JP2016117592A - Magnetized zeolite, method for manufacturing the same, and selective and specific capturing method of cesium - Google Patents

Magnetized zeolite, method for manufacturing the same, and selective and specific capturing method of cesium Download PDF

Info

Publication number
JP2016117592A
JP2016117592A JP2013083772A JP2013083772A JP2016117592A JP 2016117592 A JP2016117592 A JP 2016117592A JP 2013083772 A JP2013083772 A JP 2013083772A JP 2013083772 A JP2013083772 A JP 2013083772A JP 2016117592 A JP2016117592 A JP 2016117592A
Authority
JP
Japan
Prior art keywords
zeolite
magnetized
cesium
soil
type zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013083772A
Other languages
Japanese (ja)
Inventor
宏通 青野
Hiromichi Aono
宏通 青野
逸見 彰男
Akio Henmi
彰男 逸見
山本 徹
Toru Yamamoto
徹 山本
直人 松枝
Naoto Matsueda
直人 松枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ehime University NUC
Original Assignee
Ehime University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehime University NUC filed Critical Ehime University NUC
Priority to JP2013083772A priority Critical patent/JP2016117592A/en
Priority to PCT/JP2014/059649 priority patent/WO2014168048A1/en
Publication of JP2016117592A publication Critical patent/JP2016117592A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/01Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • B03C1/14Magnetic separation acting directly on the substance being separated with cylindrical material carriers with non-movable magnets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • B01J2220/4887Residues, wastes, e.g. garbage, municipal or industrial sludges, compost, animal manure; fly-ashes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide zeolite and a method for manufacturing thereof by which radioactive cesium in soil or in liquid containing soil can be efficiently captured selectively and specifically.SOLUTION: Alkali solution 7 is added to zeolite raw material 5 containing burned ash of coal or burned ash of papermaking sludge to soften the surface of burned ash. The zeolite raw material 5 in which the surface of burned ash is softened and magnetite nano fine particles are mixed and heated. Thus, magnetized zeolite 13 which is a composite material of magnetite nano fine particles 11 and Na-P1 type zeolite 9 is obtained. The magnetized zeolite 13 has a structure that the magnetite nano fine particles 11 are confined in boundaries of a polycrystal body of the Na-P1 type zeolite 9 or a structure that the magnetite nano fine particles 11 are partially substituted in a crystal of the Na-P1 type zeolite 9 to form a nano composite body, or both of the structures.SELECTED DRAWING: Figure 1

Description

本発明は、磁化ゼオライト及びその製造方法並びにセシウムの選択特異的捕獲方法に関するものである。   The present invention relates to a magnetized zeolite, a method for producing the same, and a method for selectively capturing cesium.

原子力発電所の事故等によって放射性核種で汚染された土壌から放射性核種の1つである放射性セシウムを除去するための除染方法が要求されている。放射性セシウムの除染方法の1つとしてゼオライトを利用することが考えられている。ゼオライトは、電気的親和力によりセシウムに対して吸着作用をもつことが知られている(例えば特許文献1から3を参照。)。   There is a demand for a decontamination method for removing radiocesium, one of the radionuclides, from soil contaminated with radionuclides due to accidents at nuclear power plants and the like. As one of the methods for decontaminating radioactive cesium, it is considered to use zeolite. It is known that zeolite has an adsorbing action on cesium due to electric affinity (see, for example, Patent Documents 1 to 3).

ゼオライトは、結晶構造中に無数の孔隙をもつアルミノ珪酸塩であって、M−Al−Si−O(Mはアルカリ金属又はアルカリ土類金属)から成る物質である。ゼオライトに関し、Si/Al比が小さい程、同像置換によってゼオライト骨格が負に帯電し、それを補償するためにMプラスイオンが必要となる。また、ゼオライトは、Si/Al比が小さい程、陽イオン交換容量(CEC;Cation Exchange Capacity)が向上する。   Zeolite is an aluminosilicate having an infinite number of pores in its crystal structure, and is a substance composed of M-Al-Si-O (M is an alkali metal or alkaline earth metal). With respect to zeolite, the smaller the Si / Al ratio, the more negatively charged the zeolite skeleton is due to isomorphous substitution, and M plus ions are required to compensate for it. In addition, the cation exchange capacity (CEC) of zeolite increases as the Si / Al ratio decreases.

また、流体中に混合されたゼオライトを回収する方法として、ゼオライトと磁性粒子とを含む吸着剤を用い、磁選によって吸着剤を回収する方法が知られている(例えば特許文献4から6を参照。)。   Further, as a method for recovering zeolite mixed in a fluid, a method is known in which an adsorbent containing zeolite and magnetic particles is used and the adsorbent is recovered by magnetic separation (see, for example, Patent Documents 4 to 6). ).

特開平10−15401号公報Japanese Patent Laid-Open No. 10-15401 特開平8−271692号公報JP-A-8-271692 特開平6−186396号公報JP-A-6-186396 特開2005−177709号公報JP 2005-177709 A 特開2005−137973号公報JP 2005-137773 A 特開2007−234097号公報JP 2007-234097 A

稲田幹、北條純一,「石炭灰からのゼオライト合成」,材料の科学と工学,日本材料科学会,2006年,第43巻,第1号,p.14−19Inada Miki, Hokujo Junichi, “Zeolite Synthesis from Coal Ash”, Materials Science and Engineering, Japan Society for Materials Science, 2006, Vol. 43, No. 1, p. 14-19

しかし、天然ゼオライト等の一般的なゼオライトは、セシウムイオンの捕獲能が電気的親和力のみに頼っているために弱い。また、一般的なゼオライトは、陽イオンならば種類を問わずに捕獲するので、セシウムイオンを選択的に捕獲することができない。また、一般的なゼオライトは、土壌中の粘土層間に取り込まれているセシウムを、粘土層間から引き出してまで、ゼオライトに引きつける能力はない。   However, a general zeolite such as natural zeolite is weak because the capturing ability of cesium ions depends only on electric affinity. Moreover, since a general zeolite captures regardless of a kind if it is a cation, it cannot selectively capture a cesium ion. Moreover, general zeolite does not have the ability to attract cesium taken in between clay layers in soil until it is drawn out from the clay layers.

一般的なゼオライトのセシウムイオンの捕獲能が低い理由として、2つの理由が考えられる。
1つは、一般的なゼオライトは陽イオンならば種類を問わずに捕獲するので、ゼオライトの捕獲容量の目安となる陽イオン交換容量(CEC値)がすぐに容量値いっぱいとなるため、目的とするセシウムイオンに対して充分働けないことである。
There are two possible reasons why the cesium ion capture ability of a general zeolite is low.
One is that, since general zeolites can be captured regardless of the type if they are cations, the cation exchange capacity (CEC value), which is a standard for the capture capacity of zeolites, will soon fill the capacity value. It does not work well against cesium ions.

もう1つは、一般的なゼオライトは、セシウムイオンの捕獲能が電気的親和力のみに頼っているために弱く、また、物理的形状のゼオライト孔隙がセシウムイオンの直径(3.6Å(オングストローム)程度)に対して大きすぎたり小さすぎたりするなど、捕獲条件に適合しているとは言いがたいことである。   The other is that general zeolite is weak because the trapping ability of cesium ions relies only on electric affinity, and the zeolite pores of physical shape are about the diameter of cesium ions (3.6 angstroms). ) Is too large or too small to meet the capture conditions.

例えば、天然ゼオライトの1つであるモルデナイト(Si/Al比は5程度)は、陽イオンの捕獲容量であるCECが120〜150meq/100g(SI単位はcmol(+)・kg-1)と大きいが、結晶孔隙が5.5〜8.0Åであり、セシウムイオンの直径(3.6Å)よりも大きいために、放射性セシウムの捕獲固定能が弱い。 For example, mordenite (Si / Al ratio is about 5), which is one of natural zeolites, has a large CEC of 120 to 150 meq / 100 g (SI unit is cmol (+) · kg −1 ), which is a cation capture capacity. However, since the crystal pores are 5.5 to 8.0 、 and larger than the diameter of cesium ions (3.6 Å), the capture and fixing ability of radioactive cesium is weak.

また、放射性セシウムによる汚染が懸念されている福島の土壌は、主に花崗岩質が風化した「まさ土」土壌である。「まさ土」土壌のCECは20程度であり、「まさ土」土壌が風化した長石起因の粘土鉱物カオリナイトは、CECが3〜15meq/100gである。また、雲母起因の粘土鉱物イライトは、CECが10〜40meq/100gである。さらに、イライトが変質した粘土鉱物バーミキュライトは、吸着容量の目安であるCEC値が100〜150meq/100gと比較的大きいのに加えて、2:1型粘土鉱物の特性である層間膨張をし、放射性セシウムイオンを容易に層間に取り込む性質がある。したがって、このような土壌からセシウムを遊離捕獲することは困難であった。   In addition, the soil in Fukushima, where there is concern about contamination by radioactive cesium, is “masa soil” that is mainly weathered granite. The CEC of the “masa soil” is about 20, and the CEC of the clay mineral kaolinite derived from feldspar weathered from the “masa soil” is 3 to 15 meq / 100 g. The mica-derived clay mineral illite has a CEC of 10 to 40 meq / 100 g. Furthermore, the clay mineral vermiculite with altered illite has a relatively large CEC value of 100 to 150 meq / 100 g, which is a measure of the adsorption capacity, and also expands the interlayer, which is a characteristic of 2: 1 type clay minerals. It has the property of easily incorporating cesium ions between layers. Therefore, it was difficult to capture cesium free from such soil.

本発明は、土壌中又は土壌を含む液中の放射性セシウムを効率よく捕獲できる磁化ゼオライト及びその製造方法並びにセシウムの捕獲方法を提供することを目的とする。   An object of the present invention is to provide a magnetized zeolite capable of efficiently capturing radioactive cesium in soil or a liquid containing soil, a method for producing the same, and a method for capturing cesium.

本願発明者らは、天然及び人工を含め多数の種類があるゼオライトのうち、Na−P1型ゼオライトがセシウムイオン(直径は3.6Å)と同じ大きさの結晶孔隙を無数に有することにより、セシウムイオンを選択特異的に捕獲固定する能力があることを見出した。Na−P1型ゼオライトは例えば非特許文献1に開示されている。   Among the various types of zeolites, including natural and artificial, the inventors of the present application have innumerable crystal pores having the same size as that of cesium ions (diameter: 3.6 mm) in the Na-P1 type zeolite. It was found that it has the ability to selectively capture and fix ions selectively. Na-P1 type zeolite is disclosed in Non-Patent Document 1, for example.

本発明に係る磁化ゼオライトの製造方法は、石炭の焼却灰又は製紙スラッジの焼却灰を含むゼオライト原料にアルカリ溶液を加えて上記焼却灰の表面を軟化させたものと、マグネタイトナノ微粒子とを混合して加熱処理することによってマグネタイトナノ微粒子とNa−P1型ゼオライトの複合材料である磁化ゼオライトを得ることを特徴とする。   A method for producing a magnetized zeolite according to the present invention comprises mixing a zeolite raw material containing coal incineration ash or paper sludge incineration ash with an alkali solution to soften the surface of the incineration ash and magnetite nanoparticles. The magnetized zeolite, which is a composite material of magnetite nanoparticles and Na-P1 type zeolite, is obtained by heat treatment.

本発明の磁化ゼオライトの製造方法において、上記ゼオライト原料は、アルミン酸ナトリウム及びアルミニウム化合物のうち1つ又は複数を用いてSi/Al比が2以下に調整されたものである例を挙げることができる。   In the method for producing a magnetized zeolite of the present invention, the zeolite raw material may be an example in which the Si / Al ratio is adjusted to 2 or less using one or more of sodium aluminate and an aluminum compound. .

本発明に係る磁化ゼオライトは、本発明の磁化ゼオライトの製造方法によって得られた磁化ゼオライトであって、Na−P1型ゼオライト多結晶体の粒界にマグネタイトナノ微粒子が閉じ込められている、もしくはNa−P1型ゼオライト結晶内でマグネタイトナノ微粒子が一部置換してナノ複合体が形成されている、又はそれらの両方の構造をもつマグネタイトナノ微粒子とNa−P1型ゼオライトの複合材料であることを特徴とする。   The magnetized zeolite according to the present invention is a magnetized zeolite obtained by the method for producing a magnetized zeolite of the present invention, and magnetite nanoparticles are confined at the grain boundary of the Na-P1 type zeolite polycrystal, or Na- A magnetite nanoparticle is partially substituted in a P1-type zeolite crystal to form a nanocomposite, or is a composite material of a magnetite nanoparticle and Na-P1-type zeolite having both structures. To do.

本発明に係るセシウムの捕獲方法は、本発明の磁化ゼオライトを土壌中又は土壌を含む液中に混合した後、磁選によって回収することにより、土壌中又は土壌を含む液中の放射性セシウムを選択特異的に捕獲することを特徴とする。   The method for capturing cesium according to the present invention is a method for selectively treating radioactive cesium in soil or liquid containing soil by collecting the magnetized zeolite of the present invention in soil or liquid containing soil and recovering it by magnetic separation. It is characterized by capturing.

本発明の磁化ゼオライト及びその製造方法は、土壌中又は土壌を含む液中の放射性セシウムを効率よく捕獲できるマグネタイトナノ微粒子とNa−P1型ゼオライトの複合材料である磁化ゼオライトを提供できる。   The magnetized zeolite and the production method thereof of the present invention can provide a magnetized zeolite which is a composite material of magnetite nanoparticles and Na-P1 type zeolite capable of efficiently capturing radioactive cesium in soil or in a liquid containing soil.

本発明のセシウムの捕獲方法は、本発明の磁化ゼオライトを用いて、土壌中又は土壌を含む液中の放射性セシウムを効率よく捕獲できる。さらに、土壌中又は土壌を含む液中に混合されたNa−P1型ゼオライトは磁選によって回収されるので、本発明のセシウムの捕獲方法は、セシウムを捕獲したゼオライトの回収が容易になる。   The method for capturing cesium of the present invention can efficiently capture radioactive cesium in soil or in a liquid containing soil using the magnetized zeolite of the present invention. Furthermore, since the Na-P1 type zeolite mixed in the soil or the liquid containing the soil is recovered by magnetic separation, the method for capturing cesium according to the present invention facilitates the recovery of the zeolite capturing cesium.

磁化ゼオライトの製造方法の一実施例を説明するための模式的な図である。It is a schematic diagram for demonstrating one Example of the manufacturing method of a magnetized zeolite. Na−P1型ゼオライトの骨格構造モデルを示す図である。It is a figure which shows the frame | skeleton structure model of Na-P1 type | mold zeolite. 溶液中でのNa−P1型ゼオライトのセシウムイオン及びストロンチウムイオンの捕獲能を調べた結果を示す図である。It is a figure which shows the result of having investigated the capture ability of the cesium ion and strontium ion of Na-P1 type | mold zeolite in a solution. 土壌中のセシウムに対するNa−P1型ゼオライトの捕獲能を調べた結果を示す図である。It is a figure which shows the result of having investigated the capture ability of the Na-P1 type | mold zeolite with respect to the cesium in soil. セシウムを捕獲した磁化ゼオライトの回収方法を説明するための概念図である。It is a conceptual diagram for demonstrating the collection | recovery method of the magnetized zeolite which captured the cesium. 本発明の磁化ゼオライトを用いた磁選を複数回行なったときの、土壌中の放射性セシウム濃度の変化を示す図である。It is a figure which shows the change of the radioactive cesium density | concentration in soil when the magnetic separation using the magnetized zeolite of this invention is performed in multiple times.

図1は、磁化ゼオライトの製造方法の一実施例を説明するための模式的な図である。
例えば、塩化(II)鉄もしくは塩化(III)鉄又はその両方を含む鉄塩溶液1に2mol/L(モル/リットル)の水酸化ナトリウム溶液3を添加し、100℃の条件で混合して、共沈法によりマグネタイトナノ微粒子の分散液を得た。得られたマグネタイトナノ微粒子の平均粒径は約30nm(ナノメートル)である。
FIG. 1 is a schematic diagram for explaining one embodiment of a method for producing magnetized zeolite.
For example, 2 mol / L (mol / liter) sodium hydroxide solution 3 is added to iron salt solution 1 containing iron (II) chloride or iron (III) chloride or both, and mixed at 100 ° C., A dispersion of magnetite nanoparticles was obtained by coprecipitation. The average particle size of the obtained magnetite nanoparticles is about 30 nm (nanometers).

例えば蛍光X線分析により予めSi/Al比が調べられた石炭焼却灰に、Si/Al比が2になるように水酸化アルミニウムを混合してゼオライト原料5を得た。ゼオライト原料5に2mol/Lの水酸化ナトリウム溶液7を添加し、室温で24時間放置した。これにより、表面が軟化した焼却灰を含むゼオライト原料を得た。   For example, zeolite raw material 5 was obtained by mixing coal incinerated ash whose Si / Al ratio was previously examined by fluorescent X-ray analysis with aluminum hydroxide so that the Si / Al ratio was 2. A 2 mol / L sodium hydroxide solution 7 was added to the zeolite raw material 5 and allowed to stand at room temperature for 24 hours. Thereby, the zeolite raw material containing the incinerated ash whose surface was softened was obtained.

マグネタイトナノ微粒子と、表面が軟化した焼却灰を含むゼオライト原料とを混合し、100℃、24時間の条件で加熱還流(加熱処理)した。これにより、Na−P1型ゼオライト9とマグネタイトナノ微粒子11の複合材料である磁化ゼオライト13を得た。   Magnetite nanoparticles and a zeolite raw material containing incinerated ash whose surface was softened were mixed and heated to reflux (heat treatment) at 100 ° C. for 24 hours. Thereby, the magnetized zeolite 13 which is a composite material of the Na-P1-type zeolite 9 and the magnetite nanoparticle 11 was obtained.

磁化ゼオライト13において、Na−P1型ゼオライト9とマグネタイトナノ微粒子11のモル比(Na−P1型ゼオライト:マグネタイト)は約7:3であった。Na−P1型ゼオライト9の粒径は数十μm(マイクロメートル)程度であった。また、マグネタイトナノ微粒子11の粒径は数十nm程度であった。   In the magnetized zeolite 13, the molar ratio of Na-P1 type zeolite 9 and magnetite nanoparticle 11 (Na-P1 type zeolite: magnetite) was about 7: 3. The particle size of the Na-P1 type zeolite 9 was about several tens of micrometers (micrometers). The particle size of the magnetite nanoparticle 11 was about several tens of nm.

磁化ゼオライト13において、Na−P1型ゼオライト9の結晶内にマグネタイトナノ微粒子11が一部置換して、ナノ複合体が形成されている。また、Na−P1型ゼオライト9の多結晶体の粒界にマグネタイトナノ微粒子11が閉じ込められている。
このように、磁化ゼオライト13は、Na−P1型ゼオライト粒子とマグネタイトナノ微粒子とが単に混合されたものとは構造が異なっている。
In the magnetized zeolite 13, the magnetite nanoparticle 11 is partially substituted in the crystal of the Na—P1 type zeolite 9 to form a nanocomposite. In addition, magnetite nanoparticles 11 are confined in the grain boundaries of the polycrystalline Na-P1-type zeolite 9.
Thus, the structure of the magnetized zeolite 13 is different from that obtained by simply mixing Na-P1-type zeolite particles and magnetite nanoparticles.

この実施例では、マグネタイトナノ微粒子とゼオライト原料5とを混合して加熱処理する前に、ゼオライト原料5に含まれる焼却灰の表面を軟化させる前処理を行なっている。この前処理を行なうことにより、混合及び加熱処理によってNa−P1型ゼオライト9が合成される際に、上記前処理を行なわない場合に比べて、Na−P1型ゼオライト9の結晶にマグネタイトナノ微粒子11の微粒子が取り込まれやすくなる。   In this embodiment, before the magnetite nanoparticles and the zeolite raw material 5 are mixed and heat-treated, a pretreatment for softening the surface of the incinerated ash contained in the zeolite raw material 5 is performed. By performing this pretreatment, when the Na-P1 type zeolite 9 is synthesized by mixing and heat treatment, the magnetite nanoparticles 11 are added to the crystals of the Na-P1 type zeolite 9 as compared with the case where the pretreatment is not performed. The fine particles are easily taken up.

また、石炭焼却灰に対して水酸化アルミニウムを用いたSi/Al比の調整をしない場合、マグネタイトナノ微粒子とNa−P1型ゼオライトの複合材料のほかにムライトなどの不純物を多く含む磁化ゼオライトが得られた。ゼオライト原料に対するSi/Al比の調整作業の省略は、製造方法の簡略化や、アルミニウム化合物の添加を行なわないことなどから、磁化ゼオライトの製造コストを下げることが可能である、などの利点がある。   In addition, when the Si / Al ratio using aluminum hydroxide is not adjusted for the coal incineration ash, a magnetized zeolite containing a large amount of impurities such as mullite in addition to the composite material of magnetite nanoparticles and Na-P1 type zeolite is obtained. It was. Omission of the Si / Al ratio adjustment work for the zeolite raw material has advantages such as simplification of the manufacturing method and the absence of the addition of an aluminum compound, which can reduce the manufacturing cost of the magnetized zeolite. .

図2は、Na−P1型ゼオライトの骨格構造モデルを示す図である。
Na−P1型ゼオライト9の化学式は、非特許文献1ではNa6Al6Si1032・12H2Oとして述べられている。Na−P1型ゼオライト9の構造の基本的な単位はSiO4又はAlO4の同じ四面体構造である。したがって、Na−P1型ゼオライト9は、Si/Al比がある程度変化しても、Na−P1型ゼオライト構造を維持することができる。
FIG. 2 is a diagram showing a framework structure model of Na—P1 type zeolite.
The chemical formula of the Na-P1 type zeolite 9 is described as Na 6 Al 6 Si 10 O 32 · 12H 2 O in Non-Patent Document 1. The basic unit of the structure of the Na—P1 type zeolite 9 is the same tetrahedral structure of SiO 4 or AlO 4 . Therefore, the Na-P1 type zeolite 9 can maintain the Na-P1 type zeolite structure even if the Si / Al ratio changes to some extent.

Na−P1型ゼオライト9の結晶孔隙は、3.6Å程度であり、セシウムイオンの直径とほぼ同じである。したがって、Na−P1型ゼオライト9はセシウムイオンに対して特に優れた選択捕獲特性をもっている。   The crystal pores of the Na-P1 type zeolite 9 are about 3.6 cm, which is almost the same as the diameter of cesium ions. Therefore, the Na-P1-type zeolite 9 has a particularly excellent selective capture characteristic with respect to cesium ions.

また、Na−P1型ゼオライト9のSi/Al比は2よりも小さい。すなわち、Na−P1型ゼオライト9は高いCECをもつ。Na−P1型ゼオライト9のCECは250meq/100g以上である。なお、Na−P1型ゼオライトにおいてSi/Al比がさらに下げられると、Na−P1型ゼオライトのCECは400〜500meq/100gになることも可能である。   Moreover, the Si / Al ratio of the Na—P1 type zeolite 9 is smaller than 2. That is, the Na-P1 type zeolite 9 has a high CEC. The CEC of Na-P1 type zeolite 9 is 250 meq / 100 g or more. In addition, when the Si / Al ratio is further lowered in the Na—P1 type zeolite, the CEC of the Na—P1 type zeolite can be 400 to 500 meq / 100 g.

図3は、溶液中でのNa−P1型ゼオライトのセシウムイオン(Cs+)及びストロンチウムイオン(Sr2+)の捕獲能を調べた結果を示す図である。図3において、横軸は溶液50ml(ミリリットル)中へのゼオライト投入量(g)を示す。縦軸はセシウムイオン又はストロンチウムイオンの除去率(%)を示す。 FIG. 3 is a diagram showing the results of examining the capturing ability of cesium ions (Cs + ) and strontium ions (Sr 2+ ) of Na—P1 type zeolite in a solution. In FIG. 3, the horizontal axis indicates the amount of zeolite charged (g) in 50 ml (milliliter) of the solution. The vertical axis represents the removal rate (%) of cesium ions or strontium ions.

10mmol/Lの濃度のセシウムイオン又はストロンチウムイオンを含む溶液50ml中にNa−P1型ゼオライトを0.1g又は0.2g投入し、Na−P1型ゼオライトにセシウムイオン又はストロンチウムイオンを吸着させた。その後、遠心分離によってNa−P1型ゼオライトを除去した上澄み液について、セシウムイオン又はストロンチウムイオンの濃度を原子吸光度分析で測定した。   In 50 ml of a solution containing cesium ions or strontium ions at a concentration of 10 mmol / L, 0.1 g or 0.2 g of Na-P1 type zeolite was added, and cesium ions or strontium ions were adsorbed on the Na-P1 type zeolite. Thereafter, the concentration of cesium ion or strontium ion was measured by atomic absorption analysis for the supernatant from which Na-P1 type zeolite was removed by centrifugation.

セシウムイオンの除去率はそれぞれ99%であった。また、溶液50ml中に、Na−P1型ゼオライトを0.1g投入したときのストロンチウムイオンの除去率は95%、Na−P1型ゼオライトを0.2g投入したときのストロンチウムイオンの除去率は96%であった。   The removal rate of cesium ions was 99%. The removal rate of strontium ions when 0.1 g of Na-P1 type zeolite was added to 50 ml of the solution was 95%, and the removal rate of strontium ions when 0.2 g of Na-P1 type zeolite was added was 96%. Met.

このように、Na−P1型ゼオライトはセシウムイオンに対して高い捕獲能を示した。また、Na−P1型ゼオライトはストロンチウムイオンに対しても高い捕獲能を示すことがわかった。   Thus, the Na-P1 type zeolite showed a high capturing ability for cesium ions. Moreover, it turned out that Na-P1 type | mold zeolite shows high capture ability also with respect to strontium ion.

図4は、土壌中のセシウムに対するNa−P1型ゼオライトの捕獲能を調べた結果を示す図である。図4において、横軸は土壌に対するゼオライトの混合量(重量%)を示す。縦軸はセシウムイオンの溶出量(mmol・kg-1)を示す。セシウム固定土壌として、花崗岩質土壌にバーミキュライト(CEC:3〜15meq/100g)が10重量%で混合されたものを用いた。セシウムの捕獲能は、所定量のNa−P1型ゼオライトが混合されたセシウム固定土壌を2時間含水ミキシングした後、その土壌からのセシウムイオンの溶出量を測定することにより求められた。 FIG. 4 is a diagram showing the results of examining the capture ability of Na-P1 type zeolite for cesium in soil. In FIG. 4, the horizontal axis indicates the amount of zeolite mixed with the soil (% by weight). The vertical axis represents the cesium ion elution amount (mmol · kg −1 ). As cesium-fixed soil, granitic soil mixed with vermiculite (CEC: 3 to 15 meq / 100 g) at 10% by weight was used. Cesium capture ability was determined by mixing cesium-fixed soil mixed with a predetermined amount of Na-P1-type zeolite for 2 hours, and then measuring the amount of cesium ions eluted from the soil.

Na−P1型ゼオライトの混合量が0%(Cs飽和土壌)の場合に比べ、Na−P1型ゼオライトの混合量が0.1%の場合は23%、1%の場合は74%、10%の場合は85%のセシウムを捕獲することができた。これは、Na−P1型ゼオライトがCECの大きい土壌中からのセシウムの捕獲が可能であることを意味する。   Compared to the case where the mixing amount of Na-P1 type zeolite is 0% (Cs saturated soil), the mixing amount of Na-P1 type zeolite is 0.1%, 23%, the case of 1% is 74%, 10%. In the case of, 85% of cesium could be captured. This means that Na-P1 type zeolite can capture cesium from soil with a large CEC.

図3及び図4を参照して、磁化されていないNa−P1型ゼオライトのセシウム及びストロンチウムに対する捕獲能について説明した。本発明の磁化ゼオライトは、Na−P1型ゼオライト多結晶体の粒界にマグネタイトナノ微粒子が閉じ込められている、もしくはNa−P1型ゼオライト結晶内でマグネタイトナノ微粒子が一部置換してナノ複合体が形成されている、又はそれらの両方の構造をもつマグネタイトナノ微粒子とNa−P1型ゼオライトの複合材料である。本発明の磁化ゼオライトは、Na−P1型ゼオライト結晶を含んでいるので、セシウム及びストロンウムに対して、磁化されていないNa−P1型ゼオライトと同様の捕獲能を有する。   With reference to FIG. 3 and FIG. 4, the capturing ability of unmagnetized Na—P1 type zeolite with respect to cesium and strontium has been described. In the magnetized zeolite of the present invention, the magnetite nanoparticles are confined in the grain boundary of the Na-P1 type zeolite polycrystal, or the magnetite nanoparticles are partially substituted in the Na-P1 type zeolite crystal to form a nanocomposite. It is a composite material of magnetite nanoparticles and Na-P1-type zeolite formed or having both structures. Since the magnetized zeolite of the present invention contains Na-P1 type zeolite crystals, it has the same trapping ability with respect to cesium and stronium as Na-P1 type zeolite which is not magnetized.

図5は、セシウムを捕獲した磁化ゼオライトの回収方法を説明するための概念図である。
土壌粒子19に捕獲されたセシウム(Cs)21を含むセシウム汚染土壌に顆粒状の磁化ゼオライト13を混合し、さらに塩化カリウム等の遊離剤を加えて含水振とうを行ない、セシウム21を磁化ゼオライト13に捕獲させる。
FIG. 5 is a conceptual diagram for explaining a method for recovering magnetized zeolite capturing cesium.
Granular magnetized zeolite 13 is mixed with cesium-contaminated soil containing cesium (Cs) 21 captured by the soil particles 19, and a water-containing shake is added by adding a release agent such as potassium chloride. To capture.

例えば、マグネットプーリー23とドラムセパレーター25とを備えた磁選機を用いて、セシウム21を捕獲した磁化ゼオライト13と、セシウムが除去された土壌粒子19とを分離する。これにより、浄化された土壌粒子19が得られる。なお、磁選機はマグネットプーリー23とドラムセパレーター25とを備えたものに限定されず、どのような構造のものであってもよい。   For example, using a magnetic separator equipped with a magnet pulley 23 and a drum separator 25, the magnetized zeolite 13 capturing the cesium 21 and the soil particles 19 from which the cesium has been removed are separated. Thereby, the purified soil particle 19 is obtained. The magnetic separator is not limited to the one provided with the magnet pulley 23 and the drum separator 25, and may have any structure.

図6は、本発明の磁化ゼオライトを用いた磁選を複数回行なったときの、土壌中の放射性セシウム濃度の変化を示す図である。図6において、横軸は磁選回数を示す。縦軸は放射性セシウム濃度(%)を示す。   FIG. 6 is a diagram showing a change in the concentration of radioactive cesium in the soil when magnetic separation using the magnetized zeolite of the present invention is performed a plurality of times. In FIG. 6, the horizontal axis indicates the number of magnetic separations. The vertical axis represents the radioactive cesium concentration (%).

土壌として、放射能濃度が12000〜16000Bq/kg(ベクレル/キログラム)の土壌を用いた。4種類のサンプルA,B,C,Dは、放射性セシウムを土壌から一旦遊離させるために必要なカリウム塩水溶液やアンモニウム塩水溶液などの遊離剤の種類の違いを示している。   As the soil, soil having a radioactivity concentration of 12000 to 16000 Bq / kg (becquerel / kilogram) was used. The four types of samples A, B, C, and D show the difference in the types of release agents such as an aqueous potassium salt solution and an aqueous ammonium salt solution that are necessary for once releasing radioactive cesium from the soil.

サンプルAの遊離剤は0.1%塩化カリウムと4%シュウ酸を含んだ溶液である。サンプルBの遊離剤は0.1%塩化カリウムと4%シュウ酸と4%シュウ酸アンモニウムを含んだ溶液である。サンプルCの遊離剤は0.1%塩化カリウムと2%シュウ酸と2%シュウ酸アンモニウムを含んだ溶液である。サンプルDの遊離剤は0.1%塩化カリウムと4%シュウ酸アンモニウムを含んだ溶液である。各サンプルは、土壌2kgに、磁化ゼオライト200gと遊離剤2L(リットル)を混合して10分間攪拌したものである。   Sample A release agent is a solution containing 0.1% potassium chloride and 4% oxalic acid. Sample B release agent is a solution containing 0.1% potassium chloride, 4% oxalic acid and 4% ammonium oxalate. Sample C release agent is a solution containing 0.1% potassium chloride, 2% oxalic acid and 2% ammonium oxalate. The release agent for Sample D is a solution containing 0.1% potassium chloride and 4% ammonium oxalate. Each sample is obtained by mixing 2 kg of soil with 200 g of magnetized zeolite and 2 L (liter) of a release agent and stirring for 10 minutes.

各サンプルに対してそれぞれ3回の磁選を行なった。磁化ゼオライトと遊離剤の添加は初回のみで、2回目以降は磁選操作のみである。各サンプルとも、磁選回数が増すほど放射性セシウム濃度が小さくなった。3回の磁選操作により、約80%の放射性セシウムの除去に成功した。   Each sample was magnetically selected three times. The addition of magnetized zeolite and release agent is only the first time, and the second and subsequent times are only magnetic separation operations. In each sample, the concentration of radioactive cesium decreased as the number of magnetic separations increased. About 80% of the radioactive cesium was successfully removed by three magnetic separation operations.

なお、放射性セシウムを土壌から一旦遊離させるため遊離剤は、上記サンプルA,B,C,Dに用いられたものに限定されない。   In addition, since a radioactive cesium is once released from soil, a releasing agent is not limited to what was used for the said samples A, B, C, and D.

本発明のセシウムの捕獲方法は、福島の原子力発電所の事故に起因する放射性核種による土壌汚染に対して真の除染技術がない現状にあって、セシウム等の放射性元素のみを回収できる革新的な技術である。さらに、本発明のセシウムの捕獲方法は、大量、安価かつ使いやすさをもった普及適正のある技術として、現在の福島周辺の除染に即応する技術である。さらには、チェルノブイリなどの除染が十分には進んでいない地域でも役立つことが期待できる。   The method of capturing cesium of the present invention is an innovative method that can recover only radioactive elements such as cesium in the current situation where there is no true decontamination technology against soil contamination by radionuclides caused by an accident at a nuclear power plant in Fukushima. Technology. Furthermore, the method for capturing cesium according to the present invention is a technology that can be readily adapted to the current decontamination around Fukushima as a technology that is suitable for widespread use with a large amount, low cost, and ease of use. Furthermore, it can be expected to be useful even in areas where decontamination is not sufficiently advanced, such as Chernobyl.

上記実施例では、磁化ゼオライトを合成するためのゼオライト原料として石炭焼却灰を用いているが、石炭焼却灰に替えて製紙スラッジの焼却灰を用いてもマグネタイトナノ微粒子とNa−P1型ゼオライトの複合材料である磁化ゼオライトを合成できる。また、水ガラス、アルミン酸ナトリウム及びアルミニウム化合物のうち複数を用いてSi/Al比を2以下に調整した混合物を用いてマグネタイトナノ微粒子とNa−P1型ゼオライトの複合材料である磁化ゼオライトを合成することもできる。   In the above embodiment, coal incineration ash is used as a zeolite raw material for synthesizing magnetized zeolite, but even if paper incineration ash is used instead of coal incineration ash, a composite of magnetite nanoparticles and Na-P1 type zeolite is used. It is possible to synthesize magnetized zeolite as a material. Also, magnetized zeolite, which is a composite material of magnetite nanoparticles and Na-P1 type zeolite, is synthesized using a mixture of water glass, sodium aluminate, and aluminum compound and having a Si / Al ratio adjusted to 2 or less. You can also.

また、本発明の磁化ゼオライトの製造方法おいて、ゼオライト原料のSi/Al比を所望の値に調整するようにしてもよい。Si/Al比を調整するための材料は、珪素又はアルミニウムを含む化合物であり、好ましくは水ガラス、アルミン酸ナトリウム、アルミニウム化合物である。また、Si/Al比の値は、2以下であり、例えば2である。なお、合成用材料のSi/Al比の値は、マグネタイトナノ微粒子とNa−P1型ゼオライトの複合材料が合成される値であり、かつ2以下であれば、いくつであってもよい。   In the method for producing a magnetized zeolite of the present invention, the Si / Al ratio of the zeolite raw material may be adjusted to a desired value. The material for adjusting the Si / Al ratio is a compound containing silicon or aluminum, preferably water glass, sodium aluminate, or an aluminum compound. Moreover, the value of Si / Al ratio is 2 or less, for example, 2. The value of the Si / Al ratio of the synthesis material may be any value as long as the composite material of magnetite nanoparticles and Na-P1 type zeolite is synthesized and is 2 or less.

また、本発明の磁化ゼオライトの製造方法おいて、表面を軟化させた焼却灰を含むゼオライト原料に混合されるマグネタイトナノ微粒子の粒径は、例えば5〜200nm、好ましくは30nm以下である。
また、本発明の磁化ゼオライトの製造方法おいて、マグネタイトナノ微粒子は市販のものであってもよい。
Moreover, in the method for producing a magnetized zeolite of the present invention, the particle size of the magnetite nanoparticles mixed with the zeolite raw material containing the incinerated ash whose surface has been softened is, for example, 5 to 200 nm, preferably 30 nm or less.
In the method for producing a magnetized zeolite of the present invention, the magnetite nanoparticles may be commercially available.

また、本発明の磁化ゼオライトの製造方法おいて、アルカリ溶液は、水酸化ナトリウムに限定されず、他のアルカリ溶液、例えば水酸化カリウムであってもよい。   In the method for producing a magnetized zeolite of the present invention, the alkaline solution is not limited to sodium hydroxide, and may be another alkaline solution such as potassium hydroxide.

以上、本発明の実施例が説明されたが本発明はこれらに限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変更が可能である。   As mentioned above, although the Example of this invention was described, this invention is not limited to these, A various change is possible within the range of this invention described in the claim.

5 ゼオライト原料
7 水酸化ナトリウム溶液(アルカリ溶液)
9 Na−P1型ゼオライト
11 マグネタイトナノ微粒子
13 磁化ゼオライト
19 土壌粒子
21 セシウム
5 Zeolite raw material 7 Sodium hydroxide solution (alkali solution)
9 Na-P1-type zeolite 11 Magnetite nanoparticle 13 Magnetized zeolite 19 Soil particle 21 Cesium

Claims (4)

石炭の焼却灰又は製紙スラッジの焼却灰を含むゼオライト原料にアルカリ溶液を加えて前記焼却灰の表面を軟化させたものと、マグネタイトナノ微粒子とを混合して加熱処理することによってマグネタイトナノ微粒子とNa−P1型ゼオライトの複合材料である磁化ゼオライトを得ることを特徴とする磁化ゼオライトの製造方法。   Magnetite nanoparticles and Na by mixing an alkali solution to a zeolite raw material containing coal incineration ash or papermaking sludge incineration ash to soften the surface of the incineration ash, and mixing and heating the magnetite nanoparticles. A method for producing a magnetized zeolite, comprising obtaining a magnetized zeolite which is a composite material of P1 type zeolite. 前記ゼオライト原料は、アルミン酸ナトリウム及びアルミニウム化合物のうち1つ又は複数を用いてSi/Al比が2以下に調整されたものである請求項1に記載の磁化ゼオライトの製造方法。   2. The method for producing a magnetized zeolite according to claim 1, wherein the zeolite raw material has a Si / Al ratio adjusted to 2 or less using one or more of sodium aluminate and an aluminum compound. 請求項1又は2に記載された磁化ゼオライトの製造方法によって得られた磁化ゼオライトであって、Na−P1型ゼオライト多結晶体の粒界にマグネタイトナノ微粒子が閉じ込められている、もしくはNa−P1型ゼオライト結晶内でマグネタイトナノ微粒子が一部置換してナノ複合体が形成されている、又はそれらの両方の構造をもつマグネタイトナノ微粒子とNa−P1型ゼオライトの複合材料であることを特徴とする磁化ゼオライト。   Magnetized zeolite obtained by the method for producing a magnetized zeolite according to claim 1 or 2, wherein magnetite nanoparticles are confined at the grain boundary of the Na-P1 type zeolite polycrystal, or Na-P1 type Magnetization characterized in that a magnetite nanoparticle is partially substituted in a zeolite crystal to form a nanocomposite, or a composite material of a magnetite nanoparticle having both structures and a Na-P1 type zeolite. Zeolite. 請求項3に記載された磁化ゼオライトを土壌中又は土壌を含む液中に混合した後、磁選によって回収することにより、土壌中又は土壌を含む液中の放射性セシウムを選択特異的に捕獲することを特徴とするセシウムの選択特異的捕獲方法。   It is possible to selectively capture radioactive cesium in the soil or the liquid containing the soil by collecting the magnetized zeolite described in claim 3 in the soil or the liquid containing the soil and then collecting the magnetized zeolite by magnetic separation. A selective and specific method for capturing cesium.
JP2013083772A 2013-04-12 2013-04-12 Magnetized zeolite, method for manufacturing the same, and selective and specific capturing method of cesium Pending JP2016117592A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013083772A JP2016117592A (en) 2013-04-12 2013-04-12 Magnetized zeolite, method for manufacturing the same, and selective and specific capturing method of cesium
PCT/JP2014/059649 WO2014168048A1 (en) 2013-04-12 2014-04-01 Magnetized zeolite, production method therefor, and method for selective and specific capture of cesium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083772A JP2016117592A (en) 2013-04-12 2013-04-12 Magnetized zeolite, method for manufacturing the same, and selective and specific capturing method of cesium

Publications (1)

Publication Number Publication Date
JP2016117592A true JP2016117592A (en) 2016-06-30

Family

ID=51689458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083772A Pending JP2016117592A (en) 2013-04-12 2013-04-12 Magnetized zeolite, method for manufacturing the same, and selective and specific capturing method of cesium

Country Status (2)

Country Link
JP (1) JP2016117592A (en)
WO (1) WO2014168048A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058027A (en) * 2016-10-05 2018-04-12 東京電力ホールディングス株式会社 Cesium and strontium absorbent derived from coal ash, manufacturing method therefor and absorption method
JP2018122218A (en) * 2017-01-31 2018-08-09 Jfeスチール株式会社 Magnetic force screening method and apparatus
JP2018121748A (en) * 2017-01-30 2018-08-09 吉澤石灰工業株式会社 Antibacterial deodorization agent and antibacterial deodorization method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681633C1 (en) * 2018-04-27 2019-03-11 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) Method of obtaining granulated aluminosilicate adsorbent for cleaning of aqueous media from cesium cations
JP7390652B2 (en) 2019-02-08 2023-12-04 広島県公立大学法人 Method for preparing objects to be processed, method and apparatus for processing powder and granular materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137973A (en) * 2003-11-04 2005-06-02 Futaba Shoji Kk Magnetic adsorbent, its manufacturing method and water treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058027A (en) * 2016-10-05 2018-04-12 東京電力ホールディングス株式会社 Cesium and strontium absorbent derived from coal ash, manufacturing method therefor and absorption method
JP2018121748A (en) * 2017-01-30 2018-08-09 吉澤石灰工業株式会社 Antibacterial deodorization agent and antibacterial deodorization method
JP2018122218A (en) * 2017-01-31 2018-08-09 Jfeスチール株式会社 Magnetic force screening method and apparatus

Also Published As

Publication number Publication date
WO2014168048A1 (en) 2014-10-16

Similar Documents

Publication Publication Date Title
WO2013150851A1 (en) Zeolite and manufacturing method thereof, and method for selective and specific capture of cesium
JP5734807B2 (en) Method for treating radioactive cesium and radioactive strontium-containing substances
Seliman et al. Removal of some radionuclides from contaminated solution using natural clay: bentonite
US9744518B2 (en) Method of removing strontium cations from a water stream using an amorphous titanium silicate
WO2014168048A1 (en) Magnetized zeolite, production method therefor, and method for selective and specific capture of cesium
JP2014512258A (en) Sorption and separation of various substances by graphene oxide
He et al. Hydrothermal transformation of geopolymers to bulk zeolite structures for efficient hazardous elements adsorption
Perovskiy et al. Efficient extraction of multivalent cations from aqueous solutions into sitinakite-based sorbents
JP2016117050A (en) Inorganic polymer-made adsorbent and method for production thereof
Godelitsas et al. Uranium sorption from aqueous solutions on sodium-form of HEU-type zeolite crystals
JP2013120102A (en) Method for decontaminating soil contaminated with radioactive material
Goo et al. Bentonite alteration and retention of cesium and iodide ions by Ca-bentonite in alkaline and saline solutions
Yamada et al. Preparation of mordenite and its composite material with nano-sized magnetite from diatomites for radioactive Cs decontamination
JP6084829B2 (en) Method for producing radioactive material sorbent
Milyutin et al. Adsorption techniques for decontaminating liquid radioactive waste and radionuclide-contaminated natural water
El-Eswed et al. Alkali solid-state conversion of kaolin and zeolite to effective adsorbents for removal of lead from aqueous solution
Kwon et al. Decontamination of cesium from contaminated water using a selective adsorbent and magnetic separation
JP2019014613A (en) Silico-titanate molded body and method of producing the same, cesium or strontium adsorbent comprising silico-titanate molded body, and method of decontaminating radio active effluent using the adsorbent
Omerasević et al. Removal of Cs ions from aqueous solutions by using matrices of natural clinoptilolite and its safe disposal
İnan et al. Adsorption studies of radionuclides by Turkish minerals: A review
JP6213710B2 (en) Purification of soil and wastewater contaminated with hazardous substances
Zhang et al. Fabrication of hierarchically porous CHA-type zeolite composites derived from industrial solid waste for cesium removal
KR102031100B1 (en) Cesium adsorbent containing cray with magnetic nanoparticles
Misaelides et al. Interaction of granitic biotite with selected lanthanides and actinides
Hong et al. Surface Modification of Bentonite for the Improvement of Radionuclide Sorption