JP7390652B2 - Method for preparing objects to be processed, method and apparatus for processing powder and granular materials - Google Patents

Method for preparing objects to be processed, method and apparatus for processing powder and granular materials Download PDF

Info

Publication number
JP7390652B2
JP7390652B2 JP2020017589A JP2020017589A JP7390652B2 JP 7390652 B2 JP7390652 B2 JP 7390652B2 JP 2020017589 A JP2020017589 A JP 2020017589A JP 2020017589 A JP2020017589 A JP 2020017589A JP 7390652 B2 JP7390652 B2 JP 7390652B2
Authority
JP
Japan
Prior art keywords
magnetic
powder
soil
iron ions
fecl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020017589A
Other languages
Japanese (ja)
Other versions
JP2020128982A (en
Inventor
好治 三苫
寛之 石渡
将義 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd filed Critical Nishimatsu Construction Co Ltd
Publication of JP2020128982A publication Critical patent/JP2020128982A/en
Application granted granted Critical
Publication of JP7390652B2 publication Critical patent/JP7390652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、放射性物質に汚染された土壌など粉粒体の処理方法及び装置に関する。 TECHNICAL FIELD The present invention relates to a method and apparatus for processing powdery materials such as soil contaminated with radioactive substances.

東日本大震災に端を発する福島第一原発事故により、原発周辺地域への放射性物質(特に放射性セシウム、以降、放射性Cs)の飛散が深刻な環境問題を引き起こした。原発から放出した放射性Csは降雨により土壌に沈着し,それらは、(I)フミン物質や土壌粒子表面にイオン吸着、あるいは(II)2:1型粘土内部に捕捉された形態をとった。近年(I)の吸着形態にある放射性Csも、その多くは形態(II)として安定化され、仮置き場の汚染土壌(概算2,200万トン,うち2/3が農地土壌)を中間貯蔵施設に全て持ち込むことは非現実的と考えられ、今後、形態(II)の汚染土壌に対する小型化可能な減容化技術の開発が急務となっている。 Due to the Fukushima Daiichi Nuclear Power Plant accident triggered by the Great East Japan Earthquake, the scattering of radioactive materials (particularly radioactive cesium, hereinafter referred to as radioactive Cs) into areas surrounding the nuclear power plant caused serious environmental problems. Radioactive Cs released from nuclear power plants is deposited in the soil by rainfall, and it takes the form of (I) ion adsorption on humic substances and soil particle surfaces, or (II) trapped inside 2:1 type clay. In recent years, most of the radioactive Cs in adsorption form (I) has been stabilized as form (II), and contaminated soil from temporary storage sites (approximately 22 million tons, of which 2/3 is agricultural soil) is being transferred to interim storage facilities. It is considered unrealistic to bring all of the soil into the soil, and there is an urgent need to develop volume reduction technology that can be used to reduce the size of contaminated soil of type (II).

このようななか、事故後の除染技術の開発動向は3つに大別される。第1区分として「抽出/吸着法」系区分がある。最近では上記形態(II)の割合が増し,放射性Csの抽出が極めて困難となったため、亜臨界状態で土壌解砕を行い、溶存態Csを抽出分離する技術も開発された。しかしながら、亜臨界法は回分式のために十分な処理量を稼げない等課題がある。 Under these circumstances, trends in the development of post-accident decontamination technology can be roughly divided into three categories. The first category is the "extraction/adsorption method" category. Recently, the proportion of the above-mentioned form (II) has increased, making it extremely difficult to extract radioactive Cs. Therefore, a technology has been developed to extract and separate dissolved Cs by disintegrating soil in a subcritical state. However, the subcritical method has problems such as not being able to obtain sufficient throughput because it is a batch method.

一方で、土壌粒子に吸着した放射性Csを土壌微粒子ごと取り除く技術が先行している。なかでも「マイクロバブル浮選/分級法」がその代表例である(第2区分)。最近、より高度な懸濁水処理技術として、超電導磁気分離法による廃水中の土壌微粒子の分離技術も提案されている。これらは、大掛かりな廃水処理がプロセス下流に必須であることや根毛を多く含む農地土壌の処理に不向きであり、後者はコストや処理量に課題がある。 On the other hand, a technology that removes radioactive Cs adsorbed to soil particles along with soil fine particles is in the forefront. Among them, "microbubble flotation/classification method" is a typical example (category 2). Recently, a technology for separating soil particles in wastewater using superconducting magnetic separation has been proposed as a more advanced suspended water treatment technology. These methods require large-scale wastewater treatment downstream of the process and are unsuitable for treating agricultural soil containing a large amount of root hairs, and the latter has problems with cost and throughput.

第3区分に「加熱分離」あるいは「熱減容」処理のような乾式処理が挙げられる。例えば、黒雲母を主成分とする汚染土に土量と1/2~等量のCaClを加え、2時間、800℃弱の温度で加熱を行い、塩化Csとし分離する方法がある。この方法にも廃棄物量が多い等の技術課題がある。 The third category includes dry treatments such as "thermal separation" or "thermal volume reduction" treatment. For example, there is a method in which CaCl 2 in an amount of 1/2 to the same amount as the soil is added to contaminated soil whose main component is biotite, and the soil is heated at a temperature of slightly less than 800° C. for 2 hours to separate it as Cs chloride. This method also has technical issues such as a large amount of waste.

上記除染技術とは異なり、無廃水かつ常温で乾式土壌を分級し除染する方法がある(例えば特許文献1、2参照)。この方法は、汚染土壌と強磁性粉末とを混合し、これを磁選することで汚染土壌を分級するものである。放射性Csに汚染された土壌は、粒度の小さいものほど放射性Csの濃度が高いため、粒度の小さい汚染土壌を取り除くことで除染できる。 Different from the above decontamination techniques, there is a method of classifying and decontaminating dry soil without wastewater and at room temperature (see, for example, Patent Documents 1 and 2). This method classifies contaminated soil by mixing contaminated soil and ferromagnetic powder and magnetically separating the mixture. In soil contaminated with radioactive Cs, the smaller the particle size, the higher the concentration of radioactive Cs, so it can be decontaminated by removing the contaminated soil with small particle size.

特開2017-39123号公報JP 2017-39123 Publication 特開2017-113744号公報Japanese Patent Application Publication No. 2017-113744

特許文献1あるいは特許文献2に記載された方法は、廃水等を含め余分な廃棄物が新たに発生することもなく、また簡便で優れた方法と考えられるが、この方法は乾式ゆえに粉じんを生じやすくその対策が必要となる。また汚染土壌には、木くず、根毛等が含まれているためこれらの処理も必要となる。 The method described in Patent Document 1 or Patent Document 2 does not generate any additional waste including wastewater, and is considered to be a simple and excellent method, but since this method is a dry method, it generates dust. Easy measures are needed. Contaminated soil also contains wood chips, root hairs, etc., which must also be treated.

本発明の目的は、余分な廃棄物を発生させることなく簡単な操作で安価に実施可能な粉粒体の処理方法及び装置、その粉粒体の処理方法で使用可能な被処理物の調製方法を提供することである。 The purpose of the present invention is to provide a method and apparatus for processing powder and granular material that can be implemented at low cost with simple operations without generating excess waste, and a method for preparing a processed material that can be used in the method for processing powder and granular material. It is to provide law .

本発明は、被処理物を磁力選別可能に調製する方法であって、前記被処理物が粉粒体であり、前記粉粒体と2価の鉄イオンと3価の鉄イオンとが共存した状態でこれを200℃以上300℃以下の温度で加熱する加熱工程を含み、前記2価の鉄イオンは、2価の鉄イオンを含有する水溶液として与えられ、前記粉粒体の表面に磁性物質を生成・吸着させることを特徴とする被処理物の調製方法である。 The present invention is a method for preparing a material to be processed so as to be magnetically sortable, wherein the material to be processed is a powder or granule, and divalent iron ions and trivalent iron ions coexist with the powder or granule. The divalent iron ions are provided as an aqueous solution containing divalent iron ions, and the surface of the powder is coated with a magnetic substance . This is a method for preparing a processed material, which is characterized by producing and adsorbing .

本発明の被処理物の調製方法において、前記3価の鉄イオンは、前記粉粒体に含まれる鉄成分に由来のもの及び/又は前記水溶液に含まれる2価の鉄イオンからの化学変化によるものであることを特徴とする。 In the method for preparing a workpiece of the present invention, the trivalent iron ions are derived from iron components contained in the powder and/or are derived from chemical changes from divalent iron ions contained in the aqueous solution. It is characterized by being something.

本発明の被処理物の調製方法において、前記3価の鉄イオンが、3価の鉄イオンを含有する水溶液として与えられることを特徴とする。 The method for preparing a workpiece according to the present invention is characterized in that the trivalent iron ions are provided as an aqueous solution containing trivalent iron ions.

本発明の被処理物の調製方法において、前記2価の鉄イオンを含有する水溶液はアルカリ剤を含有し、又は本発明の被処理物の調製方法において、前記2価の鉄イオンを含有する水溶液及び/又は3価の鉄イオンを含有する水溶液はアルカリ剤を含有することを特徴とする。 In the method for preparing a workpiece of the present invention, the aqueous solution containing divalent iron ions contains an alkaline agent, or in the method for preparing a workpiece of the present invention, the aqueous solution containing divalent iron ions The aqueous solution containing and/or trivalent iron ions is characterized by containing an alkaline agent.

本発明の被処理物の調製方法において、前記粉粒体が有機物を含み、前記有機物は、前記加熱工程で炭化され、炭化物の表面に前記磁性物質が生成・吸着することを特徴とする。 In the method for preparing an object to be treated according to the present invention, the granular material contains an organic substance, the organic substance is carbonized in the heating step, and the magnetic substance is generated and adsorbed on the surface of the carbide.

本発明の被処理物の調製方法において、前記2価の鉄イオンを含有する水溶液及び/又は3価の鉄イオンを含有する水溶液、又はこれらにアルカリ剤を含有する水溶液を薬剤としたとき、下記(A)群の1つ以上を制御することにより前記粉粒体の表面に生成・吸着させる磁性物質の磁着力を制御することを特徴とする。
(A)2価の鉄イオン濃度,2価の鉄イオンに対する3価の鉄イオンの割合,アルカリ剤の種類,アルカリ剤の濃度,薬剤の添加量,粉粒体と薬剤との混合物に対する撹拌強度,薬剤添加後の静置時間,加熱温度,加熱時間,昇温速度,水溶液のアニオンの種類
In the method for preparing the object to be treated of the present invention, when the aqueous solution containing divalent iron ions and/or the aqueous solution containing trivalent iron ions, or the aqueous solution containing an alkaline agent in these is used as a chemical, the following It is characterized in that the magnetic attraction force of the magnetic substance generated and attracted to the surface of the powder or granule is controlled by controlling one or more of group (A).
(A) Divalent iron ion concentration, ratio of trivalent iron ions to divalent iron ions, type of alkali agent, concentration of alkali agent, amount of agent added, stirring intensity for the mixture of powder and granules and agent , standing time after drug addition, heating temperature, heating time, heating rate, type of anion in aqueous solution

本発明は、前記被処理物の調製方法により得られる被処理物を磁力選別により分級する分級工程を備え、前記粉粒体が土壌、焼却灰、汚泥、有機物、これら混合物、又はこれらに汚染物質が固着、吸着又は付着したものであることを特徴とする粉粒体の処理方法である。 The present invention includes a classification step of classifying the processed material obtained by the method for preparing the processed material by magnetic separation, and the powdery material is contaminated with soil, incineration ash, sludge, organic matter, a mixture thereof, or a mixture thereof. This is a method for treating powder or granular material characterized by a substance that is fixed, adsorbed, or adhered to .

本発明は、少なくとも2価の鉄イオンを含有する水溶液を含む薬剤と被処理物である粉粒体とを共存下で加熱し、前記粉粒体の表面に磁性物質を生成・吸着させる反応装置と、前記反応装置に前記薬剤を供給する薬剤供給装置と、を備える被処理物の調製装置と、前記被処理物の調製装置を介して得られる被処理物を磁力選別する磁選機と、を含み、前記粉粒体が土壌、焼却灰、汚泥、有機物、これら混合物、又はこれらに汚染物質が固着、吸着又は付着したものであることを特徴とする粉粒体の処理装置である。 The present invention provides a reaction device in which a chemical containing an aqueous solution containing at least divalent iron ions and a powder to be treated are heated in coexistence, and a magnetic substance is generated and adsorbed on the surface of the powder. and a drug supply device for supplying the drug to the reaction device; and a magnetic separator for magnetically sorting the processed material obtained through the processing material preparation device. The apparatus is characterized in that the powder and granular material is soil , incineration ash, sludge, organic matter, a mixture thereof, or a material to which pollutants are fixed, adsorbed, or adhered .

本発明によれば、余分な廃棄物を発生させることなく簡単な操作で安価に実施可能な粉粒体の処理方法及び装置、その粉粒体の処理方法で使用可能な被処理物の調製方法を提供することができる。
According to the present invention, there is provided a method and apparatus for processing powder and granular material that can be carried out at low cost with simple operations without generating excess waste, and a method for preparing a processed material that can be used in the method for processing powder and granular material. law can be provided.

本発明の実施の一形態としての粉粒体の処理方法を説明するフロー図である。FIG. 2 is a flow diagram illustrating a method for processing powder or granular material as an embodiment of the present invention. 本発明の実施の一形態としての粉粒体の処理装置1の構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram of a processing apparatus 1 for powder and granular material as an embodiment of the present invention. 本発明の実施例で実施した磁力選別の要領を示す模式図である。FIG. 2 is a schematic diagram illustrating the procedure for magnetic sorting performed in an example of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときのFeCl・4HOの添加量と磁着率増加比との関係を示す実験データである。It is experimental data showing the relationship between the amount of FeCl 2 .4H 2 O added and the magnetic susceptibility increase ratio when Masago soil is used as the test soil in the powder processing method of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときのFeClの添加量と磁着率増加比との関係を示す実験データである。It is experimental data showing the relationship between the amount of FeCl 3 added and the magnetic susceptibility increase ratio when Masago soil is used as the test soil in the method for treating powder and granular material of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときのアルカリ剤の種類と磁着率増加比との関係を示す実験データである。It is experimental data showing the relationship between the type of alkaline agent and the magnetic susceptibility increase ratio when Masago soil is used as the test soil in the powder processing method of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときのNaOHの添加量と磁着率増加比との関係を示す実験データである。It is experimental data showing the relationship between the amount of NaOH added and the magnetic susceptibility increase ratio when Masago soil is used as the test soil in the method for treating powder and granular material of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときの薬剤の添加順と磁着率増加比との関係を示す実験データである。It is experimental data showing the relationship between the order of addition of chemicals and the magnetic attraction rate increase ratio when Masago soil is used as the test soil in the powder processing method of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときの薬剤の添加量と磁着率増加比との関係を示す実験データである。It is experimental data showing the relationship between the amount of a chemical added and the magnetic attraction rate increase ratio when Masago soil is used as a test soil in the method for treating powder and granular material of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときの撹拌手段と磁着率増加比との関係を示す実験データである。It is experimental data showing the relationship between the stirring means and the magnetic attraction rate increase ratio when Masago soil is used as the test soil in the powder processing method of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときの薬剤添加後加熱操作前の放置時間と磁着率増加比との関係を示す実験データである。It is experimental data showing the relationship between the standing time after addition of a chemical and before a heating operation and the magnetic attraction rate increase ratio when Masago soil is used as a test soil in the method for treating powder and granular material of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときの加熱温度と磁着率増加比との関係を示す実験データである。It is experimental data showing the relationship between the heating temperature and the magnetic susceptibility increase ratio when Masago soil is used as the test soil in the powder processing method of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときの加熱時間と磁着率との関係を示す実験データである。It is experimental data showing the relationship between heating time and magnetic susceptibility when Masago soil is used as a test soil in the powder processing method of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときの昇温速度と磁着率との関係を示す実験データである。It is experimental data showing the relationship between the temperature increase rate and the magnetic attraction rate when Masago soil is used as the test soil in the powder processing method of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときのカウンターアニオンの種類と磁着率増加比との関係を示す実験データである。It is experimental data showing the relationship between the type of counter anion and the magnetic susceptibility increase ratio when Masago soil is used as the test soil in the powder processing method of the present invention. 本発明の粉粒体の処理方法における真砂土を供試土壌としたときのFe2+添加量と磁着率増加比との関係を示す実験データである。It is experimental data showing the relationship between the amount of Fe 2+ added and the magnetic susceptibility increase ratio when Masago soil is used as the test soil in the granular material processing method of the present invention. 本発明の粉粒体の処理方法における供試土壌である黒土の加熱前後の粒度分布測定結果である。1 shows the measurement results of the particle size distribution of black soil, which is a test soil, before and after heating in the powder processing method of the present invention. 本発明の粉粒体の処理方法における黒土を供試土壌としたときのFeCl・4HOの添加量と磁着増加率との関係を示す実験データである。It is experimental data showing the relationship between the amount of FeCl 2 .4H 2 O added and the magnetic attraction increase rate when black soil is used as the test soil in the powder treatment method of the present invention. 本発明の粉粒体の処理方法における黒土を供試土壌としたときのNaOHの添加量と磁着増加率との関係を示す実験データである。It is experimental data showing the relationship between the amount of NaOH added and the rate of increase in magnetic attraction when black soil is used as the test soil in the method for treating powder and granular material of the present invention.

図1は、本発明の実施の一形態としての粉粒体の処理方法を説明するフロー図である。本発明の粉粒体の処理方法は、前段と後段との2つの工程に大別できる。前段は、被処理物である粉粒体(粉粒状物)を磁力選別可能に調製する工程(ステップS1)であり、後段は、前段で磁力選別可能に調製された粉粒体を磁力選別し磁着物と非磁着物とに選別する磁力選別工程(ステップS2)である。 FIG. 1 is a flow diagram illustrating a method for processing powder or granular material as an embodiment of the present invention. The method for treating powder or granular material according to the present invention can be roughly divided into two steps: a first step and a second step. The first stage is a step (step S1) of preparing the powder or granular material (powder or granular material) to be processed so that it can be magnetically sorted. This is a magnetic force sorting step (step S2) for sorting into magnetic objects and non-magnetic objects.

粉粒体を磁力選別可能に調製する工程は、具体的には粉粒体の表面に磁石に吸着可能な磁性物質を生成・吸着させる工程(磁性物質生成吸着工程)であり、粉粒体に薬剤を添加する薬剤添加工程(ステップS1-a)と、薬剤と粉粒体との混合物を加熱する加熱工程(ステップS1-b)とを含む。 Specifically, the process of preparing powder and granules so that they can be magnetically sorted is a process in which a magnetic substance that can be attracted to a magnet is generated and adsorbed on the surface of the powder and granules (magnetic substance generation and adsorption process). The method includes a drug addition step (step S1-a) of adding a drug and a heating step (step S1-b) of heating a mixture of the drug and powder.

本処理方法において、被処理物である粉粒体は特に限定されるものではなく、粉粒体としては土壌、焼却灰、汚泥、これら混合物、さらにこれらに汚染物質が固着、吸着又は付着するものが挙げられる。汚染物質としては、重金属、ダイオキシン類、PCB、農薬など残留性有機汚染物質(POPs)、放射性物質等が挙げられる。放射性物質も特定の物質に限定されるものではなく、セシウムCs、プルトニウムPu、ウランU、ラジウムRaなど幅広い放射性物質を対象とすることができる。 In this treatment method, the powder and granular material to be treated is not particularly limited, and examples of the powder and granular material include soil, incinerated ash, sludge, mixtures thereof, and materials to which pollutants adhere, adsorb, or adhere. can be mentioned. Examples of contaminants include heavy metals, dioxins, PCBs, persistent organic pollutants (POPs) such as pesticides, and radioactive substances. The radioactive substances are not limited to specific substances either, and a wide range of radioactive substances such as cesium Cs, plutonium Pu, uranium U, and radium Ra can be targeted.

汚染物質が主として土壌の表面に固着、吸着又は付着した汚染土壌は、通常、粒径の小さい物ほど汚染物質の濃度が高くなる(例えば特許第5313387号公報の明細書に記載の表1参照)。これは粒径の小さい土壌ほど比表面積が大きいことによる。本処理方法は、後述のように磁力選別により汚染土壌を分級できるため、高濃度の汚染土壌を分離し、除染することができる。 Contaminated soil in which pollutants are mainly fixed, adsorbed, or adhered to the soil surface usually has a higher concentration of pollutants as the particle size becomes smaller (for example, see Table 1 in the specification of Japanese Patent No. 5313387). . This is because soil with smaller particle size has a larger specific surface area. Since this treatment method can classify contaminated soil by magnetic sorting as described later, highly concentrated contaminated soil can be separated and decontaminated.

粉粒体の粒径は、特に限定されるものではないが、本処理方法は、篩分けが難しい粉粒体の処理に好適に使用することができる。粉粒体の含水率も特に限定されるものではない。絶乾状態、水分を含む粉粒体であってもそのまま処理することができる。水分が多くても加熱工程で加熱され水分は蒸発するが、水分が多いほどそれを蒸発させるに必要なエネルギーが多くなるため粉粒体に含まれる水分は少ない方がよい。粉粒体に対して脱水操作が可能であれば予め脱水操作を行い、含水率を低下させておくことが好ましい。 Although the particle size of the granular material is not particularly limited, the present treatment method can be suitably used for processing granular material that is difficult to sieve. The moisture content of the powder is not particularly limited either. Even if it is bone dry or contains moisture, it can be processed as is. Even if there is a lot of water, the water will evaporate as it is heated in the heating process, but the more water there is, the more energy is required to evaporate it, so it is better for the powder to contain less water. If it is possible to dehydrate the powder, it is preferable to perform the dehydration operation in advance to lower the water content.

粉粒体の中には、塊状となったものが含まれる場合もある。後述の実施例に示すように粉粒体と薬剤との混合物に対して撹拌操作を行うと磁力選別工程において磁着率が低下し、撹拌強度が大きい程磁着率は低くなった。このことからこのような塊状物は、前段階で解砕しておくことが好ましい。 The powder and granular materials may include lumps. As shown in the Examples below, when a stirring operation was performed on a mixture of powder and medicine, the magnetic attraction rate decreased in the magnetic separation step, and the higher the stirring intensity, the lower the magnetic attraction rate. For this reason, it is preferable to crush such lumps in the previous stage.

また塊状物を解砕する際は、塊状物以外の粉粒体が破砕されないように行うのがよい。上記のように汚染物質が主として土壌の表面に固着、吸着又は付着した汚染土壌は、粒径が大きいものほど相対的に汚染物質の濃度が低い。このような粒径の大きい汚染土壌が粉砕されると、汚染濃度の低い粒径の小さい汚染土壌が生成するため除染効率が低下する。 Further, when crushing the lumps, it is preferable to do so in such a way that powder and granules other than the lumps are not crushed. As mentioned above, in contaminated soil in which pollutants are mainly fixed, adsorbed, or adhered to the surface of the soil, the larger the particle size, the lower the concentration of the pollutants. When such contaminated soil with large particle size is pulverized, contaminated soil with small particle size and low contamination concentration is generated, resulting in a decrease in decontamination efficiency.

また粉粒体には、植物、木の葉、木くず、根毛などの有機物を含むものもあるがこのような粉粒体も本処理方法で処理可能である。本実施形態の粉粒体の処理方法は、加熱工程を備えるので、この加熱工程で有機物は炭化物になる。 In addition, some particulate materials contain organic matter such as plants, tree leaves, wood chips, root hairs, etc., and such particulate materials can also be treated with this treatment method. Since the powder processing method of this embodiment includes a heating step, the organic matter becomes carbide in this heating step.

本発明では、磁性物質の生成に2価の鉄イオンFe2+と3価の鉄イオンFe3+とを使用する。2価の鉄イオンFe2+は、薬剤として供給するが、3価の鉄イオンFe3+の供給態様は複数ある。このため3価の鉄イオンFe3+の供給態様により使用する薬剤が異なる。 In the present invention, divalent iron ions Fe 2+ and trivalent iron ions Fe 3+ are used to generate the magnetic material. Divalent iron ion Fe 2+ is supplied as a drug, but there are multiple ways of supplying trivalent iron ion Fe 3+ . Therefore, the chemicals to be used differ depending on the supply mode of trivalent iron ion Fe 3+ .

具体的には、3価の鉄イオンFe3+が被処理物である粉粒体から得られるとき及び/又は薬剤として供給した2価の鉄イオンFe2+の一部が化学変化し3価の鉄イオンFe3+になる場合には、薬剤として2価の鉄イオンFe2+を含む水溶液を使用する。3価の鉄イオンFe3+が被処理物である粉粒体から得られないとき及び/又は薬剤として供給した2価の鉄イオンFe2+から所定量の3価の鉄イオンFe3+が得られないときには、薬剤として2価の鉄イオンFe2+、3価の鉄イオンFe3+を含む水溶液を使用する。 Specifically, when trivalent iron ions Fe 3+ are obtained from the powdered material to be treated and/or part of the divalent iron ions Fe 2+ supplied as a chemical undergoes a chemical change and becomes trivalent iron. When the ions are turned into Fe 3+ ions, an aqueous solution containing divalent iron ions Fe 2+ is used as the drug. When trivalent iron ions Fe 3+ cannot be obtained from the powder or granular material to be treated and/or when a predetermined amount of trivalent iron ions Fe 3+ cannot be obtained from the divalent iron ions Fe 2+ supplied as a drug. Sometimes, an aqueous solution containing divalent iron ions Fe 2+ and trivalent iron ions Fe 3+ is used as the drug.

2価の鉄イオンFe2+を含む水溶液及び3価の鉄イオンFe3+を含む水溶液は特に限定されるものではないが、FeCl・4HO及びFeClを含む水溶液が好ましい。2価の鉄イオンFe2+を含む薬剤としては、FeCl・4HOの他にFeSO・7HO,Fe(NH(SO・6HO等がある。これら鉄塩は、水に対する溶解度、さらに単価も異なる。FeCl・4HOは、他の鉄塩に比較して溶解度が大きいため濃度調整が容易であり、単価も低く好ましい。 Although the aqueous solution containing divalent iron ion Fe 2+ and the aqueous solution containing trivalent iron ion Fe 3+ are not particularly limited, aqueous solutions containing FeCl 2 .4H 2 O and FeCl 3 are preferable. Examples of drugs containing divalent iron ion Fe 2+ include FeCl 2 .4H 2 O, FeSO 4 .7H 2 O, Fe(NH 4 ) 2 (SO 4 ) 2.6H 2 O, and the like. These iron salts differ in solubility in water and also in unit price. FeCl 2 .4H 2 O has a higher solubility than other iron salts, so it is easy to adjust the concentration, and the unit price is low, so it is preferable.

2価の鉄イオンFe2+及び/又は3価の鉄イオンFe3+の濃度は、粉粒体の表面に生成・吸着する磁性物質の磁着力に影響を与える。後述の実施例に示すように水溶液中の2価の鉄イオンFe2+が特定の濃度のときに磁着率がピークとなった。一方、3価の鉄イオンFe3+の濃度と磁着率増加比との関係では、3価の鉄イオンFe3+の濃度が高いほど磁着率が低下した。 The concentration of divalent iron ions Fe 2+ and/or trivalent iron ions Fe 3+ influences the magnetic attraction force of the magnetic substance generated and adsorbed on the surface of the powder. As shown in Examples below, the magnetic attraction rate reached a peak when the divalent iron ion Fe 2+ in the aqueous solution had a specific concentration. On the other hand, regarding the relationship between the concentration of trivalent iron ions Fe 3+ and the magnetic attachment rate increase ratio, the higher the concentration of trivalent iron ions Fe 3+ , the lower the magnetic attachment rate.

粉粒体の表面に生成・吸着する磁性物質の磁着力は、磁性物質の粒子径、凝集性、さらには生成・吸着量に相関するため、2価の鉄イオンFe2+及び/又は3価の鉄イオンFe3+の濃度によりこれらが変化することが考えられる。以上のことから水溶液中の2価の鉄イオンFe2+の濃度、3価の鉄イオンFe3+の濃度、2価の鉄イオンFe2+と3価の鉄イオンFe3+との割合を調整することで所望の磁着率を得ることができる。 The magnetic force of magnetic substances generated and adsorbed on the surface of powder particles is correlated with the particle size, cohesiveness , and amount of generation/adsorption of the magnetic substance. It is thought that these changes depending on the concentration of iron ion Fe 3+ . From the above, by adjusting the concentration of divalent iron ions Fe 2+ , the concentration of trivalent iron ions Fe 3+ , and the ratio of divalent iron ions Fe 2+ and trivalent iron ions Fe 3+ in the aqueous solution, A desired magnetic attraction rate can be obtained.

粉粒体に対する薬剤の添加量、つまり2価の鉄イオンFe2+及び/又は3価の鉄イオンFe3+の添加量も磁着率に大きく影響する。後述の実施例に示すように磁着率は、薬剤の添加量に比例して大きくなった。これは2価の鉄イオンFe2+及び/又は3価の鉄イオンFe3+の添加量に比例して磁性物質の生成・吸着量さらには磁着力が大きくなることを示していると言える。以上のことから粉粒体に対する薬剤の添加量を調整することで所望の磁着率を得ることができる。薬剤の添加量と土壌の種類との関係では、後述の実施例から判断して、土壌に含まれる有機物の含有量が多いほど薬剤の添加量を多くする必要がある。 The amount of the drug added to the powder, ie, the amount of divalent iron ions Fe 2+ and/or trivalent iron ions Fe 3+ , also greatly influences the magnetic attraction rate. As shown in Examples below, the magnetic attraction rate increased in proportion to the amount of the drug added. This can be said to indicate that the amount of magnetic material produced and adsorbed as well as the magnetic attraction force increase in proportion to the amount of divalent iron ions Fe 2+ and/or trivalent iron ions Fe 3+ added. From the above, a desired magnetic attraction rate can be obtained by adjusting the amount of the chemical added to the powder or granule. Regarding the relationship between the amount of the chemical added and the type of soil, judging from the examples described later, it is necessary to increase the amount of the chemical added as the content of organic matter contained in the soil increases.

さらに薬剤添加工程において、薬剤としてpH調整剤を添加する。ここでpH調整剤はアルカリ剤であり、水溶液状態で添加される。アルカリ剤は、特に限定されるものではないが、後述の実施例に示すように磁着率を大きくすることができる点、単価、入手の容易性等を考慮すれば水酸化ナトリウムNaOHが好ましい。アルカリ剤の添加量は、後述の実施例に示すように磁着率に大きく影響する。以上のことからアルカリ剤の種類及び添加量を調整することで所望の磁着率を得ることができる。 Further, in the drug addition step, a pH adjuster is added as a drug. The pH adjuster is an alkaline agent and is added in the form of an aqueous solution. The alkaline agent is not particularly limited, but sodium hydroxide (NaOH) is preferred in view of its ability to increase the magnetic attraction rate, unit price, ease of availability, etc., as shown in Examples below. The amount of the alkaline agent added greatly affects the magnetic attraction rate, as shown in Examples below. From the above, a desired magnetic attraction rate can be obtained by adjusting the type and amount of the alkaline agent added.

3価の鉄イオンFe3+を薬剤として供給する場合、以下の方法が考えられる。水に所定量の2価の鉄塩及びアルカリ剤を加え調整した2価の鉄イオンFe2+を含む水溶液と、水に所定量の3価の鉄塩及びアルカリ剤を加え調整した3価の鉄イオンFe3+を含む水溶液とを別々に調整し、これらを別々に加える。またはこれら2つの水溶液を予め混合した上で粉粒体に添加する。さらには水に所定量の2価の鉄塩、3価の鉄塩及びアルカリ剤を加え調整した2価の鉄イオンFe2+及び3価の鉄イオンFe3+を含む水溶液を粉粒体に添加する。 When supplying trivalent iron ion Fe 3+ as a drug, the following method can be considered. An aqueous solution containing divalent iron ion Fe 2+ prepared by adding a predetermined amount of divalent iron salt and an alkali agent to water, and a solution containing trivalent iron ion Fe 2+ prepared by adding a predetermined amount of trivalent iron salt and an alkali agent to water. An aqueous solution containing ion Fe 3+ is prepared separately, and these are added separately. Alternatively, these two aqueous solutions are mixed in advance and then added to the powder. Furthermore, an aqueous solution containing divalent iron ions Fe 2+ and trivalent iron ions Fe 3+ prepared by adding predetermined amounts of divalent iron salts, trivalent iron salts, and alkaline agents to water is added to the powder. .

後述の実施例に記載のように2価の鉄イオンFe2+を含む水溶液と3価の鉄イオンFe3+を含む水溶液とを別々に添加する方法は、2価の鉄イオンFe2+と3価の鉄イオンFe3+とを一緒に添加する方法に比較して磁着率が低かった。また粉粒体に薬剤を添加した後の混合を考慮すれば、3価の鉄イオンFe3+を薬剤として供給するときには、2価の鉄イオンFe2+と3価の鉄イオンFe3+とを一緒に添加するのがよい。 As described in the Examples below, the method of separately adding an aqueous solution containing divalent iron ions Fe 2+ and an aqueous solution containing trivalent iron ions Fe 3+ is a method in which divalent iron ions Fe 2+ and trivalent iron ions Fe 2+ are added separately. The magnetic attraction rate was lower than that of the method in which iron ions (Fe 3+ ) were added together. Furthermore, considering the mixing after adding the drug to the powder or granules, when supplying trivalent iron ion Fe 3+ as a drug, divalent iron ion Fe 2+ and trivalent iron ion Fe 3+ should be mixed together. It is good to add it.

粉粒体に添加する薬剤の液量は、粉粒体の表面に液が僅かに浮くくらいが好ましい。換言すれば、被処理物である粉粒体に薬剤を添加したとき、粉粒体が全て液中に浸かるのが好ましい。このようにすれば粉粒体と薬剤とを確実に接触させることができ、特に撹拌操作を行う必要がない。一方で添加する薬剤の液量を必要以上に多くしても、水分は加熱工程で蒸発させるため不経済である。 The amount of liquid of the drug added to the powder is preferably such that the liquid slightly floats on the surface of the powder. In other words, when the chemical is added to the powder or granule as the object to be treated, it is preferable that the entire powder or granule is immersed in the liquid. In this way, the powder and the drug can be brought into contact with each other reliably, and there is no need to perform any particular stirring operation. On the other hand, even if the amount of liquid added is increased more than necessary, the water will evaporate during the heating process, which is uneconomical.

粉粒体に添加する薬剤の液量を少なくした場合には、薬剤と粉粒体とを均一化するための撹拌混合操作が必要となる。この撹拌混合操作は、薬剤添加と並行して行っても、薬剤添加後に行っても、あるいは加熱工程で行ってもよい。撹拌混合に使用する装置、撹拌方法は特に限定されるものではないが、撹拌操作により粉粒体が粉砕されないように、また発塵しないようにするのがよい。 When the liquid amount of the drug added to the powder or granule is reduced, a stirring and mixing operation is required to homogenize the drug and the powder or granule. This stirring and mixing operation may be performed in parallel with the addition of the drug, after the addition of the drug, or during the heating step. The device and stirring method used for stirring and mixing are not particularly limited, but it is preferable to prevent the powder from being crushed or generating dust during the stirring operation.

加熱工程(ステップS1-b)は、薬剤と粉粒体との混合物を加熱する工程である。後述の実施例に示すように加熱温度に比例して磁着率が増加するが、300℃を超えると逆に低下する。また加熱温度が350℃を超えるとダイオキシンの再合成が懸念される。これらから加熱温度は200℃以上300℃以下が好ましく、より好ましくは250℃以上300℃以下であり、250℃前後の温度がさらに好ましい。加熱温度が350℃以下であれば、マグネタイトの磁性喪失の心配はない(キュリー点:858K)。 The heating step (step S1-b) is a step of heating the mixture of the drug and the powder. As shown in the Examples below, the magnetic attraction rate increases in proportion to the heating temperature, but conversely decreases when the temperature exceeds 300°C. Furthermore, if the heating temperature exceeds 350°C, there is a concern that dioxin will be resynthesized. From these, the heating temperature is preferably 200°C or more and 300°C or less, more preferably 250°C or more and 300°C or less, and even more preferably around 250°C. If the heating temperature is 350° C. or lower, there is no fear that magnetite will lose its magnetism (Curie point: 858 K).

加熱工程における加熱操作は特に限定されるものではないが、粉粒体に薬剤を添加した後、加熱開始までの静置時間(放置時間)、室温から所定の加熱温度に達するまでの昇温速度、所定の加熱温度に達した後の加熱温度を保持する時間(加熱時間)により磁着率が異なる。後述の実施例に示すように静置時間を長くし、あるいは昇温速度を大きくすると磁着率は低下した。加熱時間が30min以上であれば加熱時間によらず磁着率はほぼ一定であった。以上のことから加熱操作において、粉粒体に薬剤を添加した後加熱開始までの静置時間(放置時間)、昇温速度、加熱時間を調整することで磁着率を調節することができる。 The heating operation in the heating process is not particularly limited, but may include the standing time (standing time) after adding the drug to the powder or granular material until heating starts, and the rate of temperature increase from room temperature to the predetermined heating temperature. The magnetic attraction rate differs depending on the time (heating time) for which the heating temperature is maintained after reaching a predetermined heating temperature. As shown in Examples below, when the standing time was increased or the temperature increase rate was increased, the magnetic attachment rate decreased. When the heating time was 30 min or more, the magnetic attraction rate was almost constant regardless of the heating time. From the above, in the heating operation, the magnetic attraction rate can be adjusted by adjusting the standing time (standing time), temperature increase rate, and heating time after adding the drug to the powder and granular material until the start of heating.

加熱工程において温度の均一化、水分の除去、さらには粉粒体の凝集を防ぐ観点から撹拌混合操作を併用するのが好ましい。ここでも粉粒体が粉砕されないように撹拌混合するのがよい。加熱工程における加熱温度・加熱時間は、基本的に磁性物質の磁着力が所望の値となるように設定されるが、粉粒体に有機物が含まれる場合、この有機物が炭化され、この炭化物の表面に磁性物質が生成・吸着するように加熱温度・加熱時間を決定するのが好ましい。 In the heating step, it is preferable to use a stirring and mixing operation in combination from the viewpoint of uniformizing the temperature, removing moisture, and further preventing agglomeration of the powder and granules. Here, too, it is preferable to stir and mix so that the powder and granules are not crushed. The heating temperature and heating time in the heating process are basically set so that the magnetic attraction force of the magnetic material reaches the desired value, but if the powder or granules contain organic matter, this organic matter will be carbonized, and this carbide will be It is preferable to determine the heating temperature and heating time so that magnetic substances are generated and adsorbed on the surface.

粉粒体の表面に生成・吸着する磁性物質の粒径・分散性は、加熱工程における温度、時間のみならず反応場の雰囲気、具体的には反応場が酸化性雰囲気か還元性雰囲気かに影響を受ける。これは2価の鉄イオンFe2+が酸化され3価の鉄イオンFe3+に変化することに影響する。このため加熱工程における反応場の雰囲気を調整することで磁着率を調節することができる。 The particle size and dispersibility of the magnetic substances generated and adsorbed on the surface of powder particles depend not only on the temperature and time during the heating process, but also on the atmosphere of the reaction field, specifically whether the reaction field is an oxidizing atmosphere or a reducing atmosphere. to be influenced. This affects divalent iron ions Fe 2+ being oxidized and changing into trivalent iron ions Fe 3+ . Therefore, the magnetic attraction rate can be adjusted by adjusting the atmosphere of the reaction field in the heating step.

以上の構成からなる磁性物質生成吸着工程における、粉粒体の表面に磁性物質が生成・吸着するメカニズムは以下のように考えられる。以下、粉粒体を土壌として説明する。 The mechanism by which the magnetic substance is generated and adsorbed on the surface of the powder in the magnetic substance generation/adsorption process having the above configuration is considered to be as follows. Hereinafter, the granular material will be explained as soil.

土壌に薬剤を添加すると、土壌中の1価のイオン種と2価の鉄イオンFe2+や3価の鉄イオンFe3+とのイオン交換が行われる。次いで土壌表面で化学反応が起こり、土壌の表面に磁性物質を生成し、当該磁性物質は、土壌の表面に吸着する。 When a chemical is added to soil, ion exchange occurs between monovalent ion species in the soil and divalent iron ions Fe 2+ and trivalent iron ions Fe 3+ . A chemical reaction then occurs on the soil surface, producing a magnetic substance on the soil surface, and the magnetic substance is adsorbed to the soil surface.

2:1型粘土鉱物と1:1型粘土鉱物との陽イオン交換容量(CEO)は、前者の方が最大で約80倍以上大きいことが知られている。このため2価の鉄イオンFe2+や3価の鉄イオンFe3+は、2:1型粘土鉱物に優先的に吸着され、磁性物質も2:1型粘土鉱物の表面に優先的に生成・吸着する。 It is known that the cation exchange capacity (CEO) of the 2:1 type clay mineral and the 1:1 type clay mineral is about 80 times or more greater in the former. Therefore, divalent iron ions Fe 2+ and trivalent iron ions Fe 3+ are preferentially adsorbed to 2:1 type clay minerals, and magnetic substances are also preferentially generated and adsorbed on the surface of 2:1 type clay minerals. do.

背景技術の欄にも記したように、原発事故により放出された放射性Csは、降雨により土壌に沈着し,最終的には2:1型粘土内部に捕捉される。このことから本実施形態に示す磁性物質生成吸着工程、さらには本実施形態に示す粉粒体の処理方法は、放射性Csに汚染された土壌の処理に好適に使用できることが分かる。 As mentioned in the background art section, radioactive Cs released due to the nuclear power plant accident is deposited in the soil by rain and is eventually trapped inside the 2:1 clay. From this, it can be seen that the magnetic substance generation and adsorption step shown in this embodiment, and further the powder and granular treatment method shown in this embodiment, can be suitably used for the treatment of soil contaminated with radioactive Cs.

本粉粒体の処理方法において、磁性物質生成吸着工程を経て得られる粉粒体は、次工程で磁力選別に供されるため、磁性物質生成吸着工程では磁力選別に適した被磁選物を得ることができ、それを効率的に生成できる方法が好ましい。この点において本方法で得られる磁性物質は磁着力も調節可能であり、また磁性物質生成吸着工程も簡便であり、好ましい方法といえる。 In this powder and granule processing method, the powder and granules obtained through the magnetic material generation adsorption step are subjected to magnetic separation in the next step, so the magnetic material generation and adsorption step yields a magnetically selected material suitable for magnetic separation. A method that can produce it efficiently is preferable. In this respect, the magnetic substance obtained by this method can have an adjustable magnetic attraction force, and the process of producing and adsorbing the magnetic substance is simple, so it can be said to be a preferable method.

磁力選別の点から粉粒体の表面に生成・吸着する磁性物質は、粒径が小さく表面に均一に分散するものがよい。また磁性物質を生成・吸着させるに使用する薬剤の使用量が少ないものが好ましい。 From the viewpoint of magnetic separation, it is preferable that the magnetic substance generated and adsorbed on the surface of powder particles has a small particle size and is uniformly dispersed on the surface. Also, it is preferable that the amount of chemicals used to generate and adsorb magnetic substances is small.

上述又は後述の実施例に示すように下記(A)群の1つ以上を制御することにより粉粒体の表面に生成させる磁性物質の磁着力を制御することができるので、粒度分布、鉄成分含有量・有機物の含有量など被処理物の特性、さらには目標とする磁着率に応じて適宜、磁性物質生成吸着工程の条件を設定すればよい。
(A)2価の鉄イオン濃度,2価の鉄イオンに対する3価の鉄イオンの割合,アルカリ剤の種類,アルカリ剤の濃度,薬剤の添加量,粉粒体と薬剤との混合物に対する撹拌強度,薬剤添加後の静置時間,加熱温度,加熱時間,昇温速度,水溶液のアニオンの種類
As shown in the examples described above or below, by controlling one or more of the following group (A), it is possible to control the magnetic force of the magnetic material generated on the surface of the powder or granule, so the particle size distribution, iron content, etc. The conditions for the magnetic substance generation and adsorption step may be appropriately set according to the characteristics of the object to be treated, such as the content and the content of organic matter, as well as the target magnetic attraction rate.
(A) Divalent iron ion concentration, ratio of trivalent iron ions to divalent iron ions, type of alkali agent, concentration of alkali agent, amount of agent added, stirring intensity for the mixture of powder and granules and agent , standing time after drug addition, heating temperature, heating time, heating rate, type of anion in aqueous solution

磁力選別工程(ステップS2)は、前工程(ステップS1)を経て得られる表面に磁性物質が生成・吸着した粉粒体を磁力選別する。磁力選別工程で使用される磁選機、磁選方法は特に限定されるものではなく、公知の磁選機、磁選方法を使用することができる。なお磁選機、磁選方法によっては、高温の被磁選物を処理できない場合もある。このような場合には、磁性物質生成吸着工程と磁力選別工程との間に被磁選物(粉粒体)を冷却する冷却工程を設ければよい。 In the magnetic sorting step (step S2), the powder particles on which magnetic substances are generated and adsorbed on the surface obtained through the previous step (step S1) are magnetically sorted. The magnetic separator and magnetic separation method used in the magnetic separation step are not particularly limited, and known magnetic separators and magnetic separation methods can be used. Note that depending on the magnetic separator and magnetic separator method, it may not be possible to process high-temperature magnetically separable materials. In such a case, a cooling step for cooling the magnetically selected material (powder or granular material) may be provided between the magnetic material generation adsorption step and the magnetic separation step.

以上の構成からなる本処理方法の処理メカニズムの概要は、次の通りである。磁性物質生成吸着工程において、磁性物質が粉粒体に生成・吸着する量(粉粒体単位質量当たり)は、比表面積の関係から粒径の小さい粉粒体ほど多くなる。磁力選別工程において、粒径の小さい粉粒体は自重が小さく、さらに磁性物質の生成・吸着量が多いため磁着物となる。一方、粒径の大きい粉粒体は自重が大きく、さらに磁性物質の生成・吸着量が少ないため非磁着物となる。 An outline of the processing mechanism of this processing method having the above configuration is as follows. In the magnetic substance generation/adsorption step, the amount of magnetic substance generated and adsorbed onto the powder (per unit mass of the powder or granule) increases as the particle size becomes smaller due to the specific surface area. In the magnetic separation process, powder particles with small particle diameters have a small weight and generate and adsorb a large amount of magnetic substances, so they become magnetic substances. On the other hand, granular materials with large particle sizes have a large self-weight, and furthermore, the amount of magnetic material generated and adsorbed is small, so that they become non-magnetic materials.

以上のように粉粒体に対して磁性物質生成吸着工程において、磁性物質を生成・吸着させ、これを磁力選別することで粉粒体を分級することができる。放射性物質汚染土壌は、粒径の小さい物ほど汚染物質の濃度が高いため、本処理方法を用いて放射性物質汚染土壌を処理することで放射性物質汚染物の濃縮、除染等を行うことができる。 As described above, in the magnetic substance generation/adsorption step for the powder or granule, a magnetic substance is generated and adsorbed, and the powder or granule can be classified by magnetically sorting the magnetic substance. In radioactive contaminated soil, the smaller the particle size, the higher the concentration of contaminants, so by treating radioactive contaminated soil using this treatment method, radioactive contaminated soil can be concentrated, decontaminated, etc. .

本処理方法において、粉粒体に含まれる有機物は、加熱工程(ステップS1-b)で炭化物となるため被処理物が減容化される。また磁性物質生成吸着工程の段階で炭化物の表面にも磁性物質が生成・吸着する。炭化物は、汚染土壌に比較して密度が小さいため磁力選別工程では磁着物となる。 In this treatment method, the organic matter contained in the powder becomes carbide in the heating step (step S1-b), so that the volume of the object to be treated is reduced. In addition, magnetic substances are also generated and adsorbed on the surface of the carbide during the magnetic substance generation and adsorption step. Since carbide has a lower density than contaminated soil, it becomes a magnetic substance in the magnetic sorting process.

本発明の粉粒体の処理方法は、上記実施形態の粉粒体の処理方法を基本に種々変更することができる。以下、粉粒体の処理方法の変形例について説明する。 The powder and granule processing method of the present invention can be variously modified based on the powder and granule processing method of the above embodiment. Hereinafter, a modification of the method for processing powder or granular material will be described.

上記実施形態の粉粒体の処理方法では、被処理物として粉粒体をそのまま使用するが、本処理方法に先立ち、粉粒体を篩などを用いて分級し、粒径の大きいものを取り除いてもよい。放射性物質汚染土壌は、粒度の小さい物ほど放射性物質の濃度が高く、逆に粗粒物の放射性物質の濃度は比較的低いことが知られている(例えば、特許第5313387号公報の明細書に記載の表1参照)。このため予め粗粒物を取り除き、残りの汚染土壌を磁力選別すれば効率的に放射性物質汚染物の濃縮、除染が行える。 In the powder and granular material processing method of the above embodiment, the powder and granular material is used as it is as the object to be processed, but prior to this processing method, the powder and granular material is classified using a sieve or the like, and large particles are removed. You can. It is known that in soil contaminated with radioactive substances, the smaller the particle size, the higher the concentration of radioactive substances, and conversely, the concentration of radioactive substances in coarse particles is relatively low (for example, as described in the specification of Japanese Patent No. 5313387). (See Table 1). Therefore, if coarse particles are removed in advance and the remaining contaminated soil is magnetically sorted, radioactive contaminants can be efficiently concentrated and decontaminated.

次に本発明の実施の一形態としての粉粒体の処理装置1について説明する。図2は、本発明の粉粒体の処理装置1の構成図である。以下、粉粒体が放射性物質汚染土壌(以下、汚染土壌と記す)であるとし、粉粒体の処理装置の構成について説明する。 Next, a powder processing apparatus 1 as an embodiment of the present invention will be described. FIG. 2 is a configuration diagram of the powder processing apparatus 1 of the present invention. Hereinafter, assuming that the powder is soil contaminated with radioactive substances (hereinafter referred to as contaminated soil), the configuration of a processing apparatus for powder and granules will be described.

本発明の粉粒体の処理装置1は、汚染土壌を連続的に処理する連続処理装置であり、汚染土壌の表面に磁性物質を生成・吸着させる反応装置31、反応装置31に薬剤を供給する薬剤供給装置21、反応装置31に汚染土壌を供給する汚染土壌供給装置11、反応後の汚染土壌を冷却する冷却装置41、冷却後の汚染土壌を磁力選別する磁力選別装置51を含む。 The granular material processing device 1 of the present invention is a continuous processing device that continuously processes contaminated soil, and supplies a reaction device 31 that generates and adsorbs magnetic substances on the surface of contaminated soil, and a chemical to the reaction device 31. It includes a drug supply device 21, a contaminated soil supply device 11 that supplies contaminated soil to the reaction device 31, a cooling device 41 that cools the contaminated soil after reaction, and a magnetic separation device 51 that magnetically separates the contaminated soil after cooling.

汚染土壌供給装置11は、反応装置31に汚染土壌を定量供給する装置であり、ホッパー12付きのスクリューフィーダ13である。粉粒体の定量供給装置としては、スクリューフィーダの他にテーブルフィーダ等がある。ここでは汚染土壌を定量供給可能であれば特に型式等は問われないが、搬送過程で粉粒体が破砕・粉砕されず、また表面が削り取られないものが好ましい。 The contaminated soil supply device 11 is a device that supplies a fixed amount of contaminated soil to the reaction device 31, and is a screw feeder 13 with a hopper 12. In addition to screw feeders, table feeders and the like are available as devices for quantitatively feeding powder and granular materials. Here, the type is not particularly important as long as it can supply a fixed amount of contaminated soil, but it is preferable that the powder or granules will not be crushed or pulverized during the conveyance process, and the surface will not be scraped off.

薬剤供給装置21は、反応装置31に薬剤を定量供給する装置であり、撹拌機23を備える薬剤供給タンク22と、定量供給ポンプ24とを含む。薬剤供給タンク22には、2価の鉄塩及びアルカリ剤を水に溶解させた水溶液が充填されている。 The drug supply device 21 is a device that supplies a fixed amount of a drug to the reaction device 31, and includes a drug supply tank 22 equipped with a stirrer 23 and a fixed amount supply pump 24. The drug supply tank 22 is filled with an aqueous solution in which a divalent iron salt and an alkaline agent are dissolved in water.

本実施形態の粉粒体の処理装置1では、3価の鉄イオンFe3+は、汚染土壌及び2価の鉄イオンFe2+が酸化され供給されるため薬剤には含まれていない。汚染土壌及び2価の鉄イオンFe2+の酸化では3価の鉄イオンFe3+が不足する場合は、薬剤供給装置21を介して3価の鉄塩を供給すればよい。 In the powder and granular material processing apparatus 1 of this embodiment, the trivalent iron ion Fe 3+ is not included in the chemical because the contaminated soil and the divalent iron ion Fe 2+ are oxidized and supplied. If trivalent iron ions Fe 3+ are insufficient in contaminated soil and oxidation of divalent iron ions Fe 2+ , trivalent iron salts may be supplied via the chemical supply device 21 .

また本実施形態では、汚染土壌に対して汚染土壌が浸かるだけの薬剤を添加するため汚染土壌と薬剤とを混合する装置を経由させることなく反応装置31に汚染土壌及び薬剤を供給するが、汚染土壌に対する薬剤の供給量が少ないような場合には、汚染土壌と薬剤とを混合装置で混合し反応装置31に供給すればよい。 In addition, in this embodiment, the contaminated soil and the chemical are supplied to the reaction device 31 without passing through a device that mixes the contaminated soil and the chemical because the chemical is added to the contaminated soil in an amount sufficient to soak the contaminated soil. If the amount of the chemical supplied to the soil is small, the contaminated soil and the chemical may be mixed in a mixing device and then supplied to the reaction device 31.

反応装置31は、汚染土壌と薬剤との混合物を加熱し、薬剤を反応させ汚染土壌の表面に磁性物質を生成・吸着させる装置である。反応装置31は、駆動装置(図示省略)と連結し回転する内筒32と、内筒32を覆うように固定された外筒37とを備える間接加熱方式のロータリーキルンである。 The reaction device 31 is a device that heats a mixture of contaminated soil and a chemical, causes the chemical to react, and generates and adsorbs a magnetic substance on the surface of the contaminated soil. The reaction apparatus 31 is an indirect heating type rotary kiln that includes an inner cylinder 32 that is connected to a drive device (not shown) and rotates, and an outer cylinder 37 that is fixed so as to cover the inner cylinder 32.

内筒32は、一端に汚染土壌供給装置11から供給される汚染土壌及び薬剤供給装置21から供給される薬剤を受け入れるための入口部33を備え、他端部に加熱した混合物を排出するための出口フード34を備える。内筒32の入口部33に近い部分には、供給された薬剤が直ちに出口フード34側に移動することを防止するための堰(図示省略)が設けられている。供給された汚染土壌は、内筒32の回転に伴い堰を乗り越え出口フード34側に移動する。 The inner cylinder 32 has an inlet portion 33 at one end for receiving contaminated soil supplied from the contaminated soil supply device 11 and a medicine supplied from the medicine supply device 21, and an inlet portion 33 at the other end for discharging the heated mixture. An outlet hood 34 is provided. A weir (not shown) is provided in a portion of the inner cylinder 32 near the inlet 33 to prevent the supplied medicine from immediately moving to the outlet hood 34 side. The supplied contaminated soil moves over the weir and toward the outlet hood 34 as the inner cylinder 32 rotates.

入口部33及び出口フード34は、内筒32内で発生するガスの漏洩を防ぐように内筒32と連結する。出口フード34の上部には、混合物の加熱に伴い発生する水蒸気等のガスを排出するための排気口35が、出口フード34の下部には、加熱された混合物を排出する排出口36が設けられている。 The inlet portion 33 and the outlet hood 34 are connected to the inner cylinder 32 to prevent leakage of gas generated within the inner cylinder 32. An exhaust port 35 is provided at the top of the outlet hood 34 for discharging gas such as water vapor generated as the mixture is heated, and an exhaust port 36 is provided at the bottom of the outlet hood 34 for discharging the heated mixture. ing.

外筒37は、長手方向が3つに区分けされ、それぞれの区画に加熱ガスの供給口38と排出口39とが設けられており、加熱ガス供給装置(図示省略)から送られる加熱ガスを受け入れ、これを加熱媒体として内筒32内の混合物を加熱する。それぞれの区画に温度の異なる加熱ガスを供給することで、内筒32内の混合物及び汚染土壌を所望の温度、温度分布に調節することができる。 The outer cylinder 37 is divided into three sections in the longitudinal direction, and each section is provided with a heating gas supply port 38 and a heating gas discharge port 39, and receives heating gas sent from a heating gas supply device (not shown). , the mixture in the inner cylinder 32 is heated using this as a heating medium. By supplying heating gases having different temperatures to the respective compartments, the mixture and contaminated soil in the inner cylinder 32 can be adjusted to a desired temperature and temperature distribution.

汚染土壌と薬剤との混合物は、スラリー状態で内筒32に供給され、内筒32の入口部33から排出口36に移動する過程で、所定時間・所定温度で加熱され、汚染土壌の表面に磁性物質を生成・吸着させる。表面に磁性物質が生成・吸着した汚染土壌は、排出口36から排出される。一方、汚染土壌と薬剤との混合物の加熱操作に伴い発生する水蒸気等のガスは、排気口35から排気ガス処理装置(図示省略)に導かれる。 The mixture of contaminated soil and chemicals is supplied to the inner cylinder 32 in the form of a slurry, and in the process of moving from the inlet 33 of the inner cylinder 32 to the discharge port 36, it is heated for a predetermined time and at a predetermined temperature, and is coated on the surface of the contaminated soil. Generates and attracts magnetic substances. The contaminated soil with magnetic substances generated and adsorbed on its surface is discharged from the discharge port 36. On the other hand, gases such as water vapor generated during the heating operation of the mixture of contaminated soil and chemicals are guided from the exhaust port 35 to an exhaust gas treatment device (not shown).

反応装置31は、汚染土壌と薬剤との混合物を所定時間・所定温度で加熱し、汚染土壌の表面に磁性物質を生成・吸着させることができればよく、装置の型式も特に限定されるものではないが、反応性及び温度の均一化、さらに汚染土壌の凝集を防ぐ点において撹拌混合機能を備えるものが好ましい。このとき汚染土壌が破砕・粉砕されず、また表面が削り取られないものが好ましく、この点においてロータリーキルンは好ましい装置といえる。 The reaction device 31 only needs to be capable of heating a mixture of contaminated soil and a drug at a predetermined temperature for a predetermined time to generate and adsorb a magnetic substance on the surface of the contaminated soil, and the model of the device is not particularly limited. However, in terms of uniformity of reactivity and temperature, and further prevention of agglomeration of contaminated soil, it is preferable to use one having a stirring and mixing function. At this time, it is preferable that the contaminated soil is not crushed or pulverized, and the surface is not scraped off, and in this respect, a rotary kiln is a preferable device.

冷却装置41は、反応装置31から排出される表面に磁性物質が生成・吸着した汚染土壌を、後段の磁力選別装置51に供給可能な温度まで冷却する。冷却装置41は、ジャケット付きの横型1軸の撹拌装置であり、撹拌槽42内に横型1軸のスクリュー43を備え、撹拌槽42を覆うようにジャケット44が取付けられている。ジャケット44に供給される冷却媒体は水である。 The cooling device 41 cools the contaminated soil discharged from the reaction device 31, on the surface of which magnetic substances are generated and adsorbed, to a temperature at which it can be supplied to the subsequent magnetic separation device 51. The cooling device 41 is a horizontal uniaxial stirring device with a jacket, and includes a horizontal uniaxial screw 43 in a stirring tank 42 , and a jacket 44 is attached to cover the stirring tank 42 . The cooling medium supplied to jacket 44 is water.

撹拌槽内42の出口部には、冷却された汚染土壌を後段の磁力選別装置51に定量供給する装置としてロータリーフィーダ46が設けられている。 A rotary feeder 46 is provided at the outlet of the stirring tank 42 as a device for quantitatively feeding the cooled contaminated soil to the subsequent magnetic separation device 51.

冷却装置41は、反応装置31から排出される表面に磁性物質が生成・吸着した汚染土壌を、後段の磁力選別装置51に供給可能な温度まで冷却することができれば型式等は特に限定されるものではない。また冷却した汚染土壌を磁力選別装置51に定量供給する定量供給装置もロータリーフィーダ46に限定されるものではないが、これらは汚染土壌が破砕・粉砕されず、また表面が削り取られないものが好ましい。 The type of cooling device 41 is not particularly limited as long as it can cool the contaminated soil on which magnetic substances are generated and adsorbed on the surface discharged from the reaction device 31 to a temperature that can be supplied to the subsequent magnetic force sorting device 51. isn't it. Further, the quantitative supply device that quantitatively supplies the cooled contaminated soil to the magnetic sorting device 51 is not limited to the rotary feeder 46, but it is preferable that the device does not crush or crush the contaminated soil or scrape off the surface. .

磁力選別装置51は、ロータリーフィーダ46を介して定量供給される汚染土壌を磁力選別する。ここに示す磁力選別装置51は、公知のコンベアタイプの磁選機であり、汚染土壌を磁着物と非磁着物とに分類する。ここでは特定の磁力選別装置51に限定されることなく、ドラム式の磁選機、汚染土壌を3つ以上に分別できる磁選機など種々の磁力選別装置を使用することができる。 The magnetic sorting device 51 magnetically sorts contaminated soil supplied in a fixed amount via the rotary feeder 46 . The magnetic separator 51 shown here is a known conveyor type magnetic separator, and classifies contaminated soil into magnetic materials and non-magnetic materials. Here, the magnetic separator 51 is not limited to a specific one, and various magnetic separators such as a drum-type magnetic separator and a magnetic separator capable of separating contaminated soil into three or more types can be used.

次に図2に示す粉粒体の処理装置1による汚染土壌の処理要領について説明する。 Next, a procedure for treating contaminated soil using the powder/granular material treatment apparatus 1 shown in FIG. 2 will be explained.

汚染土壌及び薬剤は、スラリー状態で反応装置31の入口部33を経由して内筒32に送られる。汚染土壌及び薬剤の混合物は、内筒32を入口部33から排出口36に向って移動しつつ加熱される。この過程で薬剤が反応し、汚染土壌の表面に磁性物質が生成・吸着する。汚染土壌に根毛などの植物を含む場合、これらは反応装置31内で炭化物となり、汚染土壌と同様に表面に磁性物質が生成・吸着する。表面に磁性物質が生成・吸着した汚染土壌は、排出口36と繋がる冷却装置41に送られる。混合物を加熱する過程で発生した水蒸気等のガスは、排気口35から排気ガス処理装置(図示省略)に導かれる。 Contaminated soil and chemicals are sent to the inner cylinder 32 via the inlet section 33 of the reaction device 31 in a slurry state. The mixture of contaminated soil and chemicals is heated while moving through the inner cylinder 32 from the inlet portion 33 toward the outlet 36 . During this process, the chemicals react and magnetic substances are generated and adsorbed on the surface of the contaminated soil. When the contaminated soil contains plants such as root hairs, these become carbonized in the reaction device 31, and magnetic substances are generated and adsorbed on the surface similarly to the contaminated soil. The contaminated soil with magnetic substances generated and adsorbed on its surface is sent to a cooling device 41 connected to the discharge port 36 . Gas such as water vapor generated during the process of heating the mixture is led to an exhaust gas treatment device (not shown) through the exhaust port 35.

反応装置31から排出される表面に磁性物質が生成・吸着した汚染土壌は、冷却装置41により磁力選別装置51に供給可能な温度まで冷却された後、ロータリーフィーダ46を介して磁力選別装置51に定量供給され、ここで磁着物と非磁着物とに分別される。 Contaminated soil on which magnetic substances have been generated and adsorbed on the surface discharged from the reaction device 31 is cooled by a cooling device 41 to a temperature at which it can be supplied to the magnetic separation device 51, and then sent to the magnetic separation device 51 via a rotary feeder 46. A fixed amount is supplied, and here it is separated into magnetic materials and non-magnetic materials.

磁性物質は、比表面積の関係から粒径の小さい汚染土壌ほど生成・吸着量(汚染土壌単位質量当たり)が多くなる。また粒径の小さい汚染土壌は自重が小さく、さらに磁性物質の生成・吸着量が多いため磁着物となる。一方、粒径の大きい汚染土壌は自重が大きく、さらに磁性物質の生成・吸着量が少ないため非磁着物となる。 Due to the specific surface area, the smaller the particle size of contaminated soil, the greater the amount of magnetic substances produced and adsorbed (per unit mass of contaminated soil). In addition, contaminated soil with small particle size has a small self-weight and also generates and adsorbs a large amount of magnetic substances, so it becomes a magnetic substance. On the other hand, contaminated soil with large particle size has a large self-weight and also produces and adsorbs a small amount of magnetic substances, so it becomes a non-magnetic substance.

以上のように粉粒体の処理装置1を使用することで汚染土壌を粒径により選別する、つまり分級が可能となる。放射性物質汚染土壌は、粒径の小さい土壌ほど放射性物質の濃度が高いため本処理装置1を使用することで除染することができる。 By using the granular material processing apparatus 1 as described above, it becomes possible to sort contaminated soil by particle size, that is, to classify it. Radioactive material-contaminated soil can be decontaminated by using the present treatment apparatus 1 because the smaller the particle size of the soil, the higher the radioactive material concentration.

本発明の粉粒体の処理装置は、図2に示す処理装置に限定されるものではない。図2に示す粉粒体の処理装置1は、冷却装置41を備え、反応装置31から排出される汚染土壌を冷却するが、反応装置31から排出される汚染土壌の温度が磁力選別装置51の仕様を満足するものであれば冷却装置41は不要である。このような場合には反応装置31の排出口36にロータリーフィーダなどの定量供給装置を設置すればよい。 The granular material processing apparatus of the present invention is not limited to the processing apparatus shown in FIG. The granular material processing apparatus 1 shown in FIG. 2 is equipped with a cooling device 41 to cool the contaminated soil discharged from the reaction device 31. If the specifications are satisfied, the cooling device 41 is not necessary. In such a case, a quantitative supply device such as a rotary feeder may be installed at the outlet 36 of the reaction device 31.

反応場の雰囲気を制御することにより汚染土壌の表面に生成・吸着させる磁性物質の生成・吸着量等を制御する場合には、反応装置内にガスを供給するための雰囲気ガス供給管を設け、ここから空気、窒素ガス、燃焼排ガス、炭酸ガス、あるいはこれらガスの混合物を供給すればよい。 When controlling the amount of magnetic substances generated and adsorbed on the surface of contaminated soil by controlling the atmosphere of the reaction field, an atmosphere gas supply pipe is installed to supply gas into the reaction device. Air, nitrogen gas, combustion exhaust gas, carbon dioxide gas, or a mixture of these gases may be supplied from here.

本発明の粉粒体の処理装置は、連続式の処理装置に限定されるものではなく、半回分式、回分式の処理装置であってもよい。 The granular material processing apparatus of the present invention is not limited to a continuous type processing apparatus, but may be a semi-batch type or batch type processing apparatus.

上記実施形態に示すように本発明の粉粒体の処理方法及び処理装置を使用することで余分な廃棄物を発生させることなく簡単な操作で安価に汚染土壌等を処理することができる。また本発明の被処理物の調製方法及び装置を本発明の粉粒体の処理方法及び処理装置の前処理方法及び前処理装置として好適に使用することができる。 As shown in the above embodiments, by using the method and apparatus for processing powder and granular material of the present invention, contaminated soil and the like can be processed at low cost with simple operations without generating excess waste. Further, the method and apparatus for preparing a processed material of the present invention can be suitably used as a pretreatment method and a pretreatment apparatus for the method and apparatus for treating powder and granular materials of the present invention.

また本発明の被処理物の調製方法及び粉粒体の処理方法は、汚染土壌等の粉粒体に液状の薬剤を添加し、これを反応させて粉粒体の表面に磁性物質を生成・吸着させるため、磁性物質を均一に生成・吸着させ易く、さらに粉じんの発生が抑えられる。また汚染土壌等に木くず、根毛等が含まれていてもそのまま処理できるなど実用的な方法、装置と言える。 In addition, in the method for preparing a material to be treated and the method for treating a powder or granular material of the present invention, a liquid chemical is added to a powder or granule such as contaminated soil, and this is caused to react to generate a magnetic substance on the surface of the powder or granule. Because it is adsorbed, it is easy to generate and adsorb magnetic substances uniformly, and furthermore, the generation of dust can be suppressed. Furthermore, even if contaminated soil contains wood chips, root hairs, etc., it can be treated as is, making it a practical method and device.

また本発明の被処理物の調製方法及び粉粒体の処理方法は、粉粒体の表面に生成・吸着させる磁性物質の磁着力を制御することができるため少ない薬剤の量で効率的に粉粒体を処理可能である。さらに本処理方法を種々の粉粒体の処理、幅広い用途に使用することができる。 In addition, the method for preparing the object to be treated and the method for treating powder or granules of the present invention can control the magnetic attraction force of the magnetic substance generated and adsorbed on the surface of the powder or granules, so that the powder can be efficiently powdered with a small amount of chemicals. It is possible to process granules. Furthermore, this processing method can be used for processing various powders and granules and for a wide range of applications.

図面を参照しながら好適な実施形態を説明したが、当業者であれば、本明細書を見て、自明な範囲内で種々の変更及び修正を容易に想定するであろう。従って、そのような変更及び修正は、請求の範囲から定まる発明の範囲内のものと解釈される。また本発明は、後述の実施例に限定されるものではない。 Although preferred embodiments have been described with reference to the drawings, those skilled in the art will readily assume various changes and modifications within the obvious range upon viewing this specification. It is therefore contemplated that such changes and modifications are within the scope of the invention as defined by the claims. Further, the present invention is not limited to the embodiments described below.

供試土壌(山砂)
供試土壌に山砂を用いた。山砂は、市販されている山砂(真砂土)を入手し、これを風乾させ含水率1wt%以下としたものを使用した。真砂土の粒度を試験篩及び湿式レーザー法(エタノール中)で求めた結果、粒径600μmオーバーが61.8wt%であり、粒径75μm未満のものが7.3wt%、粒径20μm未満のものが2.1wt%であった。真砂土の化学組成をJIS-M8853により分析した結果、Feが2wt%含まれていた。また真砂土には、砂鉄が0.19±0.06wt%含まれていた。
Test soil (mountain sand)
Mountain sand was used as the test soil. As the mountain sand, commercially available mountain sand (masago soil) was obtained and air-dried to a moisture content of 1 wt% or less. As a result of determining the particle size of Masago soil using a test sieve and a wet laser method (in ethanol), it was found that 61.8 wt% had a particle size of over 600 μm, 7.3 wt% had a particle size of less than 75 μm, and 7.3 wt% had a particle size of less than 20 μm. was 2.1 wt%. As a result of analyzing the chemical composition of Masago soil according to JIS-M8853, it was found that it contained 2 wt% of Fe 2 O 3 . In addition, Masago soil contained 0.19±0.06 wt% of iron sand.

磁着選別用試料の調整方法
磁着選別用試料の調整方法の代表的な手順を示す。供試土壌である真砂土10gに薬剤6mlを添加し、これを室温化下で5分間放置した。真砂土10gに薬剤6mlを添加すると、真砂土は全て薬剤に浸かり、真砂土の上面から僅かに薬剤が浮いている。その後、大気下、管状炉を用いて室温から200℃まで18℃/minの速度で昇温し、200℃から250℃まで5℃/minの速度で昇温し、250℃で2時間保持した。その後、デシケーター内で放冷し、これを磁着選別用の試料とした。薬剤は、水に所定量のNaOH,FeCl,FeCl・4HOを添加したものである。以下、特に断りがないときは、当該方法で磁着選別用試料を調整した。
Method for preparing samples for magnetic sorting A typical procedure for preparing samples for magnetic sorting is shown below. 6 ml of the chemical was added to 10 g of Masago soil, which was the test soil, and the mixture was left at room temperature for 5 minutes. When 6 ml of the drug is added to 10 g of Masago soil, all of the Masago soil is immersed in the drug, with the drug slightly floating above the top of the Masago soil. Thereafter, the temperature was raised from room temperature to 200°C at a rate of 18°C/min in the atmosphere using a tube furnace, and then from 200°C to 250°C at a rate of 5°C/min, and held at 250°C for 2 hours. . Thereafter, it was left to cool in a desiccator, and this was used as a sample for magnetic separation. The drug is water to which predetermined amounts of NaOH, FeCl 3 , and FeCl 2 .4H 2 O are added. Hereinafter, unless otherwise specified, samples for magnetic selection were prepared using the method described above.

磁力選別方法
試料を図3に示す専用の混合瓶101に入れ、混合瓶101の上部に鉄心102を挿入し、さらにネオジム磁石(表面磁束密度573mT)103を付けて(図3(A)参照)、手で30秒程度混合瓶101を振った(図3(B)参照)。その後、瓶上部のプラスチックカバー104を外し、受け皿の上でネオジム磁石103と鉄心102を引き抜き、磁着物を回収した(図3(C)参照)。その後、プラスチックカバー104、ネオジム磁石103及び鉄心102を取付け、残渣(非磁着物)を先と同じ要領で磁選を行った。この磁選操作は、各試料に対して5回実施した。
Magnetic Sorting Method A sample was placed in a special mixing bottle 101 shown in Fig. 3, an iron core 102 was inserted into the top of the mixing bottle 101, and a neodymium magnet (surface magnetic flux density 573 mT) 103 was attached (see Fig. 3 (A)). , the mixing bottle 101 was shaken by hand for about 30 seconds (see FIG. 3(B)). Thereafter, the plastic cover 104 on the top of the bottle was removed, and the neodymium magnet 103 and iron core 102 were pulled out on the tray to collect the magnetic material (see FIG. 3(C)). Thereafter, the plastic cover 104, the neodymium magnet 103, and the iron core 102 were attached, and the residue (non-magnetic material) was magnetically separated in the same manner as before. This magnetic selection operation was performed five times for each sample.

磁着率及び磁着率増加比の定義
磁着率は、式(1)で示される。磁着率増加比は、式(2)で示され、ブランクの磁着率は、薬剤未添加及び未加熱の真砂土(以下、未処理土壌)の磁着率である。目標磁着率を設定することもできる。例えば、真砂土に含まれる20μm未満の粒径のものを分級(分離)することを目標とした場合、目標磁着率は、真砂土に含まれる粒径20μm未満のものの含有率と同じとなる。本実施例で使用する真砂土の場合、目標磁着率は、2.1wt%、目標磁着率比は、12.3となる。
Definition of magnetic susceptibility and magnetic susceptibility increase ratio The magnetic susceptibility is expressed by equation (1). The magnetic attraction rate increase ratio is shown by formula (2), and the magnetic attraction rate of the blank is the magnetic attraction rate of Masago soil to which no chemicals have been added and which has not been heated (hereinafter referred to as untreated soil). It is also possible to set a target magnetic attraction rate. For example, if the goal is to classify (separate) particles with a particle size of less than 20 μm contained in Masago soil, the target magnetic attraction rate will be the same as the content of particles with a particle size of less than 20 μm contained in Masago soil. . In the case of Masago soil used in this example, the target magnetic attraction rate is 2.1 wt%, and the target magnetic attraction rate ratio is 12.3.

Figure 0007390652000001
Figure 0007390652000001

未処理土壌の磁着率
真砂土の未処理物の磁着率は、0.186wt%であった。
Magnetic Attachment Rate of Untreated Soil The magnetic attachment rate of untreated Masago soil was 0.186 wt%.

未処理土壌の加熱の影響
真砂土のみを大気下(空気雰囲気下)、管状炉を用いて250℃で2時間加熱したところ、加熱前に比較して磁着率が1.6倍増加した。加熱後の真砂土の粒度を測定した結果、加熱前に比較して1000μm未満のものが17.5wt%増加した。加熱により微細粒子が増加し、また磁性酸化物が生成したことより磁着率が増加したと考えられる。
Effect of Heating on Untreated Soil When only Masago soil was heated in a tube furnace at 250°C for 2 hours in the atmosphere, the magnetic attraction rate increased by 1.6 times compared to before heating. As a result of measuring the particle size of Masago soil after heating, the particle size of less than 1000 μm increased by 17.5 wt% compared to before heating. It is thought that the magnetic attraction rate increased because the number of fine particles increased due to heating and magnetic oxides were generated.

FeCl・4HOの添加量の影響
真砂土10gに対して、NaOH,FeCl・4HO及びFeClを含む溶液6mlを添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。溶液に含まれるNaOHは1.0mmol、FeClは、0.18mmolである。FeCl・4HOについては、0.26~3.58mmolの範囲で濃度を変えた。
Effect of the amount of FeCl 2 .4H 2 O added To 10 g of Masago soil, 6 ml of a solution containing NaOH, FeCl 2 .4H 2 O and FeCl 3 was added, and the mixture was heated at 250°C for 2 hours in the atmosphere using a tube furnace. Heated. Thereafter, it was left to cool and subjected to magnetic separation. The solution contains 1.0 mmol of NaOH and 0.18 mmol of FeCl 3 . For FeCl 2 .4H 2 O, the concentration was varied in the range of 0.26 to 3.58 mmol.

結果を図4に示した。磁着率増加比は、FeCl・4HOの添加量により変化した。FeCl・4HOが0.26~1.37mmolの範囲において、FeCl・4HOの添加量に比例して磁着率増加比は増加した。一方、FeCl・4HOが1.37~3.58mmolの範囲においては、FeCl・4HOの添加量に比例して磁着率増加比は減少した。磁着率増加比は、FeCl・4HOの添加量が1.37mmolでピークとなり、そのときの値は16.5であった。 The results are shown in Figure 4. The magnetic attraction rate increase ratio changed depending on the amount of FeCl 2 .4H 2 O added. In the range of 0.26 to 1.37 mmol of FeCl 2 .4H 2 O, the magnetic attraction rate increase ratio increased in proportion to the amount of FeCl 2 .4H 2 O added. On the other hand, in the range of 1.37 to 3.58 mmol of FeCl 2.4H 2 O, the magnetic attraction rate increase ratio decreased in proportion to the amount of FeCl 2.4H 2 O added. The magnetic attraction rate increase ratio reached a peak when the amount of FeCl 2 .4H 2 O added was 1.37 mmol, and the value at that time was 16.5.

FeClの添加量の影響
真砂土10gに対して、NaOH、FeCl・4HO及びFeClを含む溶液6mlを添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。溶液に含まれるNaOHは1.0mmol、FeCl・4HOは、0,1.4,1.6mmolの3種類とし、FeClについては、0~0.43mmolの範囲で濃度を変えた。
Effect of Added Amount of FeCl 3 To 10 g of Masago soil, 6 ml of a solution containing NaOH, FeCl 2 .4H 2 O and FeCl 3 was added, and the mixture was heated at 250° C. in a tube furnace in the atmosphere for 2 hours. Thereafter, it was left to cool and subjected to magnetic separation. NaOH contained in the solution was 1.0 mmol, FeCl 2 .4H 2 O contained in three types, 0, 1.4, and 1.6 mmol, and the concentration of FeCl 3 was varied in the range of 0 to 0.43 mmol.

結果を図5に示した。磁着率増加比は、FeCl・4HOを1.4mmol,1.6mmol添加した場合、ともにFeClの添加量に比例して減少した。FeCl・4HOが1.6mmolの場合、FeClの添加量が0で磁着率増加比は15.3、FeClの添加量が0.43で磁着率増加比は約2であった。FeCl・4HOを1.4mmol添加した場合と1.6mmol添加した場合とを比較すると、前者の方が僅かに磁着率増加比は高かった。FeCl・4HOを添加しなかった場合、FeClの添加量(0~0.43mmol)によらず、磁着率増加比は約2.0でほぼ一定であった。 The results are shown in Figure 5. The magnetic attraction rate increase ratio decreased in proportion to the amount of FeCl 3 added when 1.4 mmol and 1.6 mmol of FeCl 2 .4H 2 O were added. When FeCl 2 .4H 2 O is 1.6 mmol, when the amount of FeCl 3 added is 0, the magnetic susceptibility increase ratio is 15.3, and when the amount of FeCl 3 added is 0.43, the magnetic susceptibility increase ratio is about 2. there were. When comparing the case where 1.4 mmol of FeCl 2 .4H 2 O was added and the case where 1.6 mmol was added, the magnetic attraction rate increase ratio was slightly higher in the former case. When FeCl 2 .4H 2 O was not added, the magnetic attraction rate increase ratio was approximately constant at about 2.0, regardless of the amount of FeCl 3 added (0 to 0.43 mmol).

アルカリ剤の種類の影響
真砂土10gに対して、アルカリ剤、FeCl・4HO及びFeClを含む溶液6mlを添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。溶液に含まれるFeCl・4HOは、1.61mmol、FeClは0.18mmolであり、アルカリ剤は1.0mmolである。アルカリ剤には、LiOH・HO,NaOH,KOH,Be(OH),Mg(OH),Ba(OH),Al(OH)を使用した。
Influence of the type of alkaline agent To 10 g of Masago soil, 6 ml of a solution containing an alkaline agent, FeCl 2 .4H 2 O and FeCl 3 was added, and the mixture was heated at 250° C. for 2 hours in the atmosphere using a tube furnace. Thereafter, it was left to cool and subjected to magnetic separation. The amount of FeCl 2 .4H 2 O contained in the solution is 1.61 mmol, the amount of FeCl 3 is 0.18 mmol, and the amount of alkaline agent is 1.0 mmol. LiOH·H 2 O, NaOH, KOH, Be(OH) 2 , Mg(OH) 2 , Ba(OH) 2 , and Al(OH) 3 were used as the alkali agent.

結果を図6に示した。磁着率増加比は、アルカリ剤の種類で大きく異なり、アルカリ剤にNaOHを使用した場合が、磁着率増加比14.8で最も大きかった。 The results are shown in FIG. The increase ratio in magnetic attraction rate varied greatly depending on the type of alkaline agent, and the increase ratio in magnetic attraction rate was the largest when NaOH was used as the alkaline agent, with an increase ratio of 14.8.

NaOHの添加量の影響
真砂土10gに対して、NaOH、FeCl・4HO及びFeClを含む溶液6mlを添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。溶液に含まれるFeCl・4HOは、0.18mmol、FeClは0.18mmolであり、NaOHは、0~2.0mmolの範囲で添加量を変化させた。
Effect of added amount of NaOH To 10 g of Masago soil, 6 ml of a solution containing NaOH, FeCl 2 .4H 2 O, and FeCl 3 was added, and the mixture was heated at 250° C. in a tube furnace in the atmosphere for 2 hours. Thereafter, it was left to cool and subjected to magnetic separation. FeCl 2 .4H 2 O contained in the solution was 0.18 mmol, FeCl 3 was 0.18 mmol, and the amount of NaOH added was varied in the range of 0 to 2.0 mmol.

結果を図7に示した。磁着率増加比は、NaOHの添加量で大きく異なり、NaOHが1.0mmolの場合に磁着率増加比が8.4であり最も大きかった。 The results are shown in FIG. The magnetic attraction rate increase ratio differed greatly depending on the amount of NaOH added, and when NaOH was 1.0 mmol, the magnetic attraction rate increase ratio was 8.4, which was the largest.

鉄イオンの添加順の影響
FeCl・4HO及びFeClを含む溶液(計6ml)の添加順を変えた実験を行った。第1のケースでは、FeCl・4HOを添加した後にFeClを添加した。第2のケースでは、FeClを添加した後にFeCl・4HOを添加した。第3のケースでは、FeCl・4HOとFeClとを混合した状態で添加した。添加量は、真砂土10gに対して、NaOHは1.0mmol、FeCl・4HOは0.2mmol,1.3mmolの2種類,FeClは0.2mmolとした。薬剤添加後の加熱及び磁着選別は、前述の方法で実施した。
Effect of addition order of iron ions An experiment was conducted in which the order of addition of solutions containing FeCl 2 .4H 2 O and FeCl 3 (6 ml in total) was changed. In the first case, FeCl 2 .4H 2 O was added followed by FeCl 3 . In the second case, FeCl 2 .4H 2 O was added after FeCl 3 was added. In the third case, a mixture of FeCl 2 .4H 2 O and FeCl 3 was added. The amounts added were 1.0 mmol of NaOH, 0.2 mmol and 1.3 mmol of FeCl 2 .4H 2 O, and 0.2 mmol of FeCl 3 to 10 g of Masago soil. Heating and magnetic selection after addition of the drug were performed as described above.

結果を図8に示した。磁着率増加比は、FeCl・4HOとFeClとを混合し同時に添加する場合が最も高く、FeCl・4HOを添加した後にFeClを添加する場合が、磁着率増加比が最も小さかった。またFeCl・4HOの濃度が高い方が、鉄イオンの添加順の影響が顕著であった。 The results are shown in FIG. The magnetic attraction rate increase ratio is highest when FeCl 2.4H 2 O and FeCl 3 are mixed and added at the same time, and when FeCl 3 is added after FeCl 2.4H 2 O is added, the magnetic attraction rate increases. The ratio was the smallest. Furthermore, the higher the concentration of FeCl 2 .4H 2 O, the more pronounced the effect of the order of addition of iron ions was.

薬剤の添加量の影響
真砂土10gに対して、NaOH、FeCl・4HO及びFeClを含む溶液を添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。ここでは溶液の量を6mL,12mL,30mLの3種類とした。6mLの溶液に含まれるNaOHは1.0mmol、FeCl・4HO及びFeClは0.2mmolである。
Effect of added amount of chemicals A solution containing NaOH, FeCl 2 .4H 2 O, and FeCl 3 was added to 10 g of Masago soil, and heated at 250° C. in a tube furnace in the atmosphere for 2 hours. Thereafter, it was left to cool and subjected to magnetic separation. Here, the amount of solution was set to three types: 6 mL, 12 mL, and 30 mL. 6 mL of solution contains 1.0 mmol of NaOH, and 0.2 mmol of FeCl 2 .4H 2 O and FeCl 3 .

結果を図9に示した。磁着率増加比は、薬剤の添加量に比例して増加し、真砂土10gに対して薬剤を30mL添加した場合、つまりNaOHを5.0mmol、FeCl・4HO及びFeClをそれぞれ1.0mmol添加した場合、磁着率増加比は52であった。 The results are shown in FIG. The magnetic attraction rate increase ratio increases in proportion to the amount of the chemical added, and when 30 mL of the chemical is added to 10 g of Masago soil, that is, 5.0 mmol of NaOH, 1 mol of each of FeCl 2 4H 2 O and FeCl 3 When .0 mmol was added, the magnetic attraction rate increase ratio was 52.

撹拌の影響
真砂土に薬剤を添加した後の撹拌要領と磁着率増加比との関係を検討した。真砂土10gに対して、NaOH、FeCl・4HO及びFeClを含む溶液6mlを添加し、加熱前に撹拌装置を用いて真砂土と薬剤との混合溶液を撹拌し、または5min間静置させた。その後大気下、管状炉を用いて250℃で2時間加熱し、放冷後、磁力選別を行った。溶液に含まれるNaOHは1.0mmol、FeCl・4HOは1.44mmol、FeClは0.18mmolである。
Effects of stirring We investigated the relationship between the stirring procedure and the magnetic attraction rate increase ratio after adding chemicals to Masago soil. Add 6 ml of a solution containing NaOH, FeCl2.4H2O , and FeCl3 to 10 g of Masago soil, and stir the mixed solution of Masago soil and the drug using a stirring device before heating, or leave it still for 5 min. I made him put it there. Thereafter, it was heated in the atmosphere at 250° C. for 2 hours using a tube furnace, and after cooling, it was subjected to magnetic separation. The solution contains 1.0 mmol of NaOH, 1.44 mmol of FeCl 2 .4H 2 O, and 0.18 mmol of FeCl 3 .

撹拌装置にはガラス棒、超音波洗浄器(AS ONE ASU-6M)、恒温水槽(yamato scientific BW101)、ボルテックス(Thermo Fisher Scientific miniRotoS56)、スターラー(AS ONE MN-01)を使用した。 A glass rod, an ultrasonic cleaner (AS ONE ASU-6M), a constant temperature water bath (Yamato Scientific BW101), a vortex (Thermo Fisher Scientific miniRotoS56), and a stirrer (AS ONE MN-01) were used as stirring devices.

結果を図10に示した。磁着率増加比は、無撹拌の場合が22.0と最も大きく、スターラーを使用した場合が、2.0で最も小さかった。この結果から撹拌強度が高い程、磁着率増加比が小さくなることが分かる。これは撹拌に伴い真砂土が破砕され、単位表面積当たりの鉄濃度が低下したことに起因するものと思われる。 The results are shown in FIG. The magnetic attraction rate increase ratio was the largest at 22.0 when no stirring was used, and the smallest at 2.0 when a stirrer was used. From this result, it can be seen that the higher the stirring intensity, the smaller the magnetic attraction rate increase ratio. This is thought to be due to the fact that the Masago soil was crushed during stirring and the iron concentration per unit surface area decreased.

薬剤添加後の静置時間の影響
真砂土に薬剤を添加した後、加熱前までの静置時間(放置時間)と磁着率増加比との関係を検討した。真砂土10gに対して、NaOH、FeCl・4HO及びFeClを含む溶液6mlを添加し、室内で所定時間静置させ、その後、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。溶液に含まれるNaOHは1.0mmol、FeCl・4HOは1.44mmol、FeClは0.18mmolである。静置時間は、0min,960min,1440minとした。
Effect of standing time after addition of chemicals After adding chemicals to Masago soil, we investigated the relationship between the standing time (standing time) before heating and the magnetic attraction rate increase ratio. To 10 g of Masago soil, 6 ml of a solution containing NaOH, FeCl 2.4H 2 O, and FeCl 3 was added, allowed to stand indoors for a predetermined period of time, and then heated at 250°C for 2 hours using a tube furnace in the atmosphere. did. Thereafter, it was left to cool and subjected to magnetic separation. The solution contains 1.0 mmol of NaOH, 1.44 mmol of FeCl 2 .4H 2 O, and 0.18 mmol of FeCl 3 . The standing time was 0 min, 960 min, and 1440 min.

結果を図11に示した。磁着率増加比は、真砂土に対して薬剤を添加後直ちに加熱操作に移行した場合が約20と最も大きく、静置時間が長いほど小さかった。1日放置した後に加熱操作に移行した場合、磁着率増加比は4.3であった。 The results are shown in FIG. The magnetic attraction rate increase ratio was highest at about 20 when the heating operation was started immediately after adding the chemical to Masago soil, and it was smaller as the standing time was longer. When the heating operation was started after leaving it for one day, the magnetic attraction rate increase ratio was 4.3.

加熱温度の影響
加熱温度と磁着率増加比との関係を検討した。真砂土10gに対して、NaOH、FeCl・4HO及びFeClを含む溶液6mlを添加し、大気下、管状炉を用いて80~350℃の範囲内で温度を選択し、各々の温度で2時間加熱した。昇温速度は、加熱温度~50℃までは18℃/min、以降加熱温度までの昇温速度は5℃/minとした。その後、放冷し磁力選別を行った。溶液に含まれるNaOHは1.0mmol、FeCl・4HOは、0.18又は1.43mmol、FeClは0.18mmolである。
Effect of heating temperature We investigated the relationship between heating temperature and magnetic attraction rate increase ratio. To 10 g of Masago soil, 6 ml of a solution containing NaOH, FeCl 2.4H 2 O, and FeCl 3 was added, and the temperature was selected within the range of 80 to 350°C using a tube furnace in the atmosphere. It was heated for 2 hours. The temperature increasing rate was 18° C./min from the heating temperature to 50° C., and the temperature increasing rate thereafter up to the heating temperature was 5° C./min. Thereafter, it was left to cool and subjected to magnetic separation. The solution contains 1.0 mmol of NaOH, 0.18 or 1.43 mmol of FeCl 2 .4H 2 O, and 0.18 mmol of FeCl 3 .

結果を図12に示した。磁着率増加比は、FeCl・4HOの添加量によらず80℃~300℃の範囲内においては温度に比例して上昇した。FeCl・4HOの添加量が1.43mmolの場合、磁着率増加比は、加熱温度250℃で14.9、加熱温度300℃で18.9であった。加熱温度が300℃を超えると磁着率増加比は、7~8.5程度に低下した。被処理物に有機物が含まれている場合、ダイオキシン類の発生を抑制し有機物を炭化させる点から加熱温度は250℃が好ましいといえる。 The results are shown in FIG. The magnetic attraction rate increase ratio increased in proportion to the temperature within the range of 80° C. to 300° C., regardless of the amount of FeCl 2.4H 2 O added. When the amount of FeCl 2 .4H 2 O added was 1.43 mmol, the magnetic attraction rate increase ratio was 14.9 at a heating temperature of 250°C and 18.9 at a heating temperature of 300°C. When the heating temperature exceeded 300° C., the magnetic attraction rate increase ratio decreased to about 7 to 8.5. When the object to be treated contains organic substances, the heating temperature is preferably 250° C. in order to suppress the generation of dioxins and carbonize the organic substances.

加熱時間の影響
加熱時間の影響を検討した。真砂土10gに対して、NaOH、FeCl・4HO及びFeClを含む溶液6mlを添加し、大気下、管状炉を用いて250℃到達後の保持時間(加熱時間)を0~3時間の範囲内で選択し、各々の加熱時間で加熱した。その後、放冷し磁力選別を行った。加熱時間は、0,0.5,1.0,1.5,2.0,2.5,3.0時間とした。溶液に含まれるNaOHは1.01mmol、FeCl・4HOは0.18mmol、FeClは0.18mmolである。
Effect of heating time The effect of heating time was investigated. 6 ml of a solution containing NaOH, FeCl 2.4H 2 O and FeCl 3 was added to 10 g of Masago soil, and the holding time (heating time) after reaching 250°C was 0 to 3 hours using a tube furnace in the atmosphere. The heating time was selected within the following range and heated for each heating time. Thereafter, it was left to cool and subjected to magnetic separation. The heating time was 0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 hours. The solution contains 1.01 mmol of NaOH, 0.18 mmol of FeCl 2 .4H 2 O, and 0.18 mmol of FeCl 3 .

結果を図13に示した。加熱時間0時間の磁着率に対する各加熱時間における磁着率の割合は、加熱時間0.5~3.0時間の範囲内においては大差なく約1.4~1.6であった。 The results are shown in FIG. The ratio of the magnetic attachment rate at each heating time to the magnetic attachment rate at a heating time of 0 hours was about 1.4 to 1.6 without much difference within the heating time range of 0.5 to 3.0 hours.

昇温速度の影響
昇温速度の影響を検討した。真砂土10gに対して、NaOH、FeCl・4HO及びFeClを含む溶液6mlを添加し、大気下、管状炉を用いて室温から200℃に達するまでの昇温速度を1.5~36℃/minの範囲内で選択し、各々の昇温速度で加熱し、以降250℃まで5℃/minで昇温した。加熱温度250℃で2時間加熱した後、放冷し磁力選別を行った。溶液に含まれるNaOHは1.01mmol、FeCl・4HOは1.44mmol、FeClは0.18mmolである。
Effect of temperature increase rate The effect of temperature increase rate was investigated. To 10 g of Masago soil, 6 ml of a solution containing NaOH, FeCl 2.4H 2 O, and FeCl 3 was added, and the temperature was raised from room temperature to 200°C at a rate of 1.5 to 200°C using a tube furnace in the atmosphere. The heating rate was selected within the range of 36°C/min, and heating was performed at each temperature increase rate, and thereafter the temperature was increased to 250°C at a rate of 5°C/min. After heating at a heating temperature of 250° C. for 2 hours, the mixture was allowed to cool and subjected to magnetic separation. The solution contains 1.01 mmol of NaOH, 1.44 mmol of FeCl 2 .4H 2 O, and 0.18 mmol of FeCl 3 .

結果を図14に示した。昇温速度1.5℃/minの磁着率に対する各昇温速度における磁着率の割合は、昇温速度が大きくなるに従って低下する傾向が見られた。昇温速度1.5℃/minの磁着率に対する昇温速度36℃/minの磁着率は、約0.6であった。昇温速度を大きくし過ぎると、Fe2+の酸化速度が速まり磁性物質の生成にFe2+が不足することが懸念される。 The results are shown in FIG. The ratio of the magnetic attachment rate at each temperature increase rate to the magnetic attachment rate at a temperature increase rate of 1.5° C./min tended to decrease as the temperature increase rate increased. The magnetic attachment rate at a temperature increase rate of 36°C/min was about 0.6 compared to the magnetic attachment rate at a temperature increase rate of 1.5°C/min. If the temperature increase rate is too high, the oxidation rate of Fe 2+ will increase, and there is a concern that Fe 2+ will not be sufficient to generate the magnetic material.

カウンターアニオンの影響
カウンターアニオンと磁着率増加比との関係を検討した。真砂土10gに対して、NaOH(1.5mmol)とFeCl・4HO又はFeSO・7HO又はFe(NH(SO・6HOとを含む溶液6mlを添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。溶液に含まれるFe2+は、いずれも0.6mmolである。
Influence of counter anions We investigated the relationship between counter anions and magnetic attraction rate increase ratio. Add 6 ml of a solution containing NaOH (1.5 mmol) and FeCl 2.4H 2 O or FeSO 4.7H 2 O or Fe(NH 4 ) 2 (SO 4 ) 2.6H 2 O to 10 g of Masago soil. The mixture was heated at 250° C. for 2 hours in the atmosphere using a tube furnace. Thereafter, it was left to cool and subjected to magnetic separation. The amount of Fe 2+ contained in each solution is 0.6 mmol.

結果を図15に示した。カウンターアニオンの種類により磁着率増加比は、大きく異なった。磁着率増加比は、FeSO・7HOを使用した場合が最も高く18.0であり、FeCl・4HOを使用した場合が最も低く2.8であった。 The results are shown in FIG. The magnetic attraction rate increase ratio varied greatly depending on the type of counter anion. The magnetic attraction rate increase ratio was the highest at 18.0 when FeSO 4 .7H 2 O was used, and the lowest at 2.8 when FeCl 2 .4H 2 O was used.

各鉄塩におけるFe2+添加量の影響
各鉄塩におけるFe2+添加量と磁着率増加比との関係を検討した。真砂土10gに対して、NaOH(1.5mmol)、FeCl・4HO(0.63~1.43mmol)又はFeSO・7HO(0.63~0.90mmol)又はFe(NH(SO・6HO(0.63mmol)を含む溶液6mlを添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。
Effect of the amount of Fe 2+ added in each iron salt The relationship between the amount of Fe 2+ added and the magnetic attraction rate increase ratio in each iron salt was investigated. NaOH (1.5 mmol), FeCl 2.4H 2 O (0.63-1.43 mmol), FeSO 4.7H 2 O (0.63-0.90 mmol) or Fe (NH 4 ) 2 (SO 4 ) 2.6H 2 O (0.63 mmol) was added thereto, and the mixture was heated at 250° C. for 2 hours using a tube furnace in the atmosphere. Thereafter, it was left to cool and subjected to magnetic separation.

結果を図16に示した。FeCl・4HOは、溶解度が160g/100ml(at10℃)と大きいため添加量の調整が容易であり、Fe2+添加量を大きく変化させることができる。またFeCl・4HOを用いた場合、磁着率増加比は、FeCl・4HOの添加量により大きく異なることから薬剤として好ましい。これに対してFeSO・7HOは、溶解量が26g/100ml(at20℃)であり、Fe(NH(SO・6HOは、溶解量が27g/100ml(at20℃)であり、共に溶解度が小さいためFe2+添加量を大きく変化させることができない。 The results are shown in FIG. Since FeCl 2 .4H 2 O has a high solubility of 160 g/100 ml (at 10° C.), the amount added can be easily adjusted, and the amount of Fe 2+ added can be greatly changed. Further, when FeCl 2 .4H 2 O is used, the magnetic attraction rate increase ratio varies greatly depending on the amount of FeCl 2 .4H 2 O added, which is preferable as a drug. On the other hand, FeSO 4 .7H 2 O has a dissolution amount of 26 g/100 ml (at 20°C), and Fe(NH 4 ) 2 (SO 4 ) 2.6H 2 O has a dissolution amount of 27 g/100 ml (at 20° C.). °C), and since both have low solubility, it is not possible to greatly change the amount of Fe 2+ added.

模擬セシウム汚染土壌の分級
模擬セシウム汚染土壌を以下の要領で得た。粒度が2mm未満の真砂土200gに、塩化セシウムCsClの濃度が0.14mol/Lの塩化セシウム水溶液250mlを加え、ドラフト内で一晩風乾させた。その後、40~50℃のホットプレートで2時間加熱し、含水率が1wt%以下の模擬セシウム汚染土壌を得た。
Classification of simulated cesium-contaminated soil Simulated cesium-contaminated soil was obtained as follows. 250 ml of a cesium chloride aqueous solution having a cesium chloride CsCl concentration of 0.14 mol/L was added to 200 g of Masago soil with a particle size of less than 2 mm, and the mixture was air-dried overnight in a fume hood. Thereafter, it was heated on a hot plate at 40 to 50°C for 2 hours to obtain simulated cesium-contaminated soil with a moisture content of 1 wt% or less.

以下の要領で磁着選別用試料を2種類調整した。模擬セシウム汚染土壌100gに、FeCl・4HO及びNaOHを含む水溶液60mlを添加し、150℃のホットプレートで2時間加熱し磁着選別用試料を得た。一方の磁着選別用試料では、水溶液60mlにFeCl・4HOが7.2mmolとNaOHが15mmol含まれる。他方の磁着選別用試料では、水溶液60mlにFeCl・4HOが8.8mmolとNaOHが15mmol含まれる。 Two types of samples for magnetic separation were prepared in the following manner. 60 ml of an aqueous solution containing FeCl 2 .4H 2 O and NaOH was added to 100 g of simulated cesium-contaminated soil, and heated on a hot plate at 150° C. for 2 hours to obtain a sample for magnetic separation. In one sample for magnetic separation, 60 ml of the aqueous solution contains 7.2 mmol of FeCl 2 .4H 2 O and 15 mmol of NaOH. In the other sample for magnetic separation, 60 ml of the aqueous solution contains 8.8 mmol of FeCl 2 .4H 2 O and 15 mmol of NaOH.

2種類の磁着選別用試料をそれぞれ適量採取し、それぞれについて磁力選別した。磁力選別方法は、本明細書の段落[0090]、[0091]に記載の通りである。本明細書の段落[0090]では磁選操作が5回とあるが、ここでは磁選操作を10回実施した。磁着物及び残渣それぞれを酸分解し(60℃,120min)、これをICP-MSを用いて分析した。またCs濃度を式(3)より算出した。 Appropriate amounts of two types of samples for magnetic separation were each taken, and each was subjected to magnetic separation. The magnetic selection method is as described in paragraphs [0090] and [0091] of this specification. Paragraph [0090] of this specification states that the magnetic separation operation was performed 5 times, but here the magnetic separation operation was performed 10 times. The magnetic material and the residue were each subjected to acid decomposition (60° C., 120 min), and analyzed using ICP-MS. Further, the Cs concentration was calculated using equation (3).

Figure 0007390652000002
Figure 0007390652000002

結果を表1に示した。模擬セシウム汚染土壌100gにFeCl・4HOを7.2mmol添加した場合、濃縮率(磁着物Cs濃度/残渣Cs濃度)は、9.6倍、模擬セシウム汚染土壌100gにFeCl・4HOを8.8mmol添加した場合、濃縮率(磁着物Cs濃度/残渣Cs濃度)は、5.4倍となった。 The results are shown in Table 1. When 7.2 mmol of FeCl 2.4H 2 O is added to 100 g of simulated cesium-contaminated soil, the concentration ratio (magnetic Cs concentration/residue Cs concentration) is 9.6 times, and FeCl 2.4H 2 is added to 100 g of simulated cesium-contaminated soil. When 8.8 mmol of O was added, the concentration ratio (magnetic Cs concentration/residue Cs concentration) was 5.4 times.

Figure 0007390652000003
Figure 0007390652000003

供試土壌(黒土)
以下の実験では、供試土壌に黒土(有機性土壌)を用いた。非加熱状態の黒土の化学組成を表2に示した。非加熱状態の黒土に含まる有機物(強熱減量;Ig-Loss)は、23%であった。また非加熱状態の黒土をXRD分析した結果、黒土は、主に石英、曹長石、灰長石、ソーダ雲母、クリストバル石、黄鉄鉱、アロフェン等からなっていた。
Test soil (black soil)
In the following experiments, black soil (organic soil) was used as the test soil. Table 2 shows the chemical composition of black soil in an unheated state. The organic matter (ignition loss; Ig-Loss) contained in the unheated black soil was 23%. Further, as a result of XRD analysis of the unheated black soil, the black soil was mainly composed of quartz, albite, anorthite, soda mica, cristobalite, pyrite, allophane, and the like.

Figure 0007390652000004
Figure 0007390652000004

非加熱黒土(含水率13~14wt%)及び非加熱黒土(含水率13~14wt%)を250℃で2時間加熱した後の黒土(加熱黒土)の粒度分布を測定した。粒度分布の測定には篩(75、125、250、500、1000μm)を使用した。結果を図17に示した。非加熱黒土には、75μm未満の粒子が10wt%含まれ、加熱黒土には75μm未満の粒子が15wt%含まれていた。加熱により塊状物が分散し、また有機物が消失したことより75μm未満の粒子が増加したものと思われる。 The particle size distribution of unheated black soil (water content 13 to 14 wt%) and unheated black soil (water content 13 to 14 wt%) was heated at 250° C. for 2 hours (heated black soil). A sieve (75, 125, 250, 500, 1000 μm) was used to measure the particle size distribution. The results are shown in FIG. The unheated black soil contained 10 wt% of particles less than 75 μm, and the heated black soil contained 15 wt% of particles less than 75 μm. It is thought that the number of particles less than 75 μm increased due to the dispersion of lumps and the disappearance of organic matter by heating.

薬剤未添加黒土及び薬剤未添加加熱黒土の磁着率
薬剤未添加の非加熱黒土の磁着率は、3.4±0.1wt%であった。薬剤未添加の加熱黒土の磁着率は、6.0±0.1wt%であった。加熱することで磁着率が約1.8倍増加した。黒土が加熱されることで磁着率が増加することは、真砂土と同じであり、加熱により微細粒子が増加し、また磁性酸化物が生成したことにより磁着率が増加したと考えられる。磁着率は式(1)で示され、磁着率の測定要領は、本明細書の段落[0090]、[0091]に基づき実施した。
Magnetic Attachment Rate of Chemical-Free Black Soil and No-Medicine Added Heated Black Soil The magnetic attraction rate of unheated black soil to which no chemical was added was 3.4±0.1 wt%. The magnetic attraction rate of the heated black soil to which no chemicals were added was 6.0±0.1 wt%. The magnetic attraction rate increased by about 1.8 times by heating. The fact that the magnetic susceptibility increases when black soil is heated is the same as that of Masago soil, and it is thought that heating increases the number of fine particles and the generation of magnetic oxides, which increases the magnetic susceptibility. The magnetic susceptibility is expressed by formula (1), and the method for measuring the magnetic susceptibility was performed based on paragraphs [0090] and [0091] of this specification.

ここで薬剤未添加の加熱黒土に含まれる75μm未満の粒子を磁力選別により分級することを目標とした場合、目標磁着増加率は、式(4)で示される。本実施例において、薬剤未添加の加熱黒土に含まれる75μm未満の粒子の含有率が15wt%、薬剤未添加の加熱黒土の磁着率は、6.0±0.1wt%であるから、目標磁着増加率は2.5となる。また磁着増加率を式(5)で定義した。

Figure 0007390652000005
Here, when the goal is to classify particles smaller than 75 μm contained in heated black soil to which no chemicals have been added by magnetic sorting, the target magnetic attraction increase rate is expressed by equation (4). In this example, the content of particles less than 75 μm contained in the heated black soil to which no chemicals have been added is 15 wt%, and the magnetic attraction rate of the heated black soil to which no chemicals have been added is 6.0 ± 0.1 wt%, so the target The magnetic attraction increase rate is 2.5. Moreover, the magnetic attraction increase rate was defined by equation (5).
Figure 0007390652000005

黒土を供試土壌としたときの磁着選別用試料の調整方法、磁力選別方法、磁着率の定義は、基本的に真砂土を供試土壌としたときの磁着選別用試料の調整方法、磁力選別方法、磁着率の定義と同じであり、本明細書の段落[0090]~[0092]に記載の通りである。 The method for preparing samples for magnetic separation when black soil is used as the test soil, the magnetic separation method, and the definition of magnetic susceptibility are basically the method for preparing samples for magnetic separation when using Masago soil as test soil. , the magnetic force sorting method, and the definition of magnetic attraction rate, and are as described in paragraphs [0090] to [0092] of this specification.

FeCl・4HOの添加量の影響
黒土10gに対して、FeCl・4HO及びNaOHを含む溶液を添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。溶液に含まれるNaOHは、1.5mmol、FeCl・4HOは、0~9mmolの範囲で添加量を変えた。FeClは、未添加である。
Effect of addition amount of FeCl 2 .4H 2 O A solution containing FeCl 2 .4H 2 O and NaOH was added to 10 g of black soil, and the mixture was heated at 250° C. for 2 hours in the atmosphere using a tube furnace. Thereafter, it was left to cool and subjected to magnetic separation. The amount of NaOH contained in the solution was 1.5 mmol, and the amount of FeCl 2.4H 2 O added was varied within the range of 0 to 9 mmol. FeCl 3 was not added.

結果を図18に示した。磁着増加率は、FeCl・4HOの添加量により変化した。FeCl・4HOが0~4.5mmolの範囲において、FeCl・4HOの添加量に比例して磁着増加率は増加し、FeCl・4HOの添加量0.9mmolで磁着増加率は、1.03、FeCl・4HOの添加量4.5mmolで磁着増加率は、1.15であった。一方、FeCl・4HOが4.5~9.0mmolの範囲においては、FeCl・4HOの添加量に比例して磁着増加率は減少した。磁着増加率は、FeCl・4HOの添加量が4.5mmolでピークとなった。 The results are shown in FIG. The rate of increase in magnetic attraction changed depending on the amount of FeCl 2 .4H 2 O added. In the range of 0 to 4.5 mmol of FeCl 2.4H 2 O, the rate of increase in magnetic attraction increases in proportion to the amount of FeCl 2.4H 2 O added, and when the amount of FeCl 2.4H 2 O added is 0.9 mmol, it increases. The magnetic attraction increase rate was 1.03, and when the amount of FeCl 2 .4H 2 O added was 4.5 mmol, the magnetic attraction increase rate was 1.15. On the other hand, in the range of 4.5 to 9.0 mmol of FeCl 2.4H 2 O, the magnetic attraction increase rate decreased in proportion to the amount of FeCl 2.4H 2 O added. The magnetic attraction increase rate reached a peak when the amount of FeCl 2 .4H 2 O added was 4.5 mmol.

FeCl・4HOの添加量と磁着率との関係を供試土壌で比較すると、図4及び図18に示すように供試土壌によらず同じ傾向を示した。具体的には、山砂(真砂土)及び黒土とも磁着率は、ある特定のFeCl・4HO添加量において極大値を示した。 When comparing the relationship between the amount of FeCl 2 .4H 2 O added and the magnetic susceptibility among test soils, the same tendency was shown regardless of the test soil, as shown in FIGS. 4 and 18. Specifically, the magnetic attraction rate of both mountain sand (masago soil) and black soil showed a maximum value at a certain specific amount of FeCl 2 .4H 2 O added.

NaOHの添加量の影響
黒土10gに対して、FeCl・4HO及びNaOHを含む溶液を添加し、大気下、管状炉を用いて250℃で2時間加熱した。その後、放冷し磁力選別を行った。溶液に含まれるFeCl・4HOは、4.5mmol、NaOHは、0~12mmolの範囲で添加量を変えた。FeClは、未添加である。
Effect of Added Amount of NaOH A solution containing FeCl 2 .4H 2 O and NaOH was added to 10 g of black soil, and the mixture was heated at 250° C. in a tube furnace in the atmosphere for 2 hours. Thereafter, it was left to cool and subjected to magnetic separation. The amount of FeCl 2 .4H 2 O contained in the solution was 4.5 mmol, and the amount of NaOH added was varied in the range of 0 to 12 mmol. FeCl 3 was not added.

結果を図19に示した。磁着増加率は、NaOHの添加量により変化した。NaOHが0~9.0mmolの範囲において、NaOHの添加量に比例して磁着増加率は増加し、NaOHの添加量9.0mmolで磁着増加率がピークとなり、そのときの磁着増加率は、2.46であった。一方、NaOHが9.0~12mmolの範囲においては、NaOHの添加量に比例して磁着増加率は減少した。 The results are shown in FIG. The magnetic attraction increase rate varied depending on the amount of NaOH added. In the range of NaOH from 0 to 9.0 mmol, the rate of increase in magnetic attraction increases in proportion to the amount of NaOH added, and the rate of increase in magnetic attraction reaches a peak when the amount of NaOH added is 9.0 mmol, and the rate of increase in magnetic attraction at that time was 2.46. On the other hand, in the range of 9.0 to 12 mmol of NaOH, the magnetic attraction increase rate decreased in proportion to the amount of NaOH added.

NaOHの添加量と磁着率との関係を供試土壌で比較すると、図7及び図19に示すように供試土壌によらず同じ傾向を示した。具体的には、山砂(真砂土)及び黒土とも磁着率は、ある特定のNaOH添加量において極大値を示した。 When comparing the relationship between the amount of NaOH added and the magnetic susceptibility in the test soils, the same tendency was shown regardless of the test soil, as shown in FIGS. 7 and 19. Specifically, the magnetic attraction rate of both mountain sand (Masago soil) and black soil showed a maximum value at a certain specific amount of NaOH added.

加熱温度の影響
黒土10gに対して、NaOH及びFeCl・4HOを含む溶液を添加し、大気下、管状炉を用いて250℃及び300℃で加熱した。前者は、室温~200℃までは18℃/min、200℃~250℃までは5℃/minで昇温し、250℃で2時間保持し、後者は、室温~200℃までは18℃/min、200℃~300℃までは10℃/minで昇温し、300℃で2時間保持した。溶液に含まれるNaOHは9.0mmol、FeCl・4HOは4.5mmolであり、FeClは未添加である。
Effect of Heating Temperature A solution containing NaOH and FeCl 2 .4H 2 O was added to 10 g of black soil, and heated at 250° C. and 300° C. using a tube furnace in the atmosphere. The former is heated at 18°C/min from room temperature to 200°C, and 5°C/min from 200°C to 250°C and held at 250°C for 2 hours, and the latter is raised at 18°C/min from room temperature to 200°C. The temperature was raised at a rate of 10°C/min from 200°C to 300°C and held at 300°C for 2 hours. The solution contained 9.0 mmol of NaOH, 4.5 mmol of FeCl 2 .4H 2 O, and no FeCl 3 was added.

実験結果、250℃で2時間加熱した場合、磁着率は14.7±0.7%、300℃で2時間加熱した場合、磁着率は20.5±0.4%であった。磁着増加率で示せば、前者で2.4±0.1、後者で3.4±0.1であった。加熱温度250℃と300℃とでは、後者の方が磁着率が高かった。 As a result of the experiment, when heated at 250°C for 2 hours, the magnetic attachment rate was 14.7±0.7%, and when heated at 300°C for 2 hours, the magnetic attachment rate was 20.5±0.4%. The magnetic attraction increase rate was 2.4±0.1 for the former and 3.4±0.1 for the latter. Between heating temperatures of 250°C and 300°C, the latter had a higher magnetic attraction rate.

加熱温度と磁着率との関係を供試土壌で比較すると、山砂(真砂土)及び黒土とも加熱温度250℃と300℃とでは、後者の方が磁着率が高かった。 Comparing the relationship between heating temperature and magnetic susceptibility in test soils, when heating temperatures of 250°C and 300°C were used for both mountain sand (masago soil) and black soil, the latter had a higher magnetic susceptibility.

加熱時間の影響
黒土10gに対して、NaOH及びFeCl・4HOを含む溶液を添加し、大気下、管状炉を用いて250℃で加熱時間を変えた実験を行った。具体的には、一方は、室温~200℃までは18℃/min、200℃~250℃までは5℃/minで昇温し、250℃で2時間保持した。他方は、室温~200℃までは18℃/min、200℃~250℃までは5℃/minで昇温し、250℃で0.5時間保持した。溶液に含まれるFeCl・4HOは0.9mmol、NaOHは1.5mmolであり、FeClは未添加である。
Effect of Heating Time An experiment was conducted in which a solution containing NaOH and FeCl 2 .4H 2 O was added to 10 g of black soil, and the heating time was varied at 250° C. using a tube furnace in the atmosphere. Specifically, one side was heated at a rate of 18°C/min from room temperature to 200°C, and at a rate of 5°C/min from 200°C to 250°C, and held at 250°C for 2 hours. On the other hand, the temperature was raised at 18°C/min from room temperature to 200°C, and at 5°C/min from 200°C to 250°C, and held at 250°C for 0.5 hour. The solution contains 0.9 mmol of FeCl 2 .4H 2 O, 1.5 mmol of NaOH, and no FeCl 3 was added.

実験結果、250℃で2時間加熱した場合、磁着率は6.2±0.2%、250℃で0.5時間加熱した場合、磁着率は5.5±0.1%であった。磁着増加率で示せば、前者で1.0±0.0、後者で0.9±0.0であった。加熱時間が2時間と0.5時間とでは、前者の方が少し磁着率が高かった。 The experimental results showed that when heated at 250℃ for 2 hours, the magnetic attachment rate was 6.2±0.2%, and when heated at 250℃ for 0.5 hours, the magnetic attachment rate was 5.5±0.1%. Ta. In terms of magnetic attraction increase rate, the former was 1.0±0.0 and the latter was 0.9±0.0. When the heating time was 2 hours or 0.5 hours, the magnetization rate was slightly higher in the former case.

加熱時間と磁着率との関係を供試土壌で比較すると、図13に示すように山砂(真砂土)の場合、加熱時間0.5~2時間の範囲で磁着率は加熱時間の影響を殆ど受けなかった。一方、黒土の場合、加熱時間0.5~2時間の範囲で磁着率は、加熱時間が長いほど大きかった。 Comparing the relationship between heating time and magnetic susceptibility using test soil, as shown in Figure 13, in the case of mountain sand (Masago soil), the magnetic susceptibility increases with heating time in the range of 0.5 to 2 hours. It was hardly affected. On the other hand, in the case of black clay, the magnetic attraction rate increased as the heating time increased in the range of 0.5 to 2 hours.

昇温速度の影響
黒土10gに対して、NaOH及びFeCl・4HOを含む溶液を添加し、大気下、管状炉を用いて250℃までの昇温速度を変えた実験を行った。具体的には、一方は、室温~200℃までは18℃/min、200℃~250℃までは5℃/minで昇温し、250℃で2時間保持した。他方は、室温~230℃までは42℃/min、230℃~250℃までは4℃/minで昇温し、250℃で2時間保持した。溶液に含まれるFeCl・4HOは0.9mmol、NaOHは1.5mmolであり、FeClは未添加である。
Effect of temperature increase rate A solution containing NaOH and FeCl 2 .4H 2 O was added to 10 g of black soil, and an experiment was conducted in which the temperature increase rate up to 250° C. was varied using a tube furnace in the atmosphere. Specifically, one side was heated at a rate of 18°C/min from room temperature to 200°C, and at a rate of 5°C/min from 200°C to 250°C, and held at 250°C for 2 hours. On the other hand, the temperature was raised at 42°C/min from room temperature to 230°C, and at 4°C/min from 230°C to 250°C, and held at 250°C for 2 hours. The solution contains 0.9 mmol of FeCl 2 .4H 2 O, 1.5 mmol of NaOH, and no FeCl 3 was added.

実験結果、昇温速度の遅い前者で磁着率は6.2±0.2%、昇温速度の速い後者で磁着率は6.7±0.2%であった。磁着増加率で示せば、前者で1.0±0.0、後者で1.1±0.0であった。黒土を用いた実験において、磁着率に対する昇温速度の影響は殆どなかった。 As a result of the experiment, the magnetic attachment rate was 6.2±0.2% in the former case where the temperature increase rate was slow, and the magnetic attachment rate was 6.7±0.2% in the latter case where the temperature increase rate was fast. In terms of magnetic attraction increase rate, the former was 1.0±0.0 and the latter was 1.1±0.0. In experiments using black soil, there was almost no effect of the temperature increase rate on the magnetic attachment rate.

加熱時間と磁着率との関係を供試土壌で比較すると、図14に示すように山砂(真砂土)においても昇温速度18℃/minと昇温速度36℃/minとで磁着率はほぼ同じである。よって昇温速度18℃/min~42℃/minの範囲内では、供試土壌の種類によらず磁着率に対する昇温速度の影響は殆どないと言える。 Comparing the relationship between heating time and magnetic attraction rate for test soils, as shown in Figure 14, even mountain sand (Masago soil) was magnetically attracted at a heating rate of 18°C/min and a heating rate of 36°C/min. The rates are almost the same. Therefore, it can be said that within the temperature increasing rate range of 18° C./min to 42° C./min, the temperature increasing rate has almost no effect on the magnetic attraction rate, regardless of the type of soil being tested.

1 粉粒体の処理装置
11 汚染土壌供給装置
21 薬剤供給装置
31 反応装置
41 冷却装置
51 磁力選別装置
1 Powder processing device 11 Contaminated soil supply device 21 Chemical supply device 31 Reaction device 41 Cooling device 51 Magnetic separation device

Claims (8)

被処理物を磁力選別可能に調製する方法であって、
前記被処理物が粉粒体であり、
前記粉粒体と2価の鉄イオンと3価の鉄イオンとが共存した状態でこれを200℃以上300℃以下の温度で加熱する加熱工程を含み、
前記2価の鉄イオンは、2価の鉄イオンを含有する水溶液として与えられ、
前記粉粒体の表面に磁性物質を生成・吸着させることを特徴とする被処理物の調製方法。
A method for preparing a material to be processed so that it can be magnetically sorted, the method comprising:
The object to be processed is a powder or granular material,
A heating step of heating the powder and granules in a state in which divalent iron ions and trivalent iron ions coexist at a temperature of 200 ° C. or more and 300 ° C. or less ,
The divalent iron ion is provided as an aqueous solution containing divalent iron ions,
A method for preparing an object to be processed, characterized in that a magnetic substance is generated and adsorbed on the surface of the powder or granular material.
前記3価の鉄イオンは、前記粉粒体に含まれる鉄成分に由来のもの及び/又は前記水溶液に含まれる2価の鉄イオンからの化学変化によるものであることを特徴とする請求項1に記載の被処理物の調製方法。 Claim 1, wherein the trivalent iron ions are derived from an iron component contained in the powder and/or a chemical change from divalent iron ions contained in the aqueous solution. A method for preparing a processed material as described in . 前記3価の鉄イオンが、3価の鉄イオンを含有する水溶液として与えられることを特徴とする請求項1又は請求項2に記載の被処理物の調製方法。 3. The method for preparing an object to be treated according to claim 1, wherein the trivalent iron ions are provided as an aqueous solution containing trivalent iron ions. 請求項1又は請求項2に記載の被処理物の調製方法において、前記2価の鉄イオンを含有する水溶液はアルカリ剤を含有し、
又は請求項3に記載の被処理物の調製方法において、前記2価の鉄イオンを含有する水溶液及び/又は3価の鉄イオンを含有する水溶液はアルカリ剤を含有することを特徴とする被処理物の調製方法。
In the method for preparing a workpiece according to claim 1 or 2, the aqueous solution containing divalent iron ions contains an alkaline agent,
Or, in the method for preparing a treated object according to claim 3, the aqueous solution containing divalent iron ions and/or the aqueous solution containing trivalent iron ions contains an alkaline agent. How to prepare things.
前記粉粒体が有機物を含み、
前記有機物は、前記加熱工程で炭化され、炭化物の表面に前記磁性物質が生成・吸着することを特徴とする請求項1から請求項のいずれか1項に記載の被処理物の調製方法。
The granular material contains organic matter,
5. The method for preparing an object to be treated according to claim 1 , wherein the organic substance is carbonized in the heating step, and the magnetic substance is generated and adsorbed on the surface of the carbide.
前記2価の鉄イオンを含有する水溶液及び/又は3価の鉄イオンを含有する水溶液、又はこれらにアルカリ剤を含有する水溶液を薬剤としたとき、下記(A)群の1つ以上を制御することにより前記粉粒体の表面に生成・吸着させる磁性物質の磁着力を制御することを特徴とする請求項1から請求項のいずれか1項に記載の被処理物の調製方法。
(A)2価の鉄イオン濃度,2価の鉄イオンに対する3価の鉄イオンの割合,アルカリ剤の種類,アルカリ剤の濃度,薬剤の添加量,粉粒体と薬剤との混合物に対する撹拌強度,薬剤添加後の静置時間,加熱温度,加熱時間,昇温速度,水溶液のアニオンの種類
When the aqueous solution containing divalent iron ions and/or the aqueous solution containing trivalent iron ions, or the aqueous solution containing an alkaline agent in these, is used as a drug, one or more of the following group (A) is controlled. 6. The method for preparing a workpiece according to claim 1 , wherein the magnetic attraction force of the magnetic substance generated and adsorbed on the surface of the powder or granular material is controlled.
(A) Divalent iron ion concentration, ratio of trivalent iron ions to divalent iron ions, type of alkali agent, concentration of alkali agent, amount of agent added, stirring intensity for the mixture of powder and granules and agent , standing time after drug addition, heating temperature, heating time, heating rate, type of anion in aqueous solution
請求項1から請求項のいずれか1項に記載の被処理物の調製方法により得られる被処理物を磁力選別により分級する分級工程を備え、
前記粉粒体が土壌、焼却灰、汚泥、有機物、これら混合物、又はこれらに汚染物質が固着、吸着又は付着したものであることを特徴とする粉粒体の処理方法。
A classification step of classifying the processed material obtained by the method for preparing the processed material according to any one of claims 1 to 6 by magnetic separation ,
A method for treating a powder or granule, characterized in that the powder or granule is soil , incineration ash, sludge, organic matter, a mixture thereof, or a substance to which pollutants are fixed, adsorbed, or attached .
少なくとも2価の鉄イオンを含有する水溶液を含む薬剤と被処理物である粉粒体とを共存下で加熱し、前記粉粒体の表面に磁性物質を生成・吸着させる反応装置と、前記反応装置に前記薬剤を供給する薬剤供給装置と、を備える被処理物の調製装置と、
前記被処理物の調製装置を介して得られる被処理物を磁力選別する磁選機と、
を含み、
前記粉粒体が土壌、焼却灰、汚泥、有機物、これら混合物、又はこれらに汚染物質が固着、吸着又は付着したものであることを特徴とする粉粒体の処理装置。
A reaction device that heats a chemical containing an aqueous solution containing at least divalent iron ions and a powder or granule as a treatment object in the coexistence to generate and adsorb a magnetic substance on the surface of the powder or granule; A processing object preparation device comprising: a drug supply device that supplies the drug to the device;
a magnetic separator that magnetically sorts the processed material obtained through the processed material preparation device;
including;
A processing device for powder and granular material, characterized in that the powder and granular material is soil , incineration ash, sludge, organic matter, a mixture thereof, or a material to which pollutants are fixed, adsorbed, or attached .
JP2020017589A 2019-02-08 2020-02-05 Method for preparing objects to be processed, method and apparatus for processing powder and granular materials Active JP7390652B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019021340 2019-02-08
JP2019021340 2019-02-08

Publications (2)

Publication Number Publication Date
JP2020128982A JP2020128982A (en) 2020-08-27
JP7390652B2 true JP7390652B2 (en) 2023-12-04

Family

ID=72174482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020017589A Active JP7390652B2 (en) 2019-02-08 2020-02-05 Method for preparing objects to be processed, method and apparatus for processing powder and granular materials

Country Status (1)

Country Link
JP (1) JP7390652B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098032A (en) 2002-09-13 2004-04-02 Ataka Construction & Engineering Co Ltd Method for purifying heavy metal contaminated soil
JP2005137973A (en) 2003-11-04 2005-06-02 Futaba Shoji Kk Magnetic adsorbent, its manufacturing method and water treatment method
JP2005334737A (en) 2004-05-25 2005-12-08 Futaba Shoji Kk Magnetic adsorbent, photocatalyst supporting adsorbent, magnetic photocatalyst, photocatalyst supporting magnetic adsorbent, and harmful substance decomposing treatment method
JP2007000682A (en) 2005-06-21 2007-01-11 Akira Hatashi Magnetic processing method and device for wastes, object to be processed by the device, and product having the object
WO2011052205A1 (en) 2009-10-30 2011-05-05 国立大学法人東京工業大学 Polymer-coated ferrite microparticles and production method for same
WO2013012081A1 (en) 2011-07-21 2013-01-24 Jnc株式会社 Method for removing cesium ions from water and device for removing cesium ions from water
WO2014168048A1 (en) 2013-04-12 2014-10-16 国立大学法人愛媛大学 Magnetized zeolite, production method therefor, and method for selective and specific capture of cesium
JP2017039123A (en) 2015-08-17 2017-02-23 公立大学法人県立広島大学 Treatment method of contaminant
JP2017105688A (en) 2015-12-11 2017-06-15 株式会社Ihi Manufacturing method of magnetic zeolite
JP2017113744A (en) 2015-12-17 2017-06-29 公立大学法人県立広島大学 Magnetic force selector, method of application of magnetic force selector, and dry processing system of pollutant

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098032A (en) 2002-09-13 2004-04-02 Ataka Construction & Engineering Co Ltd Method for purifying heavy metal contaminated soil
JP2005137973A (en) 2003-11-04 2005-06-02 Futaba Shoji Kk Magnetic adsorbent, its manufacturing method and water treatment method
JP2005334737A (en) 2004-05-25 2005-12-08 Futaba Shoji Kk Magnetic adsorbent, photocatalyst supporting adsorbent, magnetic photocatalyst, photocatalyst supporting magnetic adsorbent, and harmful substance decomposing treatment method
JP2007000682A (en) 2005-06-21 2007-01-11 Akira Hatashi Magnetic processing method and device for wastes, object to be processed by the device, and product having the object
WO2011052205A1 (en) 2009-10-30 2011-05-05 国立大学法人東京工業大学 Polymer-coated ferrite microparticles and production method for same
WO2013012081A1 (en) 2011-07-21 2013-01-24 Jnc株式会社 Method for removing cesium ions from water and device for removing cesium ions from water
US20140231353A1 (en) 2011-07-21 2014-08-21 Jnc Corporation Method and Apparatus for Removing Cesium Ion from Water
WO2014168048A1 (en) 2013-04-12 2014-10-16 国立大学法人愛媛大学 Magnetized zeolite, production method therefor, and method for selective and specific capture of cesium
JP2017039123A (en) 2015-08-17 2017-02-23 公立大学法人県立広島大学 Treatment method of contaminant
JP2017105688A (en) 2015-12-11 2017-06-15 株式会社Ihi Manufacturing method of magnetic zeolite
JP2017113744A (en) 2015-12-17 2017-06-29 公立大学法人県立広島大学 Magnetic force selector, method of application of magnetic force selector, and dry processing system of pollutant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
田尻雄大 ほか,フェライト法と磁気分離を用いた重金属汚染土の不溶化及び浄化効果,土木学会西部支部研究発表会,日本,土木学会,2008年03月

Also Published As

Publication number Publication date
JP2020128982A (en) 2020-08-27

Similar Documents

Publication Publication Date Title
Li et al. Effects of wet ball milling on lead stabilization and particle size variation in municipal solid waste incinerator fly ash
Ju et al. Removal of cadmium from aqueous solutions using red mud granulated with cement
EP3514219B1 (en) Coal ash treatment system and method
Ko et al. Recycling of municipal solid waste incinerator fly ash by using hydrocyclone separation
JP6797593B2 (en) How to treat pollutants
AU2009294834B2 (en) Method for separating rich ore particles from agglomerates which contain said rich ore particles and magnetizable particles attached thereto, especially Fe3O4
Yang et al. Investigation of elements (U, V, Sr, Ga, Cs and Rb) leaching and mobility in uranium-enriched coal ash with thermochemical treatment
JP5755377B2 (en) Method for producing radioactive cesium decontaminant and method for removing radioactive cesium
JP7390652B2 (en) Method for preparing objects to be processed, method and apparatus for processing powder and granular materials
JP7116952B2 (en) Method and apparatus for preparing object to be processed and method and apparatus for treating object to be processed
Majid et al. Remediation of heavy metal contaminated solid wastes using agglomeration techniques
JP5683633B2 (en) Method and apparatus for treating radioactive material contaminants
JP6850634B2 (en) How to purify mercury-contaminated soil
JP6250304B2 (en) Method for treating solid containing pollutant and solid treating agent containing pollutant
JP2013170948A (en) Removal method of radioactive cesium
JP2014211341A (en) Removal method of contaminant, and magnetic decontamination agent and manufacturing method thereof
Wei Leaching study of thermally treated cadmium-doped soils
Koomson et al. Detoxification of lead and arsenic from galamsey polluted water using nano synthesized iron oxide from cupola furnace slag
US11247251B2 (en) Spent activated carbon and industrial by product treatment system and method
Wang et al. Stabilization of Heavy Metal Containing Smelting Ash through Mechano-chemical Reaction
JP2019191177A (en) Method for cleaning radiation-contaminated soil and method for reducing volume
Vessal Iron removal from acid mine drainage using activated bentonite clay
RU2388084C1 (en) Method purifying sand from radioactive nuclides
Yen et al. Recovery of Zinc from Municipal Solid Waste Incineration Fly Ash
Stoica et al. Removal of 226 Ra (II) from uranium mining and processing effluents

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231110

R150 Certificate of patent or registration of utility model

Ref document number: 7390652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150