WO2014157434A1 - N-グリコシル酸アミドアミノ酸-核酸誘導体およびその製造方法 - Google Patents

N-グリコシル酸アミドアミノ酸-核酸誘導体およびその製造方法 Download PDF

Info

Publication number
WO2014157434A1
WO2014157434A1 PCT/JP2014/058711 JP2014058711W WO2014157434A1 WO 2014157434 A1 WO2014157434 A1 WO 2014157434A1 JP 2014058711 W JP2014058711 W JP 2014058711W WO 2014157434 A1 WO2014157434 A1 WO 2014157434A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
amino acid
nucleic acid
glycosylamide
acid derivative
Prior art date
Application number
PCT/JP2014/058711
Other languages
English (en)
French (fr)
Inventor
孝一 本家
日吉三 小槻
正典 片岡
千春 福井
Original Assignee
国立大学法人高知大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人高知大学 filed Critical 国立大学法人高知大学
Priority to JP2015508645A priority Critical patent/JPWO2014157434A1/ja
Publication of WO2014157434A1 publication Critical patent/WO2014157434A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical

Definitions

  • the present invention relates to an N-glycosylamide amino acid-nucleic acid derivative and a method for producing the same.
  • Glycoprotein is a general term for proteins in which a sugar chain is bonded to a part of a specific amino acid, has various functions, and plays an important role in vivo.
  • glycoproteins having sugar chains in their structures many proteins present in cell membranes and secreted from cells are glycoproteins having sugar chains in their structures, and about 60 to 70% of proteins present in the body are said to be glycoproteins. ing.
  • sugar chains of glycoproteins expressed on the cell surface are not only involved in adhesion to other cells in the body, but also serve as ligands when bacteria and viruses adhere to cells, and information transmission between cells Sometimes it plays an important role.
  • the protein is stabilized by the sugar chain, and the glycoprotein having a highly hydrophilic sugar chain has an action of protecting the tissue.
  • cancerous cells differ in the sugar chain structure of glycoproteins compared to normal cells.
  • the activity of glycoproteins having physiological activity is controlled by sugar chains.
  • erythropoietin which is a glycoprotein having an action of promoting the production of erythrocytes, has a reduced half-life in blood just by lacking sialic acid at the end of the sugar chain, and hardly shows activity.
  • glycoprotein As mentioned above, it is a glycoprotein that has various actions and can be a key to elucidate biological functions and develop new drugs, but its research has not progressed sufficiently despite the remarkable development of genetic engineering in recent years. is the current situation. The reason is that the activity of glycoprotein is influenced by the slightly different sugar chain structure, but artificial synthesis of glycoprotein is very difficult.
  • a method for incorporating these genes into Chinese hamster ovary (CHO) cells is known.
  • the sugar chain structure of the glycoprotein obtained by this method is not uniform and not only has sufficient activity, but may cause an immune response reaction in the body.
  • glycopeptides are synthesized by organic synthesis, and they are linked to synthesize glycoproteins.
  • erythropoietin having physiological activity is synthesized.
  • this method since a specific sugar chain must be bound to a side chain of a specific amino acid in producing a glycoprotein, this method has a problem that it takes a lot of labor and time.
  • Non-Patent Document 2 a cell-free translation system as described in Non-Patent Document 2.
  • a tRNA that specifically binds to a non-coding codon such as a UAG codon that is one of stop codons and to which an unnatural amino acid is bound is prepared.
  • mRNA in which the codon is incorporated at the position where the unnatural amino acid is to be introduced is prepared.
  • Non-Patent Document 2 as an unnatural amino acid, phosphate-deoxycytosine-phosphate-adenosine (pdCpA) in which serine into which glucose or the like has been introduced via a ⁇ -hydroxyl group is bonded to the 3 ′ position of ribose is synthesized. ing. If a peptide is synthesized by a cell-free translation system using tRNA bound to the compound, a glycoprotein having a specific sugar chain at a desired position may be obtained.
  • pdCpA phosphate-deoxycytosine-phosphate-adenosine
  • glycoproteins include O-linked sugar chains and N-linked sugar chains.
  • the sugar chain in the glycoprotein is bonded to the O-linked sugar chain bonded via the ⁇ -hydroxyl group of serine or threonine in the peptide chain via the amino group in the side chain amide group of asparagine.
  • N-linked sugar chains There are N-linked sugar chains.
  • the carboxy group of serine is activated by cyanomethyl esterification and then reacted with pdCpA.
  • this reaction was applied to the synthesis of glucosamyl-N-asparagine, only an iminolactone or cyclic imide compound of asparagine was obtained. Only a trace amount was observed and could not be isolated. This fact can be said to be the biggest reason for the lack of reports of the synthesis of N-glycosylated asparagine-pdCpA, despite the need for glycoprotein research.
  • an object of the present invention is to provide an N-glycosylamide amino acid-nucleic acid derivative that serves as a basis for the synthesis of a glycoprotein containing an N-linked sugar chain, and a method for producing the same.
  • N-glycosylamide amino acid cannot be reacted with a nucleic acid derivative by the active ester method as known in the art, but it has been found that the reaction proceeds when a dehydrating condensing agent is used.
  • the first successful synthesis of a glycosylamide amino acid-nucleic acid derivative completed the present invention.
  • R 1 to R 3 independently represent a hydrogen atom or a protecting group for a phosphate group
  • R 4 represents a hydrogen atom, a hydroxyl group, a protected hydroxyl group, a C 1-6 alkoxy group, a 2- (C 1-6 alkoxy) ethoxy group or a halogen atom
  • B 1 and B 2 are independently any nucleobase group represented by the following formula:
  • R 7 to R 13 independently represent a hydrogen atom or an amino-protecting group
  • R 5 represents an N-glycosylamide amino acid group represented by the following formula (II) and R 6 represents a hydrogen atom, or R 5 represents a hydrogen atom and R 6 represents the following formula (II) Shown are the N-glycosylamide amino acid groups represented:
  • R 14 to R 16 independently represent a hydrogen atom or a hydroxyl-protecting group; R 17 and R 18 independently represent a hydrogen atom or an amino protecting group; n represents 1 or 2]].
  • the N-glycosylamide amino acid group (II) is an N- (N-acetylglucosamyl) -L-asparaginyl group represented by the following formula (II ′): Glycosyl amide amino acid-nucleic acid derivative or salt thereof.
  • N-linked sugar chains of glycoproteins are usually bonded via an amino group in the side chain amide group of L-asparagine, and the base sugar is often N-acetylglucosamine. That is, the above-mentioned N-glycosyl amide amino acid-nucleic acid derivative or a salt thereof is very useful for producing a natural glycoprotein.
  • N-glycosylamide amino acid-nucleic acid derivative or salt thereof according to any one of [1] to [4] above, wherein B 1 is a cytosynyl group and B 2 is an adenyl group.
  • the compound is useful for the synthesis of tRNA for introducing unnatural amino acids such as sugar-linked amino acids into proteins in a cell-free translation system.
  • a method for producing the N-glycosylamide amino acid-nucleic acid derivative (I) or a salt thereof according to [1], Comprising the step of condensing a nucleic acid derivative represented by the following formula (III) or a salt thereof with an N-glycosylamide amino acid derivative represented by the following formula (IV) in the presence of a dehydrating condensing agent: how to.
  • R 1 to R 4 , B 1 , B 2 and n are as defined above; R 14 to R 18 are as defined above but are not hydrogen atoms; R 19 and R 20 are Any one of them represents a hydrogen atom and the other represents a protecting group for a hydroxyl group, or both represent a hydrogen atom].
  • Non-Patent Document 2 a method for synthesizing an O-glycosylserine-nucleic acid derivative used for synthesizing an amber suppressor tRNA in a cell-free translation system has been known. It is considered that it can be synthesized. However, this method cannot be applied to the synthesis of N-glycosyl asparagine-nucleic acid derivatives, and there has been no report that N-glycosyl asparagine-nucleic acid derivatives have been synthesized.
  • glycoprotein Since the sugar chain of a glycoprotein is usually bound to the protein via the side chain hydroxyl group of serine or threonine and the side chain amino group of asparagine, cell-free translation is possible without an N-glycosyl asparagine-nucleic acid derivative.
  • the system cannot be used to produce glycoproteins.
  • all sugar chains of glycoproteins do not have the same structure and are not bound to all serines, etc., a specific sugar chain must be synthesized with a specific serine or the like to chemically synthesize glycoproteins. Must be combined. Therefore, chemical synthesis of glycoprotein has been very difficult.
  • an N-glycosylamide amino acid-nucleic acid derivative can be provided, and a glycoprotein having an N-linked sugar chain can be produced using a cell-free translation system.
  • N-glycosylamide amino acid-nucleic acid derivative is represented by the following formula (I):
  • R 1 to R 3 independently represent a hydrogen atom or a protecting group for a phosphate group.
  • protecting groups for phosphate groups include alkyl phosphate protecting groups such as C 1-6 alkyl groups; substituted alkyl phosphate protecting groups such as ⁇ -cyanoethyl groups; amide phosphate protecting groups such as phenylamino groups.
  • ⁇ -cyanoethyl group widely used in the synthesis of nucleic acid derivatives is preferred.
  • R 4 represents a hydrogen atom, a hydroxyl group, a protected hydroxyl group, a C 1-6 alkoxy group, a 2- (C 1-6 alkoxy) ethoxy group, or a halogen atom.
  • the protected hydroxyl group means a hydroxyl group protected with a protecting group, and examples thereof include the same groups as -OR 14 (wherein R 14 represents a hydroxyl-protecting group).
  • “2- (C 1-6 alkoxy) ethoxy group” means a group in which the C 1-6 alkoxy group is substituted at the 2-position of the ethoxy group.
  • the 2-methoxyethoxy group has a structure of CH 3 OCH 2 CH 2 O—.
  • the “halogen atom” include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the halogen atom for R 4 is preferably a fluorine atom.
  • B 1 and B 2 independently represent a nucleobase group selected from an adenyl group, a guanyl group, a uracil group, a thyminyl group, a cytosynyl group, and a hypoxanthinyl group.
  • the amino group in these nucleobase groups may be protected.
  • protecting group examples include benzyl protecting groups such as benzyl group and di (4-methoxyphenyl) methyl group; allyl protecting groups such as allyl group; methyl carbamate group, ethyl carbamate group, 9-fluorenylmethyl Examples thereof include carbamate protecting groups such as carbamate group and t-butyl carbamate group; acyl protecting groups such as acetyl group, benzoyl group, isopropylcarbonyl group and phenoxyacetyl group.
  • the protective group R 7 and the like include, for example, an imine protective group such as a dimethylaminomethylene group, a benzylidene group, a diphenylmethylene group, a cyclic protective group, etc.
  • the amino group may be protected in the form of —N ⁇ R 7 or the like.
  • N-glycosyl asparagine-nucleic acid derivative (I) in which R 4 is a hydrogen atom, B 1 is a cytosynyl group and B 2 is an adenyl group is a tRNA used in an existing cell-free translation system and is an unnatural amino acid. Useful as a binding moiety.
  • R 5 and R 6 are hydrogen atom, and the other is an N-glycosylamide amino acid group (II):
  • R 14 to R 16 independently represent a hydrogen atom or a hydroxyl-protecting group.
  • the protecting group for the hydroxyl group include benzyl such as benzyl group, p-methoxybenzyl group, 3,4-dimethoxybenzyl group, o- or p-nitrobenzyl group, p-halobenzyl group, and 2,6-dichlorobenzyl group.
  • Protecting groups such as trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group, triphenylsilyl group; acyl groups such as acetyl group and benzoyl group Protecting groups; alkoxymethyl protecting groups such as methoxymethyl group, p-methoxybenzyloxymethyl group, t-butoxymethyl group, 2-methoxyethoxymethyl group, 1-methoxyethyl group, 1-ethoxyethyl group, etc. Can do.
  • R 17 and R 18 independently represent a hydrogen atom or an amino-protecting group.
  • the amino-protecting group include those similar to the amino-protecting group in the nucleic acid base group.
  • N represents 1 or 2, when n is 1, the acid amide amino acid moiety is asparagine, and when n is 2, it is glutamine.
  • R 17 is preferably an acetyl group, n is 1, the sugar moiety is N-acetylglucosamine, and the amino acid moiety is L-form. That is, the N-glycosylamide amino acid group (II) is preferably an N- (N-acetylglucosamyl-L-asparaginyl group represented by the following formula (II ′).
  • R 14 to R 16 and R 18 are as defined above
  • many N-linked sugar chains are bound to L-asparagine in a specific sequence, and the base sugar is often N-acetylglucosamine. That is, the nucleic acid derivative having the N- (N-acetylglucosamyl) -L-asparaginyl group (II ′) is useful as a raw material compound for producing a natural glycoprotein.
  • glycoproteins have a sugar chain bound to a side chain amino group of a glutaminyl group, particularly an L-glutaminyl group.
  • the first sugar linked to the asparaginyl group or glutaminyl group is N-acetylgalactosamine.
  • the N-glycosylamide amino acid-nucleic acid derivative (I) may be a salt.
  • the salt include alkali metal salts such as sodium salt and potassium salt; quaternary ammonium salts such as tetramethylammonium salt, tetraethylammonium salt, tetrabutylammonium salt and pyridinium salt; ammonium salt; diazabicyclounde Other primary to tertiary ammonium salts such as nium salt, triethylammonium salt and diisopropylammonium salt; halide salts such as chloride and bromide salts; inorganic acid salts such as hydrochloride, sulfate and nitrate; formate and acetic acid Organic acids such as salt, citrate, oxalate, propionate, benzoate, trifluoroacetate, maleate, tartrate, methanesulfonate, benzenesulf
  • the N-glycosyl amide amino acid derivative (I) or a salt thereof according to the present invention comprises a nucleic acid derivative (III) or a salt thereof and an N-glycosyl amide amino acid derivative (IV) in the presence of a dehydration condensing agent. It can be produced by condensation.
  • the nucleic acid derivative (III) or a salt thereof can be synthesized by those skilled in the art based on a known nucleic acid production method or a known method improvement method.
  • a cyanoethyl group that is a protecting group for a phosphate group a TBDMS group that is a protecting group for a hydroxyl group, and an amino group of a nucleic acid base group in the precursor compound of the nucleic acid derivative (III).
  • the benzoyl group which is a protecting group, is simultaneously removed using an aqueous tetrabutylammonium hydroxide, and ion exchange into a tetrabutylammonium salt which is performed for the purpose of improving the solubility in an organic solvent is also unnecessary.
  • Those skilled in the art can also easily synthesize N-glycosylamide amino acid derivative (IV) by condensing sugar with asparagine, glutamine or a derivative thereof.
  • each protecting group may be changed to one suitable for each reaction at any time before or after this step.
  • Appropriate protecting groups and protecting and deprotecting reactions can be appropriately selected from known methods by those skilled in the art. For example, T.W. W. Green, P. G. M. Wuts, "PROTECTIVE” GROUPS “IN” ORGANIC “SYNTHESIS”, JOHN “WILEY” & “SONS, Inc. And Beaucage, S. Et al., Tetrahedron, 1992, 48, pp. See 2223-2311.
  • the nucleic acid derivative (III) or a salt thereof and the N-glycosyl acid amide amino acid derivative (IV) may be reacted one-to-one, but it is preferable to use a larger amount of the N-glycosyl acid amide amino acid derivative (IV). .
  • the nucleic acid derivative (III) or a salt thereof has more synthetic steps than the N-glycosylamide amino acid derivative (IV).
  • the solubility of the nucleic acid derivative (III) in the solvent may be low.
  • the N-glycosyl amide amino acid derivative (IV) can be used in an amount of 1 to 10 mol, more preferably 8 to mol, more preferably 1 mol or less, per mol of the nucleic acid derivative (III) or a salt thereof. Preferably it is 6 times mol or less, Most preferably, it is 5 times mol or less.
  • the dehydrating condensing agent used in this step is not particularly limited as long as it can dehydrate and condense a sugar hydroxyl group and an amino acid carboxy group.
  • Carbodiimide-based dehydration condensing agents such as carbodiimide (EDC or WSCI), 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide hydrochloride (WSCI ⁇ HCl), dicyclohexylcarbodiimide (DCC); O-benzotriazole-1 -Yl-N, N, N ', N'-tetramethyluronium hexafluorophosphate (HBTU), benzotriazol-1-yl-tris (dimethylamino) phosphonium hexafluorophosphide salt (BOP), O- (7
  • a carbodiimide-based dehydrating condensation agent is preferably used. Further, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride (DMT-MM) can also be preferably used.
  • DMT-MM 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride
  • 1 mol of dehydrating condensing agent can capture 1 mol of water, it is preferably used in the same amount as that of the nucleic acid derivative (III) or a salt thereof and the N-glycosylamide amino acid derivative (IV). For example, it can be used in an amount of 1 to 5 moles, more preferably 1.2 to 2 moles per mole of N-glycosylamide amino acid derivative (IV).
  • condensation aids include N-hydroxytriazoles such as 1-hydroxybenzotriazole (HOBt); pyridines such as pyridine, 4-dimethylaminopyridine (DMAP) and pyrrolidinopyridine (PPY); N-hydroxy N-hydroxy polycarboxylic imides such as succinimide (HONSu) and N-hydroxy-5-norbornene-2,3-dicarboxylic imide (HONB); 3-hydroxy-4-oxo-3,4-dihydro -Triazines such as 1,2,3-benzotriazine (HOOBt); 2-hydroxyimino-2-cyanoacetic acid ethyl ester and the like.
  • N-hydroxytriazoles such as 1-hydroxybenzotriazole (HOBt)
  • pyridines such as pyridine, 4-dimethylaminopyridine (DMAP) and pyrrolidinopyridine (PPY)
  • N-hydroxy N-hydroxy polycarboxylic imides such as succinimide (HO
  • condensation aid N-hydroxytriazole condensation aids are preferred, and HOBt is particularly preferred.
  • HOBt is particularly preferred.
  • the amount of the pyridine-based condensation aid used can be relatively small relative to the dehydration-condensation agent, and the use of an excess of the triazine condensation aid may give better results.
  • This step is usually performed in a solvent.
  • the solvent that can be used is not particularly limited as long as each compound can be appropriately dissolved and does not inhibit the reaction, and may be appropriately selected. Examples thereof include amide solvents such as dimethylformamide and dimethylacetamide; Halogenated hydrocarbon solvents such as dichloromethane and dichloroethane; Nitrile solvents such as acetonitrile; Ether solvents such as 1,4-dioxane and tetrahydrofuran; Pyridine solvents such as pyridine; Sulfoxide solvents such as dimethyl sulfoxide; Can be mentioned.
  • amide solvents such as dimethylformamide and dimethylacetamide
  • Halogenated hydrocarbon solvents such as dichloromethane and dichloroethane
  • Nitrile solvents such as acetonitrile
  • Ether solvents such as 1,4-dioxane and tetrahydrofuran
  • Pyridine solvents such as pyridine
  • the reaction temperature may be adjusted as appropriate, but can usually be 10 ° C or higher and lower than 80 ° C.
  • the reaction time may be adjusted as appropriate, for example, until the less used amount of the nucleic acid derivative (III) or a salt thereof and the N-glycosylamide amino acid derivative (IV) is not detected in the reaction solution. Alternatively, it can be determined by a preliminary experiment or the like. Usually, it can be about 1 hour or more and 10 hours or less.
  • the solvent may be distilled off under reduced pressure and then purified by chromatography or the like.
  • the N-glycosyl amide amino acid-nucleic acid derivative (I) or a salt thereof according to the present invention can be used, for example, to introduce asparagine or glutamine having a sugar chain in peptide synthesis using a cell-free translation system. . More specifically, a desired sugar chain is bound to the sugar moiety of the N-glycosylamide amide amino acid derivative (I) or a salt thereof according to the present invention using, for example, endo- ⁇ -N-acetylglucosaminidase.
  • a peptide having the N-glycosylamide amino acid-nucleic acid derivative (I) or a salt thereof according to the present invention introduced therein as described above and then synthesized with endo- ⁇ -N- A desired sugar chain may be bound to the sugar moiety of the derivative (I) using acetylglucosaminidase or the like.
  • Benzimidazolium triflate (1.2 g, 4.5 mmol) was added to the reaction solution, and the mixture was further stirred for 120 minutes.
  • the reaction mixture was treated with bis (trimethylsilyl) peroxide (3.3 mL, 15 mmol) for 60 minutes, and the insoluble material was filtered off. The filtrate was concentrated to obtain a 5′-hydroxyl-protected nucleoside dimer as a colorless gum (yield: 5.0 g).
  • the dimer was further treated with a 3% trichloroacetic acid / dichloromethane solution (90 mL) for 10 minutes, and then poured into a vigorously stirred saturated aqueous sodium bicarbonate solution (300 mL).
  • the standing time was 24 hours for normal pressure and 14 hours for 800 MPa.
  • the reaction solution was concentrated, and the target compound was obtained as a light yellow solid by size exclusion chromatography (yield: 220 mg, 0.16 mmol, yield:> 99%).
  • Comparative Example 1 Application of the method described in Non-Patent Document 2 The active ester method described in Non-Patent Document 2 was applied to produce an N-glycosylamide amino acid-nucleic acid derivative according to the present invention. Specifically, Compound 7 (4.0 mg, 5.7 ⁇ mol), chloroacetonitrile (1.8 ⁇ L, 28 ⁇ mol) and triethylamine (3.9 ⁇ L, 28 ⁇ mol) were dissolved in dry DMF (53 ⁇ L) and stirred at room temperature for 2 hours. As a result, Compound 7 was completely consumed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Saccharide Compounds (AREA)

Abstract

 本発明は、N-結合型糖鎖を含む糖タンパク質の合成の足掛かりとなるN-グリコシル酸アミドアミノ酸-核酸誘導体と、その製造方法を提供することを目的とする。本発明に係るN-グリコシル酸アミドアミノ酸-核酸誘導体またはその塩は、下記式(I)で表されることを特徴とする。[式中、R1~R3は独立して水素原子等を示し;R4は水素原子等を示し;B1およびB2は核酸塩基基を示し;R5とR6は一方が水素原子を示し、他方がN-グリコシル酸アミドアミノ酸基を示す]

Description

N-グリコシル酸アミドアミノ酸-核酸誘導体およびその製造方法
 本発明は、N-グリコシル酸アミドアミノ酸-核酸誘導体とその製造方法に関するものである。
 糖タンパク質は、特定のアミノ酸の一部に糖鎖が結合しているタンパク質の総称であり、様々な機能を有し、生体内でも重要な役割を担っている。
 例えば、細胞膜に存在するタンパク質や細胞から分泌されるタンパク質の多くは、その構造中に糖鎖を有する糖タンパク質であり、生体内に存在するタンパク質の60~70%程度は糖タンパク質であるといわれている。また、細胞表面に発現した糖タンパク質の糖鎖は、生体内の他の細胞との接着に関与するのみならず、細菌やウィルスが細胞に接着する際のリガンドとなったり、細胞間の情報伝達に重要な役割を果たす場合もある。さらに、糖鎖によりタンパク質が安定化したり、高親水性の糖鎖を有する糖タンパク質が組織を保護するといった作用も有する。また、がん化した細胞では、正常細胞に比べて糖タンパク質の糖鎖構造に違いが生じる。その他、生理活性を有する糖タンパク質では、糖鎖によりその活性が制御されている。例えば、赤血球の産生促進作用を有する糖タンパク質であるエリスロポエチンは、その糖鎖末端のシアル酸が欠如したのみで血中半減期が減少し、活性をほとんど示さなくなってしまう。
 上記のとおり、様々な作用を有し、また、生体機能の解明や新薬開発の鍵となり得る糖タンパク質であるが、近年における遺伝子工学の目覚しい発展にもかかわらず、その研究は十分に進んでいないのが現状である。その理由として、糖タンパク質の活性などは、その糖鎖構造が僅かに異なるのみで影響を受ける一方で、糖タンパク質の人工的な合成が非常に難しいことが挙げられる。
 例えば、ヒトのサイトカインや抗体などのタンパク質を製造する手段として、これらの遺伝子をチャイニーズハムスター卵巣(CHO)細胞に組み込む方法が知られている。しかし、この方法で得られる糖タンパク質の糖鎖構造は不均一であり、活性が十分でないのみならず、体内で免疫応答反応を引き起こす場合もある。
 そこで、非特許文献1の方法では、有機合成により糖ペプチドを合成し、それらを連結して糖タンパク質を合成している。この方法により、生理活性を有するエリスロポエチンが合成されている。しかし、糖タンパク質を製造するに当たっては、特定のアミノ酸の側鎖に特定の糖鎖を結合させなければならないため、この方法には大変な手間や時間がかかるという問題がある。
 そこで、非特許文献2のとおり、無細胞翻訳システムを用いることが考えられる。具体的には、当該システムでは、終止コドンの1つであるUAGコドンをはじめとする非コードコドンへ特異的に結合するものであり且つ非天然アミノ酸が結合したtRNAを調製する。また、当該非天然アミノ酸を導入したい位置に上記コドンを組み込んだmRNAを調製する。これらを用いてペプチド合成を行うことにより、所望の位置に非天然アミノ酸が導入されたペプチドを得ることができる。非特許文献2では、非天然アミノ酸として、β-水酸基を介してグルコースなどが導入されたセリンが、リボースの3’位に結合したリン酸-デオキシシトシン-リン酸-アデノシン(pdCpA)が合成されている。当該化合物が結合したtRNAを用い、無細胞翻訳システムでペプチドを合成すれば、所望の位置に特定の糖鎖を有する糖タンパク質が得られる可能性がある。
Y.Kajiharaら,Angew.Chem.Int.Ed.,48,pp.9557-9560(2009) M.Hechtら,Carbohydrate Research,330,pp.149-164(2001)
 上述したように、所望の位置に特定の糖鎖を有する糖タンパク質を合成するための技術は、理論的には確立されている。しかし実際には、非特許文献2の技術のみでは糖タンパク質を合成することができない。その理由としては、糖タンパク質の糖鎖としては、O-結合型糖鎖とN-結合型糖鎖があることによる。
 即ち、糖タンパク質における糖鎖は、ペプチド鎖中のセリンまたはトレオニンのβ-水酸基を介して結合しているO-結合型糖鎖と、アスパラギンの側鎖アミド基中のアミノ基を介して結合しているN-結合型糖鎖がある。非特許文献2では、セリンのカルボキシ基をシアノメチルエステル化して活性化した後、pdCpAと反応させている。ところが、本発明者らによる実験的知見によれば、この反応をグルコサミル-N-アスパラギンの合成に適用したところ、アスパラギンのイミノラクトンや環状イミド化合物のみが得られ、活性エステルであるシアノメチルエステルは痕跡量が認められるのみで単離することはできなかった。この事実が、糖タンパク質の研究の必要性が切望されているにも関わらず、N-グリコシル化アスパラギン-pdCpAの合成の報告が未だに無い最大の理由であるといえる。
 そこで本発明は、N-結合型糖鎖を含む糖タンパク質の合成の足掛かりとなるN-グリコシル酸アミドアミノ酸-核酸誘導体と、その製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、公知技術のとおり活性エステル法ではN-グリコシル酸アミドアミノ酸と核酸誘導体を反応させることはできないが、脱水縮合剤を使用すれば反応が進行することを見出し、これまで前例の無いN-グリコシル酸アミドアミノ酸-核酸誘導体の合成に初めて成功して、本発明を完成した。
 以下、本発明を示す。
 [1] 下記式(I)で表されることを特徴とするN-グリコシル酸アミドアミノ酸-核酸誘導体またはその塩。
Figure JPOXMLDOC01-appb-C000006
[式中、
 R1~R3は、独立して水素原子またはリン酸基の保護基を示し;
 R4は、水素原子、水酸基、保護水酸基、C1-6アルコキシ基、2-(C1-6アルコキシ)エトキシ基またはハロゲン原子を示し;
 B1およびB2は、独立して下記式で表される何れかの核酸塩基基:
Figure JPOXMLDOC01-appb-C000007
[式中、R7~R13は、独立して水素原子またはアミノ基の保護基を示す]を示し;
 R5は下記式(II)で表されるN-グリコシル酸アミドアミノ酸基を示し且つR6は水素原子を示すか、或いは、R5は水素原子を示し且つR6は下記式(II)で表されるN-グリコシル酸アミドアミノ酸基を示す:
Figure JPOXMLDOC01-appb-C000008
[式中、
 R14~R16は、独立して水素原子または水酸基の保護基を示し;
 R17とR18は、独立して水素原子またはアミノ基の保護基を示し;
 nは1または2を示す]]。
 [2] nが1である上記[1]に記載のN-グリコシル酸アミドアミノ酸-核酸誘導体またはその塩。
 [3] R17がアセチル基である上記[1]または[2]に記載のN-グリコシル酸アミドアミノ酸-核酸誘導体またはその塩。
 [4] N-グリコシル酸アミドアミノ酸基(II)が、下記式(II’)で表されるN-(N-アセチルグルコサミル)-L-アスパラギニル基である上記[1]に記載のN-グリコシル酸アミドアミノ酸-核酸誘導体またはその塩。
Figure JPOXMLDOC01-appb-C000009
[式中、R14~R16およびR18は上記と同義を示す]。
 糖タンパク質のN-結合型糖鎖は、通常、L-アスパラギンの側鎖アミド基中のアミノ基を介して結合しており、また、基底部の糖はN-アセチルグルコサミンであることが多い。即ち、上記のN-グリコシル酸アミドアミノ酸-核酸誘導体またはその塩は、天然型の糖タンパク質を製造するためのものとして非常に有用である。
 [5] B1がシトシニル基であり且つB2がアデニル基である上記[1]~[4]のいずれかに記載のN-グリコシル酸アミドアミノ酸-核酸誘導体またはその塩。当該化合物は、無細胞翻訳システムにおいて糖結合アミノ酸などの非天然アミノ酸をタンパク質へ導入するためのtRNAの合成に有用である。
 [6] 上記[1]に記載のN-グリコシル酸アミドアミノ酸-核酸誘導体(I)またはその塩を製造するための方法であって、
 脱水縮合剤の存在下、下記式(III)で表される核酸誘導体またはその塩と、下記式(IV)で表されるN-グリコシル酸アミドアミノ酸誘導体とを縮合する工程を含むことを特徴とする方法。
[式中、R1~R4、B1、B2およびnは上記と同義を示し;R14~R18は上記と同義を示すが、水素原子ではないものとし;R19とR20は、いずれか一方が水素原子で且つ他方が水酸基の保護基を示すか、或いは、両方とも水素原子を示す]。
 従来、非特許文献2のとおり、無細胞翻訳システムにおけるアンバーサプレッサーtRNAの合成に用いられるO-グリコシルセリン-核酸誘導体の合成方法は知られており、この合成方法によりO-グリコシルトレオニン-核酸誘導体も合成可能であると考えられる。しかし、当該方法はN-グリコシルアスパラギン-核酸誘導体の合成には適用できず、これまでN-グリコシルアスパラギン-核酸誘導体が合成されたとの報告はなかった。糖タンパク質の糖鎖は、通常、セリンまたはトレオニンの側鎖水酸基と、アスパラギンの側鎖アミノ基を介してタンパク質に結合していることから、N-グリコシルアスパラギン-核酸誘導体が無ければ、無細胞翻訳システムを利用して糖タンパク質を製造することはできない。また、糖タンパク質の糖鎖は、全て同一の構造を有するわけではなく、且つ全てのセリン等に結合してはいないことから、糖タンパク質を化学合成するには特定の糖鎖を特定のセリン等へ結合させなくてはならない。よって、糖タンパク質の化学合成は非常に難しいものであった。
 それに対して本発明によれば、N-グリコシル酸アミドアミノ酸-核酸誘導体を提供することができ、N-結合型糖鎖を有する糖タンパク質が無細胞翻訳システムを用いて製造可能になることから、生体機能の作用機序の解明、創薬、ドラッグデリバリー、疾病の診断など、これまで糖タンパク質の合成ができなかったが為に進まなかった分野での研究が飛躍的に発展する可能性があり得る。
 本発明に係るN-グリコシル酸アミドアミノ酸-核酸誘導体は、下記式(I)で表される:
Figure JPOXMLDOC01-appb-C000011
 式中、R1~R3は、独立して水素原子またはリン酸基の保護基を示す。リン酸基の保護基としては、例えば、C1-6アルキル基などのアルキル系リン酸保護基;β-シアノエチル基などの置換アルキル系リン酸保護基;フェニルアミノ基などのアミド系リン酸保護基;フェニルチオ基などのチオエステル系リン酸保護基;ベンジル基、ジフェニルメチル基、トリフェニルメチル基、ニトロベンジル基などのベンジル系保護基;フェニル基やp-(メチルメルカプト)フェニル基などのフェニル系保護基などを挙げることができる。好適には、核酸誘導体の合成で汎用されるβ-シアノエチル基が好ましい。
 R4は、水素原子、水酸基、保護水酸基、C1-6アルコキシ基、2-(C1-6アルコキシ)エトキシ基またはハロゲン原子を示す。保護水酸基は、保護基で保護された水酸基を意味し、後述する-OR14(但し、R14は水酸基の保護基を示す)と同様の基を挙げることができる。「2-(C1-6アルコキシ)エトキシ基」は、エトキシ基の2位に上記C1-6アルコキシ基が置換した基をいう。例えば2-メトキシエトキシ基は、CH3OCH2CH2O-の構造を有する。「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができる。R4のハロゲン原子としては、フッ素原子が好適である。
 B1およびB2は、独立して、アデニル基、グアニル基、ウラシル基、チミニル基、シトシニル基、ヒポキサンチニル基から選択される核酸塩基基を示す。これら核酸塩基基中のアミノ基は、保護されていてもよい。当該保護基としては、例えば、ベンジル基やジ(4-メトキシフェニル)メチル基などのベンジル系保護基;アリル基などのアリル系保護基;メチルカルバメート基、エチルカルバメート基、9-フルオレニルメチルカルバメート基、t-ブチルカルバメート基などのカルバメート系保護基;アセチル基、ベンゾイル基、イソプロピルカルボニル基、フェノキシアセチル基などのアシル系保護基などを挙げることができる。なお、核酸塩基基中の-NHR7基などにおいては、保護基であるR7等は、例えば、ジメチルアミノメチレン基、ベンジリデン基、ジフェニルメチレン基などのイミン系保護基や、環状保護基など、-N=R7等の形でアミノ基を保護するものであってもよいものとする。
 なお、R4が水素原子、B1がシトシニル基であり且つB2がアデニル基であるN-グリコシルアスパラギン-核酸誘導体(I)は、既存の無細胞翻訳システムで用いられるtRNAで非天然アミノ酸の結合部分として有用である。
 R5とR6は、一方が水素原子であり、他方がN-グリコシル酸アミドアミノ酸基(II):
Figure JPOXMLDOC01-appb-C000012
[式中、R14~R18は上記と同義を示す]
である。
 なお、N-グリコシル酸アミドアミノ酸基(II)が2’位に結合している化合物と3’位に結合している化合物とは等価であり、溶液中では遷移状態を経て互いに平衡である。
 上記式(II)中、R14~R16は、独立して水素原子または水酸基の保護基を示す。水酸基の保護基としては、例えば、ベンジル基、p-メトキシベンジル基、3,4-ジメトキシベンジル基、o-またはp-ニトロベンジル基、p-ハロベンジル基、2,6-ジクロロベンジル基などのベンジル系保護基;トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基、トリフェニルシリル基などのシリル系保護基;アセチル基やベンゾイル基などのアシル系保護基;メトキシメチル基、p-メトキシベンジルオキシメチル基、t-ブトキシメチル基、2-メトキシエトキシメチル基、1-メトキシエチル基、1-エトキシエチル基などのアルコキシメチル系保護基などを挙げることができる。
 R17とR18は、独立して水素原子またはアミノ基の保護基を示す。アミノ基の保護基としては、核酸塩基基中のアミノ基の保護基と同様のものを例示することができる。
 nは1または2を示し、nが1である場合、酸アミドアミノ酸部分がアスパラギンとなり、nが2である場合はグルタミンとなる。
 R17としてはアセチル基が、nとしては1が、糖部分はN-アセチルグルコサミンが、アミノ酸部分としてはL体が好ましい。即ち、N-グリコシル酸アミドアミノ酸基(II)としては、下記式(II’)で表されるN-(N-アセチルグルコサミル-L-アスパラギニル基が好ましい。
Figure JPOXMLDOC01-appb-C000013
[式中、R14~R16およびR18は上記と同義を示す]
 糖タンパク質において、N-結合型の糖鎖の多くはある特定配列中のL-アスパラギンに結合しており、その基底部分の糖はN-アセチルグルコサミンであることが多い。即ち、上記N-(N-アセチルグルコサミル)-L-アスパラギニル基(II’)を有する核酸誘導体は、天然型の糖タンパク質を製造するための原料化合物として有用である。
 但し、天然型の糖タンパク質の中にも、グルタミニル基、特にL-グルタミニル基の側鎖アミノ基に糖鎖が結合したものもある。また、アスパラギニル基またはグルタミニル基の最初に結合した糖がN-アセチルガラクトサミンであるものもある。本発明には、これらも含まれるものとする。
 本発明に係るN-グリコシル酸アミドアミノ酸-核酸誘導体(I)は、塩であってもよい。当該塩としては、例えば、ナトリウム塩やカリウム塩などのアルカリ金属塩;テトラメチルアンモニウム塩、テトラエチルアンモニウム塩、テトラブチルアンモニウム塩、ピリジニウム塩などの第四級アンモニウム塩;アンモニウム塩;ジアザビシクロウンデセニウム塩、トリエチルアンモニウム塩、ジイソプロピルアンモニウム塩など、その他の1~3級アンモニウム塩;塩化物塩や臭化物塩などのハロゲン化物塩;塩酸塩、硫酸塩、硝酸塩などの無機酸塩;ギ酸塩、酢酸塩、クエン酸塩、シュウ酸塩、プロピオン酸塩、安息香酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、パラトルエンスルホン酸塩などの有機酸塩を挙げることができる。
 本発明に係るN-グリコシル酸アミドアミノ酸-核酸誘導体(I)またはその塩は、脱水縮合剤の存在下、核酸誘導体(III)またはその塩と、N-グリコシル酸アミドアミノ酸誘導体(IV)とを縮合することにより製造することができる。
 核酸誘導体(III)またはその塩は、当業者であれば、公知の核酸製造法や公知方法の改良方法に基づいて合成することができる。なお、本発明者らが見出した方法では、核酸誘導体(III)の前駆体化合物におけるリン酸基の保護基であるシアノエチル基、水酸基の保護基であるTBDMS基、および核酸塩基基のアミノ基の保護基であるベンゾイル基を、水酸化テトラブチルアンモニウム水溶液を用いて同時に除去し、且つ、有機溶媒に対する溶解性を向上する目的で行われるテトラブチルアンモニウム塩へのイオン交換も不要になっている。また、当業者であれば、N-グリコシル酸アミドアミノ酸誘導体(IV)も、アスパラギン、グルタミンまたはこれらの誘導体と糖を縮合することにより、容易に合成することができる。
 なお、本工程に加え、本工程以前または以降の何れの工程においても、適時、各保護基を各反応に適したものに変更してもよいものとする。適切な保護基と保護反応および脱保護反応は、当業者であれば公知方法から適宜選択することができる。例えば、T.W.Green,P.G.M.Wuts,"PROTECTIVE GROUPS IN ORGANIC SYNTHESIS",JOHN WILEY & SONS,Inc.や、Beaucage,S.ら,Tetrahedron,1992,48,pp.2223-2311を参照すればよい。
 核酸誘導体(III)またはその塩とN-グリコシル酸アミドアミノ酸誘導体(IV)とは、1対1で反応させればよいが、N-グリコシル酸アミドアミノ酸誘導体(IV)をより多く用いることが好ましい。一般的には、N-グリコシル酸アミドアミノ酸誘導体(IV)に比べて核酸誘導体(III)またはその塩の方が合成ステップが多いことによる。また、核酸誘導体(III)の溶媒に対する溶解度が低いということもある。例えば、核酸誘導体(III)またはその塩1モルに対して、N-グリコシル酸アミドアミノ酸誘導体(IV)を1倍モル以上、10倍モル以下用いることができ、より好ましくは8倍モル以下、さらに好ましくは6倍モル以下、特に好ましくは5倍モル以下用いる。
 本工程で用いる脱水縮合剤は、糖水酸基とアミノ酸のカルボキシ基を脱水縮合できるものであれば特に制限されないが、例えば、ジイソプロピルカルボジイミド(DIPC)、1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド(EDCまたはWSCI)、1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド塩酸塩(WSCI・HCl)、ジシクロヘキシルカルボジイミド(DCC)などのカルボジイミド系脱水縮合剤;O-ベンゾトリアゾール-1-イル-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスフェート(HBTU)、ベンゾトリアゾール-1-イル-トリス(ジメチルアミノ)ホスホニウムヘキサフルオロリン化物塩(BOP)、O-(7-アザベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート、ベンゾトリアゾール-1-イル-オキシ-トリス-ピロリジノホスホニウムヘキサフルオロホスフェートなどのフルオロホスフェート系脱水縮合剤;O-(1,2-ジヒドロ-2-オキソ-1-ピリジル)-N,N,N,N-テトラ-メチルウロニウム-テトラフルオロボラート(TPTU)などのフルオロボラート系脱水縮合剤;2-クロロ-1,3-ジメチルイミダゾリニウムクロライド(DMC)、1,1’-カルボニルジイミダゾール(CDI)などのイミダゾール系脱水縮合剤;ヨウ化2-クロロ-1-メチルピリジニウム(CMPI)などのピリジン系脱水縮合剤;ジフェニルホスホリルアジド(DPPA)などが挙げられる。好ましくはカルボジイミド系脱水縮合剤を用いる。また、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロライド(DMT-MM)も好ましく使用できる。
 1モルの脱水縮合剤は、1モルの水を捕捉できるので、核酸誘導体(III)またはその塩とN-グリコシル酸アミドアミノ酸誘導体(IV)とで多い方と同程度用いることが好ましい。例えば、N-グリコシル酸アミドアミノ酸誘導体(IV)1モルに対して、1倍モル以上、5倍モル以下用いることができ、1.2倍モル以上、2倍モル以下用いることがより好ましい。
 本工程においては、脱水縮合剤による反応を促進するために、いわゆる縮合助剤を併用することが好ましい。かかる縮合助剤としては、例えば、1-ヒドロキシベンゾトリアゾール(HOBt)などのN-ヒドロキシトリアゾール類;ピリジン、4-ジメチルアミノピリジン(DMAP)、ピロリジノピリジン(PPY)などのピリジン系;N-ヒドロキシコハク酸イミド(HONSu)、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボン酸イミド(HONB)などのN-ヒドロキシ多価カルボン酸イミド類;3-ヒドロキシ-4-オキソ-3,4-ジヒドロ-1,2,3-ベンゾトリアジン(HOOBt)などのトリアジン類;2-ヒドロキシイミノ-2-シアノ酢酸エチルエステルなどが挙げられる。縮合助剤としては、N-ヒドロキシトリアゾール類縮合助剤が好ましく、HOBtが特に好ましい。なお、縮合助剤の使用量は、適宜調整すればよい。例えば、ピリジン系の縮合助剤の使用量は脱水縮合剤に対して比較的少なくすることができ、また、トリアジン類の縮合助剤は過剰に使う方が良い結果が得られる場合がある。
 本工程は、通常、溶媒中で実施する。使用できる溶媒としては、各化合物を適度に溶解することができ且つ反応を阻害しないものであれば特に制限されず、適宜選択すればよいが、例えば、ジメチルホルムアミドやジメチルアセトアミドなどのアミド系溶媒;ジクロロメタンやジクロロエタンなどのハロゲン化炭化水素系溶媒;アセトニトリルなどのニトリル系溶媒;1,4-ジオキサンやテトラヒドロフランなどのエーテル系溶媒;ピリジンなどのピリジン系溶媒;ジメチルスルホキシドなどのスルホキシド系溶媒;これら2以上の混合溶媒を挙げることができる。なお、本工程では脱水縮合反応を行うので、溶媒は事前に乾燥しておくことが好ましい。また、溶媒の使用量は、各化合物を溶解できる範囲で適宜調整すればよい。
 反応温度は適宜調整すればよいが、通常、10℃以上、80℃未満とすることができる。また、反応時間も適宜調整すればよく、例えば、核酸誘導体(III)またはその塩とN-グリコシル酸アミドアミノ酸誘導体(IV)のうち使用量の少ない方が反応液中から検出されなくなるまでとしたり、或いは予備実験などで決定することができる。通常は、1時間以上、10時間以下程度とすることができる。
 反応終了後は、一般的な後処理を行えばよい。例えば、溶媒を減圧留去した後、クロマトグラフィなどで精製すればよい。
 本発明に係るN-グリコシル酸アミドアミノ酸-核酸誘導体(I)またはその塩は、例えば、無細胞翻訳システムを用いたペプチド合成において、糖鎖を有するアスパラギンやグルタミンを導入するために用いることができる。より詳しくは、本発明に係るN-グリコシル酸アミドアミノ酸-核酸誘導体(I)またはその塩の糖部分に、例えばエンド-β-N-アセチルグルコサミニダーゼなどを用いて所望の糖鎖を結合させた上で上記のとおりペプチドを合成したり、或いは、本発明に係るN-グリコシル酸アミドアミノ酸-核酸誘導体(I)またはその塩を導入したペプチドを上記のとおり合成した上で、エンド-β-N-アセチルグルコサミニダーゼなどを用いて、誘導体(I)の糖部分に所望の糖鎖を結合させることもでき得る。
 本願は、2013年3月29日に出願された日本国特許出願第2013-73744号に基づく優先権の利益を主張するものである。2013年3月29日に出願された日本国特許出願第2013-73744号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実施例1
 (1) 核酸部分の合成
Figure JPOXMLDOC01-appb-C000014
 (1-1) 2’,3’-O-ジ(t-ブチルジメチルシリル)-N6-ベンゾイルアデノシン(化合物2)の調製
 N6-ベンゾイルアデノシン(化合物1,3.7g,10mmol)、t-ブチルジメチルシリルクロライド(9.0g,60mmol)およびイミダゾール(6.2g,90mmol)を乾燥DMF(50mL)に溶解し、当該溶液を室温で48時間撹拌した。当該反応液を濃縮した後に、得られた粗生成物(トリTBDMS化合物)をジクロロメタン(25mL)に溶解し、氷冷した蒸留水(1.5L)に滴下した。有機層を分離して濃縮し、得られた粗生成物を2.2Mトリフルオロ酢酸/純水-THF(1/4)溶液(216mL)に溶解し、5時間反応させた。当該反応液を氷冷し、飽和炭酸水素ナトリウム水溶液(400mL)を投入した。ジクロロメタン(100mL)で2回抽出した後、無水硫酸ナトリウム(10g)で乾燥した。乾燥した抽出液を濃縮後、得られた粗生成物を順相クロマトグラフィで精製することにより、目的化合物を無色のガム状体として得た(収量:4.9g,8.2mmol,収率:82%)。なお、順相クロマトグラフィでは、シリカゲルとしてYamazen社製のHigh-Flash 40μm silica gel(120g)を用い、溶出液としては、n-ヘキサン/酢酸エチル=1/2を用いた。
 (1-2) N4-ベンゾイル-2’-デオキシシチジリル-[3’-Op-(2-シアノエチル)→5’]-N6-ベンゾイルアデノシン(化合物3)の調製
 上記(1-1)で得られた化合物2(1.8g,3.0mmol)、2’-デオキシシチジンホスホルアミダイド(3.0g,3.6mmol)およびモレキュラーシーブス4A(100mg)を乾燥ジクロロメタン(9mL)に懸濁し、当該懸濁液を室温で60分間撹拌した。当該反応液にベンゾイミダゾリウムトリフレート(1.2g,4.5mmol)を加え、さらに120分撹拌した。反応混合物をビス(トリメチルシリル)パーオキサイド(3.3mL,15mmol)で60分間処理した後、不溶物を濾別した。濾液を濃縮し、5’水酸基保護ヌクレオシド二量体を無色のガム状体として得た(収量:5.0g)。当該二量体を、さらに3%トリクロロ酢酸/ジクロロメタン溶液(90mL)で10分間処理した後、激しく撹拌された飽和炭酸水素ナトリウム水溶液(300mL)に投入した。有機層を分離し、無水硫酸ナトリウム(10g)で乾燥した後に濃縮し、無色のガム状物質を得た(収量:5.0g)。得られた粗生成物から順相クロマトグラフィにより保護基由来の非極性夾雑物を除去した後、逆相クロマトグラフィで精製することにより、反応剤由来の夾雑物を除去して、目的化合物をジアステレオ混合物(1:1)の無色ガム状体として得た(収量:2.2g,2.1mmol,収率:69%)。なお、順相クロマトグラフィでは、シリカゲルとしてYamazen社製のHigh-Flash 40μm silica gel(120g)を用い、溶出液としては、酢酸エチル/メタノール=8/2を用いた。逆相クロマトグラフィでは、シリカゲルとしてYamazen社製のHigh-Flash  50μm ODS silica gel(30g)を用い、溶出液としては、水/メタノール=1/9を用いた。
 (1-3) 5’-O-ジ(2-シアノエチル)ホスホリル-N4-(ベンゾイル-2’-デオキシシチジリル-[3’-Op-(2-シアノエチル)→5’]-N6-ベンゾイルアデノシン(化合物4)の調製
 上記(1-2)で得た化合物3(770mg,2.9mmol)、dCpA5(2.0g,1.9mmol)およびモレキュラーシーブス4A(100mg)を乾燥ジクロロメタン(5.6mL)に懸濁し、当該懸濁液を30分間撹拌した。当該懸濁液へ、ベンゾイミダゾリウムトリフレート(1.0g,3.8mmol)を加え、さらに120分間撹拌した。当該反応液にビス(トリメチルシリル)ペルオキサイド(2.0mL,9.5mmol)を加えて60分間酸化反応した後、不溶物を濾別した。得られた濾液を濃縮し、ガム状の粗生成物を得た(4.2g)。得られた粗生成物から逆相クロマトグラフィにより反応剤由来の夾雑物を除去した後、順相クロマトグラフィにより基質由来の夾雑物を除去することにより、目的化合物を無色ガム状体として得た(収量:1.5g,1.2mmol,収率:65%)。なお、逆相クロマトグラフィでは、シリカゲルとしてYamazen社製のHigh-Flash 50μm ODS silica gel(45g)を用い、溶出液としては、水/メタノール=1/9を用いた。順相クロマトグラフィでは、シリカゲルとしてYamazen社製のHigh-Flash 40μm silica gel(30g)を用い、溶出液としては、酢酸エチル/メタノール=1/1を用いた。
1H NMR(500 MHz,CDCl3):δ9.34(2H,d,J=9.7Hz),8.80(4H,br s),8.32(1H,s),8.29(1H,s),8.06-7.95(6H,m),7.88(4H,m),7.62-7.56(4H,m),7.52-7.49(10H,m),6.22(1H,t,J=6.6Hz),6.18(1H,t,J=6.6Hz),6.02(2H,dd,J=3.2Hz),5.12(1H,m),5.06(1H,m),4.89(1H,t,J=4.0Hz),4.84(1H,t,J=4.0Hz),4.49-4.15(28H,m),2.85-2.73(14H,m),2.26(1H,m),2.20(1H,m),0.94(18H,s),0.86(9H,s),0.84(9H,s),0.14(6H,s),0.12(6H,s),0.04(3H,s),0.03(3H,s),-0.08(3H,s),-0.12(3H,s)
31P NMR(202.5 MHz,CDCl3):δ-1.59,-1.14,-1.70,-1.75
 (1-4) 5’-O-ホスホリル-2’-デオキシシチジリル-(3’→5’)-アデノシン(化合物5)の調製
 上記(1-3)で得た化合物4(200mg,0.16mmol)のメタノール溶液(2.4mL)に、1,4-ジオキサン(0.35mL)と10%テトラブチルアンモニウムハイドロキシド水溶液(2.9mL)を加えて放置した。放置時間は、常圧の場合には24時間とし、800MPaの場合は14時間とした。当該反応液を濃縮し、サイズ排除クロマトグラフィにより目的化合物を薄黄色固体として得た(収量:220mg,0.16mmol,収率:>99%)。なお、サイズ排除クロマトグラフィでは、担体としてSephadex G-10(20mL)を用い、溶出液としては、水/メタノール=4/1を用いた。
1H NMR(500 MHz,CD3OD):δ8.65(1H,m),8.14(2H,m),7.92(1H,m),6.42(1H,m),6.11(1H,m),5.95(1H,m),4.74(1H,m),4.60(1H,m),4.26(2H,m),4.06(4H,m),3.62(1H,m),3.23(24H,m,TBA),2.41(1H,m),1.62(24H,m,TBA),1.40(24H,m,TBA),1.01(36H,m,TBA)
31P NMR(202.5 MHz,CD3OD):δ4.28,-0.46
MALDI-TOFMS:calcd for C19H27N8O13P2,[M+H]+ m/z:637.12,Found m/z:637.52
 (2) Nω-(2-アセトアミド-3,4,6-トリ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル)-Nα-(t-ブトキシカルボニル)-アスパラギン(化合物7)の調製
Figure JPOXMLDOC01-appb-C000015
 Nω-(2-アセトアミド-3,4,6-トリ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル)-Nα-(t-ブトキシカルボニル)-アスパラギン ベンジルエステル(化合物6,50mg,63μmol)をジクロロメタン/メタノール=9/1混合液(1.2mL)に溶解し、当該溶液へ水酸化ナトリウム(5mg,126μmol)を加え、30分間撹拌した。当該反応液へ、氷冷下、0.5M塩酸(250μL)を滴下した後、ジクロロメタン(1.0mL)を加え、有機層を分離した。当該有機層を濃縮後、得られた残渣をジエチルエーテル(0.2mL)で洗浄することにより、目的化合物を無色固体として得た(収量:44mg,62μmol,収率:>99%)。
1H NMR(500 MHz,CDCl3):δ7.52-7.15(15H,m),5.84(1H,d,J = 8.0 Hz),5.64(1H,m),4.81(1H,d,J = 12.0 Hz),4.76(1H,d,J = 11.5 Hz),4.61(2H,dd,J = 11.5 Hz),4.52(1H,d,J = 10.9 Hz),4.46(1H,d,J = 12.1 Hz),3.95(1H,m),3.71(3H,m),3.53(2H,m),2.83(1H,m),2.63(1H,m),1.77(3H,d,J = 18.9 Hz),1.40(9H,s)
 (3) エステル化と脱保護
 なお、リボヌクレオチドの2’位と3’位におけるエステルは、溶液中、互いに平衡の関係にあり等価なものであるといえるが、以下のスキームでは代表的に2’位エステルのみ示している。
Figure JPOXMLDOC01-appb-C000016
 (3-1) Nω-(2-アセトアミド-3,4,6-トリ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル)-Nα-(t-ブトキシカルボニル)-アスパラギン pdCpAエステル(化合物8)の調製
 上記(2)で得た化合物7(35mg,50μmol)、ジイソプロピルカルボジイミド(7.8μL,50μmol)および1-ヒドロキシベンゾトリアゾール(6.8mg,50μmol)を乾燥DMF(100μL)に溶解した。別途、上記(1-4)で得た化合物5(14mg,10μmol)を乾燥DMF(100μL)に溶解した。化合物7の溶液へ化合物5の溶液を加え、室温で3時間撹拌したところ、化合物5は完全に消費された。当該反応液に1.0mLの純水またはメタノールを加えた。当該混合液を濃縮後、残渣をメタノール(1mL)に溶解した。当該溶液をサイズ排除クロマトグラフィに供して、目的化合物を無色固体として得た(収量:5.9mg,2.9mmol,収率:29%)。なお、サイズ排除クロマトグラフィでは、担体としてSephadex LH-20(10mL)を用い、溶出液としてはメタノールを用いた。
1H NMR(500 MHz,CD3OD):δ8.60(1H,m),8.16(1H,m),7.24-7.16(15H,m),6.30(1H,m),6.07(1H,m),4.75-3.52(24H,m),3.21(8H,m),1.88(3H,br s),1.63(8H,m),1.40(17H,m),0.99(12H,m)
31P NMR(202.5 MHz,CD3OD):δ1.56,-0.14
MALDI-TOFMS:calcd for C57H69N11Na3O22P2,[M+3Na+H]+ m/z:1390.38,Found m/z:1390.50
 (3-2) Nω-(2-アセトアミド-2-デオキシ-β-D-グルコピラノシル)-Nα-(t-ブトキシカルボニル)-アスパラギン pdCpAエステル(化合物9)の調製
 上記(3-1)で得た化合物8(5.9mg,2.9μmol)、10mM塩酸(10μL)および10%パラジウム炭素(0.10mg)をエタノール(1.0mL)に懸濁した。当該懸濁液を、H2ガス雰囲気下(1.0atm)、12時間撹拌した。当該反応液の不溶物を濾別し、濾液を濃縮した。得られた粗生成物を逆相クロマトグラフィに供し、目的化合物を無色固体として得た(収量:2.2mg,1.9μmol,収率:66%)。なお、逆相クロマトグラフィでは、シリカゲルとしてYamazen社製のHigh-Flash 50μm ODS silica gel(6g)を用い、溶出液としては、水/メタノール=1/1を用いた。
 比較例1:非特許文献2に記載の方法の応用
 非特許文献2に記載の活性エステル法を適用して本発明に係るN-グリコシル酸アミドアミノ酸-核酸誘導体の製造を試みた。詳しくは、化合物7(4.0mg,5.7μmol)、クロロアセトニトリル(1.8μL,28μmol)およびトリエチルアミン(3.9μL,28μmol)を乾燥DMF(53μL)に溶解し、室温で2時間撹拌した。その結果、化合物7は完全に消費された。
 しかし、得られた生成化合物のほとんどが分子内環化してしまい、イミド化合物やイミノラクトン化合物といった分子内環化化合物に変換され、シアノメチルエステル体は痕跡量が確認されるのみであり、単離が可能であるほどの量は生成しなかった。
 分子内環化化合物のスペクトルデータ
MALDI-TOFMS:calcd for C19H27N8O13,[M+H]+ m/z:637.12,Found m/z:637.52
 比較例2:リパーゼの使用
 リパーゼを用いたエステル化方法を用いて、本発明に係るN-グリコシル酸アミドアミノ酸-核酸誘導体の製造を試みた。具体的には、化合物5(14mg,10μmol)、ベンジルエステル化合物6(8.8mg,10μmol)、Candida cylindracea由来のリパーゼ(CCL,2.9mg,2030unit)、モレキュラーシーブス13X(100mg)を乾燥DMF(300μL)に溶解し、37℃で24時間撹拌した。しかし、化合物5は全く消費されず、化合物6が加水分解された化合物7のみが観察された。なお、lipasePSを用いても同様の結果となった。
 実施例2 Nω-(2-アセトアミド-2-デオキシ-β-D-グルコピラノシル)アスパラギン pdCpAエステル(化合物10)の調製
Figure JPOXMLDOC01-appb-C000017
 上記実施例1(3-1)で得た化合物8(11.8mg,5.8μmol)と、Pd触媒(SiliCycle社製「SiliaCat(登録商標) Pd0」,1.2mg,0.05mmol/g)を、メタノール(0.6mL)に懸濁した。当該懸濁液を、1.0atmの水素ガス雰囲気下、24時間撹拌した。当該反応液の不溶物を濾別し、濾液を濃縮した。得られた粗生成物を水に溶解し、不溶物を遠心濾過にて分離し、濾液を遠心濃縮することにより、ベンジル基とBoc基が除去された目的化合物10を無色固体として得た(収量:5.7mg,5.4μmol,収率:93%)。
MALDI-TOFMS:calcd for C31H45N11O20P2,[M+H]+ m/z:954.23,Found m/z:954.57

Claims (6)

  1.  下記式(I)で表されるN-グリコシル酸アミドアミノ酸-核酸誘導体またはその塩。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     R1~R3は、独立して水素原子またはリン酸基の保護基を示し;
     R4は、水素原子、水酸基、保護水酸基、C1-6アルコキシ基、2-(C1-6アルコキシ)エトキシ基またはハロゲン原子を示し;
     B1およびB2は、独立して下記式で表される何れかの核酸塩基基:
    Figure JPOXMLDOC01-appb-C000002
    [式中、R7~R13は、独立して水素原子またはアミノ基の保護基を示す]を示し;
     R5は下記式(II)で表されるN-グリコシル酸アミドアミノ酸基を示し且つR6は水素原子を示すか、或いは、R5は水素原子を示し且つR6は下記式(II)で表されるN-グリコシル酸アミドアミノ酸基を示す:
    Figure JPOXMLDOC01-appb-C000003
    [式中、
     R14~R16は、独立して水素原子または水酸基の保護基を示し;
     R17とR18は、独立して水素原子またはアミノ基の保護基を示し;
     nは1または2を示す]]
  2.  nが1である請求項1に記載のN-グリコシル酸アミドアミノ酸-核酸誘導体またはその塩。
  3.  R17がアセチル基である請求項1または2に記載のN-グリコシル酸アミドアミノ酸-核酸誘導体またはその塩。
  4.  N-グリコシル酸アミドアミノ酸基(II)が、下記式(II’)で表されるN-(N-アセチルグルコサミル)-L-アスパラギニル基である請求項1に記載のN-グリコシル酸アミドアミノ酸-核酸誘導体またはその塩。
    Figure JPOXMLDOC01-appb-C000004
    [式中、R14~R16およびR18は上記と同義を示す]
  5.  B1がシトシニル基であり且つB2がアデニル基である請求項1~4のいずれかに記載のN-グリコシル酸アミドアミノ酸-核酸誘導体またはその塩。
  6.  請求項1に記載のN-グリコシル酸アミドアミノ酸-核酸誘導体(I)またはその塩を製造するための方法であって、
     脱水縮合剤の存在下、下記式(III)で表される核酸誘導体またはその塩と、下記式(IV)で表されるN-グリコシル酸アミドアミノ酸誘導体とを縮合する工程を含む方法。
    Figure JPOXMLDOC01-appb-C000005
    [式中、R1~R4、B1、B2およびnは上記と同義を示し;R14~R18は上記と同義を示すが、水素原子ではないものとし;R19とR20は、いずれか一方が水素原子で且つ他方が水酸基の保護基を示すか、或いは、両方とも水素原子を示す]
PCT/JP2014/058711 2013-03-29 2014-03-27 N-グリコシル酸アミドアミノ酸-核酸誘導体およびその製造方法 WO2014157434A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508645A JPWO2014157434A1 (ja) 2013-03-29 2014-03-27 N−グリコシル酸アミドアミノ酸−核酸誘導体およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-073744 2013-03-29
JP2013073744 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014157434A1 true WO2014157434A1 (ja) 2014-10-02

Family

ID=51624396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058711 WO2014157434A1 (ja) 2013-03-29 2014-03-27 N-グリコシル酸アミドアミノ酸-核酸誘導体およびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2014157434A1 (ja)
WO (1) WO2014157434A1 (ja)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROEHRIG, C.H. ET AL.: "A new strategy for the synthesis of dinucleotides loaded with glycosylated amino acids - investigations on in vitro non- natural amino acid mutagenesis for glycoprotein synthesis", CHEMBIOCHEM, vol. 6, no. 10, 2005, pages 1805 - 1816 *

Also Published As

Publication number Publication date
JPWO2014157434A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP4923216B2 (ja) 化合物
JP5271913B2 (ja) 化合物
US10774104B2 (en) Diastereoselective synthesis of phosphate derivatives
AU610344B2 (en) 2'-deoxy-5-fluorouridine derivatives
KR101982951B1 (ko) 신규한 유형의 시티딘 유도체 및 그의 용도
KR20180041225A (ko) GalNAc 클러스터 포스포라미다이트
PL188447B1 (pl) Sposób wytwarzania pochodnych beta-nukleozydu dioksolanowego
JP2008524218A (ja) ゲムシタビンのアミドプロドラック、組成物、及びそれらの使用
JPH0841061A (ja) 2−(2−アミノ−1,6−ジヒドロ−6−オキソ−プリン−9−イル)メトキシ−1,3−プロパンジオール誘導体
RU2681939C2 (ru) Путь синтезирования 2'-дезокси-2'2'-дифтортетрагидроуридинов
US20200079807A1 (en) Process for galnac oligonucleotide conjugates
WO2018181428A1 (ja) 核酸医薬及び多分岐脂質の複合体
CZ419797A3 (cs) Diglykosylované 1,2-dioly, způsob jejich přípravy a farmaceutický prostředek, který je obsahuje
ITMI951450A1 (it) Esteri acilici di amminoacidi achirali di gangiclovir e relativi derivati
CN111699007A (zh) 用于制备GalNAc寡核苷酸缀合物的方法
JP6153116B2 (ja) トリアゾール連結型環状ジヌクレオチド類縁体
US20080262215A1 (en) Gemcitabine production process
KR102351734B1 (ko) 2'-플루오로-6'-메틸렌-탄소환식 아데노신(fmca) 및 2'-플루오로-6'-메틸렌-탄소환식 구아노신(fmcg)의 합성
WO2020158687A1 (ja) 光応答性ヌクレオチドアナログの製造方法
JP2001515900A (ja) 抗ウイルス薬
US9695208B2 (en) Sialic acid (A-(2-6))-D-aminopyranose derivatives, synthesis methods and uses thereof
CN105153257A (zh) 索非布韦的制备方法
WO2014157434A1 (ja) N-グリコシル酸アミドアミノ酸-核酸誘導体およびその製造方法
JPH11116563A (ja) アスコルビン酸誘導体またはその塩、および医薬
KR20220119052A (ko) 합성 공정 및 중간체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773996

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508645

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773996

Country of ref document: EP

Kind code of ref document: A1