WO2014157662A1 - 環状成形体の製造方法 - Google Patents

環状成形体の製造方法 Download PDF

Info

Publication number
WO2014157662A1
WO2014157662A1 PCT/JP2014/059277 JP2014059277W WO2014157662A1 WO 2014157662 A1 WO2014157662 A1 WO 2014157662A1 JP 2014059277 W JP2014059277 W JP 2014059277W WO 2014157662 A1 WO2014157662 A1 WO 2014157662A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular
molded body
forging
grain size
annular molded
Prior art date
Application number
PCT/JP2014/059277
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
弘明 菊池
英男 瀧澤
石割 雄二
淳 大曽根
Original Assignee
Mmcスーパーアロイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mmcスーパーアロイ株式会社 filed Critical Mmcスーパーアロイ株式会社
Priority to MX2015013639A priority Critical patent/MX2015013639A/es
Priority to RU2015146287A priority patent/RU2631221C2/ru
Priority to ES14775622T priority patent/ES2932530T3/es
Priority to EP14775622.5A priority patent/EP2979774B1/en
Priority to CN201480028783.2A priority patent/CN105228771A/zh
Publication of WO2014157662A1 publication Critical patent/WO2014157662A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/06Shaping thick-walled hollow articles, e.g. projectiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B5/00Extending closed shapes of metal bands by rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/06Making articles shaped as bodies of revolution rings of restricted axial length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • B21K1/761Making machine elements elements not mentioned in one of the preceding groups rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K3/00Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention relates to a method for producing an annular molded body used as a processing material when producing an annular product such as a turbine disk of an aircraft engine.
  • the above-described turbine disk is an annular member having a through hole, and a plurality of turbine blades are disposed on the outer peripheral side, and are configured to rotate together with the turbine blades.
  • the outer peripheral portion is exposed to combustion gas and becomes a high temperature of about 600 to 700 ° C., while the temperature of the inner peripheral portion is kept relatively low, and the engine is started and stopped.
  • the thermal stress is repeatedly generated inside. For this reason, excellent low cycle fatigue characteristics are required, and the outer peripheral portion is subjected to centrifugal force due to high-speed rotation around the axis at high temperature, and therefore must have high creep strength characteristics. Also, high tensile / yield strength is required.
  • the annular molded body used for the turbine disk is, for example, as described in Patent Documents 1 and 2, a Ni-based superb material having excellent heat resistance. It is produced by forging a material made of an alloy and cutting the resulting annular forged body. That is, the forging is strained and the crystal grains are refined to improve the tensile strength and fatigue strength.
  • a hydraulically controlled forging press capable of strict control of the forging speed is desirable, and in order to obtain the circumferential uniformity of the structure (crystal grains) in the annular formed body, the entire material is simultaneously formed. It has been recognized that application of full forging is preferred.
  • ring-rolled products are more susceptible to anisotropy in mechanical properties (strength properties) than press-forged products, and are not suitable for products that require isotropic mechanical properties such as turbine disks. .
  • Patent Document 3 the forging process and the ring rolling process are combined, and in the forging process, the strain ⁇ 1 in the circumferential direction and the strain ⁇ h in the height direction and the strain ratio ⁇ h / ⁇ 1 are set to appropriate values.
  • annular molded body with a fine crystal grain size and a uniform shape can be obtained, for example, a large-scale annular molded body with a large thickness is obtained.
  • crystal grain size of the annular molded body sometimes becomes non-uniform due to variations in operating conditions.
  • the present invention has been made in view of such circumstances, and it is possible to stably and inexpensively manufacture an annular molded body having a sufficiently high mechanical strength while ensuring the uniformity of the structure. It aims at providing the manufacturing method of the cyclic
  • the method for producing an annular molded body of the present invention includes a forging step of forging an alloy body to produce a disk-shaped forged body, and the forging process.
  • the absolute value ⁇ 1 in the circumferential direction of the forged body is 0.3 or more
  • the absolute value ⁇ h in the height direction strain of the forged body is 0.3 or more
  • the ratio between the absolute values of these strains The hot forging in which ⁇ h / ⁇ 1 is in the range of 0.4 to 2.5 is performed at least twice.
  • the strain rate in the forging process is 0.5 s ⁇ 1 or less.
  • the strain rate exceeds 0.5 s ⁇ 1
  • the crystal grain size inside the forged body is coarse due to excessive increase in the temperature inside the forged body due to processing heat (so-called heat buildup). become.
  • heat buildup processing heat
  • the crystal grains inside the forged body cannot be refined. Therefore, in the present invention, by setting the strain rate within the range of 0.5 s ⁇ 1 or less, the temperature difference between the surface and the inside of the forged body during forging can be reduced, and the structure can be made uniform. It becomes.
  • it is preferable to set the strain rate in the forging process to 0.15 s ⁇ 1 or less.
  • the strain rate is defined by the following equation.
  • the absolute value ⁇ 1 of the circumferential strain is set to a large value of 0.3 or more, the proportion of the circumferential strain applied to the annular intermediate in the ring rolling process can be reduced.
  • the absolute value ⁇ h of the strain in the height direction is set to a large value of 0.3 or more, it is possible to secure a sufficient amount of strain in the height direction that is difficult to impart by ring rolling.
  • the processing rate in the ring rolling can be reduced, the anisotropy of the strength characteristics of the annular molded body is suppressed, the isotropic property is enhanced, and a fine crystal structure with sufficiently ensured uniformity is obtained. It is done.
  • the ratio ⁇ h / ⁇ 1 indicates the directional balance of applied strain, and is an index for controlling the relative position change in the material before and after processing.
  • the corresponding numerical value must be zero or close to zero due to the manufacturing method, so it is essential to suppress the anisotropy by appropriately taking the strain application ratio in the height direction in the forging process.
  • ⁇ h / ⁇ 1 is less than 0.4, the effect is insufficient.
  • ⁇ h / ⁇ 1 exceeds 2.5, the distribution in the height direction becomes excessive, the plastic flow becomes unstable, and the axial symmetry of the plastic flow that is indispensable for imparting uniformity is reduced. Therefore, in the present invention, by defining the ratio ⁇ h / ⁇ 1 between the absolute values of strain within the range of 0.4 to 2.5, the plastic flow is stabilized and the axial symmetry is secured, and the structure is uniform. Can be achieved.
  • the method for manufacturing an annular molded body in the ring rolling step, hot rolling is performed to give an absolute value ⁇ 2 of a circumferential strain in the annular molded body of 0.5 or more, and the annular molding is performed.
  • the grain size of the product region in the body may be 8 or more in terms of ASTM grain size number.
  • the ring rolling process by performing hot rolling that gives an absolute value ⁇ 2 of the circumferential distortion of the annular molded body of 0.5 or more, crystals in the product region that is made into a product by machining in the annular molded body It is surely refined so that the grain size is 8 or more in terms of ASTM crystal grain size number. Accordingly, it is possible to reliably increase the mechanical strength of the product obtained from the annular molded body.
  • the ASTM grain size number is determined according to the standard specified in ASTM standard E122 of American Society of Testing and Materials (American Society for Testing Materials).
  • the crystal grain size difference in the product region of the annular molded body in a cross section including the axis of the annular molded body is within a range of ⁇ 2 in terms of ASTM grain size number difference. It may be there.
  • this annular shaped product since the crystal grain size difference in the product region in the cross section of the annular shaped product is within the range of ⁇ 2 in terms of ASTM grain size number difference, this annular shaped product has a crystal grain size in the radial direction and the height direction. Uniformity is ensured.
  • the crystal grain size of the forged body may be 7 or more in terms of ASTM grain size number.
  • the crystal grain size of the forged body can be refined to 7 or more by the ASTM crystal grain size number. Therefore, the structure of the annular molded body can be refined while reducing the amount of strain applied in the next ring rolling step.
  • the ratio T / H between the radial thickness T of the annular intermediate body and the height H along the axial direction of the annular intermediate body is 0.6 or more and 2 .3 after forming the annular intermediate so as to be in the range of 3 or less, ring rolling, the crystal grain size difference between a plurality of equivalent positions set uniformly in the circumferential direction on the annular molded body, ASTM grain size number The difference may be within a range of ⁇ 1.5.
  • the annular intermediate is formed so that the ratio T / H between the radial thickness T and the height H of the annular intermediate is in the range of 0.6 to 2.3, and then ring-rolled.
  • the crystal grain size difference between the circumferential equivalent positions in the annular molded body can be suppressed within the range of ⁇ 1.5 by the ASTM crystal grain size number difference. That is, the annular molded body obtained by molding this annular intermediate body ensures the uniformity of the crystal grain size in the circumferential direction.
  • ring rolling is local processing, but unlike general partial forging, it has high continuity of processing, so the structure has a high axial symmetry, and deviation in material properties in the circumferential direction in an annular molded body. Is known to be small.
  • the shape (roundness) of the molded annular molded body and the axial symmetry of the structure are further increased. it can.
  • the alloy body may be a Ni-based alloy.
  • the forging step is preferably performed at 950 ° C. to 1075 ° C.
  • the ring rolling step is preferably performed at 900 ° C. to 1050 ° C.
  • a method for producing an annular molded body capable of stably and inexpensively producing an annular molded body having a sufficiently high mechanical strength while ensuring the uniformity of the structure. Can do.
  • FIG. 2 is a cross-sectional view taken along the line XX in FIG. It is a flowchart which shows the manufacturing method of the annular molded object and turbine disk which are one Embodiment of this invention. It is sectional drawing of the cyclic
  • FIG. 3 is a drawing showing a tensile strength-drawing correlation diagram of an annular molded body according to an example of the present invention. It is a proof stress-drawing correlation diagram of an annular molded body according to an example of the present invention.
  • the annular molded body 10 according to the present embodiment is used as a processing material for molding a turbine disk of an aircraft engine.
  • the annular molded body 10 has a through hole and an annular shape centering on the axis O, and is directed radially inward from the main body 11 and the main body 11. And an outer ridge 13 projecting radially outward from the main body 11.
  • the annular molded body 10 is made of a Ni-base superalloy excellent in heat resistance, and in this embodiment, is made of a Ni-base alloy Alloy718.
  • the alloy composition of the Ni-based alloy Alloy 718 is as follows: Ni: 50.00 to 55.00% by mass, Cr: 17.0 to 21.0% by mass, Nb: 4.75 to 5.60% by mass, Mo; 2 0.8 to 3.3 mass%, Ti; 0.65 to 1.15 mass%, Al; 0.20 to 0.80 mass%, C; 0.01 to 0.08 mass%, the balance being Fe and inevitable It is considered as an impurity.
  • the annular molded body 10 has a grain size of ASTM in the desired region (hereinafter referred to as “product region”) (not shown) that is machined into a turbine disk (product). 8 or more. 2 are cross sections including the axis O of the annular molded body 10, and these virtual planes VS1 and VS2 are at equivalent positions obtained by equally dividing the annular molded body 10 into two in the circumferential direction. Is set.
  • the crystal grain size difference in the structure of the product region in the cross section of the virtual plane VS1 (or VS2) is within the range of ⁇ 2 in terms of ASTM crystal grain size number difference, and uniformity is ensured. .
  • the difference in crystal grain size between equivalent positions in the circumferential direction of the annular molded body 10 that is, the difference between the crystal grain size in the virtual plane VS1 and the crystal grain size in the virtual plane VS2 is within the range of ⁇ 1.5 in terms of the ASTM crystal grain size number difference. It is said that.
  • the billet is formed to have a diameter of, for example, about 7 inches to 12 inches (more specifically, 165 mm to 315 mm).
  • the produced billet structure is ASTM No. It is about 6.
  • Forming process S2 Next, the billet is forged so as to press in the axial direction of the billet, and a disk-shaped forged body is produced.
  • the absolute strain value ⁇ 1 in the circumferential direction of the forged body is 0.3 or more
  • the absolute strain in the height direction of the forged body Hot forging is carried out at least twice so that the value ⁇ h is 0.3 or more and the ratio ⁇ h / ⁇ 1 between the absolute values of these strains is in the range of 0.4 to 2.5.
  • the strain rate in the hot forging in the forging step S2 is set to 0.5 s ⁇ 1 or less.
  • the hot forging in the forging step S2 is performed using a hydraulically controlled forging press apparatus. This hydraulically controlled forging press apparatus can accurately adjust the strain rate during forging so as to be within the above-described range by hydraulic control.
  • the strain rate in the hot forging in the forging step S2 is set to 0.01 s ⁇ 1 or more.
  • the absolute value ⁇ 1 of the strain applied in the circumferential direction is set to 0.3 or more.
  • the absolute value ⁇ h of the strain applied in the height direction along the axial direction of the forged body is set to 0.3 or more.
  • the annular intermediate body 20 is produced by this drilling process + intermediate ring rolling step S3.
  • the annular intermediate body 20 has a top surface and a bottom surface that have a substantially polygonal cross section orthogonal to the circumferential direction and extend in a direction substantially orthogonal to the axis O.
  • a portion 21, an inner convex portion 22 projecting radially inward from the base portion 21, and an outer convex portion 23 projecting radially outward from the base portion 21 are provided.
  • the annular intermediate 20 is subjected to ring rolling.
  • the ring rolling is performed by hot rolling, and the temperature is set in the range of 900 ° C. to 1050 ° C., for example.
  • the ring rolling device 30 includes a main roll 40 disposed on the outer peripheral side of the annular intermediate body 20, and a mandrel roll 50 disposed on the inner peripheral side of the annular intermediate body 20. And a pair of axial rolls 31 and 32 that are in contact with the end face in the axis O direction of the annular intermediate body 20 (in this embodiment, the upper surface and the lower surface of the base portion 21).
  • the main roll 40 and the mandrel roll 50 are arranged so that the rotation axes thereof are parallel to each other, sandwich and press the annular intermediate body 20 from the inner peripheral side and the outer peripheral side, and rotate the annular intermediate body 20 in the circumferential direction. It is set as the structure rolled while making it.
  • the pair of axial rolls 31 and 32 are configured to sandwich and press the annular intermediate body 20 in the axis O direction, and control the height dimension of the annular intermediate body 20.
  • an accommodation recess 41 that can accommodate a part of the annular intermediate body 20 is provided on the outer peripheral portion of the main roll 40.
  • the outer side of the annular intermediate body 20 is provided.
  • the depth is such that the outer peripheral portions of the convex portion 23, the base portion 21 and the inner convex portion 22 can be accommodated.
  • a first molding groove 42 for molding the outer protruding portion 13 of the annular molded body 10 is formed in the bottom portion 41A of the housing recess 41 on the radially inner side (right side in FIG. 6) of the main roll 40. It is formed so as to be recessed.
  • channel 42 is made into the same depth as the protrusion height of the outer side protruding item
  • an insertion portion 51 configured to be inserted into the housing recess 41 of the main roll 40 is provided, and the annular molded body 10 is provided on the outer peripheral surface of the insertion portion 51.
  • a second forming groove 52 for forming the inner ridge portion 12 is formed so as to be recessed toward the radially inner side (left side in FIG. 6) of the mandrel roll 50.
  • channel 52 is made into the same depth as the protrusion height of the inner side protruding item
  • the main roll 40 and the mandrel roll 50 configured as described above operate so as to approach each other, whereby the annular intermediate body 20 is sandwiched and pressed between the main roll 40 and the mandrel roll 50. Specifically, by rotating the main roll 40 around the rotation axis of the main roll 40, the main roll 40 and the mandrel roll 50 are brought close to each other, so that an intermediate ring is formed by the frictional resistance between the main roll 40 and the main roll 40. The body 20 is rotated around the axis O.
  • the mandrel roll 50 is rotatable about the rotation axis of the mandrel roll 50 and is driven to rotate by frictional resistance with the annular intermediate body 20.
  • the annular intermediate body 20 is plastically deformed so as to be filled in the housing recess 41 and the first molding groove 42 of the main roll 40 and the second molding groove 52 of the mandrel roll 50, and the annular molded body 10 is molded.
  • the inner ridge 12 in the annular molded body 10 is plastically deformed corresponding to the shape of the second molding groove 52.
  • the outer ridge 13 is plastically deformed corresponding to the shape of the first forming groove 42.
  • the annular intermediate body 20 is plastically deformed so as to extend in the circumferential direction, and the inner diameter and the outer diameter thereof are enlarged to produce the annular molded body 10 shown in FIG. It is.
  • strain of the circumferential direction in the annular molded object 10 is provided. Specifically, at least one hot rolling is performed, and the absolute value ⁇ 2 of the strain is set within a range of 0.5 to 1.3 in total.
  • the annular molded body 10 produced as described above is adjusted in characteristics by heat treatment, and is formed into a final shape by cutting to be a turbine disk of an aircraft engine.
  • the strain rate is set to 0.5 s -1 or less in the forging step S2 in which a forged body is manufactured by forging a billet. And it can suppress that the temperature inside a forging body rises excessively by processing heat (so-called heat buildup). Therefore, the temperature difference between the surface and the inside of the forged body during forging can be reduced, and the structure of the forged body can be made uniform. In order to ensure that this effect is achieved, it is preferable to set the strain rate in the forging step S2 to 0.15 s ⁇ 1 or less.
  • the absolute value ⁇ 1 of the strain in the circumferential direction is set to a large value of 0.3 or more, so the ratio of the strain amount in the circumferential direction applied to the annular intermediate body 20 in the ring rolling step S4 is reduced. be able to. Furthermore, since the absolute value ⁇ h of the strain in the height direction is set to a large value of 0.3 or more, a sufficient amount of strain in the height direction that is difficult to impart in the ring rolling step S4 can be secured.
  • the processing rate in the ring rolling step S4 can be lowered, the anisotropy of the strength property of the annular molded body 10 is suppressed, the isotropic property is enhanced, and the fine crystal in which the uniformity is sufficiently secured. Organization is obtained.
  • the ratio ⁇ h / ⁇ 1 between the absolute value ⁇ 1 of the strain in the circumferential direction and the absolute value ⁇ h of the strain in the height direction is 0.4 or more, a sufficient strain application ratio in the height direction is ensured. Thus, even if the subsequent ring rolling step S4 cannot sufficiently impart strain in the height direction, the uniformity of the structure can be ensured.
  • the ratio ⁇ h / ⁇ 1 is 2.5 or less, the distribution in the height direction is not excessive, the plastic flow is stable, and the axial symmetry of the plastic flow that is indispensable for imparting uniformity is ensured. Can do.
  • the ratio ⁇ h / ⁇ 1 between the absolute values of strain is more preferably 0.6 or more and 2.1 or less. Thereby, since the axial symmetry of plastic flow can be improved, the uniformity of the structure can be ensured more reliably.
  • the absolute value ⁇ 1 of the strain applied in the circumferential direction is set to 0.3 or more, and is applied in the height direction along the axial direction of the forged body. Since the absolute value ⁇ h of the strain amount is set to 0.3 or more, it can be suppressed that the temperature inside the forged body rises due to processing heat and the crystal becomes coarse.
  • the grain size of the product region in the annular molded body 10 is It is surely refined to 8 or more by ASTM grain size number. Therefore, the mechanical strength of the product obtained from the annular molded body 10 is reliably increased.
  • ⁇ 2 is preferably 1.3 or less.
  • the crystal grain size of the annular molded body 10 is preferably 8 or more and 13 or less in terms of ASTM grain size number. Thereby, the mechanical strength of the product obtained from the annular molded body 10 can be more reliably increased.
  • the annular molded body 10 since the crystal grain size difference in the product region in the cross section including the axis O of the annular molded body 10 is within the range of ⁇ 2 in terms of the ASTM crystal grain size number difference, the annular molded body 10 has a radial direction and a high height. The uniformity of crystal grain size in the vertical direction is sufficiently secured.
  • the crystal grain size of the forged body can be refined to 7 or more by the ASTM grain size number. Therefore, the structure of the annular molded body 10 can be refined while reducing the amount of strain applied in the next ring rolling step.
  • annular molded object 10 can be suppressed in the range of +/- 1.5 by ASTM crystal grain size number difference. That is, in the annular molded body 10 obtained by molding the annular intermediate body 20, the uniformity of the crystal grain size in the circumferential direction is sufficiently ensured.
  • the ring rolling is local processing, but unlike general partial forging, it has high continuity of processing and thus has high axial symmetry of the structure after forming, and the material properties in the circumferential direction of the annular formed body 10 are high. It is known that the deviation becomes smaller. Therefore, as in this embodiment, by setting the ratio T / H within the above-described range in the annular intermediate body 20 before ring rolling, the shape (roundness) and structure of the molded annular molded body 10 are determined. The axial symmetry of can be further increased.
  • annular molded body having a sufficiently high mechanical strength while ensuring the uniformity of the structure is stably manufactured at a low cost. It becomes possible.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the shapes of the annular molded body 10 and the annular intermediate body 20 are not limited to this embodiment, and can be appropriately changed in design in consideration of the shape of the annular product such as a turbine disk to be produced.
  • the annular molded body 10 and the annular intermediate body 20 have been described as being constituted by the Ni-based alloy Alloy 718.
  • the present invention is not limited to this, and other materials (for example, Waspaloy (registered trademark) (United Technology Inc.) .), Alloy 720, Co-based alloy, Fe-based alloy, etc.).
  • the melt of the Ni-based alloy Alloy 718 is melted and the billet is produced by casting.
  • the present invention is not limited to this, and the billet is produced by a powder molding method. It is good also as a structure which performs a ring rolling process.
  • the billet may be produced by double dissolution (VIM + ESR or VIM + VAR).
  • the annular formed body 10 is formed by the ring rolling step S4, before the heat treatment step S5, the annular formed body 10 is subjected to processing such as partial forging for the purpose of giving a shape and adjusting the shape dimension. May be.
  • the difference between the crystal grain size in the virtual plane VS1 and the crystal grain size in the virtual plane VS2 is determined according to ASTM using equivalent positions (virtual planes VS1, VS2) obtained by equally dividing the annular molded body 10 in the circumferential direction.
  • the crystal grain size number difference is assumed to be within a range of ⁇ 1.5
  • the number of virtual planes to be compared is not limited to two. That is, since the annular molded body 10 is ensured equivalence in the entire circumference in the circumferential direction, not only in the above-described two divisions, but also in the crystal grain size difference between equivalent positions divided into three or more equally in the circumferential direction, The difference in ASTM grain size number is within a range of ⁇ 1.5.
  • the circumferential position for setting the equivalent position is not limited.
  • Example preparation First, a melt of Ni-based alloy Alloy 718 was melted. Specifically, the melting raw material was prepared so as to be in the component range of the Ni-based alloy Alloy 718 described in the above embodiment. And triple dissolution was given to this molten metal. Specifically, vacuum induction heating melting (VIM), electroslag remelting (ESR), and vacuum arc remelting (VAR) were performed to produce a cylindrical billet with a diameter of 254 mm.
  • VIP vacuum induction heating melting
  • ESR electroslag remelting
  • VAR vacuum arc remelting
  • a forging process was performed on the billet to produce a disk-shaped forged body.
  • Forging was performed twice by hot forging in which the temperature of the billet was heated to 1000 ° C.
  • the forging process is performed under the conditions shown in Table 1 with respect to the absolute value ⁇ 1 of the strain in the circumferential direction of the forged body, the absolute value ⁇ h of the strain in the height direction of the forged body, the ratio ⁇ h / ⁇ 1 between the absolute values of these strains, and the strain rate. It carried out in.
  • the annular intermediate 20 was molded such that the ratio T / H between the thickness T and the height H was a value shown in Table 1.
  • the annular intermediate 20 was subjected to ring rolling.
  • the ring rolling was performed twice by hot rolling in which the temperature of the annular intermediate 20 was heated to 1000 ° C.
  • the ring rolling was performed so that the sum total of the absolute value ⁇ 2 of the circumferential strain of the annular molded body 10 satisfies the conditions shown in Table 1 by these two hot rollings.
  • the annular molded body 10 was subjected to heat treatment.
  • As a direct aging material water-cooled after ring rolling, 718 ° C./8 hours + 621 ° C./8 hours + A. C. What gave the aging treatment of (air cooling) was produced.
  • Crystal grain size measurement Using the produced annular molded body 10, the maximum crystal grain size in the product region in the cross section including the virtual planes VS1 and VS2 and the average crystal grain size around the maximum crystal grain were measured and compared. The average crystal grain size around the maximum crystal grain was the average crystal grain size of the maximum crystal grain confirmation part (excluding the maximum crystal grain). The results are shown in Table 2.
  • FIG. 8 shows a tensile strength-drawing correlation diagram
  • FIG. 9 shows a proof stress-drawing correlation diagram.
  • Example 1 of the present invention is superior to Comparative Example 2 in all of tensile strength, 0.2% proof stress, and drawing. confirmed. That is, it was found that Example 1 of the present invention has a fine crystal structure in which the isotropy of the strength characteristics is enhanced and the uniformity is sufficiently ensured.
  • annular molded body of the present invention According to the method for producing an annular molded body of the present invention, an annular molded body having a sufficiently high mechanical strength while ensuring the uniformity of the structure can be produced stably and at low cost. For this reason, the manufacturing method of the annular molded object of this invention can be used suitably for manufacture of the turbine disk of an aircraft engine, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Forging (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Wire Processing (AREA)
  • Rolling Contact Bearings (AREA)
PCT/JP2014/059277 2013-03-28 2014-03-28 環状成形体の製造方法 WO2014157662A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MX2015013639A MX2015013639A (es) 2013-03-28 2014-03-28 Metodo para la manufactura de cuerpo formado anular.
RU2015146287A RU2631221C2 (ru) 2013-03-28 2014-03-28 Способ изготовления кольцевого формованного тела
ES14775622T ES2932530T3 (es) 2013-03-28 2014-03-28 Método para la fabricación de cuerpos de forma anular
EP14775622.5A EP2979774B1 (en) 2013-03-28 2014-03-28 Method for manufacturing annular formed body
CN201480028783.2A CN105228771A (zh) 2013-03-28 2014-03-28 环状成形体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-069205 2013-03-28
JP2013069205A JP6292761B2 (ja) 2013-03-28 2013-03-28 環状成形体の製造方法

Publications (1)

Publication Number Publication Date
WO2014157662A1 true WO2014157662A1 (ja) 2014-10-02

Family

ID=51624619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059277 WO2014157662A1 (ja) 2013-03-28 2014-03-28 環状成形体の製造方法

Country Status (7)

Country Link
EP (1) EP2979774B1 (es)
JP (1) JP6292761B2 (es)
CN (1) CN105228771A (es)
ES (1) ES2932530T3 (es)
MX (1) MX2015013639A (es)
RU (1) RU2631221C2 (es)
WO (1) WO2014157662A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019010654A (ja) * 2017-06-29 2019-01-24 大同特殊鋼株式会社 リング状素材の圧延方法
RU2703764C1 (ru) * 2019-02-21 2019-10-22 Акционерное общество "Металлургический завод "Электросталь" Способ изготовления крупногабаритной кольцевой детали газотурбинного двигателя из жаропрочного сплава на никелевой основе
RU2741046C1 (ru) * 2020-07-27 2021-01-22 Акционерное общество "Металлургический завод "Электросталь" Способ изготовления крупногабаритного сложноконтурного кольцевого изделия из жаропрочного сплава на никелевой основе
CN115592055A (zh) * 2022-10-10 2023-01-13 江苏保捷锻压有限公司(Cn) 一种环状零件外径多台阶锻造工艺

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105436365B (zh) * 2015-12-08 2017-10-03 山西冠力法兰有限公司 应用于辗环设备生产平板类二合一锻件的模具及方法
EP3710608B1 (en) * 2017-11-17 2024-02-14 Materion Corporation Process for making a metal ring from a beryllium-copper alloy, metal ring made of a beryllium-copper alloy, an amorphous metal casting apparatus
RU2699428C1 (ru) * 2018-05-28 2019-09-05 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ ковки раскатных колец
WO2020059798A1 (ja) * 2018-09-19 2020-03-26 日立金属株式会社 Fe-Ni基超耐熱合金のリング圧延材の製造方法
WO2020059797A1 (ja) * 2018-09-19 2020-03-26 日立金属株式会社 Fe-Ni基超耐熱合金のリング圧延材の製造方法
JP7121929B2 (ja) * 2019-12-25 2022-08-19 日立金属株式会社 リング圧延材の製造方法
CN115156455A (zh) * 2022-08-09 2022-10-11 上海电气上重铸锻有限公司 一种带全截面凸台的圆环形或弧形锻件的锻造成形方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211333A (ja) 1986-03-10 1987-09-17 Kobe Steel Ltd 粉末製Ni基超耐熱合金の鍛造方法
JPH07138719A (ja) 1993-11-13 1995-05-30 Kobe Steel Ltd Ni基超合金鍛造品の鍛造方法
US6059904A (en) * 1995-04-27 2000-05-09 General Electric Company Isothermal and high retained strain forging of Ni-base superalloys
JP2011255409A (ja) 2010-06-10 2011-12-22 Mitsubishi Materials Corp 環状成形体の製造方法
JP2012051029A (ja) * 2010-08-31 2012-03-15 General Electric Co <Ge> 圧粉体ロータ鍛造プリフォーム並びに鍛造圧粉体タービンロータ及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132241A (ja) * 1984-12-03 1986-06-19 Mitsubishi Metal Corp リングの製造方法
US4957567A (en) * 1988-12-13 1990-09-18 General Electric Company Fatigue crack growth resistant nickel-base article and alloy and method for making
RU2256001C1 (ru) * 2002-04-26 2005-07-10 ДжФЕ СТИЛ КОРПОРЕЙШН Способ ковки заготовки из титанового сплава и заготовка из титанового сплава для ковки
US6908519B2 (en) * 2002-07-19 2005-06-21 General Electric Company Isothermal forging of nickel-base superalloys in air
RU2286862C1 (ru) * 2005-06-01 2006-11-10 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" Способ изготовления колец
US7763129B2 (en) * 2006-04-18 2010-07-27 General Electric Company Method of controlling final grain size in supersolvus heat treated nickel-base superalloys and articles formed thereby
RU2342215C2 (ru) * 2006-09-25 2008-12-27 ОАО "Русполимет" Способ изготовления раскатных кольцевых заготовок из высоколегированных никелевых сплавов
US20090000706A1 (en) * 2007-06-28 2009-01-01 General Electric Company Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys
JP5613468B2 (ja) * 2010-06-10 2014-10-22 Mmcスーパーアロイ株式会社 環状成形体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211333A (ja) 1986-03-10 1987-09-17 Kobe Steel Ltd 粉末製Ni基超耐熱合金の鍛造方法
JPH07138719A (ja) 1993-11-13 1995-05-30 Kobe Steel Ltd Ni基超合金鍛造品の鍛造方法
US6059904A (en) * 1995-04-27 2000-05-09 General Electric Company Isothermal and high retained strain forging of Ni-base superalloys
JP2011255409A (ja) 2010-06-10 2011-12-22 Mitsubishi Materials Corp 環状成形体の製造方法
JP2012051029A (ja) * 2010-08-31 2012-03-15 General Electric Co <Ge> 圧粉体ロータ鍛造プリフォーム並びに鍛造圧粉体タービンロータ及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Year 2002 Research Report - Report Regarding Development of Innovative Members Using Ultra-Large Forging Press Machine", NEW ENERGY AND INDUSTRIAL TECHNOLOGY DEVELOPMENT ORGANIZATION, March 2003 (2003-03-01), pages 10 - 11,37-41
See also references of EP2979774A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019010654A (ja) * 2017-06-29 2019-01-24 大同特殊鋼株式会社 リング状素材の圧延方法
RU2703764C1 (ru) * 2019-02-21 2019-10-22 Акционерное общество "Металлургический завод "Электросталь" Способ изготовления крупногабаритной кольцевой детали газотурбинного двигателя из жаропрочного сплава на никелевой основе
RU2741046C1 (ru) * 2020-07-27 2021-01-22 Акционерное общество "Металлургический завод "Электросталь" Способ изготовления крупногабаритного сложноконтурного кольцевого изделия из жаропрочного сплава на никелевой основе
CN115592055A (zh) * 2022-10-10 2023-01-13 江苏保捷锻压有限公司(Cn) 一种环状零件外径多台阶锻造工艺

Also Published As

Publication number Publication date
CN105228771A (zh) 2016-01-06
EP2979774B1 (en) 2022-11-16
JP2014188580A (ja) 2014-10-06
EP2979774A1 (en) 2016-02-03
RU2631221C2 (ru) 2017-09-19
JP6292761B2 (ja) 2018-03-14
RU2015146287A (ru) 2017-05-04
MX2015013639A (es) 2016-06-02
EP2979774A4 (en) 2016-09-28
ES2932530T3 (es) 2023-01-20

Similar Documents

Publication Publication Date Title
JP6292761B2 (ja) 環状成形体の製造方法
JP5613467B2 (ja) 環状成形体の製造方法
JP5613468B2 (ja) 環状成形体の製造方法
US9592547B2 (en) Method of manufacturing annular molding
EP2977124B1 (en) Material for ring rolling
CN106670359B (zh) 一种gh4169合金环件及其制备方法
JP5680292B2 (ja) 環状成形体の製造方法
JP5895111B1 (ja) リング成形体の製造方法
JP5263580B2 (ja) ガスタービン用リング状ディスク
JP5795838B2 (ja) リング状成形体の製造方法
JP6395040B2 (ja) 圧延ロール及びリング圧延方法
JP6040944B2 (ja) 耐熱合金製リングの成形方法
KR101330641B1 (ko) 균일조직을 가지는 니켈기지 초내열합금 형상링의 제조방법
US11208910B2 (en) Ring molded article manufacturing method and ring material
JP6410135B2 (ja) 熱間鍛造用金型

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480028783.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775622

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/013639

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014775622

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015146287

Country of ref document: RU

Kind code of ref document: A