JP4861718B2 - Treatment of processing object containing heavy metal component and method for recovering heavy metal component from the processing object - Google Patents

Treatment of processing object containing heavy metal component and method for recovering heavy metal component from the processing object Download PDF

Info

Publication number
JP4861718B2
JP4861718B2 JP2006039704A JP2006039704A JP4861718B2 JP 4861718 B2 JP4861718 B2 JP 4861718B2 JP 2006039704 A JP2006039704 A JP 2006039704A JP 2006039704 A JP2006039704 A JP 2006039704A JP 4861718 B2 JP4861718 B2 JP 4861718B2
Authority
JP
Japan
Prior art keywords
heavy metal
metal component
aqueous solution
magnetic powder
processing object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006039704A
Other languages
Japanese (ja)
Other versions
JP2007216143A (en
Inventor
英之 板橋
晋司 飯塚
好美 守谷
東 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kyogyo Co.,Ltd.
Gunma University NUC
Original Assignee
Kanto Denka Kyogyo Co.,Ltd.
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kyogyo Co.,Ltd., Gunma University NUC filed Critical Kanto Denka Kyogyo Co.,Ltd.
Priority to JP2006039704A priority Critical patent/JP4861718B2/en
Publication of JP2007216143A publication Critical patent/JP2007216143A/en
Application granted granted Critical
Publication of JP4861718B2 publication Critical patent/JP4861718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、都市ごみや産業廃棄物等の焼却灰(炉底灰及び飛灰)、重金属成分に汚染された土壌、下水汚泥等の、亜鉛、銅、マンガン、鉛、カドミウム、クロム等の重金属成分を含有する処理対象物中から、該重金属成分を効率よく分離する、上記処理対象物の処理及び上記処理対象物からの重金属成分の回収方法に関する。   The present invention relates to heavy metals such as zinc, copper, manganese, lead, cadmium, and chromium such as incineration ash (furnace ash and fly ash) such as municipal waste and industrial waste, soil contaminated with heavy metal components, and sewage sludge. The present invention relates to a method of treating the object to be treated and a method for recovering the heavy metal component from the object to be treated, which efficiently separates the heavy metal component from the object to be treated containing the components.

従来、都市ごみや産業廃棄物のほとんどは焼却処分されており、焼却物の9%が炉底灰、1%が飛灰として回収される。この炉底灰や飛灰は、亜鉛、銅、マンガン、鉛、カドミウム、クロム等の重金属を高い濃度で含有している。このため炉底灰や飛灰は有効利用されず、以下の方法で処理され廃棄されている。   Conventionally, most municipal waste and industrial waste have been incinerated, and 9% of the incinerated waste is recovered as bottom ash and 1% as fly ash. The bottom ash and fly ash contain heavy metals such as zinc, copper, manganese, lead, cadmium, and chromium at high concentrations. For this reason, furnace bottom ash and fly ash are not used effectively, and are processed and discarded by the following method.

(1)セメント固化法:重金属成分を含有する処理対象物とセメントと水を混練し、固化してその内部に重金属成分を封じ込める方法である。この方法は、使用設備が簡単で特殊な設備を必要としない点は優れているが、養生処理を十分に行わないと、成形体が貯留中に崩壊する恐れがある。また、重金属成分の種類によっては、例えば鉛、クロムは、高pHで塩基性塩として溶解する可能性があり、さらに、成形体が酸に弱いため、近年の酸性雨で保管によっては重金属成分が再溶解する恐れがある。   (1) Cement solidification method: This is a method in which an object to be treated containing a heavy metal component, cement and water are kneaded, solidified, and the heavy metal component is contained therein. This method is excellent in that the equipment used is simple and does not require special equipment, but if the curing treatment is not sufficiently performed, the molded body may collapse during storage. In addition, depending on the type of heavy metal component, for example, lead and chromium may dissolve as a basic salt at high pH. Further, since the molded product is weak against acid, the heavy metal component may be stored depending on acid rain in recent years. There is a risk of redissolution.

(2)溶融固化法:重金属成分を含有する処理対象物を1300℃以上の温度で加熱処理し、ガラス状態にして重金属成分を不溶化する方法である。この方法では、大幅に体積が小さくなる、重金属成分の溶出が少ない利点があるが、溶融させるために非常に高エネルギーを必要とし、設備が複雑で高コストである点、また高温での処理であるため比較的沸点の低い重金属成分(例えば鉛、カドミウム)は揮散してしまう問題がある。   (2) Melt solidification method: A method of heat-treating an object to be treated containing a heavy metal component at a temperature of 1300 ° C. or higher to form a glass state and insolubilize the heavy metal component. This method has the advantage of significantly reducing the volume and reducing the elution of heavy metal components, but requires very high energy for melting, the equipment is complicated and expensive, and it is used for processing at high temperatures. Therefore, there is a problem that heavy metal components having a relatively low boiling point (for example, lead and cadmium) are volatilized.

(3)薬剤処理法:重金属成分を含有する処理対象物とキレート剤と水を混練し、重金属成分とキレート剤を反応させ、金属キレート物として不溶化する方法である。この方法は、装置は簡単であるが、キレート剤が高価であること、鉛、クロム等のアルカリサイドで塩基性塩となりやすい物質は溶出防止が困難である等の問題がある。   (3) Chemical treatment method: A treatment target containing a heavy metal component, a chelating agent, and water are kneaded, the heavy metal component and the chelating agent are reacted, and insolubilized as a metal chelate. This method is simple in apparatus, but has problems that the chelating agent is expensive, and it is difficult to prevent elution of substances that easily become basic salts on the alkali side such as lead and chromium.

(4)酸抽出法:重金属成分を含有する処理対象物に酸を加え、重金属をイオン化して抽出し、種々の方法で重金属イオンを溶解度の低い化合物にし、不溶化する方法である。この方法では、炉底灰及び飛灰中の重金属成分を回収できる可能性を持つが、重金属成分を含有する処理対象物が、炉底灰や飛灰の場合には主成分がカルシウム、マグネシウム等のアルカリ土類金属化合物、ナトリウム、カリウム等のアルカリ金属化合物であるため、処理で加えられる酸の大半はこれらアルカリ土類金属化合物、アルカリ金属化合物の中和に消費されるため、大量の酸が必要となり、結果として高コストになり、不経済になる問題がある。   (4) Acid extraction method: A method in which an acid is added to a processing object containing a heavy metal component, the heavy metal is ionized and extracted, and the heavy metal ion is made into a compound having low solubility by various methods to insolubilize it. In this method, there is a possibility that heavy metal components in the furnace bottom ash and fly ash can be recovered. However, when the processing object containing heavy metal components is furnace bottom ash or fly ash, the main components are calcium, magnesium, etc. Since most of the acids added in the treatment are consumed for neutralization of these alkaline earth metal compounds and alkali metal compounds, a large amount of acid is used. There is a problem that becomes necessary, resulting in high cost and uneconomical.

重金属成分に汚染された土壌の浄化でも上記4つの方法が用いられているが、同様の問題がある。   The above four methods are also used in the purification of soil contaminated with heavy metal components, but there are similar problems.

上記方法の問題点を解決する方法として、種々の方法が提唱されており、代表的なものとして特許文献1〜4に記載されている方法等が挙げられる。
特許文献1及び特許文献2に記載されている方法は、焼却灰に、特許文献1では硫化鉄を、特許文献2では炭酸ガスを用いて重金属成分を不溶化するもので、重金属成分を不溶化した焼却灰は産業廃棄物として取り扱われる。これらの方法では、重金属成分を含有した不溶化処理された焼却灰の保管、処分がまた問題となる。
また、特許文献3及び特許文献4に記載されている方法は、焼却灰から重金属成分を抽出し、焼却灰を無害化する方法である。特許文献3では、アルカリ性下で、チオ硫酸ナトリウムとアンモニアイオンを含む水溶液で廃棄物を処理している。この特許文献3の方法は、重金属成分をアンモニア錯体、チオ硫酸錯体として水溶液中に抽出するものであるが、重金属成分の抽出率が約50%程度であり、満足のいく除去率ではなかった。また、特許文献4では、産業廃棄物の焼却灰を水に分散させ、重金属成分を水に抽出させ、その溶液をバイオマス由来の重金属吸着剤もしくはキレート樹脂、イオン交換樹脂で処理している。この特許文献4の方法は、重金属成分を抽出するために、重金属成分を含有する焼却灰を分散した懸濁液のpHを酸性サイド(pH=4〜8)に調整する必要があり、先に述べた酸抽出法と同様に多量の酸が必要となる問題がある。
Various methods have been proposed as a method for solving the problems of the above methods, and representative methods include the methods described in Patent Documents 1 to 4.
The methods described in Patent Document 1 and Patent Document 2 are those in which heavy metal components are insolubilized by using incinerated ash, iron sulfide in Patent Document 1 and carbon dioxide gas in Patent Document 2, in which heavy metal components are insolubilized. Ashes are handled as industrial waste. In these methods, storage and disposal of insolubilized incinerated ash containing heavy metal components is also a problem.
Moreover, the method described in patent document 3 and patent document 4 is a method of extracting a heavy metal component from incineration ash, and detoxifying incineration ash. In Patent Document 3, waste is treated with an aqueous solution containing sodium thiosulfate and ammonia ions under alkalinity. In the method of Patent Document 3, the heavy metal component is extracted into an aqueous solution as an ammonia complex and a thiosulfate complex, but the extraction rate of the heavy metal component is about 50%, which is not a satisfactory removal rate. Moreover, in patent document 4, the incineration ash of industrial waste is disperse | distributed to water, a heavy metal component is extracted to water, and the solution is processed with biomass-derived heavy metal adsorbent, chelate resin, or ion exchange resin. In the method of Patent Document 4, in order to extract the heavy metal component, it is necessary to adjust the pH of the suspension in which the incinerated ash containing the heavy metal component is dispersed to the acidic side (pH = 4 to 8). Similar to the acid extraction method described above, there is a problem that a large amount of acid is required.

また、特許文献5には、焼却灰等の銅を含む廃棄物の硫酸浸出スラリーの濾液に、鉄を添加して液中の銅を析出させ、析出した銅を分離回収する方法が記載されているが、この方法は、鉄よりもイオン化傾向の大きい金属(亜鉛やクロム)を回収することはできず、また鉄とイオン化傾向の接近した金属(カドミウム)の回収も困難となる。加えて先に述べた酸抽出法と同様な問題を有する。
また、特許文献6及び7には、生活排水や工場廃水から重金属イオンを磁気的な力で分離回収する磁気分離浄化装置が記載されているが、これらの装置は、生活排水や工場廃水を対象としており、焼却灰、土壌、下水汚泥等の固形状物を処理することはできない。
Patent Document 5 describes a method of adding iron to the filtrate of a sulfuric acid leaching slurry of waste containing copper such as incineration ash to precipitate copper in the liquid, and separating and recovering the deposited copper. However, this method cannot recover metals (zinc and chromium) that have a higher ionization tendency than iron, and also makes it difficult to recover metals (cadmium) that have an ionization tendency closer to iron. In addition, it has the same problem as the acid extraction method described above.
Patent Documents 6 and 7 describe magnetic separation and purification devices that separate and recover heavy metal ions from domestic wastewater and factory wastewater by magnetic force. These devices are intended for domestic wastewater and factory wastewater. Solid materials such as incineration ash, soil, and sewage sludge cannot be treated.

特開2004−74051号公報JP 2004-74051 A 特開2004−74100号公報JP 2004-74100 A 特開2003−275707号公報JP 2003-275707 A 特開2004−202449号公報JP 2004-202449 A 特開2004−279971号公報JP 2004-279971 A 特開平11−47632号公報JP 11-47632 A 特開平10−118518号公報Japanese Patent Laid-Open No. 10-118518

本発明の目的は、前述した従来の重金属成分を含有する処理対象物の処理法の問題点を解消し、容易に効率よく重金属成分を含有する処理対象物から重金属成分を取り除くことができ、重金属成分を含有する処理対象物の処理を容易にし、且つ重金属成分を含有する処理対象物から容易に効率よく重金属成分を回収することができる、重金属成分を含有する処理対象物の処理及び該処理対象物からの重金属成分の回収方法を提供することにある。   The object of the present invention is to eliminate the above-mentioned problems of the conventional processing method for processing objects containing heavy metal components, and to easily and efficiently remove heavy metal components from processing objects containing heavy metal components. Processing of a processing object containing a heavy metal component, which facilitates the processing of the processing object containing the component and can easily and efficiently recover the heavy metal component from the processing object containing the heavy metal component, and the processing object An object of the present invention is to provide a method for recovering heavy metal components from a product.

本発明は、重金属成分を含有する焼却灰、土壌又は下水汚泥である処理対象物と、負荷磁場398kA/mにおける飽和磁化量50〜180Am 2 /kgの磁性粉を水中に分散させた後、この分散液から、重金属成分を含有する微粒子及び磁性粉を磁気的な力で分離する工程(1)と、分離した重金属成分を含有する微粒子及び磁性粉を抽出剤水溶液中に分散させて、重金属成分を抽出剤水溶液中に抽出し、重金属成分を微粒子から抽出剤水溶液中に分離する工程(2)とからなることを特徴とする重金属成分を含有する焼却灰、土壌又は下水汚泥である処理対象物の処理及び該処理対象物からの重金属成分の回収方法を提供することにより、上記目的を達成したものである。 In the present invention, an incineration ash containing heavy metal components , soil or sewage sludge to be treated and magnetic powder having a saturation magnetization of 50 to 180 Am 2 / kg at a load magnetic field of 398 kA / m are dispersed in water. A step (1) of separating fine particles and magnetic powder containing heavy metal components from a dispersion by magnetic force, and dispersing the fine particles and magnetic powder containing heavy metal components in an extractant aqueous solution, To be treated as incinerated ash, soil or sewage sludge containing a heavy metal component, comprising the step (2) of extracting a heavy metal component from fine particles into an aqueous extractant solution The above object is achieved by providing a method for recovering heavy metal components from the object to be treated and a method for recovering heavy metal components from the object to be treated.

本発明の方法によれば、容易に効率よく重金属成分を含有する処理対象物から重金属成分を取り除くことができるため、重金属成分を含有する処理対象物の処理が容易であり、また重金属成分を含有する処理対象物から容易に効率よく重金属成分を回収することができる。   According to the method of the present invention, since the heavy metal component can be easily and efficiently removed from the processing object containing the heavy metal component, the processing of the processing object containing the heavy metal component is easy, and the heavy metal component is contained. The heavy metal component can be easily and efficiently recovered from the object to be processed.

以下、本発明の重金属成分を含有する処理対象物の処理及び該処理対象物からの重金属成分の回収方法を、その好ましい実施形態について詳細に説明する。
本発明の方法は、焼却灰等の重金属成分を含有する処理対象物から、この重金属成分を多く含有する微粒子部分を効率よく分離する工程(1)、該工程(1)で分離した微粒子から重金属成分を抽出し、回収する工程(2)の2つの工程からなる。
Hereinafter, the processing of the processing object containing the heavy metal component of the present invention and the method for recovering the heavy metal component from the processing object will be described in detail with respect to preferred embodiments thereof.
The method of the present invention includes a step (1) for efficiently separating a fine particle portion containing a large amount of heavy metal component from a processing object containing a heavy metal component such as incineration ash, and a heavy metal from the fine particles separated in the step (1). It consists of two steps, step (2), in which components are extracted and recovered.

まず上記工程(1)について説明する。
本工程(1)は、重金属成分を含有する処理対象物と磁性粉を水中に分散させる工程(a)、及び該工程(a)で得られた分散液から、重金属成分を含有する微粒子及び磁性粉を磁気的な力で分離する工程(b)からなる。
First, the step (1) will be described.
This step (1) includes a step (a) of dispersing a processing object containing a heavy metal component and a magnetic powder in water, and fine particles containing a heavy metal component and magnetic properties from the dispersion obtained in the step (a). It consists of the process (b) which isolate | separates powder | flour with magnetic force.

本発明の処理対象である重金属成分を含有する処理対象物としては、例えば、都市ごみや産業廃棄物等の焼却灰(炉底灰及び飛灰)、重金属成分に汚染された土壌、下水汚泥等が挙げられるが、これらに制限されるものではない。これらの焼却灰や重金属成分で汚染された土壌等の処理対象物中の重金属成分(例えば銅、鉛、カドミウム、クロム、マンガン等)は、主に焼却灰中の微粒子の表面や土壌中の粘土微粒子の表面に吸着している。   Examples of the treatment object containing the heavy metal component that is the treatment object of the present invention include incineration ash (furnace bottom ash and fly ash) such as municipal waste and industrial waste, soil contaminated with heavy metal components, sewage sludge, etc. However, it is not limited to these. Heavy metal components (for example, copper, lead, cadmium, chromium, manganese, etc.) in treated objects such as soil contaminated with these incineration ash and heavy metal components are mainly the surface of fine particles in incineration ash and clay in soil. Adsorbed on the surface of fine particles.

本発明で使用される磁性粉は、磁性粉である限り限定されるものではなく、例えば、フェライトやマグネタイトのような磁性酸化物粉末、Fe粉のような金属粉、ステンレス粉のような合金粉末が使用できる。該磁性粉の平均粒子サイズは特に限定されないが、100μm以下の磁性粉が好ましく、さらに好適には10〜500nmの磁性粉が望ましい。磁性粉の平均粒子サイズが100μmを超える場合には、重金属成分を含有する処理対象物と磁性粉との混合時(水中分散時)に大きなエネルギーが必要となる。また、磁性粉の平均粒子サイズが10nm未満の場合には、磁気能力が小さく、磁石等を利用して微粒子部分を分離するのに多大なエネルギーを必要とする。また、コストの面から100μm以下の磁性酸化物粉末が望ましい。   The magnetic powder used in the present invention is not limited as long as it is a magnetic powder. For example, a magnetic oxide powder such as ferrite or magnetite, a metal powder such as Fe powder, or an alloy powder such as stainless steel powder. Can be used. The average particle size of the magnetic powder is not particularly limited, but is preferably 100 μm or less, and more preferably 10 to 500 nm. When the average particle size of the magnetic powder exceeds 100 μm, large energy is required when mixing the processing object containing the heavy metal component and the magnetic powder (when dispersed in water). Further, when the average particle size of the magnetic powder is less than 10 nm, the magnetic ability is small, and enormous energy is required to separate the fine particle portion using a magnet or the like. Further, a magnetic oxide powder of 100 μm or less is desirable from the viewpoint of cost.

また、上記磁性粉としては、平均粒子径10nm〜100μm、好ましくは10〜500nm、比表面積0.01〜100m2 /g、好ましくは0.1〜70m2 /g、及び負荷磁場398kA/mにおける飽和磁化量50〜180Am2 /kgの磁性粉が好ましく、コストの面でより好ましくは、平均粒子径10〜500nm、比表面積0.1〜100m2 /g及び負荷磁場398kA/mにおける飽和磁化量50〜90Am2 /kgのマグネタイトである。 The magnetic powder has an average particle diameter of 10 nm to 100 μm, preferably 10 to 500 nm, a specific surface area of 0.01 to 100 m 2 / g, preferably 0.1 to 70 m 2 / g, and a load magnetic field of 398 kA / m. A magnetic powder having a saturation magnetization of 50 to 180 Am 2 / kg is preferable, and in terms of cost, more preferably, the saturation magnetization is 10 to 500 nm in average particle diameter, 0.1 to 100 m 2 / g in specific surface area, and a loading magnetic field of 398 kA / m. It is a magnetite of 50 to 90 Am 2 / kg.

上記磁性粉の製法は特に限定されるものではないが、フェライト及びマグネタイトについては湿式酸化法が望ましい。その一例としてマグネタイト粒子の製造法を以下に挙げる。第一鉄塩水溶液と、該第一鉄塩水溶液中の第一鉄塩に対し所定当量の水酸化アルカリ及び/又は炭酸アルカリを含む水溶液とを混合し、水酸化第一鉄コロイド及び/又は炭酸第一鉄コロイドを含む懸濁液を得る。次いで、この懸濁液(第一鉄塩反応水溶液)に60〜100℃の温度範囲に加熱しながら酸素含有ガスを通気して酸化反応を行い、マグネタイト粒子を生成させる方法である。また、第一鉄塩水溶液と、該第一鉄塩水溶液中の第一鉄塩に対し5〜20at%の第二鉄塩を含む水溶液とを混合し、次いで該第一鉄塩と第二鉄塩を含む混合水溶液に、該混合水溶液中の第一鉄塩及び第二鉄塩に対し所定当量の水酸化アルカリ及び/又は炭酸アルカリを含む水溶液を混合し、水酸化第一鉄と水酸化第二鉄コロイド及び/又は炭酸第一鉄と水酸化第二鉄コロイドを含む懸濁液を得る。次いで、この懸濁液を60〜100℃の温度範囲に加熱しながら酸素含有ガスを通気して酸化反応を行い、マグネタイト粒子を生成させる方法もある。このとき第一鉄塩と第二鉄塩に対する水酸化アルカリ及び/又は炭酸アルカリの当量比や反応温度を調整することにより、平均粒子径10〜500nm、比表面積0.1〜100m2 /g及び負荷磁場398kA/mにおける飽和磁化量50〜90Am2 /kgのマグネタイト粒子を得ることができる。 The method for producing the magnetic powder is not particularly limited, but wet oxidation is desirable for ferrite and magnetite. As an example, a method for producing magnetite particles is given below. A ferrous salt aqueous solution and an aqueous solution containing a predetermined equivalent amount of alkali hydroxide and / or alkali carbonate with respect to the ferrous salt in the ferrous salt aqueous solution are mixed, and ferrous hydroxide colloid and / or carbonic acid is mixed. A suspension containing ferrous colloid is obtained. Next, this suspension (ferrous salt reaction aqueous solution) is a method of generating magnetite particles by performing an oxidation reaction by aeration of an oxygen-containing gas while heating in a temperature range of 60 to 100 ° C. Also, an aqueous ferrous salt solution and an aqueous solution containing 5 to 20 at% ferric salt with respect to the ferrous salt in the aqueous ferrous salt solution are mixed, and then the ferrous salt and ferric iron are mixed. A mixed aqueous solution containing a salt is mixed with an aqueous solution containing a predetermined equivalent amount of alkali hydroxide and / or alkali carbonate with respect to the ferrous salt and ferric salt in the mixed aqueous solution. A suspension containing the ferric colloid and / or ferrous carbonate and ferric hydroxide colloid is obtained. Next, there is also a method of generating magnetite particles by performing an oxidation reaction by aeration of an oxygen-containing gas while heating the suspension in a temperature range of 60 to 100 ° C. At this time, by adjusting the equivalent ratio of alkali hydroxide and / or alkali carbonate to the ferrous salt and ferric salt and the reaction temperature, the average particle size is 10 to 500 nm, the specific surface area is 0.1 to 100 m 2 / g, and Magnetite particles having a saturation magnetization of 50 to 90 Am 2 / kg at a load magnetic field of 398 kA / m can be obtained.

上記マグネタイト粒子の製造法に用いられる第一鉄塩水溶液としては、塩化第一鉄水溶液、硫酸第一鉄水溶液、硝酸第一鉄水溶液等を使用することができる。また、第二鉄塩水溶液としては、塩化第二鉄水溶液、硫酸第二鉄水溶液、硝酸第二鉄水溶液等を使用することができる。また、水酸化アルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水溶液及びアンモニア水等を使用することができる。また、炭酸アルカリ水溶液としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸アンモニウム等の炭酸アルカリ水溶液を使用することができる。   As the ferrous salt aqueous solution used in the method for producing the magnetite particles, ferrous chloride aqueous solution, ferrous sulfate aqueous solution, ferrous nitrate aqueous solution and the like can be used. Moreover, as ferric salt aqueous solution, ferric chloride aqueous solution, ferric sulfate aqueous solution, ferric nitrate aqueous solution, etc. can be used. Moreover, as alkali hydroxide aqueous solution, alkali metal aqueous solution, such as sodium hydroxide and potassium hydroxide, ammonia water, etc. can be used. Moreover, as the alkali carbonate aqueous solution, an alkali carbonate aqueous solution such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, or ammonium carbonate can be used.

反応温度は60℃〜100℃の温度範囲で本発明において磁性粉として使用し得るマグネタイトを製造することができるが、平均粒子径が10〜150nm、好ましくは10〜100nmのマグネタイトを得るには、反応温度は60〜70℃の温度範囲が望ましい。第一鉄塩と第二鉄塩に対する水酸化アルカリ及び/又は炭酸アルカリの当量比は、第一鉄塩と第二鉄塩の和に対し1.00〜1.50当量が好ましく、更に好ましくは1.10〜1.25当量である。また、第一鉄塩と第二鉄塩に対する水酸化アルカリの当量比が0.7〜1.5当量であることが好ましく、第一鉄塩と第二鉄塩に対する炭酸アルカリの当量比が0.3〜0.8当量であることが好ましい。第一鉄塩と第二鉄塩に対する水酸化アルカリ及び/又は炭酸アルカリの当量比が1.00当量より小さい場合、生成するマグネタイト粒子に未反応の鉄化合物、ゲーサイトが混在し、また該当量比が1.50当量を超えると、αオキシ水酸化鉄が混在してしまう。これらの化合物は非磁性であるため、溶液中からの磁気的な分離ができないので、これらの化合物が混在することは好ましくない。   Although the reaction temperature can produce a magnetite that can be used as a magnetic powder in the present invention in a temperature range of 60 ° C. to 100 ° C., an average particle size of 10 to 150 nm, preferably 10 to 100 nm, The reaction temperature is preferably in the temperature range of 60 to 70 ° C. The equivalent ratio of alkali hydroxide and / or alkali carbonate to ferrous salt and ferric salt is preferably 1.00 to 1.50 equivalent, more preferably, to the sum of ferrous salt and ferric salt. 1.10 to 1.25 equivalents. The equivalent ratio of alkali hydroxide to ferrous salt and ferric salt is preferably 0.7 to 1.5 equivalent, and the equivalent ratio of alkali carbonate to ferrous salt and ferric salt is 0. It is preferable that it is 3-0.8 equivalent. When the equivalent ratio of alkali hydroxide and / or alkali carbonate to ferrous salt and ferric salt is less than 1.00 equivalent, unreacted iron compound and goethite are mixed in the produced magnetite particles, and the corresponding amount When the ratio exceeds 1.50 equivalents, α iron oxyhydroxide is mixed. Since these compounds are non-magnetic and cannot be magnetically separated from the solution, it is not preferable to mix these compounds.

また、上記マグネタイト粒子の製造法において、Al、Si、Mn、Zn,Ca,Mg等の各種金属の塩を原料中又は酸化反応中に添加することにより、これら各種金属原子をマグネタイト粒子に含有させることができる。   Further, in the above method for producing magnetite particles, various metal atoms such as Al, Si, Mn, Zn, Ca, and Mg are added to the magnetite particles by adding them in the raw material or during the oxidation reaction. be able to.

また、本発明において磁性粉として使用される金属粉も、その製法に制限されるものではなく、例えば、金属を機械的に処理し、微粒子粉末にする方法や、金属酸化物を水素気流中で還元し、金属粉を得る方法等により製造された金属粉を使用することができる。   In addition, the metal powder used as the magnetic powder in the present invention is not limited to its production method. For example, a method of mechanically treating a metal to form a fine particle powder, or a metal oxide in a hydrogen stream. The metal powder manufactured by the method of reducing and obtaining metal powder etc. can be used.

上記重金属成分を含有する処理対象物と上記磁性粉を水中に分散させる方法としては、特に制限されるものではなく、例えば該処理対象物と該磁性粉を水中に投入し、攪拌すればよい。攪拌条件は、特に制限されるものでなく、上記処理対象物と上記磁性粉が水中に分散し、混合できれば良い。
上記磁性粉の使用量は、上記重金属成分を含有する処理対象物100質量部に対し、好ましくは0.1〜1000質量部、より好ましくは1〜100質量部である。磁性粉の使用量が0.1質量部より少ないと、重金属成分の分離が困難となり、効率が低下する。また、磁性粉の使用量が1000質量部より多いと、コスト的に好ましくない。
また、水の使用量は、特に限定されるものではなく、分離が実施できる使用量でよいが、上記重金属成分を含有する処理対象物100質量部に対し、好ましくは100〜10000質量部、より好ましくは500〜5000質量部である。
A method for dispersing the processing object containing the heavy metal component and the magnetic powder in water is not particularly limited. For example, the processing object and the magnetic powder may be put into water and stirred. The stirring conditions are not particularly limited as long as the object to be treated and the magnetic powder can be dispersed and mixed in water.
The amount of the magnetic powder used is preferably 0.1 to 1000 parts by mass, more preferably 1 to 100 parts by mass with respect to 100 parts by mass of the processing object containing the heavy metal component. If the amount of magnetic powder used is less than 0.1 parts by mass, it will be difficult to separate heavy metal components and efficiency will be reduced. Moreover, when there are more usage-amounts of magnetic powder than 1000 mass parts, it is unpreferable on a cost.
Further, the amount of water used is not particularly limited and may be the amount that can be separated, but is preferably 100 to 10000 parts by mass with respect to 100 parts by mass of the processing object containing the heavy metal component. Preferably it is 500-5000 mass parts.

上記重金属成分を含有する処理対象物と上記磁性粉を水中に分散させた分散液から、重金属成分を含有する微粒子及び磁性粉を磁気的な力で分離する方法は、特に制限されないが、例えばソレノイド電磁石、希土類磁石、フェライト磁石等を使用する方法が挙げられる。   The method for separating the fine particles containing the heavy metal component and the magnetic powder from the dispersion containing the treatment object containing the heavy metal component and the magnetic powder in water is not particularly limited. The method of using an electromagnet, a rare earth magnet, a ferrite magnet, etc. is mentioned.

本工程(1)により、重金属成分を含有する処理対象物から、この重金属成分を多く含有する微粒子部分を該重金属成分とともに効率よく分離することができる。   By this step (1), the fine particle portion containing a large amount of the heavy metal component can be efficiently separated from the processing object containing the heavy metal component together with the heavy metal component.

次に、上記工程(2)について説明する。
本工程(2)は、上記工程(1)で分離した重金属成分を含有する微粒子及び磁性粉を抽出剤水溶液中に分散させて、重金属成分を抽出剤水溶液中に抽出する工程(c)、該抽出剤水溶液から、微粒子(重金属成分が抽出された微粒子)及び磁性粉を分離し、重金属成分を回収する工程(d)からなる。
Next, the said process (2) is demonstrated.
This step (2) is a step (c) of extracting the heavy metal component into the extractant aqueous solution by dispersing the fine particles and magnetic powder containing the heavy metal component separated in the step (1) in the extractant aqueous solution. It consists of the process (d) which isolate | separates microparticles | fine-particles (microparticles | fine-particles from which the heavy metal component was extracted) and magnetic powder from an extractant aqueous solution, and collect | recovers heavy metal components.

本工程(2)で使用する抽出剤としては、特に限定されるものではなく、例えば酸、塩、錯形成剤等が挙げられる。上記酸としては、例えば硫酸、塩酸、硝酸等の無機酸、酢酸、蟻酸、シュウ酸等の有機酸が挙げられ、排水中のBOD、CODの観点から無機酸の使用が好ましい。また、上記塩としては、例えば硫酸ナトリウム、硫化ナトリウム等が挙げられ、上記錯形成剤としては、例えばエチレンジアミン四酢酸(EDTA)、ニトリロ三酢酸(NTA)等が挙げられる。
上記抽出剤水溶液の上記抽出剤濃度は、10-3〜5mol/Lが好ましく、より好ましくは0.1〜2.0mol/L、さらに好ましくは0.1〜1.0mol/Lである。抽出剤濃度が10-3mol/L未満であると、重金属イオンの抽出量が低下するほか、添加する抽出剤水溶液の量が多大になる。また、抽出剤濃度が5mol/L超であると、コストが高くなる。
また、上記抽出剤水溶液の使用量は、上記重金属成分を含有する処理対象物100質量部に対し、好ましくは100〜5000質量部、より好ましくは500〜1000質量部である。抽出剤水溶液の使用量が100質量部より少ないと、重金属イオンの抽出量が低下し、また抽出剤水溶液の使用量が5000質量部より多いと、コストが高くなる。
また、上記抽出剤水溶液の使用量は、上記抽出剤の量が、上記処理対象物中の重金属成分の含有量に対して1〜100000モル倍となる量であることが好ましく、10〜10000モル倍となる量であることが更に好ましい。
The extraction agent used in this step (2) is not particularly limited, and examples thereof include acids, salts, and complexing agents. Examples of the acid include inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid, and organic acids such as acetic acid, formic acid, and oxalic acid. From the viewpoint of BOD and COD in waste water, the use of inorganic acids is preferable. Examples of the salt include sodium sulfate and sodium sulfide. Examples of the complexing agent include ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA).
The concentration of the extractant in the extractant aqueous solution is preferably 10 −3 to 5 mol / L, more preferably 0.1 to 2.0 mol / L, and still more preferably 0.1 to 1.0 mol / L. When the extractant concentration is less than 10 −3 mol / L, the extraction amount of heavy metal ions decreases and the amount of the extractant aqueous solution to be added increases. Further, if the extractant concentration is more than 5 mol / L, the cost is increased.
Moreover, the usage-amount of the said extractant aqueous solution becomes like this. Preferably it is 100-5000 mass parts with respect to 100 mass parts of processed objects containing the said heavy metal component, More preferably, it is 500-1000 mass parts. When the amount of the extractant aqueous solution used is less than 100 parts by mass, the amount of heavy metal ions extracted decreases, and when the amount of the extractant aqueous solution used exceeds 5000 parts by mass, the cost increases.
The amount of the extractant aqueous solution used is preferably such that the amount of the extractant is 1 to 100000 mol times the content of the heavy metal component in the object to be treated. More preferably, the amount is doubled.

上記工程(1)で分離した重金属成分を含有する微粒子及び磁性粉を上記抽出剤水溶液中に分散させる方法としては、特に制限されるものではなく、例えば該微粒子及び該磁性粉を上記抽出剤水溶液中に投入し、攪拌すればよい。攪拌条件は、特に制限されるものでなく、上記微粒子と上記磁性粉が上記抽出剤水溶液中に分散し、混合できれば良い。
このように重金属成分を含有する微粒子及び磁性粉を抽出剤水溶液中に分散させることによって、微粒子に含有される重金属成分が抽出剤水溶液中に抽出される。
The method for dispersing the fine particles and magnetic powder containing the heavy metal component separated in the step (1) in the extractant aqueous solution is not particularly limited. For example, the fine particles and the magnetic powder are dispersed in the extractant aqueous solution. It only has to be put in and stirred. The stirring conditions are not particularly limited as long as the fine particles and the magnetic powder can be dispersed and mixed in the aqueous extractant solution.
Thus, by dispersing the fine particles containing the heavy metal component and the magnetic powder in the extractant aqueous solution, the heavy metal component contained in the fine particles is extracted into the extractant aqueous solution.

重金属成分が抽出された抽出剤水溶液から、微粒子(重金属成分が抽出された微粒子)及び磁性粉を分離する方法は、特に制限されるものではなく、上記工程(1)における「重金属成分を含有する処理対象物と磁性粉を水中に分散させた分散液から、重金属成分を含有する微粒子及び磁性粉を磁気的な力で分離する方法」と同様に、ソレノイド電磁石、希土類磁石、フェライト磁石等を使用する方法を採用することができる。また、上記抽出剤として、可溶性の酸、塩又は錯形成剤を使用した場合には、ろ過等で微粒子(重金属成分が抽出された微粒子)及び磁性粉を分離することもできる。   The method for separating the fine particles (fine particles from which the heavy metal component is extracted) and the magnetic powder from the aqueous extractant solution from which the heavy metal component has been extracted is not particularly limited, and the “contains a heavy metal component in the above step (1)”. Use solenoid electromagnets, rare earth magnets, ferrite magnets, etc. in the same way as `` Method of separating fine particles containing heavy metal components and magnetic powder from a dispersion liquid in which processing object and magnetic powder are dispersed in water by magnetic force '' The method to do can be adopted. In addition, when a soluble acid, salt, or complexing agent is used as the extractant, fine particles (fine particles from which heavy metal components are extracted) and magnetic powder can be separated by filtration or the like.

また、重金属成分が抽出された抽出剤水溶液から、該重金属成分を回収する方法は、特に制限されるものではないが、鉛及びカドミウムは上記抽出剤水溶液の抽出剤として硫酸を使用すれば硫酸鉛、硫酸カドミウムとして回収できる。また、薬剤に硫化ナトリウムを使用すれば、鉛、カドミウム及び銅を硫化鉛、硫化カドミウム、硫化銅として回収できる。また、イオン交換樹脂、キレート樹脂を使用し、重金属成分を回収しても良い。
本工程(2)では、上記工程(1)において、重金属成分を含有する処理対象物中の重金属成分を多く含有する微粒子部分を、重金属成分を含まない大部分の処理対象物から分離してから、重金属成分を抽出剤で抽出するため、従来の上記(4)酸抽出法の様に多量の酸を必要とすることがなく、少量の抽出剤で重金属成分を効率的に抽出剤水溶液中に抽出することができる。
In addition, the method for recovering the heavy metal component from the aqueous extractant solution from which the heavy metal component has been extracted is not particularly limited, but lead and cadmium are lead sulfate if sulfuric acid is used as the extractant in the extractant aqueous solution. It can be recovered as cadmium sulfate. Moreover, if sodium sulfide is used for a chemical | medical agent, lead, cadmium, and copper can be collect | recovered as lead sulfide, cadmium sulfide, and copper sulfide. Moreover, you may collect | recover heavy metal components using an ion exchange resin and a chelate resin.
In this step (2), after separating the fine particle part containing a lot of heavy metal components in the processing object containing heavy metal components from the majority of the processing objects not containing heavy metal components in the above process (1). In order to extract heavy metal components with an extractant, a large amount of acid is not required as in the conventional (4) acid extraction method, and a heavy metal component is efficiently put into an extractant aqueous solution with a small amount of extractant. Can be extracted.

本発明の方法により重金属成分が除去された処理対象物及び本発明で使用された磁性粉は、処理対象物が焼却灰であればコンクリートの材料として再利用が可能になり、土壌であれば埋め戻すことが可能になる。磁性粉がマグネシウムフェライトやマグネタイト、鉄粉であれば、使用後、コンクリートの材料として再利用しても地中に埋めても環境への負荷は小さい。磁性粉は重金属成分除去後、本発明の方法に再使用しても差し支えない。   The processing object from which heavy metal components have been removed by the method of the present invention and the magnetic powder used in the present invention can be reused as a concrete material if the processing object is incinerated ash, and buried if it is soil. It becomes possible to return. If the magnetic powder is magnesium ferrite, magnetite, or iron powder, the environmental load is small even if it is reused as a concrete material after use or buried in the ground. The magnetic powder may be reused in the method of the present invention after removing heavy metal components.

次に本発明の実施例を挙げるが、本発明は以下の実施例に制限されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited to the following examples.

<マグネタイト粒子の製造>
80Lの反応器に10L/minの窒素ガスを吹き込みながら、0.6mol/minの塩化第一鉄水溶液40Lと該第一鉄塩に対し4.8molの塩化第二鉄を添加し、水溶液を良く混合した。次いで該第一鉄塩と第二鉄塩を含む水溶液中の第一鉄塩及び第二鉄塩に対し0.6当量の水酸化アルカリ及び0.6当量の炭酸アルカリを含む水溶液20Lを混合し、水酸化第一鉄と水酸化第二鉄コロイド及び炭酸第一鉄と水酸化第二鉄コロイドを含む懸濁液を得た。次いで、この懸濁液(第一鉄塩反応水溶液)を60℃に加熱し、60℃の反応温度を維持しながら,窒素ガスの流通を停止し、空気を20L/min通気して酸化反応を行った。得られたマグネタイト粒子をろ過し、60℃の脱イオン水200Lで水洗した。水洗したマグネタイト粒子の一部を窒素気流下、120℃で乾燥した。得られたマグネタイト粒子をマグネタイト2とした。このマグネタイト2の平均粒子径は45nmであり、比表面積は25.5m2 /gであり、保磁力は13.30kA/mであり、負荷磁場398kA/mにおける飽和磁化量は78.1Am2 /kgであった。
<Manufacture of magnetite particles>
While blowing 10 L / min of nitrogen gas into an 80 L reactor, 40 L of a 0.6 mol / min ferrous chloride aqueous solution and 4.8 mol of ferric chloride are added to the ferrous salt to improve the aqueous solution. Mixed. Next, 20 L of an aqueous solution containing 0.6 equivalent of alkali hydroxide and 0.6 equivalent of alkali carbonate was mixed with the ferrous salt and ferric salt in the aqueous solution containing the ferrous salt and ferric salt. A suspension containing ferrous hydroxide and ferric hydroxide colloid and ferrous carbonate and ferric hydroxide colloid was obtained. Next, this suspension (ferrous salt reaction aqueous solution) is heated to 60 ° C., while maintaining the reaction temperature of 60 ° C., the flow of nitrogen gas is stopped, and the oxidation reaction is performed by ventilating air at 20 L / min. went. The obtained magnetite particles were filtered and washed with 200 L of deionized water at 60 ° C. A portion of the magnetite particles washed with water was dried at 120 ° C. under a nitrogen stream. The obtained magnetite particles were named magnetite 2. The magnetite 2 has an average particle diameter of 45 nm, a specific surface area of 25.5 m 2 / g, a coercive force of 13.30 kA / m, and a saturation magnetization amount of 78.1 Am 2 / m at a load magnetic field of 398 kA / m. kg.

下記表1に示す製造条件とした以外は、マグネタイト2の製造法と同様にして、マグネタイト1及び3〜5をそれぞれ製造した。   Magnetites 1 and 3 to 5 were produced in the same manner as the production method of magnetite 2 except that the production conditions shown in Table 1 were used.

Figure 0004861718
Figure 0004861718

<マグネタイトの諸特性>
マグネタイト1〜5の諸特性を下記表2に示す。
<Characteristics of magnetite>
Various properties of magnetite 1 to 5 are shown in Table 2 below.

Figure 0004861718
Figure 0004861718

マグネタイトの諸特性の測定は以下の測定法で実施した。
〔平均粒子径〕
マグネタイトの平均粒子径は「透過型電子顕微鏡 H−7600」(日立製作所社製)で撮影された写真より測定した。
〔比表面積〕
マグネタイトの比表面積は「マルチソーブ−12」(ユアサアイオニックス)を使用し、BET法にて測定した。
〔pH〕
JIS(Z−8802)に準じて測定を行った。即ち、マグネタイト試料5gに純水105mLを入れ、5分間煮沸し、ろ過後、溶液のpHを「pHメーターHM−30G」(東亜DKK社製)で測定を行った。
〔磁気特性〕
マグネタイトの磁気特性は「振動試料磁力計 VSM−3S」(東英工業社製)を使用し、外部磁場398kA/ m(5kOe)で測定した。
Various properties of magnetite were measured by the following measuring methods.
[Average particle size]
The average particle size of magnetite was measured from a photograph taken with a “transmission electron microscope H-7600” (manufactured by Hitachi, Ltd.).
〔Specific surface area〕
The specific surface area of magnetite was measured by BET method using “Multisorb-12” (Yuasa Ionics).
[PH]
The measurement was performed according to JIS (Z-8802). That is, 105 mL of pure water was added to 5 g of a magnetite sample, boiled for 5 minutes, and after filtration, the pH of the solution was measured with “pH meter HM-30G” (manufactured by Toa DKK).
[Magnetic properties]
The magnetic properties of magnetite were measured using an “vibrating sample magnetometer VSM-3S” (manufactured by Toei Kogyo Co., Ltd.) with an external magnetic field of 398 kA / m (5 kOe).

実施例1<重金属成分を含む処理対象物の処理及び重金属成分の回収>
本実施例で使用した焼却灰(炉底灰及び飛灰)の蛍光X線分析による組成を下記表3に示す。
Example 1 <Treatment of processing object containing heavy metal component and recovery of heavy metal component>
Table 3 below shows the composition of the incinerated ash (furnace bottom ash and fly ash) used in this example by fluorescent X-ray analysis.

Figure 0004861718
Figure 0004861718

また、上記焼却灰の原子吸光分析による重金属成分の含有量を下記表4に示す。重金属成分の測定は、環境省告示第19号の操作に従い、「偏光ゼーマン原子吸光分光光度計Z-6100」(日立製作所社製)を用い重金属イオンを測定した。   Table 4 below shows the content of heavy metal components by atomic absorption analysis of the incinerated ash. The heavy metal component was measured according to the operation of Ministry of the Environment Notification No. 19 using “Polarized Zeeman Atomic Absorption Spectrophotometer Z-6100” (manufactured by Hitachi, Ltd.).

Figure 0004861718
Figure 0004861718

上記焼却灰10gと上記平均粒子径45nmのマグネタイト2 0.5gを脱イオン水100mL中に入れ、20mm長の攪拌子を入れ、攪拌速度1500rpmで20分間攪拌した。攪拌後、得られた懸濁液中に磁石を入れ、磁石に引き付けられた物質(重金属成分を含有する微粒子及びマグネタイト2)を懸濁液中から分離した(操作1) 。その後、懸濁液をろ過した。ろ過残渣は0.83gであった。該ろ過残渣中に含まれる重金属成分の量及びろ液中に含まれる重金属成分の量を下記表5に示す。   10 g of the incinerated ash and 0.5 g of magnetite 2 having an average particle diameter of 45 nm were placed in 100 mL of deionized water, a 20 mm long stirring bar was added, and the mixture was stirred at a stirring speed of 1500 rpm for 20 minutes. After stirring, a magnet was put into the obtained suspension, and the substances (fine particles containing heavy metal components and magnetite 2) attracted to the magnet were separated from the suspension (operation 1). Thereafter, the suspension was filtered. The filtration residue was 0.83g. The amount of heavy metal component contained in the filtration residue and the amount of heavy metal component contained in the filtrate are shown in Table 5 below.

先の操作1で磁石に引き付けられた物質を1mol/Lの硫酸水溶液100mL中に入れ、20mm長の攪拌子を入れ、攪拌速度1500rpmで20分間攪拌した。この操作で白色の硫酸鉛が硫酸水溶液中に析出した。攪拌後、液中に磁石を入れ、磁石に引き付けられた物質を取り除いた(操作2) 。磁石に引き付けられた物質中に含まれる重金属成分の量及び液中に回収された重金属成分の量を下記表5に示す。   The substance attracted to the magnet in the previous operation 1 was put into 100 mL of a 1 mol / L sulfuric acid aqueous solution, a 20 mm long stirring bar was added, and the mixture was stirred at a stirring speed of 1500 rpm for 20 minutes. By this operation, white lead sulfate was precipitated in the sulfuric acid aqueous solution. After stirring, a magnet was placed in the liquid, and the substance attracted to the magnet was removed (operation 2). Table 5 below shows the amount of the heavy metal component contained in the substance attracted to the magnet and the amount of the heavy metal component recovered in the liquid.

下記表5に本実施例における実験操作の重金属成分の物質収支を示す。   Table 5 below shows the mass balance of heavy metal components in the experimental operation in this example.

Figure 0004861718
Figure 0004861718

本発明によれば、例えば処理した焼却灰はセメントの材料に使用できるため二次的な廃棄物を生じることがなく、また重金属成分は抽出剤水溶液中に濃縮されるため有価金属として再度回収することができる。
According to the present invention, for example, the treated incineration ash can be used as a cement material, so that secondary waste is not generated, and the heavy metal component is concentrated in the extractant aqueous solution, so that it is recovered again as a valuable metal. be able to.

Claims (5)

重金属成分を含有する焼却灰、土壌又は下水汚泥である処理対象物と、負荷磁場398kA/mにおける飽和磁化量50〜180Am 2 /kgの磁性粉を水中に分散させた後、この分散液から、重金属成分を含有する微粒子及び磁性粉を磁気的な力で分離する工程(1)と、分離した重金属成分を含有する微粒子及び磁性粉を抽出剤水溶液中に分散させて、重金属成分を抽出剤水溶液中に抽出し、重金属成分を微粒子から抽出剤水溶液中に分離する工程(2)とからなることを特徴とする重金属成分を含有する焼却灰、土壌又は下水汚泥である処理対象物の処理及び該処理対象物からの重金属成分の回収方法。 After dispersing the processing object which is incineration ash containing heavy metal components , soil or sewage sludge, and magnetic powder having a saturation magnetization of 50 to 180 Am 2 / kg at a load magnetic field of 398 kA / m , from this dispersion, Step (1) for separating fine metal particles and magnetic powder containing a heavy metal component by magnetic force, and dispersing the separated fine particles and magnetic powder containing a heavy metal component in an extractant aqueous solution to extract the heavy metal component in an extractant aqueous solution. Extraction of the heavy metal component from the fine particles into the extractant aqueous solution (2), and the treatment of the treatment object as incinerated ash, soil or sewage sludge containing the heavy metal component, A method for recovering heavy metal components from a processing object. 工程(2)の後、微粒子及び磁性粉を磁気的な力で抽出剤水溶液から分離する請求項1記載の方法。   The method according to claim 1, wherein after step (2), the fine particles and the magnetic powder are separated from the extractant aqueous solution by magnetic force. 磁性粉が、平均粒子径10nm〜100μm及び比表面積0.01〜100m2gの磁性粉である請求項1又は2記載の方法。 The method according to claim 1, wherein the magnetic powder is a magnetic powder having an average particle diameter of 10 nm to 100 μm and a specific surface area of 0.01 to 100 m 2 / g . 磁性粉が、平均粒子径10〜500nm、比表面積0.1〜100m2/g及び負荷磁場398kA/mにおける飽和磁化量50〜90Am2/kgのマグネタイトである請求項1又は2記載の方法。 3. The method according to claim 1, wherein the magnetic powder is magnetite having an average particle size of 10 to 500 nm, a specific surface area of 0.1 to 100 m 2 / g and a saturation magnetization of 50 to 90 Am 2 / kg at a load magnetic field of 398 kA / m. 抽出剤として酸、塩又は錯形成剤を使用し、重金属成分が、亜鉛、銅、マンガン、鉛、カドミウム又はクロムである請求項1〜4の何れか一項に記載の方法。 The method according to any one of claims 1 to 4 , wherein an acid, a salt or a complexing agent is used as the extractant, and the heavy metal component is zinc, copper, manganese, lead, cadmium or chromium .
JP2006039704A 2006-02-16 2006-02-16 Treatment of processing object containing heavy metal component and method for recovering heavy metal component from the processing object Active JP4861718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039704A JP4861718B2 (en) 2006-02-16 2006-02-16 Treatment of processing object containing heavy metal component and method for recovering heavy metal component from the processing object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039704A JP4861718B2 (en) 2006-02-16 2006-02-16 Treatment of processing object containing heavy metal component and method for recovering heavy metal component from the processing object

Publications (2)

Publication Number Publication Date
JP2007216143A JP2007216143A (en) 2007-08-30
JP4861718B2 true JP4861718B2 (en) 2012-01-25

Family

ID=38493958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039704A Active JP4861718B2 (en) 2006-02-16 2006-02-16 Treatment of processing object containing heavy metal component and method for recovering heavy metal component from the processing object

Country Status (1)

Country Link
JP (1) JP4861718B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106587247A (en) * 2016-12-16 2017-04-26 武汉市纳米金磁科技有限责任公司 Fe3O4 magnetic sphere with large volume, and preparation method and application thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100926000B1 (en) * 2008-12-01 2009-11-09 충남대학교산학협력단 Water treatment equipment and method using magnet flocculator
KR100926005B1 (en) * 2009-02-06 2009-11-11 충남대학교산학협력단 Water treatment equipment and method using magnet with easy attachment and detachment of magnetized floc
KR100959584B1 (en) * 2009-11-20 2010-05-27 충남대학교산학협력단 Water treatment equipment by removing magnetized floc using perforate plate attached with magnets
CN102974604B (en) * 2012-12-17 2015-04-15 本溪清迈尾矿综合利用有限公司 Method and product for producing soil remediation fertilizer by utilizing high-silicon iron tailings
JP6334263B2 (en) * 2013-10-17 2018-05-30 Jfeミネラル株式会社 Purification method for heavy metal contaminated soil
CN113651485B (en) * 2021-08-18 2023-05-16 云南云铜锌业股份有限公司 Method for removing heavy metals in water body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036826B2 (en) * 1976-07-22 1985-08-22 日本電気株式会社 Method for removing unstable heavy metals from incinerated fly ash
JP2949145B2 (en) * 1997-01-28 1999-09-13 工業技術院長 Metal ion scavenger and method for separating metal ions using the same
JP4639029B2 (en) * 2002-10-25 2011-02-23 戸田工業株式会社 Soil contaminated with toxic substances such as heavy metals, iron composite particle powder for purification treatment of soil and groundwater, its manufacturing method, purification agent containing the iron composite particle powder, its manufacturing method and soil contaminated with toxic substances such as heavy metals Groundwater purification method
JP4274931B2 (en) * 2003-12-22 2009-06-10 西日本技術開発株式会社 Wastewater treatment equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106587247A (en) * 2016-12-16 2017-04-26 武汉市纳米金磁科技有限责任公司 Fe3O4 magnetic sphere with large volume, and preparation method and application thereof

Also Published As

Publication number Publication date
JP2007216143A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP4861718B2 (en) Treatment of processing object containing heavy metal component and method for recovering heavy metal component from the processing object
Ramprasad et al. Strategies and options for the sustainable recovery of rare earth elements from electrical and electronic waste
EP3572533A1 (en) Method for eluting calcium from steelmaking slag, and method for collecting calcium from steelmaking slag
Liu et al. Recovery and separation of rare earths and boron from spent Nd-Fe-B magnets
JP4519665B2 (en) Recovery method for heavy metal components
CN109368854A (en) A method of the low cost harmless treatment of spent acid containing arsenic
JP5753960B2 (en) Radioactive cesium decontaminant and method for removing radioactive cesium
Perez et al. ORP-monitored magnetite formation from aqueous solutions at low temperatures
JP2005028281A (en) Composite adsorbent and method for wastewater treatment by using the adsorbent
US5221323A (en) Method of producing magnetic powders from heavy metal sludges
CN108640196A (en) A kind of method that depth removes arsenic in water removal
Xiang et al. Hydrothermal formation of Ni-Zn ferrite from heavy metal co-precipitates
CN110302744A (en) A kind of Metallurgical Waste Water magnetic nanometer adsorbent and preparation method thereof
CN114031239B (en) Method for separating multiple metals in plasma fused soot elution wastewater
JP2012210559A (en) Clarifying agent for clarification treatment of soil/ground water, method for producing the same, method for transporting the same and method for clarification treatment of soil/ground water
JP4639029B2 (en) Soil contaminated with toxic substances such as heavy metals, iron composite particle powder for purification treatment of soil and groundwater, its manufacturing method, purification agent containing the iron composite particle powder, its manufacturing method and soil contaminated with toxic substances such as heavy metals Groundwater purification method
CN111547777B (en) Method for removing arsenic in contaminated acid by ferroferric oxide/kaolin nanocomposite
JP2005021882A (en) Iron composite particle powder for cleaning soil and underground water, its manufacturing method, cleaning agent containing the iron composite particle powder, its manufacturing method and cleaning method for soil and underground water
WO2019107116A1 (en) Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag
JP4706828B2 (en) Method and apparatus for treating nitrate-containing water
Chaukura Strategies and options towards the sustainable recovery of rare earth elements from electrical and electronic waste.
Narasimhan et al. Synthesis of manganese zinc ferrite using ferrous pickle liquor and pyrolusite ore
TW201245054A (en) Resourcization treatment method for heavy metal-containing alkaline sludge
Rybak et al. Characteristics of Some Selected Methods of Rare Earth Elements Recovery from Coal Fly Ashes. Metals 2021, 11, 142
JP2015073988A (en) Ferrite adsorbent used for adsorbing rare-earth element and method for adsorbing rare-earth element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

R150 Certificate of patent or registration of utility model

Ref document number: 4861718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250