WO2014166336A1 - 用于电动骑行车辆的防抱死制动系统及其防抱死装置 - Google Patents

用于电动骑行车辆的防抱死制动系统及其防抱死装置 Download PDF

Info

Publication number
WO2014166336A1
WO2014166336A1 PCT/CN2014/074080 CN2014074080W WO2014166336A1 WO 2014166336 A1 WO2014166336 A1 WO 2014166336A1 CN 2014074080 W CN2014074080 W CN 2014074080W WO 2014166336 A1 WO2014166336 A1 WO 2014166336A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
lock
braking
wheel
vehicle
Prior art date
Application number
PCT/CN2014/074080
Other languages
English (en)
French (fr)
Inventor
于飞
费贤松
何国国
李建朋
Original Assignee
博世汽车部件(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博世汽车部件(苏州)有限公司 filed Critical 博世汽车部件(苏州)有限公司
Publication of WO2014166336A1 publication Critical patent/WO2014166336A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62LBRAKES SPECIALLY ADAPTED FOR CYCLES
    • B62L3/00Brake-actuating mechanisms; Arrangements thereof
    • B62L3/02Brake-actuating mechanisms; Arrangements thereof for control by a hand lever
    • B62L3/023Brake-actuating mechanisms; Arrangements thereof for control by a hand lever acting on fluid pressure systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K23/00Rider-operated controls specially adapted for cycles, i.e. means for initiating control operations, e.g. levers, grips
    • B62K23/02Rider-operated controls specially adapted for cycles, i.e. means for initiating control operations, e.g. levers, grips hand actuated
    • B62K23/06Levers

Definitions

  • the application relates to an anti-lock braking system for an electric bicycle and an anti-locking device thereof. Background technique
  • An electric bicycle is a bicycle that is powered by electric power, including an electric bicycle, an electric motorcycle, an electric tricycle, an electric scooter, and the like.
  • the electric bicycle is in emergency braking, the braking force is too large, and the wheels are prone to lock-up, which makes the electric riding vehicle lose steering ability and slips and flies, causing the rider to continue to control the electric riding vehicle and cause traffic accidents. .
  • the loss of control and instability caused by wheel brakes are more common.
  • the anti-lock device can improve the safety and handling ability of the electric riding vehicle while braking, and maintain the steering ability to reduce the accident of the electric riding vehicle. If the anti-lock device is installed on the electric riding vehicle and the wheel speed sensor detects that there is a possibility of wheel lock, the anti-lock device can reduce the braking force on the wheel to prevent the wheel in a short time. Hug.
  • the purpose of the present application is to overcome the deficiencies of the prior art, and provide an anti-lock braking system for an electric bicycle and an anti-locking device thereof, which can reliably realize the wheel when the electric bicycle is braked by a simple structure. Anti-locking.
  • an anti-lock braking device for use in an anti-lock braking system of an electric riding vehicle, the anti-lock braking system having a handlebar disposed on the vehicle handlebar and a brake triggering element adapted to be operated to generate a braking force, the anti-lock device and the A brake triggering element is disposed in association with the handlebar of the vehicle and configured to perform an anti-locking operation in the event that the wheel is locked by the brake element when the vehicle brakes to generate an application to the brake trigger a force on the component for canceling the braking force; the anti-lock braking device includes an electric motor for generating the force and a possible transmission for decelerating the output rotation of the electric motor.
  • the brake triggering element comprises a brake lever mounted around the drive pin and rotatable about the drive pin, the anti-lock device further comprising coupling with an output of the electric motor or the transmission a rotatable drive pin, the drive pin acting on the brake lever.
  • the driving pin includes a cylindrical body and teeth extending radially from the cylindrical body; and, the brake lever is formed with an inner hole, and the inner hole includes a sleeve a shaft hole portion on the body and a sector groove extending radially from the shaft hole portion, the tooth portion being located in the sector groove and being at an angular range relative to the brake lever in the sector groove Rotate inside.
  • the angle is equal to a fan angle defined between two opposing slot walls of the sector slot; and the motor is pushed against the one of the opposite slot walls by the drive pin And applying a force opposite to the braking force direction to the brake lever; preferably, the motor is applied to the brake lever by the driving pin pushing against the other of the opposing groove walls
  • the braking force has the same force in the direction.
  • the tooth portion includes a pair of teeth extending radially opposite from the cylindrical body, the sector groove including a pair of diametrically oppositely extending from the shaft hole portion A scalloped groove, each tooth being located in a respective sector slot.
  • the anti-lock device is further configured to also perform a linkage braking operation for generating an auxiliary braking force for the wheel.
  • the present application in another aspect thereof, provides an anti-lock braking system for an electric riding vehicle, comprising: a braking unit including a system disposed on a handlebar of a vehicle and adapted to be operated to generate a braking force a trigger element, a brake element for braking the wheel, a brake force transmitting element disposed between the brake trigger element and the brake element for transmitting the braking force to the brake element;
  • the brake triggering element is associated with an anti-locking device disposed on the handlebar of the vehicle, configured to perform an anti-lock operation in the event that the wheel is locked by the brake element when the vehicle brakes to generate A force applied to the brake triggering element for canceling the braking force.
  • the anti-lock device in the anti-lock brake system is preferably the anti-lock device described above.
  • the anti-lock brake system further includes a microcontroller that determines whether the wheel is locked based on a braking state of the vehicle, and activates the anti-lock device when the wheel is locked Unlocked.
  • the anti-lock braking system further includes a brake state detecting component connected to the microcontroller, which detects a braking state of the electric riding vehicle, wherein the microcontroller is based on the The detection signal of the brake state detecting element determines whether the wheel is locked.
  • the brake state detecting element comprises a wheel speed sensor mounted on the electric riding vehicle for detecting the wheel speed, the detection signal including the wheel speed.
  • the brake state detecting component further includes a brake light switch sensor for detecting an on/off state of the brake light switch, and the microcontroller determines whether the electric riding vehicle occurs based on the on/off state of the brake light switch. brake.
  • the microcontroller is connected to or combined with the central control unit of the electric cycle vehicle.
  • the brake unit is a mechanical brake unit, wherein the brake force transmitting element is a brake line; or the brake unit is a hydraulic brake unit, wherein the brake force transmission element is Brake fluid line.
  • the anti-lock braking system includes a braking unit and an anti-locking device respectively associated with different wheels of the electric riding vehicle; and, when a braking unit associated with one wheel performs During braking operation, anti-lock devices associated with other wheels perform interlocking braking operations to generate braking forces for other wheels.
  • the anti-lock braking system and the anti-locking device thereof of the present application are capable of detecting the locked state of the wheel, and generating an opposing force against the artificial braking force by the anti-locking device, thereby timely reducing the presence of the wheel on the locked state Braking force, effectively preventing wheel lock, simple structure, low cost and reliable operation.
  • the anti-lock braking device in the anti-lock braking system of the present application is disposed on the handlebar of the electric riding vehicle, thereby directly associating with the brake triggering element also provided on the handlebar, thereby enabling more reliable, Anti-lock action is generated more quickly.
  • Figure 1 is a schematic illustration of the basic composition of an anti-lock device suitable for use in an electro-motor vehicle mechanical brake system in accordance with one possible embodiment of the present application.
  • FIG. 2 is a schematic diagram of the basic composition of an anti-lock device suitable for use in an electric bicycle hydraulic brake system in accordance with another possible embodiment of the present application.
  • FIG. 3 is a schematic diagram of the overall architecture of an anti-lock mechanical braking system for an electric bicycle according to a possible embodiment of the present application.
  • FIG. 4 is a schematic illustration of a conventional braking state of a mechanical brake system in accordance with the present application.
  • Figure 5 is a schematic illustration of the anti-lock operating state of the mechanical brake system in accordance with the present application.
  • Figure 6 is a schematic illustration of the interlocking braking state of a mechanical brake system in accordance with the present application.
  • FIG. 7 is a schematic diagram of the overall architecture of an anti-lock hydraulic brake system for an electric bicycle according to another possible embodiment of the present application.
  • Figure 8 is a schematic illustration of a conventional braking state of a hydraulic brake system in accordance with the present application.
  • Figure 9 is a schematic illustration of the anti-lock operating state of the hydraulic brake system in accordance with the present application.
  • Figure 10 is a schematic illustration of the interlocking braking state of the hydraulic brake system in accordance with the present application. detailed description
  • the anti-lock braking system for an electric bicycle includes a brake unit, a microcontroller, a brake state detecting element, an anti-lock device, and the like.
  • the brake unit can be a conventional mechanical brake unit or a hydraulic brake unit.
  • the brake unit includes a brake triggering element (e.g., a brake lever, a brake button, etc.) disposed on the handlebar of the electric riding vehicle that is operable by the rider to generate a braking force.
  • This braking force can be generated by the rider or by a drive such as an electric motor.
  • the braking force is transmitted to the braking element at the wheel through the braking force transmitting element.
  • the brake power transmission element is a brake line
  • the brake power transmission element is a brake fluid line.
  • the brake system is also typically provided with a brake light that is controlled by a brake light switch associated with a moving element (eg, a brake triggering element) in the brake unit.
  • a brake light switch associated with a moving element (eg, a brake triggering element) in the brake unit.
  • the brake light switch is turned on to light the brake light, thereby prompting the person behind the electric bicycle to brake operation.
  • the brake state detecting component is configured to detect a braking state of the electric riding vehicle, including a wheel speed sensor for detecting the wheel speed, a brake light sensor sensing microcontroller for detecting the on/off state of the brake light switch, and a braking state
  • the detecting component is connected to the anti-locking device for receiving a detection signal from the braking state detecting component, thereby determining whether a locking phenomenon occurs during braking of the vehicle, that is, the wheel is locked by the braking unit, and the locking is occurring.
  • the anti-lock operation of the anti-lock device is activated.
  • the microcontroller can be connected to an electronic control unit of the electric cycling vehicle or can be combined in an electronic control unit.
  • the anti-lock device according to the present application is divided into an anti-lock device suitable for a mechanical brake system and an anti-lock device suitable for a hydraulic brake system.
  • a specific example of the brake triggering element of an electric riding vehicle is a brake mounted on the left and right handlebars.
  • There are two main types of brake levers one is a sleeve that surrounds the handle and can pivot around the central axis of the handle, and the other is pivotally mounted on the handlebar and can be wound around the center of the handlebar.
  • the present application illustrates and describes a brake lever in the form of a trigger as a specific example of a brake triggering element, but it will be understood that the principles of the present application are equally applicable to other forms of brake triggering elements.
  • the anti-lock brake device is disposed on the handlebar of the electric riding vehicle and is associated with the brake lever.
  • the brake lever 4 of the mechanical brake system and associated anti-lock brake device 10 are shown in Fig. 1, wherein the brake lever 4 is in a released state.
  • the anti-lock device mainly includes an electric motor 1, a transmission 2, and a drive pin 3.
  • the transmission 2 can be a separate component relative to the motor 1, which is combined.
  • an electric motor capable of outputting a low rotation speed for example, the electric motor itself with a transmission
  • the motor 1 and possibly the transmission 2 are fixed to the handlebar 20 of the vehicle by brackets.
  • the motor 1 can be controlled to rotate in both directions.
  • the input end of the transmission 2 is connected to the output shaft of the electric motor 1, and the output end of the transmission 2 is connected to the driving pin 3 for converting the high-speed/low-torque bidirectional output rotation of the electric motor 1 into the low rotation speed/high torque of the driving pin 3.
  • the transmission 2 may include a gear mechanism (one or more stages), a worm gear mechanism, and the like.
  • the drive pin 3 has a cylindrical body 3a defining a pivot axis of the drive pin 3 (generally perpendicular to the central axis of the handlebar 20, but preferably not intersecting), and a radially extending opposite from the cylindrical body 3a To the tooth portion 3b. It should be pointed out that only one tooth 3b or more than two teeth are provided. 3b is also feasible.
  • the brake lever 4 is mounted on the drive pin 3 in such a manner as to be pivotable about the drive pin 3, and the pivot axis of the drive pin 3 is also the pivot axis of the brake lever 4.
  • the brake lever 4 is formed with an inner hole 5 including a shaft hole portion 5a fitted to the cylindrical body 3a and a pair of sector-shaped grooves 5b projecting radially opposite from the shaft hole portion 5a.
  • the shaft hole portion 5a is fitted to the cylindrical body 3a in a relatively rotatable manner.
  • Each of the sector grooves 5b accommodates a corresponding one of the tooth portions 3b, and the tooth portion 3b is rotatable about the pivot axis in the sector groove 5b by an angle which depends on two opposite grooves of the sector groove 5b. A fan angle defined between the walls.
  • the brake lever 4 When the rider needs to brake, the brake lever 4 can be moved along the direction of the brake action (clockwise in Fig. 1, indicated by the arrow R1 in Fig. 4) to rotate around the pivot axis, and the brake lever 4 is utilized.
  • the connected brake wire 7 drives the brake element at the wheel to apply a braking force to the wheel to brake the wheel.
  • the motor 1 When the phenomenon that the wheel is locked by the brake element occurs, the motor 1 is activated to rotate in the first direction, so that the drive pin 3 is in the lock release direction opposite to the brake action direction of the brake lever 4 (in FIG. 1 In the counterclockwise direction, indicated by arrow R2 in Fig. 5, it is rotated to force the brake lever 4 to rotate a small angle to at least partially cancel the braking force to relieve the locking phenomenon.
  • the brake lever 4 of the hydraulic brake system and associated anti-lock brake device 10 are shown in Fig. 2, wherein the brake lever 4 is in a released state.
  • the anti-lock device has substantially the same structure as the anti-lock device of Fig. 1. It can be seen from Fig. 2 that the specific structure of the brake lever 4 of the mechanical and hydraulic brake system is different to suit different anti-lock devices.
  • Fig. 3 shows a schematic structure of a mechanical brake system including the above anti-lock device.
  • a pair of anti-lock mechanical brake systems for electric riding vehicles are shown, each of which is used to brake one of the front and rear wheels 6.
  • the handlebar 20 on the right and the mechanical brake system for the front wheel 6 associated therewith are shown in Fig. 3, as well as the handlebar on the left and the mechanical brake system for the rear wheel 6 associated therewith.
  • the brake wire 7 of each mechanical brake system is connected to the brake lever 4 at one end and the lever 9 at the other end for driving the drum brake 11.
  • the central control unit or microcontroller 30 receives detection signals (front wheel wheel speed WSS_F and rear wheel wheel speed WSS_R) from the wheel speed sensor 8 and detection signals of the brake light switch sensor (not shown) (front wheel brake light switch signal) BLS_F and rear wheel brake light switch signal BLS_R), and send control signals to anti-lock device 10 (the motor) (front wheel anti-lock control signal PWM_F, rear wheel protection) Lock control signal PWM_R and other operation control signals).
  • the anti-lock mechanical brake system of the present application can realize the following three functions: the normal brake shown in Fig. 4, the anti-lock operation shown in Fig. 5, and the interlock brake operation shown in Fig. 6.
  • the rider applies a braking force to one or two brake levers 4 in the direction indicated by arrow F (the direction in which the brake lever 4 is closed toward the handlebar 20), and the brake lever 4 will be wound.
  • the pivot axis is rotated in the braking action direction R1 (in the direction of the handlebar 20), the brake wire 7 will be tensioned, so that the lever 9 is pulled by the brake wire 7, and the final braking force will be applied to the drum brake 11.
  • the groove wall of the sector groove 5b will not touch the drive pin 3 during this period.
  • the fan angle of the sector slot 5b is critical to ensure regular braking. If the fan angle is not large enough, it will cause the brake lever 4 to drag the drive pin 3 through the inner bore 5 at the later stage of the normal brake to rotate in the braking action direction R1.
  • the wheel speed sensor 8 collects the wheel speed signal.
  • a brake light switch sensor integrated in the brake lever 4 detects the rider's brake command.
  • the microcontroller 30 determines the speed, the deceleration and the brake slip ratio of the wheel 6, and the reference vehicle speed of the electric riding vehicle, thereby determining the motion state of the electric riding vehicle and, if necessary, controlling the brake braking device
  • the motor 1 is rotated in the first direction to perform the anti-lock operation shown in FIG.
  • wheel lock is typically produced.
  • the microcontroller 30 will monitor the state of the wheel in full time, and once the wheel lock trend occurs and the threshold for entering the wheel anti-lock condition is reached or satisfied, the microcontroller 30 will send an instruction to the anti-lock device 10, the anti-lock The dead device 10 will force the drive pin 3 to rotate in the lock release direction R2 to overcome a portion of the force applied by the rider to the brake wire 7, thus reducing the braking force applied to the wheel 6.
  • the wheel speed sensors 8 are respectively mounted on the front and rear wheels of the electric riding vehicle for detecting the front and rear wheel speeds.
  • the wheel speed sensor 8 can be any speed sensor such as a magnetoelectric sensor, a photosensor or the like.
  • the wheel speed sensor 8 is a Hall sensor. When the teeth on the ring gear of the electric riding vehicle pass the wheel speed sensor 8, the wheel speed sensor 8 emits a wheel speed sensor signal, such as a rectangular pulse wave.
  • the microcontroller 30 is coupled to the wheel speed sensor 8 and the brake light switch sensor.
  • the microcontroller 30 performs front and rear wheel speed calculation, reference vehicle speed calculation, wheel slip ratio calculation based on front and rear wheel speed sensor signals (WSS_F, WSS_R) and front and rear brake light switch signals (BLS_F, BLS_R), and implements monitoring wheel states, and Send to the anti-lock device when the wheel is in a tendency to lock
  • the command is sent to trigger the anti-lock action, wherein, as described above, the motor 1 is activated to rotate in the first direction, so that the drive pin 3 rotates in the lock release direction R2 opposite to the brake action direction R1 of the brake lever 4.
  • the tooth portion 3b of the driving pin 3 contacts a corresponding one of the two opposing groove walls of the sector groove 5b, thereby causing the brake lever 4 to rotate a small angle, thereby at least partially canceling the braking force, so as to release the hug Death phenomenon.
  • the microcontroller 30 After the motor 1 performs the lock release operation, if the microcontroller 30 determines that the threshold for releasing the wheel anti-lock condition is satisfied, the microcontroller 30 will cut off the current supplied to the motor 1, and the drive pin 3 is released from the lock. The rotation of the direction R2 will be terminated, and if the braking force of the rider is still applied to the brake lever 4, the drive pin 3 will be pulled back in the braking action direction R1. Also, when the tendency of the wheel to lock up occurs again, the anti-lock device 10 repeats the above action again. Therefore, the anti-lock device 10 can repeat the same operation throughout the anti-lock brake.
  • the anti-lock mechanical brake system of the present application can also realize the interlocking brake operation shown in Fig. 6.
  • the interlocking brake operation is an active brake operation.
  • the brake system uses the anti-lock device 10 associated with the other wheel as a linkage brake that automatically converts the output torque of the motor 1 to be applied to the other Mechanical braking force on a wheel. In this way, the braking distance will be significantly reduced.
  • the microcontroller 30 will send an instruction to the anti-lock device 10 associated with the other wheel, the motor 1 of the anti-lock device 10 rotating in a second direction opposite the first direction To force the driving pin 3 to rotate in the braking action direction R1, thereby applying a force to the brake lever 4, and the brake lever 4 applies the braking force generated by the force to the other wheel through the brake wire 7.
  • the drum brake 11 is used to reduce the speed of the electric riding vehicle.
  • the brake system uses the anti-lock device 10 associated with the front and rear wheels as a linkage brake device that automatically sets the respective motor 1
  • the output torque is converted to a mechanical braking force applied to the front and rear wheels.
  • Figure 7 shows the handlebar 20 on the right and the hydraulic brake system associated with it for the front wheel (not shown in this figure), and the handlebar on the left and the rear wheel associated with it (this The hydraulic brake system is not shown in the figure.
  • the brake master cylinder 14 provided on the handlebar 20 is filled with brake fluid, and the brake master cylinder 14 communicates with the brake fluid reservoir 16 through the communication hole 16a at the upper side.
  • a piston 15 is provided in the brake master cylinder 14.
  • the piston 15 passes through the piston rod connected thereto 15a is pushed by the brake lever 4 to move forward in the brake master cylinder 14 in the direction of reducing the brake master cylinder volume. Initially, some brake fluid will enter the brake fluid reservoir 16 through the communication hole 16a.
  • the piston 15 moves forward one by one, it closes the communication hole 16a, after which the brake fluid in the brake master cylinder 14 is pushed by the piston and flows toward the wheel brake cylinder through the brake fluid line, the wheel The piston in the brake cylinder pushes the brake caliper 12 to move the brake caliper 12 toward the brake disc 13 on the wheel (not shown), which will eventually be loaded onto the wheel.
  • the anti-lock hydraulic brake system of the present application can also achieve the three functions described below: the conventional brake shown in Fig. 8, the anti-lock operation shown in Fig. 9, and the interlock brake operation shown in Fig. 10.
  • the rider applies a braking force to one or two of the brake levers 4 in the direction indicated by the arrow F (the direction in which the brake lever 4 is closed toward the handlebar 20), and the brake lever 4 will be wound.
  • the pivot axis rotates in the braking action direction R1 (toward the handlebar 20), and the brake lever 4 pushes the piston 15 forward in the brake master cylinder 14, and the final hydraulic braking force is applied to the brake disk 13.
  • the microcontroller 30 will monitor the state of the wheel in full time, and once the wheel locks out and reaches or meets the threshold for entering the wheel anti-lock condition, the microcontroller 30 will send an instruction to the anti-lock device 10 to perform Figure 9.
  • the anti-lock operation shown wherein the anti-lock device 10 forces the drive pin 3 to rotate in the lock release direction R2 to overcome a portion of the force exerted by the rider on the brake lever 4, and thereby reduce the application to the piston 15.
  • the force while reducing the pressure in the brake master cylinder 14, eventually releases a portion of the force applied to the wheel.
  • the microcontroller 30 will cut off the current supplied to the motor 1, and the rotation of the drive pin 3 in the lock release direction R2 will be terminated, and if there is still a rider The braking force is applied to the brake lever 4, and the drive pin 3 will be pulled back in the braking action direction R1. Also, when the tendency of the wheel to lock up occurs again, the anti-lock device 10 repeats the above action again. Therefore, the anti-lock device 10 can repeat the same operation throughout the anti-lock brake.
  • the brake system uses the anti-lock device 10 associated with the other wheel as a linkage brake device, which automatically The output torque of the motor 1 is converted into a hydraulic braking force applied to the other wheel. In this way, the braking distance will be significantly reduced.
  • the microcontroller 30 will send an instruction to the anti-lock device 10 associated with the other wheel, the electric of the anti-lock device 10
  • the machine 1 rotates in a second direction opposite to the first direction to force the drive pin 3 to rotate in the braking action direction R1, thereby applying a force to the brake lever 4, and the brake lever 4 will push the piston 15, the brake master
  • the pressure in the cylinder 14 will increase and further increase in the pressure in the wheel brake cylinder, and the final braking force is applied to the wheel to reduce the speed of the electric bicycle.
  • the brake system uses the anti-lock device 10 associated with the front and rear wheels as a linkage brake device that automatically sets the respective motor 1
  • the output torque is converted into a hydraulic braking force applied to the front and rear wheels.
  • an anti-lock brake system for the front and rear wheels, respectively, for preventing the front and rear wheels from locking.
  • the anti-lock brake system according to the present application can also perform an anti-lock function for wheels mounted in other locations.
  • the anti-lock brake system of the present application can be employed only on one of the front and rear wheels, depending on actual needs.
  • the anti-lock brake system of the present application can be employed on at least one of the front and rear wheels and the intermediate wheel with intermediate wheels between the front and rear wheels.
  • the anti-lock brake system according to the present application is applicable to any electric bicycle that uses mechanical and hydraulic brake systems.
  • the hardware and software of the microcontroller of the anti-lock brake system according to the present application may be provided separately or integrated into an existing electronic control unit of the electric bicycle.
  • the anti-lock braking system of the present application uses a microcontroller to detect the wheel lock condition, and the anti-lock device generates a force opposite to the manual braking force, so that the braking force on the wheel in the locked state can be timely reduced, thereby effectively preventing The wheel is locked, the structure is simple, the cost is low, and the operation is reliable.
  • the anti-lock braking system of the present application can also use the anti-lock braking device as the interlocking braking device to generate the same auxiliary braking force as the manual braking force, thereby enabling the electric riding vehicle to be slowed down or stopped more quickly.
  • the anti-lock braking device in the anti-lock braking system of the present application is disposed on the handlebar of the electric riding vehicle, thereby directly associating with the brake triggering element also provided on the handlebar, thereby being more reliable and faster.
  • the ground produces anti-lock movements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)
  • Braking Elements And Transmission Devices (AREA)

Abstract

一种用于电动骑行车辆的防抱死制动系统及其防抱死装置,所述防抱死制动系统具有设置在车辆手把(20)上并且适于被操作而产生制动力的制动触发元件(4),所述防抱死装置与所述制动触发元件(4)相关联地设置在车辆手把(20)上,并被构造成适于在车辆制动时车轮被制动元件抱死的情况下执行防抱死操作,以产生施加在所述制动触发元件(4)上的用于抵消所述制动力的作用力;所述防抱死装置包括用于产生所述作用力的电动机(1),或者包括用于产生所述作用力的电动机(1)和用于将所述电动机(1)的输出转动减速的变速器(2)。本申请通过简单的结构实现电动骑行车辆制动时的车轮防抱死。

Description

用于电动骑行车辆的防抱死制动系统及其防抱死装置
技术领域
本申请涉及一种电动骑行车辆防抱死制动系统及其防抱死装置。 背景技术
电动骑行车辆是以电力为驱动源的骑行车辆, 包括电动自行车、 电动 摩托车、 电动三轮车、 电动踏板车等。 电动骑行车辆在紧急刹车时, 制动 力过大, 车轮容易发生抱死现象, 使电动骑行车辆失去转向能力、 发生侧 滑甩尾, 导致骑行者不能继续控制电动骑行车辆, 引发交通事故。 在潮湿 路面或冰雪路面上刹车时, 因车轮制动抱死导致的失控、 失稳的现象更常 发生。
防抱死装置在制动时能够提高电动骑行车辆的安全性和操控能力, 保 持转向能力从而降低电动骑行车辆的事故。 如果电动骑行车辆上安装了防 抱死装置, 轮速传感器检测到有可能发生车轮抱死情况时, 该防抱死装置 可在很短的时间内降低抱死车轮上的制动力, 防止车轮抱死。
目前, 电动骑行车辆大多采用机械或液压制动系统, 因此大多数防抱 死制动装置是针对这两种制动系统设计, 其结构和工作原理是在各车轮分 别设置传感器, 传感器将制动时各车轮的动态信息迅速传递到设置在电动 骑行车辆的中央处理单元, 进行处理后通过控制系统, 适时控制制动系统 的工作状态来实现制动防抱死操作。 目前的制动防抱死系统大多结构复杂, 成本高, 且操作可靠性有待提高。
因此, 有必要设计一种简单可靠的防抱死制动系统。 发明内容
本申请的目的在于克服现有的技术的不足, 提供一种电动骑行车辆防 抱死制动系统及其防抱死装置, 其通过简单的结构可靠地实现电动骑行车 辆制动时的车轮防抱死。
为实现此目的, 本申请在一个方面提供了一种用在电动骑行车辆的防 抱死制动系统中的防抱死装置, 所述防抱死制动系统具有设置在车辆手把 上并且适于被操作而产生制动力的制动触发元件, 所述防抱死装置与所述 制动触发元件相关联地设置在车辆手把上, 并被构造成适于在车辆制动时 车轮被制动元件抱死的情况下执行防抱死操作, 以产生施加在所述制动触 发元件上的用于抵消所述制动力的作用力; 所述防抱死装置包括用于产生 所述作用力的电动机以及可能有的用于将所述电动机的输出转动减速的变 速器。
根据一种可行实施方式, 所述制动触发元件包括围绕所述驱动销安装 并且可绕所述驱动销转动的刹把, 所述防抱死装置还包括与所述电动机或 变速器的输出端耦合的可转动的驱动销, 所述驱动销作用于所述刹把。
根据一种可行实施方式, 所述驱动销包括圆柱形本体以及从所述圆柱 形本体径向伸出的齿部; 并且, 所述刹把中形成有内孔, 所述内孔包括套 装于圆柱形本体上的轴孔部和从所述轴孔部径向伸出的扇形槽, 所述齿部 位于所述扇形槽中并且可在所述扇形槽中相对于所述刹把在一角度范围内 转动。
根据一种可行实施方式, 所述角度等于所述扇形槽的两个对置槽壁之 间限定的扇角; 并且, 所述电动机通过所述驱动销推抵于所述对置槽壁之 一而向所述刹把施加与所述制动力方向相反的作用力; 优选地, 所述电动 机通过所述驱动销推抵于所述对置槽壁中的另一个而向所述刹把施加与所 述制动力方向相同的作用力。
根据一种可行实施方式, 所述齿部包括从所述圆柱形本体径向相反地 伸出的一对齿部, 所述扇形槽包括从所述轴孔部径向相反地伸出的一对扇 形槽, 每个齿部分别位于一个相应的扇形槽中。
根据一种可行实施方式, 所述防抱死装置还被构造成还能够执行联动 制动操作, 用于为车轮产生辅助制动力。
本申请在其另一方面提供了一种用于电动骑行车辆的防抱死制动系 统, 包括: 制动单元, 其包括设置在车辆手把上并且适于被操作而产生制 动力的制动触发元件、 用于对车轮进行制动操作的制动元件、 布置在制动 触发元件与制动元件之间的用于将所述制动力传递到制动元件的制动力传 递元件; 以及与所述制动触发元件相关联地设置在车辆手把上的防抱死装 置, 其被构造成适于在车辆制动时车轮被制动元件抱死的情况下执行防抱 死操作, 以产生施加在所述制动触发元件上的用于抵消所述制动力的作用 力。 所述防抱死制动系统中的防抱死装置优选为前面描述的防抱死装置。 根据一种可行实施方式, 所述防抱死制动系统还包括微控制器, 其基 于车辆的制动状态判断车轮是否被抱死, 并且在车轮被抱死时启动所述防 抱死装置以解除抱死状态。
根据一种可行实施方式, 所述防抱死制动系统还包括与所述微控制器 相连的制动状态检测元件, 其检测电动骑行车辆的制动状态, 所述微控制 器基于所述制动状态检测元件的检测信号判断车轮是否被抱死。
根据一种可行实施方式, 所述制动状态检测元件包括轮速传感器, 其 安装于电动骑行车辆上, 用以检测车轮速度, 所述检测信号包括所述车轮 速度。
根据一种可行实施方式, 所述制动状态检测元件还包括刹车灯开关传 感器, 用于检测刹车灯开关通断状态, 所述微控制器基于刹车灯开关通断 状态确定电动骑行车辆是否发生制动。
根据一种可行实施方式, 所述微控制器与电动骑行车辆的中央控制单 元相连或组合在所述中央控制单元中。
根据一种可行实施方式, 所述制动单元为机械制动单元, 其中所述制 动力传递元件为刹车线; 或者, 所述制动单元为液压制动单元, 其中所述 制动力传递元件为制动液管线。
根据一种可行实施方式, 所述防抱死制动系统包括与电动骑行车辆的 不同车轮分别关联设置的制动单元和防抱死装置; 并且, 当与一个车轮相 关联的制动单元执行制动操作时, 与其它车轮相关联的防抱死装置执行联 动制动操作, 以便为其它车轮产生制动力。
本申请的防抱死制动系统及其防抱死装置, 能够检测车轮抱死状况, 并且通过防抱死装置产生与人工制动力相反的作用力, 可及时降低存在抱 死状况的车轮上的制动力, 有效防止车轮抱死状况, 结构简单, 成本低, 操作可靠。
此外, 本申请的防抱死制动系统中的防抱死装置设置在电动骑行车辆 的手把上, 从而与同样设在手把上的制动触发元件直接关联, 从而能够更 可靠地、 更快速地产生防抱死动作。 附图说明 本申请的前述和其它方面将通过下面参照附图所做的详细介绍而被更 完整地理解和了解, 在附图中:
图 1是根据本申请的一种可行实施方式的适用于电动骑行车辆机械制 动系统的防抱死装置的基本组成的示意图。
图 2是根据本申请的另一种可行实施方式的适用于电动骑行车辆液压 制动系统的防抱死装置的基本组成的示意图。
图 3是根据本申请的一种可行实施方式的电动骑行车辆防抱死机械制 动系统的总体构架示意图。
图 4是根据本申请的机械制动系统的常规制动状态的示意图。
图 5是根据本申请的机械制动系统的防抱死操作状态的示意图。
图 6是根据本申请的机械制动系统的联动制动状态的示意图。
图 7是根据本申请的另一种可行实施方式的电动骑行车辆防抱死液压 制动系统的总体构架示意图。
图 8是根据本申请的液压制动系统的常规制动状态的示意图。
图 9是根据本申请的液压制动系统的防抱死操作状态的示意图。
图 10是根据本申请的液压制动系统的联动制动状态的示意图。 具体实施方式
下面将对本申请的适用于电动骑行车辆的防抱死制动系统及其防抱死 装置进行描述。
总体上讲,根据本申请的电动骑行车辆防抱死制动系统包括制动单元、 微控制器、 制动状态检测元件以及防抱死装置等。
制动单元可以是常用的机械制动单元或液压制动单元。 制动单元包括 设置在电动骑行车辆的手把上的制动触发元件 (例如刹把、 刹车按钮等), 其可被骑行者操作而产生制动力。 该制动力可以由骑行者产生, 也可以是 驱动装置例如电动机产生。 制动力通过制动力传递元件传递到车轮处的制 动元件。 在机械制动单元中, 制动力传递元件为刹车线, 而在液压制动单 元中, 制动力传递元件为制动液管线。
制动系统通常还设有刹车灯, 其由与制动单元中的动作元件 (例如制 动触发元件) 关联的刹车灯开关控制。 在执行制动操作时, 刹车灯开关接 通, 以将刹车灯点亮, 从而向电动骑行车辆后面的人员提示刹车操作。 制动状态检测元件用于检测电动骑行车辆的制动状态, 包括用于检测 车轮速度的轮速传感器、 用于检测刹车灯开关通断状态的刹车灯开关传感 微控制器与制动状态检测元件和防抱死装置相连, 用于接收来自制动 状态检测元件的检测信号, 由此判断车辆制动过程中是否发生抱死现象, 即车轮被制动单元锁死,并且在发生抱死时启动防抱死装置的防抱死操作。 微控制器可以与电动骑行车辆的电子控制单元相连, 或者组合在电子控制 单元中。
根据本申请的防抱死装置分为适用于机械制动系统的防抱死装置和适 用于液压制动系统的防抱死装置。
电动骑行车辆的制动触发元件的一个具体例子是装在左右手把上的刹 把。 刹把的形式主要有两种, 一种是环绕手把并且可绕手把的中心轴线枢 转的套筒, 另一种是通过枢轴安装在手把上并且可绕一条与手把的中心轴 线垂直的枢转轴线枢转的扳柄。 本申请将以扳柄形式的刹把作为制动触发 元件的具体例子进行图示和描述, 但可以理解, 本申请的原理同样适用于 其它形式的制动触发元件。
根据本申请的一个具体实施方式, 防抱死装置设置在电动骑行车辆的 手把上, 并且与刹把相关联。
图 1中示出了机械制动系统的刹把 4及相关的防抱死装置 10, 其中, 刹把 4处于释放状态。
该防抱死装置主要包括电动机 1、 变速器 2和驱动销 3。
变速器 2可以是相对于电动机 1独立的部件, 二者组合在一起。 或者, 可以采用能够输出低转速的电动机(例如, 电动机本身带有变速器)。 电动 机 1和可能有的变速器 2通过支架固定在车辆的手把 20上。
电动机 1可被控制而双向转动。 变速器 2的输入端与电动机 1的输出 轴相连, 变速器 2的输出端与驱动销 3相连, 用以将电动机 1的高转速 /低 扭矩的双向输出转动转换为驱动销 3的低转速 /高扭矩的双向转动。 作为示 例, 变速器 2可以包括齿轮机构 (一级或多级)、 蜗轮蜗杆机构等。
驱动销 3具有圆柱形本体 3a, 其限定出驱动销 3的枢转轴线 (大体垂 直于手把 20的中心轴线, 但优选不相交), 以及从圆柱形本体 3a径向相反 地伸出的一对齿部 3b。需要指出,仅设有一个齿部 3b或是两个以上的齿部 3b也是可行的。
刹把 4以可绕驱动销 3枢转的方式安装在驱动销 3上, 驱动销 3的枢 转轴线也即刹把 4的枢转轴线。具体而言, 刹把 4中形成有内孔 5, 该内孔 5包括套装于圆柱形本体 3a上的轴孔部 5a和从轴孔部 5a径向相反地伸出 的一对扇形槽 5b。 轴孔部 5a以可相对转动的方式与圆柱形本体 3a配合。 每个扇形槽 5b中容纳着相应的一个所述齿部 3b, 该齿部 3b可绕所述枢转 轴线在扇形槽 5b内转动一定角度, 该角度取决于扇形槽 5b的两个对置槽 壁之间限定的扇角。
在骑行者需要刹车时, 可沿刹车动作方向(图 1中的顺时针方向, 图 4 中以箭头 R1表示) 搬动刹把 4, 使之绕所述枢转轴线转动, 利用与刹把 4 相连的刹车线 7带动车轮处的制动元件向车轮施加制动力, 从而对车轮进 行制动操作。 在出现车轮被制动元件抱死的现象时, 电动机 1被启动而沿 第一方向转动, 以使得驱动销 3沿着与刹把 4的刹车动作方向相反的抱死 解除方向 (图 1中的逆时针方向, 图 5中以箭头 R2表示)转动, 以迫使刹 把 4回转一个小角度, 从而至少部分地抵消所述制动力, 以便解除抱死现 象。
图 2中示出了液压制动系统的刹把 4及相关的防抱死装置 10, 其中, 刹把 4处于释放状态。 该防抱死装置与图 1中的防抱死装置具有基本相同 的结构。 从图 2中可以看出, 机械和液压制动系统的刹把 4的具体结构有 所不同, 以适应于不同的防抱死装置。
图 3示出了包含上述防抱死装置的机械制动系统的示意性结构。在图 3 中, 电动骑行车辆的一对防抱死机械制动系统被显示, 每个机械制动系统 用于对前后车轮 6之一进行制动。
图 3中示出了右侧的手把 20和与其相关的用于前车轮 6的机械制动系 统, 以及左侧的手把和与其相关的用于后车轮 6的机械制动系统。
如图 3所示,每个机械制动系统的刹车线 7在其一端连接着刹把 4,在 另一端连接着杠杆 9, 杠杆 9用于驱动鼓式制动器 11。 中央控制单元或微 控制器 30接收来自轮速传感器 8的检测信号 (前车轮轮速 WSS_F和后车 轮轮速 WSS_R)和刹车灯开关传感器(未示出) 的检测信号 (前车轮刹车 灯开关信号 BLS_F和后车轮刹车灯开关信号 BLS_R), 并且向防抱死装置 10 (其电动机)发送控制信号(前车轮防抱死控制信号 PWM_F、 后车轮防 抱死控制信号 PWM_R以及其它操作控制信号)。
本申请的防抱死机械制动系统能够实现如下三种功能: 图 4所示的常 规制动, 图 5所示的防抱死操作, 以及图 6所示的联动制动操作。
在图 4所示的常规制动操作时, 骑行者沿箭头 F所示方向 (使刹把 4 朝向手把 20闭合的方向) 向一或两个刹把 4施加制动力, 刹把 4将绕所述 枢转轴线沿刹车动作方向 R1 (朝向手把 20的方向) 转动, 刹车线 7将被 张紧,从而杠杆 9被刹车线 7拉动,最终制动力将被加载于鼓式制动器 11。
由于驱动销 3的齿部 3b和刹把 4的扇形槽 5b之间存在足够的空转空 间,扇形槽 5b的槽壁在此期间将不触及驱动销 3。扇形槽 5b的扇角对于确 保常规制动而言非常关键。 如果该扇角不够大, 将导致刹把 4在常规制动 的后期经内孔 5拖曳驱动销 3—起沿所述刹车动作方向 R1转动。
轮速传感器 8采集轮速信号。 集成于刹把 4上的刹车灯开关传感器检 测骑行者的制动指令。 微控制器 30确定车轮 6的速度、减速度和制动滑移 率以及电动骑行车辆的参考车速, 由此判断出电动骑行车辆的运动状态, 并且在必要的情况下控制刹车制动装置的电动机 1沿第一方向转动, 以便 执行图 5所示的防抱死操作。
具体而言, 当骑行者在紧急状况下对车轮施加全力制动时, 尤其是在 湿或低摩擦系数表面上时, 典型地将产生车轮抱死现象。 微控制器 30将全 时监视车轮的状态, 一旦出现车轮抱死的趋势并且进入车轮防抱死条件的 阈值被达到或满足, 微控制器 30将向防抱死装置 10发送指令, 该防抱死 装置 10将迫使驱动销 3沿抱死解除方向 R2转动以克服骑行者施加于刹车 线 7的力的一部分, 因而减少施加于车轮 6的制动力。
轮速传感器 8分别安装于电动骑行车辆的前后车轮上, 用以检测前后 车轮速度。 轮速传感器 8可以是任何速度传感器, 例如磁电式传感器、 光 电式传感器等。 在一种可行实施方式中, 轮速传感器 8是霍尔传感器, 电 动骑行车辆的齿圈上的齿经过轮速传感器 8时, 轮速传感器 8发出轮速传 感器信号, 例如矩形脉冲波。
微控制器 30与轮速传感器 8和刹车灯开关传感器相连。 微控制器 30 基于前后轮速传感器信号 (WSS_F, WSS_R ) 和前后刹车灯开关信号 (BLS_F, BLS_R) 完成前后车轮轮速计算、 参考车速计算、 车轮滑移率 计算, 并实施监测车轮状态, 以及在车轮出现抱死倾向时向防抱死装置发 送指令以触发防抱死动作, 其中, 如前所述, 电动机 1被启动而沿第一方 向转动,使得驱动销 3沿着与刹把 4的刹车动作方向 R1相反的抱死解除方 向 R2转动,从而驱动销 3的齿部 3b接触到扇形槽 5b的两个对置槽壁中相 应的一个, 由此带动刹把 4回转一个小角度, 从而至少部分地抵消所述制 动力, 以便解除抱死现象。
在电动机 1执行了抱死解除动作之后,如果微控制器 30判断出解除车 轮防抱死条件的阈值被满足,则微控制器 30将切断供应给电动机 1的电流, 驱动销 3沿抱死解除方向 R2的转动将被终止,并且如果仍然有骑行者的制 动力施加于刹把 4, 则驱动销 3将被沿刹车动作方向 R1拉回。 并且, 当再 次出现车轮抱死的趋势时, 防抱死装置 10再一次重复上述动作。 因此, 在 防抱死制动的整个过程中, 防抱死装置 10可以重复相同的操作。
如前所述, 本申请的防抱死机械制动系统还能够实现图 6所示的联动 制动操作。
联动制动操作是一种主动制动操作。 当骑行者在一个车轮上施加紧急 制动时,制动系统将与另一个车轮相关的防抱死装置 10用作联动制动装置, 其自动将电动机 1的输出扭矩转化为施加在所述另一车轮上的机械制动力。 这样, 制动距离将显著减小。 一旦联动制动功能被触发, 微控制器 30将向 与所述另一车轮相关的防抱死装置 10发送指令, 该防抱死装置 10的电动 机 1沿与第一方向相反的第二方向转动, 以迫使驱动销 3沿所述刹车动作 方向 R1转动, 从而将作用力施加到刹把 4, 而刹把 4通过刹车线 7将该作 用力产生的制动力加载于所述另一车轮上的鼓式制动器 11, 以降低电动骑 行车辆的速度。
作为一种可行实施方式, 当骑行者在任何一个车轮上施加紧急制动时, 制动系统将与前后车轮相关的防抱死装置 10都用作联动制动装置,其自动 将各自电动机 1的输出扭矩转化为施加在前后车轮上的机械制动力。
图 7中示出了右侧的手把 20和与其相关的用于前车轮 (本图中未示出) 的液压制动系统, 以及左侧的手把和与其相关的用于后车轮 (本图中未示 出) 的液压制动系统。
如图 7所示, 设置在手把 20上的制动主缸 14中充有制动液, 并且制 动主缸 14在上方通过连通孔 16a与制动液贮存器 16连通。制动主缸 14中 设有活塞 15。当骑行者向刹把 4施加力时,活塞 15通过与其相连的活塞杆 15a被刹把 4推动而在制动主缸 14中沿着减小制动主缸容积的方向向前移 动。 起初, 会有一些制动液通过所述连通孔 16a进入制动液贮存器 16中。 随着活塞 15进一歩向前移动, 其封闭了所述连通孔 16a, 此后, 制动主缸 14中的制动液被活塞推压而通过制动液管线朝向车轮制动缸流动, 该车轮 制动缸中的活塞推动制动钳 12, 以使制动钳 12朝向车轮(未示出)上的制 动盘 13移动, 制动力最终将被加载到车轮上。
液压制动系统的其它构造与前面描述的机械制动系统类似。
本申请的防抱死液压制动系统也能实现下面描述的三种功能: 图 8所 示的常规制动, 图 9所示的防抱死操作, 以及图 10所示的联动制动操作。
液压制动系统的上述三种操作与前面描述的机械制动系统类似, 因此 下面仅简要介绍。
在图 8所示的常规制动操作中, 骑行者沿箭头 F所示方向 (使刹把 4 朝向手把 20闭合的方向) 向一或两个刹把 4施加制动力, 刹把 4将绕所述 枢转轴线沿刹车动作方向 R1 (朝向手把 20的方向) 转动, 刹把 4推动活 塞 15在制动主缸 14中向前移动, 最终液压制动力将被加载于制动盘 13。
微控制器 30将全时监视车轮的状态,一旦出现车轮抱死的趋势并且达 到或满足进入车轮防抱死条件的阈值, 微控制器 30将向防抱死装置 10发 送指令, 以执行图 9所示的防抱死操作, 其中, 防抱死装置 10迫使驱动销 3沿抱死解除方向 R2转动,以便克服骑行者施加在刹把 4上的力的一部分, 并且进而减小施加于活塞 15的力, 同时降低制动主缸 14中的压力, 最终 解除加载于车轮上的力的一部分。 此时段之后, 当解除车轮防抱死条件的 阈值被满足, 微控制器 30将切断供应给电动机 1的电流, 驱动销 3沿抱死 解除方向 R2的转动将被终止,并且如果仍然有骑行者的制动力施加于刹把 4, 则驱动销 3将被沿刹车动作方向 R1拉回。 并且, 当再次出现车轮抱死 的趋势时, 防抱死装置 10再一次重复上述动作。 因此, 在防抱死制动的整 个过程中, 防抱死装置 10可以重复相同的操作。
在图 10所示的联动制动操作中, 当骑行者在一个车轮上施加紧急制动 时, 制动系统将与另一个车轮相关的防抱死装置 10用作联动制动装置, 其 自动将电动机 1 的输出扭矩转化为施加在所述另一车轮上的液压制动力。 这样, 制动距离将显著减小。 一旦联动制动功能被触发, 微控制器 30将向 与所述另一车轮相关的防抱死装置 10发送指令, 该防抱死装置 10的电动 机 1沿与第一方向相反的第二方向转动, 以迫使驱动销 3沿所述刹车动作 方向 R1转动, 从而将作用力施加到刹把 4, 而刹把 4将推动活塞 15, 制动 主缸 14中的压力将增大, 并且进一歩导致车轮制动缸中的压力升高, 最终 制动力被加载于车轮, 以降低电动骑行车辆的速度。
作为一种可行实施方式, 当骑行者在任何一个车轮上施加紧急制动时, 制动系统将与前后车轮相关的防抱死装置 10都用作联动制动装置,其自动 将各自电动机 1的输出扭矩转化为施加在前后车轮上的液压制动力。
根据本申请, 为前车轮和后车轮分别设置根据本申请的防抱死制动系 统, 用以防止前车轮和后车轮抱死。 可以理解, 根据本申请的防抱死制动 系统对于安装于其它位置的车轮也可以执行防抱死功能。 例如, 可根据实 际需要, 可仅在前后车轮之一上采用本申请的防抱死制动系统。 根据另一 种可行实施方式, 在前后车轮之间具有中间轮的情况下, 可在前后车轮和 中间轮中的至少一个上采用本申请的防抱死制动系统。
根据本申请的防抱死制动系统适用于任何使用机械和液压制动系统的 电动骑行车辆。 根据本申请的防抱死制动系统的微控制器的硬件和软件可 以单独设置, 也可以集成于电动骑行车辆已有的电子控制单元中。
本申请的防抱死制动系统采用微控制器检测车轮抱死状况, 通过防抱 死装置产生与人工制动力相反的作用力, 可及时降低存在抱死状况的车轮 上的制动力, 有效防止车轮抱死状况, 结构简单, 成本低, 操作可靠。
此外,本申请的防抱死制动系统还能将防抱死装置用作联动制动装置, 以产生与人工制动力相同的辅助制动力, 从而能够更快速地使电动骑行车 辆减速或停止。
本申请的防抱死制动系统中的防抱死装置设置在电动骑行车辆的手把 上, 从而与同样设在手把上的制动触发元件直接关联, 从而能够更可靠地、 更快速地产生防抱死动作。
虽然基于特定的实施方式显示和描述了本申请, 但本申请并不限制于 所示出的细节。 相反地, 在权利要求及其等同替换的范围内, 本申请的各 种细节可以被改造。

Claims

^ ^
1. 一种用在电动骑行车辆的防抱死制动系统中的防抱死装置, 所述防 抱死制动系统具有设置在车辆手把上并且适于被操作而产生制动力的制动 触发元件, 所述防抱死装置与所述制动触发元件相关联地设置在车辆手把 上, 并被构造成适于在车辆制动时车轮被制动元件抱死的情况下执行防抱 死操作, 以产生施加在所述制动触发元件上的用于抵消所述制动力的作用 力; 所述防抱死装置包括用于产生所述作用力的电动机以及可能有的用于 将所述电动机的输出转动减速的变速器。
2. 如权利要求 1所述的防抱死装置, 其中, 所述制动触发元件包括围 绕所述驱动销安装并且可绕所述驱动销转动的刹把, 所述防抱死装置还包 括与所述电动机或变速器的输出端耦合的可转动的驱动销, 所述驱动销作 用于所述刹把。
3. 如权利要求 2所述的防抱死装置, 其中, 所述驱动销包括圆柱形本 体以及从所述圆柱形本体径向伸出的齿部; 并且
所述刹把中形成有内孔, 所述内孔包括套装于圆柱形本体上的轴孔部 和从所述轴孔部径向伸出的扇形槽, 所述齿部位于所述扇形槽中并且可在 所述扇形槽中相对于所述刹把在一角度范围内转动。
4. 如权利要求 3所述的防抱死装置, 其中, 所述角度等于所述扇形槽 的两个对置槽壁之间限定的扇角; 并且
所述电动机通过所述驱动销推抵于所述对置槽壁之一而向所述刹把施 加与所述制动力方向相反的作用力;
优选地, 所述电动机通过所述驱动销推抵于所述对置槽壁中的另一个 而向所述刹把施加与所述制动力方向相同的作用力。
5. 如权利要求 3或 4所述的防抱死装置, 其中, 所述齿部包括从所述 圆柱形本体径向相反地伸出的一对齿部, 所述扇形槽包括从所述轴孔部径 向相反地伸出的一对扇形槽, 每个齿部分别位于一个相应的扇形槽中。
6. 如权利要求 1至 5中任一项所述的防抱死装置, 其中, 所述防抱死 装置还被构造成还能够执行联动制动操作, 用于为车轮产生辅助制动力。
7. 一种用于电动骑行车辆的防抱死制动系统, 包括:
制动单元, 其包括设置在车辆手把上并且适于被操作而产生制动力的 制动触发元件、 用于对车轮进行制动操作的制动元件、 布置在制动触发元 件与制动元件之间的用于将所述制动力传递到制动元件的制动力传递元 件; 以及
与所述制动触发元件相关联地设置在车辆手把上的防抱死装置, 其被 构造成适于在车辆制动时车轮被制动元件抱死的情况下执行防抱死操作, 以产生施加在所述制动触发元件上的用于抵消所述制动力的作用力。
8. 如权利要求 7所述的防抱死制动系统, 还包括微控制器, 其基于车 辆的制动状态判断车轮是否被抱死, 并且在车轮被抱死时启动所述防抱死 装置以解除抱死状态; 优选地, 所述微控制器与电动骑行车辆的中央控制 单元相连或组合在所述中央控制单元中。
9. 如权利要求 8所述的防抱死制动系统, 还包括与所述微控制器相连 的制动状态检测元件, 其检测电动骑行车辆的制动状态, 所述微控制器基 于所述制动状态检测元件的检测信号判断车轮是否被抱死;
优选地, 所述制动状态检测元件包括轮速传感器, 其安装于电动骑行 车辆上, 用以检测车轮速度, 所述检测信号包括所述车轮速度;
进一歩优选地, 所述制动状态检测元件还包括刹车灯开关传感器, 用 于检测刹车灯开关通断状态, 所述微控制器基于刹车灯开关通断状态确定 电动骑行车辆是否发生制动。
10. 如权利要求 7至 9中任一项所述的防抱死制动系统,其中,所述制 动单元为机械制动单元, 其中所述制动力传递元件为刹车线; 或者
所述制动单元为液压制动单元, 其中所述制动力传递元件为制动液管 线。
11. 如权利要求 7至 10中任一项所述的防抱死制动系统, 其中, 所述 防抱死制动系统包括与电动骑行车辆的不同车轮分别关联设置的制动单元 和防抱死装置; 并且
当与一个车轮相关联的制动单元执行制动操作时, 与其它车轮相关联 的防抱死装置执行联动制动操作, 以便为其它车轮产生制动力。
12. 如权利要求 7至 11中任一项所述的防抱死制动系统, 其中, 所述 防抱死装置为如权利要求 1至 6中任一项所述的防抱死装置。
PCT/CN2014/074080 2013-04-12 2014-03-26 用于电动骑行车辆的防抱死制动系统及其防抱死装置 WO2014166336A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310126279.3A CN104097731B (zh) 2013-04-12 2013-04-12 用于电动骑行车辆的防抱死制动系统及其防抱死装置
CN201310126279.3 2013-04-12

Publications (1)

Publication Number Publication Date
WO2014166336A1 true WO2014166336A1 (zh) 2014-10-16

Family

ID=51666366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074080 WO2014166336A1 (zh) 2013-04-12 2014-03-26 用于电动骑行车辆的防抱死制动系统及其防抱死装置

Country Status (2)

Country Link
CN (1) CN104097731B (zh)
WO (1) WO2014166336A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3632785A1 (de) 2018-10-04 2020-04-08 Robert Bosch GmbH Bremshebelvorrichtung
EP3632756A1 (de) 2018-10-04 2020-04-08 Robert Bosch GmbH Bremshebelvorrichtung
DE102018216563B4 (de) 2018-09-27 2022-06-23 Robert Bosch Gmbh Bremseinrichtung mit aktiver Bremskrafteinstellung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107685724A (zh) * 2017-09-11 2018-02-13 杨志泉 防抱死刹车机构及具有该机构的车辆、防抱死刹车方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005576A1 (en) * 1986-03-21 1987-09-24 Rylance Keith N Cam action brake lever
CN1117454A (zh) * 1994-05-23 1996-02-28 本田技研工业株式会社 车辆的刹车装置
CN1132156A (zh) * 1994-11-30 1996-10-02 本田技研工业株式会社 摩托车的制动装置
US7243762B2 (en) * 2005-02-02 2007-07-17 Tektro Technology Corporation Bicycle handbrake operating device
CN101402387A (zh) * 2008-11-20 2009-04-08 徐克林 用于两轮车的防抱死刹车毂
CN201457659U (zh) * 2009-08-17 2010-05-12 周常柱 一种电动自行车刹车装置
CN103287409A (zh) * 2012-03-02 2013-09-11 博世汽车部件(苏州)有限公司 车辆制动防抱死装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09254771A (ja) * 1996-03-25 1997-09-30 Honda Motor Co Ltd 車両用ブレーキ装置における連動ブレーキ機構
CN1212951C (zh) * 2002-06-20 2005-08-03 汉翔航空工业股份有限公司 机车液压式防滑制动系统
EP1690766A4 (en) * 2003-10-29 2010-07-28 Bosch Corp ANTI-BRAKING BRAKE CONTROL DEVICE AND ANTIBLOCKING BRAKING SYSTEM WITH ANTIBLOCKING BRAKE CONTROL DEVICE
JP2008179313A (ja) * 2007-01-26 2008-08-07 Bosch Corp 自動二輪車のブレーキ制御装置
DE102010038525A1 (de) * 2010-07-28 2012-02-02 Robert Bosch Gmbh Bremsvorrichtung mit aktiver Bremskraftbegrenzung sowie Zweirad mit solcher Bremsvorrichtung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005576A1 (en) * 1986-03-21 1987-09-24 Rylance Keith N Cam action brake lever
CN1117454A (zh) * 1994-05-23 1996-02-28 本田技研工业株式会社 车辆的刹车装置
CN1132156A (zh) * 1994-11-30 1996-10-02 本田技研工业株式会社 摩托车的制动装置
US7243762B2 (en) * 2005-02-02 2007-07-17 Tektro Technology Corporation Bicycle handbrake operating device
CN101402387A (zh) * 2008-11-20 2009-04-08 徐克林 用于两轮车的防抱死刹车毂
CN201457659U (zh) * 2009-08-17 2010-05-12 周常柱 一种电动自行车刹车装置
CN103287409A (zh) * 2012-03-02 2013-09-11 博世汽车部件(苏州)有限公司 车辆制动防抱死装置及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018216563B4 (de) 2018-09-27 2022-06-23 Robert Bosch Gmbh Bremseinrichtung mit aktiver Bremskrafteinstellung
EP3632785A1 (de) 2018-10-04 2020-04-08 Robert Bosch GmbH Bremshebelvorrichtung
EP3632756A1 (de) 2018-10-04 2020-04-08 Robert Bosch GmbH Bremshebelvorrichtung

Also Published As

Publication number Publication date
CN104097731A (zh) 2014-10-15
CN104097731B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
WO2013127348A1 (zh) 车辆制动防抱死装置及方法
TWM492871U (zh) 二輪車用油壓煞車系統
WO2014166336A1 (zh) 用于电动骑行车辆的防抱死制动系统及其防抱死装置
TW200530057A (en) Anti-rolling device for vehicles
US9035591B2 (en) Control method of electronic parking brake system
TWI761580B (zh) 電動煞車系統
JP5807805B2 (ja) 車両の回生ブレーキ制御装置
CN109421872B (zh) 制动装置及电动制动系统
KR101272592B1 (ko) 차량용 하이브리드 브레이크
CN204250277U (zh) 防抱死装置及其执行单元以及车辆
JP6189144B2 (ja) 電動ブレーキシステム
KR102030075B1 (ko) 차량의 제동 제어 장치 및 방법
CN104742887B (zh) 辅助制动装置及车辆制动系统
JPH07257356A (ja) 車両用ブレーキ装置
JP5932385B2 (ja) 人力駆動車のブレーキ制御装置及び人力駆動車
CN101337545A (zh) 自行车和机动车的防抱死和防滑机械转矩刹车系统及方法
CN104369730B (zh) 辅助制动装置及车辆制动系统
JP2005297749A (ja) バッテリー式乗用ゴルフカートのブレーキ制御システム
ITBS20090060A1 (it) Dispositivo per frenare e/o ruotare in continuo le ruote di veicoli ed aerei
JP2007118800A (ja) 車両の操舵装置
CN204383708U (zh) 防抱死装置及其执行单元以及车辆
JP2015137100A (ja) 車両用のブレーキ装置及びアンチロックブレーキシステム
JP2006027607A (ja) 選択的な動作装置
JP3066498U (ja) モ―タサイクルの第3ブレ―キシステムの電気回路装置及び機構装置
CA2860573C (en) Brake system with linking effect

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782572

Country of ref document: EP

Kind code of ref document: A1