer forming composition contains a polymerizable liquid crystal compound, Furthermore, a solvent inert to the polymerization reaction of the polymerizable liquid crystal compound is preferable.
  • alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, phenol; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, Ester solvents such as propylene glycol methyl ether acetate and ethyl lactate; Ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl amyl ketone, and methyl isobutyl ketone; Non-chlorinated aliphatic hydrocarbon solvents such as pentane, hexane, and heptane Non-chlorinated aromatic hydrocarbon solvents such as toluene and xylene; nitrile solvents such as acetonitrile;
  • the content of the organic solvent is preferably 10 parts by mass to 10,000 parts by mass, more preferably 100 parts by mass to 5000 parts by mass with respect to 100 parts by mass of the solid content.
  • the solid content concentration in the composition for forming an optically anisotropic layer is preferably 2% by mass to 50% by mass, more preferably 5% by mass to 50% by mass.
  • the “solid content” means the total of components excluding the solvent from the optical anisotropic layer forming composition.
  • An optically anisotropic film is formed by applying the composition for forming an optically anisotropic layer on the surface of the alignment film of the resin substrate with an alignment film of the present invention, or by applying and drying the composition.
  • the optically anisotropic film exhibits a liquid crystal phase such as a nematic phase, it has birefringence due to monodomain alignment.
  • the thickness of the optically anisotropic film can be adjusted as appropriate depending on the application, but is preferably 0.1 ⁇ m to 10 ⁇ m, and more preferably 0.2 ⁇ m to 5 ⁇ m from the viewpoint of reducing photoelasticity.
  • the coating method examples include an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a CAP coating method, a slit coating method, and a die coating method.
  • coating using coaters such as a dip coater, a bar coater, a spin coater, etc. are mentioned.
  • a CAP coating method, an ink jet method, a dip coating method, a slit coating method, a die coating method, and a coating method using a bar coater are preferable because they can be continuously applied in a Roll to Roll format.
  • the alignment film forming composition may be applied to a resin substrate to form an alignment film, and an optically anisotropic film may be continuously formed on the obtained alignment film surface. it can.
  • drying method examples include the same methods as the method for drying the composition for forming an alignment film at the time of manufacturing the resin substrate with an alignment film. Of these, natural drying or heat drying is preferred.
  • the drying temperature is preferably in the range of 0 ° C to 250 ° C, more preferably in the range of 50 ° C to 220 ° C, and still more preferably in the range of 80 ° C to 170 ° C.
  • the drying time is preferably 10 seconds to 60 minutes, more preferably 30 seconds to 30 minutes.
  • the optically anisotropic film contains a polymerizable liquid crystal compound
  • the polymerizable liquid crystal compound can be polymerized and cured.
  • the optically anisotropic film in which the polymerizable liquid crystal compound is polymerized is not easily affected by changes in birefringence due to heat because the liquid crystal alignment of the polymerizable liquid crystal compound is fixed.
  • Photopolymerization is preferred as a method for polymerizing the polymerizable liquid crystal compound. According to photopolymerization, since the polymerization can be carried out at a low temperature, the selection range of the resin substrate to be used is widened from the viewpoint of heat resistance.
  • the photopolymerization reaction is usually performed by irradiating visible light, ultraviolet light, or laser light, and preferably by irradiating ultraviolet light.
  • the light irradiation is preferably performed after drying and removing the solvent.
  • the drying may be performed in parallel with the light irradiation, but it is preferable to remove most of the solvent before the light irradiation.
  • the laminate of the present invention has excellent transparency in the visible light region and is useful as various display device members.
  • a laminate in which the optically anisotropic film is a retardation film converts linearly polarized light as seen from the oblique angle on the light exit side into circularly polarized light or elliptically polarized light, or converts circularly polarized light or elliptically polarized light into linearly polarized light. Or a laminate for converting the polarization direction of linearly polarized light.
  • a laminate in which the optically anisotropic film is a retardation film may be laminated, or may be combined with other films. When combined with other films, it can be used as a viewing angle compensation film, a viewing angle widening film, an antireflection film, a polarizing plate, a circular polarizing plate, an elliptical polarizing plate, or a brightness enhancement film.
  • the laminated body can change optical characteristics depending on the alignment state of the liquid crystal compound, and includes a VA (vertical alignment) mode, an IPS (in-plane switching) mode, an OCB (optically compensated bend) mode, and a TN (twisted nematic) mode.
  • VA vertical alignment
  • IPS in-plane switching
  • OCB optical compensated bend
  • TN twisted nematic
  • it can be used as a retardation plate for various liquid crystal display devices such as STN (super twisted nematic) mode.
  • the laminate is a refractive index in a slow axis direction n x in the plane, the refractive index n y in the direction perpendicular to the slow axis in the plane (fast axis direction), the refractive index in the thickness direction n z , It can be classified as follows.
  • the composition for forming an alignment film of the present invention is particularly preferably used for a positive C plate.
  • the front retardation value Re (549) may be adjusted to a range of 0 to 10 nm, preferably 0 to 5 nm, and the retardation value R th in the thickness direction is -10 to -300 nm, preferably in the range of -20 to -200 nm, and it is particularly preferable to select according to the characteristics of the liquid crystal cell.
  • the thickness direction retardation value R th which means the refractive index anisotropy in the thickness direction of the laminate, is measured by inclining the in-plane fast axis by 50 degrees with respect to the retardation value R 50 and the surface. Can be calculated from the phase difference value R0 .
  • the retardation value R th in the thickness direction is the in-plane retardation value R 0
  • the thickness d of the retardation film and the position From the average refractive index n 0 of the retardation film, n x , ny and nz can be obtained by the following formulas (9) to (11), and these can be substituted into the formula (8) for calculation.
  • Rth [( nx + ny ) / 2- nz ] * d (8)
  • R 0 (n x -n y ) ⁇ d (9)
  • ny ′ ny ⁇ nz / [ ny 2 ⁇ sin 2 ( ⁇ ) + nz 2 ⁇ cos 2 ( ⁇ )] 1/2
  • the optically anisotropic film is formed on the surface of the alignment film having high adhesion to the resin base material, peeling from the resin base material during processing is suppressed.
  • the evaluation of adhesion can be performed by an adhesion test according to JIS-K5600.
  • the adhesion test may be performed using a commercially available apparatus such as a cross-cut guide I series (CCI-1, 1 mm interval, for 25 squares) manufactured by Cortec Corporation.
  • a cross-cut guide I series CCI-1, 1 mm interval, for 25 squares
  • the mass that the film is held without peeling from the resin substrate is usually 20 or more in 25 squares. That is, in terms of area, the alignment film on which 80% or more of the optically anisotropic film is formed is held in a state where it is not peeled off from the resin substrate.
  • the laminate of the present invention is also useful as a member constituting a polarizing plate.
  • a polarizing plate 4a shown in FIG. 1 (a) is a polarizing plate in which a retardation film 1 and a polarizing film 2 are directly laminated, and a polarizing plate 4b shown in FIG. 1 (b) is a retardation film. 1 and the polarizing film 2 are the polarizing plates bonded together through adhesive layer 3 '.
  • a polarizing plate 4c shown in FIG. 1 (c) is a polarizing plate in which a retardation film 1 and a retardation film 1 ′ are laminated, and further, a retardation film 1 ′ and a polarizing film 2 are laminated.
  • a polarizing plate 4d shown in FIG. 1 (d) is obtained by laminating a retardation film 1 and a retardation film 1 ′ via an adhesive layer 3, and further laminating a polarizing film 2 on the retardation film 1 ′. It is the made polarizing plate.
  • a polarizing plate 4e shown in FIG. 1 (e) is obtained by bonding a retardation film 1 and a retardation film 1 ′ through an adhesive layer 3, and further bonding the retardation film 1 ′ and the polarizing film 2 together. It is a polarizing plate bonded through an agent layer 3 ′.
  • Adhesive means a general term for an adhesive and / or an adhesive.
  • the retardation film 1 and 1 ′ can be the laminate of the present invention in which the optically anisotropic film is a retardation film, and the polarizing film 2 is the laminate of the present invention in which the optically anisotropic film is a polarizing film.
  • the body can be used.
  • the polarizing film 2 may be a film having a polarizing function.
  • the polarizing film include a stretched film on which a dye having absorption anisotropy is adsorbed and a film coated with a dye having absorption anisotropy.
  • the dye having absorption anisotropy include dichroic dyes such as iodine and azo compounds.
  • a stretched film on which a dye having absorption anisotropy is adsorbed a film obtained by adsorbing a dichroic dye on a polyvinyl alcohol film and a film obtained by adsorbing a dichroic dye by stretching the polyvinyl alcohol film
  • polarizing films described in Japanese Patent No. 3770862, Japanese Patent No. 4432487, and the like include polarizing films described in Japanese Patent No. 3770862, Japanese Patent No. 4432487, and the like.
  • a film coated with a dye having absorption anisotropy a film obtained by applying a composition containing a dichroic dye having liquid crystallinity or a composition containing a dichroic dye and a polymerizable liquid crystal compound, etc.
  • the polarizing film as described in Unexamined-Japanese-Patent No. 2012-33249 etc. is mentioned.
  • the polarizing film 2 may be protected with a protective film as necessary.
  • Protective films include polyolefin films such as polyethylene, polypropylene, norbornene polymers, polyethylene terephthalate films, polymethacrylate films, polyacrylate films, cellulose ester films, polyethylene naphthalate films, polycarbonate films, polysulfone films, poly Examples include ether sulfone films, polyether ketone films, polyphenylene sulfide films, and polyphenylene oxide films.
  • the adhesive forming the adhesive layer 3 and the adhesive layer 3 ′ is preferably an adhesive having high transparency and excellent heat resistance.
  • adhesives include acrylic adhesives, epoxy adhesives, and urethane adhesives.
  • the display device of the present invention includes the laminate of the present invention.
  • the display device includes a liquid crystal display device including a liquid crystal panel in which the laminate of the present invention and a liquid crystal panel are bonded together, and an organic electroluminescence (hereinafter referred to as “EL” in which the laminate of the present invention and a light emitting layer are bonded. And an organic EL display device including a panel.
  • EL organic electroluminescence
  • a liquid crystal display device will be described as an embodiment of a display device including the laminate of the present invention.
  • Examples of the liquid crystal display device include liquid crystal display devices 10a and 10b shown in FIGS. 2 (a) and 2 (b).
  • the polarizing plate 4 and the liquid crystal panel 6 of the present invention are bonded together via an adhesive layer 5.
  • the polarizing plate 4 of the present invention is on one surface of the liquid crystal panel 6, the polarizing plate 4 'of the present invention is on the other surface of the liquid crystal panel 6, and the adhesive layer 5 and It has a structure in which the adhesive layers 5 'are bonded to each other.
  • an electrode not shown
  • Table 1 shows the composition of the alignment film forming composition.
  • any of propylcyclohexane was added to prepare alignment film forming compositions (1) to (5).
  • Table 1 The values in parentheses in Table 1 represent the content ratio of each component with respect to the total amount of the prepared composition.
  • SE-610 the solid content was converted from the concentration described in the delivery specification.
  • optical anisotropic layer forming composition The composition of the optically anisotropic layer forming composition (1) shown in Table 2 was prepared by mixing the components, stirring the resulting solution at 80 ° C. for 1 hour, and then cooling to room temperature.
  • LR-9000 BASF Japan's Laromer (registered trademark) LR-9000
  • Irg907 BASF Japan's Irgacure 907
  • BYK361N is a Big Chemie Japan leveling agent
  • LC242 is In the liquid crystal compound manufactured by BASF shown by the following formula, PGMEA represents propylene glycol-1-monomethyl ether-2-acetate.
  • Example 1 The surface of the cycloolefin polymer film (ZF-14, manufactured by Nippon Zeon Co., Ltd.) is 1 under the conditions of an output of 0.3 kW and a processing speed of 3 m / min using a corona treatment device (AGF-B10, Kasuga Electric Co., Ltd.) Processed once.
  • the alignment film-forming composition (1) was applied to the corona-treated surface and dried to prepare an alignment film-attached resin substrate with an alignment film having a thickness of 50 nm.
  • the composition (1) for forming a photoanisotropic layer was applied to the alignment film surface of the resin substrate with an alignment film using a bar coater, heated to 100 ° C., dried, and cooled to room temperature.
  • Example 2 A laminate (2) was produced in the same manner as in Example 1 except that the alignment film forming composition (1) in Example 1 was changed to the alignment film forming composition (2).
  • Example 3 A laminate (3) was produced in the same manner as in Example 1 except that the alignment film forming composition (1) in Example 1 was changed to the alignment film forming composition (3).
  • Example 4 A laminate (4) was produced in the same manner as in Example 1 except that the alignment film forming composition (1) in Example 1 was changed to the alignment film forming composition (4).
  • Comparative Example 1 A laminate (5) was produced in the same manner as in Example 1 except that the alignment film forming composition (1) was changed to the alignment film forming composition (5) in Example 1.
  • the retardation values of the laminates (1) to (5) prepared above were measured with a measuring instrument (KOBRA-WR, manufactured by Oji Scientific Instruments). Measurement was performed by changing the incident angle of light on the sample, and it was confirmed whether the liquid crystal was vertically aligned.
  • the phase difference value R0 ( ⁇ ) is a phase difference value at an incident angle of 0 degrees (front)
  • R50 ( ⁇ ) is a phase difference value at an incident angle of 50 degrees (tilt around the fast axis), each having a wavelength ( ⁇ ) of 549 nm.
  • the film thickness of the optically anisotropic film was measured using a laser microscope (LEXT3000, manufactured by Olympus Corporation).
  • Laminate (1) to (5) were positive C plate n x ⁇ n y ⁇ n z .
  • composition for forming an alignment film of the present invention it is possible to improve the adhesion between the alignment film and the resin base material, and in the laminate having the resin base material, the alignment film and the optically anisotropic film, The adhesion between the resin base material, the alignment film, and the optically anisotropic film can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Liquid Crystal (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

配向膜形成用材料と、N-メチル-2-ピロリドンと、沸点が100~200℃の炭化水素とを含む配向膜形成用組成物。

Description

配向膜形成用組成物
 本発明は、配向膜形成用組成物に関する。
 フラットパネル表示装置(FPD)には、偏光板、位相差板などの光学異方性フィルムを含む部材が用いられている。このような光学異方性フィルムとして、液晶化合物を含む組成物を基材上に塗布することにより製造された光学異方性フィルムが知られている。例えば、特許文献1には、配向処理を施した基材上に、液晶化合物を含む組成物を塗布することにより得られた光学異方性フィルムが記載されている。
特開2007−148098号公報
 基材と光学異方性フィルムとの密着性の向上が求められていた。
 本発明は以下の発明を含む。
[1] 配向膜形成用材料と、N−メチル−2−ピロリドンと、沸点が100~200℃の炭化水素とを含む配向膜形成用組成物。
[2] 沸点が100~200℃の炭化水素が、メチルシクロヘキサン、エチルシクロヘキサン及びプロピルシクロヘキサンからなる群から選ばれる少なくとも1種である[1]に記載の配向膜形成用組成物。
[3] 配向膜形成用組成物全量に対して、N−メチル−2−ピロリドンの含有量が60質量%~99.9質量%であり、沸点が100~200℃の炭化水素の含有量が0.1質量%~40質量%である[1]又は[2]に記載の配向膜形成用組成物。
[4] 配向膜形成用材料がポリイミド、ポリアミド及びポリアミック酸から選ばれる少なくとも1種を含む、[1]~[3]のいずれかに記載の配向膜形成用組成物。
[5] [1]~[4]のいずれかに記載の配向膜形成用組成物から形成される配向膜を、樹脂基材の表面に有する配向膜付樹脂基材。
[6] 樹脂基材がポリオレフィン樹脂からなる[5]に記載の配向膜付樹脂基材。
[7] [1]~[4]のいずれかに記載の配向膜形成用組成物を、樹脂基材に塗布して乾燥する配向膜付樹脂基材の製造方法。
[8] [5]又は[6]に記載の配向膜付樹脂基材と光学異方性フィルムとを、樹脂基材、配向膜、光学異方性フィルムの順に有する積層体。
[9] JIS−K5600に則った密着性試験において、面積基準で、配向膜の80%以上が基材から剥離しない[8]に記載の積層体。
[10] 光学異方性フィルムが位相差フィルムである[8]又は[9]に記載の積層体。
[11] IPS(in−plane switching)液晶表示装置用の[8]~[10]のいずれかに記載の積層体。
[12] [1]~[4]のいずれかに記載の組成物を、樹脂基材に塗布することで配向膜付樹脂基材を製造し、配向膜付樹脂基材の配向膜表面にさらに重合性液晶化合物と光重合開始剤とを含む組成物を塗布し、光照射することを特徴とする、樹脂基材、配向膜、光学異方性フィルムをこの順に有する積層体の製造方法。
[13] [8]~[11]のいずれかに記載の積層体を有する偏光板。
[14] [8]~[11]のいずれかに記載の積層体を備えた表示装置。
 本発明の配向膜形成用組成物によれば、配向膜と樹脂基材との密着性を向上させることができ、さらに、樹脂基材と配向膜と光学異方性フィルムを有する積層体において、樹脂基材と配向膜と光学異方性フィルムとの密着性を向上させることができる。
本発明に係る偏光板の一例を示す模式図である。 本発明に係る表示装置の一例を示す模式図である。
 本発明の配向膜形成用組成物は、配向膜形成用材料と、N−メチル−2−ピロリドンと、沸点が100~200℃の炭化水素とを含む。
 配向膜形成用材料としては、例えば、配向性ポリマー及び光配向性ポリマーが挙げられ、好ましくは配向性ポリマーである。
 配向膜形成用材料は、後述する液晶化合物を含む組成物を塗布する際に用いられる溶剤に溶解しない溶剤耐性と、有機溶媒の除去や液晶化合物の配向性を調整するための加熱処理における耐熱性とを有する。
 配向性ポリマーとしては、分子内にアミド結合を有するポリアミドやゼラチン類、分子内にイミド結合を有するポリイミド及びその加水分解物であるポリアミック酸、ポリビニルアルコール、アルキル変性ポリビニルアルコール、ポリアクリルアミド、ポリオキサゾール、ポリエチレンイミン、ポリスチレン、ポリビニルピロリドン、ポリアクリル酸及びポリアクリル酸エステル類等を挙げることができる。中でも、ポリアミド、ポリイミド及びポリアミック酸から選ばれる少なくとも1種が好ましい。配向性ポリマーは、一種類でもよいし、複数種類のポリマーを組み合わせた組成物でもよいし、複数種類のポリマーを組み合わせた共重合体でもよい。これらのポリマーは、単量体を、脱水や脱アルコール等の重縮合、ラジカル重合、アニオン重合、カチオン重合等の連鎖重合、配位重合又は開環重合等することで容易に得ることができる。
 市販の配向性ポリマーとしては、サンエバー(登録商標、日産化学社製)、オプトマー(登録商標、JSR製)等が挙げられる。
 配向性ポリマーから形成される配向膜は、液晶化合物の液晶配向を容易にする。また、配向性ポリマーの種類やラビング条件によって、水平配向、垂直配向、ハイブリッド配向、傾斜配向等の様々な液晶配向の制御が可能であり、各種液晶パネルの視野角改善等に利用できる。
 光配向性ポリマーとしては、感光性構造を有するポリマーが挙げられる。感光性構造を有するポリマーに偏光を照射すると、照射された部分の感光性構造が異性化又は架橋することで光配向性ポリマーが配向し、光配向性ポリマーからなる膜に配向規制力が付与される。上記感光性構造としては、例えば、アゾベンゼン構造、マレイミド構造、カルコン構造、桂皮酸構造、1,2−ビニレン構造、1,2−アセチレン構造、スピロピラン構造、スピロベンゾピラン構造及びフルギド構造などが挙げられる。配向膜を形成する光配向性ポリマーは、一種類でもよいし、異なる構造のポリマーを複数組み合わせてもよいし、異なる感光性構造を複数有する共重合体であってもよい。光配向性ポリマーは、感光性構造を有する単量体を、脱水や脱アルコールなどの重縮合、ラジカル重合、アニオン重合、カチオン重合などの連鎖重合、配位重合又は開環重合等することで得ることができる。光配向性ポリマーとしては、特許第4450261号、特許第4011652号、特開2010−49230号公報、特許第4404090号、特開2007−156439号公報、特開2007−232934号公報などに記載の光配向性ポリマー等が挙げられる。中でも、光配向性ポリマーとしては、耐久性の観点から、偏光照射によって架橋構造を形成するポリマーが好ましい。
 配向膜形成用組成物に含まれる、N−メチル−2−ピロリドン及び沸点が100~200℃の炭化水素は、溶剤である。N−メチル−2−ピロリドンは、配向膜形成用材料を十分溶解させる傾向があり、沸点が100~200℃の炭化水素は、配向膜形成用組成物から形成される配向膜と樹脂基材との密着性を向上させる傾向がある。
 本明細書における沸点は、1気圧での沸点を意味する。
 本明細書における炭化水素とは、炭素原子と水素原子からなる化合物のことである。
 沸点が100~200℃の炭化水素としては、例えば、オクタン、ノナン、デカン、2,4−ジメチルヘキサン、2,5−ジメチルヘキサン、2−メチルヘプタン、3−メチルヘプタン、2−メチルオクタン、3−メチルオクタン等の鎖状脂肪族炭化水素、エチルベンゼン、n−プロピルベンゼン、m−エチルトルエン、p−エチルトルエン、o−キシレン、m−キシレン、p−キシレン、メシチレン等の芳香族炭化水素、及び、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン、メチルシクロヘキサン、エチルシクロペンタン、エチルシクロヘキサン、プロピルシクロヘキサン等の環状脂肪族炭化水素が挙げられる。好ましくは環状脂肪族炭化水素であり、より好ましくはメチルシクロヘキサン、エチルシクロヘキサン及びプロピルシクロヘキサンであり、さらに好ましくは、エチルシクロヘキサンである。
 N−メチル−2−ピロリドンの含有量は、配向膜形成用組成物全量に対して60質量%~99.9質量%が好ましく、より好ましくは65質量%~99質量%であり、さらに好ましくは70質量%~99質量%である。
 沸点が100~200℃の炭化水素の含有量は、配向膜形成用組成物全量に対して0.1質量%~40質量%が好ましく、より好ましくは1質量%~30質量%であり、さらにより好ましくは5質量%~20質量%である。
 N−メチル−2−ピロリドンと沸点が100~200℃の炭化水素との含有量比は、通常10:1~3:1であり、好ましくは9:1~5:1である。
 配向膜形成用組成物は、N−メチル−2−ピロリドン及び沸点が100~200℃の炭化水素以外の溶剤を含んでいてもよい。溶剤としては、例えば、水;メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、メチルセロソルブ、ブチルセロソルブ等のアルコール溶媒;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ−ブチロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、メチルアミルケトン、メチルイソブチルケトン等のケトン溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;ベンゼン等の芳香族炭化水素溶媒(ただし沸点が100~200℃の炭化水素は除く);アセトニトリル等のニトリル溶媒;プロピレングリコールモノメチルエーテル、テトラヒドロフラン、ジメトキシエタン等のエーテル溶媒;クロロホルム等のハロゲン化炭化水素溶媒等が挙げられる。これら有機溶媒は、単独で用いてもよいし、組み合わせてもよい。
 溶剤としては、アルコール溶媒が好ましい。
 溶剤の含有量は、配向膜形成用材料100質量部に対して10質量部~100000質量部が好ましく、より好ましくは1000質量部~50000質量部であり、さらに好ましくは2000質量部~20000質量部である。
 配向膜形成用組成物からN−メチル−2−ピロリドン、沸点が100~200℃の炭化水素及び溶剤を除いたものの含有量は、配向膜形成用組成物全質量部に対して、0.2質量%~10質量%が好ましく、より好ましくは0.5~5質量%である。
 また、本発明は、配向膜形成用組成物を樹脂基材に塗布して得られる配向膜付樹脂基材に関する。配向膜付樹脂基材とは、樹脂基材の表面に配向膜が形成されたものである。配向膜形成用組成物から形成される配向膜付樹脂基材は、搬送時の摩擦等により配向膜の剥がれを起こし難い。
 樹脂基材は、通常、透光性樹脂基材である。透光性樹脂基材とは、光、特に可視光を透過し得る透光性を有する樹脂基材を意味し、透光性とは、波長380~780nmにわたる光線に対しての透過率が80%以上となる特性をいう。樹脂基材は、通常フィルム状のものが用いられる。
 透光性樹脂基材を構成する樹脂としては、ポリエチレン、ポリプロピレン、ノルボルネン系ポリマー等のポリオレフィン;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;セルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルフォン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィド;およびポリフェニレンオキシドが挙げられる。好ましくはポリエチレン、ポリプロピレン、ノルボルネン系ポリマー等のポリオレフィン、ポリエチレンテレフタレート、及び、ポリメタクリル酸エステルであり、より好ましくは前記ポリオレフィンである。
 樹脂基材は配向膜形成用組成物を塗布する前に、表面処理を施してもよい。表面処理の方法としては、例えば、真空下または大気圧下、コロナまたはプラズマで樹脂基材の表面を処理する方法、樹脂基材表面をレーザー処理する方法、樹脂基材表面をオゾン処理する方法、樹脂基材表面をケン化処理する方法または樹脂基材表面を火炎処理する方法、樹脂基材表面にカップリング剤を塗布するプライマー処理する方法、反応性モノマーや反応性を有するポリマーを樹脂基材表面に付着させた後、放射線、プラズマまたは紫外線を照射して反応させるグラフト重合法などが挙げられる。中でも、真空下や大気圧下で、樹脂基材表面をコロナまたはプラズマ処理する方法が好ましい。
 コロナまたはプラズマで樹脂基材の表面処理を行う方法としては、
大気圧近傍の圧力下で、対向した電極間に樹脂基材を設置し、コロナまたはプラズマを発生させて、樹脂基材の表面処理を行う方法、
対向した電極間にガスを流し、電極間でガスをプラズマ化し、プラズマ化したガスを樹脂基材に吹付ける方法、および、
低圧条件下で、グロー放電プラズマを発生させて、樹脂基材の表面処理を行う方法が挙げられる。
 中でも、大気圧近傍の圧力下で、対向した電極間に樹脂基材を設置し、コロナまたはプラズマを発生させて、樹脂基材の表面処理を行う方法、または、対向した電極間にガスを流し、電極間でガスをプラズマ化し、プラズマ化したガスを樹脂基材に吹付ける方法が好ましい。かかるコロナまたはプラズマによる表面処理は、通常、市販の表面処理装置により行われる。
 配向膜付樹脂基材を製造する方法としては、樹脂基材に配向膜形成用組成物を塗布し乾燥する方法、樹脂基材に配向膜形成用組成物を塗布し乾燥しその表面をラビングする方法、樹脂基材に配向膜形成用組成物を塗布し乾燥し偏光を照射する方法などが挙げられる。
 中でも、配向膜上に形成される液晶化合物の液晶配向の均一性、製造時間及び製造コストの観点から、配向性ポリマーを含む配向膜形成用組成物を塗布し乾燥する方法、及び、塗布し乾燥しその表面をラビングする方法が好ましい。
 配向膜形成用組成物を樹脂基材に塗布する方法としては、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、CAPコーティング法、ダイコーティング法等が挙げられる。また、ディップコーター、バーコーター、スピンコーター等のコーターを用いて塗布する方法も挙げられる。
 配向膜付樹脂基材は、例えば、樹脂基材に、配向膜形成用組成物を塗布し、乾燥することにより溶剤などの低沸点成分を除去することにより製造することができる。
 乾燥方法としては、自然乾燥、通風乾燥、加熱乾燥、減圧乾燥およびこれらを組み合わせた方法が挙げられる。乾燥温度は、10~250℃が好ましく、25~200℃がより好ましい。乾燥時間は、溶剤の種類にもよるが、5秒間~60分間が好ましく、10秒間~30分間がより好ましい。
 配向膜形成用材料には、その種類よって、塗布および乾燥のみで液晶化合物を液晶配向させる性質(以下、配向規制力ということがある)を示すものもあれば、さらに、ラビング又は偏光紫外線照射を行なうことで、配向規制力を示すものもある。
 ラビングする方法としては、ラビング布が巻きつけられ、回転しているラビングロールを、樹脂基材に配向膜形成用組成物を塗布して乾燥して形成された膜(以下、乾燥被膜ということがある。)に接触させる方法が挙げられる。
 光配向性ポリマーから形成された乾燥被膜の場合は、通常、偏光を照射する。光配向性ポリマーとしては、配向膜の耐久性の観点から、光照射によって架橋構造を形成するポリマーであることが好ましい。
 偏光を照射する方法としては、特開2006−323060号公報に記載の装置を用いて行う方法等が挙げられる。また、所望の複数領域に対応したフォトマスクを介して、当該領域毎に、直線偏光紫外線等の偏光を繰り返し照射することで、パターン化配向膜を形成することもできる。フォトマスクとしては、通常、石英ガラス、ソーダライムガラスまたはポリエステルなどのフィルム上に、遮光パターンを設けたものが用いられる。遮光パターンで覆われている部分は照射される偏光が遮断され、覆われていない部分は照射される偏光が透過される。熱膨張の影響が小さいという点で、石英ガラスが好ましい。光配向性ポリマーの反応性の点で、照射する偏光は紫外線であることが好ましい。
 配向膜付樹脂基材に形成される配向膜の厚さは、通常10nm~10000nmであり、好ましくは10nm~1000nmである。配向膜の厚さが上記範囲にあると、液晶化合物を当該配向膜上で所望の方向や角度に配向させることができ、好ましい。
 本発明の配向膜付樹脂基材は、配向膜と樹脂基材との密着性が高いため、加工時に樹脂基材からの配向膜の剥離が抑制できる。密着性の評価は、JIS−K5600に則った密着性試験で行うことができる。例えば、コーテック株式会社製クロスカットガイドIシリーズ(CCI−1、1mm間隔、25マス用)等の市販の装置を用いて密着性試験を行えばよい。例えば、コーテック株式会社製クロスカットガイドIシリーズ(CCI−1、1mm間隔、25マス用)を用いて、配向膜付樹脂基材の密着性試験を行うと、配向膜が樹脂基材から剥離せずに保持されるマスは、通常、25マス中9マス以上であり、面積基準で、配向膜の36%以上が樹脂基材から剥離しない状態で保持される。
 配向膜付樹脂基材は、位相差フィルム及び偏光フィルム等の光学異方性フィルムを形成するための基材として有用であり、さらに、当該光学異方性フィルムを含む、偏光板や、円偏光板の部材として有用である。中でも、位相差フィルムの基材として特に有用である。
 配向膜付樹脂基材の配向膜表面に、液晶化合物を配向させることで位相差フィルムが得られる。配向としては、垂直配向、水平配向、ハイブリッド配向及び、傾斜配向等が挙げられる。本明細書において、垂直配向とは樹脂基材平面に対して垂直な方向に液晶化合物の長軸を有することを表し、水平配向とは樹脂基材平面に対して平行な方向に液晶化合物の長軸を有することを表す。
 前記液晶化合物としては、重合性液晶化合物が好ましい。重合性液晶化合物とは、重合性基を有する液晶化合物のことである。重合性液晶化合物は、通常、配向膜表面に液晶配向した後に重合することで光学異方性フィルムを形成する。
 液晶化合物の液晶配向は、配向膜及び液晶化合物の性質によって制御される。垂直配向とするためには、垂直配向し易い液晶化合物と、垂直配向し易い液晶化合物を垂直配向させ易い配向膜を選択することが好ましい。
 例えば、配向膜が配向規制力として水平配向を発現させる材料であれば、液晶化合物は水平配向またはハイブリッド配向を形成することができ、垂直配向を発現させる材料であれば、液晶化合物は垂直配向または傾斜配向を形成することができる。
 配向規制力は、配向膜が配向性ポリマーから形成されている場合は、表面状態やラビング条件によって任意に調整することが可能であり、光配向性ポリマーから形成されている場合は、偏光照射条件等によって任意に調整することが可能である。また、液晶化合物の、表面張力や液晶性等の物性を選択することにより、液晶配向を制御することもできる。
 液晶化合物が液晶配向した光学異方性フィルムの形成には、通常、液晶化合物を含む組成物(以下、光学異方層形成用組成物ということがある。)が用いられる。当該組成物は、2種以上の液晶化合物を含んでもよい。
 液晶化合物としては、例えば、式(X)で表される基を含む化合物(以下「化合物(X)」という場合がある)が挙げられる。
 P11−B11−E11−B12−A11−B13−   (X)
[式(X)中、P11は、重合性基または水素原子を表わす。
 A11は、2価の脂環式炭化水素基または2価の芳香族炭化水素基を表わす。該2価の脂環式炭化水素基および2価の芳香族炭化水素基に含まれる水素原子は、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6アルコキシ基、シアノ基またはニトロ基で置換されていてもよく、該炭素数1~6のアルキル基および該炭素数1~6アルコキシ基に含まれる水素原子は、フッ素原子で置換されていてもよい。
 B11は、−O−、−S−、−CO−O−、−O−CO−、−O−CO−O−、−CO−NR16−、−NR16−CO−、−CO−、−CS−または単結合を表わす。R16は、水素原子または炭素数1~6のアルキル基を表わす。
 B12およびB13は、それぞれ独立に、−C≡C−、−CH=CH−、−CH−CH−、−O−、−S−、−C(=O)−、−C(=O)−O−、−O−C(=O)−、−O−C(=O)−O−、−CH=N−、−N=CH−、−N=N−、−C(=O)−NR16−、−NR16−C(=O)−、−OCH−、−OCF−、−CHO−、−CFO−、−CH=CH−C(=O)−O−、−O−C(=O)−CH=CH−または単結合を表わす。
 E11は、炭素数1~12のアルカンジイル基を表わし、該アルカンジイル基に含まれる水素原子は、炭素数1~5のアルコキシ基で置換されていてもよく、該アルコキシ基に含まれる水素原子は、ハロゲン原子で置換されていてもよい。また、該アルカンジイル基を構成する−CH−は、−O−または−CO−に置き換わっていてもよい。]
 A11の芳香族炭化水素基および脂環式炭化水素基の炭素数は、3~18の範囲であることが好ましく、5~12の範囲であることがより好ましく、5または6であることが特に好ましい。A11としては、シクロヘキサン−1,4−ジイル基、1,4−フェニレン基が好ましい。
 E11としては、直鎖状の炭素数1~12のアルカンジイル基が好ましい。該アルカンジイル基を構成する−CH−は、−O−に置き換っていてもよい。
 具体的には、メチレン基、エチレン基、プロパン−1,3−ジイル基、ブタン−1,4−ジイル基、ペンタン−1,5−ジイル基、ヘキサン−1,6−ジイル基、ヘプタン−1,7−ジイル基、オクタン−1,8−ジイル基、ノナン−1,9−ジイル基、デカン−1,10−ジイル基、ウンデカン−1,11−ジイル基およびドデカン−1,12−ジイル基等の炭素数1~12の直鎖状アルカンジイル基;−CH−CH−O−CH−CH−、−CH−CH−O−CH−CH−O−CH−CH−および−CH−CH−O−CH−CH−O−CH−CH−O−CH−CH−等が挙げられる。
 B11としては、−O−、−S−、−CO−O−、−O−CO−が好ましく、中でも、−CO−O−がより好ましい。
 B12およびB13としては、それぞれ独立に、−O−、−S−、−C(=O)−、−C(=O)−O−、−O−C(=O)−、−O−C(=O)−O−が好ましく、中でも、−O−または−O−C(=O)−O−がより好ましい。
 P11は好ましくは重合性基である。重合性基としては、重合反応性、特に光重合反応性が高いという点で、ラジカル重合性基またはカチオン重合性基が好ましく、取り扱いが容易な上、液晶化合物の製造自体も容易であることから、重合性基は、下記の式(P−11)~式(P−15)で表わされる基であることが好ましい。
Figure JPOXMLDOC01-appb-I000001
[式(P−11)~(P−13)中、
 R17~R21はそれぞれ独立に、炭素数1~6のアルキル基または水素原子を表わす。]
 式(P−11)~式(P−15)で表わされる基の具体例としては、下記式(P−16)~式(P−20)で表わされる基が挙げられる。
Figure JPOXMLDOC01-appb-I000002
 P11は、式(P−14)~式(P−20)で表わされる基であることが好ましく、ビニル基、p−スチルベン基、エポキシ基またはオキセタニル基がより好ましい。
 P11−B11−で表わされる基が、アクリロイルオキシ基またはメタアクリロイルオキシ基であることがさらに好ましい。
 化合物(X)としては、式(I)、式(II)、式(III)、式(IV)、式(V)または式(VI)で表わされる化合物が挙げられる。
 P11−B11−E11−B12−A11−B13−A12−B14−A13−B15−A14−B16−E12−B17−P12  (I)
 P11−B11−E11−B12−A11−B13−A12−B14−A13−B15−A14−F11  (II)
 P11−B11−E11−B12−A11−B13−A12−B14−A13−B15−E12−B17−P12  (III)
 P11−B11−E11−B12−A11−B13−A12−B14−A13−F11  (IV)
 P11−B11−E11−B12−A11−B13−A12−B14−E12−B17−P12  (V)
 P11−B11−E11−B12−A11−B13−A12−F11  (VI)
(式中、
 A12~A14はそれぞれ独立に、A11と同義であり、B14~B16はそれぞれ独立に、B12と同義であり、B17は、B11と同義であり、E12は、E11と同義である。
 F11は、水素原子、炭素数1~13のアルキル基、炭素数1~13のアルコキシ基、シアノ基、ニトロ基、トリフルオロメチル基、ジメチルアミノ基、ヒドロキシ基、メチロール基、ホルミル基、スルホ基(−SOH)、カルボキシ基、炭素数1~10のアルコキシカルボニル基またはハロゲン原子を表わし、該アルキル基およびアルコキシ基を構成する−CH−は、−O−に置き換っていてもよい。)
 液晶化合物の具体例としては、液晶便覧(液晶便覧編集委員会編、丸善(株)平成12年10月30日発行)の「3.8.6 ネットワーク(完全架橋型)」、「6.5.1 液晶材料 b.重合性ネマチック液晶材料」に記載された化合物、特開2010−31223号公報、特開2010−270108号公報、特開2011−6360号公報および特開2011−207765号公報記載の化合物等が挙げられる。
 化合物(X)の具体例としては、下記式(I−1)~式(I−4)、式(II−1)~式(II−4)、式(III−1)~式(III−26)、式(IV−1)~式(IV−26)、式(V−1)~式(V−2)および式(VI−1)~式(VI−6)で表わされる化合物が挙げられる。なお、下記式中、k1およびk2は、それぞれ独立して、2~12の整数を表わす。これらの化合物(X)は、その合成の容易さ、または、入手の容易さの点で、好ましい。
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
 光学異方層形成用組成物は、上記液晶化合物に加えて、重合開始剤、重合禁止剤、光増感剤、レベリング剤、カイラル剤、反応性添加剤、溶剤等を含んでもよい。液晶化合物が重合性液晶化合物である場合、光学異方層形成用組成物は重合開始剤を含むことが好ましい。
[重合開始剤]
 重合開始剤としては、光重合開始剤が好ましく、光照射によりラジカルを発生する光重合開始剤が好ましい。
 光重合開始剤としては、ベンゾイン化合物、ベンゾフェノン化合物、ベンジルケタール化合物、α−ヒドロキシケトン化合物、α−アミノケトン化合物、α−アセトフェノン化合物、トリアジン化合物、ヨードニウム塩およびスルホニウム塩が挙げられる。具体的には、イルガキュア(Irgacure)907、イルガキュア184、イルガキュア651、イルガキュア819、イルガキュア250、イルガキュア369(以上、全てチバ・ジャパン株式会社製)、セイクオールBZ、セイクオールZ、セイクオールBEE(以上、全て精工化学株式会社製)、カヤキュアー(kayacure)BP100(日本化薬株式会社製)、カヤキュアーUVI−6992(ダウ社製)、アデカオプトマーSP−152、アデカオプトマーSP−170(以上、全て株式会社ADEKA製)、TAZ−A、TAZ−PP(以上、日本シイベルヘグナー社製)およびTAZ−104(三和ケミカル社製)等が挙げられる。中でも、α−アセトフェノン化合物が好ましく、α−アセトフェノン化合物としては、2−メチル−2−モルホリノ−1−(4−メチルスルファニルフェニル)プロパン−1−オン、2−ジメチルアミノ−1−(4−モルホリノフェニル)−2−ベンジルブタン−1−オン及び2−ジメチルアミノ−1−(4−モルホリノフェニル)−2−(4−メチルフェニルメチル)ブタン−1−オン等が挙げられ、より好ましくは2−メチル−2−モルホリノ−1−(4−メチルスルファニルフェニル)プロパン−1−オン及び2−ジメチルアミノ−1−(4−モルホリノフェニル)−2−ベンジルブタン−1−オンが挙げられる。α−アセトフェノン化合物の市販品としては、イルガキュア369、379EG、907(以上、BASFジャパン(株)製)及びセイクオールBEE(精工化学社製)等が挙げられる。
 重合開始剤は、液晶化合物100質量部に対して、通常0.1質量部~30質量部であり、好ましくは0.5質量部~10質量部である。上記範囲内であれば、液晶化合物の液晶配向を乱し難く、また、重合性液晶化合物の液晶配向を乱さずに重合することができるため好ましい。
[重合禁止剤]
 重合禁止剤としては、ハイドロキノンおよびアルキルエーテル等の置換基を有するハイドロキノン類;ブチルカテコール等のアルキルエーテル等の置換基を有するカテコール類;ピロガロール類、2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカル等のラジカル補足剤;チオフェノール類;β−ナフチルアミン類およびβ−ナフトール類が挙げられる。
 光学異方層形成用組成物における重合禁止剤の含有量は、液晶化合物100質量部に対して、通常0.1質量部~30質量部であり、好ましくは0.5質量部~10質量部である。上記範囲内であれば、液晶化合物の液晶配向を乱し難く、また、重合性液晶化合物の液晶配向を乱さずに重合することができるため好ましい。
[光増感剤]
 光増感剤としては、キサントン、チオキサントン等のキサントン類;アントラセンおよびアルキルエーテル等の置換基を有するアントラセン類;フェノチアジン;ルブレンが挙げられる。
 光増感剤を用いることにより、光重合開始剤を高感度化することができる。光増感剤の含有量は、液晶化合物100質量部に対して、通常0.1質量部~30質量部であり、好ましくは0.5質量部~10質量部である。
[レベリング剤]
 レベリング剤としては、有機変性シリコーンオイル系、ポリアクリレート系およびパーフルオロアルキル系のレベリング剤が挙げられる。具体的には、DC3PA、SH7PA、DC11PA、SH28PA、SH29PA、SH30PA、ST80PA、ST86PA、SH8400、SH8700、FZ2123(以上、全て東レ・ダウコーニング(株)製)、KP321、KP323、KP324、KP326、KP340、KP341、X22−161A、KF6001(以上、全て信越化学工業(株)製)、TSF400、TSF401、TSF410、TSF4300、TSF4440、TSF4445、TSF−4446、TSF4452、TSF4460(以上、全てモメンティブ パフォーマンス マテリアルズ ジャパン合同会社製)、フロリナート(fluorinert)(登録商標)FC−72、同FC−40、同FC−43、同FC−3283(以上、全て住友スリーエム(株)製)、メガファック(登録商標)R−08、同R−30、同R−90、同F−410、同F−411、同F−443、同F−445、同F−470、同F−477、同F−479、同F−482、同F−483(以上、いずれもDIC(株)製)、エフトップ(商品名)EF301、同EF303、同EF351、同EF352(以上、全て三菱マテリアル電子化成(株)製)、サーフロン(登録商標)S−381、同S−382、同S−383、同S−393、同SC−101、同SC−105、KH−40、SA−100(以上、全てAGCセイミケミカル(株)製)、商品名E1830、同E5844((株)ダイキンファインケミカル研究所製)、BM−1000、BM−1100、BYK−352、BYK−353、BYK−361N(いずれも商品名:BM Chemie社製)が挙げられる。2種以上のレベリング剤を組み合わせてもよい。
 レベリング剤により、より平滑な光学異方層を得ることができる。また、光学異方層の製造過程で、光学異方層形成用組成物の流動性を制御したり、光学異方層の架橋密度を調整したりすることができる。レベリング剤の含有量は、液晶化合物100質量部に対して、通常0.1質量部~30質量部であり、好ましくは0.1質量部~10質量部である。
[カイラル剤]
 カイラル剤としては、公知のカイラル剤(例えば、液晶デバイスハンドブック、第3章4−3項、TN、STN用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)が挙げられる。
 カイラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物もカイラル剤として用いることができる。軸性不斉化合物または面性不斉化合物としては、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が挙げられる。
 具体的には、特開2007−269640号公報、特開2007−269639号公報、特開2007−176870号公報、特開2003−137887号公報、特表2000−515496号公報、特開2007−169178号公報および特表平9−506088号公報に記載されているような化合物が挙げられ、好ましくはBASFジャパン(株)製のpaliocolor(登録商標)LC756である。
 カイラル剤を用いる場合、その含有量は、液晶化合物100質量部に対して、通常0.1質量部~30質量部であり、好ましくは1.0質量部~25質量部である。上記範囲内であれば、液晶化合物の液晶配向を乱し難く、また、重合性液晶化合物の液晶配向を乱さずに重合することができるため好ましい。
[反応性添加剤]
 反応性添加剤としては、その分子内に炭素−炭素不飽和結合と活性水素反応性基とを有することが好ましい。なお、ここでいう「活性水素反応性基」とは、カルボキシル基(−COOH)、水酸基(−OH)、アミノ基(−NH)等の活性水素を有する基に対して反応性を有する基を意味し、グリシジル基、オキサゾリン基、カルボジイミド基、アジリジン基、イミド基、イソシアナト基、チオイソシアナト基、無水マレイン酸基等がその代表例である。
 反応性添加剤において、活性水素反応性基は少なくとも2つ存在することが好ましく、この場合、複数存在する活性水素反応性基は同一でも、異なるものであってもよい。
 反応性添加剤が有する炭素−炭素不飽和結合は、炭素−炭素二重結合又は炭素−炭素三重結合、あるいはそれらの組み合わせであってよいが、炭素−炭素二重結合であることが好ましい。中でも、反応性添加剤としては、ビニル基及び/又は(メタ)アクリル基として炭素−炭素不飽和結合を含む反応性添加剤が好ましい。さらに、活性水素反応性基が、エポキシ基、グリシジル基及びイソシアナト基からなる群から選ばれる少なくとも1種であるものが好ましく、アクリル基と、イソシアナト基とを有する反応性添加剤が特に好ましい。
 反応性添加剤の具体例としては、メタクリロキシグリシジルエーテルやアクリロキシグリシジルエーテルなどの、(メタ)アクリル基とエポキシ基とを有する化合物;オキセタンアクリレートやオキセタンメタクリレートなどの、(メタ)アクリル基とオキセタン基とを有する化合物;ラクトンアクリレートやラクトンメタクリレートなどの、(メタ)アクリル基とラクトン基とを有する化合物;ビニルオキサゾリンやイソプロペニルオキサゾリンなどの、ビニル基とオキサゾリン基とを有する化合物;イソシアナトメチルアクリレート、イソシアナトメチルメタクリレート、2−イソシアナトエチルアクリレート及び20イソシアナトエチルメタクリレートなどの、(メタ)アクリル基とイソシアナト基とを有する化合物のオリゴマー等が挙げられる。また、メタクリル酸無水物、アクリル酸無水物、無水マレイン酸及びビニル無水マレイン酸などの、ビニル基やビニレン基と酸無水物とを有する化合物などが挙げられる。中でも、メタクリロキシグリシジルエーテル、アクリロキシグリシジルエーテル、イソシアナトメチルアクリレート、イソシアナトメチルメタクリレート、ビニルオキサゾリン、2−イソシアナトエチルアクリレート、2−イソシアナトエチルメタクリレート及び前記のオリゴマーが好ましく、イソシアナトメチルアクリレート、2−イソシアナトエチルアクリレート及び前記のオリゴマーが特に好ましい。
 ここで、活性水素反応性基としてイソシアナト基を有し、反応性添加剤としてより好ましいものを具体的に示す。この好ましい反応性添加剤は例えば、下記式(Y)で表される。
Figure JPOXMLDOC01-appb-I000012
[式(Y)中、
 nは1~10までの整数を表わし、R1’は、炭素数2~20の2価の脂肪族又は脂環式炭化水素基、或いは炭素数5~20の2価の芳香族炭化水素基を表わす。各繰り返し単位にある2つのR2’は、一方が−NH−であり、他方が>N−C(=O)−R3’で示される基である。R3’は、水酸基又は炭素−炭素不飽和結合を有する基を表す。
 式(Y)中のR3’のうち、少なくとも1つのR3’は炭素−炭素不飽和結合を有する基である。]
 前記式(Y)で表される反応性添加剤の中でも、下記式(YY)で表される化合物(以下、場合により「化合物(YY)」という。)が特に好ましい(なお、nは前記と同じ意味である)。
Figure JPOXMLDOC01-appb-I000013
 化合物(YY)には、市販品をそのまま又は必要に応じて精製して用いることができる。市販品としては、Laromer(登録商標)LR−9000(BASF社製)等が挙げられる。
 反応性添加剤の含有量は、液晶化合物100質量部に対して、通常0.1質量部~30質量部であり、好ましくは0.1質量部~5質量部である。
[溶剤]
 光学異方層形成用組成物は、光学異方層製造の操作性を良好にするために溶剤、特に有機溶剤を含むことが好ましい。有機溶剤としては、液晶化合物等の光学異方層形成用組成物の構成成分を溶解し得る有機溶剤が好ましく、また、光学異方層形成用組成物が重合性液晶化合物を含む場合には、さらに、重合性液晶化合物の重合反応に不活性な溶剤が好ましい。具体的には、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、フェノール等のアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ−ブチロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、メチルアミルケトン、メチルイソブチルケトン等のケトン溶剤;ペンタン、ヘキサン、ヘプタン等の非塩素化脂肪族炭化水素溶剤;トルエン、キシレン等の非塩素化芳香族炭化水素溶剤;アセトニトリル等のニトリル溶剤;テトラヒドロフラン、ジメトキシエタン等のエーテル溶剤;およびクロロホルム、クロロベンゼン等の塩素化炭化水素溶剤;が挙げられる。二種以上の有機溶剤を組み合わせて用いてもよい。中でも、アルコール溶剤、エステル溶剤、ケトン溶剤、非塩素化脂肪族炭化水素溶剤および非塩素化芳香族炭化水素溶剤が好ましい。
 光学異方層形成用組成物が有機溶剤を含む場合、有機溶剤の含有量は、固形分100質量部に対して、10質量部~10000質量部が好ましく、より好ましくは100質量部~5000質量部である。光学異方層形成用組成物中の固形分濃度は、好ましくは2質量%~50質量%であり、より好ましくは5~50質量%である。”固形分”とは、光学異方層形成用組成物から溶剤を除いた成分の合計を意味する。
 本発明の配向膜付樹脂基材の配向膜表面に、光学異方層形成用組成物を塗布する、又は、塗布して乾燥することにより、光学異方性フィルムが形成される。光学異方性フィルムがネマチック相等の液晶相を示す場合、モノドメイン配向による複屈折性を有する。
 光学異方性フィルムの厚さは、その用途により適宜調節できるが、0.1μm~10μmであることが好ましく、光弾性を小さくする点で0.2μm~5μmであることがさらに好ましい。
 塗布する方法としては、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、CAPコーティング法、スリットコーティング法、ダイコーティング法等が挙げられる。また、ディップコーター、バーコーター、スピンコーター等のコーターを用いて塗布する方法等も挙げられる。中でも、Roll to Roll形式で連続的に塗布できる点で、CAPコーティング法、インクジェット法、ディップコーティング法、スリットコーティング法、ダイコーティング法およびバーコーターによる塗布方法が好ましい。Roll to Roll形式で塗布する場合、樹脂基材に配向膜形成用組成物を塗布して配向膜を形成し、さらに得られた配向膜表面に光学異方性フィルムを連続的に形成することもできる。
 乾燥方法としては、配向膜付樹脂基材製造時の配向膜形成用組成物の乾燥方法と同じ方法が挙げられる。中でも、自然乾燥または加熱乾燥が好ましい。乾燥温度は、0℃~250℃の範囲が好ましく、50℃~220℃の範囲がより好ましく、80℃~170℃の範囲がさらに好ましい。乾燥時間は、10秒間~60分間が好ましく、より好ましくは30秒間~30分間である。
 光学異方性フィルムが重合性液晶化合物を含む場合、当該重合性液晶化合物を重合して硬化させることもできる。重合性液晶化合物が重合した光学異方性フィルムは、重合性液晶化合物の液晶配向が固定化されるため、熱による複屈折の変化の影響を受けにくい。
 重合性液晶化合物を重合する方法としては、光重合が好ましい。光重合によれば、低温で重合を実施できるため、耐熱性の観点で、用いる樹脂基材の選択幅が広がる。光重合反応は、通常、可視光、紫外光又はレーザー光を照射することにより行われ、好ましくは紫外光を照射することで行われる。
 光照射は、塗布された光学異方層形成用組成物が溶剤を含む場合は、当該溶剤を乾燥し除去した後に行うことが好ましい。乾燥は、光照射と並行して行ってもよいが、光照射を行う前に、ほとんどの溶剤を除去しておくことが好ましい。
 かくして、配向膜付樹脂基材と光学異方性フィルムとを、樹脂基材、配向膜、光学異方性フィルムの順に有する積層体が得られる。本発明の積層体は、可視光領域における透明性に優れ、様々な表示装置用部材として有用である。
 光学異方性フィルムが位相差フィルムである積層体は、光射出側の斜角から確認した場合の直線偏光を円偏光や楕円偏光に変換したり、円偏光または楕円偏光を直線偏光に変換したり、直線偏光の偏光方向を変換したりするための積層体として特に有用である。
 光学異方性フィルムが位相差フィルムである積層体は複数枚積層してもよいし、他のフィルムと組み合わせてもよい。他のフィルムと組み合わせると、視野角補償フィルム、視野角拡大フィルム、反射防止フィルム、偏光板、円偏光板、楕円偏光板又は輝度向上フィルムとして利用できる。
 前記積層体は、液晶化合物の配向状態によって光学特性を変化させることができ、VA(vertical alignment)モード、IPS(in−plane switching)モード、OCB(optically compensated bend)モード、TN(twisted nematic)モード、STN(super twisted nematic)モード等の種々の液晶表示装置用の位相差板として使用することができる。
 前記積層体は、面内の遅相軸方向の屈折率をn、面内の遅相軸と直交する方向(進相軸方向)の屈折率をn、厚み方向の屈折率をnとした場合、以下のように分類できる。本発明の配向膜形成用組成物は、特にポジティブCプレートに好ましく用いられる。
>n≒nのポジティブAプレート、
≒n>nのネガティブCプレート、
≒n<nのポジティブCプレート、
≠n≠nのポジティブOプレートおよびネガティブOプレート
 前記積層体をポジティブCプレートとして用いる場合は、正面位相差値Re(549)は0~10nmの範囲に、好ましくは0~5nmの範囲に調整すればよく、厚み方向の位相差値Rthは、−10~−300nmの範囲に、好ましくは−20~−200nmの範囲に調整すればよく、特に液晶セルの特性に合わせて、適宜選択することが好ましい。
 前記積層体の厚み方向の屈折率異方性を意味する厚み方向の位相差値Rthは、面内の進相軸を傾斜軸として50度傾斜させて測定される位相差値R50と面内の位相差値Rとから算出できる。すなわち、厚み方向の位相差値Rthは、面内の位相差値R、進相軸を傾斜軸として50度傾斜させて測定した位相差値R50、位相差フィルムの厚みd、及び位相差フィルムの平均屈折率nから、以下の式(9)~(11)によりn、n及びnを求め、これらを式(8)に代入して、算出することができる。
 Rth=[(n+n)/2−n]×d   (8)
 R =(n−n)×d            (9)
 R50=(n−n’)×d/cos(φ)  (10)
 (n+n+n)/3=n        (11)
ここで、
 φ=sin−1 〔sin(50°)/n
 n’=n×n/〔n ×sin(φ)+n ×cos(φ)〕1/2
 本発明の積層体は、樹脂基材への高い密着性を有する配向膜の表面に光学異方性フィルムが形成されているため、加工時における樹脂基材からの剥離が抑制される。密着性の評価は、JIS−K5600に則った密着性試験で行うことができる。例えば、コーテック株式会社製クロスカットガイドIシリーズ(CCI−1、1mm間隔、25マス用)等の市販の装置を用いて密着性試験を行えばよい。例えば、コーテック株式会社製クロスカットガイドIシリーズ(CCI−1、1mm間隔、25マス用)を用いて、本発明の積層体の密着性試験を行うと、光学異方性フィルムが形成された配向膜が樹脂基材から剥離せずに保持されるマスは、通常、25マス中20マス以上である。すなわち、面積基準に換算すると、80%以上の光学異方性フィルムが形成された配向膜が、樹脂基材から剥離しない状態で保持される。
 本発明の積層体は、偏光板を構成する部材としても有用である。
 偏光板の具体例としては、図1(a)~図1(e)で示される偏光板が挙げられる。図1(a)で示される偏光板4aは、位相差フィルム1と、偏光フィルム2とが、直接積層された偏光板であり、図1(b)で示される偏光板4bは、位相差フィルム1と偏光フィルム2とが、接着剤層3’を介して貼り合わされた偏光板である。図1(c)で示される偏光板4cは、位相差フィルム1と、位相差フィルム1’とを積層させ、さらに、位相差フィルム1’と偏光フィルム2とを積層させた偏光板であり、図1(d)で示される偏光板4dは、位相差フィルム1と、位相差フィルム1’とを接着剤層3を介して貼り合わせ、さらに、位相差フィルム1’上に偏光フィルム2を積層させた偏光板である。図1(e)で示される偏光板4eは、位相差フィルム1と、位相差フィルム1’とを接着剤層3を介して貼り合わせ、さらに、位相差フィルム1’と偏光フィルム2とを接着剤層3’を介して貼り合せた偏光板である。”接着剤”とは、接着剤および/または粘着剤の総称を意味する。
 位相差フィルム1及び1’に、光学異方性フィルムが位相差フィルムである本発明の積層体を用いることができ、偏光フィルム2に、光学異方性フィルムが偏光フィルムである本発明の積層体を用いることができる。
 偏光フィルム2は、偏光機能を有するフィルムであればよい。偏光フィルムとしては、吸収異方性を有する色素を吸着させた延伸フィルム、及び、吸収異方性を有する色素を塗布したフィルム等が挙げられる。吸収異方性を有する色素としては、ヨウ素及びアゾ化合物等の二色性色素が挙げられる。
 吸収異方性を有する色素を吸着させた延伸フィルムとしては、ポリビニルアルコール系フィルムに二色性色素を吸着させて延伸したフィルム及び、ポリビニルアルコール系フィルムを延伸して二色性色素を吸着させたフィルム等が挙げられ、具体的には、特許第3708062号、特許第4432487号等に記載の偏光フィルムが挙げられる。
 吸収異方性を有する色素を塗布したフィルムとしては、液晶性を有する二色性色素を含む組成物又は、二色性色素と重合性液晶化合物とを含む組成物を塗布して得られるフィルム等が挙げられ、具体的には、特開2012−33249号公報等に記載の偏光フィルムが挙げられる。
 偏光フィルム2は、必要に応じて、保護フィルムで保護されていてもよい。保護フィルムとしては、ポリエチレン、ポリプロピレン、ノルボルネン系ポリマー等のポリオレフィンフィルム、ポリエチレンテレフタレートフィルム、ポリメタクリル酸エステルフィルム、ポリアクリル酸エステルフィルム、セルロースエステルフィルム、ポリエチレンナフタレートフィルム、ポリカーボネートフィルム、ポリスルフォンフィルム、ポリエーテルスルホンフィルム、ポリエーテルケトンフィルム、ポリフェニレンスルフィドフィルムおよびポリフェニレンオキシドフィルムが挙げられる。
 接着剤層3および接着剤層3’を形成する接着剤は、透明性が高く、耐熱性に優れた接着剤であることが好ましい。そのような接着剤としては、アクリル系接着剤、エポキシ系接着剤およびウレタン系接着剤が挙げられる。
 本発明の表示装置は、本発明の積層体を備える。該表示装置としては、本発明の積層体と液晶パネルとが貼り合わされた液晶パネルを備える液晶表示装置、および、本発明の積層体と発光層とが貼り合わされた有機エレクトロルミネッセンス(以下、「EL」ともいう)パネルを備える有機EL表示装置等が挙げられる。本発明の積層体を備えた表示装置の実施形態として、液晶表示装置について説明する。
 液晶表示装置としては、図2(a)および図2(b)に示す液晶表示装置10aおよび10bが挙げられる。図2(a)に示す液晶表示装置10aでは、本発明の偏光板4と液晶パネル6とが、接着層5を介して貼り合わされている。図2(b)に示す液晶表示装置10bでは、本発明の偏光板4が液晶パネル6の一方の面に、本発明の偏光板4’が液晶パネル6の他方の面に、接着層5および接着層5’をそれぞれ介して貼り合わされた構造を有している。これら液晶表示装置では、図示しない電極を用いて、液晶パネルに電圧を印加することにより、液晶分子の配向が変化し、白黒表示が実現できる。
 以下、実施例により本発明をより具体的に説明する。なお、例中の「%」および「部」は、特記ない限り、質量%および質量部を意味する。
[配向膜形成用組成物の調製]
 配向膜形成用組成物の組成を表1に示す。サンエバーSE−610(日産化学工業株式会社製)(配向性ポリマー)に、N−メチル−2−ピロリドン及びブチルセロソルブを加た溶液中に、メチルシクロヘキサン(沸点100℃)、エチルシクロヘキサン(沸点132℃)又はプロピルシクロヘキサン(沸点157℃)のいずれかを添加して配向膜形成用組成物(1)~(5)を調整した。
Figure JPOXMLDOC01-appb-T000014
 表1における括弧内の値は、調製した組成物の全量に対する各成分の含有割合を表す。SE−610については、固形分量を納品仕様書に記載の濃度から換算した。
[光学異方層形成用組成物の調製]
 光学異方層形成用組成物(1)の組成を表2に示す、各成分を混合し、得られた溶液を80℃で1時間攪拌した後、室温まで冷却して調製した。
Figure JPOXMLDOC01-appb-T000015
 表2における括弧内の値は、調製した組成物の全量に対する各成分の含有割合を表す。
 表2におけるLR−9000は、BASFジャパン社製のLaromer(登録商標)LR−9000を、Irg907は、BASFジャパン社製のイルガキュア907を、BYK361Nは、ビックケミージャパン製のレベリング剤を、LC242は、下記式で示されるBASF社製の液晶化合物を、PGMEAは、プロピレングリコール−1−モノメチルエーテル−2−アセタートを表す。
Figure JPOXMLDOC01-appb-I000016
実施例1
 シクロオレフィンポリマーフィルム(ZF−14、日本ゼオン株式会社製)の表面を、コロナ処理装置(AGF−B10、春日電機株式会社製)を用いて出力0.3kW、処理速度3m/分の条件で1回処理した。
 コロナ処理を施した表面に、配向膜形成用組成物(1)を塗布し、乾燥して、厚さ50nmの配向膜が付いた配向膜付樹脂基材を作成した。配向膜付樹脂基材の配向膜表面に光異方性層形成用組成物(1)を、バーコーターを用いて塗布し、100℃に加熱して乾燥し、室温まで冷却した。その後、ユニキュア(VB—15201BY−A、ウシオ電機株式会社製)を用いて、紫外線(波長365nm、照度40mW/cm)を30秒間照射し、樹脂基材と配向膜と光学異方性フィルムとをこの順に積層する、積層体(1)を得た。
実施例2
 実施例1における、配向膜形成用組成物(1)を配向膜形成用組成物(2)とした以外は、実施例1と同様の条件で実施し、積層体(2)を作製した。
実施例3
 実施例1における、配向膜形成用組成物(1)を配向膜形成用組成物(3)とした以外は、実施例1と同様の条件で実施し、積層体(3)を作製した。
実施例4
 実施例1における、配向膜形成用組成物(1)を配向膜形成用組成物(4)とした以外は、実施例1と同様の条件で実施し、積層体(4)を作製した。
比較例1
 実施例1において、配向膜形成用組成物(1)を配向膜形成用組成物(5)とした以外は、上記実施例1と同様の条件で実施し、積層体(5)を作製した。
[密着性評価]
 JIS−K5600に則り、コーテック株式会社製クロスカットガイドIシリーズ(CCI−1、1mm間隔、25マス用)を用いて、上記で作製した積層体(1)~(4)の剥離耐性を評価した。剥離試験後、樹脂基材から剥離せずに保持された配向膜の残存数をカウントした結果と残存率(面積基準での非剥離率)を表3に示す。なお、配向膜と光学異方性フィルムとは、全て剥離せずに保持された。
[光学特性の測定]
 上記で作製した積層体(1)~(5)の位相差値を測定機(KOBRA−WR、王子計測機器社製)により測定した。サンプルへの光の入射角を変えて測定し、液晶が垂直配向しているかどうか確認した。位相差値R0(λ)は入射角0度(正面)の位相差値、R50(λ)は入射角50度(進相軸まわりの傾斜)の位相差値であり、それぞれ波長(λ)549nmにおいて測定した。また、光学異方性フィルムの膜厚をレーザー顕微鏡(LEXT3000、オリンパス社製)を用いて測定した。結果を表3に示す。
 得られた位相差値R0(549)及びR50(549)を用いて、上記式(9)~(11)から光学異方性フィルムの屈折率n、n及びnを算出した。ここで、平均屈折率nは1.6とした。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 積層体(1)~(5)は、n≒n<nのポジティブCプレートであった。
 実施例で作製した積層体は、密着性に優れる傾向が確認できた。
 本発明の配向膜形成用組成物によれば、配向膜と樹脂基材との密着性を向上させることができ、さらに、樹脂基材と配向膜と光学異方性フィルムを有する積層体において、樹脂基材と配向膜と光学異方性フィルムとの密着性を向上させることができる。
1、1’:位相差フィルム
2、2’:偏光フィルム
3、3’:接着剤層
4a、4b、4c、4d、4e、4、4’:偏光板
5、5’:接着層
6:液晶パネル
10a、10b:液晶表示装置

Claims (14)

  1.  配向膜形成用材料と、N−メチル−2−ピロリドンと、沸点が100~200℃の炭化水素とを含む配向膜形成用組成物。
  2.  沸点が100~200℃の炭化水素が、メチルシクロヘキサン、エチルシクロヘキサン及びプロピルシクロヘキサンからなる群から選ばれる少なくとも1種である請求項1に記載の配向膜形成用組成物。
  3.  配向膜形成用組成物全量に対して、N−メチル−2−ピロリドンの含有量が60質量%~99.9質量%であり、沸点が100~200℃の炭化水素の含有量が0.1質量%~40質量%である請求項1又は請求項2に記載の配向膜形成用組成物。
  4.  配向膜形成用材料がポリイミド、ポリアミド及びポリアミック酸から選ばれる少なくとも1種を含む、請求項1~3のいずれかに記載の配向膜形成用組成物。
  5.  請求項1~4のいずれかに記載の配向膜形成用組成物から形成される配向膜を、樹脂基材の表面に有する配向膜付樹脂基材。
  6.  樹脂基材がポリオレフィン樹脂からなる請求項5に記載の配向膜付樹脂基材。
  7.  請求項1~4のいずれかに記載の配向膜形成用組成物を、樹脂基材に塗布して乾燥する配向膜付樹脂基材の製造方法。
  8.  請求項5又は請求項6に記載の配向膜付樹脂基材と光学異方性フィルムとを、樹脂基材、配向膜、光学異方性フィルムの順に有する積層体。
  9.  JIS−K5600に則った密着性試験において、面積基準で、配向膜の80%以上が樹脂基材から剥離しない請求項8に記載の積層体。
  10.  光学異方性フィルムが位相差フィルムである請求項8又は請求項9に記載の積層体。
  11.  IPS(in−plane switching)液晶表示装置用の請求項8~10のいずれかに記載の積層体。
  12.  請求項1~4のいずれかに記載の組成物を、樹脂基材に塗布することで配向膜付樹脂基材を製造し、配向膜付樹脂基材の配向膜表面にさらに重合性液晶化合物と光重合開始剤とを含む組成物を塗布し、光照射することを特徴とする、樹脂基材、配向膜、光学異方性フィルムをこの順に有する積層体の製造方法。
  13.  請求項8~11のいずれかに記載の積層体を有する偏光板。
  14.  請求項8~11のいずれかに記載の積層体を備えた表示装置。
PCT/JP2014/060883 2013-04-11 2014-04-10 配向膜形成用組成物 WO2014168257A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/783,688 US20160054495A1 (en) 2013-04-11 2014-04-10 Orientation film forming composition
KR1020157031687A KR20150143571A (ko) 2013-04-11 2014-04-10 배향막 형성용 조성물
JP2015511325A JPWO2014168257A1 (ja) 2013-04-11 2014-04-10 配向膜形成用組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013082695 2013-04-11
JP2013-082695 2013-04-11

Publications (1)

Publication Number Publication Date
WO2014168257A1 true WO2014168257A1 (ja) 2014-10-16

Family

ID=51689657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060883 WO2014168257A1 (ja) 2013-04-11 2014-04-10 配向膜形成用組成物

Country Status (4)

Country Link
US (1) US20160054495A1 (ja)
JP (1) JPWO2014168257A1 (ja)
KR (1) KR20150143571A (ja)
WO (1) WO2014168257A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045804A (ja) * 2017-09-06 2019-03-22 大日本印刷株式会社 ポリイミドフィルム、光学フィルムおよび画像表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223920A (ja) * 1989-02-27 1990-09-06 Fuji Photo Film Co Ltd 液晶表示素子
JPH11223815A (ja) * 1998-02-06 1999-08-17 Sony Corp 液晶素子及びその製造方法、並びに配向膜又はその組成物
JP2009128588A (ja) * 2007-11-22 2009-06-11 Konica Minolta Opto Inc 光学補償フィルムの製造方法、光学補償フィルム、偏光板及び液晶表示装置
WO2012014915A1 (ja) * 2010-07-28 2012-02-02 大阪有機化学工業株式会社 共重合性(メタ)アクリル酸ポリマー、光配向膜及び位相差膜
JP2012037868A (ja) * 2010-07-15 2012-02-23 Jsr Corp 位相差フィルム用液晶配向剤、位相差フィルム用液晶配向膜、位相差フィルム及びその製造方法
JP2012145660A (ja) * 2011-01-07 2012-08-02 Osaka Organic Chem Ind Ltd 光配向膜用及び光学異方性フィルム用組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08244051A (ja) * 1995-03-10 1996-09-24 Fujimori Kogyo Kk 光学用シートおよびその製造法
JP4154736B2 (ja) * 1996-06-21 2008-09-24 チッソ株式会社 ワニス
US6885423B2 (en) * 2000-12-06 2005-04-26 Nitto Denko Corporation Method for manufacturing homeotropic alignment liquid crystal film
EP1281728A1 (en) * 2001-07-16 2003-02-05 Dsm N.V. Flexible films having barrier properties
US8362151B2 (en) * 2002-05-31 2013-01-29 Elsicon, Inc. Hybrid polymer materials for liquid crystal alignment layers
JP2007148098A (ja) 2005-11-29 2007-06-14 Nitto Denko Corp 光学フィルムの製造方法、光学フィルム、および画像表示装置
JP2009216919A (ja) * 2008-03-10 2009-09-24 New Japan Chem Co Ltd ポリマー光導波路
JP4957592B2 (ja) * 2008-03-10 2012-06-20 新日本理化株式会社 ポリイミド樹脂組成物及びその成形体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223920A (ja) * 1989-02-27 1990-09-06 Fuji Photo Film Co Ltd 液晶表示素子
JPH11223815A (ja) * 1998-02-06 1999-08-17 Sony Corp 液晶素子及びその製造方法、並びに配向膜又はその組成物
JP2009128588A (ja) * 2007-11-22 2009-06-11 Konica Minolta Opto Inc 光学補償フィルムの製造方法、光学補償フィルム、偏光板及び液晶表示装置
JP2012037868A (ja) * 2010-07-15 2012-02-23 Jsr Corp 位相差フィルム用液晶配向剤、位相差フィルム用液晶配向膜、位相差フィルム及びその製造方法
WO2012014915A1 (ja) * 2010-07-28 2012-02-02 大阪有機化学工業株式会社 共重合性(メタ)アクリル酸ポリマー、光配向膜及び位相差膜
JP2012145660A (ja) * 2011-01-07 2012-08-02 Osaka Organic Chem Ind Ltd 光配向膜用及び光学異方性フィルム用組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045804A (ja) * 2017-09-06 2019-03-22 大日本印刷株式会社 ポリイミドフィルム、光学フィルムおよび画像表示装置

Also Published As

Publication number Publication date
KR20150143571A (ko) 2015-12-23
JPWO2014168257A1 (ja) 2017-02-16
US20160054495A1 (en) 2016-02-25

Similar Documents

Publication Publication Date Title
JP7279733B2 (ja) 積層体
JP6089512B2 (ja) 積層体および光学フィルム
JP6447495B2 (ja) 光学異方層形成用組成物
JP2015057643A (ja) 配向膜形成用組成物
JP6394592B2 (ja) 光学異方性フィルム用配向層
JP6528373B2 (ja) 光学異方層形成用組成物
JP2015129920A (ja) 光学異方性膜の製造方法
WO2014168258A1 (ja) 光学異方性フィルムの製造方法
JP6010910B2 (ja) 組成物及び光学フィルム
WO2014168257A1 (ja) 配向膜形成用組成物
JP6387732B2 (ja) 光学異方性積層体の製造方法
JP5971039B2 (ja) 基材および光学フィルム
JP6651353B2 (ja) 光学異方性フィルムの製造方法
JP5998768B2 (ja) 基材および光学フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015511325

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14783688

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157031687

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14783417

Country of ref document: EP

Kind code of ref document: A1