WO2014163016A1 - キシリレンジカルバメート、キシリレンジイソシアネートの製造方法、キシリレンジイソシアネート、および、キシリレンジカルバメートの保存方法 - Google Patents

キシリレンジカルバメート、キシリレンジイソシアネートの製造方法、キシリレンジイソシアネート、および、キシリレンジカルバメートの保存方法 Download PDF

Info

Publication number
WO2014163016A1
WO2014163016A1 PCT/JP2014/059306 JP2014059306W WO2014163016A1 WO 2014163016 A1 WO2014163016 A1 WO 2014163016A1 JP 2014059306 W JP2014059306 W JP 2014059306W WO 2014163016 A1 WO2014163016 A1 WO 2014163016A1
Authority
WO
WIPO (PCT)
Prior art keywords
xylylene
dicarbamate
xylylene dicarbamate
diisocyanate
ppm
Prior art date
Application number
PCT/JP2014/059306
Other languages
English (en)
French (fr)
Inventor
孝二 高松
秀記 曽根
祐明 佐々木
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN201480013332.1A priority Critical patent/CN105143178B/zh
Priority to US14/781,721 priority patent/US9624165B2/en
Priority to JP2015510063A priority patent/JP6059799B2/ja
Priority to KR1020157023431A priority patent/KR101761038B1/ko
Priority to EP14779939.9A priority patent/EP2982665B1/en
Publication of WO2014163016A1 publication Critical patent/WO2014163016A1/ja
Priority to US15/410,221 priority patent/US9856209B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/20Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/04Preparation of derivatives of isocyanic acid from or via carbamates or carbamoyl halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/14Derivatives of isocyanic acid containing at least two isocyanate groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/08Separation; Purification; Stabilisation; Use of additives

Definitions

  • the present invention relates to a xylylene dicarbamate, a method for producing xylylene diisocyanate using the xylylene dicarbamate, a xylylene diisocyanate obtained by the method for producing xylylene diisocyanate, and a method for storing xylylene dicarbamate capable of reducing the content of impurities.
  • a xylylene dicarbamate a method for producing xylylene diisocyanate using the xylylene dicarbamate, a xylylene diisocyanate obtained by the method for producing xylylene diisocyanate, and a method for storing xylylene dicarbamate capable of reducing the content of impurities.
  • carbamates such as xylylene dicarbamate are used as raw materials for pharmaceuticals and agricultural chemicals, as raw materials for various fine chemicals, and as industrial raw materials for a wide range of applications as analytical reagents for alcohols. It is a useful organic compound.
  • isocyanate is an organic compound containing an isocyanate group, widely used as a raw material for polyurethane, and industrially produced by a reaction between an amine and phosgene (phosgene method).
  • phosgene is highly toxic and corrosive, and is inconvenient to handle.
  • a method for producing isocyanate by thermally decomposing a urethane compound (carbamate) has been studied as a method for producing isocyanate as an alternative to the phosgene method. Yes.
  • the urethane compound storage tank (raw material tank) is in a nitrogen atmosphere, and when the obtained urethane compound is solid at room temperature, the thermal decomposition reaction apparatus From the viewpoint of workability at the time of transportation to a container, it has been proposed to store it by being melted by heating (for example, see Patent Document 1).
  • a dicarbamate (urethane compound) is synthesized by reacting a diamine with an alcohol and urea and / or a urea derivative, and then the obtained carbamate (A method for producing diisocyanate by thermally decomposing (urethane compound) has also been studied (for example, see Patent Document 2).
  • xylylene diisocyanate which is an araliphatic diisocyanate, has a property that it tends to generate impurities as compared with other diisocyanates (for example, alicyclic diisocyanate).
  • Patent Document 1 it is also considered to suppress the generation of impurities by setting the carbamate storage tank to a nitrogen atmosphere.
  • a method sufficiently generates impurities. May not be suppressed.
  • An object of the present invention is to make xylylene dicarbamate with a reduced content of impurities, a method for producing xylylene diisocyanate using the xylylene dicarbamate, a xylylene diisocyanate obtained by the method for producing xylylene diisocyanate, and the inclusion of impurities
  • An object of the present invention is to provide a method for storing xylylene dicarbamate that can reduce the amount.
  • the xylylene dicarbamate of the present invention is characterized by containing impurities represented by the following formulas (1) to (4) in a proportion of less than 100 ppm on a mass basis as a total amount thereof. .
  • the xylylene diisocyanate production method of the present invention is characterized by obtaining xylylene diisocyanate by thermally decomposing the above xylylene dicarbamate.
  • the xylylene diisocyanate of the present invention is characterized by being obtained by the above-described method for producing xylylene diisocyanate.
  • the method for preserving xylylene dicarbamate according to the present invention contains impurities represented by the following formulas (1) to (4) under heating at 50 to 180 ° C. in a proportion of less than 100 ppm on a mass basis as a total amount thereof. It is characterized by storing as you do.
  • the total amount of oxygen with respect to xylylene dicarbamate is the amount of oxygen enclosed in the space when the container is filled with xylylene dicarbamate and the amount of oxygen dissolved in the xylylene dicarbamate. Is preferably less than 100 ppm.
  • the content of the impurities represented by the above formulas (1) to (4) is less than 100 ppm on a mass basis, so that the quality in various applications is excellent, and in particular, the yield is improved by thermal decomposition.
  • Xylylene diisocyanate can be produced.
  • the xylylene diisocyanate of the present invention can be obtained with high yield.
  • the content of impurities represented by the above formulas (1) to (4) is less than 100 ppm on a mass basis even under heating, so that the molten state is maintained. Workability at the time of transportation can be ensured, and the stored xylylene dicarbamate is excellent in quality in various applications, and in particular, xylylene diisocyanate can be produced with high yield by thermal decomposition.
  • the mass spectrum of the peak that appeared at the retention time [4.587] in the liquid chromatogram is shown.
  • the mass spectrum of the peak that appeared at the retention time [6.328] in the liquid chromatogram is shown.
  • the mass spectrum of the peak that appeared at the retention time [8.588] in the liquid chromatogram is shown.
  • the mass spectrum of the peak that appeared at the retention time [10.187] in the liquid chromatogram is shown.
  • examples of the xylylene dicarbamate include 1,2-xylylene dicarbamate, 1,3-xylylene dicarbamate, 1,4-xylylene dicarbamate, and mixtures thereof, and preferably 1,3 -Xylylene dicarbamate, 1,4-xylylene dicarbamate, and more preferably 1,3-xylylene dicarbamate.
  • Such xylylene dicarbamate is not particularly limited.
  • a method of carbamate xylylenediamine with dialkyl carbonate for example, xylylenediamine in urea in the presence of alcohol or N-unsubstituted carbamic acid ester. It can be obtained by a known method such as a carbamate method (urea method).
  • Such xylylene dicarbamate is represented, for example, by the following formula (5).
  • R represents a monovalent hydrocarbon group.
  • examples of the monovalent hydrocarbon group represented by R include an alkyl group and an aryl group.
  • alkyl group examples include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, iso-octyl, 2-ethylhexyl.
  • alkyl group examples include linear or branched saturated hydrocarbon groups having 1 to 8 carbon atoms such as alicyclic saturated hydrocarbon groups having 5 to 10 carbon atoms such as cyclohexyl and cyclododecyl.
  • aryl group examples include aromatic hydrocarbon groups having 6 to 18 carbon atoms such as phenyl, tolyl, xylyl, biphenyl, naphthyl, anthryl, phenanthryl.
  • These monovalent hydrocarbon groups can be used alone or in combination of two or more.
  • the monovalent hydrocarbon group is preferably an alkyl group, more preferably a linear or branched saturated hydrocarbon group having 1 to 8 carbon atoms, and still more preferably a linear or branched chain having 1 to 6 carbon atoms.
  • a branched saturated hydrocarbon group, particularly preferably a straight-chain saturated hydrocarbon group having 2 to 6 carbon atoms is exemplified.
  • such a monovalent hydrocarbon group can have a substituent.
  • substituents include a hydroxyl group, a halogen atom (eg, chlorine, fluorine, bromine and iodine), a cyano group, an amino group, a carboxyl group, an alkoxy group (eg, methoxy, ethoxy, propoxy, An alkoxy group having 1 to 4 carbon atoms such as butoxy), an aryloxy group (such as phenoxy group), an alkylthio group (such as an alkylthio group having 1 to 4 carbon atoms such as methylthio, ethylthio, propylthio, butylthio, etc.) and An arylthio group (for example, a phenylthio group etc.) etc.
  • the number of substituents substituted for the hydrocarbon group may be singular (one) or plural (two or more).
  • the respective substituents may be the same as or different from each other.
  • the monovalent hydrocarbon group which does not have a substituent is mentioned.
  • Such xylylene dicarbamate can be used alone or in combination of two or more.
  • xylylene dicarbamate contains impurities represented by the following formulas (1) to (4).
  • R represents a monovalent hydrocarbon group.
  • R represents a monovalent hydrocarbon group similar to that in the above formula (5).
  • impurities represented by the above formulas (1) to (4) are presumed to be, for example, compounds (oxides) obtained by oxidizing the above xylylene dicarbamate.
  • the compound represented by the above formula (1) is referred to as formyl-benzylcarbamate (aldehyde form).
  • the compound represented by the above formula (2) is referred to as carboxyl-benzyl carbamate (carboxylic acid form).
  • the compound represented by the above formula (3) is referred to as carbonyl carbamate-benzyl carbamate (imide body).
  • the compound represented by the above formula (4) is referred to as carbamoyl-benzylcarbamate (amide form).
  • the total content of the impurities represented by the above formulas (1) to (4) in the xylylene dicarbamate is less than 100 ppm, preferably not more than 80 ppm, more preferably not more than 40 ppm, particularly preferably in terms of mass. 10 ppm or less, usually 1 ppm or more.
  • the quality of xylylene dicarbamate can be improved in various applications, and in particular, the yield when xylylene diisocyanate is produced by thermal decomposition can be improved.
  • xylylene diisocyanate can be produced with high yield by thermal decomposition.
  • the impurity content of xylylene dicarbamate can be determined by high performance liquid chromatography (HPLC) described later.
  • xylylene dicarbamate is used as a raw material for producing xylylene diisocyanate
  • xylylene carbamate stored in a storage tank is pressure-transported to a thermal decomposition apparatus or the like, and then pyrolysis is performed. It is heated and pyrolyzed in the apparatus.
  • xylylene dicarbamate before pyrolysis is a solid at normal temperature (melting point depends on the number of carbons in the carbamate group, for example, 50 to 150 ° C.). From the viewpoint, the storage tank is heated to a predetermined temperature and stored in a molten state (fluid state).
  • the xylylene dicarbamate is stored so that the impurities represented by the following formulas (1) to (4) are contained in a proportion of less than 100 ppm on a mass basis as their total amount. .
  • the heating condition of xylylene dicarbamate is, for example, 50 ° C. or higher, preferably 70 ° C. or higher, more preferably 90 ° C. or higher, for example, 180 ° C. or lower, preferably 170 ° C. or lower, more preferably 160 It is below °C.
  • the melted state can be maintained within the range where xylylene dicarbamate is not thermally decomposed, and workability during transportation can be improved.
  • the total amount of oxygen with respect to xylylene dicarbamate is 100 ppm with respect to the amount of oxygen enclosed in the space and the amount of oxygen dissolved in the xylylene dicarbamate when the container is filled with xylylene dicarbamate. Less than.
  • the total amount of oxygen relative to the xylylene dicarbamate of the amount of oxygen enclosed in the space when the container is filled with xylylene dicarbamate and the amount of oxygen dissolved in the xylylene dicarbamate is less than 100 ppm, preferably 50 ppm or less, more preferably 20 ppm or less, still more preferably 10 ppm or less, and usually 1 ppm or more.
  • the amount of oxygen is in the above range, the oxidation of xylylene dicarbamate can be suppressed, and the generation of impurities represented by the above formulas (1) to (4) can be suppressed.
  • the method of setting the total amount of oxygen to the xylylene dicarbamate in the above range within the amount of oxygen enclosed in the space and the amount of oxygen dissolved in the xylylene dicarbamate when the container is filled with xylylene dicarbamate examples include a method of filling a xylylene dicarbamate storage tank with an inert gas, and a method of reducing the pressure of a xylene dicarbamate storage tank and evacuating the tank, preferably a xylylene dicarbamate storage tank. Is filled with an inert gas.
  • the inert gas examples include rare gases such as helium gas, neon gas, argon gas, and krypton gas, such as nitrogen gas, and preferably nitrogen gas.
  • the purity of the inert gas is, for example, more than 99.99% by volume, preferably 99.999% by volume or more, and usually 100% by volume or less.
  • the purity of the inert gas is within the above range, the total amount of oxygen with respect to xylylene dicarbamate can be adjusted to the above range with respect to the amount of oxygen enclosed in the space and the amount of oxygen dissolved in the xylylene dicarbamate, Impurity generation can be suppressed.
  • the purity of the inert gas is equal to or lower than the above lower limit (for example, when using a factory nitrogen gas having a purity of 99.99% by volume), even when the storage tank is filled with the inert gas, the space The total amount of oxygen contained in the xylylene dicarbamate cannot be reduced sufficiently, and a large amount of impurities may be generated in the xylylene dicarbamate. .
  • nitrogen gas generally used as an inert gas in industrial production facilities such as factories is usually produced industrially by the PSA (Pressure Swing Adsorption) method.
  • PSA Pressure Swing Adsorption
  • the purity of the nitrogen gas obtained by this method is 99.99% by volume or less, even if it is used for filling the storage tank, the amount of oxygen enclosed in the space and the oxygen dissolved in the xylylene dicarbamate The total amount of oxygen relative to the amount of xylylene dicarbamate cannot be reduced sufficiently.
  • the purity of the inert gas is within the above range, by filling the storage tank with the inert gas, the amount of oxygen enclosed in the space and the amount of oxygen dissolved in the xylylene dicarbamate can be reduced.
  • the total amount of oxygen can be sufficiently reduced, and the generation of impurities in xylylene dicarbamate can be suppressed.
  • the aeration rate and pressure of the inert gas are not particularly limited, and are appropriately set according to the purpose and application.
  • the storage time of xylylene dicarbamate in the storage tank is, for example, 72 hours or less, preferably 48 hours or less, more preferably 24 hours or less, and usually 30 minutes. That's it.
  • the content ratio of the above-mentioned impurities of xylylene dicarbamate stored by such a method for storing xylylene dicarbamate is less than 100 ppm on a mass basis, preferably 80 ppm or less, more preferably 40 ppm or less, as a total amount thereof. Particularly preferred is 10 ppm or less, and usually 1 ppm or more.
  • the content of the impurities represented by the above formulas (1) to (4) can be less than 100 ppm on a mass basis even under heating, so that the molten state is maintained. Workability during transportation can be ensured. Further, the stored xylylene dicarbamate is excellent in quality in various applications, and in particular, xylylene diisocyanate can be produced with high yield by thermal decomposition.
  • xylylene dicarbamate stored by the above storage method is suitably used as a production raw material for producing xylylene diisocyanate by thermal decomposition.
  • xylylene diisocyanate corresponding to xylylene dicarbamate (1,2-xylylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate and mixtures thereof) Etc.
  • an alcohol represented by the following general formula (6) as a by-product.
  • R-OH (6) (Wherein R has the same meaning as R in the above formulas (1) to (4)).
  • This thermal decomposition is not particularly limited, and for example, a known decomposition method such as a liquid phase method or a gas phase method can be used.
  • xylylene diisocyanate and alcohol produced by thermal decomposition can be separated from a gaseous product mixture by fractional condensation.
  • xylylene diisocyanate and alcohol produced by thermal decomposition can be separated by, for example, distillation or using a solvent and / or an inert gas as a support material.
  • a liquid phase method is preferably used from the viewpoint of workability.
  • the xylylene dicarbamate is preferably pyrolyzed in the presence of an inert solvent.
  • the inert solvent is not particularly limited as long as it dissolves at least xylylene dicarbamate, is inert to xylylene dicarbamate and xylylene diisocyanate, and does not react during pyrolysis (ie, is stable).
  • the boiling point is preferably higher than that of the xylylene diisocyanate produced.
  • Such an inert solvent is appropriately selected depending on the number of carbons of xylylene dicarbamate and pressure conditions, and examples thereof include aromatic hydrocarbons.
  • aromatic hydrocarbons examples include benzene (boiling point: 80 ° C.), toluene (boiling point: 111 ° C.), o-xylene (boiling point: 144 ° C.), m-xylene (boiling point: 139 ° C.), p-xylene ( Boiling point: 138 ° C), ethylbenzene (boiling point: 136 ° C), isopropylbenzene (boiling point: 152 ° C), butylbenzene (boiling point: 185 ° C), cyclohexylbenzene (boiling point: 237-340 ° C), tetralin (boiling point: 208 ° C) Chlorobenzene (boiling point: 132 ° C.), o-dichlorobenzene (boiling point: 180 ° C.), 1-methylnaphthalene
  • Such a solvent is also available as a commercial product.
  • barrel process oil B-01 aromatic hydrocarbons, boiling point: 176 ° C.
  • barrel process oil B-03 aromatic hydrocarbons.
  • barrel process oil B-04AB aromatic hydrocarbons, boiling point: 294 ° C
  • barrel process oil B-05 aromatic hydrocarbons, boiling point: 302 ° C
  • barrel process oil B- 27 aromatic hydrocarbons, boiling point: 380 ° C.
  • barrel process oil B-28AN aromatic hydrocarbons, boiling point: 430 ° C.
  • barrel process oil B-30 aromatic hydrocarbons, boiling point: 380 ° C.
  • Barrel Therm 200 aromatic hydrocarbons, boiling point: 382 ° C.
  • Barrel Therm 300 aromatic hydrocarbons, boiling point: 344 ° C.
  • Barrel Therm 400 aromatic coal
  • examples of the inert solvent further include esters (for example, dioctyl phthalate, didecyl phthalate, didodecyl phthalate, etc.), aliphatic hydrocarbons commonly used as a heat medium, and the like.
  • esters for example, dioctyl phthalate, didecyl phthalate, didodecyl phthalate, etc.
  • aliphatic hydrocarbons commonly used as a heat medium, and the like.
  • Such inert solvents can be used alone or in combination of two or more.
  • the compounding amount of the inert solvent is 0.001 to 100 parts by mass, preferably 0.01 to 80 parts by mass, more preferably 0.1 to 50 parts by mass with respect to 1 part by mass of xylylene dicarbamate. is there.
  • an inert solvent is blended with xylylene dicarbamate, and after pyrolyzing xylylene dicarbamate, the inert solvent is separated and recovered, and again blended with xylylene dicarbamate in pyrolysis. be able to.
  • the reaction conditions for the thermal decomposition reaction are appropriately set, but the thermal decomposition temperature is usually 350 ° C. or lower, preferably 80 to 350 ° C., more preferably 100 to 300 ° C. If it is lower than 80 ° C., a practical reaction rate may not be obtained, and if it exceeds 350 ° C., undesirable side reactions such as polymerization of xylylene diisocyanate may occur.
  • the pressure at the time of the pyrolysis reaction is preferably a pressure at which the generated alcohol can be vaporized with respect to the above-mentioned pyrolysis reaction temperature. It is preferably 90 kPa.
  • a catalyst can be added if necessary.
  • the catalyst varies depending on the type of the catalyst, but it may be added to the reaction either before or after the distillation separation after the reaction or before or after the separation of xylylene dicarbamate.
  • a catalyst used for thermal decomposition one kind selected from Sn, Sb, Fe, Co, Ni, Cu, Cr, Ti, Pb, Mo, Mn, etc., used for urethanization reaction of xylylene diisocyanate and hydroxyl group
  • the metal simple substance or its oxides, halides, carboxylates, phosphates, organometallic compounds and the like are used.
  • Fe, Sn, Co, Sb, and Mn are preferably used because they exhibit the effect of making it difficult to generate by-products.
  • Sn metal catalyst examples include tin oxide, tin chloride, tin bromide, tin iodide, tin formate, tin acetate, tin oxalate, tin octylate, tin stearate, tin oleate, tin phosphate, Examples include dibutyltin chloride, dibutyltin dilaurate, 1,1,3,3-tetrabutyl-1,3-dilauryloxydistanoxane.
  • Examples of the metal catalyst of Fe, Co, Sb, and Mn include acetates, benzoates, naphthenates, and acetylacetonates.
  • the blending amount of the catalyst is in the range of 0.0001 to 5% by mass, preferably in the range of 0.001 to 1% by mass with respect to the reaction solution as a single metal or a compound thereof.
  • a stabilizer In this thermal decomposition reaction, if necessary, a stabilizer can be blended.
  • the stabilizer examples include o-toluenesulfonic acid amide and p-toluenesulfonic acid amide, which can be used alone or in combination of two or more.
  • the mixing ratio of the stabilizer is not particularly limited, and is appropriately set according to the purpose and application.
  • This thermal decomposition reaction is either a batch reaction in which xylylene dicarbamate, a catalyst and an inert solvent are charged at once, or a continuous reaction in which xylylene dicarbamate is charged under reduced pressure in an inert solvent containing a catalyst. Can be implemented.
  • the conversion rate of xylylene dicarbamate in the thermal decomposition is, for example, 80 mol% or more, and preferably 90 mol% or more.
  • the conversion rate of xylylene diisocyanate can be calculated
  • xylylene diisocyanate is produced by thermal decomposition of the two carbamate groups of xylylene dicarbamate.
  • the pyrolysis solution further contains, for example, xylylene monoisocyanate (xylylene diisocyanate). Renmonocarbamate) and xylylene dicarbamate may be contained.
  • these compounds having a carbamate group such as xylylene dicarbamate and xylylene monoisocyanate react with compounds having an isocyanate group such as xylylene diisocyanate and xylylene monoisocyanate to induce allophanate and isocyanurate.
  • a thermal decomposition residue is generated.
  • xylylene diisocyanate contains many impurities, starting from the impurities, xylylene diisocyanate, xylylene monoisocyanate, xylylene dicarbamate, and allophanate (an allophanate modified form of xylylene diisocyanate), etc.
  • the molecular weight is increased to increase the thermal decomposition residue (isocyanate residue (tar component)).
  • the yield of xylylene diisocyanate is, for example, 80 mol% or more, preferably 90 mol% or more with respect to the raw material xylylene dicarbamate.
  • the yield of xylylene monoisocyanate is, for example, 20 mol% or less, preferably 10 mol% or less with respect to the raw material xylylene dicarbamate.
  • the yield of allophanate is, for example, 10 mol% or less, preferably 5 mol% or less, based on the raw xylylene dicarbamate.
  • the yield of the thermal decomposition residue is, for example, 5 mol% or less, preferably 1 mol% or less with respect to the raw material xylylene dicarbamate.
  • Test Example 1 (Identification of impurities) 1,3-Xylylene dicarbamate was placed in a heat-resistant container and subjected to a heating test at 150 ° C. for 16 hours. Next, the contents after the heating test were analyzed by a liquid chromatograph mass spectrometer (LC / MS) apparatus under the conditions shown in Table 1, and the retention times [4.587], [6.328], [8] in the liquid chromatogram .588] and [10.187], the structure of the compound was identified from the mass spectrum of each peak.
  • LC / MS liquid chromatograph mass spectrometer
  • Example 1 ⁇ Xylylene dicarbamate> 1,3-Xylylenedicarbamate was placed in a heat-resistant container, and the total amount of impurities (compounds represented by the above (1) to (4)) in 1,3-xylylenedicarbamate was determined by high performance liquid chromatography. As a result, the content of impurities was 0 ppm. In addition, when the content of impurities was less than the detection limit by high performance liquid chromatography (less than 1 ppm), it was assumed to be 0 ppm (the same applies hereinafter).
  • the inside of the heat-resistant container was filled with high-purity nitrogen gas having a purity of 99.999% by volume.
  • the total amount of oxygen with respect to the xylylene dicarbamate of the amount of oxygen enclosed in the space of the 1,3-xylylene dicarbamate container and the amount of oxygen dissolved in the xylylene dicarbamate was 10 ppm.
  • the oxygen amount was calculated by measuring the gas phase part and the xylylene dicarbamate part (liquid phase part) immediately before sealing with an oxygen concentration meter (DO meter UC-12-SOL type, manufactured by Central Science Co., Ltd.) (the same applies hereinafter). .
  • the 1,3-xylylene range was heated to 120 ° C. and stored for 12 hours in a heat-resistant container. Thereafter, the total amount of impurities (compounds represented by the above (1) to (4)) in 1,3-xylylene dicarbamate was determined by high performance liquid chromatography. As a result, the content of impurities was 10 ppm.
  • ⁇ Xylylene diisocyanate> The 1,3-xylylene dicarbamate after storage and dibenzyltoluene as an inert solvent were mixed at a mass ratio of 1: 1 to obtain a raw material component. Next, p-toluenesulfonic acid amide as a stabilizer was added to the obtained raw material component so as to be 100 ppm with respect to xylylene dicarbamate.
  • the product obtained by the above thermal decomposition was supplied to a condenser (condenser) set at 80 ° C., and a part was desorbed as a vaporized component, and the rest was condensed to obtain a condensate.
  • a condenser condenser set at 80 ° C.
  • the conversion rate of xylylene dicarbamate was determined by the following formula and found to be 99 mol%.
  • the yield of xylylene diisocyanate was determined by the following formula, and as a result, it was 95 mol% with respect to the raw material xylylene dicarbamate.
  • the yield of xylylene monoisocyanate was determined by the following formula, and as a result, it was 2 mol% with respect to the raw material xylylene dicarbamate.
  • the yield of allophanate was determined by the following formula, and as a result, it was 2 mol% based on the raw material xylylene dicarbamate.
  • the yield of the tar component was determined by the following formula, and as a result, it was 1 mol% with respect to the raw material xylylene dicarbamate.
  • ⁇ Xylylene dicarbamate conversion rate (Supply xylylene dicarbamate amount ⁇ Unreacted xylylene dicarbamate amount) ⁇ Supply xylylene dicarbamate amount ⁇ 100
  • Xylylene diisocyanate yield xylylene diisocyanate content in isocyanate-containing component ⁇ feed xylylene dicarbamate amount ⁇ 100
  • Xylylene monoisocyanate yield xylylene monoisocyanate amount in reaction solution ⁇ supplied xylylene dicarbamate amount x 100
  • the yield of xylylene diisocyanate was determined in the same manner as in Example 1. As a result, it was 95 mol% with respect to the raw material xylylene dicarbamate.
  • the yield of xylylene monoisocyanate was determined in the same manner as in Example 1. As a result, it was 2 mol% based on the raw material xylylene dicarbamate.
  • the yield of allophanate was determined in the same manner as in Example 1. As a result, it was 2 mol% with respect to the raw material xylylene dicarbamate.
  • the yield of the tar component was determined in the same manner as in Example 1. As a result, it was 1 mol% with respect to the raw material xylylene dicarbamate.
  • the yield of xylylene diisocyanate was determined in the same manner as in Example 1. As a result, it was 92 mol% with respect to the raw material xylylene dicarbamate.
  • the yield of xylylene monoisocyanate was determined in the same manner as in Example 1. As a result, it was 2 mol% based on the raw material xylylene dicarbamate.
  • the yield of allophanate was determined in the same manner as in Example 1. As a result, it was 2 mol% with respect to the raw material xylylene dicarbamate.
  • the yield of the tar component was determined in the same manner as in Example 1. As a result, it was 4 mol% with respect to the raw material xylylene dicarbamate.
  • Comparative Example 2 ⁇ Xylylene dicarbamate> 1,3-Xylylenedicarbamate was stored in the same manner as Comparative Example 1 except that the storage time was changed to 24 hours. Thereafter, the total amount of impurities (compounds represented by the above (1) to (4)) in 1,3-xylylene dicarbamate was determined. As a result, the content of impurities was 350 ppm.
  • ⁇ Xylylene diisocyanate> In the same manner as in Example 1, the above-mentioned stored xylylene dicarbamate was thermally decomposed to obtain a product containing xylylene diisocyanate and alcohol, and then a part thereof was desorbed as a vaporizing component and the remainder was condensed. To give a condensate.
  • the yield of xylylene diisocyanate was determined in the same manner as in Example 1. As a result, it was 91 mol% with respect to the raw material xylylene dicarbamate.
  • the yield of xylylene monoisocyanate was determined in the same manner as in Example 1. As a result, it was 2 mol% based on the raw material xylylene dicarbamate.
  • the yield of allophanate was determined in the same manner as in Example 1. As a result, it was 2 mol% with respect to the raw material xylylene dicarbamate.
  • the yield of the tar component was determined in the same manner as in Example 1. As a result, it was 5 mol% with respect to the raw material xylylene dicarbamate.
  • the yield of xylylene diisocyanate was determined in the same manner as in Example 1. As a result, it was 95 mol% with respect to the raw material xylylene dicarbamate.
  • the yield of xylylene monoisocyanate was determined in the same manner as in Example 1. As a result, it was 2 mol% based on the raw material xylylene dicarbamate.
  • the yield of allophanate was determined in the same manner as in Example 1. As a result, it was 2 mol% with respect to the raw material xylylene dicarbamate.
  • the yield of the tar component was determined in the same manner as in Example 1. As a result, it was 1 mol% with respect to the raw material xylylene dicarbamate.
  • Table 2 shows the results of each Example and each Comparative Example.
  • the xylylene dicarbamate of the present invention a method for producing xylylene diisocyanate using the xylylene dicarbamate, a xylylene diisocyanate obtained by the method for producing xylylene diisocyanate, and a method for storing xylylene dicarbamate capable of reducing the content of impurities are as follows: For example, it can be widely used in various industrial fields in which xylylene dicarbamate and xylylene diisocyanate are used, such as raw materials for pharmaceuticals and agricultural chemicals, raw materials for various fine chemicals, analytical reagents for alcohols, and raw materials for producing isocyanates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 キシリレンジカルバメートは、下記式(1)~(4)で示される不純物を、それらの総量として質量基準で100ppm未満の割合で含有する。(上記式(1)~(4)中、Rは、1価の炭化水素基を示す。)

Description

キシリレンジカルバメート、キシリレンジイソシアネートの製造方法、キシリレンジイソシアネート、および、キシリレンジカルバメートの保存方法
 本発明は、キシリレンジカルバメート、そのキシリレンジカルバメートを用いるキシリレンジイソシアネートの製造方法、そのキシリレンジイソシアネートの製造方法により得られるキシリレンジイソシアネート、および、不純物の含有量を低減できるキシリレンジカルバメートの保存方法に関する。
 従来より、キシリレンジカルバメートなどのカルバメート(ウレタン化合物)は、医薬、農薬などの原料として、また、各種ファインケミカルズの原料として、さらには、アルコール類の分析試剤などとして、広範な用途を有する工業原料として、有用な有機化合物である。
 また、このようなカルバメートは、近年、ホスゲンを用いないイソシアネートの製造原料とすることが種々検討されている。
 すなわち、イソシアネートは、イソシアネート基を含む有機化合物であって、ポリウレタンの原料として広く用いられており、工業的には、アミンとホスゲンとの反応により製造されている(ホスゲン法)。
 しかし、ホスゲンは毒性および腐食性が強く、取り扱いが不便であるため、近年、ホスゲン法に代わるイソシアネートの製造方法として、ウレタン化合物(カルバメート)を熱分解することによってイソシアネートを製造する方法が検討されている。
 具体的には、例えば、ホルムアミド化合物と炭酸ジメチルとをメタノール共存下で反応させ、生成するギ酸メチルを蒸留により系外に抜き出すとともに、得られたウレタン化合物を熱分解して、イソシアネート化合物を得る方法が提案されている。
 また、このようなウレタン化合物の熱分解反応装置では、ウレタン化合物の貯留槽(原料槽)を窒素雰囲気とすること、また、得られたウレタン化合物が常温固体である場合には、熱分解反応装置に輸送する際の作業性の観点から、加熱溶融させて貯留することが提案されている(例えば、特許文献1参照。)。
 また、ホスゲン法に代わるイソシアネートの製造方法としては、上記の他、例えば、ジアミンとアルコールおよび尿素および/または尿素誘導体との反応によりジカルバメート(ウレタン化合物)を合成し、その後、得られたカルバメート(ウレタン化合物)を熱分解することによりジイソシアネートを製造する方法も検討されている(例えば、特許文献2参照。)。
特開平10-7641号公報 特開2005-68146号公報
 一方、このようなイソシアネートの製造において、カルバメート(ウレタン化合物)を加熱状態で貯留すると、カルバメートの変質などにより不純物が生成する場合がある。
 とりわけ、芳香脂肪族ジイソシアネートであるキシリレンジイソシアネートは、その他のジイソシアネート(例えば、脂環式ジイソシアネートなど)に比べて不純物を生じやすいという性質がある。
 そして、多くの不純物を含有するキシリレンジカルバメートを熱分解すると、得られるキシリレンジイソシアネートの収率が低下するという不具合がある。
 この点、例えば、特許文献1に記載されるように、カルバメートの貯留槽を窒素雰囲気とすることにより、不純物の生成を抑制することも検討されるが、このような方法では不純物の生成を十分に抑制できない場合がある。
 本発明の目的は、不純物の含有量が低減されたキシリレンジカルバメート、そのキシリレンジカルバメートを用いるキシリレンジイソシアネートの製造方法、そのキシリレンジイソシアネートの製造方法により得られるキシリレンジイソシアネート、および、不純物の含有量を低減できるキシリレンジカルバメートの保存方法を提供することにある。
 上記目的を達成するために、本発明のキシリレンジカルバメートは、下記式(1)~(4)で示される不純物を、それらの総量として質量基準で100ppm未満の割合で含有することを特徴としている。
Figure JPOXMLDOC01-appb-C000005
(上記式(1)~(4)中、Rは、1価の炭化水素基を示す。)
 また、本発明のキシリレンジイソシアネートの製造方法では、上記のキシリレンジカルバメートを熱分解することによりキシリレンジイソシアネートを得ることを特徴としている。
 また、本発明のキシリレンジイソシアネートは、上記のキシリレンジイソシアネートの製造方法により得られることを特徴としている。
 また、本発明のキシリレンジカルバメートの保存方法は、50~180℃の加熱下において、下記式(1)~(4)で示される不純物を、それらの総量として質量基準で100ppm未満の割合で含有するように保存することを特徴としている。
Figure JPOXMLDOC01-appb-C000006
(上記式(1)~(4)中、Rは、1価の炭化水素基を示す。)
 また、本発明のキシリレンジカルバメートの保存方法では、キシリレンジカルバメートを容器に充填したときに空間部に内封される酸素量とキシリレンジカルバメート中に溶存する酸素量のキシリレンジカルバメートに対する合計酸素量を100ppm未満とすることが好適である。
 本発明のキシリレンジカルバメートでは、上記式(1)~(4)で示される不純物の含有量が、質量基準で100ppm未満であるため、各種用途における品質に優れ、とりわけ、熱分解により収率よくキシリレンジイソシアネートを生成することができる。
 また、本発明のキシリレンジイソシアネートの製造方法では、本発明のキシリレンジカルバメートが用いられるため、本発明のキシリレンジイソシアネートを、収率よく得ることができる。
 また、本発明のキシリレンジカルバメートの保存方法では、加熱下においても、上記式(1)~(4)で示される不純物の含有量が質量基準で100ppm未満であるため、溶融状態を維持し、輸送時における作業性を確保することができ、さらに、その保存されたキシリレンジカルバメートは、各種用途における品質に優れ、とりわけ、熱分解により収率よくキシリレンジイソシアネートを生成することができる。
液体クロマトグラムにおいてリテンションタイム[4.587]に現れたピークのマススペクトルを示す。 液体クロマトグラムにおいてリテンションタイム[6.328]に現れたピークのマススペクトルを示す。 液体クロマトグラムにおいてリテンションタイム[8.588]に現れたピークのマススペクトルを示す。 液体クロマトグラムにおいてリテンションタイム[10.187]に現れたピークのマススペクトルを示す。
 本発明において、キシリレンジカルバメートとしては、例えば、1,2-キシリレンジカルバメート、1,3-キシリレンジカルバメート、1,4-キシリレンジカルバメートおよびそれらの混合物などが挙げられ、好ましくは、1,3-キシリレンジカルバメート、1,4-キシリレンジカルバメート、より好ましくは、1,3-キシリレンジカルバメートが挙げられる。
 このようなキシリレンジカルバメートは、特に制限されないが、例えば、キシリレンジアミンをジアルキルカーボネートでカルバメート化する方法(カーボネート法)、例えば、アルコール存在下においてキシリレンジアミンを尿素やN-無置換カルバミン酸エステルなどでカルバメート化する方法(尿素法)など、公知の方法により得ることができる。
 このようなキシリレンジカルバメートは、例えば、下記式(5)で示される。
Figure JPOXMLDOC01-appb-C000007
(上記式(5)中、Rは、1価の炭化水素基を示す。)
 上記式(5)において、Rで示される1価の炭化水素基としては、例えば、アルキル基、アリール基などが挙げられる。
 アルキル基としては、例えば、メチル、エチル、n-プロピル、iso-プロピル、n-ブチル、iso-ブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、iso-オクチル、2-エチルヘキシルなどの炭素数1~8の直鎖状または分岐状の飽和炭化水素基、例えば、シクロヘキシル、シクロドデシルなどの炭素数5~10の脂環式飽和炭化水素基などが挙げられる。
 アリール基としては、例えば、フェニル、トリル、キシリル、ビフェニル、ナフチル、アントリル、フェナントリルなどの炭素数6~18の芳香族炭化水素基が挙げられる。
 これら1価の炭化水素基は、単独使用または2種類以上併用することができる。
 1価の炭化水素基として、好ましくは、アルキル基、より好ましくは、炭素数1~8の直鎖状または分岐状の飽和炭化水素基、さらに好ましくは、炭素数1~6の直鎖状または分岐状の飽和炭化水素基、とりわけ好ましくは、炭素数2~6の直鎖状の飽和炭化水素基が挙げられる。
 また、このような1価の炭化水素基は、置換基を有することができる。そのような置換基としては、例えば、例えば、ヒドロキシル基、ハロゲン原子(例えば、塩素、フッ素、臭素およびヨウ素など)、シアノ基、アミノ基、カルボキシル基、アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、ブトキシなどの炭素数1~4のアルコキシ基など)、アリールオキシ基(例えば、フェノキシ基など)、アルキルチオ基(例えば、メチルチオ、エチルチオ、プロピルチオ、ブチルチオなどの炭素数1~4のアルキルチオ基など)およびアリールチオ基(例えば、フェニルチオ基など)などが挙げられる。また、炭化水素基に置換される置換基は、単数(1つ)であってもよく、また、複数(2つ以上)であってもよい。1価の炭化水素基に対して、上記の置換基が複数置換する場合には、各置換基は、互いに同一であっても、それぞれ異なっていてもよい。また、1価の炭化水素基として、好ましくは、置換基を有しない1価の炭化水素基が挙げられる。
 このようなキシリレンジカルバメートは、単独使用または2種類以上併用することができる。
 そして、キシリレンジカルバメートは、下記式(1)~(4)で示される不純物を含有している。
Figure JPOXMLDOC01-appb-C000008
(上記式(1)~(4)中、Rは、1価の炭化水素基を示す。)
 上記式(1)~(4)において、Rは、上記式(5)と同様の1価の炭化水素基を示す。
 これら上記式(1)~(4)で示される不純物は、例えば、上記したキシリレンジカルバメートが酸化されることにより得られる化合物(酸化物)であると推察される。なお、上記式(1)で示される化合物は、ホルミル-ベンジルカルバメート(アルデヒド体)と称される。また、上記式(2)で示される化合物は、カルボキシル-ベンジルカルバメート(カルボン酸体)と称される。また、上記式(3)で示される化合物は、カルボニルカルバメート-ベンジルカルバメート(イミド体)と称される。また、上記式(4)で示される化合物は、カルバモイル-ベンジルカルバメート(アミド体)と称される。
 キシリレンジカルバメート中の上記式(1)~(4)で示される不純物の含有割合は、それらの総量として、質量基準で100ppm未満、好ましくは、80ppm以下、より好ましくは、40ppm以下、とりわけ好ましくは、10ppm以下であり、通常、1ppm以上である。
 不純物の含有量が上記範囲であれば、キシリレンジカルバメートの各種用途における品質の向上を図ることができ、とりわけ、熱分解によりキシリレンジイソシアネートを生成する場合の収率の向上を図ることができる。
 すなわち、キシリレンジカルバメートが多くの不純物を含有する場合、そのキシリレンジカルバメートを熱分解すると、得られるキシリレンジイソシアネートの収率が低下するという不具合がある。
 一方、上記したキシリレンジカルバメートは、不純物の含有量が上記範囲であるため、熱分解により収率よくキシリレンジイソシアネートを生成することができる。なお、キシリレンジカルバメートの不純物の含有量は、後述する高速液体クロマトグラフィー(HPLC)などにより求めることができる。
 そして、このようなキシリレンジカルバメートがキシリレンジイソシアネートの製造原料として用いられる場合には、例えば、まず、貯留槽に保存されたキシリレンカルバメートが、熱分解装置などに圧力輸送され、次いで、熱分解装置において加熱および熱分解される。このような場合、熱分解前のキシリレンジカルバメートは、常温固体(融点が、カルバメート基中の炭素数などにもよるが、例えば、50~150℃)であることから、輸送時における作業性の観点から、貯留槽において所定の温度に加熱され、溶融状態(流動状態)で保存される。
 しかしながら、キシリレンジカルバメートが加熱下において保存される場合、その保存条件によっては、キシリレンジカルバメートの変質などにより、上記式(1)~(4)で示されるような不純物が生成する場合がある。そのため、加熱下において保存する場合に、不純物の生成を抑制し、キシリレンジカルバメート中の純物の含有量を低減できる保存方法が、要求される。
 以下において、不純物の生成を抑制できるキシリレンジカルバメートの保存方法について、詳述する。
 すなわち、このキシリレンジカルバメートの保存方法では、キシリレンジカルバメートが、下記式(1)~(4)で示される不純物を、それらの総量として質量基準で100ppm未満の割合で含有するように、保存する。
 キシリレンジカルバメートの加熱条件としては、例えば、50℃以上、好ましくは、70℃以上、より好ましくは、90℃以上であり、例えば、180℃以下、好ましくは、170℃以下、より好ましくは、160℃以下である。
 加熱条件が上記範囲であれば、キシリレンジカルバメートが熱分解されない範囲において溶融状態を維持し、輸送時における作業性の向上を図ることができる。
 また、このキシリレンジカルバメートの保存方法では、キシリレンジカルバメートを容器に充填したときに空間部に内封される酸素量とキシリレンジカルバメート中に溶存する酸素量のキシリレンジカルバメートに対する合計酸素量を100ppm未満とする。
 より具体的には、キシリレンジカルバメートを容器に充填したときに空間部に内封される酸素量とキシリレンジカルバメート中に溶存する酸素量のキシリレンジカルバメートに対する合計酸素量は、100ppm未満、好ましくは、50ppm以下、より好ましくは、20ppm以下、さらに好ましくは、10ppm以下であり、通常、1ppm以上である。
 酸素量が上記範囲であれば、キシリレンジカルバメートの酸化を抑制することができ、上記式(1)~(4)で示される不純物の生成を抑制することができる。
 キシリレンジカルバメートを容器に充填したときに空間部に内封される酸素量とキシリレンジカルバメート中に溶存する酸素量のキシリレンジカルバメートに対する合計酸素量を上記範囲とする方法としては、特に制限されないが、例えば、キシリレンジカルバメートの貯留槽を不活性ガスで充填する方法や、例えば、キシレンジカルバメートの貯留槽を減圧処理し、真空化する方法などが挙げられ、好ましくは、キシリレンジカルバメートの貯留槽を不活性ガスで充填する方法が挙げられる。
 不活性ガスとしては、例えば、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガスなどの希ガス、例えば、窒素ガスなどが挙げられ、好ましくは、窒素ガスが挙げられる。
 不活性ガスの純度は、例えば、99.99体積%を超過、好ましくは、99.999体積%以上であり、通常、100体積%以下である。
 不活性ガスの純度が上記範囲であれば、空間部に内封される酸素量とキシリレンジカルバメート中に溶存する酸素量のキシリレンジカルバメートに対する合計酸素量を上記の範囲に調整することができ、不純物の生成を抑制することができる。
 すなわち、不活性ガスの純度が上記下限以下である場合(例えば、純度が99.99体積%の工場用窒素ガスを用いる場合)には、貯留槽を不活性ガスで充填した場合にも、空間部に内封される酸素量とキシリレンジカルバメート中に溶存する酸素量のキシリレンジカルバメートに対する合計酸素量を十分に低減させることができず、キシリレンジカルバメート中に多量の不純物が生成する場合がある。
 なお、一般的に工場などの工業生産設備において不活性ガスとして用いられる窒素ガスは、通常PSA(Pressure Swing Adsorption:圧力変動吸着)法により工業的に生産される。しかし、この方法により得られる窒素ガスは、純度が99.99体積%以下であるため、貯留槽の充填に用いても、空間部に内封される酸素量とキシリレンジカルバメート中に溶存する酸素量のキシリレンジカルバメートに対する合計酸素量を十分に低減させることができない。
 一方、不活性ガスの純度が上記範囲であれば、貯留槽を不活性ガスで充填することによって、空間部に内封される酸素量とキシリレンジカルバメート中に溶存する酸素量のキシリレンジカルバメートに対する合計酸素量を十分に低減させることができ、キシリレンジカルバメート中における不純物の生成を抑制することができる。
 また、キシリレンジカルバメートの貯留槽を不活性ガスで充填する場合、不活性ガスの通気速度や圧力などは、特に制限されず、目的および用途に応じて、適宜設定される。
 また、このようなキシリレンジカルバメートの保存方法では、貯留槽におけるキシリレンジカルバメートの保存時間は、例えば、72時間以下、好ましくは、48時間以下、より好ましくは、24時間以下であり、通常30分以上である。
 また、このようなキシリレンジカルバメートの保存方法により保存されるキシリレンジカルバメートの上記不純物の含有割合は、それらの総量として、質量基準で100ppm未満、好ましくは、80ppm以下、より好ましくは、40ppm以下、とりわけ好ましくは、10ppm以下であり、通常、1ppm以上である。
 そして、上記したキシリレンジカルバメートの保存方法によれば、加熱下においても、上記式(1)~(4)で示される不純物の含有量を質量基準で100ppm未満にできるため、溶融状態を維持し、輸送時における作業性を確保することができる。さらに、その保存されたキシリレンジカルバメートは、各種用途における品質に優れ、とりわけ、熱分解により収率よくキシリレンジイソシアネートを生成することができる。
 そのため、上記の保存方法により保存されたキシリレンジカルバメートは、熱分解によりキシリレンジイソシアネートを製造するための製造原料として、好適に用いられる。
 具体的には、キシリレンジカルバメートの熱分解では、キシリレンジカルバメートに対応するキシリレンジイソシアネート(1,2-キシリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネートおよびそれらの混合物など)、および、副生物である下記一般式(6)で示されるアルコールが生成する。
                R-OH     (6)
(式中、Rは、上記式(1)~(4)のRと同意義を示す。)
 この熱分解は、特に限定されず、例えば、液相法、気相法などの公知の分解法を用いることができる。
 気相法では、熱分解により生成するキシリレンジイソシアネートおよびアルコールは、気体状の生成混合物から、分別凝縮によって分離することができる。また、液相法では、熱分解により生成するキシリレンジイソシアネートおよびアルコールは、例えば、蒸留や、担持物質としての溶剤および/または不活性ガスを用いて、分離することができる。
 熱分解として、好ましくは、作業性の観点から、液相法が挙げられる。
 このような方法において、キシリレンジカルバメートは、好ましくは、不活性溶媒の存在下において、熱分解される。
 不活性溶媒は、少なくとも、キシリレンジカルバメートを溶解し、キシリレンジカルバメートおよびキシリレンジイソシアネートに対して不活性であり、かつ、熱分解時に反応しなければ(すなわち、安定であれば)、特に制限されないが、熱分解反応を効率よく実施するには、生成するキシリレンジイソシアネートよりも高沸点であることが好ましい。
 このような不活性溶媒としては、キシリレンジカルバメートの炭素数や圧力条件などにより適宜選択されるが、例えば、芳香族系炭化水素類などが挙げられる。
 芳香族炭化水素類としては、例えば、ベンゼン(沸点:80℃)、トルエン(沸点:111℃)、o-キシレン(沸点:144℃)、m-キシレン(沸点:139℃)、p-キシレン(沸点:138℃)、エチルベンゼン(沸点:136℃)、イソプロピルベンゼン(沸点:152℃)、ブチルベンゼン(沸点:185℃)、シクロヘキシルベンゼン(沸点:237~340℃)、テトラリン(沸点:208℃)、クロロベンゼン(沸点:132℃)、o-ジクロロベンゼン(沸点:180℃)、1-メチルナフタレン(沸点:245℃)、2-メチルナフタレン(沸点:241℃)、1-クロロナフタレン(沸点:263℃)、2-クロロナフタレン(沸点:264~266℃)、トリフェニルメタン(沸点:358~359℃(754mmHg))、1-フェニルナフタレン(沸点:324~325℃)、2-フェニルナフタレン(沸点:357~358℃)、ビフェニル(沸点:255℃)、ジベンジルトルエン(沸点:391℃)などが挙げられる。
 また、このような溶媒は、市販品としても入手可能であり、例えば、バーレルプロセス油B-01(芳香族炭化水素類、沸点:176℃)、バーレルプロセス油B-03(芳香族炭化水素類、沸点:280℃)、バーレルプロセス油B-04AB(芳香族炭化水素類、沸点:294℃)、バーレルプロセス油B-05(芳香族炭化水素類、沸点:302℃)、バーレルプロセス油B-27(芳香族炭化水素類、沸点:380℃)、バーレルプロセス油B-28AN(芳香族炭化水素類、沸点:430℃)、バーレルプロセス油B-30(芳香族炭化水素類、沸点:380℃)、バーレルサーム200(芳香族炭化水素類、沸点:382℃)、バーレルサーム300(芳香族炭化水素類、沸点:344℃)、バーレルサーム400(芳香族炭化水素類、沸点:390℃)、バーレルサーム1H(芳香族炭化水素類、沸点:215℃)、バーレルサーム2H(芳香族炭化水素類、沸点:294℃)、バーレルサーム350(芳香族炭化水素類、沸点:302℃)、バーレルサーム470(芳香族炭化水素類、沸点:310℃)、バーレルサームPA(芳香族炭化水素類、沸点:176℃)、バーレルサーム330(芳香族炭化水素類、沸点:257℃)、バーレルサーム430(芳香族炭化水素類、沸点:291℃)、(以上、松村石油社製)、NeoSK-OIL1400(芳香族炭化水素類、沸点:391℃)、NeoSK-OIL1300(芳香族炭化水素類、沸点:291℃)、NeoSK-OIL330(芳香族炭化水素類、沸点:331℃)、NeoSK-OIL170(芳香族炭化水素類、沸点:176℃)、NeoSK-OIL240(芳香族炭化水素類、沸点:244℃)、KSK-OIL260(芳香族炭化水素類、沸点:266℃)、KSK-OIL280(芳香族炭化水素類、沸点:303℃)、(以上、綜研テクニックス社製)などが挙げられる。
 また、不活性溶媒としては、さらに、エステル類(例えば、フタル酸ジオクチル、フタル酸ジデシル、フタル酸ジドデシルなど)、熱媒体として常用される脂肪族系炭化水素類なども挙げられる。
 このような不活性溶媒は、単独もしくは2種以上を組み合わせて用いることができる。
 不活性溶媒の配合量は、キシリレンジカルバメート1質量部に対して0.001~100質量部、好ましくは、0.01~80質量部、より好ましくは、0.1~50質量部の範囲である。
 また、熱分解においては、例えば、不活性溶媒をキシリレンジカルバメートに配合し、キシリレンジカルバメートを熱分解した後、その不活性溶媒を分離および回収し、再度、熱分解においてキシリレンジカルバメートに配合することができる。
 熱分解反応の反応条件は、適宜設定されるが、熱分解温度が、通常、350℃以下であり、好ましくは、80~350℃、より好ましくは、100~300℃である。80℃よりも低いと、実用的な反応速度が得られない場合があり、また、350℃を超えると、キシリレンジイソシアネートの重合など、好ましくない副反応を生じる場合がある。また、熱分解反応時の圧力は、上記の熱分解反応温度に対して、生成するアルコールが気化し得る圧力であることが好ましく、設備面および用役面から実用的には、0.133~90kPaであることが好ましい。
 さらに、この方法では、必要により、触媒を添加することもできる。
 触媒は、それらの種類により異なるが、上記反応時、反応後の蒸留分離の前後、キシリレンジカルバメートの分離の前後の、いずれかに添加すればよい。
 熱分解に用いられる触媒としては、キシリレンジイソシアネートと水酸基とのウレタン化反応に用いられる、Sn、Sb、Fe、Co、Ni、Cu、Cr、Ti、Pb、Mo、Mnなどから選ばれる1種以上の金属単体またはその酸化物、ハロゲン化物、カルボン酸塩、リン酸塩、有機金属化合物などの金属化合物が用いられる。これらのうち、この熱分解においては、Fe、Sn、Co、Sb、Mnが副生成物を生じにくくする効果を発現するため、好ましく用いられる。
 Snの金属触媒としては、例えば、酸化スズ、塩化スズ、臭化スズ、ヨウ化スズ、ギ酸スズ、酢酸スズ、シュウ酸スズ、オクチル酸スズ、ステアリン酸スズ、オレイン酸スズ、リン酸スズ、二塩化ジブチルスズ、ジラウリン酸ジブチルスズ、1,1,3,3-テトラブチル-1,3-ジラウリルオキシジスタノキサンなどが挙げられる。
 Fe、Co、Sb、Mnの金属触媒としては、例えば、それらの酢酸塩、安息香酸塩、ナフテン酸塩、アセチルアセトナート塩などが挙げられる。
 なお、触媒の配合量は、金属単体またはその化合物として、反応液に対して0.0001~5質量%の範囲、好ましくは、0.001~1質量%の範囲である。
 また、この熱分解反応では、必要により、安定剤を配合することもできる。
 安定剤としては、例えば、o-トルエンスルホン酸アミド、p-トルエンスルホン酸アミドなどが挙げられ、単独使用または2種類以上併用することができる。
 なお、安定剤の配合割合は、特に制限されず、目的および用途に応じて、適宜設定される。
 また、この熱分解反応は、キシリレンジカルバメート、触媒および不活性溶媒を一括で仕込む回分反応、また、触媒を含む不活性溶媒中に、減圧下でキシリレンジカルバメートを仕込んでいく連続反応のいずれでも実施することができる。
 熱分解におけるキシリレンジカルバメートの転化率は、例えば、80モル%以上、好ましくは、90モル%以上である。なお、キシリレンジイソシアネートの転化率は、後述する実施例に準拠して求めることができる。
 一方、上記の熱分解工程では、キシリレンジカルバメートの2つのカルバメート基が熱分解されることによって、キシリレンジイソシアネートが生成するが、その熱分解液には、さらに、例えば、キシリレンモノイソシアネート(キシリレンモノカルバメート)や、キシリレンジカルバメートが含有される場合がある。
 そして、これらキシリレンジカルバメート、キシリレンモノイソシアネートなどのカルバメート基を有する化合物に、キシリレンジイソシアネートやキシリレンモノイソシアネートなどのイソシアネート基を有する化合物が反応することにより、アロファネート化、イソシアヌレート化などを惹起し、熱分解残渣(イソシアネート残渣(タール成分))を生じさせる場合がある。
 とりわけ、キシリレンジイソシアネートが多くの不純物を含有する場合には、その不純物を起点として、キシリレンジイソシアネート、キシリレンモノイソシアネート、キシリレンジカルバメート、さらには、アロファネート(キシリレンジイソシアネートのアロファネート変性体)などが高分子量化し、熱分解残渣(イソシアネート残渣(タール成分))を増加させる場合がある。
 一方、上記のキシリレンジイソシアネートの製造方法では、上記したキシリレンジカルバメートが用いられるため、熱分解残渣の生成量を低減することができる。
 具体的には、キシリレンジイソシアネートの収率は、原料のキシリレンジカルバメートに対して、例えば、80モル%以上、好ましくは、90モル%以上である。
 また、キシリレンモノイソシアネートの収率は、原料のキシリレンジカルバメートに対して、例えば、20モル%以下好ましくは、10モル%以下である。
 また、アロファネートの収率は、原料のキシリレンジカルバメートに対して、例えば、10モル%以下好ましくは、5モル%以下である。
 また、熱分解残渣の収率は、原料のキシリレンジカルバメートに対して、例えば、5モル%以下好ましくは、1モル%以下である。
 このように、上記のキシリレンジイソシアネートの製造方法では、不純物の含有量が低減された上記のキシリレンジカルバメートが用いられるため、キシリレンジイソシアネートを、収率よく得ることができる。
 次に、実施例および比較例を挙げて本発明をさらに詳しく説明するが、本発明は何ら実施例に限定されるものではない。なお、以下に示す実施例の数値は、実施形態において記載される対応する数値(すなわち、上限値または下限値)に代替することができる。
  試験例1(不純物の同定)
 1,3-キシリレンジカルバメートを耐熱容器に入れ、150℃で16時間加熱試験した。次いで、加熱試験後の内容物を液体クロマトグラフ質量分析(LC/MS)装置によって表1に示す条件で分析し、液体クロマトグラムにおけるリテンションタイム[4.587]、[6.328]、[8.588]および[10.187]に現れた各ピークのマススペクトルから、化合物の構造を同定した。
Figure JPOXMLDOC01-appb-T000009
 その結果、リテンションタイム[4.587]に現れたピークに帰属される化合物が、上記式(2)で示されるカルボキシル-ベンジルカルバメート(カルボン酸体)であると同定された。
 また、リテンションタイム[6.328]に現れたピークに帰属される化合物が、上記式(4)で示されるカルバモイル-ベンジルカルバメート(アミド体)であると同定された。
 また、リテンションタイム[8.588]に現れたピークに帰属される化合物が、上記式(1)で示されるホルミル-ベンジルカルバメート(アルデヒド体)であると同定された。
 また、リテンションタイム[10.187]に現れたピークに帰属される化合物が、上記式(3)で示されるカルボニルカルバメート-ベンジルカルバメート(イミド体)であると同定された。
 各ピークのマススペクトルを、図1~図4に示す。
  実施例1
<キシリレンジカルバメート>
 1,3-キシリレンジカルバメートを耐熱容器に入れ、1,3-キシリレンジカルバメート内の不純物(上記(1)~(4)で示される化合物)の総量を、高速液体クロマトグラフィーにより求めた。その結果、不純物の含有量は、0ppmであった。なお、不純物の含有量が高速液体クロマトグラフィーによる検出限界未満(1ppm未満)である場合に、0ppmであるとした(以下同様)。
 次いで、上記の耐熱容器内を純度99.999体積%の高純度窒素ガスにより充填した。このとき、1,3-キシリレンジカルバメートの容器の空間部に内封される酸素量とキシリレンジカルバメート中に溶存する酸素量のキシリレンジカルバメートに対する合計酸素量は、10ppmであった。
 なお、酸素量は、酸素濃度計(セントラル科学社製 DOメーター UC-12-SOL型〕で封入直前に気相部とキシリレンジカルバメート部(液相部)を測定して算出した(以下同様)。
 次いで、耐熱容器内において、1,3-キシリレンジを120℃に加熱した状態で12時間保存した。その後、1,3-キシリレンジカルバメート内の不純物(上記(1)~(4)で示される化合物)の総量を、高速液体クロマトグラフィーにより求めた。その結果、不純物の含有量は、10ppmであった。
<キシリレンジイソシアネート>
 上記の保存後の1,3-キシリレンジカルバメートと、不活性溶媒としてのジベンジルトルエンとを、質量比1:1の割合で混合し、原料成分を得た。次いで、得られた原料成分には、安定剤としてのp-トルエンスルホン酸アミドを、キシリレンジカルバメートに対して100ppmとなるように添加した。
 その後、攪拌装置、および、上部に還流管の付いた精留塔を備えた内容量500mLのガラス製4つ口フラスコに、上記の原料成分を、供給量が120g/hrとなるように連続的に供給し、255℃、3.33kPa(25torr)の条件で5時間滞留させた。これにより、キシリレンジカルバメートを熱分解し、キシリレンジイソシアネートおよびアルコールを含む生成物を得た。なお、生成物中には、キシリレンモノイソシアネートやアロファネートおよび熱分解残渣(タール成分)が含まれていた。
 次いで、上記の熱分解により得られた生成物を、80℃に設定したコンデンサ(凝縮器)に供給し、一部を気化成分として脱離させるとともに、残部を凝縮させ、凝縮液を得た。
 上記の熱分解反応において、キシリレンジカルバメートの転化率を、下記式により求めた結果、99モル%であった。
 また、キシリレンジイソシアネートの収率を、下記式により求めた結果、原料のキシリレンジカルバメートに対して、95モル%であった。
 また、キシリレンモノイソシアネートの収率を、下記式により求めた結果、原料のキシリレンジカルバメートに対して、2モル%であった。
 また、アロファネートの収率を、下記式により求めた結果、原料のキシリレンジカルバメートに対して、2モル%であった。
 また、タール成分の収率を、下記式により求めた結果、原料のキシリレンジカルバメートに対して、1モル%であった。
・キシリレンジカルバメート転化率=(供給キシリレンジカルバメート量-未反応キシリレンジカルバメート量)÷供給キシリレンジカルバメート量×100
・キシリレンジイソシアネート収率=イソシアネート含有成分中のキシリレンジイソシアネート量÷供給キシリレンジカルバメート量×100
・キシリレンモノイソシアネート収率=反応液中のキシリレンモノイソシアネート量÷供給キシリレンジカルバメート量×100
・アロファネート収率=反応液中のアロファネート量÷供給キシリレンジカルバメート量×100
・タール収率=反応液中のタール量(キシリレンジイソシアネート換算)÷供給キシリレンジカルバメート量×100
  実施例2
<キシリレンジカルバメート>
 保存時間を24時間に変更した以外は、実施例1と同様にして1,3-キシリレンジカルバメートを保存した。その後、1,3-キシリレンジカルバメート内の不純物(上記(1)~(4)で示される化合物)の総量を求めた。その結果、不純物の含有量は、40ppmであった。
<キシリレンジイソシアネート>
 実施例1と同様にして、上記の保存後のキシリレンジカルバメートを熱分解し、キシリレンジイソシアネートおよびアルコールを含む生成物を得た後、その一部を気化成分として脱離させるとともに、残部を凝縮させ、凝縮液を得た。
 上記の熱分解反応において、キシリレンジカルバメートの転化率を、実施例1と同様にして求めた結果、99モル%であった。
 また、キシリレンジイソシアネートの収率を、実施例1と同様にして求めた結果、原料のキシリレンジカルバメートに対して、95モル%であった。
 また、キシリレンモノイソシアネートの収率を、実施例1と同様にして求めた結果、原料のキシリレンジカルバメートに対して、2モル%であった。
 また、アロファネートの収率を、実施例1と同様にして求めた結果、原料のキシリレンジカルバメートに対して、2モル%であった。
 また、タール成分の収率を、実施例1と同様にして求めた結果、原料のキシリレンジカルバメートに対して、1モル%であった。
  比較例1
<キシリレンジカルバメート>
 純度99.999体積%の高純度窒素ガスに代えて、純度99.99体積%の工場用窒素ガスを用いた以外は、実施例1と同様にして1,3-キシリレンジカルバメートを保存した。このとき、1,3-キシリレンジカルバメートの容器の空間部に内封される酸素量とキシリレンジカルバメート中に溶存する酸素量のキシリレンジカルバメートに対する合計酸素量は、100ppmであった。
 その後、1,3-キシリレンジカルバメート内の不純物(上記(1)~(4)で示される化合物)の総量を求めた。その結果、不純物の含有量は、100ppmであった。
<キシリレンジイソシアネート>
 実施例1と同様にして、上記の保存後のキシリレンジカルバメートを熱分解し、キシリレンジイソシアネートおよびアルコールを含む生成物を得た後、その一部を気化成分として脱離させるとともに、残部を凝縮させ、凝縮液を得た。
 上記の熱分解反応において、キシリレンジカルバメートの転化率を、実施例1と同様にして求めた結果、99モル%であった。
 また、キシリレンジイソシアネートの収率を、実施例1と同様にして求めた結果、原料のキシリレンジカルバメートに対して、92モル%であった。
 また、キシリレンモノイソシアネートの収率を、実施例1と同様にして求めた結果、原料のキシリレンジカルバメートに対して、2モル%であった。
 また、アロファネートの収率を、実施例1と同様にして求めた結果、原料のキシリレンジカルバメートに対して、2モル%であった。
 また、タール成分の収率を、実施例1と同様にして求めた結果、原料のキシリレンジカルバメートに対して、4モル%であった。
  比較例2
<キシリレンジカルバメート>
 保存時間を24時間に変更した以外は、比較例1と同様にして1,3-キシリレンジカルバメートを保存した。その後、1,3-キシリレンジカルバメート内の不純物(上記(1)~(4)で示される化合物)の総量を求めた。その結果、不純物の含有量は、350ppmであった。
<キシリレンジイソシアネート>
 実施例1と同様にして、上記の保存後のキシリレンジカルバメートを熱分解し、キシリレンジイソシアネートおよびアルコールを含む生成物を得た後、その一部を気化成分として脱離させるとともに、残部を凝縮させ、凝縮液を得た。
 上記の熱分解反応において、キシリレンジカルバメートの転化率を、実施例1と同様にして求めた結果、99モル%であった。
 また、キシリレンジイソシアネートの収率を、実施例1と同様にして求めた結果、原料のキシリレンジカルバメートに対して、91モル%であった。
 また、キシリレンモノイソシアネートの収率を、実施例1と同様にして求めた結果、原料のキシリレンジカルバメートに対して、2モル%であった。
 また、アロファネートの収率を、実施例1と同様にして求めた結果、原料のキシリレンジカルバメートに対して、2モル%であった。
 また、タール成分の収率を、実施例1と同様にして求めた結果、原料のキシリレンジカルバメートに対して、5モル%であった。
  参考例1
<キシリレンジカルバメート>
 1,3-キシリレンジカルバメートを加熱保存することなく用いた以外は、比較例1と同様にして、1,3-キシリレンジカルバメート内の不純物(上記(1)~(4)で示される化合物)の総量を求めた。その結果、不純物の含有量は、0ppmであった。
<キシリレンジイソシアネート>
 実施例1と同様にして、上記の加熱保存する前のキシリレンジカルバメートを熱分解し、キシリレンジイソシアネートおよびアルコールを含む生成物を得た後、その一部を気化成分として脱離させるとともに、残部を凝縮させ、凝縮液を得た。
 上記の熱分解反応において、キシリレンジカルバメートの転化率を、実施例1と同様にして求めた結果、99モル%であった。
 また、キシリレンジイソシアネートの収率を、実施例1と同様にして求めた結果、原料のキシリレンジカルバメートに対して、95モル%であった。
 また、キシリレンモノイソシアネートの収率を、実施例1と同様にして求めた結果、原料のキシリレンジカルバメートに対して、2モル%であった。
 また、アロファネートの収率を、実施例1と同様にして求めた結果、原料のキシリレンジカルバメートに対して、2モル%であった。
 また、タール成分の収率を、実施例1と同様にして求めた結果、原料のキシリレンジカルバメートに対して、1モル%であった。
 各実施例および各比較例の結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000010
 なお、表中の略号の詳細を下記する。
XDC:キシリレンジカルバメート
XDI:キシリレンジイソシアネート
XMI:キシリレンモノイソシアネート
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれる。
 本発明のキシリレンジカルバメート、そのキシリレンジカルバメートを用いるキシリレンジイソシアネートの製造方法、そのキシリレンジイソシアネートの製造方法により得られるキシリレンジイソシアネート、および、不純物の含有量を低減できるキシリレンジカルバメートの保存方法は、例えば、医薬、農薬などの原料、各種ファインケミカルズの原料、アルコール類の分析試剤、イソシアネートの製造原料など、キシリレンジカルバメートやキシリレンジイソシアネートが用いられる各種産業分野において、広範に用いることができる。

Claims (5)

  1.  下記式(1)~(4)で示される不純物を、それらの総量として質量基準で100ppm未満の割合で含有することを特徴とする、キシリレンジカルバメート。
    Figure JPOXMLDOC01-appb-C000001

    (上記式(1)~(4)中、Rは、1価の炭化水素基を示す。)
  2.  下記式(1)~(4)で示される不純物を、それらの総量として質量基準で100ppm未満の割合で含有するキシリレンジカルバメートを熱分解することによりキシリレンジイソシアネートを得ることを特徴とする、キシリレンジイソシアネートの製造方法。
    Figure JPOXMLDOC01-appb-C000002

    (上記式(1)~(4)中、Rは、1価の炭化水素基を示す。)
  3.  下記式(1)~(4)で示される不純物を、それらの総量として質量基準で100ppm未満の割合で含有するキシリレンジカルバメートを熱分解することによりキシリレンジイソシアネートを得るキシリレンジイソシアネートの製造方法により得られることを特徴とする、キシリレンジイソシアネート。
    Figure JPOXMLDOC01-appb-C000003

    (上記式(1)~(4)中、Rは、1価の炭化水素基を示す。)
  4.  50~180℃の加熱下において、
     下記式(1)~(4)で示される不純物を、それらの総量として質量基準で100ppm未満の割合で含有するように保存することを特徴とする、キシリレンジカルバメートの保存方法。
    Figure JPOXMLDOC01-appb-C000004

    (上記式(1)~(4)中、Rは、1価の炭化水素基を示す。)
  5.  キシリレンジカルバメートを容器に充填したときに空間部に内封される酸素量とキシリレンジカルバメート中に溶存する酸素量のキシリレンジカルバメートに対する合計酸素量を100ppm未満とすることを特徴とする、請求項4に記載のキシリレンジカルバメートの保存方法。
PCT/JP2014/059306 2013-04-03 2014-03-28 キシリレンジカルバメート、キシリレンジイソシアネートの製造方法、キシリレンジイソシアネート、および、キシリレンジカルバメートの保存方法 WO2014163016A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480013332.1A CN105143178B (zh) 2013-04-03 2014-03-28 苯二甲撑二异氰酸酯及其制造方法、和苯二甲撑二氨基甲酸酯及其保存方法
US14/781,721 US9624165B2 (en) 2013-04-03 2014-03-28 Xylylene dicarbamate, method for producing xylylene diisocyanate, xylylene diisocyanate, and method for reserving xylylene dicarbamate
JP2015510063A JP6059799B2 (ja) 2013-04-03 2014-03-28 キシリレンジカルバメート、キシリレンジイソシアネートの製造方法、キシリレンジイソシアネート、および、キシリレンジカルバメートの保存方法
KR1020157023431A KR101761038B1 (ko) 2013-04-03 2014-03-28 자일릴렌 다이카바메이트, 자일릴렌 다이아이소사이아네이트의 제조 방법, 자일릴렌 다이아이소사이아네이트, 및 자일릴렌 다이카바메이트의 보존 방법
EP14779939.9A EP2982665B1 (en) 2013-04-03 2014-03-28 Xylylene dicarbamate, method for producing xylylene diisocyanate, xylylene diisocyanate, and method for preserving xylylene dicarbamate
US15/410,221 US9856209B2 (en) 2013-04-03 2017-01-19 Xylylene dicarbamate, method for producing xylylene diisocyanate, xylylene diisocyanate, and method for reserving xylylene dicarbamate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013077928 2013-04-03
JP2013-077928 2013-04-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/781,721 A-371-Of-International US9624165B2 (en) 2013-04-03 2014-03-28 Xylylene dicarbamate, method for producing xylylene diisocyanate, xylylene diisocyanate, and method for reserving xylylene dicarbamate
US15/410,221 Division US9856209B2 (en) 2013-04-03 2017-01-19 Xylylene dicarbamate, method for producing xylylene diisocyanate, xylylene diisocyanate, and method for reserving xylylene dicarbamate

Publications (1)

Publication Number Publication Date
WO2014163016A1 true WO2014163016A1 (ja) 2014-10-09

Family

ID=51658312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059306 WO2014163016A1 (ja) 2013-04-03 2014-03-28 キシリレンジカルバメート、キシリレンジイソシアネートの製造方法、キシリレンジイソシアネート、および、キシリレンジカルバメートの保存方法

Country Status (6)

Country Link
US (2) US9624165B2 (ja)
EP (1) EP2982665B1 (ja)
JP (1) JP6059799B2 (ja)
KR (1) KR101761038B1 (ja)
CN (1) CN105143178B (ja)
WO (1) WO2014163016A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162968A1 (ja) * 2021-01-28 2022-08-04 三井化学株式会社 キシリレンジイソシアネート組成物、キシリレンジイソシアネート変性体組成物、重合性組成物、樹脂、成形体、光学素子およびレンズ
JPWO2022162968A1 (ja) * 2021-01-28 2022-08-04

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073707B (zh) * 2021-03-10 2023-09-26 万华化学集团股份有限公司 一种苯二亚甲基二异氰酸酯组合物及其制备方法和应用
CN113980238B (zh) * 2021-10-27 2024-02-27 万华化学集团股份有限公司 一种苯二亚甲基二异氰酸酯组合物及其制备方法、应用
CN114478321B (zh) * 2022-04-06 2022-07-26 中国科学院过程工程研究所 中间体间苯二亚甲基二氨基甲酸乙酯溶液分离精制净化的方法、装置及用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107641A (ja) 1996-06-20 1998-01-13 Mitsubishi Gas Chem Co Inc イソシアネート化合物の製造方法
JPH1087598A (ja) * 1996-07-11 1998-04-07 Bayer Ag ジウレタンの蒸留精製方法
JP2000086614A (ja) * 1998-09-16 2000-03-28 Mitsubishi Gas Chem Co Inc カルバミン酸エステル類の貯蔵及び輸送方法
JP2005068146A (ja) 2003-08-22 2005-03-17 Degussa Ag 脂環式ジイソシアネートを連続的に製造する多段法
WO2011125429A1 (ja) * 2010-04-02 2011-10-13 旭硝子株式会社 カルバメート化合物の製造方法、カルバメート化合物、およびこれを用いたイソシアネート化合物の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3717671A (en) * 1970-04-06 1973-02-20 Japan Gas Chemical Co Xylylene dicarbamates and process for preparing the same
US4701549A (en) * 1984-12-17 1987-10-20 The Dow Chemical Company Alkenylamino carbonyl carbamates
JPH04221356A (ja) * 1990-12-20 1992-08-11 Mitsubishi Gas Chem Co Inc キシリレンジイソシアネートの製造方法
JPH115773A (ja) * 1997-06-17 1999-01-12 Mitsubishi Gas Chem Co Inc イソシアネートの製造方法
JP5518605B2 (ja) * 2010-07-07 2014-06-11 三井化学株式会社 トルエンジカルバメートの製造方法、トルエンジイソシアネートの製造方法、および、トルエンジカルバメート

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107641A (ja) 1996-06-20 1998-01-13 Mitsubishi Gas Chem Co Inc イソシアネート化合物の製造方法
JPH1087598A (ja) * 1996-07-11 1998-04-07 Bayer Ag ジウレタンの蒸留精製方法
JP2000086614A (ja) * 1998-09-16 2000-03-28 Mitsubishi Gas Chem Co Inc カルバミン酸エステル類の貯蔵及び輸送方法
JP2005068146A (ja) 2003-08-22 2005-03-17 Degussa Ag 脂環式ジイソシアネートを連続的に製造する多段法
WO2011125429A1 (ja) * 2010-04-02 2011-10-13 旭硝子株式会社 カルバメート化合物の製造方法、カルバメート化合物、およびこれを用いたイソシアネート化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2982665A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162968A1 (ja) * 2021-01-28 2022-08-04 三井化学株式会社 キシリレンジイソシアネート組成物、キシリレンジイソシアネート変性体組成物、重合性組成物、樹脂、成形体、光学素子およびレンズ
JPWO2022162968A1 (ja) * 2021-01-28 2022-08-04
JP7289990B2 (ja) 2021-01-28 2023-06-12 三井化学株式会社 キシリレンジイソシアネート組成物、キシリレンジイソシアネート変性体組成物、重合性組成物、樹脂、成形体、光学素子およびレンズ
EP4414774A3 (en) * 2021-01-28 2024-08-21 Mitsui Chemicals, Inc. Xylylene diisocyanate composition, xylylene diisocyanate modified composition, polymerizable composition, resin, molded article, optical element, and lens

Also Published As

Publication number Publication date
US9624165B2 (en) 2017-04-18
CN105143178B (zh) 2018-08-24
KR20150111360A (ko) 2015-10-05
KR101761038B1 (ko) 2017-07-24
US20160046565A1 (en) 2016-02-18
CN105143178A (zh) 2015-12-09
EP2982665B1 (en) 2018-06-27
JPWO2014163016A1 (ja) 2017-02-16
EP2982665A4 (en) 2016-12-07
JP6059799B2 (ja) 2017-01-11
EP2982665A1 (en) 2016-02-10
US20170158623A1 (en) 2017-06-08
US9856209B2 (en) 2018-01-02

Similar Documents

Publication Publication Date Title
JP6059799B2 (ja) キシリレンジカルバメート、キシリレンジイソシアネートの製造方法、キシリレンジイソシアネート、および、キシリレンジカルバメートの保存方法
CN103097348B (zh) 羰基化合物的制造方法
CN102105439B (zh) N-取代氨基甲酸酯的制造方法和使用该n-取代氨基甲酸酯的异氰酸酯的制造方法
JPS58194849A (ja) カルバミン酸エステルの連続的熱分解法
EP2592069B1 (en) Method of producing toluenedicarbamate and method of producing toluenediisocyanate
KR101745229B1 (ko) 자일릴렌 다이아이소사이아네이트의 제조 방법 및 자일릴렌 다이아이소사이아네이트의 제조 장치
EP2711357B1 (en) Method for manufacturing tolylene diisocyanate
JP5917794B2 (ja) トルエンジカルバメート組成物の製造方法、および、トルエンジイソシアネートの製造方法
JP2019199431A (ja) イソシアネートの製造方法
JP7165509B2 (ja) イソシアネートの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480013332.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015510063

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157023431

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014779939

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14781721

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE