WO2014168048A1 - Magnetized zeolite, production method therefor, and method for selective and specific capture of cesium - Google Patents
Magnetized zeolite, production method therefor, and method for selective and specific capture of cesium Download PDFInfo
- Publication number
- WO2014168048A1 WO2014168048A1 PCT/JP2014/059649 JP2014059649W WO2014168048A1 WO 2014168048 A1 WO2014168048 A1 WO 2014168048A1 JP 2014059649 W JP2014059649 W JP 2014059649W WO 2014168048 A1 WO2014168048 A1 WO 2014168048A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zeolite
- magnetized
- cesium
- soil
- magnetite nanoparticles
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
- B01J20/186—Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28009—Magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/005—Pretreatment specially adapted for magnetic separation
- B03C1/01—Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/10—Magnetic separation acting directly on the substance being separated with cylindrical material carriers
- B03C1/14—Magnetic separation acting directly on the substance being separated with cylindrical material carriers with non-movable magnets
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/026—After-treatment
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
- G21F9/12—Processing by absorption; by adsorption; by ion-exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4875—Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
- B01J2220/4887—Residues, wastes, e.g. garbage, municipal or industrial sludges, compost, animal manure; fly-ashes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Definitions
- the present invention relates to a magnetized zeolite, a method for producing the same, and a method for selectively capturing cesium.
- Zeolite is an aluminosilicate having an infinite number of pores in the crystal structure, and is a substance composed of M-Al-Si-O (M is an alkali metal or alkaline earth metal).
- M is an alkali metal or alkaline earth metal.
- Si / Al ratio the more negatively charged the zeolite skeleton is due to isomorphous substitution, and M plus ions are required to compensate for it.
- CEC cation exchange capacity
- a method for recovering zeolite mixed in a fluid a method is known in which an adsorbent containing zeolite and magnetic particles is used and the adsorbent is recovered by magnetic separation (see, for example, Patent Documents 4 to 6). ).
- general zeolite such as natural zeolite is weak because the capture ability of cesium ions relies only on electric affinity. Moreover, since a general zeolite captures regardless of a kind if it is a cation, it cannot selectively capture a cesium ion. Moreover, general zeolite does not have the ability to attract cesium taken in between clay layers in soil until it is drawn out from the clay layers.
- CEC value a standard for the capture capacity of zeolites
- mordenite Si / Al ratio of about 5
- SI unit is cmol (+) ⁇ kg ⁇ 1
- the crystal pores are 5.5 to 8.0 mm and larger than the diameter of cesium ions (3.6 mm)
- the capture and fixing ability of radioactive cesium is weak.
- the soil in Fukushima where there is concern about contamination with radioactive cesium, is “masa soil” in which granite is weathered.
- the CEC of the “masa soil” is about 20
- the clay mineral kaolinite derived from feldspar weathered from the “masa soil” has a CEC of 3 to 15 meq / 100 g.
- the clay mineral illite derived from mica has a CEC of 10 to 40 meq / 100 g.
- clay mineral vermiculite with altered illite has a relatively large CEC value of 100-150 meq / 100 g, which is a measure of adsorption capacity. It has the property of easily incorporating cesium ions between layers. Therefore, it was difficult to capture cesium free from such soil.
- An object of the present invention is to provide a magnetized zeolite capable of efficiently capturing radioactive cesium in soil or a liquid containing soil, a method for producing the same, and a method for capturing cesium.
- Na-P1 type zeolite has countless crystal pores having the same size as cesium ions (diameter: 3.6 mm), so that cesium It was found that it has the ability to selectively capture and fix ions selectively.
- Na-P1 type zeolite is disclosed in Non-Patent Document 1, for example.
- the method for producing a magnetized zeolite according to the present invention includes a step of softening the surface of the incineration ash by adding an alkaline solution to a zeolite raw material containing incineration ash of coal or paper sludge, and the surface of the incineration ash is softened. And obtaining a magnetized zeolite which is a composite material of magnetite nanoparticles and Na—P1 type zeolite by mixing and heating the zeolite raw material and magnetite nanoparticles.
- the zeolite raw material may be an example in which the Si / Al ratio is adjusted to 2 or less using one or more of sodium aluminate and an aluminum compound. .
- the magnetized zeolite according to the present invention is a magnetized zeolite obtained by the method for producing a magnetized zeolite of the present invention, wherein magnetite nanoparticles are confined at the grain boundaries of the Na—P1 type zeolite polycrystal, or Na—
- This is a composite material of a magnetite nanoparticle and Na—P1 type zeolite in which a nanocomposite is formed by partial substitution of magnetite nanoparticles in a P1 type zeolite crystal, or both of these structures.
- the method for capturing cesium according to the present invention comprises a step of mixing the magnetized zeolite of the present invention in soil or a liquid containing soil, and recovering the magnetized zeolite by magnetic separation, so that the Selectively and specifically capturing radioactive cesium.
- Examples of the method for capturing cesium according to the present invention include reusing the magnetized zeolite recovered by the magnetic separation.
- the method for capturing cesium of the present invention is not limited to a configuration in which the recovered magnetized zeolite is reused.
- the method for capturing cesium of the present invention can be exemplified by reusing the magnetized zeolite after elution of radioactive cesium from the magnetized zeolite recovered by the magnetic separation.
- the magnetized zeolite may be reused without performing the process of eluting radioactive cesium from the magnetized zeolite recovered by magnetic separation.
- the magnetized zeolite and the method for producing the same of the present invention can provide a magnetized zeolite which is a composite material of magnetite nanoparticles and Na—P1 type zeolite capable of efficiently capturing radioactive cesium in the soil or a liquid containing the soil.
- the method for capturing cesium of the present invention can efficiently capture radioactive cesium in soil or in a liquid containing soil using the magnetized zeolite of the present invention. Furthermore, since the Na—P1 type zeolite mixed in the soil or the liquid containing the soil is recovered by magnetic separation, the method for capturing cesium of the present invention makes it easy to recover the zeolite capturing the cesium.
- FIG. 3 is a view showing a framework structure model of Na—P1 type zeolite. It is a figure which shows the result of having investigated the capture ability of the cesium ion and the strontium ion of Na-P1 type
- FIG. 1 is a schematic diagram for explaining one embodiment of a method for producing magnetized zeolite.
- 2 mol / L (mol / liter) of sodium hydroxide solution 3 is added to iron salt solution 1 containing iron (II) chloride or iron (III) chloride or both, and mixed at 100 ° C.
- a dispersion of magnetite nanoparticles was obtained by coprecipitation.
- the average particle size of the obtained magnetite nanoparticles is about 30 nm (nanometers).
- the zeolite incineration ash whose Si / Al ratio was previously examined by fluorescent X-ray analysis was mixed with aluminum hydroxide so that the Si / Al ratio was 2, to obtain a zeolite raw material 5.
- a 2 mol / L sodium hydroxide solution 7 was added to the zeolite raw material 5 and allowed to stand at room temperature for 24 hours. Thereby, the zeolite raw material containing the incinerated ash whose surface was softened was obtained.
- Magnetite nanoparticles were mixed with zeolite raw material containing incinerated ash whose surface was softened, and heated to reflux (heat treatment) at 100 ° C. for 24 hours. As a result, a magnetized zeolite 13 which is a composite material of the Na—P1 type zeolite 9 and the magnetite nanoparticles 11 was obtained.
- the molar ratio of Na—P1 type zeolite 9 to magnetite nanoparticle 11 was about 7: 3.
- the particle diameter of the Na—P1 type zeolite 9 was about several tens of ⁇ m (micrometer).
- the particle size of the magnetite nanoparticle 11 was about several tens of nm.
- the magnetite nanoparticles 11 are partially substituted in the crystals of the Na—P1 type zeolite 9 to form a nanocomposite.
- magnetite nanoparticles 11 are confined at the grain boundaries of the polycrystalline Na—P1 zeolite 9.
- the magnetized zeolite 13 has a different structure from that obtained by simply mixing the Na—P1 type zeolite particles and the magnetite nanoparticles.
- a pretreatment is performed before mixing and heating the magnetite nanoparticles and the zeolite raw material 5.
- a pretreatment is performed to soften the surface of the incinerated ash contained in the zeolite raw material 5.
- FIG. 2 is a diagram showing a framework structure model of Na—P1 type zeolite.
- the chemical formula of the Na-P1 type zeolite 9 is described as Na 6 Al 6 Si 10 O 32 ⁇ 12H 2 O in Non-Patent Document 1.
- the basic unit of the structure of the Na—P1 type zeolite 9 is the same tetrahedral structure of SiO 4 or AlO 4 . Therefore, the Na—P1 type zeolite 9 can maintain the Na—P1 type zeolite structure even if the Si / Al ratio changes to some extent.
- the crystal pores of the Na-P1 type zeolite 9 are about 3.6 cm, which is almost the same as the diameter of cesium ions. Therefore, the Na—P1 type zeolite 9 has particularly excellent selective capture characteristics for cesium ions.
- the Si / Al ratio of the Na—P1 type zeolite 9 is smaller than 2. That is, the Na—P1 type zeolite 9 has a high CEC.
- the CEC of Na—P1 type zeolite 9 is 250 meq / 100 g or more. If the Si / Al ratio is further lowered in the Na—P1 type zeolite, the CEC of the Na—P1 type zeolite can be 400 to 500 meq / 100 g.
- FIG. 3 is a diagram showing the results of examining the capture ability of cesium ions (Cs + ) and strontium ions (Sr 2+ ) of Na—P1 type zeolite in a solution.
- the horizontal axis indicates the amount of zeolite charged (g) in 50 ml (milliliter) of the solution.
- the vertical axis represents the removal rate (%) of cesium ions or strontium ions.
- 0.1 g or 0.2 g of Na—P1 type zeolite was put into 50 ml of a solution containing cesium ions or strontium ions at a concentration of 10 mmol / L, and cesium ions or strontium ions were adsorbed on the Na—P1 type zeolite. Thereafter, the concentration of cesium ions or strontium ions in the supernatant from which Na-P1 type zeolite was removed by centrifugation was measured by atomic absorption analysis.
- Each cesium ion removal rate was 99%.
- the removal rate of strontium ions when 0.1 g of Na-P1 type zeolite was added to 50 ml of the solution was 95%, and the removal rate of strontium ions when 0.2 g of Na-P1 type zeolite was added was 96%. Met.
- Na-P1 type zeolite showed a high capturing ability for cesium ions. It was also found that Na-P1 type zeolite showed a high capturing ability for strontium ions.
- FIG. 4 is a diagram showing the results of examining the capture ability of Na—P1 type zeolite for cesium in soil.
- the horizontal axis indicates the amount of zeolite mixed with the soil (% by weight).
- the vertical axis represents the cesium ion elution amount (mmol ⁇ kg ⁇ 1 ).
- cesium-fixed soil granitic soil mixed with vermiculite (CEC: 3 to 15 meq / 100 g) at 10% by weight was used.
- the cesium capture ability was determined by measuring the amount of cesium ions eluted from the cesium-fixed soil mixed with a predetermined amount of Na-P1-type zeolite after water mixing for 2 hours.
- the mixing amount of the Na-P1 type zeolite is 0% (Cs saturated soil)
- the mixing amount of the Na-P1 type zeolite is 0.1%, 23%, the case of 1% is 74%, 10%.
- 85% of cesium could be captured. This means that Na-P1 type zeolite can capture cesium from soil with a large CEC.
- the magnetized zeolite of the present invention contains Na—P1 type zeolite crystals, it has the same trapping ability with respect to cesium and stronium as non-magnetized Na—P1 type zeolite.
- FIG. 5 is a conceptual diagram for explaining a method for recovering magnetized zeolite capturing cesium.
- Granular magnetized zeolite 13 is mixed with cesium-contaminated soil containing cesium (Cs) 21 captured by the soil particles 19, and a water-containing shake is added by adding a release agent such as potassium chloride. To capture.
- Cs cesium-contaminated soil containing cesium
- the magnetized zeolite 13 capturing the cesium 21 and the soil particles 19 from which the cesium has been removed are separated. Thereby, the purified soil particle 19 is obtained.
- the magnetic separator is not limited to the one provided with the magnet pulley 23 and the drum separator 25, and may have any structure.
- FIG. 6 is a diagram showing changes in the concentration of radioactive cesium in the soil when magnetic separation using the magnetized zeolite of the present invention is performed a plurality of times.
- the horizontal axis indicates the number of magnetic separations.
- the vertical axis represents the radioactive cesium concentration (%).
- a soil having a radioactivity concentration of 12000 to 16000 Bq / kg (becquerel / kilogram) was used as the soil.
- the four types of samples A, B, C, and D show the difference in the types of release agents such as an aqueous potassium salt solution and an aqueous ammonium salt solution that are necessary for once releasing radioactive cesium from the soil.
- Sample A release agent is a solution containing 0.1% potassium chloride and 4% oxalic acid.
- Sample B release agent is a solution containing 0.1% potassium chloride, 4% oxalic acid and 4% ammonium oxalate.
- Sample C release agent is a solution containing 0.1% potassium chloride, 2% oxalic acid and 2% ammonium oxalate.
- the release agent for Sample D is a solution containing 0.1% potassium chloride and 4% ammonium oxalate.
- Each sample is obtained by mixing 200 g of magnetized zeolite and 2 L (liter) of release agent in 2 kg of soil and stirring for 10 minutes.
- Each magnetic sample was magnetically selected three times.
- the addition of magnetized zeolite and release agent is only the first time, and the second and subsequent times are only magnetic separation operations.
- the concentration of radioactive cesium decreased as the number of magnetic separations increased.
- About 80% of the radioactive cesium was successfully removed by three magnetic separation operations.
- the release agent is not limited to those used in the samples A, B, C, and D.
- FIG. 7 is a conceptual diagram for explaining a soil decontamination method using magnetized zeolite.
- Radioactive Cs elution step A soil containing cesium 21 (Cs + ) captured by the soil particles 19 is mixed with a free agent such as potassium chloride and shaken with water. The cesium 21 captured in the soil particles 19 is replaced with potassium ions 27 (K + ) and is eluted from the soil particles 19.
- the release agent is not limited to potassium chloride, and other release agents such as other potassium salts and ammonium salts may be used.
- Magnetized zeolite transfer step Magnetized zeolite 13 is further mixed. Cesium 21 is captured by the magnetized zeolite 13. In addition to cesium 21, potassium ions 27 are captured in the magnetized zeolite 13.
- Magnetized zeolite magnetic separation step (weight reduction 1): Magnetized zeolite 13 is taken out by magnetic separation using a magnet 29. Cesium 21 is captured in the recovered magnetized zeolite 13.
- the number of magnetic selection steps in this step may be one, but magnetic selection is preferably performed a plurality of times, for example, 2 to 3 times. The steps so far are the same as the magnetized zeolite recovery method described with reference to FIG.
- Magnetized zeolite reuse step (weight loss 2): The magnetized zeolite 13 recovered by magnetic separation in the step (3) is reused. Specifically, the magnetized zeolite 13 recovered in the step (3) is used in the step (2).
- the number of times that the magnetized zeolite 13 can be reused varies depending on the concentration of cesium 21 in the soil, but is, for example, five times. However, the number of reuses of the magnetized zeolite 13 is not particularly limited.
- Elution step from magnetized zeolite The magnetized zeolite 13 whose number of reuses reaches an arbitrary specified number of times, for example, 5 times, is not reused (the above step (4)), and the captured cesium 21 Elution treatment is performed.
- a high concentration potassium salt is mixed with the magnetized zeolite 13 as a release agent.
- the cesium 21 captured in the magnetized zeolite 13 is replaced with potassium ions 27.
- the concentration of the potassium salt used here is not particularly limited as long as cesium 21 can be eluted from the magnetized zeolite 13.
- the releasing agent is not limited to the potassium salt.
- the release agent is not particularly limited as long as it can release cesium 21, and may be, for example, an ammonium salt.
- Elution Cs concentration step (weight loss 3): The magnetized zeolite 13 is recovered from the solution containing cesium 21 eluted from the magnetized zeolite 13 in the step (5) using, for example, a magnet.
- the cesium 21 contained in the solution from which the magnetized zeolite 13 is recovered is solidified by, for example, heat drying.
- the magnetized zeolite 13 collected here can be reused.
- the amount is reduced by 1/10 (weight reduction 1). Furthermore, if the used magnetized zeolite containing radioactive Cs recovered by magnetic separation is used for the same decontamination and can be reused in a state where the radioactive Cs is captured by the magnetized zeolite, the amount of soil is doubled. Decontamination has been completed. In this case, the total weight reduction is 1/20 (weight loss 2). For example, if the used magnetized zeolite in which radioactive Cs is captured can be reused four times and the same magnetized zeolite can be used five times in total, a reduction of 1/50 can be realized.
- the amount of radioactive Cs contained in the soil is extremely small, so that it is possible to repeatedly use magnetized zeolite recovered by magnetic separation.
- recycling of used magnetized zeolite improves decontamination efficiency.
- the radioactive Cs concentrated in the magnetized zeolite is eluted with a release agent for the magnetized zeolite, and the liquid is dried and solidified, thereby enabling a significant reduction in weight (weight reduction 3).
- FIG. 8 is a diagram showing the relationship between the number of magnetic separation stages (times) and the radioactive concentration (%) of soil when magnetized zeolite is reused.
- the spent magnetized zeolite mixed with the soil containing radioactive Cs and capturing the radioactive Cs collected by magnetic separation is left to dry at room temperature, and again as described in the above step (4), the above step Used in place of unused magnetized zeolite in (2).
- the used magnetized zeolite captures about 2 to 5 times as much radioactive Cs as the soil.
- soil from Kawamata Town, Date-gun, Fukushima Prefecture was used.
- the magnetic separation process is performed in contrast to the process in which the magnetized zeolite and the release agent are mixed and mixed for 10 minutes (the above step (2)) and then the magnetic separation process (the above step (3)) is performed 2-3 times. Each time it was performed, 10% of the above used magnetized zeolite and 2% ammonium oxalate solution as a release agent were added and mixed for 10 minutes. This is for confirming the performance of the used magnetized zeolite capturing radioactive Cs.
- the used magnetized zeolite captures about 2 to 5 times as much radioactive Cs as the soil, but about 10 to 20% in the first magnetic separation process and about 50% in the second magnetic separation process. It was possible to confirm the decay of the radioactive Cs concentration.
- the used magnetized zeolite is a magnetized zeolite that is easily recovered by magnetic separation. This is also considered to be one of the factors that the used magnetized zeolite can be reused.
- the magnetized zeolite recovered by magnetic separation is reused without being subjected to the elution treatment of the captured radioactive Cs (the above step (5)) (the above step). (4)), but the method of selective and specific capture of cesium of the present invention is not limited to this.
- the selective and specific capture method of cesium of the present invention may be configured such that radioactive cesium is eluted and then reused without reusing the magnetized zeolite recovered by magnetic separation as it is. Since this configuration uses magnetized zeolite recovered by magnetic separation, that is, magnetized zeolite that is easily recovered by magnetic separation, decontamination efficiency can be improved.
- the method of capturing cesium of the present invention is an innovative method that can recover only radioactive elements such as cesium in the current situation where there is no true decontamination technology against soil contamination by radionuclides caused by an accident at a nuclear power plant in Fukushima. Technology. Furthermore, the method for capturing cesium according to the present invention is a technology that can be readily adapted to the current decontamination around Fukushima as a technology that is suitable for widespread use with a large amount, low cost and ease of use. Furthermore, it can be expected to be useful even in areas where decontamination is not sufficiently advanced, such as Chernobyl.
- coal incineration ash is used as a zeolite raw material for synthesizing magnetized zeolite.
- a composite of magnetite nanoparticles and Na-P1 type zeolite is used. It is possible to synthesize magnetized zeolite as a material.
- magnetized zeolite which is a composite material of magnetite nanoparticles and Na-P1 type zeolite, is synthesized using a mixture of water glass, sodium aluminate, and an aluminum compound that is adjusted to have a Si / Al ratio of 2 or less. You can also.
- the Si / Al ratio of the zeolite raw material may be adjusted to a desired value.
- the material for adjusting the Si / Al ratio is a compound containing silicon or aluminum, preferably water glass, sodium aluminate, or an aluminum compound.
- the value of Si / Al ratio is 2 or less, for example, 2.
- the value of the Si / Al ratio of the synthesis material is a value at which the composite material of magnetite nanoparticles and Na—P1 type zeolite is synthesized, and may be any number as long as it is 2 or less.
- the particle size of the magnetite nanoparticles mixed with the zeolite raw material containing the incinerated ash having a softened surface is, for example, 5 to 200 nm, preferably 30 nm or less.
- the magnetite nanoparticles may be commercially available.
- the alkaline solution is not limited to sodium hydroxide, and may be another alkaline solution such as potassium hydroxide.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- High Energy & Nuclear Physics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
A magnetized zeolite being a composite material of magnetite nanoparticles and a Na-P1-type zeolite is obtained by: adding an alkaline solution to a zeolite raw material including incinerated coal ash or incinerated paper-making sludge ash and softening the surface of the incinerated ash; and mixing magnetite nanoparticles and the zeolite raw material having the incinerated ash surface thereof softened, and heat treating same. The magnetized zeolite has a structure whereby magnetite nanoparticles are locked in the particle boundary of a polycrystalline body of the Na-P1-type zeolite, a structure whereby some magnetite nanoparticles are substituted inside the Na-P1-type zeolite crystals and a nano complex is formed therein, or both of these structures.
Description
本発明は、磁化ゼオライト及びその製造方法並びにセシウムの選択特異的捕獲方法に関するものである。
The present invention relates to a magnetized zeolite, a method for producing the same, and a method for selectively capturing cesium.
原子力発電所の事故等によって放射性核種で汚染された土壌から放射性核種の1つである放射性セシウムを除去するための除染方法が要求されている。放射性セシウムの除染方法の1つとしてゼオライトを利用することが考えられている。ゼオライトは、電気的親和力によりセシウムに対して吸着作用をもつことが知られている(例えば特許文献1から3を参照。)。
There is a need for a decontamination method for removing radiocesium, which is one of the radionuclides, from soil contaminated with radionuclides due to accidents at nuclear power plants. As one of the methods for decontaminating radioactive cesium, it is considered to use zeolite. It is known that zeolite has an adsorbing action on cesium due to electric affinity (see, for example, Patent Documents 1 to 3).
ゼオライトは、結晶構造中に無数の孔隙をもつアルミノ珪酸塩であって、M-Al-Si-O(Mはアルカリ金属又はアルカリ土類金属)から成る物質である。ゼオライトに関し、Si/Al比が小さい程、同像置換によってゼオライト骨格が負に帯電し、それを補償するためにMプラスイオンが必要となる。また、ゼオライトは、Si/Al比が小さい程、陽イオン交換容量(CEC;Cation Exchange Capacity)が向上する。
Zeolite is an aluminosilicate having an infinite number of pores in the crystal structure, and is a substance composed of M-Al-Si-O (M is an alkali metal or alkaline earth metal). With respect to zeolite, the smaller the Si / Al ratio, the more negatively charged the zeolite skeleton is due to isomorphous substitution, and M plus ions are required to compensate for it. In addition, the cation exchange capacity (CEC) of zeolite increases as the Si / Al ratio decreases.
また、流体中に混合されたゼオライトを回収する方法として、ゼオライトと磁性粒子とを含む吸着剤を用い、磁選によって吸着剤を回収する方法が知られている(例えば特許文献4から6を参照。)。
Further, as a method for recovering zeolite mixed in a fluid, a method is known in which an adsorbent containing zeolite and magnetic particles is used and the adsorbent is recovered by magnetic separation (see, for example, Patent Documents 4 to 6). ).
しかし、天然ゼオライト等の一般的なゼオライトは、セシウムイオンの捕獲能が電気的親和力のみに頼っているために弱い。また、一般的なゼオライトは、陽イオンならば種類を問わずに捕獲するので、セシウムイオンを選択的に捕獲することができない。また、一般的なゼオライトは、土壌中の粘土層間に取り込まれているセシウムを、粘土層間から引き出してまで、ゼオライトに引きつける能力はない。
However, general zeolite such as natural zeolite is weak because the capture ability of cesium ions relies only on electric affinity. Moreover, since a general zeolite captures regardless of a kind if it is a cation, it cannot selectively capture a cesium ion. Moreover, general zeolite does not have the ability to attract cesium taken in between clay layers in soil until it is drawn out from the clay layers.
一般的なゼオライトのセシウムイオンの捕獲能が低い理由として、2つの理由が考えられる。
1つは、一般的なゼオライトは陽イオンならば種類を問わずに捕獲するので、ゼオライトの捕獲容量の目安となる陽イオン交換容量(CEC値)がすぐに容量値いっぱいとなるため、目的とするセシウムイオンに対して充分働けないことである。 There are two possible reasons why the cesium ion capture ability of a general zeolite is low.
One is that, since general zeolites can be captured regardless of the type if they are cations, the cation exchange capacity (CEC value), which is a standard for the capture capacity of zeolites, is quickly filled. It does not work well against cesium ions.
1つは、一般的なゼオライトは陽イオンならば種類を問わずに捕獲するので、ゼオライトの捕獲容量の目安となる陽イオン交換容量(CEC値)がすぐに容量値いっぱいとなるため、目的とするセシウムイオンに対して充分働けないことである。 There are two possible reasons why the cesium ion capture ability of a general zeolite is low.
One is that, since general zeolites can be captured regardless of the type if they are cations, the cation exchange capacity (CEC value), which is a standard for the capture capacity of zeolites, is quickly filled. It does not work well against cesium ions.
もう1つは、一般的なゼオライトは、セシウムイオンの捕獲能が電気的親和力のみに頼っているために弱く、また、物理的形状のゼオライト孔隙がセシウムイオンの直径(3.6Å(オングストローム)程度)に対して大きすぎたり小さすぎたりするなど、捕獲条件に適合しているとは言いがたいことである。
The other is that general zeolite is weak because the trapping ability of cesium ions relies only on electric affinity, and the zeolite pores of physical shape are about the diameter of cesium ions (3.6 angstroms). ) Is too large or too small to meet the capture conditions.
例えば、天然ゼオライトの1つであるモルデナイト(Si/Al比は5程度)は、陽イオンの捕獲容量であるCECが120~150meq/100g(SI単位はcmol(+)・kg-1)と大きいが、結晶孔隙が5.5~8.0Åであり、セシウムイオンの直径(3.6Å)よりも大きいために、放射性セシウムの捕獲固定能が弱い。
For example, mordenite (Si / Al ratio of about 5), which is one of natural zeolites, has a large cation capture capacity of CEC of 120 to 150 meq / 100 g (SI unit is cmol (+) · kg −1 ). However, since the crystal pores are 5.5 to 8.0 mm and larger than the diameter of cesium ions (3.6 mm), the capture and fixing ability of radioactive cesium is weak.
また、放射性セシウムによる汚染が懸念されている福島の土壌は、主に花崗岩質が風化した「まさ土」土壌である。「まさ土」土壌のCECは20程度であり、「まさ土」土壌が風化した長石起因の粘土鉱物カオリナイトは、CECが3~15meq/100gである。また、雲母起因の粘土鉱物イライトは、CECが10~40meq/100gである。さらに、イライトが変質した粘土鉱物バーミキュライトは、吸着容量の目安であるCEC値が100~150meq/100gと比較的大きいのに加えて、2:1型粘土鉱物の特性である層間膨張をし、放射性セシウムイオンを容易に層間に取り込む性質がある。したがって、このような土壌からセシウムを遊離捕獲することは困難であった。
In addition, the soil in Fukushima, where there is concern about contamination with radioactive cesium, is “masa soil” in which granite is weathered. The CEC of the “masa soil” is about 20, and the clay mineral kaolinite derived from feldspar weathered from the “masa soil” has a CEC of 3 to 15 meq / 100 g. The clay mineral illite derived from mica has a CEC of 10 to 40 meq / 100 g. Furthermore, clay mineral vermiculite with altered illite has a relatively large CEC value of 100-150 meq / 100 g, which is a measure of adsorption capacity. It has the property of easily incorporating cesium ions between layers. Therefore, it was difficult to capture cesium free from such soil.
本発明は、土壌中又は土壌を含む液中の放射性セシウムを効率よく捕獲できる磁化ゼオライト及びその製造方法並びにセシウムの捕獲方法を提供することを目的とする。
An object of the present invention is to provide a magnetized zeolite capable of efficiently capturing radioactive cesium in soil or a liquid containing soil, a method for producing the same, and a method for capturing cesium.
本願発明者らは、天然及び人工を含め多数の種類があるゼオライトのうち、Na-P1型ゼオライトがセシウムイオン(直径は3.6Å)と同じ大きさの結晶孔隙を無数に有することにより、セシウムイオンを選択特異的に捕獲固定する能力があることを見出した。Na-P1型ゼオライトは例えば非特許文献1に開示されている。
Among the various types of zeolites, including natural and artificial, the inventors of the present application have found that Na-P1 type zeolite has countless crystal pores having the same size as cesium ions (diameter: 3.6 mm), so that cesium It was found that it has the ability to selectively capture and fix ions selectively. Na-P1 type zeolite is disclosed in Non-Patent Document 1, for example.
本発明に係る磁化ゼオライトの製造方法は、石炭の焼却灰又は製紙スラッジの焼却灰を含むゼオライト原料にアルカリ溶液を加えて上記焼却灰の表面を軟化させるステップと、上記焼却灰の表面が軟化された上記ゼオライト原料とマグネタイトナノ微粒子とを混合して加熱処理することによってマグネタイトナノ微粒子とNa-P1型ゼオライトの複合材料である磁化ゼオライトを得るステップと、を含んでいる。
The method for producing a magnetized zeolite according to the present invention includes a step of softening the surface of the incineration ash by adding an alkaline solution to a zeolite raw material containing incineration ash of coal or paper sludge, and the surface of the incineration ash is softened. And obtaining a magnetized zeolite which is a composite material of magnetite nanoparticles and Na—P1 type zeolite by mixing and heating the zeolite raw material and magnetite nanoparticles.
本発明の磁化ゼオライトの製造方法において、上記ゼオライト原料は、アルミン酸ナトリウム及びアルミニウム化合物のうち1つ又は複数を用いてSi/Al比が2以下に調整されたものである例を挙げることができる。
In the method for producing a magnetized zeolite of the present invention, the zeolite raw material may be an example in which the Si / Al ratio is adjusted to 2 or less using one or more of sodium aluminate and an aluminum compound. .
本発明に係る磁化ゼオライトは、本発明の磁化ゼオライトの製造方法によって得られた磁化ゼオライトであって、Na-P1型ゼオライト多結晶体の粒界にマグネタイトナノ微粒子が閉じ込められている、もしくはNa-P1型ゼオライト結晶内でマグネタイトナノ微粒子が一部置換してナノ複合体が形成されている、又はそれらの両方の構造をもつマグネタイトナノ微粒子とNa-P1型ゼオライトの複合材料である。
The magnetized zeolite according to the present invention is a magnetized zeolite obtained by the method for producing a magnetized zeolite of the present invention, wherein magnetite nanoparticles are confined at the grain boundaries of the Na—P1 type zeolite polycrystal, or Na— This is a composite material of a magnetite nanoparticle and Na—P1 type zeolite in which a nanocomposite is formed by partial substitution of magnetite nanoparticles in a P1 type zeolite crystal, or both of these structures.
本発明に係るセシウムの捕獲方法は、本発明の磁化ゼオライトを土壌中又は土壌を含む液中に混合するステップと、上記磁化ゼオライトを磁選によって回収することにより、土壌中又は土壌を含む液中の放射性セシウムを選択特異的に捕獲するステップと、を含んでいる。
The method for capturing cesium according to the present invention comprises a step of mixing the magnetized zeolite of the present invention in soil or a liquid containing soil, and recovering the magnetized zeolite by magnetic separation, so that the Selectively and specifically capturing radioactive cesium.
本発明のセシウムの捕獲方法は、上記磁選によって回収された上記磁化ゼオライトを再利用する例を挙げることができる。ただし、本発明のセシウムの捕獲方法は、回収された磁化ゼオライトを再利用する構成に限定されない。
Examples of the method for capturing cesium according to the present invention include reusing the magnetized zeolite recovered by the magnetic separation. However, the method for capturing cesium of the present invention is not limited to a configuration in which the recovered magnetized zeolite is reused.
また、本発明のセシウムの捕獲方法は、上記磁選によって回収された上記磁化ゼオライトから放射性セシウムを溶出させた後、上記磁化ゼオライトを再利用する例を挙げることができる。なお、本発明のセシウムの捕獲方法は、磁選によって回収された磁化ゼオライトから放射性セシウムを溶出させる処理を行うことなく、磁化ゼオライトを再利用してもよい。
In addition, the method for capturing cesium of the present invention can be exemplified by reusing the magnetized zeolite after elution of radioactive cesium from the magnetized zeolite recovered by the magnetic separation. In the cesium capturing method of the present invention, the magnetized zeolite may be reused without performing the process of eluting radioactive cesium from the magnetized zeolite recovered by magnetic separation.
本発明の磁化ゼオライト及びその製造方法は、土壌中又は土壌を含む液中の放射性セシウムを効率よく捕獲できるマグネタイトナノ微粒子とNa-P1型ゼオライトの複合材料である磁化ゼオライトを提供できる。
The magnetized zeolite and the method for producing the same of the present invention can provide a magnetized zeolite which is a composite material of magnetite nanoparticles and Na—P1 type zeolite capable of efficiently capturing radioactive cesium in the soil or a liquid containing the soil.
本発明のセシウムの捕獲方法は、本発明の磁化ゼオライトを用いて、土壌中又は土壌を含む液中の放射性セシウムを効率よく捕獲できる。さらに、土壌中又は土壌を含む液中に混合されたNa-P1型ゼオライトは磁選によって回収されるので、本発明のセシウムの捕獲方法は、セシウムを捕獲したゼオライトの回収が容易になる。
The method for capturing cesium of the present invention can efficiently capture radioactive cesium in soil or in a liquid containing soil using the magnetized zeolite of the present invention. Furthermore, since the Na—P1 type zeolite mixed in the soil or the liquid containing the soil is recovered by magnetic separation, the method for capturing cesium of the present invention makes it easy to recover the zeolite capturing the cesium.
図1は、磁化ゼオライトの製造方法の一実施例を説明するための模式的な図である。
例えば、塩化(II)鉄もしくは塩化(III)鉄又はその両方を含む鉄塩溶液1に2mol/L(モル/リットル)の水酸化ナトリウム溶液3を添加し、100℃の条件で混合して、共沈法によりマグネタイトナノ微粒子の分散液を得た。得られたマグネタイトナノ微粒子の平均粒径は約30nm(ナノメートル)である。 FIG. 1 is a schematic diagram for explaining one embodiment of a method for producing magnetized zeolite.
For example, 2 mol / L (mol / liter) ofsodium hydroxide solution 3 is added to iron salt solution 1 containing iron (II) chloride or iron (III) chloride or both, and mixed at 100 ° C. A dispersion of magnetite nanoparticles was obtained by coprecipitation. The average particle size of the obtained magnetite nanoparticles is about 30 nm (nanometers).
例えば、塩化(II)鉄もしくは塩化(III)鉄又はその両方を含む鉄塩溶液1に2mol/L(モル/リットル)の水酸化ナトリウム溶液3を添加し、100℃の条件で混合して、共沈法によりマグネタイトナノ微粒子の分散液を得た。得られたマグネタイトナノ微粒子の平均粒径は約30nm(ナノメートル)である。 FIG. 1 is a schematic diagram for explaining one embodiment of a method for producing magnetized zeolite.
For example, 2 mol / L (mol / liter) of
例えば蛍光X線分析により予めSi/Al比が調べられた石炭焼却灰に、Si/Al比が2になるように水酸化アルミニウムを混合してゼオライト原料5を得た。ゼオライト原料5に2mol/Lの水酸化ナトリウム溶液7を添加し、室温で24時間放置した。これにより、表面が軟化した焼却灰を含むゼオライト原料を得た。
For example, the zeolite incineration ash whose Si / Al ratio was previously examined by fluorescent X-ray analysis was mixed with aluminum hydroxide so that the Si / Al ratio was 2, to obtain a zeolite raw material 5. A 2 mol / L sodium hydroxide solution 7 was added to the zeolite raw material 5 and allowed to stand at room temperature for 24 hours. Thereby, the zeolite raw material containing the incinerated ash whose surface was softened was obtained.
マグネタイトナノ微粒子と、表面が軟化した焼却灰を含むゼオライト原料とを混合し、100℃、24時間の条件で加熱還流(加熱処理)した。これにより、Na-P1型ゼオライト9とマグネタイトナノ微粒子11の複合材料である磁化ゼオライト13を得た。
Magnetite nanoparticles were mixed with zeolite raw material containing incinerated ash whose surface was softened, and heated to reflux (heat treatment) at 100 ° C. for 24 hours. As a result, a magnetized zeolite 13 which is a composite material of the Na—P1 type zeolite 9 and the magnetite nanoparticles 11 was obtained.
磁化ゼオライト13において、Na-P1型ゼオライト9とマグネタイトナノ微粒子11のモル比(Na-P1型ゼオライト:マグネタイト)は約7:3であった。Na-P1型ゼオライト9の粒径は数十μm(マイクロメートル)程度であった。また、マグネタイトナノ微粒子11の粒径は数十nm程度であった。
In the magnetized zeolite 13, the molar ratio of Na—P1 type zeolite 9 to magnetite nanoparticle 11 (Na—P1 type zeolite: magnetite) was about 7: 3. The particle diameter of the Na—P1 type zeolite 9 was about several tens of μm (micrometer). The particle size of the magnetite nanoparticle 11 was about several tens of nm.
磁化ゼオライト13において、Na-P1型ゼオライト9の結晶内にマグネタイトナノ微粒子11が一部置換して、ナノ複合体が形成されている。また、Na-P1型ゼオライト9の多結晶体の粒界にマグネタイトナノ微粒子11が閉じ込められている。
このように、磁化ゼオライト13は、Na-P1型ゼオライト粒子とマグネタイトナノ微粒子とが単に混合されたものとは構造が異なっている。 In themagnetized zeolite 13, the magnetite nanoparticles 11 are partially substituted in the crystals of the Na—P1 type zeolite 9 to form a nanocomposite. In addition, magnetite nanoparticles 11 are confined at the grain boundaries of the polycrystalline Na—P1 zeolite 9.
Thus, themagnetized zeolite 13 has a different structure from that obtained by simply mixing the Na—P1 type zeolite particles and the magnetite nanoparticles.
このように、磁化ゼオライト13は、Na-P1型ゼオライト粒子とマグネタイトナノ微粒子とが単に混合されたものとは構造が異なっている。 In the
Thus, the
この実施例では、マグネタイトナノ微粒子とゼオライト原料5とを混合して加熱処理する前に、ゼオライト原料5に含まれる焼却灰の表面を軟化させる前処理を行なっている。この前処理を行なうことにより、混合及び加熱処理によってNa-P1型ゼオライト9が合成される際に、上記前処理を行なわない場合に比べて、Na-P1型ゼオライト9の結晶にマグネタイトナノ微粒子11の微粒子が取り込まれやすくなる。
In this embodiment, before mixing and heating the magnetite nanoparticles and the zeolite raw material 5, a pretreatment is performed to soften the surface of the incinerated ash contained in the zeolite raw material 5. By performing this pretreatment, when the Na—P1 type zeolite 9 is synthesized by mixing and heat treatment, the magnetite nanoparticles 11 are added to the crystals of the Na—P1 type zeolite 9 as compared with the case where the pretreatment is not performed. The fine particles are easily taken up.
また、石炭焼却灰に対して水酸化アルミニウムを用いたSi/Al比の調整をしない場合、マグネタイトナノ微粒子とNa-P1型ゼオライトの複合材料のほかにムライトなどの不純物を多く含む磁化ゼオライトが得られた。ゼオライト原料に対するSi/Al比の調整作業の省略は、製造方法の簡略化や、アルミニウム化合物の添加を行なわないことなどから、磁化ゼオライトの製造コストを下げることが可能である、などの利点がある。
In addition, when the Si / Al ratio using aluminum hydroxide is not adjusted for the coal incineration ash, a magnetized zeolite containing a large amount of impurities such as mullite in addition to the composite material of magnetite nanoparticles and Na-P1 type zeolite is obtained. It was. Omission of the Si / Al ratio adjustment work for the zeolite raw material has advantages such as simplification of the manufacturing method and the absence of the addition of an aluminum compound, which can reduce the manufacturing cost of the magnetized zeolite. .
図2は、Na-P1型ゼオライトの骨格構造モデルを示す図である。
Na-P1型ゼオライト9の化学式は、非特許文献1ではNa6Al6Si10O32・12H2Oとして述べられている。Na-P1型ゼオライト9の構造の基本的な単位はSiO4又はAlO4の同じ四面体構造である。したがって、Na-P1型ゼオライト9は、Si/Al比がある程度変化しても、Na-P1型ゼオライト構造を維持することができる。 FIG. 2 is a diagram showing a framework structure model of Na—P1 type zeolite.
The chemical formula of the Na-P1 type zeolite 9 is described as Na 6 Al 6 Si 10 O 32 · 12H 2 O in Non-Patent Document 1. The basic unit of the structure of the Na—P1 type zeolite 9 is the same tetrahedral structure of SiO 4 or AlO 4 . Therefore, the Na—P1 type zeolite 9 can maintain the Na—P1 type zeolite structure even if the Si / Al ratio changes to some extent.
Na-P1型ゼオライト9の化学式は、非特許文献1ではNa6Al6Si10O32・12H2Oとして述べられている。Na-P1型ゼオライト9の構造の基本的な単位はSiO4又はAlO4の同じ四面体構造である。したがって、Na-P1型ゼオライト9は、Si/Al比がある程度変化しても、Na-P1型ゼオライト構造を維持することができる。 FIG. 2 is a diagram showing a framework structure model of Na—P1 type zeolite.
The chemical formula of the Na-
Na-P1型ゼオライト9の結晶孔隙は、3.6Å程度であり、セシウムイオンの直径とほぼ同じである。したがって、Na-P1型ゼオライト9はセシウムイオンに対して特に優れた選択捕獲特性をもっている。
The crystal pores of the Na-P1 type zeolite 9 are about 3.6 cm, which is almost the same as the diameter of cesium ions. Therefore, the Na—P1 type zeolite 9 has particularly excellent selective capture characteristics for cesium ions.
また、Na-P1型ゼオライト9のSi/Al比は2よりも小さい。すなわち、Na-P1型ゼオライト9は高いCECをもつ。Na-P1型ゼオライト9のCECは250meq/100g以上である。なお、Na-P1型ゼオライトにおいてSi/Al比がさらに下げられると、Na-P1型ゼオライトのCECは400~500meq/100gになることも可能である。
Further, the Si / Al ratio of the Na—P1 type zeolite 9 is smaller than 2. That is, the Na—P1 type zeolite 9 has a high CEC. The CEC of Na—P1 type zeolite 9 is 250 meq / 100 g or more. If the Si / Al ratio is further lowered in the Na—P1 type zeolite, the CEC of the Na—P1 type zeolite can be 400 to 500 meq / 100 g.
図3は、溶液中でのNa-P1型ゼオライトのセシウムイオン(Cs+)及びストロンチウムイオン(Sr2+)の捕獲能を調べた結果を示す図である。図3において、横軸は溶液50ml(ミリリットル)中へのゼオライト投入量(g)を示す。縦軸はセシウムイオン又はストロンチウムイオンの除去率(%)を示す。
FIG. 3 is a diagram showing the results of examining the capture ability of cesium ions (Cs + ) and strontium ions (Sr 2+ ) of Na—P1 type zeolite in a solution. In FIG. 3, the horizontal axis indicates the amount of zeolite charged (g) in 50 ml (milliliter) of the solution. The vertical axis represents the removal rate (%) of cesium ions or strontium ions.
10mmol/Lの濃度のセシウムイオン又はストロンチウムイオンを含む溶液50ml中にNa-P1型ゼオライトを0.1g又は0.2g投入し、Na-P1型ゼオライトにセシウムイオン又はストロンチウムイオンを吸着させた。その後、遠心分離によってNa-P1型ゼオライトを除去した上澄み液について、セシウムイオン又はストロンチウムイオンの濃度を原子吸光度分析で測定した。
0.1 g or 0.2 g of Na—P1 type zeolite was put into 50 ml of a solution containing cesium ions or strontium ions at a concentration of 10 mmol / L, and cesium ions or strontium ions were adsorbed on the Na—P1 type zeolite. Thereafter, the concentration of cesium ions or strontium ions in the supernatant from which Na-P1 type zeolite was removed by centrifugation was measured by atomic absorption analysis.
セシウムイオンの除去率はそれぞれ99%であった。また、溶液50ml中に、Na-P1型ゼオライトを0.1g投入したときのストロンチウムイオンの除去率は95%、Na-P1型ゼオライトを0.2g投入したときのストロンチウムイオンの除去率は96%であった。
Each cesium ion removal rate was 99%. The removal rate of strontium ions when 0.1 g of Na-P1 type zeolite was added to 50 ml of the solution was 95%, and the removal rate of strontium ions when 0.2 g of Na-P1 type zeolite was added was 96%. Met.
このように、Na-P1型ゼオライトはセシウムイオンに対して高い捕獲能を示した。また、Na-P1型ゼオライトはストロンチウムイオンに対しても高い捕獲能を示すことがわかった。
Thus, the Na-P1 type zeolite showed a high capturing ability for cesium ions. It was also found that Na-P1 type zeolite showed a high capturing ability for strontium ions.
図4は、土壌中のセシウムに対するNa-P1型ゼオライトの捕獲能を調べた結果を示す図である。図4において、横軸は土壌に対するゼオライトの混合量(重量%)を示す。縦軸はセシウムイオンの溶出量(mmol・kg-1)を示す。セシウム固定土壌として、花崗岩質土壌にバーミキュライト(CEC:3~15meq/100g)が10重量%で混合されたものを用いた。セシウムの捕獲能は、所定量のNa-P1型ゼオライトが混合されたセシウム固定土壌を2時間含水ミキシングした後、その土壌からのセシウムイオンの溶出量を測定することにより求められた。
FIG. 4 is a diagram showing the results of examining the capture ability of Na—P1 type zeolite for cesium in soil. In FIG. 4, the horizontal axis indicates the amount of zeolite mixed with the soil (% by weight). The vertical axis represents the cesium ion elution amount (mmol · kg −1 ). As cesium-fixed soil, granitic soil mixed with vermiculite (CEC: 3 to 15 meq / 100 g) at 10% by weight was used. The cesium capture ability was determined by measuring the amount of cesium ions eluted from the cesium-fixed soil mixed with a predetermined amount of Na-P1-type zeolite after water mixing for 2 hours.
Na-P1型ゼオライトの混合量が0%(Cs飽和土壌)の場合に比べ、Na-P1型ゼオライトの混合量が0.1%の場合は23%、1%の場合は74%、10%の場合は85%のセシウムを捕獲することができた。これは、Na-P1型ゼオライトがCECの大きい土壌中からのセシウムの捕獲が可能であることを意味する。
Compared to the case where the mixing amount of the Na-P1 type zeolite is 0% (Cs saturated soil), the mixing amount of the Na-P1 type zeolite is 0.1%, 23%, the case of 1% is 74%, 10%. In the case of, 85% of cesium could be captured. This means that Na-P1 type zeolite can capture cesium from soil with a large CEC.
図3及び図4を参照して、磁化されていないNa-P1型ゼオライトのセシウム及びストロンチウムに対する捕獲能について説明した。本発明の磁化ゼオライトは、Na-P1型ゼオライト多結晶体の粒界にマグネタイトナノ微粒子が閉じ込められている、もしくはNa-P1型ゼオライト結晶内でマグネタイトナノ微粒子が一部置換してナノ複合体が形成されている、又はそれらの両方の構造をもつマグネタイトナノ微粒子とNa-P1型ゼオライトの複合材料である。本発明の磁化ゼオライトは、Na-P1型ゼオライト結晶を含んでいるので、セシウム及びストロンウムに対して、磁化されていないNa-P1型ゼオライトと同様の捕獲能を有する。
Referring to FIGS. 3 and 4, the capturing ability of unmagnetized Na—P1 type zeolite for cesium and strontium was described. In the magnetized zeolite of the present invention, the magnetite nanoparticles are confined at the grain boundaries of the Na—P1 type zeolite polycrystal, or the magnetite nanoparticles are partially substituted in the Na—P1 type zeolite crystal to form a nanocomposite. It is a composite material of magnetite nanoparticles and Na—P1 type zeolite that are formed or have both structures. Since the magnetized zeolite of the present invention contains Na—P1 type zeolite crystals, it has the same trapping ability with respect to cesium and stronium as non-magnetized Na—P1 type zeolite.
図5は、セシウムを捕獲した磁化ゼオライトの回収方法を説明するための概念図である。
土壌粒子19に捕獲されたセシウム(Cs)21を含むセシウム汚染土壌に顆粒状の磁化ゼオライト13を混合し、さらに塩化カリウム等の遊離剤を加えて含水振とうを行ない、セシウム21を磁化ゼオライト13に捕獲させる。 FIG. 5 is a conceptual diagram for explaining a method for recovering magnetized zeolite capturing cesium.
Granularmagnetized zeolite 13 is mixed with cesium-contaminated soil containing cesium (Cs) 21 captured by the soil particles 19, and a water-containing shake is added by adding a release agent such as potassium chloride. To capture.
土壌粒子19に捕獲されたセシウム(Cs)21を含むセシウム汚染土壌に顆粒状の磁化ゼオライト13を混合し、さらに塩化カリウム等の遊離剤を加えて含水振とうを行ない、セシウム21を磁化ゼオライト13に捕獲させる。 FIG. 5 is a conceptual diagram for explaining a method for recovering magnetized zeolite capturing cesium.
Granular
例えば、マグネットプーリー23とドラムセパレーター25とを備えた磁選機を用いて、セシウム21を捕獲した磁化ゼオライト13と、セシウムが除去された土壌粒子19とを分離する。これにより、浄化された土壌粒子19が得られる。なお、磁選機はマグネットプーリー23とドラムセパレーター25とを備えたものに限定されず、どのような構造のものであってもよい。
For example, using a magnetic separator equipped with a magnet pulley 23 and a drum separator 25, the magnetized zeolite 13 capturing the cesium 21 and the soil particles 19 from which the cesium has been removed are separated. Thereby, the purified soil particle 19 is obtained. The magnetic separator is not limited to the one provided with the magnet pulley 23 and the drum separator 25, and may have any structure.
図6は、本発明の磁化ゼオライトを用いた磁選を複数回行なったときの、土壌中の放射性セシウム濃度の変化を示す図である。図6において、横軸は磁選回数を示す。縦軸は放射性セシウム濃度(%)を示す。
FIG. 6 is a diagram showing changes in the concentration of radioactive cesium in the soil when magnetic separation using the magnetized zeolite of the present invention is performed a plurality of times. In FIG. 6, the horizontal axis indicates the number of magnetic separations. The vertical axis represents the radioactive cesium concentration (%).
土壌として、放射能濃度が12000~16000Bq/kg(ベクレル/キログラム)の土壌を用いた。4種類のサンプルA,B,C,Dは、放射性セシウムを土壌から一旦遊離させるために必要なカリウム塩水溶液やアンモニウム塩水溶液などの遊離剤の種類の違いを示している。
As the soil, a soil having a radioactivity concentration of 12000 to 16000 Bq / kg (becquerel / kilogram) was used. The four types of samples A, B, C, and D show the difference in the types of release agents such as an aqueous potassium salt solution and an aqueous ammonium salt solution that are necessary for once releasing radioactive cesium from the soil.
サンプルAの遊離剤は0.1%塩化カリウムと4%シュウ酸を含んだ溶液である。サンプルBの遊離剤は0.1%塩化カリウムと4%シュウ酸と4%シュウ酸アンモニウムを含んだ溶液である。サンプルCの遊離剤は0.1%塩化カリウムと2%シュウ酸と2%シュウ酸アンモニウムを含んだ溶液である。サンプルDの遊離剤は0.1%塩化カリウムと4%シュウ酸アンモニウムを含んだ溶液である。各サンプルは、土壌2kgに、磁化ゼオライト200gと遊離剤2L(リットル)を混合して10分間攪拌したものである。
Sample A release agent is a solution containing 0.1% potassium chloride and 4% oxalic acid. Sample B release agent is a solution containing 0.1% potassium chloride, 4% oxalic acid and 4% ammonium oxalate. Sample C release agent is a solution containing 0.1% potassium chloride, 2% oxalic acid and 2% ammonium oxalate. The release agent for Sample D is a solution containing 0.1% potassium chloride and 4% ammonium oxalate. Each sample is obtained by mixing 200 g of magnetized zeolite and 2 L (liter) of release agent in 2 kg of soil and stirring for 10 minutes.
各サンプルに対してそれぞれ3回の磁選を行なった。磁化ゼオライトと遊離剤の添加は初回のみで、2回目以降は磁選操作のみである。各サンプルとも、磁選回数が増すほど放射性セシウム濃度が小さくなった。3回の磁選操作により、約80%の放射性セシウムの除去に成功した。
Each magnetic sample was magnetically selected three times. The addition of magnetized zeolite and release agent is only the first time, and the second and subsequent times are only magnetic separation operations. In each sample, the concentration of radioactive cesium decreased as the number of magnetic separations increased. About 80% of the radioactive cesium was successfully removed by three magnetic separation operations.
なお、放射性セシウムを土壌から一旦遊離させるため遊離剤は、上記サンプルA,B,C,Dに用いられたものに限定されない。
In addition, since the radioactive cesium is once released from the soil, the release agent is not limited to those used in the samples A, B, C, and D.
次に、除染に使用された磁化ゼオライトの再利用について説明する。
図7は、磁化ゼオライトを用いた土壌の除染方法を説明するための概念図である。 Next, reuse of the magnetized zeolite used for decontamination will be described.
FIG. 7 is a conceptual diagram for explaining a soil decontamination method using magnetized zeolite.
図7は、磁化ゼオライトを用いた土壌の除染方法を説明するための概念図である。 Next, reuse of the magnetized zeolite used for decontamination will be described.
FIG. 7 is a conceptual diagram for explaining a soil decontamination method using magnetized zeolite.
(1)放射性Cs溶出工程:土壌粒子19に捕獲されたセシウム21(Cs+)を含む土壌に、例えば塩化カリウム等の遊離剤が混合され、含水振とうされる。土壌粒子19に捕獲されているセシウム21はカリウムイオン27(K+)に置換されて土壌粒子19から溶出する。なお、遊離剤は塩化カリウムに限定されず、他の遊離剤、例えば他のカリウム塩やアンモニウム塩であってもよい。
(1) Radioactive Cs elution step: A soil containing cesium 21 (Cs + ) captured by the soil particles 19 is mixed with a free agent such as potassium chloride and shaken with water. The cesium 21 captured in the soil particles 19 is replaced with potassium ions 27 (K + ) and is eluted from the soil particles 19. The release agent is not limited to potassium chloride, and other release agents such as other potassium salts and ammonium salts may be used.
(2)磁化ゼオライト移行工程:さらに磁化ゼオライト13が混合される。セシウム21が磁化ゼオライト13に捕獲される。磁化ゼオライト13には、セシウム21の他に、カリウムイオン27が捕獲されている。
(2) Magnetized zeolite transfer step: Magnetized zeolite 13 is further mixed. Cesium 21 is captured by the magnetized zeolite 13. In addition to cesium 21, potassium ions 27 are captured in the magnetized zeolite 13.
(3)磁化ゼオライト磁選工程(減量1):磁石29を用いた磁選によって磁化ゼオライト13が取り出される。回収された磁化ゼオライト13にはセシウム21が捕獲されている。この工程での磁選段数は1回でもよいが、磁選は複数回、例えば2~3回行なわれることが好ましい。ここまでの工程は、図5を参照して説明した磁化ゼオライトの回収方法と同様である。
(3) Magnetized zeolite magnetic separation step (weight reduction 1): Magnetized zeolite 13 is taken out by magnetic separation using a magnet 29. Cesium 21 is captured in the recovered magnetized zeolite 13. The number of magnetic selection steps in this step may be one, but magnetic selection is preferably performed a plurality of times, for example, 2 to 3 times. The steps so far are the same as the magnetized zeolite recovery method described with reference to FIG.
(4)磁化ゼオライト再利用工程(減量2):上記工程(3)で磁選によって回収された磁化ゼオライト13は再利用される。具体的には、上記工程(3)で回収された磁化ゼオライト13は上記工程(2)に使用される。磁化ゼオライト13の再利用可能回数は、土壌中のセシウム21の濃度などによって変化するが、例えば5回である。ただし、磁化ゼオライト13の再利用回数は特に限定されない。
(4) Magnetized zeolite reuse step (weight loss 2): The magnetized zeolite 13 recovered by magnetic separation in the step (3) is reused. Specifically, the magnetized zeolite 13 recovered in the step (3) is used in the step (2). The number of times that the magnetized zeolite 13 can be reused varies depending on the concentration of cesium 21 in the soil, but is, for example, five times. However, the number of reuses of the magnetized zeolite 13 is not particularly limited.
(5)磁化ゼオライトからの溶出工程:再利用回数が任意の規定回数、例えば5回に達した磁化ゼオライト13は、再利用(上記工程(4))されずに、捕獲されているセシウム21の溶出処理が施される。例えば、濃度の高いカリウム塩が遊離剤として磁化ゼオライト13に混合される。磁化ゼオライト13に捕獲されているセシウム21はカリウムイオン27に置換される。ここで使用されるカリウム塩の濃度は磁化ゼオライト13からセシウム21を溶出させることができる濃度であれば特に限定されない。また、遊離剤はカリウム塩に限定されるものではない。遊離剤はセシウム21を溶出させることができる遊離剤であれば特に限定されず、例えばアンモニウム塩であってもよい。
(5) Elution step from magnetized zeolite: The magnetized zeolite 13 whose number of reuses reaches an arbitrary specified number of times, for example, 5 times, is not reused (the above step (4)), and the captured cesium 21 Elution treatment is performed. For example, a high concentration potassium salt is mixed with the magnetized zeolite 13 as a release agent. The cesium 21 captured in the magnetized zeolite 13 is replaced with potassium ions 27. The concentration of the potassium salt used here is not particularly limited as long as cesium 21 can be eluted from the magnetized zeolite 13. Further, the releasing agent is not limited to the potassium salt. The release agent is not particularly limited as long as it can release cesium 21, and may be, for example, an ammonium salt.
(6)溶出Cs濃縮工程(減量3):上記工程(5)で磁化ゼオライト13から溶出したセシウム21を含む溶液から磁化ゼオライト13が例えば磁石を用いて回収される。磁化ゼオライト13が回収された溶液に含まれるセシウム21は、例えば加熱乾燥などによって固形化される。なお、ここで回収された磁化ゼオライト13は再利用が可能である。
(6) Elution Cs concentration step (weight loss 3): The magnetized zeolite 13 is recovered from the solution containing cesium 21 eluted from the magnetized zeolite 13 in the step (5) using, for example, a magnet. The cesium 21 contained in the solution from which the magnetized zeolite 13 is recovered is solidified by, for example, heat drying. The magnetized zeolite 13 collected here can be reused.
仮に、土壌重量に対して10%の磁化ゼオライトが使用され、磁化ゼオライトに放射性Csが100%移行したとすると、1/10の減量化がされたことになる(減量1)。さらに、磁選によって回収された放射性Csを含む使用済み磁化ゼオライトが同様の除染に使用され、放射性Csが磁化ゼオライトに捕獲されている状態で再利用できたとすると、2倍の土壌量に対して除染ができたことになる。この場合、合計で1/20の減量化がされたことになる(減量2)。例えば、放射性Csが捕獲されている使用済み磁化ゼオライトを4回再利用でき、同一の磁化ゼオライトを合計で5回使用することができれば、1/50の減量化が実現されることになる。ゼオライトの吸着サイト数と比べ、土壌に含まれる放射性Csの量はきわめて微量であることから、磁選回収された磁化ゼオライトを繰り返して使用することが可能である。このように、使用済み磁化ゼオライトの再利用は除染効率を向上させる。
If 10% of the magnetized zeolite is used with respect to the soil weight, and the radioactive Cs is transferred to the magnetized zeolite by 100%, the amount is reduced by 1/10 (weight reduction 1). Furthermore, if the used magnetized zeolite containing radioactive Cs recovered by magnetic separation is used for the same decontamination and can be reused in a state where the radioactive Cs is captured by the magnetized zeolite, the amount of soil is doubled. Decontamination has been completed. In this case, the total weight reduction is 1/20 (weight loss 2). For example, if the used magnetized zeolite in which radioactive Cs is captured can be reused four times and the same magnetized zeolite can be used five times in total, a reduction of 1/50 can be realized. Compared to the number of zeolite adsorption sites, the amount of radioactive Cs contained in the soil is extremely small, so that it is possible to repeatedly use magnetized zeolite recovered by magnetic separation. Thus, recycling of used magnetized zeolite improves decontamination efficiency.
さらに、磁化ゼオライトに濃縮された放射性Csを磁化ゼオライトに対する遊離剤にて溶出させ、その液を乾燥及び固化することにより、著しい減量化が可能となる(減量3)。
Further, the radioactive Cs concentrated in the magnetized zeolite is eluted with a release agent for the magnetized zeolite, and the liquid is dried and solidified, thereby enabling a significant reduction in weight (weight reduction 3).
本願発明者らは、放射性Csが捕獲されている磁化ゼオライトの再利用の可否について実験によって検討した。
図8は、磁化ゼオライトを再利用したときの、磁選段数(回)と土壌の放射能濃度(%)の関係を示す図である。 The inventors of the present application examined whether or not the magnetized zeolite in which radioactive Cs is captured can be reused by experiments.
FIG. 8 is a diagram showing the relationship between the number of magnetic separation stages (times) and the radioactive concentration (%) of soil when magnetized zeolite is reused.
図8は、磁化ゼオライトを再利用したときの、磁選段数(回)と土壌の放射能濃度(%)の関係を示す図である。 The inventors of the present application examined whether or not the magnetized zeolite in which radioactive Cs is captured can be reused by experiments.
FIG. 8 is a diagram showing the relationship between the number of magnetic separation stages (times) and the radioactive concentration (%) of soil when magnetized zeolite is reused.
放射性Csを含む土壌に混合されて磁選によって回収された放射性Csを捕獲している使用済み磁化ゼオライトを、室温で放置して乾燥させ、上記工程(4)で説明したように、再度、上記工程(2)で未使用の磁化ゼオライトの代わりに使用した。使用済み磁化ゼオライトには土壌の2~5倍程度の放射性Csが捕獲されている。土壌のサンプルとして、福島県伊達郡川俣町の土壌が用いられた。
The spent magnetized zeolite mixed with the soil containing radioactive Cs and capturing the radioactive Cs collected by magnetic separation is left to dry at room temperature, and again as described in the above step (4), the above step Used in place of unused magnetized zeolite in (2). The used magnetized zeolite captures about 2 to 5 times as much radioactive Cs as the soil. As a soil sample, soil from Kawamata Town, Date-gun, Fukushima Prefecture was used.
この実験では、磁化ゼオライトと遊離剤を混合して10分間ミキシング(上記工程(2))を行なった後に磁選処理(上記工程(3))を2~3回行なう処理に対して、磁選処理を1回行なう毎に、上記使用済み磁化ゼオライト10%と遊離剤として2%しゅう酸アンモニウム溶液を加えて10分間ミキシングを行なった。放射性Csを捕獲している使用済み磁化ゼオライトの性能を確認するためのである。
In this experiment, the magnetic separation process is performed in contrast to the process in which the magnetized zeolite and the release agent are mixed and mixed for 10 minutes (the above step (2)) and then the magnetic separation process (the above step (3)) is performed 2-3 times. Each time it was performed, 10% of the above used magnetized zeolite and 2% ammonium oxalate solution as a release agent were added and mixed for 10 minutes. This is for confirming the performance of the used magnetized zeolite capturing radioactive Cs.
その結果、使用済み磁化ゼオライトには土壌の2~5倍程度の放射性Csが捕獲されているにも関わらず、1回目の磁選処理で約10~20%、2回目の磁選処理で約50%の放射性Cs濃度の減衰を確認することができた。
As a result, the used magnetized zeolite captures about 2 to 5 times as much radioactive Cs as the soil, but about 10 to 20% in the first magnetic separation process and about 50% in the second magnetic separation process. It was possible to confirm the decay of the radioactive Cs concentration.
図8に示されるように、再現性を確認するため5回同じ実験を行なった。その結果、ほぼ同じような結果が得られた。これにより、使用済み磁化ゼオライトの再利用が可能であることが確認された。この理由としては、土壌中の放射性Csがきわめて少ないため、磁化ゼオライトは除染に使用された後でも十分なイオン吸着性能を有していることが要因の1つであると考えられる。
As shown in FIG. 8, the same experiment was performed five times to confirm reproducibility. As a result, almost the same result was obtained. Thereby, it was confirmed that the used magnetized zeolite can be reused. The reason for this is considered that one of the factors is that the magnetized zeolite has sufficient ion adsorption performance even after being used for decontamination because the radioactive Cs in the soil is extremely small.
また、磁選によって回収された磁化ゼオライトを再度使用していることから、回収が困難な磁化ゼオライトは最初の使用で磁選回収されずに除去されたと考えられる。したがって、使用済み磁化ゼオライトは磁選によって回収されやすい磁化ゼオライトである。このことも、使用済み磁化ゼオライトの再利用が可能であることの要因の1つであると考えられる。
Also, since magnetized zeolite recovered by magnetic separation is used again, it is considered that magnetized zeolite, which is difficult to recover, was removed without being recovered by magnetic separation in the first use. Therefore, the used magnetized zeolite is a magnetized zeolite that is easily recovered by magnetic separation. This is also considered to be one of the factors that the used magnetized zeolite can be reused.
なお、図7を参照して説明した除染方法では、磁選によって回収された磁化ゼオライトは捕獲されている放射性Csの溶出処理(上記工程(5))が施されることなく再利用(上記工程(4))されているが、本発明のセシウムの選択特異的捕獲方法はこれに限定されない。本発明のセシウムの選択特異的捕獲方法は、磁選によって回収された磁化ゼオライトをそのまま再利用せずに、放射性セシウムを溶出させた後、再利用する構成であってもよい。この構成は、磁選によって回収された磁化ゼオライト、つまり磁選によって回収されやすい磁化ゼオライトを用いるので、除染効率を向上させることができる。
In the decontamination method described with reference to FIG. 7, the magnetized zeolite recovered by magnetic separation is reused without being subjected to the elution treatment of the captured radioactive Cs (the above step (5)) (the above step). (4)), but the method of selective and specific capture of cesium of the present invention is not limited to this. The selective and specific capture method of cesium of the present invention may be configured such that radioactive cesium is eluted and then reused without reusing the magnetized zeolite recovered by magnetic separation as it is. Since this configuration uses magnetized zeolite recovered by magnetic separation, that is, magnetized zeolite that is easily recovered by magnetic separation, decontamination efficiency can be improved.
本発明のセシウムの捕獲方法は、福島の原子力発電所の事故に起因する放射性核種による土壌汚染に対して真の除染技術がない現状にあって、セシウム等の放射性元素のみを回収できる革新的な技術である。さらに、本発明のセシウムの捕獲方法は、大量、安価かつ使いやすさをもった普及適正のある技術として、現在の福島周辺の除染に即応する技術である。さらには、チェルノブイリなどの除染が十分には進んでいない地域でも役立つことが期待できる。
The method of capturing cesium of the present invention is an innovative method that can recover only radioactive elements such as cesium in the current situation where there is no true decontamination technology against soil contamination by radionuclides caused by an accident at a nuclear power plant in Fukushima. Technology. Furthermore, the method for capturing cesium according to the present invention is a technology that can be readily adapted to the current decontamination around Fukushima as a technology that is suitable for widespread use with a large amount, low cost and ease of use. Furthermore, it can be expected to be useful even in areas where decontamination is not sufficiently advanced, such as Chernobyl.
上記実施例では、磁化ゼオライトを合成するためのゼオライト原料として石炭焼却灰を用いているが、石炭焼却灰に替えて製紙スラッジの焼却灰を用いてもマグネタイトナノ微粒子とNa-P1型ゼオライトの複合材料である磁化ゼオライトを合成できる。また、水ガラス、アルミン酸ナトリウム及びアルミニウム化合物のうち複数を用いてSi/Al比を2以下に調整した混合物を用いてマグネタイトナノ微粒子とNa-P1型ゼオライトの複合材料である磁化ゼオライトを合成することもできる。
In the above embodiment, coal incineration ash is used as a zeolite raw material for synthesizing magnetized zeolite. However, even if paper incineration ash is used instead of coal incineration ash, a composite of magnetite nanoparticles and Na-P1 type zeolite is used. It is possible to synthesize magnetized zeolite as a material. In addition, magnetized zeolite, which is a composite material of magnetite nanoparticles and Na-P1 type zeolite, is synthesized using a mixture of water glass, sodium aluminate, and an aluminum compound that is adjusted to have a Si / Al ratio of 2 or less. You can also.
また、本発明の磁化ゼオライトの製造方法おいて、ゼオライト原料のSi/Al比を所望の値に調整するようにしてもよい。Si/Al比を調整するための材料は、珪素又はアルミニウムを含む化合物であり、好ましくは水ガラス、アルミン酸ナトリウム、アルミニウム化合物である。また、Si/Al比の値は、2以下であり、例えば2である。なお、合成用材料のSi/Al比の値は、マグネタイトナノ微粒子とNa-P1型ゼオライトの複合材料が合成される値であり、かつ2以下であれば、いくつであってもよい。
In the method for producing a magnetized zeolite of the present invention, the Si / Al ratio of the zeolite raw material may be adjusted to a desired value. The material for adjusting the Si / Al ratio is a compound containing silicon or aluminum, preferably water glass, sodium aluminate, or an aluminum compound. Moreover, the value of Si / Al ratio is 2 or less, for example, 2. The value of the Si / Al ratio of the synthesis material is a value at which the composite material of magnetite nanoparticles and Na—P1 type zeolite is synthesized, and may be any number as long as it is 2 or less.
また、本発明の磁化ゼオライトの製造方法おいて、表面を軟化させた焼却灰を含むゼオライト原料に混合されるマグネタイトナノ微粒子の粒径は、例えば5~200nm、好ましくは30nm以下である。
また、本発明の磁化ゼオライトの製造方法おいて、マグネタイトナノ微粒子は市販のものであってもよい。 In the method for producing a magnetized zeolite of the present invention, the particle size of the magnetite nanoparticles mixed with the zeolite raw material containing the incinerated ash having a softened surface is, for example, 5 to 200 nm, preferably 30 nm or less.
In the method for producing a magnetized zeolite of the present invention, the magnetite nanoparticles may be commercially available.
また、本発明の磁化ゼオライトの製造方法おいて、マグネタイトナノ微粒子は市販のものであってもよい。 In the method for producing a magnetized zeolite of the present invention, the particle size of the magnetite nanoparticles mixed with the zeolite raw material containing the incinerated ash having a softened surface is, for example, 5 to 200 nm, preferably 30 nm or less.
In the method for producing a magnetized zeolite of the present invention, the magnetite nanoparticles may be commercially available.
また、本発明の磁化ゼオライトの製造方法おいて、アルカリ溶液は、水酸化ナトリウムに限定されず、他のアルカリ溶液、例えば水酸化カリウムであってもよい。
Further, in the method for producing a magnetized zeolite of the present invention, the alkaline solution is not limited to sodium hydroxide, and may be another alkaline solution such as potassium hydroxide.
以上、本発明の実施例が説明されたが本発明はこれらに限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変更が可能である。
As mentioned above, although the Example of this invention was described, this invention is not limited to these, A various change is possible within the range of this invention described in the claim.
5 ゼオライト原料
7 水酸化ナトリウム溶液(アルカリ溶液)
9 Na-P1型ゼオライト
11 マグネタイトナノ微粒子
13 磁化ゼオライト
19 土壌粒子
21 セシウム 5 Zeoliteraw material 7 Sodium hydroxide solution (alkali solution)
9 Na-P1-type zeolite 11 Magnetite nanoparticles 13 Magnetized zeolite 19 Soil particles 21 Cesium
7 水酸化ナトリウム溶液(アルカリ溶液)
9 Na-P1型ゼオライト
11 マグネタイトナノ微粒子
13 磁化ゼオライト
19 土壌粒子
21 セシウム 5 Zeolite
9 Na-P1-
Claims (6)
- 石炭の焼却灰又は製紙スラッジの焼却灰を含むゼオライト原料にアルカリ溶液を加えて前記焼却灰の表面を軟化させるステップと、
前記焼却灰の表面が軟化された前記ゼオライト原料とマグネタイトナノ微粒子とを混合して加熱処理することによってマグネタイトナノ微粒子とNa-P1型ゼオライトの複合材料である磁化ゼオライトを得るステップと、を含んでいる磁化ゼオライトの製造方法。 Softening the surface of the incineration ash by adding an alkaline solution to the zeolite raw material containing the incineration ash of coal or the incineration ash of papermaking sludge;
Obtaining a magnetized zeolite which is a composite material of magnetite nanoparticles and Na-P1 type zeolite by mixing and heating the zeolite raw material whose surface of the incinerated ash is softened and magnetite nanoparticles. A method for producing magnetized zeolite. - 前記ゼオライト原料は、アルミン酸ナトリウム及びアルミニウム化合物のうち1つ又は複数を用いてSi/Al比が2以下に調整されたものである請求項1に記載の磁化ゼオライトの製造方法。 The method for producing a magnetized zeolite according to claim 1, wherein the zeolite raw material is adjusted to have a Si / Al ratio of 2 or less using one or more of sodium aluminate and an aluminum compound.
- 請求項1又は2に記載された磁化ゼオライトの製造方法によって得られた磁化ゼオライトであって、Na-P1型ゼオライト多結晶体の粒界にマグネタイトナノ微粒子が閉じ込められている、もしくはNa-P1型ゼオライト結晶内でマグネタイトナノ微粒子が一部置換してナノ複合体が形成されている、又はそれらの両方の構造をもつマグネタイトナノ微粒子とNa-P1型ゼオライトの複合材料である磁化ゼオライト。 A magnetized zeolite obtained by the method for producing a magnetized zeolite according to claim 1 or 2, wherein magnetite nanoparticles are confined at the grain boundary of the Na-P1 type zeolite polycrystal, or the Na-P1 type Magnetized zeolite which is a composite material of a magnetite nanoparticle and Na-P1 type zeolite, in which a nanocomposite is formed by partial substitution of magnetite nanoparticles in a zeolite crystal, or both of these structures.
- 請求項3に記載された磁化ゼオライトを土壌中又は土壌を含む液中に混合するステップと、
前記磁化ゼオライトを磁選によって回収することにより、土壌中又は土壌を含む液中の放射性セシウムを選択特異的に捕獲するステップと、を含んでいるセシウムの選択特異的捕獲方法。 Mixing the magnetized zeolite according to claim 3 in soil or a liquid containing soil;
A step of selectively capturing radioactive cesium in soil or in a liquid containing soil by recovering the magnetized zeolite by magnetic separation, and a method for selectively capturing cesium, the method comprising: - 前記磁選によって回収された前記磁化ゼオライトを再利用する請求項4に記載のセシウムの選択特異的捕獲方法。 The method for selectively capturing cesium according to claim 4, wherein the magnetized zeolite recovered by the magnetic separation is reused.
- 前記磁選によって回収された前記磁化ゼオライトから放射性セシウムを溶出させた後、前記磁化ゼオライトを再利用する請求項4又は5に記載のセシウムの選択特異的捕獲方法。 The method for selectively capturing cesium according to claim 4 or 5, wherein radioactive cesium is eluted from the magnetized zeolite recovered by the magnetic separation, and then the magnetized zeolite is reused.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-083772 | 2013-04-12 | ||
JP2013083772A JP2016117592A (en) | 2013-04-12 | 2013-04-12 | Magnetized zeolite, method for manufacturing the same, and selective and specific capturing method of cesium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014168048A1 true WO2014168048A1 (en) | 2014-10-16 |
Family
ID=51689458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/059649 WO2014168048A1 (en) | 2013-04-12 | 2014-04-01 | Magnetized zeolite, production method therefor, and method for selective and specific capture of cesium |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016117592A (en) |
WO (1) | WO2014168048A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2681633C1 (en) * | 2018-04-27 | 2019-03-11 | федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) | Method of obtaining granulated aluminosilicate adsorbent for cleaning of aqueous media from cesium cations |
JP2020128982A (en) * | 2019-02-08 | 2020-08-27 | 公立大学法人県立広島大学 | Method and device for preparing treatment target matter, and method and device for treating granules |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6906747B2 (en) * | 2016-10-05 | 2021-07-21 | 東京電力ホールディングス株式会社 | Method for producing cesium and strontium adsorbents derived from coal ash |
JP2018121748A (en) * | 2017-01-30 | 2018-08-09 | 吉澤石灰工業株式会社 | Antibacterial deodorization agent and antibacterial deodorization method |
JP6690565B2 (en) * | 2017-01-31 | 2020-04-28 | Jfeスチール株式会社 | Magnetic force sorting method and device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005137973A (en) * | 2003-11-04 | 2005-06-02 | Futaba Shoji Kk | Magnetic adsorbent, its manufacturing method and water treatment method |
-
2013
- 2013-04-12 JP JP2013083772A patent/JP2016117592A/en active Pending
-
2014
- 2014-04-01 WO PCT/JP2014/059649 patent/WO2014168048A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005137973A (en) * | 2003-11-04 | 2005-06-02 | Futaba Shoji Kk | Magnetic adsorbent, its manufacturing method and water treatment method |
Non-Patent Citations (2)
Title |
---|
R.PENA PENILLA. ET AL.: "Immobilization of Cs, Cd , Pb and Cr by synthetic zeolites from Spanish low-calcium coal fly ash", FUEL, vol. 85, 2006, pages 823 - 832 * |
S.GONI. ET AL.: "Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium", JOURNAL OF HAZARDOUS MATERIALS, vol. B137, 2006, pages 1608 - 1617 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2681633C1 (en) * | 2018-04-27 | 2019-03-11 | федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) | Method of obtaining granulated aluminosilicate adsorbent for cleaning of aqueous media from cesium cations |
JP2020128982A (en) * | 2019-02-08 | 2020-08-27 | 公立大学法人県立広島大学 | Method and device for preparing treatment target matter, and method and device for treating granules |
JP7390652B2 (en) | 2019-02-08 | 2023-12-04 | 広島県公立大学法人 | Method for preparing objects to be processed, method and apparatus for processing powder and granular materials |
Also Published As
Publication number | Publication date |
---|---|
JP2016117592A (en) | 2016-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5734807B2 (en) | Method for treating radioactive cesium and radioactive strontium-containing substances | |
WO2013150851A1 (en) | Zeolite and manufacturing method thereof, and method for selective and specific capture of cesium | |
Yang et al. | Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water | |
JP5684241B2 (en) | Nanocomposite solid material based on hexacyanometalate and octacyanometallate, method for producing the same, and method for fixing inorganic contaminants using the material | |
WO2014168048A1 (en) | Magnetized zeolite, production method therefor, and method for selective and specific capture of cesium | |
JP2014512258A (en) | Sorption and separation of various substances by graphene oxide | |
US9744518B2 (en) | Method of removing strontium cations from a water stream using an amorphous titanium silicate | |
Datta et al. | Removal of 90 Sr from highly Na+-rich liquid nuclear waste with a layered vanadosilicate | |
APAK et al. | Sorptive Removal of Cesium-137 and Strontium-90 from Water by Unconventional Sorbents: II. Usage of Coal Fly Ash | |
Palamarchuk et al. | Decontamination of spent ion-exchangers contaminated with cesium radionuclides using resorcinol-formaldehyde resins | |
Perovskiy et al. | Efficient extraction of multivalent cations from aqueous solutions into sitinakite-based sorbents | |
JP2016117050A (en) | Inorganic polymer-made adsorbent and method for production thereof | |
Dakroury et al. | Sorption and separation performance of certain natural radionuclides of environmental interest using silica/olive pomace nanocomposites | |
Godelitsas et al. | Uranium sorption from aqueous solutions on sodium-form of HEU-type zeolite crystals | |
Goo et al. | Bentonite alteration and retention of cesium and iodide ions by Ca-bentonite in alkaline and saline solutions | |
Milyutin et al. | Adsorption techniques for decontaminating liquid radioactive waste and radionuclide-contaminated natural water | |
JP2013120102A (en) | Method for decontaminating soil contaminated with radioactive material | |
Lee et al. | Dual functional amorphous aluminosilicate sorbents for removing and cold-immobilizing cesium/cobalt/nickel-ions | |
JP6084829B2 (en) | Method for producing radioactive material sorbent | |
Park et al. | Behaviors of desorption agents during removal of Cs from clay minerals and actual soil | |
JP6470354B2 (en) | Silicotitanate molded body and method for producing the same, cesium or strontium adsorbent containing silicotitanate molded body, and decontamination method of radioactive liquid waste using the adsorbent | |
Omerašević et al. | Removal of Cs ions from aqueous solutions by using matrices of natural clinoptilolite and its safe disposal | |
JP6213710B2 (en) | Purification of soil and wastewater contaminated with hazardous substances | |
KR102031100B1 (en) | Cesium adsorbent containing cray with magnetic nanoparticles | |
RU2439726C1 (en) | Method to immobilise radioactive wastes in mineral-like matrix |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14782982 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14782982 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |