JP2020128982A - Method and device for preparing treatment target matter, and method and device for treating granules - Google Patents

Method and device for preparing treatment target matter, and method and device for treating granules Download PDF

Info

Publication number
JP2020128982A
JP2020128982A JP2020017589A JP2020017589A JP2020128982A JP 2020128982 A JP2020128982 A JP 2020128982A JP 2020017589 A JP2020017589 A JP 2020017589A JP 2020017589 A JP2020017589 A JP 2020017589A JP 2020128982 A JP2020128982 A JP 2020128982A
Authority
JP
Japan
Prior art keywords
magnetic
granular material
soil
heating
fecl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020017589A
Other languages
Japanese (ja)
Other versions
JP7390652B2 (en
Inventor
三苫 好治
Koji Mitoma
好治 三苫
石渡 寛之
Hiroyuki Ishiwatari
寛之 石渡
将義 山崎
Masayoshi Yamazaki
将義 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Prefectural University of Hiroshima
Original Assignee
Nishimatsu Construction Co Ltd
Prefectural University of Hiroshima
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd, Prefectural University of Hiroshima filed Critical Nishimatsu Construction Co Ltd
Publication of JP2020128982A publication Critical patent/JP2020128982A/en
Application granted granted Critical
Publication of JP7390652B2 publication Critical patent/JP7390652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method of treating granules through a simple procedure at low cost without producing extra waste.SOLUTION: A granule treatment method is provided, comprising: a drug adding step (step S1-a) for adding a drug containing an aqueous solution containing divalent iron ions and an alkaline agent to granules; a heating step (step S1-b) for heating the mixture of the granules and the drug; a step (step S1) for generating and adsorbing a magnetic substance on surfaces of the granules; and a sorting step (step S2) for sorting the granules having the magnetic substance generated and adsorbed on the surfaces thereof by magnetic sorting.SELECTED DRAWING: Figure 1

Description

本発明は、放射性物質に汚染された土壌など粉粒体の処理方法及び装置に関する。 The present invention relates to a method and an apparatus for treating powder or granular material such as soil contaminated with radioactive substances.

東日本大震災に端を発する福島第一原発事故により、原発周辺地域への放射性物質(特に放射性セシウム、以降、放射性Cs)の飛散が深刻な環境問題を引き起こした。原発から放出した放射性Csは降雨により土壌に沈着し,それらは、(I)フミン物質や土壌粒子表面にイオン吸着、あるいは(II)2:1型粘土内部に捕捉された形態をとった。近年(I)の吸着形態にある放射性Csも、その多くは形態(II)として安定化され、仮置き場の汚染土壌(概算2,200万トン,うち2/3が農地土壌)を中間貯蔵施設に全て持ち込むことは非現実的と考えられ、今後、形態(II)の汚染土壌に対する小型化可能な減容化技術の開発が急務となっている。 Due to the Fukushima Daiichi Nuclear Power Plant accident that started after the Great East Japan Earthquake, the scattering of radioactive materials (especially radioactive cesium, hereafter radioactive Cs) to the area around the nuclear power plant caused serious environmental problems. Radioactive Cs released from the nuclear power plant was deposited on soil by rainfall, and they took the form of (I) humic substances and ion adsorption on the surface of soil particles, or (II) trapped inside 2:1 type clay. Most of the radioactive Cs in the adsorbed form of (I) in recent years are also stabilized as form (II), and the contaminated soil in the temporary storage area (approximate 22 million tons, of which 2/3 is farmland soil) is an intermediate storage facility. It is considered unrealistic to bring all of them into the soil, and in the future, there is an urgent need to develop a volume-reducing technology capable of miniaturizing the contaminated soil of the form (II).

このようななか、事故後の除染技術の開発動向は3つに大別される。第1区分として「抽出/吸着法」系区分がある。最近では上記形態(II)の割合が増し,放射性Csの抽出が極めて困難となったため、亜臨界状態で土壌解砕を行い、溶存態Csを抽出分離する技術も開発された。しかしながら、亜臨界法は回分式のために十分な処理量を稼げない等課題がある。 Under such circumstances, the development trend of decontamination technology after the accident is roughly divided into three. The first category is the "extraction/adsorption method" category. Recently, since the proportion of the above-mentioned form (II) has increased and extraction of radioactive Cs has become extremely difficult, a technique for extracting and separating dissolved Cs by performing soil disintegration in a subcritical state has also been developed. However, the subcritical method has a problem that it cannot obtain a sufficient processing amount because it is a batch method.

一方で、土壌粒子に吸着した放射性Csを土壌微粒子ごと取り除く技術が先行している。なかでも「マイクロバブル浮選/分級法」がその代表例である(第2区分)。最近、より高度な懸濁水処理技術として、超電導磁気分離法による廃水中の土壌微粒子の分離技術も提案されている。これらは、大掛かりな廃水処理がプロセス下流に必須であることや根毛を多く含む農地土壌の処理に不向きであり、後者はコストや処理量に課題がある。 On the other hand, a technology for removing the radioactive Cs adsorbed on the soil particles together with the soil particles has been advanced. Among them, the "micro bubble flotation/classification method" is a typical example (second category). Recently, as a more advanced suspension water treatment technique, a technique for separating fine particles of soil in wastewater by a superconducting magnetic separation method has been proposed. These are unsuitable for large-scale wastewater treatment in the downstream of the process and unsuitable for treatment of agricultural soil containing a lot of root hairs, and the latter has problems in cost and treatment amount.

第3区分に「加熱分離」あるいは「熱減容」処理のような乾式処理が挙げられる。例えば、黒雲母を主成分とする汚染土に土量と1/2〜等量のCaClを加え、2時間、800℃弱の温度で加熱を行い、塩化Csとし分離する方法がある。この方法にも廃棄物量が多い等の技術課題がある。 The third category includes dry treatments such as "heat separation" or "heat reduction" treatments. For example, there is a method in which a soil amount of 1/2 to an equivalent amount of CaCl 2 is added to contaminated soil containing biotite as a main component, and the mixture is heated at a temperature of slightly less than 800° C. for 2 hours to separate it as Cs chloride. This method also has technical problems such as a large amount of waste.

上記除染技術とは異なり、無廃水かつ常温で乾式土壌を分級し除染する方法がある(例えば特許文献1、2参照)。この方法は、汚染土壌と強磁性粉末とを混合し、これを磁選することで汚染土壌を分級するものである。放射性Csに汚染された土壌は、粒度の小さいものほど放射性Csの濃度が高いため、粒度の小さい汚染土壌を取り除くことで除染できる。 Different from the above decontamination technology, there is a method of decontaminating by classifying dry soil with no waste water and at room temperature (see, for example, Patent Documents 1 and 2). In this method, contaminated soil and ferromagnetic powder are mixed and magnetically separated to classify the contaminated soil. The soil contaminated with radioactive Cs has a higher concentration of radioactive Cs as the particle size is smaller, so decontamination can be performed by removing the contaminated soil with a small particle size.

特開2017−39123号公報JP, 2017-39123, A 特開2017−113744号公報JP, 2017-113744, A

特許文献1あるいは特許文献2に記載された方法は、廃水等を含め余分な廃棄物が新たに発生することもなく、また簡便で優れた方法と考えられるが、この方法は乾式ゆえに粉じんを生じやすくその対策が必要となる。また汚染土壌には、木くず、根毛等が含まれているためこれらの処理も必要となる。 The method described in Patent Document 1 or Patent Document 2 is considered to be a simple and excellent method in that no extra waste is newly generated including wastewater and the like, but this method produces dust because it is a dry method. It is necessary to take measures easily. Further, since the contaminated soil contains wood chips, root hairs, etc., it is necessary to treat them as well.

本発明の目的は、余分な廃棄物を発生させることなく簡単な操作で安価に実施可能な粉粒体の処理方法及び装置、その粉粒体の処理方法で使用可能な被処理物の調製方法及び装置を提供することである。 An object of the present invention is to provide a method and apparatus for treating powder and granules which can be carried out inexpensively by a simple operation without generating extra waste, and a method for preparing an object to be treated which can be used in the method for treating powder and granules. And to provide a device.

本発明は、被処理物を磁力選別可能に調製する方法であって、前記被処理物が粉粒体であり、前記粉粒体と2価の鉄イオンと3価の鉄イオンとが共存した状態でこれを加熱する加熱工程を含み、前記2価の鉄イオンは、2価の鉄イオンを含有する水溶液として与えられ、前記粉粒体の表面に磁性物質を生成・吸着させることを特徴とする被処理物の調製方法である。 The present invention is a method for magnetically selecting an object to be treated, wherein the object to be treated is a powder and granules, and the powder and the granules coexist with divalent iron ions and trivalent iron ions. A heating step of heating it in a state, wherein the divalent iron ion is given as an aqueous solution containing the divalent iron ion, and a magnetic substance is produced and adsorbed on the surface of the granular material. It is a method of preparing an object to be treated.

本発明の被処理物の調製方法において、前記3価の鉄イオンは、前記粉粒体に含まれる鉄成分に由来のもの及び/又は前記水溶液に含まれる2価の鉄イオンからの化学変化によるものであることを特徴とする。 In the method for preparing an object to be treated according to the present invention, the trivalent iron ion is derived from an iron component contained in the powder and/or a divalent iron ion contained in the aqueous solution. It is characterized by being a thing.

本発明の被処理物の調製方法において、前記3価の鉄イオンが、3価の鉄イオンを含有する水溶液として与えられることを特徴とする。 In the method for preparing an object to be treated of the present invention, the trivalent iron ion is provided as an aqueous solution containing the trivalent iron ion.

本発明の被処理物の調製方法において、前記2価の鉄イオンを含有する水溶液はアルカリ剤を含有し、又は本発明の被処理物の調製方法において、前記2価の鉄イオンを含有する水溶液及び/又は3価の鉄イオンを含有する水溶液はアルカリ剤を含有することを特徴とする。 In the method for preparing an article to be treated of the present invention, the aqueous solution containing divalent iron ions contains an alkaline agent, or in the method for preparing the article to be treated according to the present invention, an aqueous solution containing the divalent iron ions. And/or an aqueous solution containing trivalent iron ions is characterized by containing an alkaline agent.

本発明の被処理物の調製方法において、前記加熱工程の温度が200℃以上300℃以下であることを特徴とする。 In the method for preparing an object to be treated of the present invention, the temperature in the heating step is 200° C. or higher and 300° C. or lower.

本発明の被処理物の調製方法において、前記粉粒体が有機物を含み、前記有機物は、前記加熱工程で炭化され、炭化物の表面に前記磁性物質が生成・吸着することを特徴とする。 In the method for preparing an object to be treated according to the present invention, the powder or granular material contains an organic matter, the organic matter is carbonized in the heating step, and the magnetic substance is produced and adsorbed on the surface of the carbide.

本発明の被処理物の調製方法において、前記2価の鉄イオンを含有する水溶液及び/又は3価の鉄イオンを含有する水溶液、又はこれらにアルカリ剤を含有する水溶液を薬剤としたとき、下記(A)群の1つ以上を制御することにより前記粉粒体の表面に生成・吸着させる磁性物質の磁着力を制御することを特徴とする。
(A)2価の鉄イオン濃度,2価の鉄イオンに対する3価の鉄イオンの割合,アルカリ剤の種類,アルカリ剤の濃度,薬剤の添加量,粉粒体と薬剤との混合物に対する撹拌強度,薬剤添加後の静置時間,加熱温度,加熱時間,昇温速度,水溶液のアニオンの種類
In the method for preparing an object to be treated of the present invention, when the aqueous solution containing the divalent iron ion and/or the aqueous solution containing the trivalent iron ion or the aqueous solution containing an alkaline agent is used as a drug, By controlling one or more of the group (A), the magnetic attraction force of the magnetic substance generated and adsorbed on the surface of the powdery or granular material is controlled.
(A) Divalent iron ion concentration, ratio of trivalent iron ion to divalent iron ion, type of alkaline agent, concentration of alkaline agent, addition amount of drug, stirring strength for mixture of powder and granules , Standing time after drug addition, heating temperature, heating time, heating rate, type of anion in aqueous solution

本発明は、前記被処理物の調製方法により得られる被処理物を磁力選別により分級する分級工程を備えることを特徴とする粉粒体の処理方法である。 The present invention is the method for treating powdery or granular material, comprising a classification step of classifying the object to be treated obtained by the method for preparing the object to be treated by magnetic force selection.

本発明の粉粒体の処理方法において、前記粉粒体が土壌であることを特徴とする。 In the method for treating a granular material of the present invention, the granular material is soil.

本発明は、薬剤と被処理物である粉粒体とを共存下で加熱し、前記粉粒体の表面に磁性物質を生成・吸着させる反応装置と、前記反応装置に前記薬剤を供給する薬剤供給装置と、を備え、前記薬剤として、少なくとも2価の鉄イオンを含有する水溶液を含むことを特徴とする被処理物の調製装置である。 The present invention relates to a reaction device that heats a drug and a powder or granular material that is an object to be processed in the coexistence state to generate and adsorb a magnetic substance on the surface of the powder or granular material, and a drug that supplies the drug to the reaction device. A supply device and a preparation device for an object to be treated, characterized in that, as the chemical, an aqueous solution containing at least divalent iron ions is contained.

本発明は、前記被処理物の調製装置と、前記被処理物の調製装置を介して得られる被処理物を磁力選別する磁選機と、を含むことを特徴とする粉粒体の処理装置である。 The present invention is a powdery or granular material processing apparatus, comprising: the apparatus for preparing a material to be processed; and a magnetic separator for magnetically selecting an object to be processed obtained through the apparatus for preparing a material to be processed. is there.

本発明の粉粒体の処理装置において、前記粉粒体が土壌であることを特徴とする。 In the apparatus for treating powder and granules of the present invention, the powder and granules are soil.

本発明によれば、余分な廃棄物を発生させることなく簡単な操作で安価に実施可能な粉粒体の処理方法及び装置、その粉粒体の処理方法で使用可能な被処理物の調製方法及び装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the processing method and apparatus of a granular material which can be implemented cheaply by a simple operation, without generating an extra waste, and the preparation method of the to-be-processed object which can be used by the processing method of the granular material. And a device can be provided.

本発明の実施の一形態としての粉粒体の処理方法を説明するフロー図である。It is a flow figure explaining the processing method of the granular material as one embodiment of the present invention. 本発明の実施の一形態としての粉粒体の処理装置1の構成図である。It is a block diagram of the processing apparatus 1 of the granular material as one Embodiment of this invention. 本発明の実施例で実施した磁力選別の要領を示す模式図である。It is a schematic diagram which shows the point of the magnetic force selection implemented in the Example of this invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときのFeCl・4HOの添加量と磁着率増加比との関係を示す実験データである。The decomposed granite soil in the processing method of the granular material of the present invention is an experimental data showing the relationship between the added amount and the magnetically attracted rate increase ratio of FeCl 2 · 4H 2 O when the test soil. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときのFeClの添加量と磁着率増加比との関係を示す実験データである。The decomposed granite soil in the processing method of the granular material of the present invention is an experimental data showing the relationship between the added amount and the magnetically attracted rate increase ratio of FeCl 3 when the test soil. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときのアルカリ剤の種類と磁着率増加比との関係を示す実験データである。7 is experimental data showing the relationship between the type of alkaline agent and the ratio of increase in magnetic sticking rate when using sand sand as the test soil in the method for treating powder and granular material of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときのNaOHの添加量と磁着率増加比との関係を示す実験データである。It is an experimental data which shows the relationship between the amount of addition of NaOH and the magnetic sticking rate increase ratio when the sand sand is used as the test soil in the method for treating powder and granular material of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときの薬剤の添加順と磁着率増加比との関係を示す実験データである。It is experimental data which shows the relationship between the addition order of a chemical|medical agent and a magnetic-adhesion rate increase ratio when the sand sand is used as a test soil in the processing method of the granular material of this invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときの薬剤の添加量と磁着率増加比との関係を示す実験データである。It is an experimental data which shows the relationship between the amount of addition of a chemical|medical agent and the magnetic-adhesion-ratio increase ratio when the sand sand is used as a test soil in the processing method of the granular material of this invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときの撹拌手段と磁着率増加比との関係を示す実験データである。It is experimental data which shows the relationship between the stirring means and the magnetic sorption rate increase ratio when the sand sand is used as the test soil in the method for treating powder and granules of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときの薬剤添加後加熱操作前の放置時間と磁着率増加比との関係を示す実験データである。7 is an experimental data showing a relationship between a standing time before a heating operation after addition of a chemical agent and a magnetic sticking rate increase ratio when a sand sand is used as a test soil in the method for treating a granular material of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときの加熱温度と磁着率増加比との関係を示す実験データである。It is experimental data which shows the relationship between the heating temperature and the magnetic sorption rate increase ratio when the sand sand is used as the test soil in the method for treating a granular material of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときの加熱時間と磁着率との関係を示す実験データである。It is experimental data which shows the relationship between the heating time and the magnetic sticking rate when the sand sand is used as the test soil in the method for treating powder and granules of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときの昇温速度と磁着率との関係を示す実験データである。It is experimental data which shows the relationship between a temperature rising rate and a magnetic sticking rate when the sand sand is used as a test soil in the method for treating a granular material of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときのカウンターアニオンの種類と磁着率増加比との関係を示す実験データである。It is experimental data which shows the relationship between the kind of counter anion and the magnetic-adhesion rate increase ratio when the sand-sand is used as a test soil in the method of treating a granular material of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときのFe2+添加量と磁着率増加比との関係を示す実験データである。It is experimental data which shows the relationship between the amount of addition of Fe 2+ and the ratio of increase in magnetic sticking rate when the sand sand is used as the test soil in the method for treating a granular material of the present invention. 本発明の粉粒体の処理方法における供試土壌である黒土の加熱前後の粒度分布測定結果である。It is a particle size distribution measurement result before and after heating of black soil which is a test soil in the method of treating a granular material of the present invention. 本発明の粉粒体の処理方法における黒土を供試土壌としたときのFeCl・4HOの添加量と磁着増加率との関係を示す実験データである。The black soil in the processing method of the granular material of the present invention is an experimental data showing the relationship between the added amount and the magnetically attracted increasing rate of FeCl 2 · 4H 2 O when the test soil. 本発明の粉粒体の処理方法における黒土を供試土壌としたときのNaOHの添加量と磁着増加率との関係を示す実験データである。It is experimental data which shows the relationship between the amount of addition of NaOH and the rate of increase of magnetic sticking when black soil is used as a test soil in the method for treating a granular material of the present invention.

図1は、本発明の実施の一形態としての粉粒体の処理方法を説明するフロー図である。本発明の粉粒体の処理方法は、前段と後段との2つの工程に大別できる。前段は、被処理物である粉粒体(粉粒状物)を磁力選別可能に調製する工程(ステップS1)であり、後段は、前段で磁力選別可能に調製された粉粒体を磁力選別し磁着物と非磁着物とに選別する磁力選別工程(ステップS2)である。 FIG. 1 is a flow chart illustrating a method of treating powdery or granular material according to an embodiment of the present invention. The method for treating powdery or granular material of the present invention can be roughly divided into two steps, a front stage and a rear stage. The first step is a step (step S1) of preparing a powder or granular material (powder or granular material) that is an object to be magnetically sorted, and the second step is magnetically sorting of the powder or granular material prepared in the previous step to be magnetically selectable. It is a magnetic force sorting step (step S2) of sorting into magnetic and non-magnetic substances.

粉粒体を磁力選別可能に調製する工程は、具体的には粉粒体の表面に磁石に吸着可能な磁性物質を生成・吸着させる工程(磁性物質生成吸着工程)であり、粉粒体に薬剤を添加する薬剤添加工程(ステップS1−a)と、薬剤と粉粒体との混合物を加熱する加熱工程(ステップS1−b)とを含む。 Specifically, the process of magnetically sorting powders and granules is a process of generating and adsorbing a magnetic substance that can be adsorbed by a magnet on the surface of the powder or granular substance (magnetic substance generation and adsorption process). The method includes a medicine adding step (step S1-a) of adding a medicine and a heating step (step S1-b) of heating a mixture of the medicine and powder.

本処理方法において、被処理物である粉粒体は特に限定されるものではなく、粉粒体としては土壌、焼却灰、汚泥、これら混合物、さらにこれらに汚染物質が固着、吸着又は付着するものが挙げられる。汚染物質としては、重金属、ダイオキシン類、PCB、農薬など残留性有機汚染物質(POPs)、放射性物質等が挙げられる。放射性物質も特定の物質に限定されるものではなく、セシウムCs、プルトニウムPu、ウランU、ラジウムRaなど幅広い放射性物質を対象とすることができる。 In this treatment method, the granular material that is the object to be treated is not particularly limited, and as the granular material, soil, incineration ash, sludge, a mixture thereof, and a substance to which contaminants adhere, adsorb or adhere Is mentioned. Examples of pollutants include heavy metals, dioxins, PCBs, persistent organic pollutants (POPs) such as agricultural chemicals, radioactive substances and the like. The radioactive substance is not limited to a specific substance, and a wide range of radioactive substances such as cesium Cs, plutonium Pu, uranium U, and radium Ra can be targeted.

汚染物質が主として土壌の表面に固着、吸着又は付着した汚染土壌は、通常、粒径の小さい物ほど汚染物質の濃度が高くなる(例えば特許第5313387号公報の明細書に記載の表1参照)。これは粒径の小さい土壌ほど比表面積が大きいことによる。本処理方法は、後述のように磁力選別により汚染土壌を分級できるため、高濃度の汚染土壌を分離し、除染することができる。 In the polluted soil in which pollutants are mainly fixed, adsorbed or attached to the surface of the soil, the smaller the particle size, the higher the pollutant concentration (for example, refer to Table 1 described in the specification of Japanese Patent No. 5313387). .. This is because soil with a smaller particle size has a larger specific surface area. Since this treatment method can classify contaminated soil by magnetic force selection as described below, it is possible to separate and decontaminate highly concentrated contaminated soil.

粉粒体の粒径は、特に限定されるものではないが、本処理方法は、篩分けが難しい粉粒体の処理に好適に使用することができる。粉粒体の含水率も特に限定されるものではない。絶乾状態、水分を含む粉粒体であってもそのまま処理することができる。水分が多くても加熱工程で加熱され水分は蒸発するが、水分が多いほどそれを蒸発させるに必要なエネルギーが多くなるため粉粒体に含まれる水分は少ない方がよい。粉粒体に対して脱水操作が可能であれば予め脱水操作を行い、含水率を低下させておくことが好ましい。 The particle size of the powder or granular material is not particularly limited, but the present treatment method can be suitably used for the processing of the powder or granular material which is difficult to screen. The water content of the granular material is not particularly limited. Even if it is in an absolutely dry state or a powder containing water, it can be directly processed. Even if the water content is large, the water content is heated in the heating step to evaporate, but the more water content, the more energy is required to evaporate it. If the powdery or granular material can be dehydrated, it is preferable to perform dehydration in advance to reduce the water content.

粉粒体の中には、塊状となったものが含まれる場合もある。後述の実施例に示すように粉粒体と薬剤との混合物に対して撹拌操作を行うと磁力選別工程において磁着率が低下し、撹拌強度が大きい程磁着率は低くなった。このことからこのような塊状物は、前段階で解砕しておくことが好ましい。 The granular material may include a lumpy material. As shown in Examples described later, when a stirring operation was performed on the mixture of the powdery particles and the drug, the magnetic sticking rate decreased in the magnetic force selection step, and the larger the stirring strength, the lower the magnetic sticking rate. From this, it is preferable to crush such a lump in the previous stage.

また塊状物を解砕する際は、塊状物以外の粉粒体が破砕されないように行うのがよい。上記のように汚染物質が主として土壌の表面に固着、吸着又は付着した汚染土壌は、粒径が大きいものほど相対的に汚染物質の濃度が低い。このような粒径の大きい汚染土壌が粉砕されると、汚染濃度の低い粒径の小さい汚染土壌が生成するため除染効率が低下する。 In addition, when crushing the lumps, it is preferable to carry out so as not to crush the powder and granules other than the lumps. As described above, in the contaminated soil in which the pollutant is mainly adhered to, adsorbed on, or adhered to the surface of the soil, the larger the particle size, the lower the concentration of the pollutant. When such a contaminated soil having a large particle size is pulverized, a contaminated soil having a low pollution concentration and a small particle size is generated, so that the decontamination efficiency decreases.

また粉粒体には、植物、木の葉、木くず、根毛などの有機物を含むものもあるがこのような粉粒体も本処理方法で処理可能である。本実施形態の粉粒体の処理方法は、加熱工程を備えるので、この加熱工程で有機物は炭化物になる。 In addition, some of the particles include organic matter such as plants, leaves, wood waste, and root hair, and such particles can also be treated by the present treatment method. Since the method for treating a granular material according to the present embodiment includes a heating step, the organic matter becomes a carbide in this heating step.

本発明では、磁性物質の生成に2価の鉄イオンFe2+と3価の鉄イオンFe3+とを使用する。2価の鉄イオンFe2+は、薬剤として供給するが、3価の鉄イオンFe3+の供給態様は複数ある。このため3価の鉄イオンFe3+の供給態様により使用する薬剤が異なる。 In the present invention, divalent iron ion Fe 2+ and trivalent iron ion Fe 3+ are used for the production of the magnetic substance. Although divalent iron ion Fe 2+ is supplied as a drug, there are a plurality of modes of supplying trivalent iron ion Fe 3+ . Therefore, the drug to be used differs depending on the supply mode of the trivalent iron ion Fe 3+ .

具体的には、3価の鉄イオンFe3+が被処理物である粉粒体から得られるとき及び/又は薬剤として供給した2価の鉄イオンFe2+の一部が化学変化し3価の鉄イオンFe3+になる場合には、薬剤として2価の鉄イオンFe2+を含む水溶液を使用する。3価の鉄イオンFe3+が被処理物である粉粒体から得られないとき及び/又は薬剤として供給した2価の鉄イオンFe2+から所定量の3価の鉄イオンFe3+が得られないときには、薬剤として2価の鉄イオンFe2+、3価の鉄イオンFe3+を含む水溶液を使用する。 Specifically, when the trivalent iron ion Fe 3+ is obtained from the granular material which is the object to be treated and/or a part of the divalent iron ion Fe 2+ supplied as a chemical is chemically changed, the trivalent iron is When the ions become Fe 3+ , an aqueous solution containing divalent iron ion Fe 2+ is used as a drug. When trivalent iron ion Fe 3+ cannot be obtained from the granular material that is the object to be treated and/or a predetermined amount of trivalent iron ion Fe 3+ cannot be obtained from the divalent iron ion Fe 2+ supplied as a drug. Occasionally, an aqueous solution containing divalent iron ion Fe 2+ and trivalent iron ion Fe 3+ is used as a drug.

2価の鉄イオンFe2+を含む水溶液及び3価の鉄イオンFe3+を含む水溶液は特に限定されるものではないが、FeCl・4HO及びFeClを含む水溶液が好ましい。2価の鉄イオンFe2+を含む薬剤としては、FeCl・4HOの他にFeSO・7HO,Fe(NH(SO・6HO等がある。これら鉄塩は、水に対する溶解度、さらに単価も異なる。FeCl・4HOは、他の鉄塩に比較して溶解度が大きいため濃度調整が容易であり、単価も低く好ましい。 The aqueous solution containing divalent iron ion Fe 2+ and the aqueous solution containing trivalent iron ion Fe 3+ are not particularly limited, but an aqueous solution containing FeCl 2 .4H 2 O and FeCl 3 is preferable. In addition to FeCl 2 .4H 2 O, FeSO 4 .7H 2 O, Fe(NH 4 ) 2 (SO 4 ) 2 .6H 2 O and the like are examples of the drug containing divalent iron ions Fe 2+ . These iron salts have different solubility in water and unit price. FeCl 2 .4H 2 O is preferable because its solubility is greater than that of other iron salts and therefore the concentration can be easily adjusted and the unit price is low.

2価の鉄イオンFe2+及び/又は3価の鉄イオンFe3+の濃度は、粉粒体の表面に生成・吸着する磁性物質の磁着力に影響を与える。後述の実施例に示すように水溶液中の2価の鉄イオンFe2+が特定の濃度のときに磁着率がピークとなった。一方、3価の鉄イオンFe3+の濃度と磁着率増加比との関係では、3価の鉄イオンFe3+の濃度が高いほど磁着率が低下した。 The concentration of the divalent iron ion Fe 2+ and/or the trivalent iron ion Fe 3+ influences the magnetic adhesion force of the magnetic substance generated/adsorbed on the surface of the granular material. As shown in Examples described later, the magnetic sticking rate peaked when the divalent iron ion Fe 2+ in the aqueous solution had a specific concentration. On the other hand, in the relationship between the concentration of trivalent iron ions Fe 3+ and the ratio of increase in magnetic attachment rate, the higher the concentration of trivalent iron ions Fe 3+ , the lower the magnetic attachment rate.

粉粒体の表面に生成・吸着する磁性物質の磁着力は、磁性物質の粒子径、凝集性、さらには生成・吸着量に相関するため、2価の鉄イオンFe2+及び/又は3価の鉄イオンFe3+の濃度によりこれらが変化することが考えられる。以上のことから水溶液中の2価の鉄イオンFe2+の濃度、3価の鉄イオンFe3+の濃度、2価の鉄イオンFe2+と3価の鉄イオンFe3+との割合を調整することで所望の磁着率を得ることができる。 The magnetic cohesive force of the magnetic substance generated/adsorbed on the surface of the granular material correlates with the particle size and cohesiveness of the magnetic substance, and further the amount of generation/adsorption, so that the divalent iron ion Fe 2+ and/or the trivalent iron ion It is considered that these change depending on the concentration of iron ions Fe 3+ . By adjusting the proportion of bivalent concentration of iron ions Fe 2+ of an aqueous solution, the trivalent concentration of iron ions Fe 3+ of the divalent iron ions Fe 2+ and trivalent iron ions Fe 3+ from the above A desired magnetic sticking rate can be obtained.

粉粒体に対する薬剤の添加量、つまり2価の鉄イオンFe2+及び/又は3価の鉄イオンFe3+の添加量も磁着率に大きく影響する。後述の実施例に示すように磁着率は、薬剤の添加量に比例して大きくなった。これは2価の鉄イオンFe2+及び/又は3価の鉄イオンFe3+の添加量に比例して磁性物質の生成・吸着量さらには磁着力が大きくなることを示していると言える。以上のことから粉粒体に対する薬剤の添加量を調整することで所望の磁着率を得ることができる。薬剤の添加量と土壌の種類との関係では、後述の実施例から判断して、土壌に含まれる有機物の含有量が多いほど薬剤の添加量を多くする必要がある。 The amount of the drug added to the powder or granular material, that is, the amount of the divalent iron ion Fe 2+ and/or the trivalent iron ion Fe 3+ , also greatly affects the magnetic sticking rate. As shown in Examples described later, the magnetic sticking rate increased in proportion to the amount of the drug added. This can be said to indicate that the amount of magnetic substance produced/adsorbed and the magnetic adhesion force are increased in proportion to the amount of addition of the divalent iron ion Fe 2+ and/or the trivalent iron ion Fe 3+ . From the above, it is possible to obtain a desired magnetic sticking rate by adjusting the amount of the drug added to the powder or granular material. Regarding the relationship between the added amount of the drug and the type of soil, it is necessary to increase the added amount of the drug as the content of the organic matter contained in the soil increases, as judged from Examples described later.

さらに薬剤添加工程において、薬剤としてpH調整剤を添加する。ここでpH調整剤はアルカリ剤であり、水溶液状態で添加される。アルカリ剤は、特に限定されるものではないが、後述の実施例に示すように磁着率を大きくすることができる点、単価、入手の容易性等を考慮すれば水酸化ナトリウムNaOHが好ましい。アルカリ剤の添加量は、後述の実施例に示すように磁着率に大きく影響する。以上のことからアルカリ剤の種類及び添加量を調整することで所望の磁着率を得ることができる。 Further, in the drug addition step, a pH adjuster is added as a drug. Here, the pH adjuster is an alkaline agent and is added in the state of an aqueous solution. The alkaline agent is not particularly limited, but sodium hydroxide NaOH is preferable in view of the fact that the magnetic sticking rate can be increased, the unit price, the availability, etc., as shown in the examples described later. The addition amount of the alkaline agent has a great influence on the magnetic sticking rate, as shown in Examples described later. From the above, it is possible to obtain a desired magnetic sticking rate by adjusting the type and addition amount of the alkaline agent.

3価の鉄イオンFe3+を薬剤として供給する場合、以下の方法が考えられる。水に所定量の2価の鉄塩及びアルカリ剤を加え調整した2価の鉄イオンFe2+を含む水溶液と、水に所定量の3価の鉄塩及びアルカリ剤を加え調整した3価の鉄イオンFe3+を含む水溶液とを別々に調整し、これらを別々に加える。またはこれら2つの水溶液を予め混合した上で粉粒体に添加する。さらには水に所定量の2価の鉄塩、3価の鉄塩及びアルカリ剤を加え調整した2価の鉄イオンFe2+及び3価の鉄イオンFe3+を含む水溶液を粉粒体に添加する。 When trivalent iron ion Fe 3+ is supplied as a drug, the following method can be considered. Aqueous solution containing divalent iron ion Fe 2+ prepared by adding a predetermined amount of divalent iron salt and alkaline agent to water, and trivalent iron prepared by adding a predetermined amount of trivalent iron salt and alkaline agent to water Separately prepare an aqueous solution containing ions Fe 3+ and add them separately. Alternatively, these two aqueous solutions are mixed in advance and then added to the granular material. Further, an aqueous solution containing divalent iron ion Fe 2+ and trivalent iron ion Fe 3+ prepared by adding a predetermined amount of divalent iron salt, trivalent iron salt and an alkaline agent to water is added to the granular material. ..

後述の実施例に記載のように2価の鉄イオンFe2+を含む水溶液と3価の鉄イオンFe3+を含む水溶液とを別々に添加する方法は、2価の鉄イオンFe2+と3価の鉄イオンFe3+とを一緒に添加する方法に比較して磁着率が低かった。また粉粒体に薬剤を添加した後の混合を考慮すれば、3価の鉄イオンFe3+を薬剤として供給するときには、2価の鉄イオンFe2+と3価の鉄イオンFe3+とを一緒に添加するのがよい。 As described in Examples below, a method of separately adding an aqueous solution containing divalent iron ions Fe 2+ and an aqueous solution containing trivalent iron ions Fe 3+ is a method of adding divalent iron ions Fe 2+ and trivalent iron ions. The magnetic sticking rate was lower than the method of adding together iron ions Fe 3+ . Considering the mixing after adding the drug to the granular material, when supplying the trivalent iron ion Fe 3+ as the drug, the divalent iron ion Fe 2+ and the trivalent iron ion Fe 3+ are combined together. It is good to add.

粉粒体に添加する薬剤の液量は、粉粒体の表面に液が僅かに浮くくらいが好ましい。換言すれば、被処理物である粉粒体に薬剤を添加したとき、粉粒体が全て液中に浸かるのが好ましい。このようにすれば粉粒体と薬剤とを確実に接触させることができ、特に撹拌操作を行う必要がない。一方で添加する薬剤の液量を必要以上に多くしても、水分は加熱工程で蒸発させるため不経済である。 The liquid amount of the drug added to the powder or granular material is preferably such that the liquid slightly floats on the surface of the powder or granular material. In other words, it is preferable that when the chemical is added to the powder or granules to be treated, the powder or granules are wholly immersed in the liquid. In this way, the powder and granules can be reliably brought into contact with the drug, and it is not necessary to carry out a stirring operation. On the other hand, even if the amount of the chemical to be added is increased more than necessary, it is uneconomical because water is evaporated in the heating step.

粉粒体に添加する薬剤の液量を少なくした場合には、薬剤と粉粒体とを均一化するための撹拌混合操作が必要となる。この撹拌混合操作は、薬剤添加と並行して行っても、薬剤添加後に行っても、あるいは加熱工程で行ってもよい。撹拌混合に使用する装置、撹拌方法は特に限定されるものではないが、撹拌操作により粉粒体が粉砕されないように、また発塵しないようにするのがよい。 When the liquid amount of the drug to be added to the powder or granules is reduced, it is necessary to perform an agitation and mixing operation for making the drug and the powder or granules uniform. This stirring and mixing operation may be performed in parallel with the chemical addition, after the chemical addition, or in the heating step. The device and the stirring method used for stirring and mixing are not particularly limited, but it is preferable that the powder and granular material is not crushed by the stirring operation and that dust is not generated.

加熱工程(ステップS1−b)は、薬剤と粉粒体との混合物を加熱する工程である。後述の実施例に示すように加熱温度に比例して磁着率が増加するが、300℃を超えると逆に低下する。また加熱温度が350℃を超えるとダイオキシンの再合成が懸念される。これらから加熱温度は200℃以上300℃以下が好ましく、より好ましくは250℃以上300℃以下であり、250℃前後の温度がさらに好ましい。加熱温度が350℃以下であれば、マグネタイトの磁性喪失の心配はない(キュリー点:858K)。 The heating step (step S1-b) is a step of heating the mixture of the drug and the powder or granular material. As shown in Examples described later, the magnetic sticking rate increases in proportion to the heating temperature, but decreases above 300° C. conversely. Further, if the heating temperature exceeds 350° C., there is a concern that dioxin will be resynthesized. From these, the heating temperature is preferably 200° C. or higher and 300° C. or lower, more preferably 250° C. or higher and 300° C. or lower, and even more preferably around 250° C. If the heating temperature is 350° C. or lower, there is no concern about loss of magnetite magnetism (Curie point: 858K).

加熱工程における加熱操作は特に限定されるものではないが、粉粒体に薬剤を添加した後、加熱開始までの静置時間(放置時間)、室温から所定の加熱温度に達するまでの昇温速度、所定の加熱温度に達した後の加熱温度を保持する時間(加熱時間)により磁着率が異なる。後述の実施例に示すように静置時間を長くし、あるいは昇温速度を大きくすると磁着率は低下した。加熱時間が30min以上であれば加熱時間によらず磁着率はほぼ一定であった。以上のことから加熱操作において、粉粒体に薬剤を添加した後加熱開始までの静置時間(放置時間)、昇温速度、加熱時間を調整することで磁着率を調節することができる。 The heating operation in the heating step is not particularly limited, but after the drug is added to the powder or granular material, the standing time (standing time) until the start of heating, the rate of temperature increase from room temperature to the predetermined heating temperature are reached. The magnetic sticking rate varies depending on the time (heating time) for holding the heating temperature after reaching the predetermined heating temperature. As shown in Examples described later, when the stationary time was lengthened or the temperature rising rate was increased, the magnetic sticking rate decreased. If the heating time was 30 minutes or more, the magnetic sticking rate was almost constant regardless of the heating time. From the above, in the heating operation, the magnetic sticking rate can be adjusted by adjusting the stationary time (standing time), the temperature rising rate, and the heating time after the chemicals are added to the powder and granules until the heating is started.

加熱工程において温度の均一化、水分の除去、さらには粉粒体の凝集を防ぐ観点から撹拌混合操作を併用するのが好ましい。ここでも粉粒体が粉砕されないように撹拌混合するのがよい。加熱工程における加熱温度・加熱時間は、基本的に磁性物質の磁着力が所望の値となるように設定されるが、粉粒体に有機物が含まれる場合、この有機物が炭化され、この炭化物の表面に磁性物質が生成・吸着するように加熱温度・加熱時間を決定するのが好ましい。 In the heating step, it is preferable to use a stirring and mixing operation in combination from the viewpoint of making the temperature uniform, removing water, and further preventing aggregation of the powder and granules. Also here, it is preferable to stir and mix so that the powdery particles are not crushed. The heating temperature and heating time in the heating step are basically set so that the magnetic coercive force of the magnetic substance has a desired value. However, when the powdery or granular material contains an organic substance, the organic substance is carbonized and It is preferable to determine the heating temperature and the heating time so that the magnetic substance is generated and adsorbed on the surface.

粉粒体の表面に生成・吸着する磁性物質の粒径・分散性は、加熱工程における温度、時間のみならず反応場の雰囲気、具体的には反応場が酸化性雰囲気か還元性雰囲気かに影響を受ける。これは2価の鉄イオンFe2+が酸化され3価の鉄イオンFe3+に変化することに影響する。このため加熱工程における反応場の雰囲気を調整することで磁着率を調節することができる。 The particle size and dispersibility of the magnetic substance generated and adsorbed on the surface of the powder and granules depend not only on the temperature and time in the heating process, but also on the atmosphere of the reaction field, specifically whether the reaction field is an oxidizing atmosphere or a reducing atmosphere. to be influenced. This affects that the divalent iron ion Fe 2+ is oxidized and changed to the trivalent iron ion Fe 3+ . Therefore, the magnetic sticking rate can be adjusted by adjusting the atmosphere of the reaction field in the heating step.

以上の構成からなる磁性物質生成吸着工程における、粉粒体の表面に磁性物質が生成・吸着するメカニズムは以下のように考えられる。以下、粉粒体を土壌として説明する。 The mechanism by which the magnetic substance is generated and adsorbed on the surface of the granular material in the magnetic substance generation and adsorption step having the above-described structure is considered as follows. Hereinafter, the granular material will be described as soil.

土壌に薬剤を添加すると、土壌中の1価のイオン種と2価の鉄イオンFe2+や3価の鉄イオンFe3+とのイオン交換が行われる。次いで土壌表面で化学反応が起こり、土壌の表面に磁性物質を生成し、当該磁性物質は、土壌の表面に吸着する。 When a chemical is added to the soil, ion exchange between the monovalent ion species in the soil and the divalent iron ion Fe 2+ or the trivalent iron ion Fe 3+ is performed. Then, a chemical reaction occurs on the soil surface to generate a magnetic substance on the soil surface, and the magnetic substance is adsorbed on the soil surface.

2:1型粘土鉱物と1:1型粘土鉱物との陽イオン交換容量(CEO)は、前者の方が最大で約80倍以上大きいことが知られている。このため2価の鉄イオンFe2+や3価の鉄イオンFe3+は、2:1型粘土鉱物に優先的に吸着され、磁性物質も2:1型粘土鉱物の表面に優先的に生成・吸着する。 It is known that the cation exchange capacity (CEO) of 2:1 type clay minerals and 1:1 type clay minerals is at least about 80 times larger in the former case. Therefore, divalent iron ion Fe 2+ and trivalent iron ion Fe 3+ are preferentially adsorbed on the 2:1 type clay mineral, and magnetic substances are also preferentially generated and adsorbed on the surface of the 2:1 type clay mineral. To do.

背景技術の欄にも記したように、原発事故により放出された放射性Csは、降雨により土壌に沈着し,最終的には2:1型粘土内部に捕捉される。このことから本実施形態に示す磁性物質生成吸着工程、さらには本実施形態に示す粉粒体の処理方法は、放射性Csに汚染された土壌の処理に好適に使用できることが分かる。 As described in the section of the background art, radioactive Cs released by the nuclear accident is deposited on the soil due to rainfall, and finally captured inside the 2:1 type clay. From this, it is understood that the magnetic substance generation and adsorption step shown in the present embodiment, and further the method for treating powder and granules shown in the present embodiment can be suitably used for treatment of soil contaminated with radioactive Cs.

本粉粒体の処理方法において、磁性物質生成吸着工程を経て得られる粉粒体は、次工程で磁力選別に供されるため、磁性物質生成吸着工程では磁力選別に適した被磁選物を得ることができ、それを効率的に生成できる方法が好ましい。この点において本方法で得られる磁性物質は磁着力も調節可能であり、また磁性物質生成吸着工程も簡便であり、好ましい方法といえる。 In the present method for treating powder and granules, the powder and granules obtained through the magnetic substance generation and adsorption step are subjected to magnetic force selection in the next step, so that in the magnetic substance generation and adsorption step, a magnetic material suitable for magnetic force selection is obtained. A method capable of producing and efficiently producing it is preferable. In this respect, the magnetic substance obtained by the present method can be controlled in magnetic attraction, and the magnetic substance generation/adsorption step is simple, which is a preferable method.

磁力選別の点から粉粒体の表面に生成・吸着する磁性物質は、粒径が小さく表面に均一に分散するものがよい。また磁性物質を生成・吸着させるに使用する薬剤の使用量が少ないものが好ましい。 From the viewpoint of magnetic force selection, it is preferable that the magnetic substance generated and adsorbed on the surface of the granular material has a small particle size and is uniformly dispersed on the surface. Further, it is preferable that the amount of the drug used for generating and adsorbing the magnetic substance is small.

上述又は後述の実施例に示すように下記(A)群の1つ以上を制御することにより粉粒体の表面に生成させる磁性物質の磁着力を制御することができるので、粒度分布、鉄成分含有量・有機物の含有量など被処理物の特性、さらには目標とする磁着率に応じて適宜、磁性物質生成吸着工程の条件を設定すればよい。
(A)2価の鉄イオン濃度,2価の鉄イオンに対する3価の鉄イオンの割合,アルカリ剤の種類,アルカリ剤の濃度,薬剤の添加量,粉粒体と薬剤との混合物に対する撹拌強度,薬剤添加後の静置時間,加熱温度,加熱時間,昇温速度,水溶液のアニオンの種類
By controlling one or more of the following (A) groups as shown in the above-mentioned or later-described examples, it is possible to control the magnetic adhesion force of the magnetic substance generated on the surface of the powder or granular material. The conditions of the magnetic substance generation/adsorption step may be appropriately set according to the characteristics of the object to be treated such as the content and the content of the organic matter, and the target magnetic sticking rate.
(A) Divalent iron ion concentration, ratio of trivalent iron ion to divalent iron ion, type of alkaline agent, concentration of alkaline agent, addition amount of drug, stirring strength for mixture of powder and granules , Standing time after drug addition, heating temperature, heating time, heating rate, type of anion in aqueous solution

磁力選別工程(ステップS2)は、前工程(ステップS1)を経て得られる表面に磁性物質が生成・吸着した粉粒体を磁力選別する。磁力選別工程で使用される磁選機、磁選方法は特に限定されるものではなく、公知の磁選機、磁選方法を使用することができる。なお磁選機、磁選方法によっては、高温の被磁選物を処理できない場合もある。このような場合には、磁性物質生成吸着工程と磁力選別工程との間に被磁選物(粉粒体)を冷却する冷却工程を設ければよい。 The magnetic force sorting step (step S2) magnetically sorts the powder or granular material in which the magnetic substance is generated/adsorbed on the surface obtained through the previous step (step S1). The magnetic separator and the magnetic separation method used in the magnetic force selection step are not particularly limited, and a known magnetic separator and magnetic separation method can be used. Depending on the magnetic separator and the magnetic separation method, it may not be possible to process a high temperature magnetic separation target. In such a case, a cooling step may be provided between the magnetic substance generation and adsorption step and the magnetic force selection step to cool the magnetic material to be magnetically selected (powder or granular material).

以上の構成からなる本処理方法の処理メカニズムの概要は、次の通りである。磁性物質生成吸着工程において、磁性物質が粉粒体に生成・吸着する量(粉粒体単位質量当たり)は、比表面積の関係から粒径の小さい粉粒体ほど多くなる。磁力選別工程において、粒径の小さい粉粒体は自重が小さく、さらに磁性物質の生成・吸着量が多いため磁着物となる。一方、粒径の大きい粉粒体は自重が大きく、さらに磁性物質の生成・吸着量が少ないため非磁着物となる。 The outline of the processing mechanism of the present processing method having the above configuration is as follows. In the magnetic substance generation/adsorption step, the amount of the magnetic substance generated/adsorbed to the powder/granule (per unit mass of the powder/granule) increases as the powder/granule having a smaller particle size is concerned. In the magnetic force selection step, the powder particles having a small particle size have a small self-weight, and moreover, a large amount of magnetic substances are produced/adsorbed, and thus become a magnetic substance. On the other hand, a powder having a large particle diameter has a large self-weight and a small amount of magnetic substance produced/adsorbed, so that it becomes a non-magnetic substance.

以上のように粉粒体に対して磁性物質生成吸着工程において、磁性物質を生成・吸着させ、これを磁力選別することで粉粒体を分級することができる。放射性物質汚染土壌は、粒径の小さい物ほど汚染物質の濃度が高いため、本処理方法を用いて放射性物質汚染土壌を処理することで放射性物質汚染物の濃縮、除染等を行うことができる。 As described above, in the magnetic substance generation/adsorption step of the powder or granular material, the powder or granular material can be classified by generating and adsorbing the magnetic material and magnetically selecting the magnetic material. Since radioactive contaminant-contaminated soil has a higher concentration of pollutants as the particle size is smaller, it is possible to concentrate and decontaminate radioactive contaminants by treating radioactive-contaminated soil using this treatment method. ..

本処理方法において、粉粒体に含まれる有機物は、加熱工程(ステップS1−b)で炭化物となるため被処理物が減容化される。また磁性物質生成吸着工程の段階で炭化物の表面にも磁性物質が生成・吸着する。炭化物は、汚染土壌に比較して密度が小さいため磁力選別工程では磁着物となる。 In the present treatment method, the organic matter contained in the granular material becomes a carbide in the heating step (step S1-b), so that the volume of the object to be treated is reduced. Further, at the stage of the magnetic substance generation and adsorption step, the magnetic substance is also generated and adsorbed on the surface of the carbide. Since the carbide has a lower density than that of the contaminated soil, it becomes a magnetic substance in the magnetic separation process.

本発明の粉粒体の処理方法は、上記実施形態の粉粒体の処理方法を基本に種々変更することができる。以下、粉粒体の処理方法の変形例について説明する。 The method for treating powder or granules of the present invention can be variously modified based on the method for treating powder or granules of the above-described embodiment. Hereinafter, a modified example of the method for treating powder and granules will be described.

上記実施形態の粉粒体の処理方法では、被処理物として粉粒体をそのまま使用するが、本処理方法に先立ち、粉粒体を篩などを用いて分級し、粒径の大きいものを取り除いてもよい。放射性物質汚染土壌は、粒度の小さい物ほど放射性物質の濃度が高く、逆に粗粒物の放射性物質の濃度は比較的低いことが知られている(例えば、特許第5313387号公報の明細書に記載の表1参照)。このため予め粗粒物を取り除き、残りの汚染土壌を磁力選別すれば効率的に放射性物質汚染物の濃縮、除染が行える。 In the method for treating powder or granular material according to the above-described embodiment, the powder or granular material is used as it is as the object to be treated, but prior to the present treatment method, the powder or granular material is classified using a sieve or the like to remove one having a large particle diameter. May be. It is known that in a radioactive substance-contaminated soil, the smaller the particle size, the higher the radioactive substance concentration, and conversely, the coarse-grained radioactive substance concentration is relatively low (for example, in the specification of Japanese Patent No. 5313387). See Table 1). Therefore, if the coarse particles are removed in advance and the remaining contaminated soil is magnetically selected, the radioactive contaminants can be efficiently concentrated and decontaminated.

次に本発明の実施の一形態としての粉粒体の処理装置1について説明する。図2は、本発明の粉粒体の処理装置1の構成図である。以下、粉粒体が放射性物質汚染土壌(以下、汚染土壌と記す)であるとし、粉粒体の処理装置の構成について説明する。 Next, a powdery or granular material processing apparatus 1 according to an embodiment of the present invention will be described. FIG. 2 is a configuration diagram of the powdery or granular material processing apparatus 1 of the present invention. Hereinafter, assuming that the granular material is radioactive substance contaminated soil (hereinafter referred to as contaminated soil), the configuration of the granular material processing device will be described.

本発明の粉粒体の処理装置1は、汚染土壌を連続的に処理する連続処理装置であり、汚染土壌の表面に磁性物質を生成・吸着させる反応装置31、反応装置31に薬剤を供給する薬剤供給装置21、反応装置31に汚染土壌を供給する汚染土壌供給装置11、反応後の汚染土壌を冷却する冷却装置41、冷却後の汚染土壌を磁力選別する磁力選別装置51を含む。 The powdery or granular material processing apparatus 1 of the present invention is a continuous processing apparatus for continuously processing contaminated soil, and supplies chemicals to the reaction apparatus 31 and the reaction apparatus 31 for producing and adsorbing a magnetic substance on the surface of the contaminated soil. It includes a chemical supply device 21, a contaminated soil supply device 11 for supplying contaminated soil to the reaction device 31, a cooling device 41 for cooling the contaminated soil after the reaction, and a magnetic force selection device 51 for magnetically selecting the contaminated soil after cooling.

汚染土壌供給装置11は、反応装置31に汚染土壌を定量供給する装置であり、ホッパー12付きのスクリューフィーダ13である。粉粒体の定量供給装置としては、スクリューフィーダの他にテーブルフィーダ等がある。ここでは汚染土壌を定量供給可能であれば特に型式等は問われないが、搬送過程で粉粒体が破砕・粉砕されず、また表面が削り取られないものが好ましい。 The contaminated soil supply device 11 is a device for quantitatively supplying contaminated soil to the reaction device 31, and is a screw feeder 13 with a hopper 12. As a quantitative supply device for powder and granular material, there is a table feeder and the like in addition to the screw feeder. Here, the type or the like is not particularly limited as long as the contaminated soil can be quantitatively supplied, but it is preferable that the granular material is not crushed or crushed during the transportation process and the surface is not scraped.

薬剤供給装置21は、反応装置31に薬剤を定量供給する装置であり、撹拌機23を備える薬剤供給タンク22と、定量供給ポンプ24とを含む。薬剤供給タンク22には、2価の鉄塩及びアルカリ剤を水に溶解させた水溶液が充填されている。 The drug supply device 21 is a device for quantitatively supplying a drug to the reaction device 31, and includes a drug supply tank 22 having an agitator 23, and a fixed amount supply pump 24. The chemical supply tank 22 is filled with an aqueous solution in which a divalent iron salt and an alkaline agent are dissolved in water.

本実施形態の粉粒体の処理装置1では、3価の鉄イオンFe3+は、汚染土壌及び2価の鉄イオンFe2+が酸化され供給されるため薬剤には含まれていない。汚染土壌及び2価の鉄イオンFe2+の酸化では3価の鉄イオンFe3+が不足する場合は、薬剤供給装置21を介して3価の鉄塩を供給すればよい。 In the treatment apparatus 1 for powder and granular material of the present embodiment, the trivalent iron ion Fe 3+ is not contained in the chemical agent because the contaminated soil and the divalent iron ion Fe 2+ are oxidized and supplied. When trivalent iron ion Fe 3+ is insufficient in the contaminated soil and the oxidation of divalent iron ion Fe 2+ , the trivalent iron salt may be supplied via the chemical supply device 21.

また本実施形態では、汚染土壌に対して汚染土壌が浸かるだけの薬剤を添加するため汚染土壌と薬剤とを混合する装置を経由させることなく反応装置31に汚染土壌及び薬剤を供給するが、汚染土壌に対する薬剤の供給量が少ないような場合には、汚染土壌と薬剤とを混合装置で混合し反応装置31に供給すればよい。 In addition, in the present embodiment, since a chemical that allows the contaminated soil to soak is added to the contaminated soil, the contaminated soil and the chemical are supplied to the reaction device 31 without passing through a device that mixes the contaminated soil and the chemical. When the amount of the drug supplied to the soil is small, the contaminated soil and the drug may be mixed by the mixing device and supplied to the reaction device 31.

反応装置31は、汚染土壌と薬剤との混合物を加熱し、薬剤を反応させ汚染土壌の表面に磁性物質を生成・吸着させる装置である。反応装置31は、駆動装置(図示省略)と連結し回転する内筒32と、内筒32を覆うように固定された外筒37とを備える間接加熱方式のロータリーキルンである。 The reaction device 31 is a device that heats a mixture of contaminated soil and a drug to cause the drug to react and generate and adsorb a magnetic substance on the surface of the contaminated soil. The reaction device 31 is an indirect heating type rotary kiln including an inner cylinder 32 that is connected to a drive device (not shown) and rotates, and an outer cylinder 37 that is fixed so as to cover the inner cylinder 32.

内筒32は、一端に汚染土壌供給装置11から供給される汚染土壌及び薬剤供給装置21から供給される薬剤を受け入れるための入口部33を備え、他端部に加熱した混合物を排出するための出口フード34を備える。内筒32の入口部33に近い部分には、供給された薬剤が直ちに出口フード34側に移動することを防止するための堰(図示省略)が設けられている。供給された汚染土壌は、内筒32の回転に伴い堰を乗り越え出口フード34側に移動する。 The inner cylinder 32 is provided at one end with an inlet 33 for receiving the contaminated soil supplied from the contaminated soil supply device 11 and the medicine supplied from the medicine supply device 21, and at the other end for discharging the heated mixture. An outlet hood 34 is provided. A weir (not shown) is provided in a portion of the inner cylinder 32 near the inlet 33 to prevent the supplied medicine from immediately moving to the outlet hood 34 side. The supplied contaminated soil moves over the weir and moves to the outlet hood 34 side as the inner cylinder 32 rotates.

入口部33及び出口フード34は、内筒32内で発生するガスの漏洩を防ぐように内筒32と連結する。出口フード34の上部には、混合物の加熱に伴い発生する水蒸気等のガスを排出するための排気口35が、出口フード34の下部には、加熱された混合物を排出する排出口36が設けられている。 The inlet part 33 and the outlet hood 34 are connected to the inner cylinder 32 so as to prevent leakage of gas generated in the inner cylinder 32. An exhaust port 35 for discharging gas such as water vapor generated by heating the mixture is provided at the upper part of the outlet hood 34, and an exhaust port 36 for discharging the heated mixture is provided at the lower part of the outlet hood 34. ing.

外筒37は、長手方向が3つに区分けされ、それぞれの区画に加熱ガスの供給口38と排出口39とが設けられており、加熱ガス供給装置(図示省略)から送られる加熱ガスを受け入れ、これを加熱媒体として内筒32内の混合物を加熱する。それぞれの区画に温度の異なる加熱ガスを供給することで、内筒32内の混合物及び汚染土壌を所望の温度、温度分布に調節することができる。 The outer cylinder 37 is divided into three in the longitudinal direction, and a heating gas supply port 38 and a discharge port 39 are provided in each section, and receives a heating gas sent from a heating gas supply device (not shown). The mixture in the inner cylinder 32 is heated using this as a heating medium. By supplying heating gas having different temperatures to the respective compartments, the mixture and the contaminated soil in the inner cylinder 32 can be adjusted to desired temperatures and temperature distributions.

汚染土壌と薬剤との混合物は、スラリー状態で内筒32に供給され、内筒32の入口部33から排出口36に移動する過程で、所定時間・所定温度で加熱され、汚染土壌の表面に磁性物質を生成・吸着させる。表面に磁性物質が生成・吸着した汚染土壌は、排出口36から排出される。一方、汚染土壌と薬剤との混合物の加熱操作に伴い発生する水蒸気等のガスは、排気口35から排気ガス処理装置(図示省略)に導かれる。 The mixture of the contaminated soil and the medicine is supplied to the inner cylinder 32 in a slurry state, and in the process of moving from the inlet portion 33 of the inner cylinder 32 to the discharge port 36, is heated at a predetermined temperature for a predetermined time, and is then transferred to the surface of the contaminated soil. Generates and adsorbs magnetic substances. The polluted soil on the surface of which the magnetic substance is generated/adsorbed is discharged from the discharge port 36. On the other hand, gas such as water vapor generated along with the heating operation of the mixture of the contaminated soil and the chemical is introduced from the exhaust port 35 to an exhaust gas treatment device (not shown).

反応装置31は、汚染土壌と薬剤との混合物を所定時間・所定温度で加熱し、汚染土壌の表面に磁性物質を生成・吸着させることができればよく、装置の型式も特に限定されるものではないが、反応性及び温度の均一化、さらに汚染土壌の凝集を防ぐ点において撹拌混合機能を備えるものが好ましい。このとき汚染土壌が破砕・粉砕されず、また表面が削り取られないものが好ましく、この点においてロータリーキルンは好ましい装置といえる。 The reactor 31 is only required to heat the mixture of the contaminated soil and the drug at a predetermined temperature for a predetermined time to generate and adsorb a magnetic substance on the surface of the contaminated soil, and the type of the device is not particularly limited. However, those having a stirring and mixing function in terms of uniformity of reactivity and temperature and prevention of aggregation of contaminated soil are preferable. At this time, it is preferable that the contaminated soil is not crushed or crushed and the surface is not scraped off. From this point, the rotary kiln can be said to be a preferable device.

冷却装置41は、反応装置31から排出される表面に磁性物質が生成・吸着した汚染土壌を、後段の磁力選別装置51に供給可能な温度まで冷却する。冷却装置41は、ジャケット付きの横型1軸の撹拌装置であり、撹拌槽42内に横型1軸のスクリュー43を備え、撹拌槽42を覆うようにジャケット44が取付けられている。ジャケット44に供給される冷却媒体は水である。 The cooling device 41 cools the contaminated soil in which the magnetic substance is generated and adsorbed on the surface discharged from the reaction device 31, to a temperature at which it can be supplied to the magnetic force sorting device 51 in the subsequent stage. The cooling device 41 is a horizontal uniaxial stirring device with a jacket, a horizontal uniaxial screw 43 is provided in the stirring tank 42, and a jacket 44 is attached so as to cover the stirring tank 42. The cooling medium supplied to the jacket 44 is water.

撹拌槽内42の出口部には、冷却された汚染土壌を後段の磁力選別装置51に定量供給する装置としてロータリーフィーダ46が設けられている。 At the outlet of the stirring tank 42, a rotary feeder 46 is provided as a device for quantitatively supplying the cooled contaminated soil to the magnetic sorting device 51 in the subsequent stage.

冷却装置41は、反応装置31から排出される表面に磁性物質が生成・吸着した汚染土壌を、後段の磁力選別装置51に供給可能な温度まで冷却することができれば型式等は特に限定されるものではない。また冷却した汚染土壌を磁力選別装置51に定量供給する定量供給装置もロータリーフィーダ46に限定されるものではないが、これらは汚染土壌が破砕・粉砕されず、また表面が削り取られないものが好ましい。 The cooling device 41 is not particularly limited in its type and the like as long as it can cool the contaminated soil in which the magnetic substance is generated and adsorbed on the surface discharged from the reaction device 31 to a temperature at which it can be supplied to the magnetic separation device 51 in the subsequent stage. is not. Further, the quantitative supply device for quantitatively supplying the cooled contaminated soil to the magnetic force sorting device 51 is not limited to the rotary feeder 46, but it is preferable that the contaminated soil is not crushed/crushed and the surface is not scraped off. ..

磁力選別装置51は、ロータリーフィーダ46を介して定量供給される汚染土壌を磁力選別する。ここに示す磁力選別装置51は、公知のコンベアタイプの磁選機であり、汚染土壌を磁着物と非磁着物とに分類する。ここでは特定の磁力選別装置51に限定されることなく、ドラム式の磁選機、汚染土壌を3つ以上に分別できる磁選機など種々の磁力選別装置を使用することができる。 The magnetic force sorting device 51 magnetically sorts the contaminated soil quantitatively supplied through the rotary feeder 46. The magnetic force sorting device 51 shown here is a known conveyor type magnetic separator, and classifies contaminated soil into magnetic and non-magnetic substances. Here, the magnetic force sorting device 51 is not limited to the specific magnetic force sorting device 51, and various magnetic force sorting devices such as a drum type magnetic separator and a magnetic separator capable of separating contaminated soil into three or more can be used.

次に図2に示す粉粒体の処理装置1による汚染土壌の処理要領について説明する。 Next, a procedure for treating contaminated soil by the powdery or granular material treating apparatus 1 shown in FIG. 2 will be described.

汚染土壌及び薬剤は、スラリー状態で反応装置31の入口部33を経由して内筒32に送られる。汚染土壌及び薬剤の混合物は、内筒32を入口部33から排出口36に向って移動しつつ加熱される。この過程で薬剤が反応し、汚染土壌の表面に磁性物質が生成・吸着する。汚染土壌に根毛などの植物を含む場合、これらは反応装置31内で炭化物となり、汚染土壌と同様に表面に磁性物質が生成・吸着する。表面に磁性物質が生成・吸着した汚染土壌は、排出口36と繋がる冷却装置41に送られる。混合物を加熱する過程で発生した水蒸気等のガスは、排気口35から排気ガス処理装置(図示省略)に導かれる。 The contaminated soil and the chemical are sent to the inner cylinder 32 via the inlet 33 of the reaction device 31 in a slurry state. The contaminated soil and the mixture of chemicals are heated while moving the inner cylinder 32 from the inlet portion 33 toward the outlet 36. During this process, the chemicals react and magnetic substances are produced and adsorbed on the surface of the contaminated soil. When the contaminated soil contains plants such as root hair, these become carbides in the reaction device 31, and a magnetic substance is generated and adsorbed on the surface like the contaminated soil. The polluted soil on the surface of which the magnetic substance is generated/adsorbed is sent to the cooling device 41 connected to the discharge port 36. Gas such as water vapor generated in the process of heating the mixture is introduced from an exhaust port 35 to an exhaust gas treatment device (not shown).

反応装置31から排出される表面に磁性物質が生成・吸着した汚染土壌は、冷却装置41により磁力選別装置51に供給可能な温度まで冷却された後、ロータリーフィーダ46を介して磁力選別装置51に定量供給され、ここで磁着物と非磁着物とに分別される。 The contaminated soil in which the magnetic substance is generated and adsorbed on the surface discharged from the reaction device 31 is cooled by the cooling device 41 to a temperature at which it can be supplied to the magnetic force sorting device 51, and then is fed to the magnetic force sorting device 51 via the rotary feeder 46. It is supplied in a fixed amount and is separated into a magnetic substance and a non-magnetic substance here.

磁性物質は、比表面積の関係から粒径の小さい汚染土壌ほど生成・吸着量(汚染土壌単位質量当たり)が多くなる。また粒径の小さい汚染土壌は自重が小さく、さらに磁性物質の生成・吸着量が多いため磁着物となる。一方、粒径の大きい汚染土壌は自重が大きく、さらに磁性物質の生成・吸着量が少ないため非磁着物となる。 Due to the relationship of the specific surface area, the amount of magnetic substances produced/adsorbed (per unit mass of contaminated soil) increases in contaminated soil having a smaller particle size. In addition, contaminated soil with a small particle size has a small self-weight, and since it produces and adsorbs a large amount of magnetic substances, it becomes a magnetic substance. On the other hand, contaminated soil with a large particle size becomes a non-magnetic substance because its own weight is large and the amount of magnetic substances produced/adsorbed is small.

以上のように粉粒体の処理装置1を使用することで汚染土壌を粒径により選別する、つまり分級が可能となる。放射性物質汚染土壌は、粒径の小さい土壌ほど放射性物質の濃度が高いため本処理装置1を使用することで除染することができる。 As described above, by using the powdery or granular material processing apparatus 1, the contaminated soil can be sorted according to the particle size, that is, the classification can be performed. The radioactive substance-contaminated soil can be decontaminated by using the treatment apparatus 1 because the soil having a smaller particle size has a higher concentration of the radioactive substance.

本発明の粉粒体の処理装置は、図2に示す処理装置に限定されるものではない。図2に示す粉粒体の処理装置1は、冷却装置41を備え、反応装置31から排出される汚染土壌を冷却するが、反応装置31から排出される汚染土壌の温度が磁力選別装置51の仕様を満足するものであれば冷却装置41は不要である。このような場合には反応装置31の排出口36にロータリーフィーダなどの定量供給装置を設置すればよい。 The processing apparatus for powder or granular material of the present invention is not limited to the processing apparatus shown in FIG. 2 includes a cooling device 41 to cool the contaminated soil discharged from the reaction device 31, but the temperature of the contaminated soil discharged from the reaction device 31 is equal to that of the magnetic separation device 51. If it satisfies the specifications, the cooling device 41 is unnecessary. In such a case, a fixed amount supply device such as a rotary feeder may be installed at the discharge port 36 of the reaction device 31.

反応場の雰囲気を制御することにより汚染土壌の表面に生成・吸着させる磁性物質の生成・吸着量等を制御する場合には、反応装置内にガスを供給するための雰囲気ガス供給管を設け、ここから空気、窒素ガス、燃焼排ガス、炭酸ガス、あるいはこれらガスの混合物を供給すればよい。 When controlling the generation/adsorption amount of the magnetic substance to be generated/adsorbed on the surface of the contaminated soil by controlling the atmosphere of the reaction field, an atmosphere gas supply pipe for supplying gas into the reaction apparatus is provided, From this, air, nitrogen gas, combustion exhaust gas, carbon dioxide gas, or a mixture of these gases may be supplied.

本発明の粉粒体の処理装置は、連続式の処理装置に限定されるものではなく、半回分式、回分式の処理装置であってもよい。 The powdery or granular material processing apparatus of the present invention is not limited to the continuous processing apparatus, and may be a semi-batch processing apparatus or a batch processing apparatus.

上記実施形態に示すように本発明の粉粒体の処理方法及び処理装置を使用することで余分な廃棄物を発生させることなく簡単な操作で安価に汚染土壌等を処理することができる。また本発明の被処理物の調製方法及び装置を本発明の粉粒体の処理方法及び処理装置の前処理方法及び前処理装置として好適に使用することができる。 As shown in the above embodiment, by using the method and apparatus for treating a granular material of the present invention, it is possible to treat contaminated soil and the like inexpensively with a simple operation without generating extra waste. Further, the method and apparatus for preparing an object to be treated of the present invention can be suitably used as the method for treating powder and granular material of the present invention and the pretreatment method and pretreatment apparatus for the treatment apparatus.

また本発明の被処理物の調製方法及び粉粒体の処理方法は、汚染土壌等の粉粒体に液状の薬剤を添加し、これを反応させて粉粒体の表面に磁性物質を生成・吸着させるため、磁性物質を均一に生成・吸着させ易く、さらに粉じんの発生が抑えられる。また汚染土壌等に木くず、根毛等が含まれていてもそのまま処理できるなど実用的な方法、装置と言える。 Further, the method for preparing an object to be treated and the method for treating a granular material according to the present invention include adding a liquid chemical agent to a granular material such as contaminated soil, and reacting the chemical to generate a magnetic substance on the surface of the granular material. Since the magnetic substance is adsorbed, it is easy to uniformly generate and adsorb the magnetic substance, and the generation of dust is suppressed. Moreover, it can be said that it is a practical method and device, such that even if the contaminated soil contains wood chips, root hairs, etc., it can be treated as it is.

また本発明の被処理物の調製方法及び粉粒体の処理方法は、粉粒体の表面に生成・吸着させる磁性物質の磁着力を制御することができるため少ない薬剤の量で効率的に粉粒体を処理可能である。さらに本処理方法を種々の粉粒体の処理、幅広い用途に使用することができる。 Further, the method for preparing an object to be treated and the method for treating a granular material according to the present invention can control the magnetic coercive force of the magnetic substance generated and adsorbed on the surface of the granular material, so that the powder can be efficiently treated with a small amount of the drug. Granules can be processed. Furthermore, this treatment method can be used for treating various powders and granules and for a wide range of applications.

図面を参照しながら好適な実施形態を説明したが、当業者であれば、本明細書を見て、自明な範囲内で種々の変更及び修正を容易に想定するであろう。従って、そのような変更及び修正は、請求の範囲から定まる発明の範囲内のものと解釈される。また本発明は、後述の実施例に限定されるものではない。 Although the preferred embodiments have been described with reference to the drawings, those skilled in the art will easily think of various changes and modifications within the obvious scope by reading this specification. Therefore, such changes and modifications are construed as being within the scope of the invention defined by the claims. The present invention is not limited to the examples described below.

供試土壌(山砂)
供試土壌に山砂を用いた。山砂は、市販されている山砂(真砂土)を入手し、これを風乾させ含水率1wt%以下としたものを使用した。真砂土の粒度を試験篩及び湿式レーザー法(エタノール中)で求めた結果、粒径600μmオーバーが61.8wt%であり、粒径75μm未満のものが7.3wt%、粒径20μm未満のものが2.1wt%であった。真砂土の化学組成をJIS−M8853により分析した結果、Feが2wt%含まれていた。また真砂土には、砂鉄が0.19±0.06wt%含まれていた。
Test soil (mountain sand)
Mountain sand was used as the test soil. As the mountain sand, commercially available mountain sand (mass sand soil) was obtained, which was air-dried to have a water content of 1 wt% or less. As a result of determining the particle size of the sand sand by a test sieve and a wet laser method (in ethanol), the particle size over 600 μm is 61.8 wt %, the particle size less than 75 μm is 7.3 wt% and the particle size is less than 20 μm. Was 2.1 wt %. As a result of analyzing the chemical composition of the Masago soil according to JIS-M8853, 2 wt% of Fe 2 O 3 was contained. Further, sand sand contained 0.19±0.06 wt% of iron sand.

磁着選別用試料の調整方法
磁着選別用試料の調整方法の代表的な手順を示す。供試土壌である真砂土10gに薬剤6mlを添加し、これを室温化下で5分間放置した。真砂土10gに薬剤6mlを添加すると、真砂土は全て薬剤に浸かり、真砂土の上面から僅かに薬剤が浮いている。その後、大気下、管状炉を用いて室温から200℃まで18℃/minの速度で昇温し、200℃から250℃まで5℃/minの速度で昇温し、250℃で2時間保持した。その後、デシケーター内で放冷し、これを磁着選別用の試料とした。薬剤は、水に所定量のNaOH,FeCl,FeCl・4HOを添加したものである。以下、特に断りがないときは、当該方法で磁着選別用試料を調整した。
Method for adjusting sample for magnetic sticking selection A typical procedure for preparing a sample for magnetic sticking selection is shown. 6 g of the chemical agent was added to 10 g of sand soil, which is a test soil, and the mixture was allowed to stand at room temperature for 5 minutes. When 6 ml of the chemical was added to 10 g of the sand sand, the sand was completely immersed in the chemical, and the chemical was slightly floated from the upper surface of the sand. Then, in the atmosphere, using a tubular furnace, the temperature was raised from room temperature to 200° C. at a rate of 18° C./min, from 200° C. to 250° C. at a rate of 5° C./min, and held at 250° C. for 2 hours. .. Then, the sample was left to cool in a desiccator, and this was used as a sample for magnetic attachment selection. The chemicals are water to which a predetermined amount of NaOH, FeCl 3 , FeCl 2 .4H 2 O is added. Hereinafter, unless otherwise specified, samples for magnetic adhesion selection were prepared by the method.

磁力選別方法
試料を図3に示す専用の混合瓶101に入れ、混合瓶101の上部に鉄心102を挿入し、さらにネオジム磁石(表面磁束密度573mT)103を付けて(図3(A)参照)、手で30秒程度混合瓶101を振った(図3(B)参照)。その後、瓶上部のプラスチックカバー104を外し、受け皿の上でネオジム磁石103と鉄心102を引き抜き、磁着物を回収した(図3(C)参照)。その後、プラスチックカバー104、ネオジム磁石103及び鉄心102を取付け、残渣(非磁着物)を先と同じ要領で磁選を行った。この磁選操作は、各試料に対して5回実施した。
Magnetic force selection method A sample is put in a dedicated mixing bottle 101 shown in FIG. 3, an iron core 102 is inserted in the upper portion of the mixing bottle 101, and a neodymium magnet (surface magnetic flux density 573 mT) 103 is attached (see FIG. 3A). The mixing bottle 101 was shaken by hand for about 30 seconds (see FIG. 3B). After that, the plastic cover 104 on the upper part of the bottle was removed, the neodymium magnet 103 and the iron core 102 were pulled out on the saucer, and the magnetic substance was collected (see FIG. 3(C)). Then, the plastic cover 104, the neodymium magnet 103, and the iron core 102 were attached, and the residue (non-magnetic material) was subjected to magnetic separation in the same manner as above. This magnetic separation operation was performed 5 times for each sample.

磁着率及び磁着率増加比の定義
磁着率は、式(1)で示される。磁着率増加比は、式(2)で示され、ブランクの磁着率は、薬剤未添加及び未加熱の真砂土(以下、未処理土壌)の磁着率である。目標磁着率を設定することもできる。例えば、真砂土に含まれる20μm未満の粒径のものを分級(分離)することを目標とした場合、目標磁着率は、真砂土に含まれる粒径20μm未満のものの含有率と同じとなる。本実施例で使用する真砂土の場合、目標磁着率は、2.1wt%、目標磁着率比は、12.3となる。
Definition of magnetic sticking rate and ratio of increase in magnetic sticking rate The magnetic sticking rate is expressed by equation (1). The ratio of increase in the magnetic sticking ratio is represented by the formula (2), and the magnetic sticking ratio of the blank is the magnetic sticking ratio of unsanded and unheated masago soil (hereinafter, untreated soil). The target magnetic sticking rate can also be set. For example, when the target is to classify (separate) particles having a particle size of less than 20 μm contained in the sand sand, the target magnetic sticking rate is the same as the content rate of particles having a particle size less than 20 μm contained in the sand sand. .. In the case of the sand sand used in this example, the target magnetic sticking rate is 2.1 wt% and the target magnetic sticking rate ratio is 12.3.

未処理土壌の磁着率
真砂土の未処理物の磁着率は、0.186wt%であった。
Magnetization rate of untreated soil The magnetism rate of the untreated soil of Masago soil was 0.186 wt %.

未処理土壌の加熱の影響
真砂土のみを大気下(空気雰囲気下)、管状炉を用いて250℃で2時間加熱したところ、加熱前に比較して磁着率が1.6倍増加した。加熱後の真砂土の粒度を測定した結果、加熱前に比較して1000μm未満のものが17.5wt%増加した。加熱により微細粒子が増加し、また磁性酸化物が生成したことより磁着率が増加したと考えられる。
Effect of heating untreated soil When only sand sand was heated in the air (air atmosphere) at 250°C for 2 hours using a tubular furnace, the magnetic sticking rate increased 1.6 times compared to before heating. As a result of measuring the particle size of the sand sand soil after heating, the sand sand soil having a particle size of less than 1000 μm increased by 17.5 wt% as compared with that before heating. It is considered that the fine particles increased due to the heating and the magnetic adhesion rate increased due to the generation of the magnetic oxide.

FeCl・4HOの添加量の影響
真砂土10gに対して、NaOH,FeCl・4HO及びFeClを含む溶液6mlを添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。溶液に含まれるNaOHは1.0mmol、FeClは、0.18mmolである。FeCl・4HOについては、0.26〜3.58mmolの範囲で濃度を変えた。
Against FeCl 2 · 4H 2 O amount of influence decomposed granite soil 10g of, NaOH, was added a solution 6ml containing FeCl 2 · 4H 2 O and FeCl 3, 2 hours at 250 ° C. with the atmosphere, the tube furnace Heated. Then, it stood to cool and magnetic force selection was performed. NaOH contained in the solution is 1.0 mmol, and FeCl 3 is 0.18 mmol. Regarding FeCl 2 .4H 2 O, the concentration was changed within the range of 0.26 to 3.58 mmol.

結果を図4に示した。磁着率増加比は、FeCl・4HOの添加量により変化した。FeCl・4HOが0.26〜1.37mmolの範囲において、FeCl・4HOの添加量に比例して磁着率増加比は増加した。一方、FeCl・4HOが1.37〜3.58mmolの範囲においては、FeCl・4HOの添加量に比例して磁着率増加比は減少した。磁着率増加比は、FeCl・4HOの添加量が1.37mmolでピークとなり、そのときの値は16.5であった。 The results are shown in Fig. 4. Magnetically attracted increased rate ratio was changed by the addition of FeCl 2 · 4H 2 O. In FeCl 2 · 4H 2 O is 0.26~1.37mmol range, magnetically attracted rate increase ratio was increased in proportion to the amount of FeCl 2 · 4H 2 O. On the other hand, in the range FeCl 2 · 4H 2 O is 1.37~3.58Mmol, magnetically attracted rate increase ratio in proportion to the amount of FeCl 2 · 4H 2 O was reduced. The ratio of increase in magnetic sticking ratio peaked at an addition amount of FeCl 2 .4H 2 O of 1.37 mmol, and the value at that time was 16.5.

FeClの添加量の影響
真砂土10gに対して、NaOH、FeCl・4HO及びFeClを含む溶液6mlを添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。溶液に含まれるNaOHは1.0mmol、FeCl・4HOは、0,1.4,1.6mmolの3種類とし、FeClについては、0〜0.43mmolの範囲で濃度を変えた。
Effect of Addition Amount of FeCl 3 To 10 g of sand sand soil, 6 ml of a solution containing NaOH, FeCl 2 .4H 2 O and FeCl 3 was added, and heated in a tube furnace at 250° C. for 2 hours in the atmosphere. Then, it stood to cool and magnetic force selection was performed. NaOH contained in the solution was 1.0 mmol and FeCl 2 .4H 2 O was 0, 1.4 and 1.6 mmol, and FeCl 3 was changed in concentration within a range of 0 to 0.43 mmol.

結果を図5に示した。磁着率増加比は、FeCl・4HOを1.4mmol,1.6mmol添加した場合、ともにFeClの添加量に比例して減少した。FeCl・4HOが1.6mmolの場合、FeClの添加量が0で磁着率増加比は15.3、FeClの添加量が0.43で磁着率増加比は約2であった。FeCl・4HOを1.4mmol添加した場合と1.6mmol添加した場合とを比較すると、前者の方が僅かに磁着率増加比は高かった。FeCl・4HOを添加しなかった場合、FeClの添加量(0〜0.43mmol)によらず、磁着率増加比は約2.0でほぼ一定であった。 The results are shown in Fig. 5. Magnetically attracted increased rate ratio, 1.4 mmol of FeCl 2 · 4H 2 O, when added 1.6 mmol, were both reduced in proportion to the amount of FeCl 3. When FeCl 2 .4H 2 O is 1.6 mmol, the addition amount of FeCl 3 is 0 and the increase ratio of magnetic attraction ratio is 15.3, the addition amount of FeCl 3 is 0.43 and the increase ratio of magnetic attachment ratio is about 2. there were. Comparing the case of adding 1.4 mmol of FeCl 2 .4H 2 O and the case of adding 1.6 mmol of FeCl 2 .4H 2 O, the former had a slightly higher ratio of increase in magnetic sticking ratio. When FeCl 2 .4H 2 O was not added, the ratio of increase in magnetic sticking ratio was approximately 2.0, which was almost constant regardless of the amount of FeCl 3 added (0 to 0.43 mmol).

アルカリ剤の種類の影響
真砂土10gに対して、アルカリ剤、FeCl・4HO及びFeClを含む溶液6mlを添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。溶液に含まれるFeCl・4HOは、1.61mmol、FeClは0.18mmolであり、アルカリ剤は1.0mmolである。アルカリ剤には、LiOH・HO,NaOH,KOH,Be(OH),Mg(OH),Ba(OH),Al(OH)を使用した。
Effect of Type of Alkaline Agent To 10 g of diatomaceous earth, 6 ml of a solution containing an alkaline agent, FeCl 2 .4H 2 O and FeCl 3 was added, and heated at 250° C. for 2 hours in the air using a tubular furnace. Then, it stood to cool and magnetic force selection was performed. FeCl 2 .4H 2 O contained in the solution was 1.61 mmol, FeCl 3 was 0.18 mmol, and the alkaline agent was 1.0 mmol. LiOH.H 2 O, NaOH, KOH, Be(OH) 2 , Mg(OH) 2 , Ba(OH) 2 , and Al(OH) 3 were used as the alkaline agent.

結果を図6に示した。磁着率増加比は、アルカリ剤の種類で大きく異なり、アルカリ剤にNaOHを使用した場合が、磁着率増加比14.8で最も大きかった。 The results are shown in Fig. 6. The ratio of increase in magnetic sticking rate greatly differs depending on the type of the alkaline agent, and when NaOH was used as the alkaline agent, the ratio of increase in magnetic sticking rate was 14.8 and was the largest.

NaOHの添加量の影響
真砂土10gに対して、NaOH、FeCl・4HO及びFeClを含む溶液6mlを添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。溶液に含まれるFeCl・4HOは、0.18mmol、FeClは0.18mmolであり、NaOHは、0〜2.0mmolの範囲で添加量を変化させた。
Effect of Addition Amount of NaOH To 10 g of sand sand soil, 6 ml of a solution containing NaOH, FeCl 2 .4H 2 O and FeCl 3 was added, and heated at 250° C. for 2 hours using a tubular furnace in the atmosphere. Then, it stood to cool and magnetic force selection was performed. FeCl 2 .4H 2 O contained in the solution was 0.18 mmol, FeCl 3 was 0.18 mmol, and NaOH was added in the range of 0 to 2.0 mmol.

結果を図7に示した。磁着率増加比は、NaOHの添加量で大きく異なり、NaOHが1.0mmolの場合に磁着率増加比が8.4であり最も大きかった。 The results are shown in Fig. 7. The ratio of increase in magnetic sticking rate greatly differs depending on the amount of NaOH added, and when the amount of NaOH is 1.0 mmol, the ratio of increase in magnetic sticking rate is 8.4, which is the largest.

鉄イオンの添加順の影響
FeCl・4HO及びFeClを含む溶液(計6ml)の添加順を変えた実験を行った。第1のケースでは、FeCl・4HOを添加した後にFeClを添加した。第2のケースでは、FeClを添加した後にFeCl・4HOを添加した。第3のケースでは、FeCl・4HOとFeClとを混合した状態で添加した。添加量は、真砂土10gに対して、NaOHは1.0mmol、FeCl・4HOは0.2mmol,1.3mmolの2種類,FeClは0.2mmolとした。薬剤添加後の加熱及び磁着選別は、前述の方法で実施した。
Experiments with different order of addition of the solution (a total of 6ml) containing the impact FeCl 2 · 4H 2 O and FeCl 3 of the order of addition of iron ions was carried out. In the first case, FeCl 3 was added after adding FeCl 2 .4H 2 O. In the second case, FeCl 3 was added followed by FeCl 2 .4H 2 O. In the third case, it was added while mixing and FeCl 2 · 4H 2 O and FeCl 3. The amounts of addition were 1.0 mmol for NaOH, 0.2 mmol for FeCl 2 .4H 2 O and 1.3 mmol for 1.3 mmol, and 0.2 mmol for FeCl 3 with respect to 10 g of masago soil. The heating after the addition of the chemical agent and the selection by magnetic attachment were carried out by the method described above.

結果を図8に示した。磁着率増加比は、FeCl・4HOとFeClとを混合し同時に添加する場合が最も高く、FeCl・4HOを添加した後にFeClを添加する場合が、磁着率増加比が最も小さかった。またFeCl・4HOの濃度が高い方が、鉄イオンの添加順の影響が顕著であった。 The results are shown in Fig. 8. Magnetically attracted increased rate ratio, FeCl 2 · 4H 2 O and the FeCl 3 were mixed highest when added simultaneously, the case of adding FeCl 3 after adding FeCl 2 · 4H 2 O, increases magnetic attraction rate The ratio was the smallest. Further, the higher the concentration of FeCl 2 .4H 2 O, the more marked the effect of the order of addition of iron ions.

薬剤の添加量の影響
真砂土10gに対して、NaOH、FeCl・4HO及びFeClを含む溶液を添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。ここでは溶液の量を6mL,12mL,30mLの3種類とした。6mLの溶液に含まれるNaOHは1.0mmol、FeCl・4HO及びFeClは0.2mmolである。
Effect of Addition Amount of Chemical Agent A solution containing NaOH, FeCl 2 .4H 2 O and FeCl 3 was added to 10 g of diatomaceous earth and heated at 250° C. for 2 hours in the air in a tubular furnace. Then, it stood to cool and magnetic force selection was performed. Here, the amount of the solution was set to 3 kinds of 6 mL, 12 mL, and 30 mL. NaOH contained in 6 mL of the solution is 1.0 mmol, and FeCl 2 .4H 2 O and FeCl 3 are 0.2 mmol.

結果を図9に示した。磁着率増加比は、薬剤の添加量に比例して増加し、真砂土10gに対して薬剤を30mL添加した場合、つまりNaOHを5.0mmol、FeCl・4HO及びFeClをそれぞれ1.0mmol添加した場合、磁着率増加比は52であった。 The results are shown in Fig. 9. The magnetic sticking rate increase ratio increases in proportion to the added amount of the chemical, and when 30 mL of the chemical is added to 10 g of sand sand soil, that is, 5.0 mmol of NaOH, 1 FeCl 2 .4H 2 O and 1 FeCl 3 each. In the case of adding 0.0 mmol, the ratio of increase in magnetic sticking ratio was 52.

撹拌の影響
真砂土に薬剤を添加した後の撹拌要領と磁着率増加比との関係を検討した。真砂土10gに対して、NaOH、FeCl・4HO及びFeClを含む溶液6mlを添加し、加熱前に撹拌装置を用いて真砂土と薬剤との混合溶液を撹拌し、または5min間静置させた。その後大気下、管状炉を用いて250℃で2時間加熱し、放冷後、磁力選別を行った。溶液に含まれるNaOHは1.0mmol、FeCl・4HOは1.44mmol、FeClは0.18mmolである。
Effect of agitation The relationship between the agitation procedure after adding chemicals to the Masago soil and the ratio of increase in magnetic sticking rate was examined. 6 ml of a solution containing NaOH, FeCl 2 .4H 2 O and FeCl 3 was added to 10 g of the sand sand soil, and the mixed solution of the sand sand soil and the drug was stirred using a stirrer before heating, or allowed to stand for 5 minutes. I put it. After that, it was heated at 250° C. for 2 hours in the atmosphere in a tubular furnace, allowed to cool, and then subjected to magnetic separation. NaOH contained in the solution is 1.0 mmol, FeCl 2 .4H 2 O is 1.44 mmol, and FeCl 3 is 0.18 mmol.

撹拌装置にはガラス棒、超音波洗浄器(AS ONE ASU−6M)、恒温水槽(yamato scientific BW101)、ボルテックス(Thermo Fisher Scientific miniRotoS56)、スターラー(AS ONE MN−01)を使用した。 A glass rod, an ultrasonic cleaner (AS ONE ASU-6M), a constant temperature water bath (yamato scientific BW101), a vortex (Thermo Fisher Scientific miniRotoS56), and a stirrer (AS ONE MN-01) were used as the stirring device.

結果を図10に示した。磁着率増加比は、無撹拌の場合が22.0と最も大きく、スターラーを使用した場合が、2.0で最も小さかった。この結果から撹拌強度が高い程、磁着率増加比が小さくなることが分かる。これは撹拌に伴い真砂土が破砕され、単位表面積当たりの鉄濃度が低下したことに起因するものと思われる。 The results are shown in Fig. 10. The magnetic sticking rate increase ratio was the largest at 22.0 when the stirring was not used, and was the smallest at 2.0 when the stirrer was used. From this result, it is understood that the higher the stirring strength, the smaller the ratio of increase in the magnetic sticking rate. This is thought to be due to the fact that the sand sand was crushed with stirring and the iron concentration per unit surface area decreased.

薬剤添加後の静置時間の影響
真砂土に薬剤を添加した後、加熱前までの静置時間(放置時間)と磁着率増加比との関係を検討した。真砂土10gに対して、NaOH、FeCl・4HO及びFeClを含む溶液6mlを添加し、室内で所定時間静置させ、その後、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。溶液に含まれるNaOHは1.0mmol、FeCl・4HOは1.44mmol、FeClは0.18mmolである。静置時間は、0min,960min,1440minとした。
Effect of stationary time after addition of chemicals After the chemicals were added to the sand sand soil, the relationship between the stationary time (standing time) before heating and the increase rate of magnetic sticking rate was examined. 6 ml of a solution containing NaOH, FeCl 2 .4H 2 O and FeCl 3 was added to 10 g of masago soil and allowed to stand in a room for a predetermined time, and then heated in a tubular furnace at 250° C. for 2 hours in the atmosphere. did. Then, it stood to cool and magnetic force selection was performed. NaOH contained in the solution is 1.0 mmol, FeCl 2 .4H 2 O is 1.44 mmol, and FeCl 3 is 0.18 mmol. The standing time was 0 min, 960 min, and 1440 min.

結果を図11に示した。磁着率増加比は、真砂土に対して薬剤を添加後直ちに加熱操作に移行した場合が約20と最も大きく、静置時間が長いほど小さかった。1日放置した後に加熱操作に移行した場合、磁着率増加比は4.3であった。 The results are shown in Fig. 11. The increase ratio of the magnetic sticking ratio was about 20 when the heating operation was started immediately after the chemical was added to the sand sand, and it was smaller as the standing time was longer. When the operation was shifted to the heating operation after being left for 1 day, the ratio of increase in the magnetic sticking ratio was 4.3.

加熱温度の影響
加熱温度と磁着率増加比との関係を検討した。真砂土10gに対して、NaOH、FeCl・4HO及びFeClを含む溶液6mlを添加し、大気下、管状炉を用いて80〜350℃の範囲内で温度を選択し、各々の温度で2時間加熱した。昇温速度は、加熱温度〜50℃までは18℃/min、以降加熱温度までの昇温速度は5℃/minとした。その後、放冷し磁力選別を行った。溶液に含まれるNaOHは1.0mmol、FeCl・4HOは、0.18又は1.43mmol、FeClは0.18mmolである。
Effect of heating temperature The relationship between the heating temperature and the ratio of increase in magnetic sticking rate was examined. 6 ml of a solution containing NaOH, FeCl 2 .4H 2 O and FeCl 3 was added to 10 g of sand sand soil, and the temperature was selected in the range of 80 to 350° C. by using a tubular furnace in the atmosphere, and each temperature was selected. Heated for 2 hours. The heating rate was 18°C/min from the heating temperature to 50°C, and the heating rate was 5°C/min thereafter to the heating temperature. Then, it stood to cool and magnetic force selection was performed. NaOH contained in the solution is 1.0 mmol, FeCl 2 .4H 2 O is 0.18 or 1.43 mmol, and FeCl 3 is 0.18 mmol.

結果を図12に示した。磁着率増加比は、FeCl・4HOの添加量によらず80℃〜300℃の範囲内においては温度に比例して上昇した。FeCl・4HOの添加量が1.43mmolの場合、磁着率増加比は、加熱温度250℃で14.9、加熱温度300℃で18.9であった。加熱温度が300℃を超えると磁着率増加比は、7〜8.5程度に低下した。被処理物に有機物が含まれている場合、ダイオキシン類の発生を抑制し有機物を炭化させる点から加熱温度は250℃が好ましいといえる。 The results are shown in Fig. 12. Magnetically attracted increased rate ratios were increased in proportion to the temperature in the range of 80 ° C. to 300 ° C. regardless of the amount of FeCl 2 · 4H 2 O. When the addition amount of FeCl 2 .4H 2 O was 1.43 mmol, the ratio of increase in magnetic sticking ratio was 14.9 at a heating temperature of 250° C. and 18.9 at a heating temperature of 300° C. When the heating temperature exceeded 300° C., the ratio of increase in magnetic sticking ratio decreased to about 7 to 8.5. When the material to be treated contains organic matter, it can be said that the heating temperature is preferably 250° C. from the viewpoint of suppressing the generation of dioxins and carbonizing the organic matter.

加熱時間の影響
加熱時間の影響を検討した。真砂土10gに対して、NaOH、FeCl・4HO及びFeClを含む溶液6mlを添加し、大気下、管状炉を用いて250℃到達後の保持時間(加熱時間)を0〜3時間の範囲内で選択し、各々の加熱時間で加熱した。その後、放冷し磁力選別を行った。加熱時間は、0,0.5,1.0,1.5,2.0,2.5,3.0時間とした。溶液に含まれるNaOHは1.01mmol、FeCl・4HOは0.18mmol、FeClは0.18mmolである。
Effect of heating time The effect of heating time was examined. 6 ml of a solution containing NaOH, FeCl 2 .4H 2 O and FeCl 3 was added to 10 g of sand sand soil, and the holding time (heating time) after reaching 250° C. using a tubular furnace in the atmosphere was 0 to 3 hours. Was selected within the range, and heating was performed for each heating time. Then, it stood to cool and magnetic force selection was performed. The heating time was 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 hours. NaOH contained in the solution is 1.01 mmol, FeCl 2 .4H 2 O is 0.18 mmol, and FeCl 3 is 0.18 mmol.

結果を図13に示した。加熱時間0時間の磁着率に対する各加熱時間における磁着率の割合は、加熱時間0.5〜3.0時間の範囲内においては大差なく約1.4〜1.6であった。 The results are shown in Fig. 13. The ratio of the magnetic sticking rate at each heating time to the magnetic sticking rate at the heating time of 0 hour was about 1.4 to 1.6 without much difference within the range of the heating time of 0.5 to 3.0 hours.

昇温速度の影響
昇温速度の影響を検討した。真砂土10gに対して、NaOH、FeCl・4HO及びFeClを含む溶液6mlを添加し、大気下、管状炉を用いて室温から200℃に達するまでの昇温速度を1.5〜36℃/minの範囲内で選択し、各々の昇温速度で加熱し、以降250℃まで5℃/minで昇温した。加熱温度250℃で2時間加熱した後、放冷し磁力選別を行った。溶液に含まれるNaOHは1.01mmol、FeCl・4HOは1.44mmol、FeClは0.18mmolである。
Effect of heating rate The effect of heating rate was investigated. 6 ml of a solution containing NaOH, FeCl 2 .4H 2 O and FeCl 3 was added to 10 g of masago soil, and the temperature rising rate from room temperature to 200° C. was 1.5- It was selected within the range of 36°C/min, heated at each heating rate, and thereafter heated up to 250°C at 5°C/min. After heating at a heating temperature of 250° C. for 2 hours, the mixture was allowed to cool and magnetic separation was performed. NaOH contained in the solution is 1.01 mmol, FeCl 2 .4H 2 O is 1.44 mmol, and FeCl 3 is 0.18 mmol.

結果を図14に示した。昇温速度1.5℃/minの磁着率に対する各昇温速度における磁着率の割合は、昇温速度が大きくなるに従って低下する傾向が見られた。昇温速度1.5℃/minの磁着率に対する昇温速度36℃/minの磁着率は、約0.6であった。昇温速度を大きくし過ぎると、Fe2+の酸化速度が速まり磁性物質の生成にFe2+が不足することが懸念される。 The results are shown in Fig. 14. The ratio of the magnetic sticking rate at each heating rate to the magnetic sticking rate at the heating rate of 1.5° C./min tended to decrease as the heating rate increased. The magnetic sticking rate at the heating rate of 36° C./min was about 0.6 with respect to the magnetic sticking rate at the heating rate of 1.5° C./min. If the rate of temperature increase is too high, the rate of oxidation of Fe 2+ will increase, and there is a concern that Fe 2+ will be insufficient for producing the magnetic substance.

カウンターアニオンの影響
カウンターアニオンと磁着率増加比との関係を検討した。真砂土10gに対して、NaOH(1.5mmol)とFeCl・4HO又はFeSO・7HO又はFe(NH(SO・6HOとを含む溶液6mlを添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。溶液に含まれるFe2+は、いずれも0.6mmolである。
Effect of Counter Anion The relationship between the counter anion and the ratio of increase in magnetic sticking ratio was examined. 6 ml of a solution containing NaOH (1.5 mmol) and FeCl 2 .4H 2 O or FeSO 4 .7H 2 O or Fe(NH 4 ) 2 (SO 4 ) 2 .6H 2 O was added to 10 g of sand sand soil. Then, it was heated at 250° C. for 2 hours using a tubular furnace in the atmosphere. Then, it stood to cool and magnetic force selection was performed. Fe 2+ contained in the solution is 0.6 mmol in each case.

結果を図15に示した。カウンターアニオンの種類により磁着率増加比は、大きく異なった。磁着率増加比は、FeSO・7HOを使用した場合が最も高く18.0であり、FeCl・4HOを使用した場合が最も低く2.8であった。 The results are shown in Fig. 15. The ratio of increase in the magnetic sticking rate varied greatly depending on the type of counter anion. Magnetically attracted increased rate ratio, when using FeSO 4 · 7H 2 O is highest 18.0, when using FeCl 2 · 4H 2 O was 2.8 lowest.

各鉄塩におけるFe2+添加量の影響
各鉄塩におけるFe2+添加量と磁着率増加比との関係を検討した。真砂土10gに対して、NaOH(1.5mmol)、FeCl・4HO(0.63〜1.43mmol)又はFeSO・7HO(0.63〜0.90mmol)又はFe(NH(SO・6HO(0.63mmol)を含む溶液6mlを添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。
Effect of Fe 2+ addition amount of each iron salts examined the relationship between the Fe 2+ amount and magnetically attracted increased rate ratio at each iron salts. NaOH (1.5 mmol), FeCl 2 .4H 2 O (0.63 to 1.43 mmol) or FeSO 4 .7H 2 O (0.63 to 0.90 mmol) or Fe (NH 4 ) with respect to 10 g of sand sand soil. ) 2 (SO 4) was added a solution 6ml containing 2 · 6H 2 O (0.63mmol) , was heated at 250 ° C. with the atmosphere, the tube furnace. Then, it stood to cool and magnetic force selection was performed.

結果を図16に示した。FeCl・4HOは、溶解度が160g/100ml(at10℃)と大きいため添加量の調整が容易であり、Fe2+添加量を大きく変化させることができる。またFeCl・4HOを用いた場合、磁着率増加比は、FeCl・4HOの添加量により大きく異なることから薬剤として好ましい。これに対してFeSO・7HOは、溶解量が26g/100ml(at20℃)であり、Fe(NH(SO・6HOは、溶解量が27g/100ml(at20℃)であり、共に溶解度が小さいためFe2+添加量を大きく変化させることができない。 The results are shown in Fig. 16. Since the solubility of FeCl 2 .4H 2 O is as large as 160 g/100 ml (at 10° C.), the addition amount can be easily adjusted and the addition amount of Fe 2+ can be greatly changed. Further, when FeCl 2 .4H 2 O is used, the ratio of increase in magnetic sticking ratio greatly differs depending on the amount of FeCl 2 .4H 2 O added, and is therefore preferable as a drug. FeSO 4 · 7H 2 O contrast, a dissolution amount of 26g / 100ml (at20 ℃), Fe (NH 4) 2 (SO 4) 2 · 6H 2 O are dissolved amount is 27 g / 100 ml (AT 20 C.), both of which have low solubilities, the amount of Fe 2+ added cannot be greatly changed.

模擬セシウム汚染土壌の分級
模擬セシウム汚染土壌を以下の要領で得た。粒度が2mm未満の真砂土200gに、塩化セシウムCsClの濃度が0.14mol/Lの塩化セシウム水溶液250mlを加え、ドラフト内で一晩風乾させた。その後、40〜50℃のホットプレートで2時間加熱し、含水率が1wt%以下の模擬セシウム汚染土壌を得た。
Classification of simulated cesium-contaminated soil A simulated cesium-contaminated soil was obtained as follows. 250 ml of an aqueous cesium chloride solution having a cesium chloride CsCl concentration of 0.14 mol/L was added to 200 g of sand sand having a particle size of less than 2 mm, and air-dried overnight in a fume hood. Then, it heated with a 40-50 degreeC hotplate for 2 hours, and the water content was 1 wt% or less, and the simulated cesium contaminated soil was obtained.

以下の要領で磁着選別用試料を2種類調整した。模擬セシウム汚染土壌100gに、FeCl・4HO及びNaOHを含む水溶液60mlを添加し、150℃のホットプレートで2時間加熱し磁着選別用試料を得た。一方の磁着選別用試料では、水溶液60mlにFeCl・4HOが7.2mmolとNaOHが15mmol含まれる。他方の磁着選別用試料では、水溶液60mlにFeCl・4HOが8.8mmolとNaOHが15mmol含まれる。 Two kinds of magnetic sticking selection samples were prepared in the following manner. To 100 g of the simulated cesium-contaminated soil, 60 ml of an aqueous solution containing FeCl 2 .4H 2 O and NaOH was added, and heated on a hot plate at 150° C. for 2 hours to obtain a sample for magnetic attraction selection. On the other hand, in the magnetic sticking selection sample, 60 ml of the aqueous solution contains 7.2 mmol of FeCl 2 .4H 2 O and 15 mmol of NaOH. On the other hand, the magnetic attraction selection sample contains 8.8 mmol of FeCl 2 .4H 2 O and 15 mmol of NaOH in 60 ml of the aqueous solution.

2種類の磁着選別用試料をそれぞれ適量採取し、それぞれについて磁力選別した。磁力選別方法は、本明細書の段落[0090]、[0091]に記載の通りである。本明細書の段落[0090]では磁選操作が5回とあるが、ここでは磁選操作を10回実施した。磁着物及び残渣それぞれを酸分解し(60℃,120min)、これをICP−MSを用いて分析した。またCs濃度を式(3)より算出した。 An appropriate amount of each of the two types of magnetic sticking selection samples was sampled and the magnetic force was selected for each. The magnetic force selection method is as described in paragraphs [0090] and [0091] of this specification. In paragraph [0090] of the present specification, the magnetic separation operation is 5 times, but here, the magnetic separation operation was performed 10 times. Each of the magnetic substance and the residue was acid-decomposed (60° C., 120 min) and analyzed by ICP-MS. Further, the Cs concentration was calculated from the equation (3).

結果を表1に示した。模擬セシウム汚染土壌100gにFeCl・4HOを7.2mmol添加した場合、濃縮率(磁着物Cs濃度/残渣Cs濃度)は、9.6倍、模擬セシウム汚染土壌100gにFeCl・4HOを8.8mmol添加した場合、濃縮率(磁着物Cs濃度/残渣Cs濃度)は、5.4倍となった。 The results are shown in Table 1. If simulated cesium contaminated soil 100g 7.2 mmol adding FeCl 2 · 4H 2 O, the concentration rate (magnetically attracted material Cs concentration / residue Cs concentration), 9.6-fold, FeCl 2 · 4H 2 mock cesium contaminated soil 100g When 8.8 mmol of O was added, the concentration rate (magnetic substance Cs concentration/residual Cs concentration) became 5.4 times.

供試土壌(黒土)
以下の実験では、供試土壌に黒土(有機性土壌)を用いた。非加熱状態の黒土の化学組成を表2に示した。非加熱状態の黒土に含まる有機物(強熱減量;Ig-Loss)は、23%であった。また非加熱状態の黒土をXRD分析した結果、黒土は、主に石英、曹長石、灰長石、ソーダ雲母、クリストバル石、黄鉄鉱、アロフェン等からなっていた。
Test soil (black soil)
In the following experiments, black soil (organic soil) was used as the test soil. Table 2 shows the chemical composition of unheated black soil. The organic matter (loss on ignition; Ig-Loss) contained in the unheated black soil was 23%. As a result of XRD analysis of the unheated black soil, the black soil was mainly composed of quartz, albite, anorthite, soda mica, cristobalite, pyrite, allophane and the like.

非加熱黒土(含水率13〜14wt%)及び非加熱黒土(含水率13〜14wt%)を250℃で2時間加熱した後の黒土(加熱黒土)の粒度分布を測定した。粒度分布の測定には篩(75、125、250、500、1000μm)を使用した。結果を図17に示した。非加熱黒土には、75μm未満の粒子が10wt%含まれ、加熱黒土には75μm未満の粒子が15wt%含まれていた。加熱により塊状物が分散し、また有機物が消失したことより75μm未満の粒子が増加したものと思われる。 The particle size distribution of the black soil (heated black soil) after heating the unheated black soil (water content 13-14 wt%) and the unheated black soil (water content 13-14 wt%) at 250° C. for 2 hours was measured. A sieve (75, 125, 250, 500, 1000 μm) was used for measuring the particle size distribution. The results are shown in Fig. 17. The unheated black soil contained 10 wt% of particles less than 75 μm, and the heated black soil contained 15 wt% of particles less than 75 μm. It is considered that the lumps were dispersed by heating and the organic matter disappeared, so that the particles of less than 75 μm increased.

薬剤未添加黒土及び薬剤未添加加熱黒土の磁着率
薬剤未添加の非加熱黒土の磁着率は、3.4±0.1wt%であった。薬剤未添加の加熱黒土の磁着率は、6.0±0.1wt%であった。加熱することで磁着率が約1.8倍増加した。黒土が加熱されることで磁着率が増加することは、真砂土と同じであり、加熱により微細粒子が増加し、また磁性酸化物が生成したことにより磁着率が増加したと考えられる。磁着率は式(1)で示され、磁着率の測定要領は、本明細書の段落[0090]、[0091]に基づき実施した。
Magnetic Adhesion Ratio of Chemical-Unadded Black Soil and Chemical-Unadded Heated Black Soil The magnetic adhesion ratio of non-chemical-added unheated black soil was 3.4±0.1 wt %. The magnetic sticking ratio of the heated black clay to which no chemical was added was 6.0±0.1 wt %. The heating increased the magnetic sticking rate by about 1.8 times. The fact that the black soil is heated to increase the magnetic sticking rate is the same as in the sand sand, and it is considered that the fine magnetic particles are increased by the heating and that the magnetic sticking rate is increased by the generation of the magnetic oxide. The magnetic sticking rate is represented by the formula (1), and the measuring procedure of the magnetic sticking rate was carried out based on paragraphs [0090] and [0091] of this specification.

ここで薬剤未添加の加熱黒土に含まれる75μm未満の粒子を磁力選別により分級することを目標とした場合、目標磁着増加率は、式(4)で示される。本実施例において、薬剤未添加の加熱黒土に含まれる75μm未満の粒子の含有率が15wt%、薬剤未添加の加熱黒土の磁着率は、6.0±0.1wt%であるから、目標磁着増加率は2.5となる。また磁着増加率を式(5)で定義した。
Here, when the target is to classify the particles of less than 75 μm contained in the heated black soil to which the chemical is not added by magnetic separation, the target increase rate of magnetic adhesion is represented by the formula (4). In this example, the content of particles less than 75 μm contained in the heated black soil without addition of chemicals was 15 wt %, and the magnetic sticking rate of the heated black soil without addition of chemicals was 6.0±0.1 wt %. The rate of increase in magnetic attraction is 2.5. The rate of increase in magnetic adhesion was defined by the equation (5).

黒土を供試土壌としたときの磁着選別用試料の調整方法、磁力選別方法、磁着率の定義は、基本的に真砂土を供試土壌としたときの磁着選別用試料の調整方法、磁力選別方法、磁着率の定義と同じであり、本明細書の段落[0090]〜[0092]に記載の通りである。 Basically, the method of adjusting the sample for magnetic attraction selection using black soil as the test soil, the method of magnetic force selection, and the definition of the magnetic attraction rate are basically the method for adjusting the sample for magnetic attraction selection using sand sand as the test soil. , The magnetic force selection method, and the definition of the magnetic attachment rate, which are as described in paragraphs [0090] to [0092] of this specification.

FeCl・4HOの添加量の影響
黒土10gに対して、FeCl・4HO及びNaOHを含む溶液を添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。溶液に含まれるNaOHは、1.5mmol、FeCl・4HOは、0〜9mmolの範囲で添加量を変えた。FeClは、未添加である。
Effect of Addition Amount of FeCl 2 .4H 2 O To 10 g of black soil, a solution containing FeCl 2 .4H 2 O and NaOH was added, and heated at 250° C. for 2 hours in the air using a tubular furnace. Then, it stood to cool and magnetic force selection was performed. The addition amount of NaOH contained in the solution was changed to 1.5 mmol, and the addition amount of FeCl 2 .4H 2 O was changed in the range of 0 to 9 mmol. FeCl 3 is not added.

結果を図18に示した。磁着増加率は、FeCl・4HOの添加量により変化した。FeCl・4HOが0〜4.5mmolの範囲において、FeCl・4HOの添加量に比例して磁着増加率は増加し、FeCl・4HOの添加量0.9mmolで磁着増加率は、1.03、FeCl・4HOの添加量4.5mmolで磁着増加率は、1.15であった。一方、FeCl・4HOが4.5〜9.0mmolの範囲においては、FeCl・4HOの添加量に比例して磁着増加率は減少した。磁着増加率は、FeCl・4HOの添加量が4.5mmolでピークとなった。 The results are shown in Fig. 18. The rate of increase in magnetic adhesion changed depending on the amount of FeCl 2 .4H 2 O added. In FeCl 2 · 4H 2 O is 0~4.5mmol range, FeCl 2 · 4H 2 O in proportion to the added amount magnetically attached growth rate increases in amount 0.9mmol of FeCl 2 · 4H 2 O The increase rate of magnetic attraction was 1.03, the addition rate of FeCl 2 .4H 2 O was 4.5 mmol, and the increase rate of magnetic attraction was 1.15. On the other hand, FeCl 2 · 4H 2 O is in the range of 4.5~9.0Mmol, magnetically attached growth rate decreased in proportion to the amount of FeCl 2 · 4H 2 O. The increase rate of magnetic sticking reached a peak when the added amount of FeCl 2 .4H 2 O was 4.5 mmol.

FeCl・4HOの添加量と磁着率との関係を供試土壌で比較すると、図4及び図18に示すように供試土壌によらず同じ傾向を示した。具体的には、山砂(真砂土)及び黒土とも磁着率は、ある特定のFeCl・4HO添加量において極大値を示した。 When the relationship between the added amount of FeCl 2 .4H 2 O and the magnetic sticking rate was compared in the test soils, the same tendency was exhibited regardless of the test soils as shown in FIGS. 4 and 18. Specifically, the magnetic sticking rate of both the mountain sand (mass sand soil) and the black soil showed a maximum value at a certain specific amount of FeCl 2 .4H 2 O added.

NaOHの添加量の影響
黒土10gに対して、FeCl・4HO及びNaOHを含む溶液を添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。溶液に含まれるFeCl・4HOは、4.5mmol、NaOHは、0〜12mmolの範囲で添加量を変えた。FeClは、未添加である。
Effect of Addition Amount of NaOH To 10 g of black soil, a solution containing FeCl 2 .4H 2 O and NaOH was added, and heated in a tube furnace at 250° C. for 2 hours in the air. Then, it stood to cool and magnetic force selection was performed. FeCl 2 · 4H 2 O contained in the solution, 4.5 mmol, NaOH was varied the amount in the range of 0~12Mmol. FeCl 3 is not added.

結果を図19に示した。磁着増加率は、NaOHの添加量により変化した。NaOHが0〜9.0mmolの範囲において、NaOHの添加量に比例して磁着増加率は増加し、NaOHの添加量9.0mmolで磁着増加率がピークとなり、そのときの磁着増加率は、2.46であった。一方、NaOHが9.0〜12mmolの範囲においては、NaOHの添加量に比例して磁着増加率は減少した。 The results are shown in Fig. 19. The rate of increase in magnetic adhesion changed depending on the amount of NaOH added. In the range of 0 to 9.0 mmol of NaOH, the rate of increase in magnetic attraction increases in proportion to the amount of NaOH added, and the rate of increase in magnetic attraction reaches a peak when the amount of NaOH added is 9.0 mmol. Was 2.46. On the other hand, in the range of NaOH of 9.0 to 12 mmol, the increase rate of magnetic sticking decreased in proportion to the added amount of NaOH.

NaOHの添加量と磁着率との関係を供試土壌で比較すると、図7及び図19に示すように供試土壌によらず同じ傾向を示した。具体的には、山砂(真砂土)及び黒土とも磁着率は、ある特定のNaOH添加量において極大値を示した。 Comparing the relationship between the added amount of NaOH and the magnetic adhesion rate in the test soils, the same tendency was exhibited regardless of the test soils as shown in FIGS. 7 and 19. Specifically, the magnetic sticking rates of both the mountain sand (mass sand soil) and the black soil showed the maximum value at a specific addition amount of NaOH.

加熱温度の影響
黒土10gに対して、NaOH及びFeCl・4HOを含む溶液を添加し、大気下、管状炉を用いて250℃及び300℃で加熱した。前者は、室温〜200℃までは18℃/min、200℃〜250℃までは5℃/minで昇温し、250℃で2時間保持し、後者は、室温〜200℃までは18℃/min、200℃〜300℃までは10℃/minで昇温し、300℃で2時間保持した。溶液に含まれるNaOHは9.0mmol、FeCl・4HOは4.5mmolであり、FeClは未添加である。
Effect of Heating Temperature A solution containing NaOH and FeCl 2 .4H 2 O was added to 10 g of black soil, and heated at 250° C. and 300° C. in the atmosphere using a tubular furnace. The former is 18° C./min from room temperature to 200° C., the temperature is raised from 5° C./min to 200° C. to 250° C., and is held at 250° C. for 2 hours, and the latter is 18° C./min from room temperature to 200° C. The temperature was raised at 10° C./min from 200° C. to 300° C. for min and held at 300° C. for 2 hours. NaOH contained in the solution was 9.0 mmol, FeCl 2 .4H 2 O was 4.5 mmol, and FeCl 3 was not added.

実験結果、250℃で2時間加熱した場合、磁着率は14.7±0.7%、300℃で2時間加熱した場合、磁着率は20.5±0.4%であった。磁着増加率で示せば、前者で2.4±0.1、後者で3.4±0.1であった。加熱温度250℃と300℃とでは、後者の方が磁着率が高かった。 As a result of the experiment, when heated at 250° C. for 2 hours, the magnetic sticking rate was 14.7±0.7%, and when heated at 300° C. for 2 hours, the magnetic sticking rate was 20.5±0.4%. The increase rate of magnetic sticking was 2.4±0.1 for the former and 3.4±0.1 for the latter. At the heating temperatures of 250° C. and 300° C., the latter had a higher magnetic sticking rate.

加熱温度と磁着率との関係を供試土壌で比較すると、山砂(真砂土)及び黒土とも加熱温度250℃と300℃とでは、後者の方が磁着率が高かった。 When the relationship between the heating temperature and the magnetic susceptibility was compared in the test soils, both the mountain sand (mass sand soil) and the black soil had a higher magnetic susceptibility at the heating temperatures of 250°C and 300°C.

加熱時間の影響
黒土10gに対して、NaOH及びFeCl・4HOを含む溶液を添加し、大気下、管状炉を用いて250℃で加熱時間を変えた実験を行った。具体的には、一方は、室温〜200℃までは18℃/min、200℃〜250℃までは5℃/minで昇温し、250℃で2時間保持した。他方は、室温〜200℃までは18℃/min、200℃〜250℃までは5℃/minで昇温し、250℃で0.5時間保持した。溶液に含まれるFeCl・4HOは0.9mmol、NaOHは1.5mmolであり、FeClは未添加である。
Effect of heating time To 10 g of black soil, a solution containing NaOH and FeCl 2 .4H 2 O was added, and an experiment was conducted in which the heating time was changed at 250° C. using a tubular furnace in the atmosphere. Specifically, one of them was heated from room temperature to 200° C. at 18° C./min, from 200° C. to 250° C. at 5° C./min, and kept at 250° C. for 2 hours. On the other hand, the temperature was raised from room temperature to 200° C. at 18° C./min, from 200° C. to 250° C. at 5° C./min, and kept at 250° C. for 0.5 hours. FeCl 2 .4H 2 O contained in the solution was 0.9 mmol, NaOH was 1.5 mmol, and FeCl 3 was not added.

実験結果、250℃で2時間加熱した場合、磁着率は6.2±0.2%、250℃で0.5時間加熱した場合、磁着率は5.5±0.1%であった。磁着増加率で示せば、前者で1.0±0.0、後者で0.9±0.0であった。加熱時間が2時間と0.5時間とでは、前者の方が少し磁着率が高かった。 As a result of the experiment, when heated at 250° C. for 2 hours, the magnetic sticking rate was 6.2±0.2%, and when heated at 250° C. for 0.5 hour, the magnetic sticking rate was 5.5±0.1%. It was The rate of increase in magnetic adhesion was 1.0±0.0 for the former and 0.9±0.0 for the latter. When the heating time was 2 hours and 0.5 hours, the former had a slightly higher magnetic sticking rate.

加熱時間と磁着率との関係を供試土壌で比較すると、図13に示すように山砂(真砂土)の場合、加熱時間0.5〜2時間の範囲で磁着率は加熱時間の影響を殆ど受けなかった。一方、黒土の場合、加熱時間0.5〜2時間の範囲で磁着率は、加熱時間が長いほど大きかった。 When the relationship between the heating time and the magnetic sticking rate is compared in the test soil, as shown in FIG. 13, in the case of mountain sand (mass sand soil), the magnetic sticking rate of the heating time is in the range of 0.5 to 2 hours. It was hardly affected. On the other hand, in the case of black soil, the magnetic sticking rate was larger as the heating time was longer in the heating time range of 0.5 to 2 hours.

昇温速度の影響
黒土10gに対して、NaOH及びFeCl・4HOを含む溶液を添加し、大気下、管状炉を用いて250℃までの昇温速度を変えた実験を行った。具体的には、一方は、室温〜200℃までは18℃/min、200℃〜250℃までは5℃/minで昇温し、250℃で2時間保持した。他方は、室温〜230℃までは42℃/min、230℃〜250℃までは4℃/minで昇温し、250℃で2時間保持した。溶液に含まれるFeCl・4HOは0.9mmol、NaOHは1.5mmolであり、FeClは未添加である。
Effect of heating rate A solution containing NaOH and FeCl 2 .4H 2 O was added to 10 g of black soil, and an experiment was performed in the atmosphere in which a heating rate was changed up to 250°C using a tubular furnace. Specifically, one of them was heated from room temperature to 200° C. at 18° C./min, from 200° C. to 250° C. at 5° C./min, and kept at 250° C. for 2 hours. On the other hand, the temperature was raised from room temperature to 230°C at 42°C/min, from 230°C to 250°C at 4°C/min, and kept at 250°C for 2 hours. FeCl 2 .4H 2 O contained in the solution was 0.9 mmol, NaOH was 1.5 mmol, and FeCl 3 was not added.

実験結果、昇温速度の遅い前者で磁着率は6.2±0.2%、昇温速度の速い後者で磁着率は6.7±0.2%であった。磁着増加率で示せば、前者で1.0±0.0、後者で1.1±0.0であった。黒土を用いた実験において、磁着率に対する昇温速度の影響は殆どなかった。 As a result of the experiment, the magnetic sticking rate was 6.2±0.2% in the former where the heating rate was slow, and 6.7±0.2% in the latter where the heating rate was fast. The rate of increase in magnetic adhesion was 1.0±0.0 for the former and 1.1±0.0 for the latter. In the experiment using black soil, there was almost no effect of the heating rate on the magnetic sticking rate.

加熱時間と磁着率との関係を供試土壌で比較すると、図14に示すように山砂(真砂土)においても昇温速度18℃/minと昇温速度36℃/minとで磁着率はほぼ同じである。よって昇温速度18℃/min〜42℃/minの範囲内では、供試土壌の種類によらず磁着率に対する昇温速度の影響は殆どないと言える。 When the relationship between the heating time and the magnetic sticking rate is compared in the test soils, as shown in FIG. 14, even in the sand (mass sand), the magnetic sticking is performed at the heating rate of 18° C./min and the heating rate of 36° C./min. The rates are about the same. Therefore, it can be said that within the range of the temperature rising rate of 18° C./min to 42° C./min, there is almost no effect of the temperature rising rate on the magnetic sticking rate regardless of the type of test soil.

1 粉粒体の処理装置
11 汚染土壌供給装置
21 薬剤供給装置
31 反応装置
41 冷却装置
51 磁力選別装置
1 Processing Equipment for Powder and Granules 11 Contaminated Soil Supplying Device 21 Chemical Supplying Device 31 Reactor 41 Cooling Device 51 Magnetic Sorting Device

Claims (12)

被処理物を磁力選別可能に調製する方法であって、
前記被処理物が粉粒体であり、
前記粉粒体と2価の鉄イオンと3価の鉄イオンとが共存した状態でこれを加熱する加熱工程を含み、
前記2価の鉄イオンは、2価の鉄イオンを含有する水溶液として与えられ、
前記粉粒体の表面に磁性物質を生成・吸着させることを特徴とする被処理物の調製方法。
A method of magnetically sorting objects to be processed,
The object to be treated is a powder or granular material,
Including a heating step of heating the granular material in a state where divalent iron ions and trivalent iron ions coexist,
The divalent iron ion is given as an aqueous solution containing the divalent iron ion,
A method for preparing an object to be treated, characterized in that a magnetic substance is produced and adsorbed on the surface of the granular material.
前記3価の鉄イオンは、前記粉粒体に含まれる鉄成分に由来のもの及び/又は前記水溶液に含まれる2価の鉄イオンからの化学変化によるものであることを特徴とする請求項1に記載の被処理物の調製方法。 The trivalent iron ion is derived from an iron component contained in the granular material and/or is caused by a chemical change from the divalent iron ion contained in the aqueous solution. The method for preparing an object to be treated according to item 1. 前記3価の鉄イオンが、3価の鉄イオンを含有する水溶液として与えられることを特徴とする請求項1又は請求項2に記載の被処理物の調製方法。 The method for preparing an object to be treated according to claim 1 or 2, wherein the trivalent iron ion is provided as an aqueous solution containing the trivalent iron ion. 請求項1又は請求項2に記載の被処理物の調製方法において、前記2価の鉄イオンを含有する水溶液はアルカリ剤を含有し、
又は請求項3に記載の被処理物の調製方法において、前記2価の鉄イオンを含有する水溶液及び/又は3価の鉄イオンを含有する水溶液はアルカリ剤を含有することを特徴とする被処理物の調製方法。
The method for preparing an object to be treated according to claim 1 or 2, wherein the aqueous solution containing divalent iron ions contains an alkaline agent,
Alternatively, in the method for preparing an article to be treated according to claim 3, the aqueous solution containing the divalent iron ion and/or the aqueous solution containing the trivalent iron ion contains an alkaline agent. How to prepare things.
前記加熱工程の温度が200℃以上300℃以下であることを特徴とする請求項1から請求項4のいずれか1項に記載の被処理物の調製方法。 The temperature of the said heating process is 200 to 300 degreeC, The preparation method of the to-be-processed object of any one of Claim 1 to 4 characterized by the above-mentioned. 前記粉粒体が有機物を含み、
前記有機物は、前記加熱工程で炭化され、炭化物の表面に前記磁性物質が生成・吸着することを特徴とする請求項1から請求項5のいずれか1項に記載の被処理物の調製方法。
The granular material contains an organic matter,
The said organic substance is carbonized by the said heating process, and the said magnetic substance produces|generates and adsorb|sucks to the surface of a carbide|carbonized material, The preparation method of the to-be-processed object of any one of the Claims 1-5 characterized by the above-mentioned.
前記2価の鉄イオンを含有する水溶液及び/又は3価の鉄イオンを含有する水溶液、又はこれらにアルカリ剤を含有する水溶液を薬剤としたとき、下記(A)群の1つ以上を制御することにより前記粉粒体の表面に生成・吸着させる磁性物質の磁着力を制御することを特徴とする請求項1から請求項6のいずれか1項に記載の被処理物の調製方法。
(A)2価の鉄イオン濃度,2価の鉄イオンに対する3価の鉄イオンの割合,アルカリ剤の種類,アルカリ剤の濃度,薬剤の添加量,粉粒体と薬剤との混合物に対する撹拌強度,薬剤添加後の静置時間,加熱温度,加熱時間,昇温速度,水溶液のアニオンの種類
When the aqueous solution containing the divalent iron ion and/or the aqueous solution containing the trivalent iron ion or the aqueous solution containing the alkaline agent is used as a drug, one or more of the following (A) group is controlled. The method for preparing an object to be treated according to any one of claims 1 to 6, wherein the magnetic attraction force of the magnetic substance generated and adsorbed on the surface of the powder or granular material is controlled thereby.
(A) Divalent iron ion concentration, ratio of trivalent iron ion to divalent iron ion, type of alkaline agent, concentration of alkaline agent, addition amount of drug, stirring strength for mixture of powder and granules , Standing time after drug addition, heating temperature, heating time, heating rate, type of anion in aqueous solution
請求項1から請求項7のいずれか1項に記載の被処理物の調製方法により得られる被処理物を磁力選別により分級する分級工程を備えることを特徴とする粉粒体の処理方法。 A method for treating powdery or granular material, comprising: a classification step of classifying an object to be treated obtained by the method for preparing an object to be treated according to any one of claims 1 to 7 by magnetic separation. 前記粉粒体が土壌であることを特徴とする請求項8に記載の粉粒体の処理方法。 The method for treating powdery or granular material according to claim 8, wherein the powdery or granular material is soil. 薬剤と被処理物である粉粒体とを共存下で加熱し、前記粉粒体の表面に磁性物質を生成・吸着させる反応装置と、
前記反応装置に前記薬剤を供給する薬剤供給装置と、
を備え、
前記薬剤として、少なくとも2価の鉄イオンを含有する水溶液を含むことを特徴とする被処理物の調製装置。
A reaction device that heats a drug and a granular material that is an object to be treated in the coexistence, and generates and adsorbs a magnetic substance on the surface of the granular material,
A drug supply device for supplying the drug to the reaction device,
Equipped with
An apparatus for preparing an object to be treated, which comprises an aqueous solution containing at least divalent iron ions as the drug.
請求項10に記載の被処理物の調製装置と、
前記被処理物の調製装置を介して得られる被処理物を磁力選別する磁選機と、
を含むことを特徴とする粉粒体の処理装置。
An apparatus for preparing an object to be treated according to claim 10,
A magnetic separator for magnetically selecting the object to be processed obtained through the apparatus for preparing the object to be processed,
An apparatus for treating powdery or granular material, comprising:
前記粉粒体が土壌であることを特徴とする請求項11に記載の粉粒体の処理装置。 The said granular material is a soil, The processing apparatus of the granular material of Claim 11 characterized by the above-mentioned.
JP2020017589A 2019-02-08 2020-02-05 Method for preparing objects to be processed, method and apparatus for processing powder and granular materials Active JP7390652B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019021340 2019-02-08
JP2019021340 2019-02-08

Publications (2)

Publication Number Publication Date
JP2020128982A true JP2020128982A (en) 2020-08-27
JP7390652B2 JP7390652B2 (en) 2023-12-04

Family

ID=72174482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020017589A Active JP7390652B2 (en) 2019-02-08 2020-02-05 Method for preparing objects to be processed, method and apparatus for processing powder and granular materials

Country Status (1)

Country Link
JP (1) JP7390652B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3931274B2 (en) 2002-09-13 2007-06-13 アタカ大機株式会社 Purification method for heavy metal contaminated soil
JP2005137973A (en) 2003-11-04 2005-06-02 Futaba Shoji Kk Magnetic adsorbent, its manufacturing method and water treatment method
JP2005334737A (en) 2004-05-25 2005-12-08 Futaba Shoji Kk Magnetic adsorbent, photocatalyst supporting adsorbent, magnetic photocatalyst, photocatalyst supporting magnetic adsorbent, and harmful substance decomposing treatment method
JP2007000682A (en) 2005-06-21 2007-01-11 Akira Hatashi Magnetic processing method and device for wastes, object to be processed by the device, and product having the object
US9327024B2 (en) 2009-10-30 2016-05-03 Tokyo Institute Of Technology Polymer coated ferrite fine particles and method for preparing polymer coated ferrite fine particles
JP6020449B2 (en) 2011-07-21 2016-11-02 Jnc株式会社 Method and apparatus for removing cesium ions in water
JP2016117592A (en) 2013-04-12 2016-06-30 国立大学法人愛媛大学 Magnetized zeolite, method for manufacturing the same, and selective and specific capturing method of cesium
JP6797593B2 (en) 2015-08-17 2020-12-09 三和テッキ株式会社 How to treat pollutants
JP2017105688A (en) 2015-12-11 2017-06-15 株式会社Ihi Manufacturing method of magnetic zeolite
JP6916421B2 (en) 2015-12-17 2021-08-11 広島県公立大学法人 How to use the pollutant dry treatment system and the pollutant dry treatment system

Also Published As

Publication number Publication date
JP7390652B2 (en) 2023-12-04

Similar Documents

Publication Publication Date Title
Sahoo et al. Recovery of metals and other beneficial products from coal fly ash: A sustainable approach for fly ash management
Singh et al. Citric acid coated magnetic nanoparticles: synthesis, characterization and application in removal of Cd (II) ions from aqueous solution
Ju et al. Removal of cadmium from aqueous solutions using red mud granulated with cement
Ma et al. Liberation and recovery of Cr from real tannery sludge by ultrasound-assisted supercritical water oxidation treatment
KR20180119637A (en) A method of eluting calcium from steelmaking slag, and a method of recovering calcium from steelmaking slag
CAO et al. Characteristics of MSWI fly ash with acid leaching treatment
JP6797593B2 (en) How to treat pollutants
Quanyin et al. Effects of mechanical activation on the kinetics of terbium leaching from waste phosphors using hydrochloric acid
Yu et al. An innovative methodology for recycling iron from magnetic preconcentrate of an iron ore tailing
Kuo et al. Removal of copper from industrial sludge by traditional and microwave acid extraction
JP5755377B2 (en) Method for producing radioactive cesium decontaminant and method for removing radioactive cesium
JP4861718B2 (en) Treatment of processing object containing heavy metal component and method for recovering heavy metal component from the processing object
Min et al. Stabilization of ferric arsenate sludge with mechanochemically prepared FeS2/Fe composites
JP2020128982A (en) Method and device for preparing treatment target matter, and method and device for treating granules
JP7116952B2 (en) Method and apparatus for preparing object to be processed and method and apparatus for treating object to be processed
JP2013170948A (en) Removal method of radioactive cesium
Filio et al. Grinding of EP Dust and its effect on solubility of metal compounds in water
WO2020209761A1 (en) A method for integrated processing of finely dispersed metal-containing waste
Wang et al. Enhanced green remediation and refinement disposal of electrolytic manganese residue using air-jet milling and horizontal-shaking leaching
Zhong et al. Toxic metals and the risks of sludge from the treatment of wastewater from beryllium smelting
JP6791698B2 (en) Shungite purification method
JP2014211341A (en) Removal method of contaminant, and magnetic decontamination agent and manufacturing method thereof
Ai et al. Activating flotation of chalcopyrite using CuSO4 and H2O2 from the cyanide tailings
WO2019107116A1 (en) Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag
Bizhanov Use of a Vortex Layer Apparatus for the Preparation of Oiled Scale and Zinc-Containing Dust and Sludge for Briquetting

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231110

R150 Certificate of patent or registration of utility model

Ref document number: 7390652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150