WO2014162709A1 - 鉄筋穿孔ドリル - Google Patents

鉄筋穿孔ドリル Download PDF

Info

Publication number
WO2014162709A1
WO2014162709A1 PCT/JP2014/001838 JP2014001838W WO2014162709A1 WO 2014162709 A1 WO2014162709 A1 WO 2014162709A1 JP 2014001838 W JP2014001838 W JP 2014001838W WO 2014162709 A1 WO2014162709 A1 WO 2014162709A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill
drilling
reinforcing bar
base
blade
Prior art date
Application number
PCT/JP2014/001838
Other languages
English (en)
French (fr)
Inventor
宮永 昌明
Original Assignee
株式会社ミヤナガ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミヤナガ filed Critical 株式会社ミヤナガ
Publication of WO2014162709A1 publication Critical patent/WO2014162709A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/02Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing
    • B28D1/04Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular or cylindrical saw-blades or saw-discs
    • B28D1/041Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular or cylindrical saw-blades or saw-discs with cylinder saws, e.g. trepanning; saw cylinders, e.g. having their cutting rim equipped with abrasive particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/04Drills for trepanning

Definitions

  • the present invention relates to a reinforcing bar drill having a carbide tip at the tip of the drill, and more particularly to a reinforcing bar drill particularly suitable for drilling in reinforced concrete.
  • a special drill as a tip tool is attached to the hammer electric drill body as a rotary hammer drive.
  • this electric drill body gives a rotating torque and a striking action to a drill as a tip tool, a drilling operation is performed on reinforced concrete, stone, or the like.
  • FIG. 5A is a perspective view schematically showing a structure of a tip portion of a conventional drill frequently used in drilling work for reinforced concrete, stone, or the like.
  • a conventional drill 200 includes a body 201 as a drill body having a cylindrical shape, and a cemented carbide cutting edge tip 202 having a specific shape considering cutting workability.
  • FIG. 5A illustrates a drill 200 in which four cutting edge tips 202 are fixed to the body 201.
  • the cutting edge tip 202 is fixed to the body 201 by means of brazing or the like after being fitted into a groove formed at equal intervals in the circumferential direction at the tip end in the axial direction of the body 201 in consideration of the rotational direction of the drill 200. Yes.
  • FIG. 5A illustrates a drill 200 in which four cutting edge tips 202 are fixed to the body 201.
  • the cutting edge tip 202 is fixed to the body 201 by means of brazing or the like after being fitted into a groove formed at equal intervals in the circumferential direction at the tip end in the axial direction of the body 201 in consideration of the rotational direction of the drill 200.
  • FIG. 5A illustrates a drill 200 in which four cutting edge tips
  • the conventional cutting edge tip 202 includes a first main surface 202a, a second main surface 202b, a third main surface 202c, a fourth main surface 202d, and a fifth main surface 202e. And a sixth main surface 202f.
  • the first main surface 202a and the second main surface 202b are in a state of being parallel to each other, and the cutting edge tip 202 is formed in the body so as to be perpendicular to the tip surface 201a of the body 201, respectively. It is fixed to 201.
  • the first main surface 202a is formed in a flat shape so as to have a predetermined polygonal shape (here, pentagonal shape) and a predetermined area
  • the second main surface 202b is formed in the first main surface 202a.
  • the shape of the body 201 is flat and shaped such that the height from the tip surface 201a in the axial direction of the body 201 is lower than that of the first main surface 202a.
  • the third main surface 202c and the fourth main surface 202d are provided so as to be inclined in the circumferential direction of the body 201 so as to connect the first main surface 202a and the second main surface 202b to each other in a U-shape.
  • the third main surface 202c is formed into a flat shape so as to be inclined downward in the direction from the outer surface to the inner surface of the body 201, and the fourth main surface 202d is directed from the inner surface to the outer surface of the body 201. It is formed in a flat shape so as to be inclined downward in the direction.
  • the fifth main surface 202e is formed in a flat shape so as to connect the first main surface 202a, the third main surface 202c, and the second main surface 202b, and the sixth main surface 202f is the first main surface 202a.
  • the fourth main surface 202d and the second main surface 202b are formed in a planar shape.
  • the conventional cutting edge tip 202 has a rectangular cross section, and the cutting edge is formed by the first main surface 202a, the third main surface 202c, the fourth main surface 202d, the fifth main surface 202e, and the sixth main surface 202f.
  • the main cutter of the chip 202 is formed.
  • tip tip in the body is also disclosed by patent document 1, for example.
  • FIG. 5B is a cross-sectional explanatory view schematically showing the cause of a problem that occurs when a conventional piercing drill is used to drill a reinforced concrete.
  • reference numeral 203a indicates concrete
  • reference numeral 203b indicates a reinforcing bar provided in order to support the concrete 203a.
  • the fourth main surface 202d As shown in FIG. 5B, in the drilling operation to the reinforced concrete 203 by the conventional drill 200, when the drill 200 reaches the reinforcing bar 203b in the reinforced concrete 203, the fourth main surface 202d ( There is a case where the reinforcing bar 203b is pressed against the inclined surface). In this case, the drill 200 is pushed in the direction D shown in FIG. 5B by the reinforcing bar 203b fixed in position in the concrete 203a, and a bit runout occurs. Therefore, the accuracy of the straightness of the finished drill hole may deteriorate.
  • a plurality of reinforcing bars 203 b exist inside the reinforced concrete 203. Therefore, at the time of drilling work by the drill 200, the drill 200 is swung up and down and left and right every drilling work due to the contact state between the third main surface 202c and the fourth main surface 202d and the reinforcing bar 203b. May deteriorate, that is, the overall drilling accuracy of the drilling work in reinforced concrete may be reduced.
  • An object of the present invention is to provide a rebar drilling drill capable of preventing the accuracy of straightness of a drill hole from being deteriorated particularly in a drilling operation in reinforced concrete.
  • a rebar drilling drill includes a cylindrical base portion and a plurality of blade portions formed at an axial tip of the base portion, and the base portion has a cylindrical body. And a cylindrical head located on the tip side of the body, and the blade is formed at the tip in the axial direction of the head, and the head and the blade are both It is made of cemented carbide, and both the head and the blade are integrally formed, the body is made of a material different from the head and the blade, and the body and the blade The head is joined.
  • the head and the blade are both made of cemented carbide, and the body and the head are joined together, so that the drilling work into the reinforced concrete can be carried out efficiently and the drilling work Even if high heat, blow or vibration occurs, the head does not come off from the trunk of the reinforcing bar drilling drill. For this reason, it is possible to prevent the accuracy of the straightness of the drill hole from deteriorating, particularly in the drilling work in reinforced concrete.
  • the blade edge of the blade portion may extend in a plane perpendicular to the axis of the base portion.
  • an inclination angle of the extending direction of the blade edge with respect to the radial direction of the base may be set to 0 ° or more and 45 ° or less.
  • each of the plurality of blade portions may be the same shape.
  • a chip discharge groove extending in the axial direction of the base is formed between the two adjacent blades on the outer surface of the base and at least in the vicinity of the tip of the base in the axial direction. It may be.
  • the base portion includes an inner surface that is eccentric with respect to the outer surface of the base portion, and the plurality of blade portions are respectively arranged from the outer surface to the inner surface at the axial tip of the base portion. It may be formed according to the distance between the outer side surface and the inner side surface.
  • the base portion has an inner surface that is eccentric with respect to the outer surface of the base portion of the rebar drilling drill, and the blade portion is formed according to the thickness of the base portion.
  • the diameter of the columnar concrete debris generated inside is smaller than the inner diameter of the reinforcing bar drill.
  • a suitable rebar drilling drill capable of preventing the deterioration of the accuracy of the straightness of the drill hole, particularly in the drilling work on reinforced concrete.
  • FIG. 1A to 1C are schematic views of the configuration of a reinforcing bar drilling drill according to Embodiment 1 of the present invention.
  • FIG. 1A shows the overall configuration of a rebar drill.
  • FIG. 1B shows a configuration when the tip of the reinforcing bar drill is viewed in the axial direction.
  • FIG. 1C shows a configuration when the tip of the reinforcing bar drill is viewed in a direction orthogonal to the axial direction.
  • 2A to 2C are cross-sectional explanatory views showing states of respective steps in the drilling work using the reinforcing bar drilling drill according to Embodiment 1 of the present invention.
  • FIG. 2A shows a state where the rebar drilling drill is drilling only concrete.
  • FIG. 2B shows a state in which the rebar drill is drilling concrete and rebar.
  • FIG. 2C shows a state where the drilling operation by the reinforcing bar drill is completed.
  • 3A to 3C are schematic views of the configuration of a reinforcing bar drilling drill according to Embodiment 2 of the present invention.
  • FIG. 3A shows the overall configuration of a rebar drill.
  • FIG. 3B shows a configuration when the tip of the reinforcing bar drill is viewed in the axial direction.
  • FIG. 3C shows a configuration when the tip of the reinforcing bar drill is viewed in a direction orthogonal to the axial direction.
  • FIG. 4A to 4C are cross-sectional explanatory views showing states of respective steps in a drilling operation using the reinforcing bar drilling drill according to the second embodiment.
  • FIG. 4A shows a state where the rebar drilling drill is drilling only concrete.
  • FIG. 4B shows a state in which the rebar drill is drilling concrete and rebar.
  • FIG. 4C shows a state where the drilling operation by the reinforcing bar drill is completed.
  • FIG. 5A is a perspective view schematically showing a structure of a tip portion of a conventional drill frequently used in drilling work for reinforced concrete, stone, or the like.
  • FIG. 5B is a cross-sectional explanatory view schematically showing the cause of a problem that occurs when a drilling operation is performed on reinforced concrete using a conventional reinforcing bar drill.
  • FIG. 1 is a schematic diagram of a configuration of a reinforcing bar drilling drill according to Embodiment 1, in which FIG. 1A shows the overall configuration of the reinforcing bar drilling drill, and FIG. 1B shows the tip of the reinforcing bar drilling drill in the axial direction.
  • FIG. 1C shows a configuration when the tip of the reinforcing bar drill is viewed in a direction orthogonal to the axial direction.
  • a reinforcing bar drill 10 includes a shank portion 20 that is appropriately attached to a hammer motor and a cylindrical base portion 30 that is connected to the shank portion 20.
  • the base 30 includes a body 30a as a drill body having a cylindrical shape, and a head 30b having a cylindrical shape located on the distal end side of the body 30a.
  • the base portion 30 is configured by connecting the head portion 30b and the trunk portion 30a so as to form one cylindrical portion.
  • the rebar drill 10 includes a plurality of cemented carbide blades 40 having a specific shape particularly considering cutting workability to reinforced concrete.
  • the plurality of blade portions 40 are formed at the tip end in the axial direction of the base portion 30 (that is, the tip end in the axial direction of the head portion 30b).
  • blade portions 40 are formed at the tip in the axial direction of the head 30b of the rebar drill 10. These blade portions 40 are formed at equal intervals in the circumferential direction at the axial tip of the head 30b.
  • these blade portions 40 are each formed to have an acute-angled shape toward the tip in the axial direction of the base portion 30, thereby the blade portions 40.
  • a straight blade edge 40a is formed at the tip of the.
  • the shapes of the plurality of blade portions 40 are all the same.
  • the blade edges 40a of the plurality of blade portions 40 are each extended in a plane H orthogonal to the axis A of the base portion 30, and the inclination angle of the extending direction of the blade tips 40a with respect to the radial direction of the base portion 30 Are each 0 °.
  • the cutting edge 40 a of the blade portion 40 is flat and faces the axis A of the base portion 30.
  • a line 40b indicated by a one-dot chain line is a line at which the inclination angle of the base 30 with respect to the radial direction is about 30 °.
  • the extending direction of the blade edge 40a may be inclined along the line 40b.
  • the extending direction of the blade edge 40a may be inclined so as to be along a line inclined in a direction opposite to the line 40b.
  • the inclination angle in the extending direction of the blade edge 40a may be arbitrarily set in the range of 0 ° to 45 °.
  • the base 30 includes the cylindrical body 30a and the cylindrical head 30b located on the distal end side of the body 30a. ing. And the blade part 40 is formed in the axial direction front-end
  • both the head portion 30b and the blade portion 40 are made of cemented carbide, and both the head portion 30b and the blade portion 40 are integrally formed.
  • the blade portion 40 is formed by polishing a tip of a cemented carbide cylinder having a predetermined length, whereby the head portion 30b and the blade portion 40 are integrally formed.
  • the body 30 a of the base 30 is made of a material such as a steel material different from the cemented carbide head 30 b and the blade 40. And in the rebar drill 10 which concerns on this Embodiment, the trunk
  • a chip discharge groove 50 extending in the axial direction of the base 30 is formed.
  • the chip discharge groove 50 is formed by, for example, polishing, and the width, depth, and length thereof are set so that the chip is efficiently discharged and good piercing performance is ensured.
  • FIG. 2 is a cross-sectional explanatory view showing a state of each step in a drilling operation using the reinforcing bar drilling drill according to the first embodiment, and FIG. 2A shows a state where the reinforcing bar drilling drills only concrete.
  • FIG. 2B shows a state where the rebar drilling drill is drilling concrete and rebar, and
  • FIG. 2C shows a state where the drilling operation by the rebar drilling is completed.
  • reference numeral 60a indicates concrete
  • reference numeral 60b indicates a reinforcing bar provided in order to support the concrete 60a.
  • a drill for efficiently drilling a part composed only of concrete of reinforced concrete and a drill suitable for drilling a part including a reinforcing bar are used depending on the work stage.
  • a drill for efficiently drilling a part composed only of concrete of reinforced concrete and a drill suitable for drilling a part including a reinforcing bar are used depending on the work stage.
  • a procedure for drilling reinforced concrete using only the reinforcing bar drill 10 of the present embodiment suitable for drilling a portion including a reinforcing bar will be described.
  • the hammer motor drives the reinforcing drilling drill 10 in the direction of the axis C1 and the rotation about the axis C1.
  • the concrete 60a is sequentially cut into a cylindrical shape by the cutting edge 40a of the blade portion 40 formed at the tip of the head 30b of the reinforcing bar drilling drill 10 with force.
  • the striking force and the rotational force are given to the rebar drill 10 by the hammer motor, and no other force is given. That is, no force is applied to the reinforcing bar drill 10 to change the traveling direction of the reinforcing bar drill 10.
  • the reinforcing bar drilling drill 10 sequentially advances in the direction of the axis C1 in the reinforced concrete 60 while rotating around the axis C1.
  • the base 30 has the trunk 30a and the head 30b, and the head 30b and the blade 40 are both made of cemented carbide, Since both the part 30b and the blade part 40 are integrally formed, the body part 30a is made of a material different from the head part 30b and the blade part 40, and the body part 30a and the head part 30b are joined together.
  • the drilling work to the reinforced concrete 60 is efficiently performed, and the head 30b does not come off from the trunk part 30a of the reinforcing bar drilling drill 10 even if high heat, blow or vibration is generated by the drilling work. Moreover, in this rebar drilling drill 10, since each shape of the some blade part 40 is made into the same shape, even if it cuts the reinforced concrete 60 intermittently, the blade edge 40a of the rebar drilling drill 10 is hard to be caught. Furthermore, in this rebar drill 10, chips are discharged in the axial direction of the base 30 between the two adjacent blades 40 on the outer surface of the base 30 and at least in the vicinity of the tip of the base 30 in the axial direction. Since the groove 50 is formed, when drilling the reinforced concrete 60 using the rebar drilling drill 10, the chips discharged by the drilling operation can be efficiently discharged, and as a result, the drilling operation is performed. Can be implemented efficiently.
  • the hammer motor drives the reinforcing bar drilling drill 10 in the direction of the axis C1 and the axis C1 as a center.
  • the rotational force is further applied, and the cutting of the concrete 60a and the reinforcing bar 60b by the blade portion 40 of the reinforcing bar drilling drill 10 proceeds.
  • the hammer electric motor gives a vibrational striking force in the direction of the axis C1 to the reinforcing bar drilling drill 10
  • the reinforcing bar 60b is pressed against the cutting edge 40a of the blade part 40 of the reinforcing bar drilling drill 10 being driven to rotate. Is done.
  • the cutting edge 40a of the blade portion 40 extends in a plane orthogonal to the axis C1 line of the base portion 30, and the cutting edge 40a extends in the extending direction. Since the inclination angle of the base portion 30 with respect to the radial direction is 0 °, even when the cutting edge 40a of the blade portion 40 of the reinforcing bar drilling drill 10 is in contact with the reinforcing bar 60b during the drilling operation to the reinforced concrete 60, the reinforcing bar The traveling direction of the drill 10 is not changed and can be drilled straight. That is, even if the progress of the drilling operation to the reinforced concrete 60 using the reinforcing bar drill 10 becomes the state shown in FIG.
  • the reinforcing bar drill 10 rotates in the reinforced concrete 60 while rotating about the axis C1. Continue further in the direction of C1.
  • the configuration of the reinforcing bar drill 10 according to the present embodiment no bit runout occurs during the drilling operation to the reinforced concrete 60, and as a result, the accuracy of straightness of the completed drill hole is improved. There is no deterioration.
  • the configuration of the reinforcing bar drill 10 according to the present embodiment even when there are a plurality of reinforcing bars 60b inside the reinforced concrete 60, the overall drilling of the reinforced concrete 60 is performed. The accuracy is not reduced.
  • the concrete scrap 60c cut into a column shape from the reinforced concrete 60 is discharged as shown in FIG. 2C, and the column shape having the axis C2 in the reinforced concrete 60 is discharged.
  • Through hole 70 is completed.
  • the axis C1 as the rotation center of the reinforcing bar drill 10 and the axis C2 of the through hole 70 can be substantially coincided with each other. Can be completed with high accuracy.
  • FIG. 3 is a schematic diagram of the configuration of the reinforcing bar drilling drill according to the second embodiment.
  • FIG. 3A shows the overall configuration of the reinforcing bar drilling drill
  • FIG. 3B shows the tip of the reinforcing bar drilling drill in the axial direction.
  • FIG. 3C shows the configuration when the tip of the reinforcing bar drill is viewed in a direction perpendicular to the axial direction.
  • the reinforcing bar drill 80 also includes a shank portion 90 and a base portion 100 as in the case of the first embodiment.
  • the base 100 is provided with the trunk
  • the base portion 100 is configured by connecting the head portion 100b and the trunk portion 100a so as to form one cylindrical portion.
  • the rebar drill 80 also includes a plurality of cemented carbide blades 110 and a cutting edge 110a, as in the first embodiment.
  • blade portions 110 are formed at the tip in the axial direction of the head 100b of the reinforcing bar drill 80. These blade portions 110 are formed at equal intervals in the circumferential direction at the tip of the head portion 100b in the axial direction, and each include a linear blade edge 110a.
  • the rebar drilling drill 80 according to the present embodiment is configured such that the base 100 of the rebar drilling drill 80 includes an inner surface S ⁇ b> 2 that is eccentric with respect to the outer surface S ⁇ b> 1 of the base 100.
  • the plurality of blade portions 110 are formed in accordance with the distance between the outer surface S1 and the inner surface S2 in the range from the outer surface S1 to the inner surface S2 at the tip of the base 100 in the axial direction. That is, in the present embodiment, the lengths of the plurality of blade portions 110 are different depending on the formation positions.
  • the cutting edges 110a of the plurality of blade portions 110 are respectively the axes of the base portion 100. It extends in a plane H orthogonal to A.
  • the inclination angle of the extending direction of the blade edge 110a of the blade portion 110 with respect to the radial direction of the base portion 100 is 0 °.
  • a chip discharge groove 120 is formed between two adjacent blade portions 110, 110 as in the case of the first embodiment. .
  • FIG. 4 is a cross-sectional explanatory view showing a state of each step in a drilling operation using the reinforcing bar drilling drill according to the second embodiment, and FIG. 4A shows a state where the reinforcing bar drilling drills only concrete.
  • FIG. 4B shows a state where the rebar drilling drill is drilling concrete and rebar, and
  • FIG. 4C shows a state where the drilling operation by the rebar drilling is completed.
  • reference numeral 130a indicates concrete
  • reference numeral 130b indicates a reinforcing bar provided in order to support the concrete 130a.
  • the hammer motor is vibrated in the direction of the axis C1 by the hammer motor.
  • the concrete 130a is sequentially cut into a cylindrical shape by the cutting edge 110a of the blade part 110 formed at the tip of the head 100b of the reinforcing bar drilling drill 80 by applying a force and a rotational force about the axis C1.
  • the rebar drilling drill 80 is given only the striking and rotating force by the hammer motor and not any other force, the rebar drilling drill 80 is centered on the axis C1. As it rotates, it enters in the direction of the axis C1 in the reinforced concrete 130 sequentially.
  • the piercing work in the reinforced concrete 130 by the reinforced drilling drill 80 further proceeds, and as shown in FIG. 4B, the concrete 130a and the reinforced steel 130b by the blade 110 of the reinforced drilling drill 80.
  • the cutting edge 110a of the blade part 110 extends in a plane perpendicular to the axis C1 line of the base part 100 and the cutting edge 110a is cut even when cutting to Since the inclination angle of the extending direction with respect to the radial direction of the base portion 100 is 0 °, the traveling direction of the reinforcing bar drilling drill 80 does not change and can be drilled straight.
  • the accuracy of straightness of the completed drill hole is not deteriorated, and a plurality of reinforcing bars 130b exist inside the reinforced concrete 130. Even in this case, the overall drilling accuracy of the drilling work on the reinforced concrete 130 is not lowered.
  • the concrete scrap 130c cut into the column shape is discharged from the reinforced concrete 130, and the column shape having the axis C2 in the reinforced concrete 130 is discharged.
  • the through hole 140 is completed.
  • the base portion 100 of the reinforcing bar drilling drill 80 includes an inner side surface S2 that is eccentric with respect to the outer side surface S1 of the base portion 100 of the reinforcing bar drilling drill 80, and according to the thickness of the base portion 100. Since the blade part 110 is formed, the diameter of the columnar concrete waste 130c generated inside the reinforcing bar drilling drill 80 during the drilling operation is smaller than the inner diameter of the reinforcing bar drilling drill 80 (see FIG. 3B). Thereby, it is possible to prevent the columnar concrete waste 130c from being clogged in the reinforcing bar drill 80 during drilling. Further, after the drilling operation, the columnar concrete scraps 130 c left inside the reinforcing bar drilling drill 80 can be easily discharged from the reinforcing bar drilling drill 80.
  • the rebar drilling drill according to the present invention is useful as a rebar drilling drill capable of preventing deterioration in accuracy of straightness of the drill hole, particularly in drilling work on reinforced concrete.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

 特に鉄筋コンクリートへの穿孔作業において、ドリル孔の直進性の精度の悪化を防止可能な鉄筋穿孔ドリルを提供すること。鉄筋穿孔ドリル(10)が、筒状の基部(30)と、基部(30)の軸方向先端に形成された複数の刃部(40)と、を備え、基部(30)が、筒状の胴部(30a)と、該胴部(30a)より先端側に位置する筒状の頭部(30b)と、を有し、頭部(30b)の軸方向先端に刃部(40)が形成されており、頭部(30b)と刃部(40)とは共に超硬合金製であり、かつ、該頭部(30b)と該刃部(40)との両者は一体形成されており、胴部(30a)は頭部(30b)及び刃部(40)とは別の材質からなり、胴部(30a)と頭部(40)とが、接合されている。

Description

鉄筋穿孔ドリル
 本発明は、ドリルの先端に超硬チップを備える鉄筋穿孔ドリルに関するものであり、更に詳しくは、特に鉄筋コンクリートに穿孔するのに好適な鉄筋穿孔ドリルに関する。
 鉄筋コンクリートや石材等に対する穿孔作業の際には、回転打撃駆動機であるハンマー電動ドリル本体に、先端工具である専用のドリルが取り付けられる。この電動ドリル本体が先端工具であるドリルに対して回転トルクおよび打撃の作用を与えることにより、鉄筋コンクリートや石材等に対する穿孔作業が行われる。
 建築現場等では、穿孔対象の種類に関わらず、効率良く穿孔作業を実施できることが望まれる。そこで、穿孔作業の高能率化に対する要求に応えるために、鉄筋コンクリートや石材等の硬質材への穿孔作業の際に使用するドリルとしては、ビットの本体の先端に形成された複数の溝に、耐摩耗性に優れる超硬合金製の刃先チップをろう付けやその他の溶接等により複数固着したものが多用されている。ここで、このビットの本体の先端に固着された刃先チップは、穿孔作業を効率良く実施することができるように、切削加工性を考慮した特有の形状を有するように成形されている。
 図5Aは、鉄筋コンクリートや石材等に対する穿孔作業の際に多用される従来のドリルの先端部の構造を模式的に示す斜視図である。
 図5Aに示すように、従来のドリル200は、円筒状の形状を有するドリル本体としてのボディ201と、切削加工性を考慮した特有の形状を有する超硬合金製の刃先チップ202とを備えている。図5Aでは、ボディ201に対して4つの刃先チップ202が固着されたドリル200が例示されている。刃先チップ202は、ボディ201の軸方向先端に周方向に等間隔で形成された溝にドリル200の回転方向が考慮されて嵌合された後、ろう付け等の手段によりボディ201に固着されている。そして、図5Aに示すように、従来の刃先チップ202は、第一主面202aと、第二主面202bと、第三主面202cと、第四主面202dと、第五主面202eと、第六主面202fとを備えている。具体的には、第一主面202aと第二主面202bとは、相互に平行な状態とされており、それぞれボディ201の先端面201aに対して垂直をなすように、刃先チップ202がボディ201に対して固着されている。ここで、第一主面202aは、所定の多角形状(ここでは、5角形状)及び所定の面積を有するように平面状に成形されており、第二主面202bは、第一主面202aの形状と相似の形状を有しかつボディ201の軸方向における先端面201aからの高さが第一主面202aよりも低くなるように平面状に成形されている。又、第三主面202cと第四主面202dとは、第一主面202aと第二主面202bとを相互にくの字形状に接続するようにボディ201の周方向において傾斜して設けられており、第三主面202cはボディ201の外側面から内側面に向かう方向で下り傾斜となるように平面状に成形され、第四主面202dはボディ201の内側面から外側面に向かう方向で下り傾斜となるように平面状に成形されている。一方、第五主面202eは、第一主面202aと第三主面202cと第二主面202bとを接続するように平面状に成形され、第六主面202fは、第一主面202aと第四主面202dと第二主面202bとを接続するように平面状に成形されている。このように、従来の刃先チップ202は、断面矩形状をなし、第一主面202aと第三主面202cと第四主面202dと第五主面202eと第六主面202fとにより、刃先チップ202の主カッターが形設されている。かかる構成により、硬質材への切削加工性が確保され、鉄筋コンクリートや石材等に対する穿孔作業が効率良く実施される。
 なお、ボディに刃先チップを設けて構成されたドリルは、例えば特許文献1にも開示されている。
国際公開第2008/062505号公報
 ところで、図5Aに例示する鉄筋穿孔ドリル200を用いて特に鉄筋コンクリートへの穿孔作業を実施する際には、次のような課題が生じる場合がある。
 図5Bは、従来の鉄筋穿孔ドリルを用いて鉄筋コンクリートに対する穿孔作業を実施する際に生じる不具合の原因を模式的に示す断面解説図である。
 図5Bに例示する鉄筋コンクリート203において、符号203aはコンクリートを示し、符号203bはコンクリート203aを支持するために内設される鉄筋を示している。そして、図5Bに示すように、従来のドリル200による鉄筋コンクリート203への穿孔作業においては、ドリル200が鉄筋コンクリート203内の鉄筋203bに達したとき、回転駆動中のドリル200の第四主面202d(傾斜面)に鉄筋203bが加圧当接される場合があり、この場合、コンクリート203a内で位置固定されている鉄筋203bによりドリル200が図5Bに示す方向Dへ押されて、ビット振れが生じるため、出来あがったドリル孔の直進性の精度が悪化する場合がある。又、一般的には、鉄筋コンクリート203の内部には、複数の鉄筋203bが存在している。そのため、ドリル200による穿孔作業時、第三主面202c及び第四主面202dと鉄筋203bとの当接具合に起因して、穿孔作業毎にドリル200が上下左右に振られてドリル孔の精度が悪化して、つまり、鉄筋コンクリートへの穿孔作業の全体的な孔明け精度を低下させる場合がある。
 このように、従来のドリルを用いると、特に鉄筋コンクリートへの穿孔作業において、ドリル孔の直進性の精度が悪化する場合があるという課題がある。
 本発明は、特に鉄筋コンクリートへの穿孔作業においてドリル孔の直進性の精度の悪化を防止可能な鉄筋穿孔ドリルを提供することを目的とする。
 上記課題を解決するために、本発明に係る鉄筋穿孔ドリルは、筒状の基部と、前記基部の軸方向先端に形成された複数の刃部と、を備え、前記基部が、筒状の胴部と、該胴部より先端側に位置する筒状の頭部と、を有し、前記頭部の軸方向先端に前記刃部が形成されており、前記頭部と前記刃部とは共に超硬合金製であり、かつ、該頭部と該刃部との両者は一体形成されており、前記胴部は前記頭部及び前記刃部とは別の材質からなり、前記胴部と前記頭部とが、接合されている。
 かかる構成とすると、頭部と刃部とが共に超硬合金製であり、かつ、胴部と頭部とが接合されているので、鉄筋コンクリートへの穿孔作業が効率良く実施されると共に、穿孔作業により高熱や打撃や振動が発生しても、鉄筋穿孔ドリルの胴部から頭部が外れることはない。このため、特に鉄筋コンクリートへの穿孔作業においてドリル孔の直進性の精度の悪化を防止することができる。
 また上記の場合、前記刃部の刃先が、前記基部の軸線と直交する平面内において伸延していてもよい。
 かかる構成とすると、鉄筋コンクリートへの穿孔作業時に、鉄筋穿孔ドリルの先端が鉄筋に当接した場合であっても、鉄筋穿孔ドリルの進行方向は変わらないので、真っ直ぐに孔明けをすることが可能になる。
 この場合、前記刃先の伸延の方向の、前記基部の半径方向に対する傾斜角が、0°以上45°以下とされていてもよい。
 又、上記の場合、前記複数の刃部のそれぞれの形状が、全て同一形状とされていてもよい。
 かかる構成とすると、断続的に鉄筋を穿孔しても、鉄筋穿孔ドリルの刃先が引っ掛かり難くすることができる。
 又、上記の場合、前記基部の外側面であって少なくとも該基部の軸方向先端近傍において、隣り合う2の前記刃部の間に、前記基部の軸線方向に伸延する切り粉排出溝が形成されていてもよい。
 かかる構成とすると、鉄筋穿孔ドリルを用いて鉄筋コンクリートへの穿孔作業を実施する場合に、穿孔作業により排出される切り粉を効率良く排出することができるので、穿孔作業を効率良く実施することができる。
 更に、上記の場合、前記基部が、該基部の外側面に対して偏心された内側面を備え、前記複数の刃部が、それぞれ、前記基部の軸方向先端の、前記外側面から前記内側面に渡る範囲において、該外側面と該内側面との距離に応じて形成されていてもよい。
 かかる構成とすると、基部が、鉄筋穿孔ドリルの基部の外側面に対して偏心された内側面を備え、基部の厚みに応じて刃部が形成されているので、穿孔作業の際に鉄筋穿孔ドリルの内側に生じる柱状のコンクリート屑の直径が、鉄筋穿孔ドリルの内直径よりも小さくなる。これにより、穿孔作業時、鉄筋穿孔ドリル内に柱状のコンクリート屑が詰まってしまうことを防止することができる。また、穿孔作業後に、鉄筋穿孔ドリル80の内部に残された柱状のコンクリート屑130cを、鉄筋穿孔ドリル80から容易に排出することができる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面を参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明によれば、特に鉄筋コンクリートへの穿孔作業においてドリル孔の直進性の精度の悪化を防止可能な好適な鉄筋穿孔ドリルを提供することが可能になる。
図1A~図1Cは、本発明の実施の形態1に係る鉄筋穿孔ドリルの構成の模式図である。図1Aは鉄筋穿孔ドリルの全体的な構成を示す。 図1Bは鉄筋穿孔ドリルの先端部を軸線方向において見た場合の構成を示す。 図1Cは鉄筋穿孔ドリルの先端部を軸線方向と直交する方向において見た場合の構成を示す。 図2A~図2Cは、本発明の実施の形態1に係る鉄筋穿孔ドリルを用いた穿孔作業における各ステップの状態を示す断面解説図である。図2Aは鉄筋穿孔ドリルがコンクリートのみを穿孔している状態を示す。 図2Bは鉄筋穿孔ドリルがコンクリート及び鉄筋を穿孔している状態を示す。 図2Cは鉄筋穿孔ドリルによる穿孔作業が完了した状態を示す。 図3A~図3Cは、本発明の実施の形態2に係る鉄筋穿孔ドリルの構成の模式図である。図3Aは鉄筋穿孔ドリルの全体的な構成を示す。 図3Bは鉄筋穿孔ドリルの先端部を軸線方向において見た場合の構成を示す。 図3Cは鉄筋穿孔ドリルの先端部を軸線方向と直交する方向において見た場合の構成を示す。 図4A~図4Cは、実施の形態2に係る鉄筋穿孔ドリルを用いた穿孔作業における各ステップの状態を示す断面解説図である。図4Aは鉄筋穿孔ドリルがコンクリートのみを穿孔している状態を示す。 図4Bは鉄筋穿孔ドリルがコンクリート及び鉄筋を穿孔している状態を示す。 図4Cは鉄筋穿孔ドリルによる穿孔作業が完了した状態を示す。 図5Aは、鉄筋コンクリートや石材等に対する穿孔作業の際に多用される従来のドリルの先端部の構造を模式的に示す斜視図である。 図5Bは、従来の鉄筋穿孔ドリルを用いて鉄筋コンクリートに対する穿孔作業を実施する際に生じる不具合の原因を模式的に示す断面解説図である。
 以下、本発明の実施の形態を、図面を参照しながら詳細に説明する。
 (実施の形態1)
 図1は、実施の形態1に係る鉄筋穿孔ドリルの構成の模式図であって、図1Aは鉄筋穿孔ドリルの全体的な構成を示し、図1Bは鉄筋穿孔ドリルの先端部を軸線方向において見た場合の構成を示し、図1Cは鉄筋穿孔ドリルの先端部を軸線方向と直交する方向において見た場合の構成を示している。
 図1Aに示すように、本実施の形態に係る鉄筋穿孔ドリル10は、ハンマー電動機に適宜装着されるシャンク部20と、このシャンク部20に連結される筒状の基部30とを備えている。(鉄筋穿孔ドリル10は、回転駆動のみを与える電動ドリル本体のドリルチャックに取り付けて使用することもできるが、本実施形態においては、ハンマー電動機に取り付けて使用される例を示す。)ここで、基部30は、円筒状の形状を有するドリルボディとしての胴部30aと、この胴部30aより先端側に位置する円筒状の形状を有する頭部30bとを備えている。頭部30bと胴部30aとが一つの筒状部をなすように連結されて、基部30が構成されている。そして、図1Aに示すように、鉄筋穿孔ドリル10は、特に鉄筋コンクリートへの切削加工性が考慮された特有の形状を有する超硬合金製の複数の刃部40を備えている。これらの複数の刃部40は、基部30の軸方向先端(つまり、頭部30bの軸方向先端)に形成されている。
 図1Bに示すように、本実施の形態では、鉄筋穿孔ドリル10の頭部30bの軸方向先端に8つの刃部40が形成されている。これらの刃部40は、頭部30bの軸方向先端において周方向に等間隔で形成されている。ここで、図1A及び図1Bに示すように、これらの刃部40は、それぞれ、基部30の軸方向先端に向かって鋭角状の形状を有するように成形されており、これにより、刃部40の先端には直線状の刃先40aが形成されている。そして、本実施の形態に係る鉄筋穿孔ドリル10では、図1B及び図1Cに示すように、複数の刃部40のそれぞれの形状が、全て同一形状とされている。又、複数の刃部40の刃先40aが、それぞれ、基部30の軸線Aと直交する平面H内において伸延しており、かつ、この刃先40aの伸延の方向の、基部30の半径方向に対する傾斜角が、それぞれ0°とされている。換言すれば、本実施の形態に係る鉄筋穿孔ドリル10では、刃部40の刃先40aはフラットでありかつ基部30の軸線Aに向いている。本実施の形態では、刃先40aの伸延の方向の、基部30の半径方向に対する傾斜角を0°とする形態を例示しているが、この形態に限定されることはなく、傾斜角は0°以上45°以下の範囲で任意に設定すればよい。図1Bにおいて、一点鎖線によって示された線40bは、基部30の半径方向に対する傾斜角が約30°となる線である。刃先40aの伸延の方向がこの線40bに沿うように傾斜していてもよい。さらには、刃先40aの伸延の方向が、線40bとは反対の方向に傾斜する線に沿うように傾斜していてもよい。要するに前述したとおり、刃先40aの伸延の方向の傾斜角は、0°以上45°以下の範囲で任意に設定すればよい。
 又、本実施の形態に係る鉄筋穿孔ドリル10では、上述の如く、基部30が、筒状の胴部30aと、この胴部30aより先端側に位置する筒状の頭部30bとを有している。そして、頭部30bの軸方向先端には、刃部40が形成されている。本実施の形態では、頭部30bと刃部40とは共に超硬合金製であり、かつ、この頭部30bと刃部40との両者は一体形成されている。例えば、刃部40は、所定の長さとされた超硬合金製の円筒の先端を研磨加工することにより形成され、これにより、頭部30bと刃部40とが一体形成される。一方、この鉄筋穿孔ドリル10では、基部30の胴部30aは、超硬合金製の頭部30b及び刃部40とは異なる鋼材等の材質により構成されている。そして、本実施の形態に係る鉄筋穿孔ドリル10では、基部30の胴部30aと頭部30bとが、接合されている。
 一方、図1B及び図1Cに示すように、この鉄筋穿孔ドリル10では、基部30の外側面であって少なくとも基部30の軸方向先端近傍において、隣り合う2の刃部40,40の間に、基部30の軸線方向に伸延する切り粉排出溝50が形成されている。この切り粉排出溝50は、例えば研磨加工により形成され、その幅、深さ、及び長さは、切り粉が効率良く排出されて良好な穿孔性が確保されるように設定される。
 図2は、実施の形態1に係る鉄筋穿孔ドリルを用いた穿孔作業における各ステップの状態を示す断面解説図であって、図2Aは鉄筋穿孔ドリルがコンクリートのみを穿孔している状態を示し、図2Bは鉄筋穿孔ドリルがコンクリート及び鉄筋を穿孔している状態を示し、図2Cは鉄筋穿孔ドリルによる穿孔作業が完了した状態を示している。
 図2A~図2Cに例示する鉄筋コンクリート60において、符号60aはコンクリートを示し、符号60bはコンクリート60aを支持するために内設される鉄筋を示している。
 鉄筋コンクリートに穿孔する方法としては、鉄筋コンクリートのうちのコンクリートのみで構成される部分を効率良く穿孔するためのドリルと、鉄筋を含む部分を穿孔するのに適したドリルとを、作業段階に応じて使い分けることもある。しかし以下では理解の容易化のために、鉄筋を含む部分を穿孔するのに適した本実施形態の鉄筋穿孔ドリル10のみを用いて鉄筋コンクリートを穿孔する手順を示す。
 図2Aに示すように、鉄筋穿孔ドリル10を用いる鉄筋コンクリート60への穿孔作業開始直後では、ハンマー電動機により鉄筋穿孔ドリル10には軸C1方向への振動的な打撃力と軸C1を中心とする回転力とが与えられて、鉄筋穿孔ドリル10の頭部30bの先端に形成された刃部40の刃先40aにより、コンクリート60aが円筒状に順次切削される。このとき、鉄筋穿孔ドリル10には、ハンマー電動機により振動的な打撃力及び回転力のみが与えられて、その他の力は与えられない。つまり、鉄筋穿孔ドリル10には、鉄筋穿孔ドリル10の進行方向を変更させる力は何ら加えられない。そのため、鉄筋コンクリート60への穿孔作業開始直後では、鉄筋穿孔ドリル10は、軸C1を回転中心として回転しながら、鉄筋コンクリート60内で軸C1の方向へ順次進入する。ここで、本実施の形態に係る鉄筋穿孔ドリル10では、基部30が胴部30aと頭部30bとを有しており、頭部30bと刃部40とは共に超硬合金製であり、頭部30bと刃部40との両者は一体形成されており、胴部30aは頭部30b及び刃部40とは別の材質とされ、胴部30aと頭部30bとが接合されているので、鉄筋コンクリート60への穿孔作業の効率良く実施されると共に、穿孔作業により高熱や打撃や振動が発生しても、鉄筋穿孔ドリル10の胴部30aから頭部30bが外れることはない。又、この鉄筋穿孔ドリル10では、複数の刃部40のそれぞれの形状が全て同一形状とされているので、断続的に鉄筋コンクリート60を穿孔しても鉄筋穿孔ドリル10の刃先40aは引っ掛かり難い。更には、この鉄筋穿孔ドリル10では、基部30の外側面であって少なくとも基部30の軸方向先端近傍において、隣り合う2の刃部40の間に、基部30の軸線方向に伸延する切り粉排出溝50が形成されているので、鉄筋穿孔ドリル10を用いて鉄筋コンクリート60への穿孔作業を実施する場合に、穿孔作業により排出される切り粉を効率良く排出することができ、その結果、穿孔作業を効率良く実施することができる。
 次いで、鉄筋穿孔ドリル10による鉄筋コンクリート60への穿孔作業が更に進行すると、図2Bに示すように、ハンマー電動機により鉄筋穿孔ドリル10に軸C1方向への振動的な打撃力と軸C1を中心とする回転力とが更に与えられて、鉄筋穿孔ドリル10の刃部40によるコンクリート60a及び鉄筋60bへの切削が進行する。このとき、ハンマー電動機が鉄筋穿孔ドリル10に対して軸C1方向の振動的な打撃力を与えるので、回転駆動中の鉄筋穿孔ドリル10の刃部40の刃先40aには鉄筋60bが加圧当接される。この場合、本実施の形態に係る鉄筋穿孔ドリル10では、刃部40の刃先40aが、基部30の軸C1線と直交する平面内において伸延しており、かつ、刃先40aの伸延の方向の、基部30の半径方向に対する傾斜角が0°とされているので、鉄筋コンクリート60への穿孔作業時に、鉄筋穿孔ドリル10の刃部40の刃先40aが鉄筋60bに当接した場合であっても、鉄筋穿孔ドリル10の進行方向は変わらず、真っ直ぐに孔明けすることができる。つまり、鉄筋穿孔ドリル10を用いた鉄筋コンクリート60への穿孔作業の進行状態が図2Bに示す状態となっても、鉄筋穿孔ドリル10は、軸C1を回転中心として回転しながら、鉄筋コンクリート60内で軸C1の方向へ更に順次進入する。このように、本実施の形態に係る鉄筋穿孔ドリル10の構成によれば、鉄筋コンクリート60への穿孔作業中にビット振れが生じることはなく、その結果、出来あがったドリル孔の直進性の精度が悪化することはない。又、本実施の形態に係る鉄筋穿孔ドリル10の構成によれば、鉄筋コンクリート60の内部に複数の鉄筋60bが存在している場合であっても、鉄筋コンクリート60への穿孔作業の全体的な孔明け精度が低下することはない。
 そして、鉄筋穿孔ドリル10による鉄筋コンクリート60への穿孔作業が終了すると、図2Cに示すように、鉄筋コンクリート60から円柱状に切削されたコンクリート屑60cが排出されて、鉄筋コンクリート60において軸C2を有する円柱状の貫通孔70が完成する。このとき、本実施の形態に係る鉄筋穿孔ドリル10の構成によれば、鉄筋穿孔ドリル10の回転中心としての軸C1と貫通孔70の軸C2とを実質的に一致させることができ、鉄筋コンクリート60への穿孔作業を高精度で完了させることができる。
 (実施の形態2)
 図3は、実施の形態2に係る鉄筋穿孔ドリルの構成の模式図であって、図3Aは鉄筋穿孔ドリルの全体的な構成を示し、図3Bは鉄筋穿孔ドリルの先端部を軸線方向において見た場合の構成を示し、図3Cは鉄筋穿孔ドリルの先端部を軸線方向と直交する方向において見た場合の構成を示している。
 図3Aに示すように、本実施の形態に係る鉄筋穿孔ドリル80も、実施の形態1の場合と同様に、シャンク部90と基部100とを備えている。そして、基部100は、胴部100aと頭部100bとを備えている。頭部100bと胴部100aとが一つの筒状部をなすように連結されて、基部100が構成されている。又、図3Aに示すように、この鉄筋穿孔ドリル80も、実施の形態1の場合と同様に、超硬合金製の複数の刃部110及び刃先110aを備えている。
 又、図3Bに示すように、本実施の形態でも、鉄筋穿孔ドリル80の頭部100bの軸方向先端には、8つの刃部110が形成されている。これらの刃部110は、頭部100bの軸方向先端において周方向に等間隔で形成されており、それぞれ、直線状の刃先110aを備えている。そして、図3Bに示すように、本実施の形態に係る鉄筋穿孔ドリル80では、鉄筋穿孔ドリル80の基部100が、基部100の外側面S1に対して偏心された内側面S2を備えるように構成されており、複数の刃部110が、基部100の軸方向先端の、外側面S1から内側面S2に渡る範囲において、外側面S1と内側面S2との距離に応じて形成されている。つまり、本実施の形態では、複数の刃部110の長さが、形成位置によってそれぞれ異なっている。ここで、本実施の形態に係る鉄筋穿孔ドリル80でも、実施の形態1の場合と同様、図3B及び図3Cに示すように、複数の刃部110の刃先110aが、それぞれ、基部100の軸線Aと直交する平面H内において伸延している。又、刃部110の刃先110aの伸延方向の、基部100の半径方向に対する傾斜角が、それぞれ0°とされている。
 一方、図3B及び図3Cに示すように、この鉄筋穿孔ドリル80でも、実施の形態1の場合と同様、隣り合う2の刃部110,110の間に切り粉排出溝120が形成されている。
 図4は、実施の形態2に係る鉄筋穿孔ドリルを用いた穿孔作業における各ステップの状態を示す断面解説図であって、図4Aは鉄筋穿孔ドリルがコンクリートのみを穿孔している状態を示し、図4Bは鉄筋穿孔ドリルがコンクリート及び鉄筋を穿孔している状態を示し、図4Cは鉄筋穿孔ドリルによる穿孔作業が完了した状態を示している。
 図4A~図4Cに例示する鉄筋コンクリート130において、符号130aはコンクリートを示し、符号130bはコンクリート130aを支持するために内設される鉄筋を示している。
 図4Aに示すように、鉄筋穿孔ドリル80を用いる鉄筋コンクリート130への穿孔作業開始直後では、実施の形態1の場合と同様、ハンマー電動機により鉄筋穿孔ドリル80には軸C1方向への振動的な打撃力と軸C1を中心とする回転力とが与えられて、鉄筋穿孔ドリル80の頭部100bの先端に形成された刃部110の刃先110aにより、コンクリート130aが円筒状に順次切削される。そして、このときも、鉄筋穿孔ドリル80には、ハンマー電動機により振動的な打撃力及び回転力のみが与えられて、その他の力は与えられないため、鉄筋穿孔ドリル80は、軸C1を回転中心として回転しながら、鉄筋コンクリート130内で軸C1の方向へ順次進入する。
 又、実施の形態1の場合と同様に、鉄筋穿孔ドリル80による鉄筋コンクリート130への穿孔作業が更に進行して、図4Bに示すように、鉄筋穿孔ドリル80の刃部110によるコンクリート130a及び鉄筋130bへの切削が進行しても、本実施の形態に係る鉄筋穿孔ドリル80では、刃部110の刃先110aが、基部100の軸C1線と直交する平面内において伸延しており、かつ、刃先110aの伸延の方向の、基部100の半径方向に対する傾斜角が0°とされているので、鉄筋穿孔ドリル80の進行方向は変わらず、真っ直ぐに孔明けすることができる。このように、本実施の形態に係る鉄筋穿孔ドリル80の構成によっても、完成したドリル孔の直進性の精度が悪化することはなく、更には、鉄筋コンクリート130の内部に複数の鉄筋130bが存在している場合であっても、鉄筋コンクリート130への穿孔作業の全体的な孔明け精度が低下することはない。
 又、鉄筋穿孔ドリル80による鉄筋コンクリート130への穿孔作業が終了すると、図4Cに示すように、鉄筋コンクリート130から円柱状に切削されたコンクリート屑130cが排出されて、鉄筋コンクリート130において軸C2を有する円柱状の貫通孔140が完成する。このように、本実施の形態に係る鉄筋穿孔ドリル80の構成によっても、鉄筋穿孔ドリル80の回転中心としての軸C1と貫通孔140の軸C2とを実質的に一致させることができ、鉄筋コンクリート130への穿孔作業を高精度で完了させることができる。又、この際、本実施の形態では、鉄筋穿孔ドリル80の基部100が、鉄筋穿孔ドリル80の基部100の外側面S1に対して偏心された内側面S2を備え、基部100の厚みに応じて刃部110が形成されているので、穿孔作業の際に鉄筋穿孔ドリル80の内側に生じる柱状のコンクリート屑130cの直径が、鉄筋穿孔ドリル80の内直径よりも小さくなる(図3B参照)。これにより、穿孔作業時、鉄筋穿孔ドリル80内に柱状のコンクリート屑130cが詰まってしまうことを防止することができる。また、穿孔作業後に、鉄筋穿孔ドリル80の内部に残された柱状のコンクリート屑130cを、鉄筋穿孔ドリル80から容易に排出することができる。
 以上、本発明の実施の形態1,2の構成によれば、特に鉄筋コンクリートへの穿孔作業においてドリル孔の直進性の精度の悪化を防止可能な鉄筋穿孔ドリルを提供することが可能になる。これにより、建築現場等においては、穿孔対象の種類に関わらず、効率良くかつ精度良く穿孔作業を実施できる可能になる。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明に係る鉄筋穿孔ドリルは、特に鉄筋コンクリートへの穿孔作業において、ドリル孔の直進性の精度の悪化を防止可能な鉄筋穿孔ドリルとして有用である。
10 鉄筋穿孔ドリル
20 シャンク部
30 基部
30a 胴部
30b 頭部
40 刃部
40a 刃先
50 切り粉排出溝
60 鉄筋コンクリート
60a コンクリート
60b 鉄筋
60c コンクリート屑
70 貫通孔
80 鉄筋穿孔ドリル
90 シャンク部
100 基部
100a 胴部
100b 頭部
110 刃部
110a 刃先
120 切り粉排出溝
130 鉄筋コンクリート
130a コンクリート
130b 鉄筋
130c コンクリート屑
140 貫通孔
200 ドリル
201 ボディ
202 刃先チップ
202a 第一主面
202b 第二主面
202c 第三主面
202d 第四主面
202e 第五主面
202f 第六主面
203 鉄筋コンクリート
203a コンクリート
203b 鉄筋
A 軸線
H 平面
C1,C2 軸
S1 外側面
S2 内側面

Claims (6)

  1.  筒状の基部と、
     前記基部の軸方向先端に形成された複数の刃部と、を備え、
     前記基部が、筒状の胴部と、該胴部より先端側に位置する筒状の頭部と、を有し、
     前記頭部の軸方向先端に前記刃部が形成されており、
     前記頭部と前記刃部とは共に超硬合金製であり、かつ、該頭部と該刃部との両者は一体形成されており、
     前記胴部は前記頭部及び前記刃部とは別の材質からなり、
     前記胴部と前記頭部とが、接合されている、鉄筋穿孔ドリル。
  2.  前記刃部の刃先が、前記基部の軸線と直交する平面内において伸延している
  3.  前記刃先の伸延の方向の、前記基部の半径方向に対する傾斜角が、0°以上45°以下とされている、請求項1記載の鉄筋穿孔ドリル。
  4.  前記複数の刃部のそれぞれの形状が、全て同一形状とされている、請求項1記載の鉄筋穿孔ドリル。
  5.  前記基部の外側面であって少なくとも該基部の軸方向先端近傍において、隣り合う2の前記刃部の間に、前記基部の軸線方向に伸延する切り粉排出溝が形成されている、請求項1記載の鉄筋穿孔ドリル。
  6.  前記基部が、該基部の外側面に対して偏心された内側面を備え、
     前記複数の刃部が、それぞれ、前記基部の軸方向先端の、前記外側面から前記内側面に渡る範囲において、該外側面と該内側面との距離に応じて形成されている、請求項1記載の鉄筋穿孔ドリル。
PCT/JP2014/001838 2013-04-01 2014-03-28 鉄筋穿孔ドリル WO2014162709A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013076461 2013-04-01
JP2013-076461 2013-04-01

Publications (1)

Publication Number Publication Date
WO2014162709A1 true WO2014162709A1 (ja) 2014-10-09

Family

ID=51658022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001838 WO2014162709A1 (ja) 2013-04-01 2014-03-28 鉄筋穿孔ドリル

Country Status (1)

Country Link
WO (1) WO2014162709A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113326591A (zh) * 2021-08-03 2021-08-31 西南石油大学 一种基于动态破岩能量平衡适配原理的钻头设计方法
CN114700662A (zh) * 2022-06-06 2022-07-05 广东尚赢建设有限公司 一种钢筋网架焊接设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1484527A (en) * 1921-05-07 1924-02-19 Pace Jefferson Davis Well-drilling bit
JPH03122187U (ja) * 1990-03-26 1991-12-13
JPH07217355A (ja) * 1994-02-02 1995-08-15 Koken Kogyo Kk 掘削ビット
JPH0913863A (ja) * 1995-06-28 1997-01-14 Tone Corp ダイヤモンドビットおよびその製造方法
JP2002295166A (ja) * 2001-04-04 2002-10-09 Nisshoku Corp 穿孔用ビット
JP2006348478A (ja) * 2005-06-13 2006-12-28 Okumura Corp 鋼管の外周ビット
JP2008126532A (ja) * 2006-11-21 2008-06-05 Ohbayashi Corp 穿孔方法、制御方法、穿孔装置及び砥石ビット

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1484527A (en) * 1921-05-07 1924-02-19 Pace Jefferson Davis Well-drilling bit
JPH03122187U (ja) * 1990-03-26 1991-12-13
JPH07217355A (ja) * 1994-02-02 1995-08-15 Koken Kogyo Kk 掘削ビット
JPH0913863A (ja) * 1995-06-28 1997-01-14 Tone Corp ダイヤモンドビットおよびその製造方法
JP2002295166A (ja) * 2001-04-04 2002-10-09 Nisshoku Corp 穿孔用ビット
JP2006348478A (ja) * 2005-06-13 2006-12-28 Okumura Corp 鋼管の外周ビット
JP2008126532A (ja) * 2006-11-21 2008-06-05 Ohbayashi Corp 穿孔方法、制御方法、穿孔装置及び砥石ビット

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113326591A (zh) * 2021-08-03 2021-08-31 西南石油大学 一种基于动态破岩能量平衡适配原理的钻头设计方法
CN113326591B (zh) * 2021-08-03 2021-10-08 西南石油大学 一种基于动态破岩能量平衡适配原理的钻头设计方法
CN114700662A (zh) * 2022-06-06 2022-07-05 广东尚赢建设有限公司 一种钢筋网架焊接设备
CN114700662B (zh) * 2022-06-06 2022-09-16 广东尚赢建设有限公司 一种钢筋网架焊接设备

Similar Documents

Publication Publication Date Title
JPH10146708A (ja) ドリルビット
US6817428B1 (en) Drill bit
AU2003280671B9 (en) Drill bit
US6601659B2 (en) Twist drill
AU2002311241B2 (en) Drill bit
WO2014162709A1 (ja) 鉄筋穿孔ドリル
JP5976236B2 (ja) ドリルビット
CN106862619B (zh) 钻孔工具
US10668542B2 (en) Auger bit with carbide tip
JP4660836B2 (ja) コアドリル
JP3029033B1 (ja) ドリルビット
JP3598268B2 (ja) ドリルビット
JP2008062620A (ja) ドリルビット
JP2016155178A (ja) 回転工具、及び回転工具の製造方法
JP6924214B2 (ja) コアドリルビット
JP3604344B2 (ja) ドリルビット
JP3718665B2 (ja) ドリルビット
JP3239770U (ja) ドリル
US20240165718A1 (en) Drill bit
JP4749186B2 (ja) カッタヘッド
JP2001179518A (ja) ドリルビット
JP2010194679A (ja) コアドリル
JP2000117520A (ja) ドリルビット
WO2019050823A1 (en) TREPAN
JP2003231013A (ja) ホールカッター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14779934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP