WO2014162719A1 - 光学装置及び空気吹き付け方法 - Google Patents

光学装置及び空気吹き付け方法 Download PDF

Info

Publication number
WO2014162719A1
WO2014162719A1 PCT/JP2014/001872 JP2014001872W WO2014162719A1 WO 2014162719 A1 WO2014162719 A1 WO 2014162719A1 JP 2014001872 W JP2014001872 W JP 2014001872W WO 2014162719 A1 WO2014162719 A1 WO 2014162719A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
air
blower
foreign matter
light
Prior art date
Application number
PCT/JP2014/001872
Other languages
English (en)
French (fr)
Inventor
大治 原田
幹 石川
拓光 野村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2014162719A1 publication Critical patent/WO2014162719A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/55Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft

Definitions

  • the present invention relates to an optical device having a function of removing foreign matters from a light transmitting member and a method of blowing air onto the light transmitting member.
  • optical devices having a function of removing foreign substances from a light transmitting member include ones that clean a light transmitting member (protective glass or glass) with a wiper (see, for example, Patent Document 1 or 2).
  • a device for removing foreign matter from a light transmission member of an optical device or a device for preventing the adhesion of foreign matter there is a device that applies wind (air) toward or in front of a light transmission member (front glass or window glass) ( For example, see Patent Document 3 or 4).
  • the wind which hits a light transmissive member is passing through the fin for cooling.
  • Patent Document 5 discloses a cooling structure of an electronic unit in which fins (cooling) of a pair of high heat generation electronic devices are provided in a flow path.
  • Japanese Patent Laid-Open No. 5-68191 (FIGS. 2 and 14) Japanese Patent Laid-Open No. 7-92538 (FIGS. 1 and 15) Japanese Unexamined Patent Publication No. 2000-171878 (FIG. 1) JP 2010-2740 A (FIGS. 1 to 4) JP-A-5-259673 (FIGS. 1 and 2)
  • the wiper as described in Patent Documents 1 and 2 has a problem that it cannot be applied to an optical device that does not allow periodic replacement of the light transmissive member and scratches on the light transmissive member in that it contacts the light transmissive member. there were.
  • air (air) as described in Patent Documents 3 and 4 is applied to the light transmitting member, optimization of air volume control is not sufficiently studied, or the housing of the optical device has a waterproof structure or an airtight structure. There was a problem that application examination in the case was not enough.
  • the present invention has been made to solve the above-described problems, and provides an optical device and an air blowing method capable of appropriately blowing air to a light transmitting portion when a foreign matter adheres to the light transmitting portion. For the purpose.
  • the optical device includes a light transmission part that receives light from the outside, an observation device part that receives light from the light transmission part, an air blowing port that blows air to the light transmission part, and the air blowing A flow path for causing air to flow through the mouth, an air suction port through which air flows into the flow path, a blower section for causing the flow of air from the air suction port to the air blowing port in the flow path, and the flow path
  • a blower control unit that instructs the blower unit to send an amount of air that is an amount of air
  • a cooling unit that cools the heat generating part having fins provided in the flow path through which heat from the heat generating part of the observation device unit is transmitted.
  • a cooling unit a temperature detection unit that measures the temperature of the heat generation part of the observation device unit, a foreign object detection unit that detects a foreign object attached to the light transmission unit, and when the foreign object detection unit detects a foreign object, Detected by temperature detector Compared with a preset air flow rate for each temperature of the blower unit, and a preset air flow rate of the blower unit at the time of foreign object detection, the blower unit has a larger air flow rate.
  • An air flow rate determination unit that transmits a comparison result of the air flow rate to the blower control unit so as to operate is provided.
  • the blower unit generates a flow of air that cools the heat generating portion of the observation device unit of the optical device that receives light from the light transmitting unit on which light from the outside is incident, and the blower unit
  • the temperature detection step of detecting the temperature of the heat generating part of the observation device part, and a foreign matter in the light transmission part A foreign matter detection step for determining whether or not a foreign matter is attached, and when a foreign matter is detected in the foreign matter detection step, the air flow rate of the blower unit for each preset temperature corresponding to the temperature detected in the temperature detection step, And comparing the air flow rate at the time of foreign object detection of the blower unit set in advance, the air flow rate determining step for determining the larger air flow rate, and the air flow rate determining step.
  • a blower control step of blowing the air blower unit in the blowing rate and the determined air volume with the larger in which a blower control step of blowing the air blower unit in the blowing rate and the determined air volume with the larger.
  • an optical device capable of appropriately blowing air to a light transmission part when a foreign substance adheres to the transmission part.
  • an air blowing method capable of appropriately blowing air to a light transmission part when a foreign substance adheres to the light transmission part.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram (top view, sectional drawing) of the optical apparatus which concerns on Embodiment 1 of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram (sectional drawing, side perspective drawing) of the optical apparatus which concerns on Embodiment 1 of this invention. It is sectional drawing in case it has a film heater in the optical apparatus which concerns on Embodiment 1 of this invention.
  • 1 is a schematic cross-sectional view of an optical device according to Embodiment 1 of the present invention. It is a functional block diagram of the light transmission part of the optical apparatus which concerns on Embodiment 1 of this invention, and an observation equipment part.
  • Embodiment 1 of the present invention will be described below with reference to FIGS.
  • the structure of the optical device according to the first embodiment will be described with reference to FIGS. 1 to 4, and the air flow control process of the optical device according to the first embodiment with reference to FIGS. 5 to 14, that is, the air to the light transmitting member
  • the spraying method will be described.
  • the optical device is a lidar device, an imaging device, or another device having a light transmission member.
  • “air blowing” is not only the case where most of the air is directly applied to the light transmitting member (light transmitting portion 3 described later), but also water droplets or dust adhering to the surface of the light transmitting member. It is assumed that the case where air is allowed to flow around the light transmitting member to such an extent that foreign matter is blown away is included.
  • FIG. 1 is a configuration diagram (top view, cross-sectional view) of an optical device according to Embodiment 1 of the present invention.
  • FIG. 2 is a configuration diagram (cross-sectional view, side perspective view) of the optical device according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view in the case where the optical apparatus according to Embodiment 1 of the present invention has a film heater.
  • FIG. 4 is a schematic cross-sectional view of the optical apparatus according to Embodiment 1 of the present invention.
  • 1A is a top view of the optical device
  • FIG. 1B is a cross-sectional view taken along the line AA of the optical device in FIG. 2B
  • FIG. 2A is a cross-sectional view of the optical device in FIG. B sectional drawing and FIG.2 (b) are side surface perspective views of the short side of an optical apparatus.
  • FIG. 3 is a cross-sectional view of an optical device having a film heater for heating a light transmitting member, and corresponds to a cross-sectional view taken along the line AA of the optical device in FIG.
  • FIG. 4A is a schematic cross-sectional view of the optical device, which corresponds to a cross-sectional view at a position slightly lower than the BB cross-section of the optical device in FIG.
  • FIG. 4B is a schematic cross-sectional view of the optical device, which corresponds to the AA cross-sectional view of the optical device in FIG.
  • the casing 1 is a box shape having a rectangular parallelepiped shape, has at least a waterproof structure, and sometimes has an airtight structure.
  • a waterproof structure or an airtight structure is called a waterproof airtight structure.
  • the airtight structure is also a waterproof structure.
  • the through channel 2 is a ventilation conduit that penetrates the housing 1 and is surrounded by the waterproof and airtight structure of the housing 1 in four directions.
  • the light transmitting portion 3 is a material that allows light to pass through, such as a lens or a transparent plate made of glass or resin, and is provided in the housing 1.
  • the light transmission part 3 is provided in the housing 1 so that the optical device emits and receives light for observation and the like. Therefore, the light transmission part 3 is also called an observation window.
  • the through-flow channel 2 is a part of a passage that cools the heat generated by the optical device and allows the air blown to the light transmission unit 3 to pass therethrough.
  • a nozzle portion opening 4 On the outlet side of the through passage 2 is a nozzle portion opening 4 that is an air blowing port.
  • the nozzle part opening 4 blows air in order to blow off the foreign matter adhering to the light transmission part 3.
  • the nozzle part opening 4 is an opening provided at the tip of the nozzle-like shape, and exhaust (air) from the through channel 2 can be accelerated and sprayed to the light transmission part 3.
  • the opening 2a which is the first opening of the through channel 2 provided on the first surface (upper surface) provided with the light transmission portion 3 communicates with the nozzle portion opening 4 and faces the first surface.
  • the second opening which is the other opening of the through flow path 2 provided on the second surface (lower surface) that is the surface of the housing 1, is the air inlet 1in.
  • the opening 2a of the through channel 2 is provided on the upper surface of the casing, and the air inlet 1in of the through channel 2 is provided on the lower surface of the casing.
  • a duct 4d that covers the opening 2a of the through channel 2 is provided on the upper surface of the housing.
  • the through flow path 2 and the duct 4d are flow paths that allow air to flow through the nozzle opening 4 serving as an air blowing port. Air flows into the flow path from the air suction port 1 in, and the air is blown from the nozzle part opening 4 to the light transmission part 3.
  • the flow path is provided while maintaining the waterproof structure of the housing 1.
  • the flow path is a portion indicated by a thick broken line in FIG. 1 (b), FIG. 2 (b), and FIG. In FIG.4 (b), the broken line which has the arrow at a start part shows the flow of air.
  • the film heater 3f shown in FIG. 3 heats the light transmission part 3 so that snow and ice do not adhere to the light transmission part 3.
  • a lid 1c is provided on the side surface of the housing 1.
  • the lid portion 1c may be provided on both opposing side surfaces of the housing 1, may be provided on all four side surfaces, or may be provided on one or three side surfaces. You may provide a cover part in the upper surface, a lower surface, or both, without providing a cover part in a side surface, or providing in a side surface. In this application, the case where the cover part 1c is provided in both the long side surfaces is mainly illustrated.
  • the lid 1c fits into the frame of the housing. Packing is provided on at least one of the frame of the casing or the lid 1c, and the casing 1 has a waterproof and airtight structure by closing the lid 1c.
  • the hand by opening the lid 1c, the hand reaches the observation device unit 6 and the heat generation part 6h of the observation device unit 6 described later, so that the optical device can be maintained.
  • the through flow path 2 starting from the air suction port 1 in provided on the lower surface of the housing 1 has a cross-sectional area that is substantially orthogonal to the direction in which air flows, as shown in FIG.
  • the cross-sectional area reduction part 2b it reduces from the opening area of the air inlet 1in.
  • a filter may be provided in the air inlet 1in.
  • the cross-sectional area reduction part 2b is not provided, and the opening area of the air inlet 1in may be the same as the cross-sectional area of the through-flow passage 2 in the part where the cooling part 7 (described later) is provided.
  • the blower unit 5, which is a fan or blower, generates an air flow from the air inlet 1 in to the nozzle opening 4.
  • the blower unit 5 is provided inside the duct 4d.
  • the air flowing through the through flow path 2 is bent substantially at a right angle. Air in which this flow is bent is ejected from the nozzle opening 4 and blown to the light transmitting portion 3.
  • the direction of the air flowing through the flow path 3 can be easily directed to the light transmission part 3 side by the duct 4d.
  • space saving can be achieved by arrange
  • the blower unit 5 may be disposed at the air inlet 1in, outside the air inlet 1in, outside the housing 1, or in the middle of the through passage 2.
  • an observation device unit 6 is housed in a housing 1 and receives light from the outside through a light transmission unit 3, and is used in a lidar device such as a Doppler lidar or an imaging device such as a camera. This is the part that performs signal processing.
  • the observation device section 6 includes an optical device housing 6p that houses the optical device of the optical device and an electronic device housing 6e that houses the electronic device of the optical device.
  • the optical device housing 6p is provided with a light transmission portion 3.
  • the surface of the optical device housing 6 p on which the light transmission part 3 is provided is exposed from the housing 1.
  • the surface of the optical device housing 6 p on which the light transmission part 3 is provided is a part of the outer surface of the housing 1.
  • the light transmission part 3 is provided in the housing 1.
  • the arrangement is such that two electronic device housings 6e face each other perpendicularly to one optical device housing 6p when viewed from above, and a through flow path 2 through which cooling air flows is formed, that is, a pie.
  • the figure is arranged in a letter shape.
  • the optical device housing 6p and the electronic device housing 6e may be integrated.
  • the cooling unit 7 cools the heat generating portion 6h of the observation device unit 6 by, for example, aluminum fins 7f provided in the through flow path 2.
  • the fins 7f to which heat from the heat generating portion 6h of the observation equipment section 6 is transmitted dissipate heat to the air flowing through the through flow path 2 to cool the heat generating portion 6h.
  • the heat generating portion 6h and the fin 7f are connected so that the thermal resistance between the heat generating portion 6h and the fin 7f is as small as possible.
  • the heat generating portion 6h and the fins 7f may be connected by a heat pipe that transfers heat using a refrigerant.
  • the portion in the electronic device casing 6e is referred to as a heat generator 6eh.
  • FIG. 5 is a functional block diagram of the light transmission unit and the observation equipment unit of the optical device according to Embodiment 1 of the present invention.
  • FIG. 5A is a functional block diagram when the optical device is a lidar device
  • FIG. 5B is a functional block diagram when the optical device is an imaging device.
  • FIG. 6 is a functional block diagram of the optical apparatus according to Embodiment 1 of the present invention.
  • an image pickup device 6 c in the image pickup apparatus is a camera module including an optical sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the signal processing unit 6s performs signal processing on the image signal obtained by the imaging element 6c.
  • an observation device unit 6 is housed in a housing 1 and receives light from the outside through a light transmission unit 3, and is a lidar device such as a Doppler lidar or an imaging device such as a camera. .
  • the observation device unit 6 includes a scanner unit 6sc, an optical transmission / reception unit 6rt, and a signal processing unit 6s.
  • the observation device unit 6 includes an imaging element 6c and a signal processing unit 6s.
  • the scanner unit 6sc in the lidar apparatus irradiates the transmission light to the outside via the light transmission unit 3, and receives the reflected light reflected by the aerosol which is the irradiated transmission light as fine particles in the air.
  • the optical transmission / reception unit 6rt performs transmission / reception processing on the transmission light transmitted by the scanner unit 6sc and the reflected light received by the scanner unit 6sc.
  • the signal processing unit 6s calculates the wind speed from the reception signal of the reflected light received and processed by the optical transmission / reception unit 6rt and the angle signal of the scanner unit 6sc.
  • the optical device casing 6p is built in the casing 1.
  • the scanner unit 6sc and the optical transmission / reception unit 6rt are accommodated in the optical device casing 6p.
  • the imaging device 6c is accommodated in the optical device casing 6p.
  • Part or all of the signal processing unit 6s may be accommodated in the optical device casing 6p.
  • the electronic device housing 6e is built in the housing 1, and mainly stores the signal processing unit 6s in the observation device unit 6.
  • the electronic device housing 6e may accommodate a scanner unit 6sc and an optical transmission / reception unit 6rt of the lidar apparatus or a part of the imaging element 6c of the imaging apparatus.
  • the scanner unit 6sc and the optical transmission / reception unit 6rt of the lidar apparatus or the imaging device 6c and the signal processing unit 6s of the imaging apparatus are accommodated. Further, the optical device housing 6p and the electronic device housing 6e are arranged around the through channel 2.
  • the heating element 6eh of the observation device casing 6e is an electronic device circuit.
  • the heating element 6eh is also referred to as an electronic device circuit 6eh.
  • the electronic device board 6es and the electronic device circuit 6eh are built in the electronic device housing 6e, and mainly function as the signal processing unit 6s.
  • the electronic device circuit 6eh may be the entire heat generating portion 6h of the observation device unit 6 or may be a part of the heat generating portion 6h of the observation device unit 6.
  • the scanner unit 6sc and the optical transmission / reception unit 6rt of the lidar device in the optical device housing 6p or the imaging device 6c of the imaging device may be a part of the heat generating portion 6h of the observation device unit 6.
  • the electronic device circuit 6eh that generates a large amount of heat is disposed as close to the cooling unit 7 as possible.
  • the distribution ratio of the heat generating portion 6h to the optical device housing 6p and the electronic device housing 6e can efficiently transfer heat from the heat generating portion 6h to the fins 7f, which is also desirable as an optical device. Decide to become.
  • the heat generating portion 6 h is disposed inside the wall surface that surrounds the four sides of the through flow path 2 in the waterproof and airtight structure of the housing 1.
  • the heat generating portion 6h is provided in the optical device housing 6p and the electronic device housing 6e housed in the housing 1, and is a member that generates heat when the optical device is operated.
  • the optical device is arranged so that such heat generation can be easily transmitted to the fins 7f, and air can be exhausted from the heat generating portion 6h through the fins 7f by flowing air through the through flow passages 2. it can.
  • the optical device guides the exhaust (air) that has cooled the fins 7f to the duct 4d, accelerates it with the nozzle part 4n provided in the duct 4d, and discharges it to the light transmitting part 3. In this way, by using the kinetic energy of the exhaust flow velocity for cleaning the light transmission part 3, it is possible to achieve power saving and downsizing by sharing functions, and to continuously use the optical device. .
  • Exhaust gas is discharged onto the light transmission part 3 through the duct 4d, but the air taken in from the air inlet 1in is accelerated to a speed based on Bernoulli's theorem because the flow path cross-sectional area decreases at the nozzle part 4n. Is done.
  • the accelerated air can blow off foreign matter such as rain and snow droplets and dust on the light transmission part 3 by the exhaust flow, and the light transmission part 3 can be cleaned without human intervention.
  • the electronic device casing 6e having all or most of the heat generating portion 6h of the observation device section 6 is arranged so as to constitute the inside of the wall surface surrounding the four sides of the through channel 2 or a part of the wall surface in the waterproof and airtight structure.
  • the electronic device housing 6 e that is the heat generating portion 6 h of the main observation device unit 6 is arranged to be a part of the wall surface of the through-flow path 2 in the waterproof and airtight structure.
  • the through channel 2 has a rectangular BB cross section, and the wall surface of the through channel 2 at the long side of the rectangle is an electron provided with fins 7f. This is the outer surface of the device housing 6e.
  • the through flow path 2 (cooling unit 7) is disposed between the two electronic device housings 6e.
  • the optical equipment housing 6p having a part of the heat generating portion 6h of the observation equipment section 6 is arranged so as to constitute the inside of the wall surface surrounding the four sides of the through channel 2 or a part of the wall surface in the waterproof and airtight structure.
  • the optical device housing 6p having a part of the heat generating portion 6h of the main observation device unit 6 is disposed around the through channel 2 in the waterproof and airtight structure.
  • the through-flow channel 2 has a rectangular BB cross section, and a part of the heat generating portion 6h of the main observation instrument section 6 is on the short side portion of the rectangle.
  • An optical device housing 6p having the above is disposed.
  • the outer surface of the optical device housing 6p and / or the electronic device housing 6e may be a part of the wall surface that surrounds the four sides of the through channel 2 in the waterproof and airtight structure of the housing 1. That is, the outer surface of the optical device housing 6p and / or the electronic device housing 6e is exposed from the housing 1.
  • the case where the surface provided with the fins 7f of the electronic device substrate 6es is arranged on the exposed outer surface is also included.
  • High heat generating electronic elements CPU (Central Processing Unit), GPU (Graphics Processing Unit), high output amplifier) constituting the heat generating element 6eh are arranged inside the electronic device casing 6e. That is, the fins 7 f of the heat sink with fins of the heating element 6 eh are arranged in the through flow path 2.
  • the optical device housing 6p and / or the electronic device housing 6e When the outer surface of the optical device housing 6p and / or the electronic device housing 6e is exposed from the housing 1, the optical device housing 6p and / or the electronic device housing 6e is fitted into the frame of the housing 1. Therefore, it is necessary to ensure the airtightness of this part by packing or the like. In addition, it is possible to reduce the thermal resistance between the heating element 6eh and the fins 7f that generate a larger amount of heat than the optical device in the optical device housing 6p. That is, the electronic device board 6es on which the heating element 6eh is mounted constitutes a part of the wall surface of the through channel 2 while maintaining the waterproof structure of the housing 1.
  • the electronic device housing 6e and the fins 7f have two configurations, but the electronic device housing 6e may be divided into three or more.
  • the fins 7f may be divided and attached to the electronic device board 6es or the electronic device circuit 6eh because the heating element 6eh is partially separated. It is effective by partially arranging a plurality of fins 7f when the electronic device housing 6e is divided into a plurality of parts or the heating elements 6eh are provided at a plurality of locations due to demand for weight reduction or space saving. Cooling can be performed.
  • the cooling effect of the fins 7f can be further enhanced, and the heat exhausted from the electronic device housing 6e can be efficiently performed, and the fins 7f and the electronic device housing 6e can be efficiently performed. It is also easy to reduce the weight.
  • the electronic device circuit 6eh that is an optical device and a signal processing unit that particularly require high output and high heat exhaustion is provided. It is easy to arrange the electronic device housing 6e together in one housing 1. Therefore, the inside of the housing 1 and the hollow structure (through passage 2) including the air inlet 1in through which the outside air passes are separated.
  • the through flow path 2 is a portion of the flow path that passes through the inside of the outer shape of the housing 1, and is provided while maintaining the waterproof structure of the housing 1. Therefore, continuous operation while protecting the electronic device housing 6e that requires a waterproof and airtight structure and efficient exhaust heat in the waterproof and airtight structure can be performed.
  • the optical device housing 6p and the electronic device housing 6e used in the optical device for example, control of the device and sensor, data processing, optical processing, and the like are used. It is necessary to exhaust the generated heat.
  • the heat generated in the housing 1 is largely generated by a heat generating element 6eh (for example, a high heat generating electronic element such as a CPU, GPU, high output amplifier) on the electronic apparatus substrate 6es in the electronic apparatus housing 6e. . It is assumed that the high heat generating electronic element is forcibly cooled.
  • the fin 7f is exposed in the hollow portion provided inside the housing 1, that is, the through flow path 2, so that heat can be exhausted from the inside of the housing 1 to the outside air. It is said.
  • the through-flow passage 2 for ventilation has openings (opening 2a and air inlet 1in) on two opposite surfaces, that is, an upper surface and a lower surface, of the waterproof and airtight structure housing 1 having a rectangular parallelepiped shape.
  • 1 is a hollow structure in which the periphery penetrating 1 is surrounded by a waterproof and airtight structure.
  • the cross-sectional shape in a direction substantially perpendicular to the direction in which the air flows through the through flow path 2 is a rectangle.
  • the fin 7 f included in the cooling unit 7 has a cross-sectional shape in the BB cross section shown in FIG. Each extends from the opposing long side portion of the rectangle.
  • the heat generating portion 6h and the fin 7f may be provided only on one of the long side portions.
  • the light transmission part 3 is provided in the optical device casing 6p (housing 1), it is provided on the short-side portion side of the rectangular shape of the cross-sectional shape of the through flow path 2.
  • the housing 1 has a rectangular parallelepiped outer shape, and the light transmission part 3 and one opening of the through flow path 2 are arranged on the same surface side.
  • the through-flow channel 2 includes an opening 2 a of the through-flow channel 2 and an air inlet 1 in which is the other opening of the through-flow channel 2 on the opposing surface (upper surface) and surface (lower surface) of the housing 1, respectively. Is arranged.
  • the area of the opening 2a is smaller than the cross-sectional area of the through channel 2 in the portion where the fin 7f of the cooling unit 7 is provided.
  • a duct 4 d that covers the entire opening 2 a and serves as a flow path from the opening 2 a to the nozzle opening 4 next to the light transmitting portion 3 is attached to the housing 1.
  • a blower unit 5 is disposed between the opening 2a and the nozzle unit opening 4 inside the duct 4d.
  • the blower unit 5 is placed on the surface of the housing 1 on which the light transmission unit 3 and the opening 2a are arranged, but may be provided in the duct 4d.
  • the duct 4d has a nozzle portion 4n whose cross-sectional area decreases as it goes toward the nozzle portion opening 4 side.
  • FIGS. 1 to 4 show a nozzle portion 4n whose cross-sectional area decreases toward the nozzle portion opening 4 in the portion from the blower portion 5 toward the nozzle portion opening 4.
  • the nozzle part may be provided on the opening 2a side with respect to the blower part 5.
  • the optical apparatus may attach a film heater 3f to the light transmission part 3 as shown in FIG.
  • the film heater 3 f generates heat and melts snow and ice on the light transmission part 3. You may make it blow off the water drop which the ice on the light transmissive part 3 melt
  • the signal processing unit 6s performs ON / OFF control of the film heater 3f.
  • the film heater 3f may be turned on (started) / off (stopped) by measuring the outside air temperature outside the housing 1. That is, a temperature detection unit that measures the outside air temperature may be provided in the optical device.
  • the film heater 3f By disposing the film heater 3f between the light transmission part 3 and the optical device in the optical device housing 6p, the film heater 3f does not affect the observation result of the optical device, and in a low temperature environment in winter. By preventing the light transmitting unit 3 from freezing and dew condensation, the optical device can be continuously observed.
  • the optical device in the optical device according to the first embodiment, air is sucked from the air suction port 1in, which is the external suction port of the housing 1, by the blower unit 5, and passes through the hollow structure portion having the fins 7f inside.
  • the heat from the fins 7f is discharged.
  • heat can be exhausted from the inside of the housing 1 without external air entering the inside of the housing 1, and the exhaust used for the exhaust heat can be used for cleaning the light transmitting portion 3. It is possible to save power and reduce the number of parts by sharing the functions of the unit 5.
  • the waterproof and airtight structure in the housing 1 is configured by forming a hollow structure as shown by a bold broken line in FIG. 2 (b) inside the outer shape of the housing 1 and separating the inside of the housing 1 and a hollow duct portion through which external air flows. can do.
  • the outside air taken in from the air suction port 1in by the action of the blower unit 5 does not pass through the inside of the housing 1 but passes through the hollow duct portion that is the through flow channel 2 and is directly blown to the light transmission unit 3. . Therefore, the housing 1 of the optical device has a structure in which water or air is not taken into the housing 1 from the outside, and a waterproof and airtight structure can be obtained.
  • the light transmission unit 3 is disposed closer to the center of the housing 1. If it is considered to be effective when taking the above into consideration, the light transmitting portion 3 is disposed near the center of the housing 1, and the optical device housing 6p and the electronic device housing 6e are disposed on the drawing of the present application.
  • the optical device according to the first embodiment can be implemented by disposing and configuring a hollow structure (through channel 2) somewhere in the portion that is provided.
  • the casing 1 has a rectangular parallelepiped shape, the light transmission part 3 and the opening 2a are arranged on the same surface side, and the light transmission part 3 and the opening 2a are arranged.
  • the opening 2 a is disposed closer to the center than the light transmitting portion 3. That is, the opening 2 a is disposed closer to the center than the light transmitting portion 3 on the plane where the light transmitting portion 3 and the opening 2 a are disposed.
  • the light transmitting portion 3 and the opening 2a are disposed on the same surface side, and the surface on which the light transmitting portion 3 and the opening 2a are disposed is viewed in plan view, This means that the light transmission part 3 may be arranged closer to the center than the opening 2a.
  • the direction in which “the surface on which the light transmission part 3 and the opening 2a are disposed” is viewed in plan is the direction in which air flows in the through flow path 2, strictly speaking, the direction from the air inlet 1in toward the opening 2a. The same.
  • a heat pipe may be disposed between the heating element 6eh inside the electronic device housing 6e and the fins 7f to carry out heat transport of the heating element 6eh. This is realized by the heat transfer between the heat generating body 6eh and the fins 7f and the heat transfer between the fins 7f and the outside air. However, it is necessary to touch a good thermal sheet. By using the heat pipe, heat transfer from the heating element 6eh to the fins 7f can be performed, and it is not necessary to contact the heating elements 6eh and the fins 7f, and the degree of freedom of the board structure of the electronic device substrate 6es is increased.
  • the housing 1 can be disposed between the electronic device housing 6e and the through channel 2. Moreover, since the restrictions on the layout of the electronic device board 6es are reduced by using the heat pipe, it is possible to increase the degree of freedom of arrangement of the heating elements 6eh on the electronic device board 6es.
  • the light transmitting portion 3 and the opening 2a are disposed on one surface of the casing 1 having a rectangular parallelepiped shape, and the duct 4d is placed on the surface on which the light transmitting portion 3 and the opening 2a are disposed.
  • Most of the duct 4d may be housed in the housing 1, and the light transmitting portion 3 and the upper surface of the duct 4d may have substantially the same height. This may be achieved by providing a recess for accommodating most of the duct 4d on the surface on which the light transmission part 3 is disposed.
  • the opening 2a is provided at the bottom of the recess, and the light transmission part 3 is provided beside the recess.
  • nozzle opening 4 Only the nozzle opening 4 may be slightly out of the plane on which the light transmission part 3 is arranged. In that case, the inclination of the nozzle portion 4n whose cross-sectional area decreases as it goes toward the nozzle portion opening 4 is provided below the upper plane of the housing 1 in the drawing of the present application. Moreover, you may provide an inclination part in both the upper and lower opposing parts in the nozzle part 4n. This is true even when the duct 4d is placed on the surface on which the light transmission part 3 and the opening 2a are arranged as in the drawings of the present application.
  • FIG. 7 is a flowchart of the air flow rate control process of the optical device according to the first embodiment of the present invention.
  • FIG. 8 is a functional block diagram of the main part of the optical apparatus according to Embodiment 1 of the present invention.
  • FIG. 9 is a flowchart of the air volume control process of the optical device according to the first embodiment of the present invention.
  • FIG. 10 is a graph showing the maximum value of the S / N ratio for each distance in the laser irradiation direction of the lidar apparatus according to the first embodiment of the present invention.
  • FIG. 11 is a graph showing the maximum S / N ratio for each elapsed time of the lidar apparatus according to Embodiment 1 of the present invention.
  • FIG. 12 is a flowchart of the blower amount control process of the optical device according to the first embodiment of the present invention.
  • FIG. 13 is a flowchart of the air volume control process of the optical device according to the first embodiment of the present invention.
  • FIG. 14 is a flowchart of the air volume control process of the optical device according to Embodiment 1 of the present invention.
  • FIG. 5A is a functional block diagram when the optical device is a lidar device
  • FIG. 5B is a functional block diagram when the optical device is an imaging device
  • FIG. 8A is a functional block diagram of the main part of the lidar apparatus
  • FIG. 8B is a functional block diagram of the main part of the imaging apparatus.
  • FIG. 10A is a graph showing the maximum value of the S / N ratio for each distance in the laser irradiation direction when the threshold value is exceeded.
  • FIG. 10B is a graph showing the maximum value of the S / N ratio for each distance in the laser irradiation direction when the threshold is not exceeded.
  • FIG. 11A is a graph showing the maximum S / N ratio for each elapsed time when the threshold value is exceeded.
  • FIG. 11B is a graph showing the maximum S / N ratio for each elapsed time when the threshold is not exceeded. “S” shown in FIG. 7, FIG. 9, FIG. 12, FIG. 13, and FIG.
  • the S / N ratio is a value obtained by dividing the signal level S by the noise level N.
  • the S / N ratio is also called S / N value, S / N data, and S / N ratio data.
  • the maximum value of the S / N ratio in a certain period is called the S / N ratio maximum value.
  • the maximum S / N ratio value is also called the maximum S / N ratio and the maximum S / N value.
  • the blower control unit 8 instructs the blower unit 5 about the blown amount that is the amount of air flowing through the through passage 2.
  • the blower unit 5 generates an air flow from the air suction port 1in to the nozzle unit opening 4 in a flow path provided between the nozzle unit opening 4 for blowing air to the light transmission unit 3 and the air suction port 1in. is there.
  • the temperature detection unit 9 measures the temperature of the heat generating portion 6 h of the observation device unit 6.
  • the foreign matter detection unit 10 provided in the signal processing unit 6 s detects foreign matters such as water droplets and dust attached to the light transmission unit 3. Specifically, the foreign matter detection unit 10 detects foreign matter attached to the light transmission unit 3 from light entering the observation device unit 6 from the outside through the light transmission unit 3.
  • the light information is used as an image, and the shape of the object and the distance from the object, for example, the distance from the light transmission unit 3, or the distance from the image sensor 6c and the change in the light information signal, Foreign matter on the transmission part 3 is detected.
  • the air flow rate determination unit 11 provided in the signal processing unit 6s is set in advance corresponding to the temperature detected by the temperature detection unit 9 when the foreign object detection unit 10 detects the foreign object.
  • the cooling-corresponding airflow amount that is the airflow amount for each temperature of the blower unit 5 and the airflow amount at the time of foreign matter detection of the blower unit 5 set in advance corresponding to the case where the foreign matter detection unit 10 detects the foreign matter.
  • the foreign matter removal air volume is compared, and the comparison result of the air volume is transmitted to the air blower control section 8 so that the air blower section 5 operates with the larger air volume.
  • the blower amount determination unit 11 obtains an information table of the blown amount from the signal processing unit 6s or the outside and uses it for the determination.
  • the foreign object detection unit 10 and the air flow rate determination unit 11 are illustrated as being provided in the signal processing unit 6s, but at least one of the foreign material detection unit 10 and the air flow rate determination unit 11 is used as the signal processing unit 6s. It may be provided outside. Moreover, in this application, although the air blower control part 8 is provided in the exterior of the signal processing part 6s, you may provide the air blower control part 8 in the signal processing part 6s.
  • the lidar apparatus irradiates the transmission light to the outside via the light transmission unit 3, and receives the reflected light reflected by the aerosol by the transmitted transmission light, the scanner 6sc, the scanner The optical transmission / reception unit 6rt for transmitting / receiving the transmission light transmitted by the unit 6sc and the reflected light received by the scanner unit 6sc, the received signal of the reflected light received by the optical transmission / reception unit 6rt and the angle signal of the scanner unit 6sc, respectively.
  • the signal processing unit 6s is configured to calculate the wind speed based on the frequency change due to the effect.
  • the signal processing unit 6s controls the scanner unit 6sc and the optical transmission / reception unit 6rt. Further, the signal processing unit 6s outputs the calculated wind speed and the acquired data to the outside through an interface with the outside such as a LAN (Local Area Network) (external data).
  • the foreign object detection unit 10 includes a maximum value calculation unit 10a, a threshold determination unit 10b, and a time passage determination unit 10c.
  • the Doppler lidar includes a light transmission unit 3 that emits laser light, a scanner unit 6sc, an observation device unit 6, and a signal processing unit 6s.
  • the light transmission part 3 is also called a laser emission window.
  • the reflected wave of light radiated from the scanner unit 6sc to the air via the light transmitting unit 3 which is a contact surface with the atmosphere is received again by the scanner unit 6sc and received.
  • the received light is amplified and frequency converted by the optical transmitter / receiver 6rt to be converted into a reception IF (intermediate frequency) signal.
  • the IF signal is subjected to A / D (analog-digital) conversion and frequency analysis processing by the signal processing unit 6s, thereby calculating spectrum data, calculating a wind speed vector from the spectrum data, displaying the calculated wind speed, and Record.
  • the foreign object detection unit 10 causes the light transmission unit 3 to detect a foreign object when the maximum S / N ratio within a predetermined length of time in the received signal falls below a predetermined threshold value. It is detected that is attached. If the signal processing unit 6s processes the calculated wind speed as a reference value while the foreign matter detection unit 10 detects that the foreign matter has adhered to the light transmission unit 3, the signal processing unit 6s may have a foreign matter in the light transmission unit 3. It becomes easy to eliminate an error in detecting the wind speed due to adhesion.
  • the imaging device includes an imaging device 6c and a signal processing unit 6s that processes an image signal obtained by the imaging device 6c.
  • the signal processing unit 6s controls the image sensor 6c.
  • the signal processing unit 6s outputs the acquired image data and moving image data to the outside through an interface with the outside such as a LAN (external data).
  • the foreign matter detection unit 10 detects foreign matter from the image signal signal-processed by the signal processing unit 6s.
  • the foreign matter detection unit 10 includes an image processing unit 10d and a foreign matter determination unit 10e.
  • the foreign substance determination unit 10e calculates the shape of the object and the distance of the object, for example, the distance from the light transmission unit 3 or the distance from the image sensor 6c, from the image information from the image signal processed by the image processing unit 10d. Then, the presence or absence of foreign matter adhesion on the light transmission part 3 is determined.
  • the observation device section 6 is housed in the housing 1, and the light transmission section 3 is provided in the housing 1.
  • the optical device housing 6p is provided with the light transmitting portion 3, and the surface of the optical device housing 6p provided with the light transmitting portion 3 is exposed from the housing 1 to constitute the outer surface of the housing 1. Including cases.
  • the blower unit 5 causes the flow of air to cool the heat generation portion 6 h of the observation device unit 6 that receives light from the light transmission unit 3 to which light from the outside is incident, and the blower unit. 5, an air blowing method is applied to the light transmitting portion 3 that causes an air flow to the nozzle opening 4 that blows air to the light transmitting portion 3.
  • a temperature detection step for detecting the temperature of the heat generating portion 6h of the observation device section 6 is performed.
  • the air blower control step which makes the air blower part 5 ventilate with the air flow rate for every temperature of the air blower part 5 set beforehand is performed.
  • the signal processing unit 6 s acquires the temperature of the heat generation portion 6 h of the observation device unit 6 from the temperature detection unit 9, and selects the air flow rate at the temperature acquired by the blower unit 5 set in advance.
  • the information is sent to the blower control unit 8, and the blower control unit 8 controls the amount of air blown from the blower unit 5.
  • the blower control unit 8 also controls the ON (start) / OFF (stop) control of the blower unit 5.
  • the preset air volume for each temperature of the blower unit 5 includes the case where the air volume is zero.
  • the preset air flow rate for each temperature of the blower unit 5 may be one in which the air volume gradually increases as the temperature of the heat generating portion 6h of the observation device unit 6 increases, or the air volume in a stepped manner by dividing the temperature range. You may go up.
  • the information on the air flow rate, that is, the air flow rate for each temperature of the blower unit 5 set in advance corresponds to a cooling table for the heat generating portion 6h.
  • the processing steps of S001 and S002 may be repeatedly performed, or may proceed to S002 when the temperature obtained in S001 has changed from the previous time.
  • the signal processing unit 6 s is provided with a foreign object detection unit 10 and an air blowing amount determination unit 11.
  • the optical device shares the blower unit 5 for cooling the heat generating portion 6 h of the observation device unit 6 and removing foreign matters such as water droplets and dust adhering to the light transmission unit 3. Therefore, even when the foreign matter is not attached to the light transmitting portion 3, if the blower unit 5 generates an air volume necessary for blowing off the foreign material, the air volume is necessary for cooling the heat generating portion 6h of the observation device section 6. If it exceeds, power consumption is wasted. Therefore, it is important to control the air volume of the blower unit 5 depending on the presence or absence of foreign matter in the light transmission unit 3.
  • a preset blower corresponding to the temperature detected in the temperature detection step The flow rate for each temperature of the unit 5 and the flow rate for determining the larger blow rate by comparing the blow rate at the time of foreign matter detection of the blower unit 5 set in advance when foreign matter is detected in the foreign matter detection step.
  • the determination step is executed.
  • the order of execution of the foreign matter detection step (S101 to S104 in FIGS. 9 and 12, S201 and S202 in FIGS. 13 and 14) and the temperature detection step (S001) is not limited. It may be simultaneous.
  • foreign matter attached to the light transmitting portion 3 is detected from information regarding light entering the observation device portion 6 from the outside through the light transmitting portion 3.
  • the air blower control part 8 receives the instruction
  • the preset amount of air blown when foreign matter is detected by the blower unit 5 means the amount of air that can blow off the foreign matter attached to the light transmission unit 3.
  • the airflow may be fixed to one type of airflow, or the airflow may be changed according to the type of foreign matter detected (water droplets or dust) or the amount of foreign matter. In this case, when there are many foreign substances or when the foreign substances are heavy water droplets, it may be possible to increase the air volume.
  • the information on the amount of blown air, that is, the preset amount of blown air when the blower unit 5 detects foreign matter corresponds to a table for removing foreign matter such as water droplets and dust attached to the light transmitting unit 3.
  • the signal processing unit 6 s detects the presence or absence of water droplets on the light transmission unit 3 based on the reception signal output from the observation device unit 6.
  • the fan is controlled by the basic operation shown in FIG. 7 so that the optimum air volume is obtained based on the temperature information output from the temperature detector 9.
  • the blower unit 5 is controlled to a wind speed at which the water drop can be removed.
  • the lidar apparatus has a mechanism for removing water droplets adhering to the light transmission part 3 by wind used for cooling the heat generating part 6h of the observation equipment part 6.
  • a space that is, the through flow path 2 is provided between the two electronic device housings 6e by fitting the electronic device housing 6e provided with the mechanism of the fins 7f to the frames on both sides of the cavity at the center of the housing 1.
  • the air taken in by the blower unit 5 is allowed to flow into the space, and heat is radiated from the fins 7f connected to the heat generating portion 6h, thereby cooling the heat generating portion 6h.
  • water droplets, snow and the like can be removed.
  • the received signal received from the optical transmitter / receiver 6rt is input to the maximum value calculator 10a, and the maximum value calculator 10a calculates the maximum value for the S / N ratio of the input received signal (S101). And S102).
  • S101 S / N ratio of the input received signal
  • S102 S / N ratio of the input received signal
  • FIG. 10A shows a case where it is determined that “no rain”.
  • FIG. 10B shows a case where it is determined that “rainfall is present”.
  • the threshold determination unit 10b compares with the maximum value of the S / N ratio input from the maximum value calculation unit 10a, and determines that there is rainfall if the maximum value of the S / N ratio ⁇ the threshold. In this case, the process proceeds to S104. Otherwise, it is determined that there is no rainfall. In this case, the process proceeds to S001, and only the cooling of the heat generating portion 6h is performed by performing the basic operation shown in FIG.
  • the time lapse determination unit 10c monitors whether or not the state with rainfall continues for a predetermined time, and determines whether there is rainfall.
  • the concept of the determination in S104 is shown in FIG.
  • FIG. 11A shows a case where “no rain” is determined when the ratio at which the maximum value of the S / N ratio exceeds the threshold within a specified time is equal to or greater than the specified ratio.
  • FIG. 11B shows a case where it is determined that “rainfall is present” when the ratio at which the maximum S / N ratio exceeds the threshold within a specified time is less than the specified ratio.
  • the blower amount determination unit 11 proceeds to S001, performs the basic operation shown in FIG. 7, and only cools the heat generating portion 6h. If the temperature of the heat generating portion 6h does not exceed a threshold value that is a temperature that needs to be cooled, a command to not operate the blower unit 5 is output to the blower control unit 8 if it exceeds. To do.
  • the blower amount determination unit 11 outputs a command for operating the blower unit 5 regardless of the temperature of the heat generating portion 6h, but before that, in S001 The temperature of the heat generating portion 6h is acquired. Then, when a foreign object is detected in the foreign object detection step by the air flow determination unit 11 in S112 (air flow determination step), a preset temperature of the blower unit 5 corresponding to the temperature detected in the temperature detection step The larger blast volume is determined by comparing the blast volume for each and the blast volume at the time of foreign object detection of the blower unit 5 set in advance. Based on the determination result, the blower control unit 8 outputs an operation command or an instruction to change the air flow to the blower unit 5 in accordance with an instruction from the blower amount determination unit 11.
  • the air volume determined (determined) by the air flow rate determining unit 11 is instructed to the air blower unit 5, and the air from the air blower unit 5 based on this instruction is sent from the nozzle portion opening 4.
  • the air blowing method to the light transmission member may include this air blowing step.
  • the relationship between the air volume required for cooling the heat generating portion 6h and the air volume required for water droplet removal is “the air volume at the time of maximum heat generation> the air volume for water droplet removal”, so that the flow chart shown in FIG. , S101 and S002 may be performed before S101.
  • S001 and S002 the start of cooling of the heat generating portion 6h can be accelerated.
  • the processing of the flowchart shown in FIG. 12 may be performed even when “the air volume during maximum heat generation ⁇ the air volume for removing water droplets”.
  • the S / N ratio data is read in the S / N ratio data reading step (S101).
  • the maximum value of the S / N ratio data captured in the maximum value calculation step (S102) is calculated.
  • the process proceeds to a threshold determination step (S103), where the threshold and the maximum value of the S / N ratio data are compared. If S / N ratio maximum value ⁇ the threshold, the process proceeds to the time elapse determination step (S104), and S / N When N ratio maximum value> threshold value, a temperature information fetching step (S001) is performed, and an air flow determining step 1 (S002) is performed.
  • the process proceeds to the temperature information fetching step (S001), where temperature information (temperature of the heat generating portion 6h) is reached. Then, the process proceeds to the air flow determination step 2 (S112).
  • the process of S112 is as described above.
  • the foreign object detection step detects the foreign object from the image signal obtained by the imaging apparatus. That is, a foreign object is detected from the image.
  • the imaging device has a mechanism that removes water droplets adhering to the light transmission unit 3 that is a lens or a lens protection plate by wind used for air cooling of the heat generating portion 6 h of the observation device unit 6.
  • a space is provided between the two electronic device housings 6e by fitting the electronic device housing 6e provided with the mechanism of the fins 7f to the frames on both sides of the cavity at the center of the housing 1.
  • the air taken in by the blower unit 5 is passed through the space to cool the heat generating portion 6h. Furthermore, water droplets, snow, and the like can be removed by increasing the wind speed of the air taken in by narrowing the nozzle portion opening 4 and blowing it to the light transmitting portion 3.
  • the image processing unit 10d captures an image signal (image data) from the imaging device 6c.
  • the image processing unit 10d performs image processing on the image signal and sends an image or a moving image to the foreign matter determination unit 10e.
  • the foreign matter determination unit 10e determines the shape of the target object, the distance from the target object, or the like. To determine the presence or absence of foreign matter.
  • the blower amount judgment unit 11 proceeds to S001, performs the basic operation shown in FIG. If the temperature of the heat generating portion 6h does not exceed a predetermined threshold value that means a temperature that needs to be cooled, a command for not operating the blower unit 5 is received, and if it exceeds, a command for operating the blower unit 5 is controlled by the blower. To the unit 8.
  • the blower amount judgment unit 11 outputs a command for operating the blower unit 5 regardless of the temperature of the heat generation portion 6h, but before that, heat generation is performed in S001.
  • the temperature of the part 6h is acquired.
  • the foreign matter detection unit 10 does not detect the foreign matter attached to the light transmission unit 3 from the information regarding the light that enters the observation device unit 6 through the light transmission unit 3 from the outside. May be provided as the foreign object detection unit 10, or a detection sensor may be provided outside the housing 1 as the foreign object detection unit 10.
  • the foreign matter detection step in the method of blowing air onto the light transmitting member is not to detect the foreign matter attached to the light transmitting portion 3 from the information on the light entering the observation device portion 6 through the light transmitting portion 3 from the outside.
  • the foreign matter attached to the light transmission part 3 may be detected from information of a pressure sensor provided in the transmission part 3 or information of a detection sensor provided outside the housing 1.
  • the air flow rate determination unit 3 is set to the foreign object regardless of the determination of the foreign object detection unit 10. You may make it make the determination which removes (water droplet). Thereby, even before the observation by the observation device unit 6, it is possible to blow away water droplets formed by melting ice or the like by the heat of the film heater 3 f.
  • the optical apparatus does not have the film heater 3f, before observation by the observation device unit 6, for example, when the observation device unit 6 is activated, regardless of the determination of the foreign material detection unit 10, or the determination itself of the foreign material detection unit 10
  • the optical device may blow air from the nozzle portion opening 4 to the light transmitting portion 3 at the time of activation. The air volume at this time is such that it blows away foreign matter adhering to the light transmission portion.
  • the air blowing method to the light transmission member includes a film heater ON / OFF determination step for determining ON (start) / OFF (stop) of the film heater 3f as the first step. If the film heater 3f is OFF, the process proceeds to S101, S201, or S001. When the film heater 3f is ON, the process proceeds to the air blowing step, that is, the molten water droplet removing step.
  • the air blowing step for removing the molten water droplets is also performed by controlling the blower unit 5 by the signal processing unit 6s and the blowing amount control unit 8 in the same manner as the air blowing step of blowing air with the instructed air volume. Thereafter, S101, S201, or S001 is executed.
  • the air blowing method to the light transmitting member has an air blowing step (also referred to as a starting air blowing step or a starting foreign matter removing step) as the first step.
  • the startup air blowing step is performed by the signal processing unit 6 s and the blower amount control unit 8 controlling the blower unit 5.
  • the optical device is installed at a place away from the house, damage to birds and beasts is also assumed.
  • the effect of avoiding birds and beasts can be expected by using a structure that generates a loud sound when air is blown from the nozzle opening 4.
  • the timbre may be changed by changing the air volume over time. However, it should not be less than the amount of air necessary for removing foreign matter from the light transmitting portion 3 and cooling the heat generating portion 6h.
  • the minimum air amount is used for removing foreign matter from the light transmitting portion 3 and cooling the heat generating portion 6h. It is necessary to make the necessary air volume. In particular, it should not be less than the air volume necessary for cooling the heat generating portion 6h.
  • the air blowing step is a wildlife repelling step.
  • Bird and beast damage includes excrement from small animals such as birds and insects.
  • the bird and animal repelling step may be performed separately from the presence or absence of foreign matter adhering to the light transmitting portion 3 and the cooling of the heat generating portion 6h. Also in this case, the bird and animal repelling step is performed by the signal processing unit 6s and the blower amount control unit 8 controlling the blower unit 5.
  • the optical device according to Embodiment 1 can be used for outdoor use. Further, the air used for cooling and exhausting heat can be used effectively without being used only for exhaust heat.
  • Patent Document 5 it is necessary to provide an air intake port from the outside of the housing to the inside of the housing, and it is necessary to have a structure in which the inside of the housing communicates with the outside of the housing.
  • the technology disclosed in Patent Document 5 cannot be used in a housing installed in a place where salt water directly hits the sea.
  • the fan itself is also limited to cooling applications, and does not reduce the loss of energy used in the entire casing.
  • the optical device according to the first embodiment is intended for an observation device and a plurality of high-heat-generation electronic device housings that control the observation device, and in a device that is premised on the use of a powerful cooling fan, At least two conflicting problems such as weight reduction, long life, and low power consumption can be solved.
  • a cooling means is provided to a continuously used electronic device, which is conventionally used only for cooling.
  • the exhausted hot air can be used to remove rain and snow adhering to the housing 1.
  • a feature of the optical device according to the first embodiment is that the fins 7f are arranged outside the airtight structure called a hollow portion provided in the housing 1, and the airtight portion is separated by the hollow structure, thereby having a waterproof structure.
  • a plurality of electronic housings can be cooled as they are, and the exhausted hot air after cooling can be used as it is for removing rain and snow.
  • an observation device that can exhaust heat even if it has a plurality of electronic units, and that affects the observation result with respect to changes in the external natural environment, for example. Therefore, downsizing and power saving can be realized.
  • the optical device has a waterproof and airtight structure that houses the observation equipment, has electronic equipment for controlling the observation equipment inside, and protects the observation equipment from changes in outdoor environmental conditions.
  • An observation equipment housing which has a light transmission part 3 on the wall surface of the housing 1 and constitutes a hollow structure for cooling the electronic equipment in a state where the external air and the internal air are disconnected by heat transfer.
  • Fin 7f characterized by being mounted outside the waterproof and airtight structure of the device, duct 4d for discharging the wind generated by the blower unit 5 to the light transmitting unit 3 of the observation device, and opening and closing for maintenance of the internal electronic device It is characterized by comprising a possible door (lid portion 1c).
  • the duct of the optical device according to the first embodiment has a blower unit for accelerating the wind generated by the blower unit 5 for the purpose of removing foreign matters such as dust and water droplets attached to the light transmission unit 3 during discharge. It has a caliber whose area is smaller than 5 openings.
  • the lidar device is a kind of weather radar.
  • the landing / snow landing of the light transmitting unit 3 blocks the laser light, and thus there is a problem that the observation performance is significantly deteriorated.
  • removal by a wiper has been performed, but during the wiper scanning, light is blocked, the light transmission part 3 is scratched, and the maintenance interval is shortened due to the durability of the wiper rubber.
  • the emitted laser light is interrupted, and the observation performance is significantly deteriorated.
  • the lidar apparatus is characterized in that it cannot be observed due to the influence of foreign matter by blowing off foreign matters such as water droplets and snow on the light transmission part 3 by wind force.
  • FIG. 15 is a configuration diagram (top view, cross-sectional view) of an optical device according to Embodiment 2 of the present invention.
  • FIG. 16 is a cross-sectional view illustrating the flow path of the optical device according to Embodiment 2 of the present invention.
  • FIG. 15A is a top view of the optical device
  • FIG. 15B is a CC cross-sectional view of the optical device in FIG. 15A
  • FIG. 16 is a CC cross-sectional view of the optical device in FIG. Shows the flow of air.
  • the casing 1A is a box type whose outer shape is a rectangular parallelepiped, and has a waterproof and airtight structure.
  • the light transmitting portion 3 is an observation window provided in the housing 1 by a material that allows light to pass, such as a lens or a transparent plate made of a glass or resin member.
  • the duct 4dA disposed on the upper surface of the housing 1 is an air flow path for blowing air sucked from the air suction port 1inA, and the nozzle portion opening 4 blows air to the light transmitting portion 3.
  • the nozzle 4n is provided in the duct 4dA in which the cross-sectional area of the flow path decreases as it approaches the nozzle opening 4 that is an air blowing port. Exhaust (air) from the flow path can be accelerated and sprayed by the nozzle portion 4n.
  • the opening area of the air inlet 1inA is larger than the opening area of the nozzle portion opening 4.
  • a filter may be provided at the air inlet 1inA.
  • the blower unit 5 generates an air flow from the air inlet 1inA to the nozzle opening 4 serving as an air blowing port, and is provided inside the duct 4dA.
  • the nozzle opening 4 and the air inlet 1inA are opposed to each other, and the air flow in the duct 4dA is substantially linear.
  • the duct 4dA near the air inlet 1inA may be bent downward, and the flow path may be bent with the air inlet 1in facing the lower surface.
  • the optical device according to Embodiment 2 accelerates the exhaust (air) of the air sucked from the air inlet 1inA through the duct 4dA by the nozzle portion 4n and discharges it to the light transmitting portion 3, thereby reducing the exhaust flow velocity.
  • the optical device can be used continuously. Exhaust is performed on the light transmission part 3 through the duct 4dA, but the air taken in from the air inlet 1inA has Bernoulli's theorem because the opening area of the nozzle part opening 4 is smaller than the other part. Therefore, foreign matter such as rain, snow droplets and dust on the light transmission part 3 can be blown away by the exhaust flow, and the light transmission part 3 can be cleaned without human intervention.
  • the heat radiation portion 6h of the observation device section 6 is smaller than that in the first embodiment, and the fins 7f are exposed outside the housing 1A and are cooled by natural air cooling. Fins may be provided inside the flow path so that the air that has cooled the fins 7f can be used to blow off foreign matter.
  • the part of the flow path in which the fin is provided may be a part passing through the inside of the outer shape of the housing, or may be another part.
  • the outer shape of the housing is a rectangular parallelepiped, it may be a polyhedron with inclined side surfaces.
  • a waterproof or airtight housing with a light transmissive part, maintaining a waterproof or airtight air flow path for blowing air to remove foreign matter adhering to the light transmissive part As long as it can be provided, a housing having any shape may be used. The above also applies to other embodiments.
  • Image sensor 6p ⁇ ⁇ Optical equipment housing, 6e ⁇ ⁇ Electronic equipment housing, 6es ⁇ ⁇ Electronic equipment board, 6eh ⁇ ⁇ Electronic equipment circuit (heating element), 7. Cooling part, 7f. Fin, 8. Blower control unit, 9. Temperature detector, 10. ⁇ Foreign matter detector 10a .. maximum value calculation unit, 10b... Threshold determination unit, 10c .. Time determination unit, 10d .. image processing unit, 10e .. Foreign matter determination unit, 11. A ventilation amount determination unit.

Abstract

 光透過部に異物が付着した場合に適切に光透過部に空気を吹き付けることができる光学装置及び空気吹き付け方法を提供する。 光透過部3へ空気を吹き付ける空気吹き付け口4と、流路2に空気吸入口1inから空気吹き付け口4への空気の流れを生じさせる送風機部5と、送風量を送風機部5に指示する送風機制御部8と、観測機器部6の発熱部分6hからの熱が伝えられる流路2の内部に設けられたフィン7fを有する発熱部分6hを冷却する冷却部7と、発熱部分6hの温度を測定する温度検出部9と、光透過部3に付着した異物を検知する異物検知部10と、この異物検知部10が異物を検知した場合に、温度検出部9が検出した温度に対応する送風機部の温度ごとの送風量、及び、異物検知時の送風機部の送風量を比較して、多い方の送風量で送風機部5が動作するように送風機制御部8へ送風量の比較結果を伝える送風量判定部11とを備えた。

Description

光学装置及び空気吹き付け方法
 この発明は、光透過部材の異物を除去する機能を有する光学装置及び光透過部材への空気吹き付け方法に関するものである。
 従来、光透過部材の異物を除去する機能を有する光学装置には、光透過部材(保護ガラス又はガラス)をワイパによって清掃するものがある(例えば、特許文献1又は2参照)。また、光学装置の光透過部材の異物を除去する装置や異物の付着を防止する装置には、光透過部材(前面ガラス又は窓ガラス)の方向又は前方に風(空気)を当てる装置がある(例えば、特許文献3又は4参照)。特許文献3では、光透過部材に当たる風が冷却用のフィンを経由している。なお、特許文献5には一対の高発熱電子装置のフィン(冷却)を流路内に設けた電子ユニットの冷却構造が開示されている。
特開平5-68191号公報(第2図,第14図) 特開平7-92538号公報(第1図,第15図) 特開2000-171878号公報(第1図) 特開2010-2740号公報(第1図~第4図) 特開平5-259673号公報(第1図、第2図)
 しかし、特許文献1及び2に記載のようなワイパは、光透過部材に接触するという点で光透過部材の定期的な交換や光透過部材の傷を許容しない光学装置に適用できないというという課題があった。また、特許文献3及び4に記載のような風(空気)を光透過部材に当てるものは、風量の制御の最適化検討が十分でない、又は、光学装置の筐体が防水構造あるいは気密構造の場合の適用検討が十分でないという課題があった。
 この発明は、上記のような課題を解消するためになされたもので、光透過部に異物が付着した場合に適切に光透過部に空気を吹き付けることができる光学装置及び空気吹き付け方法を提供することを目的とする。
 この発明に係る光学装置は、外部からの光が入射する光透過部と、前記光透過部からの光を受ける観測機器部と、前記光透過部へ空気を吹き付ける空気吹き付け口と、前記空気吹き付け口に空気を流す流路と、前記流路に空気が流れ込む空気吸入口と、前記流路に前記空気吸入口から空気吹き付け口への空気の流れを生じさせる送風機部と、前記流路を流れる空気の量である送風量を前記送風機部に指示する送風機制御部と、前記観測機器部の発熱部分からの熱が伝えられる前記流路の内部に設けられたフィンを有する前記発熱部分を冷却する冷却部と、前記観測機器部の発熱部分の温度を測定する温度検出部と、前記光透過部に付着した異物を検知する異物検知部と、前記異物検知部が異物を検知した場合に、前記温度検出部が検出した温度に対応する、予め設定された前記送風機部の温度ごとの送風量、及び、予め設定された異物検知時の前記送風機部の送風量を比較して、多い方の送風量で前記送風機部が動作するように前記送風機制御部へ送風量の比較結果を伝える送風量判定部とを備えたものである。
 この発明に係る空気吹き付け方法は、送風機部により、外部からの光が入射する光透過部からの光を受ける光学装置の観測機器部の発熱部分を冷却する空気の流れを生じさせるとともに、前記送風機部により、前記光透過部へ吹き付ける空気の流れを生じさせる、前記光透過部への空気吹き付け方法において、前記観測機器部の発熱部分の温度を検出する温度検出ステップと、前記光透過部に異物が付着しているか判定する異物検知ステップと、前記異物検知ステップで異物が検知された場合、前記温度検出ステップで検出した温度に対応する、予め設定された温度ごとの前記送風機部の送風量、及び、予め設定された前記送風機部の異物検知時の送風量を比較して、多い方の送風量を判定する送風量判定ステップと、前記送風量判定ステップで、多い方の送風量と判定された送風量で前記送風機部に送風させる送風機制御ステップとを備えたものである。
 この発明によれば、透過部に異物が付着した場合に適切に光透過部に空気を吹き付けることができる光学装置を得ることができる。
 この発明によれば、光透過部に異物が付着した場合に適切に光透過部に空気を吹き付けることができる空気吹き付け方法を得ることができる。
この発明の実施の形態1に係る光学装置の構成図(上面図,断面図)である。 この発明の実施の形態1に係る光学装置の構成図(断面図,側面透視図)ある。 この発明の実施の形態1に係る光学装置においてフィルムヒータを有する場合の断面図である。 この発明の実施の形態1に係る光学装置の模式断面図である。 この発明の実施の形態1に係る光学装置の光透過部及び観測機器部の機能ブロック図である。 この発明の実施の形態1に係る光学装置の機能ブロック図である。 この発明の実施の形態1に係る光学装置の送風量制御処理のフローチャートである。 この発明の実施の形態1に係る光学装置における要部の機能ブロック図である。 この発明の実施の形態1に係る光学装置の送風量制御処理のフローチャートである。 この発明の実施の形態1に係るライダ装置のレーザ照射方向距離ごとのS/N比最大値を示すグラフである。 この発明の実施の形態1に係るライダ装置の経過時間ごとのS/N比最大値を示すグラフである。 この発明の実施の形態1に係る光学装置の送風量制御処理のフローチャートである。 この発明の実施の形態1に係る光学装置の送風量制御処理のフローチャートである。 この発明の実施の形態1に係る光学装置の送風量制御処理のフローチャートである。 この発明の実施の形態2に係る光学装置の構成図(上面図,断面図)である。 この発明の実施の形態2に係る光学装置の流路を説明する断面図である。
 実施の形態1.
 以下、この発明の実施の形態1について図1から図14を用いて説明する。図1から図4を用いて実施の形態1に係る光学装置の構造を説明し、図5から図14を用いて実施の形態1に係る光学装置の送風量制御処理すなわち光透過部材への空気吹き付け方法を説明する。光学装置とは、ライダ装置、撮像装置、光透過部材を有するその他の装置である。なお、本願では、「空気の吹き付け」とは、光透過部材(後述の光透過部3)へ空気の大部分を直接当てる場合だけではなく、光透過部材の表面に付着した水滴やゴミなどの異物を吹き飛ばす程度に光透過部材の周辺に空気を流す場合も含んでいるとする。
(1)光学装置の構造
 図1は、この発明の実施の形態1に係る光学装置の構成図(上面図,断面図)である。図2は、この発明の実施の形態1に係る光学装置の構成図(断面図,側面透視図)ある。図3は、この発明の実施の形態1に係る光学装置においてフィルムヒータを有する場合の断面図である。図4は、この発明の実施の形態1に係る光学装置の模式断面図である。
 図1(a)は光学装置の上面図、図1(b)は図2(b)における光学装置のA-A断面図、図2(a)は図1(b)における光学装置のB-B断面図、図2(b)は光学装置の短尺側の側面透視図である。図3は、光透過部材を熱するフィルムヒータを有する光学装置の断面図であり、図2(b)における光学装置のA-A断面図に相当するものである。図4(a)は光学装置の模式断面図であり、図1(b)における光学装置のB-B断面よりも少し下の位置での断面図に相当するものである。図4(b)は光学装置の模式断面図であり、図2(b)における光学装置のA-A断面図に相当するものである。
 図1から図4において、筐体1は、外形が直方体の箱型のものであり、少なくとも防水構造を有しており、場合によっては気密構造を有している。防水構造又は気密構造を、防水気密構造と呼ぶ。なお、気密構造は防水構造でもある。貫通流路2は筐体1を貫通し、四方すなわち周囲が筐体1の防水気密構造で囲われた通気用の導管である。光透過部3はガラス製や樹脂製の部材のレンズや透明板などの光が通過することが可能な材料で、筐体1に設けられたものである。光透過部3は、光学装置が観測のためなどに光を出したり受けたりするために、筐体1に設けられる。そのため、光透過部3を観測窓とも呼ぶ。貫通流路2は、光学機器で発生する熱を冷却し、光透過部3へ吹き付けられる空気を通す通路の一部である。貫通流路2の出口側には、空気吹き付け口であるノズル部開口4がある。ノズル部開口4は、光透過部3に付着した異物を吹き飛ばすために空気を吹き付けるものである。詳しくは、ノズル部開口4はノズル状の形状の先端に設けられた開口であり、貫通流路2からの排気(空気)を加速させて光透過部3に吹き付けることができる。
 なお、光透過部3が設けられた第一の面(上面)に設けられた貫通流路2の第一の開口である開口2aがノズル部開口4と連通し、第一の面と対向する筐体1の面である第二の面(下面)に設けられた貫通流路2の他方の開口である第二の開口が空気吸入口1inである。貫通流路2の開口2aは筐体の上面に設けられ、貫通流路2の空気吸入口1inは筐体の下面に設けられている。筐体の上面には、貫通流路2の開口2aを覆うダクト4dが設けられている。ダクト4dの光透過部3側には、光透過部3に近づくにつれしだいに断面積が減少するノズル部4nが設けられている。ノズル部4nの先端に設けられた開口がノズル部開口4である。貫通流路2とダクト4dが、空気吹き付け口であるノズル部開口4に空気を流す流路である。空気吸入口1inから流路に空気が流れ込み、ノズル部開口4から空気が光透過部3に吹き付けられる。詳細は後述するが、流路は筐体1の防水構造を維持して設けられる。流路は図1(b)、図2(b)、図3において太い破線で示した部分である。図4(b)で、開始部に矢印を有する破線が空気の流れを示す。
 図3に示したフィルムヒータ3fは、光透過部3に雪や氷が付着しないように、光透過部3を加熱するものである。
 図1から図4において、筐体1の側面には蓋部1cが設けられている。蓋部1cは筐体1の対向する側面の両方に設けてもよいし、四つの側面全てに設けてもよいし、一つまたは三つの側面に設けてもよい。蓋部を側面に設けた上に、あるいは側面には設けないで、上面または下面のどちらか又は両方に蓋部を設けてもよい。本願では、長尺側の両方の側面に蓋部1cを設けた場合を主に図示している。蓋部1cを閉じることで筐体の枠体に蓋部1cが嵌る。筐体の枠体又は蓋部1cの少なくとも一方にはパッキンが設けられており、蓋部1cを閉じることで、筐体1が防水気密構造となる。また、図2(b)に示すように、蓋部1cを開けることで、後述する観測機器部6や観測機器部6の発熱部分6hへ手が届くので、光学装置の保守が自在である。後述する電子機器筺体6eにも蓋部1cを設けてもよい。つまり、筐体1及び電子機器筺体6eは、維持や保守のための扉状の蓋部1cを有し、蓋部1cには、ゴムやシリコンパッキンなどにより、気密が取れる構造となっている。
 図1から図4において、筐体1の下面に設けられた空気吸入口1inから始まる貫通流路2は、空気が流れる方向とほぼ直交する断面積が、図2(b)に示すように、断面積減少部2bにおいて空気吸入口1inの開口面積よりも減少する。空気吸入口1inにフィルタを設けてもよい。断面積減少部2bを設けず、空気吸入口1inの開口面積を冷却部7(後述)が設けられる部分の貫通流路2の断面積と同じにしてもよい。ファン又はブロアである送風機部5は空気吸入口1inからノズル部開口4への空気の流れを生じさせるものである。送風機部5はダクト4dの内部に設けられている。ダクト4dに入ると、図に示すように、貫通流路2を流れて来た空気が、ほぼ直角に曲げられる。この流れが曲げられた空気がノズル部開口4から噴出し、光透過部3へ吹き付けられる。ダクト4dによって、流路3を流れる空気の方向を容易に光透過部3側に向けることができる。また、ダクト4dの内部の空間に送風機部5を配置することで、省スペース化が図れる。開口2aに送風機部5を配置しても省スペース化が図れる。送風機部5を空気吸入口1inに、あるいは空気吸入口1inの外側や筐体1の外側、あるいは貫通流路2の途中に配置してもよい。
 図1から図4において、観測機器部6は筐体1に収納され、光透過部3を介して外部からの光を受けるものであり、ドップラーライダなどのライダ装置やカメラなどの撮像装置などにおいて信号処理を実施する部分である。また、観測機器部6は、光学装置の光学機器を収納する光学機器筐体6pと光学装置の電子機器を収納する電子機器筐体6eとを有している。光学機器筐体6pには、光透過部3が設けられている。また、光学機器筐体6pの光透過部3が設けられた面が筐体1から露出している。つまり、光学機器筐体6pの光透過部3が設けられた面が筐体1の外面の一部となっている。このため、光透過部3は筐体1に設けられているといえる。本願では、上から見て一つの光学機器筐体6pに垂直に二つの電子機器筐体6eが互いに対向して間に冷却風が流れる貫通流路2ができるような配置、すなわちΠ(パイ)字状の配置となったものを図示している。光学機器筐体6pと電子機器筐体6eとが一体であってもよい。
 冷却部7は、貫通流路2の内部に設けられた例えばアルミニウム製のフィン7fにより観測機器部6の発熱部分6hを冷却するものである。観測機器部6の発熱部分6hからの熱が伝えられるフィン7fは、貫通流路2を流れる空気に放熱して、発熱部分6hを冷却する。発熱部分6hとフィン7fの間の熱抵抗ができるだけ小さくなるように、発熱部分6hとフィン7fとを接続する。冷媒により熱を伝えるヒートパイプで、発熱部分6hとフィン7fとを接続してもよい。観測機器部6の発熱部分6hの中で、電子機器筐体6eにある部分を発熱体6ehと呼ぶ。
 図5は、この発明の実施の形態1に係る光学装置の光透過部及び観測機器部の機能ブロック図である。図5(a)は光学装置がライダ装置である場合の機能ブロック図、図5(b)は光学装置が撮像装置である場合の機能ブロック図である。図6は、この発明の実施の形態1に係る光学装置の機能ブロック図である。
 図5において、撮像装置における、撮像素子6cはCCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの光学センサからなるカメラモジュールである。信号処理部6sは撮像素子6cが得た画像信号を信号処理するものである。
 図1から図6において、観測機器部6は筐体1に収納され、光透過部3を介して外部からの光を受けるものであり、ドップラーライダなどのライダ装置やカメラなどの撮像装置である。ライダ装置の場合には、観測機器部6はスキャナー部6sc,光送受信部6rt,信号処理部6sを有して構成される。撮像装置の場合には、観測機器部6は撮像素子6c,信号処理部6sを有して構成される。図5において、ライダ装置におけるスキャナー部6scは、光透過部3を介して、送信光を外部へ照射し、この照射した送信光が空気中の微粒子であるエアロゾルに反射した反射光を受信するものである。光送受信部6rtはスキャナー部6scが送信する送信光とスキャナー部6scが受信した反射光とをそれぞれ送受信処理するものである。信号処理部6sは光送受信部6rtが受信処理した反射光の受信信号とスキャナー部6scの角度信号とから、風速を算出するものである。
 図1から図6において、光学機器筐体6pは筐体1に内蔵される。ライダ装置の場合には、光学機器筐体6pにスキャナー部6sc及び光送受信部6rtが収納される。撮像装置の場合には、光学機器筐体6pに撮像素子6cが収納される。信号処理部6sの一部又は全部が光学機器筐体6pに収納されていてもよい。電子機器筐体6eは筐体1に内蔵され、主に観測機器部6における信号処理部6sが収納されるものである。電子機器筐体6eはライダ装置のスキャナー部6sc及び光送受信部6rtあるいは撮像装置の撮像素子6cの一部が収納されていてもよい。光学機器筐体6pと電子機器筐体6eとが一体の場合は、ライダ装置のスキャナー部6sc及び光送受信部6rtあるいは撮像装置の撮像素子6c,信号処理部6sが収納されることになる。また、光学機器筐体6p及び電子機器筐体6eは、貫通流路2の周囲に配置されている。観測機器筐体6eの発熱体6ehは電子機器回路である。発熱体6ehを電子機器回路6ehとも呼ぶ。電子機器基板6es及び電子機器回路6ehは電子機器筐体6eに内蔵され、主に、信号処理部6sとして機能するものである。
 ここで、電子機器回路6ehは観測機器部6の発熱部分6hの全部である場合もあれば、観測機器部6の発熱部分6hの一部である場合もある。一部である場合には、光学機器筐体6p内のライダ装置のスキャナー部6sc及び光送受信部6rtあるいは撮像装置の撮像素子6cが観測機器部6の発熱部分6hの一部になる場合がある。発熱が大きい電子機器回路6ehは、冷却部7のできるだけ近くに配置される。
 観測機器部6の発熱部分6hを、筐体1の内部にどのように配置するかには、ある程度の自由度がある。光学機器筐体6p及び電子機器筐体6eに、発熱部分6hをどのような割合で配分するかは、発熱部分6hからのフィン7fへ熱を効率よく伝えることができ、光学装置としても望ましい配置になるように決める。
 次に、この実施の形態1に係る光学装置の具体的な構成を図1から図4を用いて説明する。光学装置において、発熱部分6hは、筐体1の防水気密構造における貫通流路2の四方を囲う壁面の内部に配置されている。発熱部分6hは、筐体1に収納された光学機器筐体6p及び電子機器筐体6eに設けられるものであり、光学装置を運用することで発熱する部材である。光学装置は、このような発熱をフィン7fへ容易に伝達させることができる配置なっており、貫通流路2に空気を流すことでフィン7fを介して発熱部分6hからの排熱を行うことができる。
 光学装置は、フィン7fを冷却した排気(空気)をダクト4dに導き、ダクト4dに設けたノズル部4nで加速して光透過部3に対して排出する。こうすることにより、排気流速の運動エネルギーを光透過部3の清掃に利用することで、機能の共有化による省電力化、小型化を実現し、かつ光学装置を持続して利用することができる。排気は、ダクト4dを通じて光透過部3上に出されるが、空気吸入口1inから取り入れられた空気は、ノズル部4nで流路断面積が減少するので、ベルヌーイの定理に基づいた速度へと加速される。加速された空気は、光透過部3上の雨、雪による水滴及びゴミなどの異物を排気流により吹き飛ばすことでき、人の手を介することなく光透過部3の清掃が行うことができる。
 観測機器部6の発熱部分6hの全部または大部分を有する電子機器筐体6eは、防水気密構造における貫通流路2の四方を囲う壁面の内部あるいは壁面の一部を構成するように配置されている。特に、図1及び図2に示すように、主な観測機器部6の発熱部分6hである電子機器筐体6eは、防水気密構造における貫通流路2の壁面の一部になるように配置されている。詳しくは、図2(a)に示すように、貫通流路2は、B-B断面が長方形であり、この長方形の長辺部分の貫通流路2の壁面は、フィン7fが設けられた電子機器筐体6eの外面となっている。また、本願では、電子機器筐体6eが二つあるので、二つの電子機器筐体6eの間に貫通流路2(冷却部7)が配置されているといえる。
 観測機器部6の発熱部分6hの一部を有する光学機器筐体6pは、防水気密構造における貫通流路2の四方を囲う壁面の内部あるいは壁面の一部を構成するように配置されている。特に、図1及び図2に示すように、主な観測機器部6の発熱部分6hの一部を有する光学機器筐体6pは、防水気密構造における貫通流路2の周囲に配置されている。詳しくは、図2(a)に示すように、貫通流路2は、B-B断面が長方形であり、この長方形の短辺部分の側に主な観測機器部6の発熱部分6hの一部を有する光学機器筐体6pが配置されている。
 光学機器筐体6p又は/及び電子機器筐体6eの外面を、筐体1の防水気密構造における貫通流路2の四方を囲う壁面の一部としてもよい。つまり、光学機器筐体6p又は/及び電子機器筐体6eの外面が筐体1から露出することになる。露出する外面に電子機器基板6esのフィン7fが設けられた面が配置される場合も含まれる。発熱体6ehを構成する高発熱電子素子(CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、高出力増幅器)は、電子機器筐体6eの内部に配置されている。つまり、発熱体6ehのフィン付きヒートシンクのフィン7fが貫通流路2に配置されることになる。
 光学機器筐体6p又は/及び電子機器筐体6eの外面を筐体1から露出させる場合、筐体1の枠体に光学機器筐体6p又は/及び電子機器筐体6eが嵌め込まれることになるので、この部分の気密性はパッキンなどで確保する必要がある。そして、光学機器筐体6p内の光学機器に比べて発熱量が大きい発熱体6ehとフィン7fの間の熱抵抗を小さくできる。つまり、発熱体6ehが搭載された電子機器基板6esは、筐体1の防水構造を維持しつつ、貫通流路2の壁面の一部を構成するものとなる。
 本願の図面では、電子機器筺体6e及びフィン7fが二つの構成となっているが、これら電子機器筺体6eが、三つ以上に分かれていてもよい。発熱体6ehが部分的に分かれているなどの理由で、フィン7fを電子機器基板6es又は電子機器回路6ehに複数個に分けて取り付けた構成としてもよい。軽量化の要求や省スペース化などで、電子機器筺体6eが複数に分割される、又は、発熱体6ehが複数箇所にある場合において、フィン7fを部分的に複数個配置することにより、効果的に冷却が行うことができる。フィン7fを分割して必要な箇所に集中配置することで、フィン7fによる冷却効果をより高め、電子機器筺体6eからの排熱を効率的に行うことを可能とし、フィン7fや電子機器筺体6eの重量を削減することも容易となる。
 実施の形態1に係る光学装置によれば、光学機器筐体6p内の光学機器に比べて、特に、大出力で高排熱を必要とする光学装置や信号処理ユニットである電子機器回路6ehを一つの筐体1内に電子機器筺体6eとしてまとめて配置することが容易である。したがって、筐体1の内部と外気が通る空気吸入口1inを含めた中空構造(貫通流路2)とが分離されている。貫通流路2は、筐体1の外形の内側を通る流路の部分であり、筐体1の防水構造を維持して設けられている。そのため、防水気密構造が必要とされる電子機器筺体6eを保護しながらの連続稼動と防水気密構造における効率的な排熱を実施することができる。
 実施の形態1に係る光学装置を連続稼動する場合には、特に、光学装置の例えば装置やセンサの制御、データ処理、光学処理などに用いられる内部の光学機器筐体6pや電子機器筺体6eで発生する熱を排熱する必要がある。筐体1内での発熱は、電子機器筺体6eの中の電子機器基板6es上にある発熱体6eh(例えば、CPU、GPU、高出力増幅器といった高発熱電子素子)で生じるものが大きいものとなる。高発熱電子素子は、強制冷却されることが使用の前提となる。防水気密構造の筐体1では、外気の流入を行えないため、一般的な方法では強制冷却が行えない。実施の形態1に係る光学装置では、筐体1の内部に設けられた中空部すなわち貫通流路2にフィン7fを露出する構成とすることで、筺体1内部から外部空気への排熱を可能としている。
 なお、通気用の貫通流路2は、直方体の外形を有する防水気密構造の筐体1の対向する二面すなわち上面と下面にそれぞれ開口(開口2aと空気吸入口1in)を有し、筐体1を貫通した周囲が防水気密構造で囲われた中空構造である。貫通流路2の空気が流れる方向とほぼ直交する方向での断面形状は、長方形である。また、図1(b),図2,図3,図4に示すように、冷却部7が有するフィン7fは、貫通流路2の図2(a)に示すB-B断面における断面形状の長方形の対向する長辺部分からそれぞれ延びるものである。長辺部分の一方だけに発熱部分6h及びフィン7fを設けてもよい。
 図1から図4に示すように、光透過部3は、光学機器筐体6p(筐体1)に設けられているので、貫通流路2が有する断面形状の長方形の短辺部分側に設けられていることになる。筐体1は、直方体の外形を有し、光透過部3と貫通流路2の一方の開口とが同じ面側に配置されている。貫通流路2は、筐体1の対向する面(上面)と面(下面)とに、それぞれ貫通流路2の一方の開口2aと貫通流路2の他方の開口である空気吸入口1inとが配置されている。開口2aの面積は、冷却部7のフィン7fが設けられた部分の貫通流路2の断面積よりも小さいものである。開口2aの全体を覆い、開口2aから光透過部3の横のノズル部開口4までの流路となるダクト4dが、筐体1に取り付けられている。ダクト4dの内部で、開口2aとノズル部開口4の間に、送風機部5が配置されている。
 図1から図4に示すように、送風機部5は、筐体1の光透過部3と開口2aとが配置された面に載置されているが、ダクト4dに設けてもよい。ダクト4dは、ノズル部開口4側に向かうにつれ断面積が縮小していくノズル部4nを有する。特に、図1から図4では、送風機部5からノズル部開口4へ向かう部分において、ノズル部開口4側に向かうにつれ、断面積が縮小していくノズル部4nを示している。なお、ノズル部は送風機部5よりも開口2a側にも設けても良い。
 光学装置は、図3に示すように、光透過部3にフィルムヒータ3fを取付ける場合がある。フィルムヒータ3fは発熱して、光透過部3上の雪や氷を溶かす。ノズル部開口4から吹き付けられた空気によって、光透過部3上の氷が溶融して発生した水滴を吹き飛ばすようにしてもよい。フィルムヒータ3fのONやOFFの制御は、信号処理部6sが行う。フィルムヒータ3fのON(起動)/OFF(停止)は筐体1外の外気温を測定して行えばよい。つまり、外気温を測定する温度検出部を光学装置に設ければよい。光透過部3と光学機器筐体6p内の光学機器の間にフィルムヒータ3fを配置することで、フィルムヒータ3fにより、光学装置の観測結果に影響を及ぼさず、かつ、冬季における低温環境下において光透過部3の凍結や結露を防止することで、光学装置の連続観測を行うことができる。
 このように、実施の形態1による光学装置では、筐体1の外部吸入口である空気吸入口1inから送風機部5により空気が吸入され、内部にフィン7fを有する中空構造部を通過することで、フィン7fからの熱を排出する。これにより、筺体1内部には、外部空気が進入することなく筺体1内部からの排熱を可能とし、かつ、排熱に利用した排気を光透過部3の清掃に使用することででき、送風機部5の機能共通化による省電力化、部品点数の削減を図ることができる。
 筐体1での防水気密構造は、図2(b)の太字破線で示すような中空構造を筺体1の外形の内側に構成し、筺体1内部と外部空気が流れる中空管路部に分離することができる。送風機部5の作用により空気吸入口1inより取り込んだ外気は、筺体1内部を通過せずに貫通流路2である中空管路部を通過することになり、そのまま光透過部3に吹き付けられる。よって、光学装置の筺体1は、外から水や空気を筺体1内部に取り入れない構造となっており、防水気密構造を得ることができる。
 例えば、レーザ光を用いた測定装置であるライダ装置、カメラといった光学装置である撮像装置を考えた場合に、筐体1の中央寄りに光透過部3を配置した方が、筐体1の設置を考慮に入れた場合に効果的であるとされる場合には、筐体1の中央寄りに光透過部3を配置し、本願の図面上、光学機器筐体6pや電子機器筺体6eが配置されている部分のどこかに中空構造(貫通流路2)を配置して構成することで、実施の形態1に係る光学装置を実施することができる。換言すると、本願の図面では、筐体1が直方体の外形を有し、光透過部3と開口2aとが同じ面側に配置されており、光透過部3と開口2aとが配置されている面を平面視したときに、開口2aが光透過部3よりも中央寄りに配置されている。つまり、光透過部3と開口2aとが配置されている平面で、開口2aが光透過部3よりも中央寄りに配置されている。筐体1が直方体の外形を有し、光透過部3と開口2aとが同じ面側に配置されており、光透過部3と開口2aとが配置されている面を平面視したときに、光透過部3が開口2aよりも中央寄りに配置されていてもよいということになる。なお、「光透過部3と開口2aとが配置されている面を平面視」する方向は、貫通流路2における空気が流れる方向、厳密には、空気吸入口1inから開口2aへ向かう方向と同じである。
 さらに、光学装置は、電子機器筺体6e内部の発熱体6ehとフィン7fの間にヒートパイプを配置し、発熱体6ehの熱輸送を実施してもよい。これは、電子機器筺体6eの排熱は、発熱体6ehとフィン7fとの間の熱伝達及びフィン7fと外気との熱伝達により実現しているが、発熱体6ehとフィンとが熱伝導率が良いサーマルシートなどをはさみ接している必要がある。ヒートパイプを用いることで、発熱体6ehからフィン7fへの熱輸送を行うことができ、発熱体6ehとフィン7fとを接触させる必要が無くなり、電子機器基板6esの基板構造の自由度が増す。また、電子機器筺体6e内部の発熱体6ehとフィン7fの間にヒートパイプを配置することで、電子機器筺体6eと貫通流路2の間に筐体1を配置することできる。また、ヒートパイプを用いることで、電子機器基板6esのレイアウトの制約条件が減るので、電子機器基板6es上における発熱体6ehの配置の自由度を高めることができる。
 本願の図面では、直方体の外形を有する筐体1の一つの面に光透過部3と開口2aとが配置され、光透過部3と開口2aとが配置された面上にダクト4dが載置されている。ダクト4dの大部分を筐体1に収納し、光透過部3とダクト4dの上面とをほぼ同じ高さにしてもよい。これは、光透過部3が配置された面にダクト4dの大部分を収納する窪みを設ければよい。この窪みの底に開口2aが設けられ、窪みの横に光透過部3が設けられることになる。ノズル部開口4だけが光透過部3が配置された平面から少し出るようにしてもよい。その場合には、ノズル部開口4に向かうにつれ、断面積が縮小していくノズル部4nでの傾斜が本願の図面では筐体1の上側の平面よりも下側に設けられる。また、ノズル部4nにおいて上下の対向する部分の両方に傾斜部分を設けてもよい。これは、本願の図面のように、光透過部3と開口2aとが配置された面上にダクト4dを載置している場合でもいえることである。
(2)送風量制御処理
 次に、実施の形態1に係る光学装置の送風量制御処理について図5から図14を用いて説明する。送風量制御処理は、光透過部材への空気吹き付け方法を実施するものである。光透過部材への空気吹き付け方法のことを、単に空気吹きつけ方法と呼ぶ場合がある。
 図7は、この発明の実施の形態1に係る光学装置の送風量制御処理のフローチャートである。図8は、この発明の実施の形態1に係る光学装置における要部の機能ブロック図である。図9は、この発明の実施の形態1に係る光学装置の送風量制御処理のフローチャートである。図10は、この発明の実施の形態1に係るライダ装置のレーザ照射方向距離ごとのS/N比最大値を示すグラフである。図11は、この発明の実施の形態1に係るライダ装置の経過時間ごとのS/N比最大値を示すグラフである。図12は、17この発明の実施の形態1に係る光学装置の送風量制御処理のフローチャートである。図13は、この発明の実施の形態1に係る光学装置の送風量制御処理のフローチャートである。図14は、この発明の実施の形態1に係る光学装置の送風量制御処理のフローチャートである。
 図5(a)は光学装置がライダ装置である場合の機能ブロック図、図5(b)は光学装置が撮像装置である場合の機能ブロック図である。
 図8(a)はライダ装置における要部の機能ブロック図、図8(b)は撮像装置における要部の機能ブロック図である。図10(a)は閾値を超える場合のレーザ照射方向距離ごとのS/N比最大値を示すグラフである。図10(b)は閾値を超えない場合のレーザ照射方向距離ごとのS/N比最大値を示すグラフである。図11(a)は閾値を超える場合の経過時間ごとのS/N比最大値を示すグラフである。図11(b)は閾値を超えない場合の経過時間ごとのS/N比最大値を示すグラフである。図7,図9,図12,図13,図14に記載の「S」は、処理ステップを示すSTEPの頭文字である。
 ここで、S/N比は、信号レベルSをノイズレベルNで割った値である。S/N比をS/N値、S/Nデータ、S/N比データとも呼ぶ。ある期間でのS/N比の最大値をS/N比最大値と呼ぶ。S/N比最大値を最大S/N比、最大S/N値とも呼ぶ。
 図5,図6,図8において、送風機制御部8は貫通流路2を流れる空気の量である送風量を送風機部5に指示するものである。送風機部5は光透過部3へ空気を吹き付けるノズル部開口4と空気吸入口1inとの間に設けられた流路に空気吸入口1inからノズル部開口4への空気の流れを生じさせるものである。温度検出部9は観測機器部6の発熱部分6hの温度を測定するものである。信号処理部6sに設けられた異物検知部10は光透過部3に付着した水滴やごみなどの異物を検知するものである。詳しくは、異物検知部10は、観測機器部6に光透過部3を通って外部から入る光から、光透過部3に付着した異物を検知するものである。具体的には、光の情報を画像とし、物体の形状や物体との距離、例えば、光透過部3からの距離、又は、撮像素子6cからの距離や光の情報の信号の変化から、光透過部3上の異物を検知する。
 図5,図6,図8において、信号処理部6sに設けられた送風量判定部11は異物検知部10が異物を検知した場合に、温度検出部9が検出した温度に対応する、予め設定された送風機部5の温度ごとの送風量である冷却対応送風量、及び、異物検知部10が異物を検知した場合に対応する、予め設定された送風機部5の異物検知時の送風量である異物除去送風量を比較して、多い方の送風量で送風機部5が動作するように送風機制御部8へ送風量の比較結果を伝えるものである。送風量判定部11は信号処理部6s又は外部から送風量の情報テーブルを取得して判定に用いるものである。送風量の情報テーブルは、発熱部分6hの冷却用のテーブルと光透過部3に付着した水滴やごみなどの異物の除去用のテーブルとの二つがある。本願では、異物検知部10及び送風量判定部11は信号処理部6sに設けられているものを例示しているが、異物検知部10及び送風量判定部11の少なくとも一方を信号処理部6sの外部に設けてもよい。また、本願では、送風機制御部8を信号処理部6sの外部に設けているが、送風機制御部8を信号処理部6sに設けてもよい。
 光学装置が、ライダ装置である場合の構成を図5(a)により説明する。図5(a)に示すように、ライダ装置は、光透過部3を介して、送信光を外部へ照射し、この照射した送信光がエアロゾルに反射した反射光を受信するスキャナー部6sc,スキャナー部6scが送信する送信光とスキャナー部6scが受信した反射光とをそれぞれ送受信処理する光送受信部6rt,光送受信部6rtが受信処理した反射光の受信信号とスキャナー部6scの角度信号とからドップラー効果による周波数変化を基に風速を算出する信号処理部6sを有して構成されている。信号処理部6sは、スキャナー部6sc及び光送受信部6rtを制御するものである。また、信号処理部6sは算出した風速や取得したデータをLAN(Local Area Network)などの外部とのインターフェースを介して外部へ出力する(外部データ)。異物検知部10は、最大値算出部10a,閾値判定部10b,時間経過判定部10cを有して構成されている。
 ライダ装置(ドップラーライダ)で大気を計測する原理を説明する。ドップラーライダは、レーザ光を出射する光透過部3、スキャナー部6sc、観測機器部6、信号処理部6sによって構成されている。ライダ装置の場合には、光透過部3のことをレーザ発射窓とも呼ぶ。このように構成されたドップラーライダでは、スキャナー部6scより大気との接触面である光透過部3を介して空中に放射された光の反射波が再びスキャナー部6scにて受信され、その受信された光が光送受信部6rtによって増幅、周波数変換されて受信IF(中間周波数)信号に変換される。このIF信号に信号処理部6sでA/D(アナログ-デジタル)変換、周波数解析処理を行うことにより、スペクトラムデータを算出して、スペクトラムデータから風速ベクトルを算出し、算出した風速を表示しかつ記録する。
 光学装置がライダ装置である場合、異物検知部10は、受信信号における決められた長さの時間内の最大のS/N比が決められた閾値を下回った場合に、光透過部3に異物が付着したと検知するものである。なお、信号処理部6sは、異物検知部10が光透過部3に異物が付着したと検知している間、算出した風速を参考値として処理するようにすれば、光透過部3に異物が付着することによる風速の検出の誤差を排除することが容易となる。
 また、光学装置が撮像装置である場合の構成を、図5(b)により説明する。図5(b)に示すように、撮像装置は、撮像素子6c,撮像素子6cが得た画像信号を信号処理する信号処理部6sを有して構成されている。信号処理部6sは、撮像素子6cを制御するものである。また、信号処理部6sは取得した画像データや動画データをLANなどの外部とのインターフェースを介して外部へ出力する(外部データ)。この場合、異物検知部10は、信号処理部6sが信号処理した画像信号から異物を検出するものである。異物検知部10は、画像処理部10d及び異物判定部10eを有して構成されている。つまり、画像処理部10dが信号処理した画像信号から異物判定部10eが画像の情報から物体の形状や物体の距離、例えば、光透過部3からの距離、又は、撮像素子6cからの距離を算出して光透過部3の異物付着の有無を判定する。
 観測機器部6は筐体1に収納され、光透過部3は筐体1に設けられるものである。これは、光学機器筐体6pに光透過部3設けられ、光透過部3が設けられた光学機器筐体6pの面が筐体1から露出して、筐体1の外面を構成している場合も含んでいる。
 図6に示す光学装置は、送風機部5により、外部からの光が入射する光透過部3からの光を受ける観測機器部6の発熱部分6hを冷却する空気の流れを生じさせるとともに、送風機部5により、光透過部3へ空気を吹き付けるノズル部開口4への空気の流れを生じさせる光透過部3への空気吹き付け方法が適用されるものである。
 図6に示す観測機器部6の発熱部分6hを冷却する基本動作は、図7のフローチャートで示される。まず、S001にて観測機器部6の発熱部分6hの温度を検出する温度検出ステップ(温度情報取り込みステップ)を行う。そして、S002にて温度検出ステップで検出した温度に応じて、予め設定された送風機部5の温度ごとの送風量で送風機部5に送風させる送風機制御ステップを行う。具体的には、信号処理部6sが、温度検出部9から観測機器部6の発熱部分6hの温度を取得して、予め設定された送風機部5の取得した温度での送風量を選択して、送風機制御部8へその情報を送り、送風機制御部8が送風機部5の送風量を制御する。送風機部5のON(起動)/OFF(停止)の制御自体も送風機制御部8が制御している。
 発熱部分6hの温度が冷却を必要としない場合は、送風機部5を停止する。前の状態が停止であれば、停止を継続する。つまり、起動しない。よって、予め設定された送風機部5の温度ごとの送風量とは、風量ゼロの場合も含んでいる。また、予め設定された送風機部5の温度ごとの送風量は、観測機器部6の発熱部分6hの温度が上がるにつれ、風量が徐々に上がるものでもよいし、温度範囲を区切って階段状に風量が上がるものでもよい。これらの送風量の情報すなわち予め設定された送風機部5の温度ごとの送風量は、発熱部分6hの冷却用のテーブルに相当する。S001,S002の処理ステップは繰り返し実施してもよいし、S001にて得られる温度が前回から変化した場合に、S002に進むようにしてもよい。
 図8には、信号処理部6sに異物検知部10及び送風量判定部11が設けられている。光学装置は、観測機器部6の発熱部分6hの冷却と光透過部3に付着した水滴やごみなどの異物の除去に送風機部5を共用するものである。そのため、異物が光透過部3に付着していない状態でも、異物を吹き飛ばすために必要な風量を送風機部5が発生させると、その風量が観測機器部6の発熱部分6hの冷却に必要な風量を超える場合は、電力消費が無駄になる。そこで、光透過部3の異物の有無によって、送風機部5の風量を制御することは重要である。
 具体的には、異物検知部10による光透過部3に異物が付着しているか判定する異物検知ステップで異物が検知された場合に、温度検出ステップで検出した温度に対応する予め設定された送風機部5の温度ごとの送風量、及び、異物検知ステップで異物を検知した場合の予め設定された送風機部5の異物検知時の送風量を比較して、多い方の送風量を判定する送風量判定ステップとを実行する。なお、異物検知ステップ(図9及び図12ではS101からS104,図13及び図14ではS201及びS202)と温度検出ステップ(S001)との実行順序は問わない。同時であってもよい。また、異物検知ステップは、観測機器部6に光透過部3を通って外部から入る光に関する情報から、光透過部3に付着した異物を検知するものである。
 そして、送風機制御部8が送風量判定部11からの指示を受けて、送風量判定ステップで、多い方の送風量と判定された送風量で送風機部5に送風させる送風機制御ステップを実行する。予め設定された送風機部5の異物検知時の送風量とは、光透過部3に付着した異物を吹く飛ばすことができる風量を意味する。一種類の風量に固定したものでもよいし、検出された異物の種類(水滴やゴミ)又は異物の量に応じて、風量を変えてもよい。この場合、異物が多い場合や異物が質量の重い水滴の場合は、より風量を大きくするなどが考えられる。これらの送風量の情報すなわち予め設定された送風機部5の異物検知時の送風量は、光透過部3に付着した水滴やごみなどの異物の除去用のテーブルに相当する。
(A)光学装置がライダ装置である場合の動作
 まず、光学装置がライダ装置の場合を図8(a)及び図9~図12を用いて説明する。ライダ装置の場合は、異物検知ステップが、エアロゾルに反射した反射光を受信処理した受信信号における決められた時間内の最大のS/N比が決められた閾値を下回った場合に、光透過部3に異物が付着したと検知するものとなる。つまり、S/N比が異物によって下がることを利用して異物を検知する。ここでは、異物が水滴である場合を例に説明を行う。ライダ装置は、信号処理部6sは観測機器部6より出力された受信信号を元に光透過部3上の水滴の有無を検出する。水滴無しの場合は温度検出部9より出力された温度情報を元に最適な風量となるように、図7に示す基本動作でファンを制御する。水滴有りの場合は水滴が除去できる風速に送風機部5を制御する。
 ライダ装置は、観測機器部6の発熱部分6hの冷却に用いる風により、光透過部3に付着する水滴を除去する機構を有している。筐体1中心の空洞の両サイドの枠にフィン7fの機構を設けた電子機器筐体6eを嵌めることにより、2個の電子機器筐体6eの間に空間すなわち貫通流路2を設ける。その空間に送風機部5によって取り込んだ空気を流し、発熱部分6hに接続されたフィン7fから放熱させ、発熱部分6hを冷却させる。さらに、ノズル部開口4の断面積を小さくして取り込んだ空気の風速を増して光透過部3に吹き付けることにより水滴や雪などを除去することができる。
 ライダ装置の発熱部分6hを冷却する動作及び光透過部3の異物を除去する動作は、図9のフローチャートに示される。まず、光送受信部6rtから受けた受信信号を、最大値算出部10aに入力し、入力された受信信号のS/N比に対して、その最大値を最大値算出部10aが算出する(S101及びS102)。S103の判定の概念を図10に示す。図10(a)は「降雨無し」と判定する場合を示している。図10(b)は「降雨有り」と判定する場合を示している。S103にて、閾値判定部10bでは最大値算出部10aから入力されたS/N比の最大値と比較して、S/N比の最大値≦閾値の場合、降雨有りと判定する。この場合は、S104へ進む。それ以外の場合、「降雨無し」と判定する。この場合は、S001へ進み、図7に示す基本動作を行って発熱部分6hの冷却のみを実行する。
 S104にて、時間経過判定部10cでは閾値判定部10bから降雨有りの情報が出力された場合、降雨有りの状態が決められた時間続くかどうか監視し、降雨の有無を確定する。S104の判定の概念を図11に示す。図11(a)は規定の時間内でS/N比最大値が閾値を超える割合が規定の割合以上である場合に「降雨無し」と判定した場合を示している。図11(b)は規定の時間内でS/N比最大値が閾値を超える割合が規定の割合未満である場合に「降雨有り」と判定した場合を示している。
 送風量判定部11では、時間経過判定部10cからの情報が降雨無しの場合、S001へ進み、図7に示す基本動作を行って発熱部分6hの冷却のみを実行する。発熱部分6hの温度が、冷却の必要がある温度である閾値を越えていなければ、送風機部5の稼動無しの指令を、超えていれば送風機部5の稼動の指令を送風機制御部8へ出力する。
 また、送風量判定部11では、時間経過判定部10cからの情報が降雨有りの場合、発熱部分6hの温度に関わらず送風機部5の稼動の指令を出力するが、その前に、S001にて発熱部分6hの温度を取得する。そして、S112(送風量判定ステップ)にて、送風量判定部11による、異物検知ステップで異物が検知された場合に、温度検出ステップで検出した温度に対応する予め設定された送風機部5の温度ごとの送風量、及び、予め設定された送風機部5の異物検知時の送風量を比較して、多い方の送風量を判定する。そして、判定結果に基づいて送風量判定部11からの指示で、送風機制御部8が送風機部5へ稼動の指令又は風量の変更の指示を出力する。
 光透過部材への空気吹き付け方法の送風機制御ステップの後に、送風量判定部11が判定(決定)した風量を送風機部5に指示し、この指示に基づく送風機部5による空気をノズル部開口4から吹き付ける空気吹き付けステップを行うことで、光透過部3の異物を除去できる。光透過部材への空気吹き付け方法は、この空気吹き付けステップを含んでいてもよい。
 なお、本願では、発熱部分6hの冷却に必要となる風量と水滴除去に必要となる風量の関係は「最大発熱時の風量>水滴除去の風量」としているので、図12に示すフローチャートのように、S101の前に、S001及びS002の処理ステップを実施してもよい。このように、先にS001及びS002を行うことで、発熱部分6hの冷却の開始が早めることができる。「最大発熱時の風量<水滴除去の風量」の場合でも、図12に示すフローチャートの処理を実施してもよい。
 ここで、光透過部材への空気吹き付け方法を整理すると、S/N比データ読込みステップ(S101)において、S/N比データを読み込む。その入力されたS/N比データに対して、最大値算出ステップ(S102)において取り込んだS/N比データの最大値を算出する。次に、閾値判定ステップ(S103)に進み、閾値とS/N比データの最大値を比較し、S/N比最大値≦閾値の場合は、時間経過判定ステップ(S104)へ進み、S/N比最大値>閾値の場合は、温度情報取込ステップ(S001)を行って送風量判定ステップ1(S002)を実行する。一方、時間経過判定ステップ(S104)では、規定した時間の範囲で、規定の割合で最大値≦閾値の場合は、温度情報取込ステップ(S001)へ進み、温度情報(発熱部分6hの温度)を取り込み、送風量判定ステップ2(S112)へ進む。S112の処理は前述の通りである。
(B)光学装置が撮像装置である場合の動作
 次に、光学装置が撮像装置の場合を図8(b),図13,図14を用いて説明する。撮像装置の場合は、異物検知ステップは、撮像装置が得た画像信号から異物を検出するものとなる。つまり、画像から異物を検知する。撮像装置は、観測機器部6の発熱部分6hの空冷に用いる風により、レンズ又はレンズ保護板である光透過部3に付着する水滴を除去する機構を有している。筐体1中心の空洞の両サイドの枠にフィン7fの機構を設けた電子機器筐体6eを嵌めることにより、2個の電子機器筐体6eの間に空間を設ける。その空間に送風機部5によって取り込んだ空気を流し、発熱部分6hを冷却させる。さらに、ノズル部開口4を絞って取り込んだ空気の風速を増して光透過部3に吹き付けることにより水滴や雪などを除去することができる。
 撮像装置の発熱部分6hの冷却及び光透過部3の異物除去の動作は、図13のフローチャートに示される。まず、S201にて撮像素子6cから画像処理部10dが画像信号(画像データ)を取り込む。次に、S202にて、画像処理部10dが画像信号を画像処理して画像又は動画を異物判定部10eへ送り、異物判定部10eは画像又は動画から対象物の形状又は対象物までの距離などを判断し異物の有無を判定する。
 送風量判定部11では、異物判定部10eからの情報が「異物無し」の場合、S001へ進み、図7に示す基本動作を行って発熱部分6hの冷却のみを実行する。発熱部分6hの温度が、冷却の必要がある温度を意味する決められた閾値を越えていなければ、送風機部5の稼動無しの指令を、超えていれば送風機部5の稼動の指令を送風機制御部8へ出力する。
 また、送風量判定部11では、異物判定部10eからの情報が異物有りの場合、発熱部分6hの温度に関わらず送風機部5の稼動の指令を出力するが、その前に、S001にて発熱部分6hの温度を取得する。そして、S112(送風量判定ステップ)にて、送風量判定部11による、異物検知ステップで異物が検知された場合、温度検出ステップで検出した温度に対応する予め設定された送風機部5の温度ごとの送風量、及び、予め設定された送風機部5の異物検知時の送風量を比較して、多い方の送風量を判定する。そして、判定結果に基づいて送風量判定部11から指示で、送風機制御部8が送風機部5へ稼動の指令又は風量の変更の指示を出力する。
 なお、本願では、発熱部分6hの冷却に必要となる風量と異物除去に必要となる風量の関係は「最大発熱時の風量>異物除去の風量」としているので、図14に示すフローチャートのように、S201の前に、S001及びS002の処理ステップを実施してもよい。このように、先にS001及びS002を行うことで、発熱部分6hの冷却の開始が早めることができる。「最大発熱時の風量<異物除去の風量」の場合でも、図14に示すフローチャートの処理を実施してもよい。
 異物検知部10は、観測機器部6に光透過部3を通って外部から入る光に関する情報から、光透過部3に付着した異物を検知するのではなく、光透過部3自体に圧力センサなどを設けて異物検知部10としてもよいし、筐体1の外部に検知センサを設けて異物検知部10としてよい。光透過部材への空気吹き付け方法における異物検知ステップは、観測機器部6に光透過部3を通って外部から入る光に関する情報から、光透過部3に付着した異物を検知するのではなく、光透過部3に設けた圧力センサの情報、又は、筐体1の外部に設けた検知センサの情報から、光透過部3に付着した異物を検知するものでもよい。
 また、光学装置にフィルムヒータ3fを追加した場合、フィルムヒータ3fが筐体1外の外気温によって起動している場合は、異物検知部10の判断に関わらずに、送風量判定部3が異物(水滴)を除去する判定を下すようにしてもよい。これによって、観測機器部6による観測を行う前でも、フィルムヒータ3fの熱によって氷などが解けてできた水滴を吹き飛ばすことができる。さらに、光学装置にフィルムヒータ3fが無い場合でも、観測機器部6による観測を行う前、例えば観測機器部6起動時に、異物検知部10の判断に関わらず、又は、異物検知部10の判断自体を行わずに、ノズル部開口4から空気を光透過部3に吹き付けることで、観測機器部6による観測を行う前に光透過部3に異物が付着していた場合でも、事前に吹き飛ばすことができ、スムーズに観測機器部6による観測を行うことができる。換言すると、光学装置は、起動時にノズル部開口4から空気を光透過部3に吹き付けるようにしてもよい。この際の風量は、光透過部に付着した異物を吹き飛ばす程度のものである。
 起動時にノズル部開口4から空気を光透過部3に吹き付ける方法について説明する。フィルムヒータ3fが存在する場合は、光透過部材への空気吹き付け方法では、最初のステップとして、フィルムヒータ3fのON(起動)/OFF(停止)を判定するフィルムヒータON/OFF判定ステップを有し、フィルムヒータ3fがOFFの場合は、S101又はS201あるいはS001に進み。フィルムヒータ3fがONの場合は、空気吹き付けステップすなわち溶融水滴除去ステップへ進む。この溶融水滴除去のための空気吹き付けステップも、指示された風量で空気を吹き付ける空気吹き付けステップと同じく、信号処理部6s及び送風量制御部8が送風機部5を制御して行う。その後、S101又はS201あるいはS001を実行する。フィルムヒータ3fが存在しない場合は、光透過部材への空気吹き付け方法では、最初のステップとして、空気吹き付けステップ(起動時空気吹き付けステップ,起動時異物除去ステップとも呼ぶ)を有するものとなる。起動時空気吹き付けステップも、溶融水滴除去のための空気吹き付けステップと同じく、信号処理部6s及び送風量制御部8が送風機部5を制御して行う。
 光学装置を人家から離れた場所に設置する場合は、鳥獣の被害も想定される。このような場合は、ノズル部開口4から空気を吹き付ける際に大きな音を生じさせる構造とすることで、鳥獣が忌避する効果が期待できる。ノズル部開口4に笛の機能を追加することで、さらに大きなことを空気の吹き付け時に生じさせることができるので、鳥獣が忌避する効果をさらに増大させることができる。さらに、風量を時間的に変化させて音色を変化させてもよい。ただし、光透過部3の異物除去や発熱部分6hの冷却に必要な風量を下回るものではいけないので、風量を変化させる場合は、最低風量を光透過部3の異物除去や発熱部分6hの冷却に必要な風量とする必要がある。特に、発熱部分6hの冷却に必要な風量を下回ってはいけない。
 よって、光透過部材への空気吹き付け方法の送風機制御ステップの後に、送風機部5による空気をノズル部開口4から吹き付ける空気吹き付けステップを追加することで、鳥獣に忌避させることができる。この場合、空気吹き付けステップは、鳥獣忌避ステップともいえる。鳥獣の被害は、鳥や昆虫といった小動物からの排泄物も含むものとする。鳥獣忌避ステップは、光透過部3の異物付着の有無や発熱部分6hの冷却とは、別に実施してもよい。この場合も、鳥獣忌避ステップは、信号処理部6s及び送風量制御部8が送風機部5を制御して行う。
 以上、この実施の形態1に係る光学装置は、発熱部分6hが露出していないので、屋外用途でも使用できる。また、冷却に使用されて排熱する空気は排熱のみに利用されず有効利用することができる。一方、特許文献5では、筺体外部から筺体内部への空気取り入れ口を筺体内部に設ける必要があり、筺体内部と筺体外部が連通する構造となる必要がある。例えば、海上のような塩水が直接かかるような場所に設置される筺体では、特許文献5に開示された技術は使用することができなかった。また、ファン自体も冷却用途だけに限定されており、筺体全体で使用するエネルギーのロスを低減していない。
 また、特許文献3は、筺体内部と筺体外部が分離されているが、フィン自体は外部に露出せず、筺体内部の雰囲気温度を下げる効果のみで、高熱源に対する冷却そのものは課題とされていない。この実施の形態1に係る光学装置は、観測機器及び観測機器を制御する複数の高発熱電子機器筺体を対象としており、強力な冷却ファンの使用が前提となっている機器において、防水気密構造、低重量化、高寿命、低消費電力といった、相反する課題を少なくとも2つは解決することができる。
 この実施の形態1に係る光学装置では、雨水や海水、雪といった外部環境に耐性のある筺体構造を有しながら、連続使用される電子機器に冷却手段を与え、従来は冷却のみに使用されていた排熱風を筺体1に付着する雨や雪の除去に用いることができる。実施の形態1に係る光学装置の特長である、筺体1に設けられた中空部という気密構造の外側にフィン7fを配置し、中空構造によって気密部が分離された構造により、防水構造を有したまま複数個の電子筺体の冷却が可能となり、かつ、冷却後の排熱風をそのまま雨や雪の除去に用いることができる。従来は、観測機器のみを防水気密筺体内に格納して屋外に配置し、電子機器は分離して屋内で使用するような場合があった。この実施の形態1に係る光学装置では、複数個の電子ユニットを有しても排熱が可能で、かつ、外部の自然環境の変化に対して例えば観測結果に影響が発生するような観測機器において、小型化、省電力化を実現することができる。
 この実施の形態1に係る光学装置は、観測機器を内部に収納し、観測機器を制御する電子機器類を内部に持ち、屋外の環境条件の変化から観測機器を守る防水、気密構造を有した観測機器筺体であって、観測機器は筺体1壁面に光透過部3を有し、熱伝達により外部空気と内部空気とを断絶した状態で電子機器を冷却する筺体内中空構造を構成し、観測機器の防水気密構造の外に取り付けることを特徴としたフィン7fと、送風機部5で起こされた風を観測機器の光透過部3へ排出するダクト4dと、内部電子機器の保守のために開閉可能な扉(蓋部1c)によって構成されることを特徴とする。
 この実施の形態1に係る光学装置のダクトは、排出時に光透過部3に付いたゴミ及び水滴などの異物を除去することを目的として送風機部5で起こされた風を加速させるために送風機部5の開口部よりも面積の小さい口径を有することを特徴とする。
 ライダ装置は気象レーダの一種である。地上から上空までの風向・風速を、レーザ光を用いて計測するドップラーライダシステムにおいて、光透過部3の着水・着雪はレーザ光を遮るため、観測性能に著しい劣化をもたらす問題がある。従来、ワイパによる除去を行っていたが、ワイパ走査中は光を遮ったり、光透過部3に傷を付けたり、ワイパゴムの耐久性のため、保守間隔が短くなったりしていた。また、光透過部3に雨水や雪などが付着した場合、放射されるレーザ光をさえぎることになり、観測性能を著しく劣化させていた。ライダ装置は、光透過部3上の水滴や雪などの異物を風力によって吹き飛ばすことにより、異物の影響により観測できないことが無いことを特徴とする。
 実施の形態2
 図15と図16を用いて形態2に係る光学装置の構造を説明する。図15は、この発明の実施の形態2に係る光学装置の構成図(上面図,断面図)である。図16は、この発明の実施の形態2に係る光学装置の流路を説明する断面図である。
 図15(a)は光学装置の上面図、図15(b)は図15(a)における光学装置のC-C断面図、図16は図15(a)における光学装置のC-C断面図に空気の流れを示したものである。
 図15と図16において、筐体1Aは、外形が直方体の箱型のものであり、防水気密構造を有している。光透過部3はガラス製や樹脂製の部材のレンズや透明板などの光が通過することが可能な材料で、筐体1に設けられた観測窓である。筐体1の上面に配置したダクト4dAは、空気吸入口1inAから吸い込んだ空気をノズル部開口4は光透過部3に空気を吹き付けるための空気の流路である。詳しくは、空気吹き付け口であるノズル部開口4に近づくにつれ流路の断面積が減少するノズル部4nが、ダクト4dAに設けられている。ノズル部4nにより、流路からの排気(空気)を加速させて吹き付けることができる。
 図15と図16において、空気吸入口1inAの開口面積は、ノズル部開口4の開口面積よりも大きいものとする。空気吸入口1inAにフィルタを設けてもよい。送風機部5は空気吸入口1inAから空気吹き付け口であるノズル部開口4への空気の流れを生じさせるものであり、ダクト4dAの内部に設けられている。本願の図面では、ノズル部開口4と空気吸入口1inAは対向しており、ダクト4dA内での空気の流れはほぼ直線的なものを示している。空気吸入口1inA近傍のダクト4dAを下方向に曲げ、空気吸入口1inを下面に向けて流路を曲げても良い。
 実施の形態2に係る光学装置は、空気吸入口1inAから吸気した空気の排気(空気)を、ダクト4dAを通じてノズル部4nで加速して光透過部3に対して排出することにより、排気流速の運動エネルギーを光透過部3の清掃に利用することで、光学装置の持続利用を行うことができる。排気は、ダクト4dAを通じて光透過部3上に行われるが、空気吸入口1inAから取り入れられた空気は、ノズル部開口4の開口面積が他の部分よりも小さくなっていることより、ベルヌーイの定理に基づいて加速され、光透過部3上の雨、雪による水滴及びゴミなどの異物を排気流により吹き飛ばすことでき、人の手を介することなく光透過部3を清掃することができる。
 この実施の形態2でも、筐体の防水構造を維持して光透過部3の異物を除去するための空気を吹き付けるための流路を設けている。
 観測機器部6の放熱部分6hは実施の形態1の場合と比較して小さく、フィン7fは筐体1Aの外側に露出しており、自然空冷により冷却される。異物を吹き飛ばすためにフィン7fを冷却した空気を使用できるように、流路の内部にフィンを設けるようにしてもよい。フィンを設ける流路の部分は、筐体の外形よりも内側を通る部分でもよいし、その他の部分でもよい。
 筐体の外形を直方体としたが、側面が傾斜した多面体でもよい。防水構造あるいは気密構造の筐体であり、光透過部が設けられた筐体であり、光透過部に付着した異物を除去するために空気を吹き付ける空気の流路を防水構造あるいは気密構造を維持して設けることができれば、どのような形状の筐体でもよい。
 以上のことは、他の実施の形態にもあてはまる。
1、1A・・筐体、
1in、1inA・・空気吸入口
1c・・蓋部、
2・・貫通流路、
2a・・開口、
2b・・断面積減少部、
3・・光透過部(光透過部材)、
3f・・フィルムヒータ、
4・・ノズル部開口(空気吹き付け口)、
4d、4dA・・ダクト、
4n・・ノズル部
5・・送風機部、
6・・観測機器部、
6h・・発熱部分、
6sc・・スキャナー部、
6rt・・光送受信部、
6s・・信号処理部、
6c・・撮像素子、
6p・・光学機器筐体、
6e・・電子機器筐体、
6es・・電子機器基板、
6eh・・電子機器回路(発熱体)、
7・・冷却部、
7f・・フィン、
8・・送風機制御部、
9・・温度検出部、
10・・異物検知部、
10a・・最大値算出部、
10b・・閾値判定部、
10c・・時間判定部、
10d・・画像処理部、
10e・・異物判定部、
11・・送風量判定部。

Claims (14)

  1.  外部からの光が入射する光透過部と、
     前記光透過部からの光を受ける観測機器部と、
     前記光透過部へ空気を吹き付ける空気吹き付け口と、
     前記空気吹き付け口に空気を流す流路と、
     前記流路に空気が流れ込む空気吸入口と、
     前記流路に前記空気吸入口から空気吹き付け口への空気の流れを生じさせる送風機部と、
     前記流路を流れる空気の量である送風量を前記送風機部に指示する送風機制御部と、
     前記観測機器部の発熱部分からの熱が伝えられる前記流路の内部に設けられたフィンを有する前記発熱部分を冷却する冷却部と、
     前記観測機器部の発熱部分の温度を測定する温度検出部と、
     前記光透過部に付着した異物を検知する異物検知部と、
     前記異物検知部が異物を検知した場合に、前記温度検出部が検出した温度に対応する、予め設定された前記送風機部の温度ごとの送風量、及び、予め設定された異物検知時の前記送風機部の送風量を比較して、多い方の送風量で前記送風機部が動作するように前記送風機制御部へ送風量の比較結果を伝える送風量判定部とを備えた光学装置。
  2.  当該光学装置がライダ装置であって、
     前記観測機器部は、前記光透過部を介して、送信光を外部へ照射し、この照射した送信光が反射された反射光を受信するスキャナー部と、このスキャナー部が送信する送信光と前記スキャナー部が受信した反射光とをそれぞれ送受信処理する光送受信部と、この光送受信部が受信処理した反射光の受信信号に基づいて風速を算出する信号処理部とを有するものである請求項1に記載の光学装置。
  3.  前記異物検知部は、前記受信信号における決められた長さの時間内の最大のS/N比が決められた閾値を下回った場合に、前記光透過部に異物が付着したと検知するものである請求項2に記載の光学装置。
  4.  前記信号処理部は、前記異物検知部が前記光透過部に異物が付着したと検知している間、算出した前記風速を参考値として処理する請求項3に記載の光学装置。
  5.  前記異物検知部は、前記観測機器部に前記光透過部を通って外部から入る光から、前記光透過部に付着した異物を検知するものである請求項1に記載の光学装置。
  6.  当該光学装置が撮像装置であって、
     前記観測機器部は、撮像素子と、この撮像素子が得た画像信号を信号処理する信号処理部と有し、前記異物検知部は、前記信号処理部が信号処理した画像信号から異物を検出するものである請求項1に記載の光学装置。
  7.  前記観測機器部は、筐体に収納され、前記光透過部は、前記筐体に形成されたものである請求項1から請求項6までのいずれか1項に記載の光学装置。
  8.  前記筐体は防水構造を有し、前記流路は前記筐体の前記防水構造を維持して設けられたものであり、前記流路が前記筐体の外形の内側を通る部分である貫通流路を有することを特徴とする請求項7に記載の光学装置。
  9.  送風機部により、外部からの光が入射する光透過部からの光を受ける光学装置の観測機器部の発熱部分を冷却する空気の流れを生じさせるとともに、前記送風機部により、前記光透過部へ吹き付ける空気の流れを生じさせる、前記光透過部への空気吹き付け方法において、
     前記観測機器部の発熱部分の温度を検出する温度検出ステップと、
     前記光透過部に異物が付着しているか判定する異物検知ステップと、
     前記異物検知ステップで異物が検知された場合、前記温度検出ステップで検出した温度に対応する、予め設定された温度ごとの前記送風機部の送風量、及び、予め設定された前記送風機部の異物検知時の送風量を比較して、多い方の送風量を判定する送風量判定ステップと、
     前記送風量判定ステップで、多い方の送風量と判定された送風量で前記送風機部に送風させる送風機制御ステップとを備えた空気吹き付け方法。
  10.  当該光学装置がライダ装置であって、
     前記異物検知ステップは、反射された反射光を受信処理した受信信号における所定時間内の最大のS/N比が決められた閾値を下回った場合に、前記光透過部に異物が付着したと検知するものである請求項9に記載の空気吹き付け方法。
  11.  当該光学装置が撮像装置であって、
     前記異物検知ステップは、前記撮像装置が得た画像信号から異物を検知するものである請求項9に記載の空気吹き付け方法。
  12.  前記異物検知ステップは、前記観測機器部に前記光透過部を通って外部から入る光から、前記光透過部に付着した異物を検知するものである請求項9に記載の空気吹き付け方法。
  13.  前記観測機器部の起動時に、前記送風機部により、前記光透過部への空気の流れを生じさせて前記光透過部へ空気を吹き付ける起動時空気吹き付けステップを有するものである請求項9から12までのいずれか1項に記載の空気吹き付け方法。
  14.  前記送風機制御ステップの後に、前記送風量判定ステップで判定された風量で前記送風機部により、前記光透過部への空気の流れを生じさせて光透過部へ空気吹き付ける空気吹き付けステップを有するものである請求項9から13までのいずれか1項に記載の空気吹き付け方法。
PCT/JP2014/001872 2013-04-01 2014-03-31 光学装置及び空気吹き付け方法 WO2014162719A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-076225 2013-04-01
JP2013076225A JP2016119495A (ja) 2013-04-01 2013-04-01 光学装置及びエアー吹き付け方法

Publications (1)

Publication Number Publication Date
WO2014162719A1 true WO2014162719A1 (ja) 2014-10-09

Family

ID=51658032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001872 WO2014162719A1 (ja) 2013-04-01 2014-03-31 光学装置及び空気吹き付け方法

Country Status (2)

Country Link
JP (1) JP2016119495A (ja)
WO (1) WO2014162719A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017153476A1 (fr) * 2016-03-10 2017-09-14 Valeo Systèmes d'Essuyage Système de détection optique pour véhicule automobile
US11835660B2 (en) 2020-08-25 2023-12-05 Pony Ai Inc. Sensor assembly and methods of operation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10359303B1 (en) 2018-02-09 2019-07-23 Ford Global Technologies, Llc System for vehicle sensor assembly
KR102028606B1 (ko) * 2018-11-06 2019-10-04 한국산업기술시험원 광트랩을 이용한 윈드라이다의 교정장치 및 이를 이용한 교정방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171878A (ja) * 1998-12-07 2000-06-23 Matsushita Electric Ind Co Ltd カメラ防護筐体および監視カメラの防護方法
JP2006198602A (ja) * 2004-12-24 2006-08-03 Tanaka Mach:Kk ドーム用ワイパー装置
JP2006262242A (ja) * 2005-03-18 2006-09-28 Secom Co Ltd 画像信号処理装置
JP2009503486A (ja) * 2005-07-29 2009-01-29 キネテイツク・リミテツド レーザ測定のデバイスおよび方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171878A (ja) * 1998-12-07 2000-06-23 Matsushita Electric Ind Co Ltd カメラ防護筐体および監視カメラの防護方法
JP2006198602A (ja) * 2004-12-24 2006-08-03 Tanaka Mach:Kk ドーム用ワイパー装置
JP2006262242A (ja) * 2005-03-18 2006-09-28 Secom Co Ltd 画像信号処理装置
JP2009503486A (ja) * 2005-07-29 2009-01-29 キネテイツク・リミテツド レーザ測定のデバイスおよび方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017153476A1 (fr) * 2016-03-10 2017-09-14 Valeo Systèmes d'Essuyage Système de détection optique pour véhicule automobile
FR3048659A1 (fr) * 2016-03-10 2017-09-15 Valeo Systemes Dessuyage Systeme de detection optique pour vehicule automobile
US11835660B2 (en) 2020-08-25 2023-12-05 Pony Ai Inc. Sensor assembly and methods of operation

Also Published As

Publication number Publication date
JP2016119495A (ja) 2016-06-30

Similar Documents

Publication Publication Date Title
JP6090433B2 (ja) 光学装置、ライダ装置及び撮像装置
WO2014162719A1 (ja) 光学装置及び空気吹き付け方法
US20220145740A1 (en) Heat radiator and turbo fracturing unit comprising the same
CN102374589B (zh) 空调机的室内机以及空调机
EP2605043B1 (en) A self-cleaning light detection and ranging device
JP5631116B2 (ja) 撮像装置
CN101498887B (zh) 数字光处理投影装置
CN206728123U (zh) 一种自动清洁监控摄像机
JP2010023825A (ja) ダクテッドファンuavの機器の冷却システムおよび冷却方法
JP2000171878A (ja) カメラ防護筐体および監視カメラの防護方法
US11480357B2 (en) Air treatment device
JP2004317900A (ja) 監視カメラ用ハウジング
JP2003176988A (ja) 冷却塔白煙の防止装置、及び、その防止方法
CN111258155B (zh) 一种激光投影设备
CN108495006A (zh) 自洁式的监控摄像机
JP2017085325A (ja) 撮像装置
CN100553735C (zh) 电子装置
JP2010225788A (ja) 電子機器
JP2006171165A (ja) 空冷装置
CN207162280U (zh) 一种大功率恒温智能激光灯
CN214544503U (zh) 一种网络控制高清监控摄像头
EP4016183B1 (en) Air treatment device
JP5103674B2 (ja) 空洞換気装置
US20230025984A1 (en) Self-contained environmental control system for industrial and automotive sensing
CN217954736U (zh) 一种激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14778254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP