WO2014156465A1 - 送電装置、受電装置、電力供給システムおよび電力供給方法 - Google Patents

送電装置、受電装置、電力供給システムおよび電力供給方法 Download PDF

Info

Publication number
WO2014156465A1
WO2014156465A1 PCT/JP2014/055033 JP2014055033W WO2014156465A1 WO 2014156465 A1 WO2014156465 A1 WO 2014156465A1 JP 2014055033 W JP2014055033 W JP 2014055033W WO 2014156465 A1 WO2014156465 A1 WO 2014156465A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
power transmission
link
abnormality
Prior art date
Application number
PCT/JP2014/055033
Other languages
English (en)
French (fr)
Inventor
光司 ▲高▼野
大樹 中野
信之 大庭
Original Assignee
インターナショナル・ビジネス・マシーンズ・コーポレーション
日本アイ・ビー・エム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インターナショナル・ビジネス・マシーンズ・コーポレーション, 日本アイ・ビー・エム株式会社 filed Critical インターナショナル・ビジネス・マシーンズ・コーポレーション
Priority to US14/780,432 priority Critical patent/US9711998B2/en
Priority to JP2015508205A priority patent/JP5916004B2/ja
Priority to DE112014000582.7T priority patent/DE112014000582B4/de
Publication of WO2014156465A1 publication Critical patent/WO2014156465A1/ja
Priority to US15/493,354 priority patent/US10069347B2/en
Priority to US15/682,742 priority patent/US10014727B2/en
Priority to US15/682,768 priority patent/US10020689B2/en
Priority to US15/682,757 priority patent/US10008885B2/en
Priority to US16/054,533 priority patent/US10903689B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/30Circuit arrangements or systems for wireless supply or distribution of electric power using light, e.g. lasers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/807Optical power feeding, i.e. transmitting power using an optical signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present invention relates to a power transmission device, a power reception device, a power supply system, and a power supply method, and more particularly to a power transmission device, a power reception device, a power supply system, and a power supply method that can transmit power by radiating electromagnetic waves.
  • non-contact power transmission technology for example, JP 2009-261156 A: Patent Document 1
  • JP 2009-261156 A: Patent Document 1 JP 2009-261156 A: Patent Document 1
  • these techniques are effective for non-contact, relatively short-distance power supply, but cannot replace power wiring laid indoors or outdoors.
  • Patent Document 2 discloses an electric vehicle that receives a laser beam, converts it into electric power, and moves using electric power as power, and is arranged outside the electric vehicle, and automatically adjusts the relative position.
  • Patent Document 2 discloses an electric vehicle that receives a laser beam, converts it into electric power, and moves using electric power as power, and is arranged outside the electric vehicle, and automatically adjusts the relative position.
  • a laser beam power transmission system comprising a power source for supplying a laser beam to an electric vehicle while being adjusted in a controlled manner.
  • a laser beam is emitted from a phased array type light emitting device provided on a bridge frame, a ceiling inside a tunnel, etc. to a phased array type light receiving device provided on the roof of an electric vehicle.
  • Distance laser power transmission technology are examples of these laser optical power transmission technologies have not been put into practical use for reasons such as difficulty in alignment and inefficiency.
  • Laser equipment is regulated by indices such as the maximum permissible exposure (MPE) and the exposure emission limit (AEL) according to the international standards and the safety standards of each country based on the international standards.
  • MPE maximum permissible exposure
  • AEL exposure emission limit
  • Laser equipment is classified according to the above safety standards, but it is lower than the original ability of the built-in laser by technical means such as housing and other safety interlocks that limit the release of exposure.
  • laser products For example, DVD devices, Blu-ray (registered trademark) devices, laser printers, and the like are products that are commercially available in accordance with such safety standards.
  • Laser equipment that emits such scanned laser light can be classified on the basis of the emission of the scanned laser light, but as a result of scan failure, scan speed or change in scan amplitude, Safeguards are in place to prevent exposure exceeding the exposure release limit (AEL).
  • AEL exposure release limit
  • Patent Document 3 Japanese Patent Laid-Open No. 11-230856 is known as a stop function at the time of abnormality related to power supply by light.
  • Patent Document 3 discloses a configuration for detecting whether or not there is an abnormality in the light returned to the main unit through another optical fiber housed in the same cable as the optical fiber that transmits optical power.
  • the prior art of Patent Document 3 relates to wired optical power feeding, and cannot be wireless including power supply.
  • the present invention has been made in view of the insufficiency of the prior art described above, and the present invention performs power transmission by radiation of electromagnetic waves while ensuring that exposure that can be assumed when an abnormality occurs satisfies a predetermined standard.
  • An object of the present invention is to provide a power transmission device, a power reception device, a power supply system, and a power supply method.
  • Another object of the present invention is to provide a power transmission device, a power reception device, a power supply system, and a power supply method that can further enhance safety.
  • the present invention provides a power transmission device capable of transmitting power to a power reception device by radiation of electromagnetic waves and having the following characteristics.
  • the power transmission device calculates the maximum value of the output of the electromagnetic wave that satisfies the exposure standard based on the response delay time observed on the communication link between the power transmission device and the other power receiving device.
  • a power transmission apparatus transmits with the output which does not exceed the maximum value via the electric power supply link between the said power receiving apparatuses.
  • the power transmission device detects an abnormality in the power supply link based on communication with the power receiving device via the communication link, and based on the detection of the abnormality in the power supply link, Limit output.
  • a power receiving device capable of receiving power supplied from the power transmitting device by radiation of electromagnetic waves, and having the following characteristics.
  • the power receiving apparatus performs communication in order to evaluate a response delay time of communication via a communication link between the power receiving apparatus and the counterpart power transmitting apparatus.
  • the power receiving device receives the electric power supplied via the power supply link with the power transmitting device by the output of the electromagnetic wave radiation not exceeding the maximum value satisfying the exposure standard according to the response delay time.
  • the power receiving device further acquires the amount of power received by the power receiving device in order to limit the output by the power transmitting device in response to the occurrence of an abnormality in the power supply link.
  • a power supply system including a power transmission device capable of transmitting power by electromagnetic wave radiation and a power reception device capable of receiving power supplied from the power transmission device.
  • the power supply method includes a step of evaluating a response delay time of communication via a communication link between a power transmitting device and a power receiving device, and a maximum value of an output of electromagnetic radiation that satisfies an exposure criterion based on the response delay time. And a step in which the power transmission device transmits power via a power supply link with the power receiving device at an output that does not exceed the maximum value.
  • the power supply method further includes the step of detecting an abnormality in the power supply link based on communication via the communication link, and the power transmission device outputs the output of the power supply link based on detection of the abnormality in the power supply link. Limiting.
  • FIG. 1 is a schematic diagram illustrating a laser power supply system according to an embodiment of the present invention.
  • the figure which shows the functional block and data flow of a laser power transmission apparatus and a laser power receiving apparatus in the laser power supply system by embodiment of this invention.
  • the figure explaining the control method of a laser output.
  • the flowchart which shows the control which the laser power transmission apparatus performs by embodiment of this invention.
  • the figure which shows typically the relationship between the information exchanged between a laser power transmission apparatus and a laser power receiving apparatus, and a laser output in embodiment of this invention with timing.
  • the figure which shows the functional block and data flow of the laser power transmission apparatus and laser power receiving apparatus in the laser power supply system by other embodiment of this invention.
  • the figure which illustrates typically the relationship between the information exchanged between a laser power transmission apparatus and a laser power receiving apparatus, and a laser output in other embodiment of this invention with timing.
  • the flowchart which shows the alignment control which the laser power transmission apparatus performs by embodiment of this invention.
  • the graph which plotted the total supply electric power (W) which satisfy
  • W total supply electric power
  • the present invention will be described with specific embodiments, but the present invention is not limited to the embodiments described below.
  • the laser power transmission device 110, the laser power reception device 150, and the laser power supply system 100 will be described as examples of the power transmission device, the power reception device, and the power supply system, respectively.
  • FIG. 1 is a schematic diagram showing a laser power supply system 100 according to an embodiment of the present invention.
  • the laser power supply system 100 according to the present embodiment includes a laser power transmission device 110 and a laser power reception device 150 that is installed apart from the laser power transmission device 110.
  • the laser power transmission device 110 includes a laser element 114, receives power supply from the power source 102, emits laser radiation from the laser element 114, and thereby transmits power to the laser power reception device 150 wirelessly.
  • the laser power receiving device 150 includes a photoelectric conversion element 154, and the laser radiation emitted from the laser power transmission device 110 is received by the photoelectric conversion element 154, thereby receiving power wirelessly.
  • a link for power supply established between the laser power transmission apparatus 110 and the laser power reception apparatus 150 is referred to as a wireless power supply link.
  • This wireless power supply link aligns the emission direction of the laser radiation so that the laser light emitted from the laser element 114 is properly incident on the photoelectric conversion element 154 between the power transmission and reception devices 110 and 150.
  • the wireless power supply link is not defined by the waveguide, but is defined by the optical path of the laser light propagating through the space.
  • the laser radiation described above may be monochromatic electromagnetic waves such as infrared rays, visible rays or ultraviolet rays, or a mixture of these electromagnetic waves.
  • embodiment demonstrated demonstrates as what supplies electric power with laser radiation
  • the radiation of the electromagnetic waves used by electric power supply is not limited to a laser beam.
  • power may be supplied using radiation of electromagnetic waves in other wavelength bands such as microwaves.
  • the laser power receiving apparatus 150 supplies the received power to a load 190 that is externally connected or built in.
  • the load 190 is not particularly limited, and can be any device or component that consumes or stores electric power, such as a projector, a monitoring camera, or a secondary battery.
  • the laser power transmitting device 110 and the laser power receiving device 150 are further provided with antennas 112 and 152, respectively, so that wireless data communication can be established.
  • a link for data communication established between the laser power transmitting apparatus 110 and the laser power receiving apparatus 150 is referred to as a wireless communication link.
  • the wireless communication link is different from the above-described wireless power supply link.
  • the wireless communication link preferably has high directivity, but typically, the wireless power supply link has higher directivity than the wireless communication link.
  • a wireless communication link using electromagnetic waves (millimeter waves) in a frequency band of several tens of GHz (typically 60 GHz) capable of realizing a data communication speed of several Gbps or more can be employed.
  • the antennas 112 and 152 are not particularly limited, but in a preferred embodiment, antennas whose directivity can be controlled, such as an adaptive array antenna in which a plurality of antennas are arranged, can be adopted.
  • Each of the laser power transmission apparatuses 110 and 150 can perform data communication with the other party in both wireless transmitter and receiver positions.
  • the laser power transmission device 110 shown in FIG. 1 controls the output of laser radiation while exchanging information with the laser power reception device 150 through data communication via a wireless communication link, and supplies power to the power reception device 150 wirelessly.
  • the distance between the power transmission / reception devices 110 and 150 depends on the directivity of the laser light and the radio wave and the environment in which it is used, but the laser light can be transmitted with sufficient efficiency and is sufficient. It can be an arbitrary distance within a range in which wireless data communication at a speed can be maintained.
  • Laser equipment such as the laser power transmission device 110 described above is an international standard regarding safety of laser equipment (IEC 60825-1 “Safety Guidelines for Laser Equipment and its Users”) and domestic standards (JIS C 6802) based thereon. ).
  • Class 1 laser product means that “all radiation that does not cause the human body to be exposed to laser radiation exceeding the Class 1 exposure emission limit AEL for the corresponding wavelength and emission duration during operation”.
  • Laser product means that “Emission duration” is also defined as “the duration of a pulse, pulse train or continuous emission that can cause the human body to be exposed to laser radiation resulting from the operation, maintenance or service of a laser product”.
  • the emission duration is the time width between the rising half-point and the falling half-point of the pulse, and in the case of a continuous pulse train (or sub-pulse group in the main pulse train), The time width is between the rising half-value point of the first pulse and the falling half-value point of the last pulse.
  • exposure emission limit AEL (Accessible Emission Limit) is defined as “maximum exposure emission allowed in the corresponding class”, and the exposure emission (accessible emission) is defined as the specified aperture stop [AEL. When given in units of watts (W) or joules (J), or the critical aperture [AEL is given in units of watts per square meter (W ⁇ m ⁇ 2 ) or joules per square meter (J ⁇ m ⁇ 2 ) Is defined as “the emission level determined at a certain location”.
  • “Maximum Permissible Exposure (MPE)” is defined as “the level of laser radiation that does not have a harmful effect even when irradiated on the human body in a normal environment”. Is the "maximum level at which the eyes or skin can be exposed immediately after exposure or over the long term without resulting damage”.
  • the exposure emission limit (AEL) is generally derived from the maximum allowable exposure (MPE).
  • laser light propagates through space from the laser power transmission device 110 to the laser power reception device 150.
  • a shield is interrupted between the power transmitting and receiving devices 110 and 150 and the optical path is blocked, there is a possibility that the laser beam is released from the optical path due to reflection on the surface of the shield. Or, the shield itself is exposed. Therefore, it is possible to control the emission level that may be emitted during the reaction time from the occurrence of an abnormality such as blocking of the optical path by the shield until the laser output is sufficiently limited to a predetermined standard or less. Desired.
  • the wireless power supply link and the wireless communication link are based on data communication via the wireless communication link.
  • a configuration is adopted in which an abnormality occurring in is detected and the laser output is limited in response to the occurrence of the abnormality.
  • FIG. 2 is a diagram showing functional blocks and data flow of the laser power transmitting apparatus 110 and the laser power receiving apparatus 150 in the laser power supply system 100 according to the embodiment of the present invention.
  • the laser power transmission device 110 shown in FIG. 2 includes a wireless data communication unit 120, a maximum output calculation unit 122, a laser output control unit 124, an abnormality detection unit 126, and a power transmission laser emission unit 128.
  • the laser power receiving apparatus 150 shown in FIG. 2 includes a wireless data communication unit 160 and a power receiving photoelectric conversion unit 162.
  • the wireless data communication units 120 and 160 of both devices 110 and 150 are wireless communication interfaces for performing bidirectional wireless data communication.
  • the wireless data communication units 120 and 160 receive the carrier wave propagated through the space by the antennas 112 and 152, and restore the received data based on a predetermined modulation method.
  • the wireless data communication unit 120 modulates the transmission data based on a predetermined modulation method and radiates it into the space as a carrier wave.
  • the modulation scheme is not particularly limited, and examples thereof include a modulation scheme such as MPSK (M-ary Phase Shift Keying) and MQAM (M-ary Quadrature Amplitude Modulation).
  • the laser transmission unit 128 for power transmission on the laser power transmission device 110 side typically includes a semiconductor laser element such as GaAs, InGaAs, or InGaAsP.
  • the laser element 114 may be a gas laser or a solid laser.
  • the operation mode of the laser element may be either a continuous oscillation (CW) operation mode or a pulse oscillation operation mode.
  • the wavelength of the laser radiation emitted by the laser element is not particularly limited.
  • the power receiving photoelectric conversion unit 162 on the laser power receiving apparatus 150 side includes a photoelectric conversion element that photoelectrically converts received laser light to generate an electromotive force.
  • a photoelectric conversion element a photodiode, a solar cell, or the like having high conversion efficiency at a wavelength corresponding to the laser radiation emitted by the power transmission laser emitting unit 128 may be used.
  • the maximum output calculation unit 122 evaluates the response delay time observed in the wireless communication link between the power transmitting and receiving apparatuses 110 and 150, and the output of the laser radiation satisfying the allowable exposure criterion based on the evaluated response delay time. Calculate the maximum allowable value (maximum allowable value).
  • the maximum allowable value of the laser radiation output is predetermined when the laser radiation is emitted at the maximum allowable output over the reaction time from the occurrence of the abnormality until the laser power is limited to a sufficiently low level. It is calculated under the condition that the exposure level specified in the standard is not exceeded.
  • the reaction time depends on the response delay time (latency) of data communication via the wireless communication link between the power transmission / reception devices 110 and 150. More specifically, the reaction time includes a response delay time required for data communication for detecting an abnormality, a time required for detecting an abnormality based on transmitted data, and a laser output after detecting the abnormality. Although it may include a time taken to decrease to a level or less and a predetermined margin time, typically, a response delay time of wireless communication becomes dominant.
  • the maximum allowable value calculated under the above conditions is the maximum allowable value that can ensure that the release level that can be released during the reaction time according to the response delay time is below a predetermined standard. Output value. Therefore, if laser radiation is emitted with an output that does not exceed this maximum allowable value, even if an abnormality occurs in the wireless power supply link, the exposure standard should be set at the time from when the abnormality occurs until the output is limited. Beyond this, it is possible to prevent the shield itself from being exposed and the laser light from being emitted out of the optical path. Further, the maximum allowable value can be increased as the reaction time is shortened, and higher power supply is possible.
  • the response delay time can be evaluated by measuring the time required to transfer data having a known length (for example, measurement data), measuring the data transfer rate based on the required time, and evaluating the data transfer rate. it can. Further, the response delay time evaluated here can be a round trip latency or a one-way latency, although it depends on a communication method for detecting an abnormality.
  • the maximum allowable value may be calculated from a measured value of the response delay time or the data transfer rate using a predetermined calculation formula, or a table that associates the maximum allowable value with the response delay time or the data transfer rate. You may carry out by referring to and acquiring a value.
  • the evaluation of the response delay time and the calculation of the maximum allowable value are performed by establishing a wireless power supply link and This may be done once before supplying power.
  • the evaluation of the response delay time and the calculation of the maximum allowable value based on the evaluated response delay time may be repeatedly performed at an appropriate frequency. In this case, the data transfer rate can be actually measured by data communication performed for abnormality detection, and the latest maximum allowable value calculated is used.
  • the laser output control unit 124 is a control unit that controls the operation of the power transmission laser emitting unit 128, and based on the maximum allowable value of the laser output calculated by the maximum output calculating unit 122, the laser output is set so as not to exceed the maximum allowable value. To control.
  • the laser output control unit 124 can raise the laser output stepwise from zero to the maximum allowable value while confirming the amount of power received on the power receiving side based on data communication via the wireless communication link.
  • the power transmission laser emission unit 128 constitutes a power transmission unit that emits laser radiation with an output that does not exceed the maximum allowable value under the control of the laser output control unit 124, thereby transmitting power to the laser power receiving device 150.
  • the laser output control method is not particularly limited.
  • FIG. 3 is a diagram for explaining a laser output control method.
  • the power of the laser radiation can be increased or decreased depending on the photon density.
  • the power of the laser radiation can be increased or decreased by the pulse width (duty ratio) in a given pulse period, as shown in the center column and right column of the table shown in FIG.
  • it can be increased or decreased by the pulse period or pulse frequency (number of pulses per unit time).
  • the abnormality detection unit 126 monitors the state of the wireless power supply link based on data communication with the laser power receiving apparatus 150 via the wireless communication link, and can detect the occurrence of an abnormality. Abnormality is detected based on a comparison between the amount of power (power) transmitted by the laser power transmitting device 110 and the amount of power (power) received by the laser power receiving device 150 in consideration of the conversion efficiency of each device 110, 150. can do.
  • Radiation power received by the laser power receiving device 150 (received power / photoelectric conversion efficiency) with respect to the radiated power emitted by the laser power transmitting device 110 (input power ⁇ electro-optical conversion efficiency or known radiated power with respect to the output set value) If the difference or ratio of) deviates from the predetermined standard, it indicates that a loss that cannot be ignored for some reason has occurred, and it can be determined that an abnormality has occurred in the wireless power supply link. Such loss is typically due to blockage of the light path by a shield, dust or smoke entering the light path that causes scattering or diffuse reflection, laser misalignment, degradation or failure of the photoelectric conversion element, etc. If such an abnormality occurs, it is preferable to limit the laser output for management.
  • the received power amount is acquired by the power receiving photoelectric conversion unit 162 as the received power amount acquiring unit, and the acquired power received amount is converted by the wireless data communication unit 160 to the laser power transmitting device 110. Is notified.
  • the abnormality detection unit 126 acquires the power transmission amount from the power transmission laser emitting unit 128, and considers the conversion efficiency between the power reception amount notified from the laser power reception device 150 and the acquired power transmission amount. And compare. As a result of the comparison, if a loss greater than a predetermined threshold has occurred, it is determined that an abnormality has occurred in the wireless power supply link.
  • the abnormality detection unit 126 can detect an abnormality of the wireless communication link in addition to the abnormality detection of the wireless power supply link based on the comparison of the received power amount and the transmitted power amount.
  • the abnormality of the wireless communication link include a failure of the wireless communication link itself, a rapid decrease in SNR (Signal to Noise Ratio), or a sudden change in the beam direction of the antenna to be adaptively controlled.
  • the abnormality detection unit 126 since the abnormality of the wireless power supply link is detected using the wireless communication link, the abnormality as described above hinders the detection of the abnormality of the wireless power supply link. Therefore, when the abnormality detection unit 126 according to the present embodiment detects that an abnormality has occurred in at least one of the wireless communication link and the wireless power supply link, the laser output restriction command is issued to the laser output control unit 124. Specifically, a laser output stop command is issued promptly.
  • the laser output control unit 124 sets the laser emission output from the power transmission laser emitting unit 128 to a reference level in response to the instruction being issued based on detection of an abnormality in the wireless power supply link or the wireless communication link. This is an output limiting unit that limits the following. More specifically, the laser output control unit 124 stops the emission of laser radiation by immediately stopping the drive current to the laser element of the power transmission laser emitting unit 128 in response to the laser output stop command.
  • FIG. 4 is a flowchart of control executed by the laser power transmitting apparatus 110 according to the embodiment of the present invention.
  • FIG. 5 is a diagram schematically illustrating the relationship between information exchanged between the laser power transmitting apparatus 110 and the laser power receiving apparatus 150 and the laser output in the embodiment of the present invention together with timing.
  • step S100 The control shown in FIG. 4 is started from step S100 in response to, for example, an operator performing an operation of starting power supply to the laser power transmitting apparatus 110.
  • step S ⁇ b> 101 the laser power transmitting apparatus 110 performs alignment of the wireless communication link and the wireless power supply link with the laser power receiving apparatus 150 and exchange of characteristic information (including the type of transmission laser and conversion efficiency). Details of the alignment processing will be described later.
  • step S102 the laser power transmitting apparatus 110 performs data communication by the wireless data communication unit 120, and calculates the data transfer rate of the wireless communication link by the maximum output calculation unit 122.
  • step S103 the laser power transmitting apparatus 110 evaluates the response delay time observed in the communication of the wireless communication link based on the actually measured data transfer rate by the maximum output calculation unit 122.
  • step S ⁇ b> 104 the laser power transmitting apparatus 110 calculates the maximum allowable value of the laser output according to the evaluated response delay time by the maximum output calculation unit 122.
  • step S105 the laser power transmitting apparatus 110 outputs a wireless communication link confirmation to the laser power receiving apparatus 150 by the wireless data communication unit 120 (indicated by a black square in FIG. 5).
  • the laser power receiving apparatus 150 Upon receiving the link confirmation input, the laser power receiving apparatus 150 outputs a wireless communication link response to the laser power transmitting apparatus 110 (indicated by a gray square in FIG. 5).
  • step S106 the laser power transmitting apparatus 110 determines whether or not there is a link response to the link confirmation. If it is determined in step S106 that there is no link response (NO), there is an abnormality in the wireless communication link. Therefore, the laser output is not started as an error, and this control is terminated in step S113.
  • step S106 determines whether there is a link response (YES)
  • step S107 the laser power transmitting apparatus 110 sets the calculated maximum allowable value, and starts emission of laser radiation from the power transmission laser emitting unit 128 from the initial level under the control of the laser control unit 124.
  • step S108 the laser power transmitting apparatus 110 receives the amount of power received (shown by a square with a number in FIG. 5) transmitted from the laser power receiving apparatus 150 following the link response by the wireless data communication unit 120.
  • step S ⁇ b> 109 the laser power transmission device 110 acquires the power transmission amount from the power transmission laser emitting unit 128.
  • step S110 the laser power transmitting apparatus 110 determines whether an abnormality has occurred in at least one of the wireless power supply link and the wireless communication link by using the abnormality detection unit 126. If it is determined in step S110 that there is no abnormality (YES), the control proceeds to step S111.
  • step S111 the laser power transmission device 110 causes the laser output control unit 124 to increase the laser output stepwise within a range not exceeding the maximum allowable value, and loops the control to step S108.
  • FIG. 5 shows that the amount of received power is continuously transmitted from the laser power receiving device 150 to the laser power transmitting device 110, and the laser output is gradually increased based on the result of comparison between the received power amount and the transmitted power amount. It is shown.
  • step S110 If it is determined in step S110 that there is an abnormality (NO), control branches to step S112. If notification of received power is not received (abnormality of wireless communication link), or loss is greater than the standard based on comparison of received power and transmitted power (abnormality of wireless power supply link), it is determined that there is an abnormality. The Here, control may be branched to step S112 even when there is an explicit stop command from the operator.
  • step S112 the laser power transmitting apparatus 110 causes the laser output control unit 124 to stop supplying the drive current to the laser element, stops the laser oscillation, and ends the present control in step S113.
  • FIG. 5 (A) shows a flow from the detection of an abnormality to the stop when an abnormality occurs due to the disconnection of the wireless power supply link.
  • the wireless power supply link is interrupted, a loss occurs in the radiation power received by the laser power receiving apparatus 150, and the laser power transmitting apparatus 110 is notified of a received power amount that is smaller than expected. It will be.
  • the laser power transmission device 110 can detect the abnormality of the wireless power supply link by comparing the notified power reception amount with the power transmission amount transmitted by itself, and can immediately stop laser emission.
  • FIG. 5B shows a flow from detection of abnormality to stop when the wireless communication link is interrupted for some reason.
  • the laser power receiving apparatus 150 transmits an appropriate power reception amount, but the power reception amount is not transmitted to the laser power transmission apparatus 110.
  • the laser power transmitting apparatus 110 can detect that the amount of power received cannot be received within a predetermined time, detect an abnormality in the wireless communication link, and immediately stop laser output.
  • the amount of power received is continuously transmitted from the laser power receiving apparatus 150 side to the laser power transmitting apparatus 110 side via the wireless communication link.
  • the response delay time evaluated when calculating the maximum allowable value may be a one-way latency from the laser power receiving apparatus 150 side to the laser power transmitting apparatus 110 side.
  • the embodiments shown in FIGS. 2 to 5 are preferable from the viewpoint of shortening the reaction time because only one-way link communication is required.
  • the laser power transmission apparatus 110 does not require data transmission for abnormality detection. Therefore, after the link confirmation, the link in the transmission direction of the wireless data communication unit 120 is stopped to save power. You may plan. Further, in the embodiment in which the first link confirmation is omitted, the transmission direction link itself of the wireless data communication unit 120 may be omitted.
  • the laser power transmission apparatus 110 receives the received power amount via the wireless communication link and detects an abnormality.
  • the abnormality detection method is not limited to that described above.
  • another embodiment in which abnormality detection is performed on the laser power receiving apparatus 150 side will be described with reference to FIGS. 6 and 7.
  • FIG. 6 is a diagram showing functional blocks and data flow of the laser power transmitting apparatus 110 and the laser power receiving apparatus 150 in the laser power supply system 100 according to another embodiment of the present invention. Note that components similar to those in the embodiment shown in FIG. 2 are referred to with the same reference numerals, and the differences will be mainly described below.
  • a laser power receiving apparatus 150 illustrated in FIG. 6 includes an abnormality detection unit 164 in addition to the wireless data communication unit 160 and the power receiving photoelectric conversion unit 162.
  • the wireless data communication units 120 and 160, the maximum output calculation unit 122, the laser output control unit 124, the power transmission laser emission unit 128, and the power reception photoelectric conversion unit 162 have the same roles as those described with reference to FIG. Fulfill.
  • the abnormality detection unit 126 on the laser power transmission apparatus 110 side monitors the state of the wireless power supply link based on data communication with the laser power reception apparatus 150 via the wireless communication link, as in the above-described embodiment, and detects an abnormality. Can be detected. However, in the embodiment shown in FIG. 6, the abnormality of the wireless power supply link is detected by a method different from the embodiment shown in FIG.
  • the amount of power transmission is acquired from the laser emitting unit for power transmission 128, and the acquired power transmission amount is transmitted to the laser power receiving apparatus 150 side by the wireless data communication unit 120.
  • the abnormality detection unit 164 on the laser power receiving device 150 side compares the power reception amount acquired from the power receiving photoelectric conversion unit 162 with the power transmission amount notified from the laser power transmission device 110, and based on the result, the loss is equal to or greater than a predetermined threshold value. Judge whether or not.
  • the laser power receiving device 150 notifies the occurrence of an abnormality to the laser power transmitting device 110 via the wireless data communication unit 160.
  • the abnormality detection unit 126 on the laser power transmitting apparatus 110 side receives the notification of the abnormality from the laser power receiving apparatus 150 side and detects that an abnormality has occurred in the wireless power supply link.
  • FIG. 7 is a diagram schematically illustrating the relationship between information exchanged between the laser power transmitting apparatus 110 and the laser power receiving apparatus 150 and the laser output in another embodiment, together with timing.
  • the laser power transmitting apparatus 110 outputs a wireless communication link confirmation to the laser power receiving apparatus 150 by the wireless data communication unit 120 (indicated by a black square in FIG. 7).
  • the laser power receiving apparatus 150 Upon receiving the link confirmation input, the laser power receiving apparatus 150 outputs a wireless communication link response to the laser power transmitting apparatus 110 (indicated by a gray square in FIG. 7).
  • the laser power transmitting apparatus 110 starts transmitting a power transmission amount (indicated by a square with a number in FIG. 7) to the laser power receiving apparatus 150.
  • the laser power receiving device 150 receives the notification of the power transmission amount from the laser power transmission device 110, compares the received power transmission amount with its own power reception amount, determines whether proper power transmission / reception is performed, and determines the determination result. A reply is made to the laser power transmission device 110.
  • the laser output control unit 124 increases the laser output stepwise within a range not exceeding the maximum allowable value. go.
  • FIG. 7 further shows a flow from detection of abnormality to stop when the wireless power supply link is interrupted.
  • a loss occurs in the radiation power received by the laser power receiving apparatus 150, and the received power amount is smaller than expected from the notified power transmission amount.
  • the laser power receiving apparatus 150 notifies the laser power transmitting apparatus 110 that an abnormality has occurred.
  • the laser power transmission device 110 can detect an abnormality based on this notification and immediately stop laser emission.
  • the power transmission amount is continuously transmitted from the laser power transmitting apparatus 110 side to the laser power receiving apparatus 150 side via the wireless communication link. Then, a notification of the determination result is transmitted from the laser power receiving apparatus 150 side to the laser power transmitting apparatus 110 side via the wireless communication link. At this time, in order to detect an abnormality on the power transmission side, round-trip communication occurs. Therefore, the response delay time evaluated when calculating the maximum allowable value may be a round-trip latency.
  • FIG. 8 is a functional block diagram relating to alignment of the wireless communication link and the wireless power supply link.
  • the power transmission laser emitting unit 128 includes a front-stage alignment unit 130 and a rear-stage alignment unit 132.
  • the pre-stage alignment unit 130 performs coarse alignment of the wireless power supply link through establishment of a wireless communication link between the wireless data communication units 120 and 160.
  • the post-stage alignment unit 132 finely adjusts the alignment of the wireless power supply link by feedback from the laser power receiving apparatus 150 via the wireless communication link based on the result of coarse adjustment by the pre-stage alignment unit 130.
  • the wireless data communication units 120 and 160 can implement a beamforming antenna such as an adaptive array antenna as described above.
  • the beam forming antenna is an antenna that includes a plurality of antenna elements, and can control the beam directivity by inputting signals of different phases to the respective antenna elements and combining the signals in space.
  • the direction of the beam can be electronically changed by phase control.
  • the beamforming implementation is not particularly limited, and may be implemented by an RF (Radio Frequency) front end or digital signal processing.
  • phase information that defines the directivity is acquired.
  • the pre-stage alignment unit 130 acquires this alignment information from the wireless data communication unit 120, and determines an initial value of the laser radiation emission direction based on the acquired alignment information. As a result, the subsequent alignment can be started from a state where the emission direction of the laser radiation is roughly adjusted.
  • the laser power transmission device 110 emits laser radiation from the power transmission laser emitting unit 128 in a state where the previous alignment is performed.
  • the laser power receiving device 150 receives laser radiation at the light receiving photoelectric conversion unit 162, and feeds back the amount of power received by itself to the laser power transmitting device 110 by the wireless data communication unit 160.
  • the post-stage alignment unit 132 optimizes the emission direction of laser irradiation in a direction in which the received power amount is improved based on the received power amount that is fed back.
  • the emission direction of laser radiation is typically controlled by mechanically controlling the direction of a reflector installed outside the laser element and deflecting the beam emitted from the laser element by the reflector. can do.
  • a semiconductor laser in which the beam emission direction can be controlled by a laser resonator using a photonic crystal is also known.
  • FIG. 9 is a flowchart showing alignment control executed by the laser power transmitting apparatus 110 according to the embodiment of the present invention.
  • the process shown in FIG. 9 is started from step S200 in response to being called in step S101 shown in FIG.
  • step S201 the laser power transmitting apparatus 110 establishes a wireless communication link with the laser power receiving apparatus 150 by beam forming.
  • the wireless communication link is established prior to the actual power supply.
  • the power required by the laser power receiving device 150 before the actual power supply is provided by appropriate means such as a secondary battery charged at the previous power supply, a primary battery provided in the laser power receiving device 150, or the like. It shall be.
  • step 202 the laser power transmitting apparatus 110 performs rough alignment of the wireless power supply link based on the alignment information obtained as a result of the beamforming by the upstream alignment unit 130.
  • step S ⁇ b> 203 the laser power transmission device 110 starts emitting laser radiation from the power transmission laser emitting unit 128.
  • step S204 the laser power transmitting apparatus 110 receives the amount of power received from the laser power receiving apparatus 150 via the wireless communication link by the wireless data communication unit 120.
  • step S205 the subsequent stage alignment unit 132 determines whether or not a predetermined convergence condition is satisfied.
  • the convergence condition is a condition for determining the emission direction that maximizes the amount of power received and terminating the process.
  • step S205 If it is determined in step S205 that the amount of received power has not converged (NO), control is branched to step S206.
  • step S206 the laser power transmitting apparatus 110 adjusts the emission direction of the laser radiation, for example, by adjusting the biaxial tilt angle of the reflecting mirror, and loops the control to step S204.
  • step S207 the present process is terminated, and the original control shown in FIG. 4 is restored. Thereby, the alignment of the wireless communication link and the wireless power supply link between the power transmitting and receiving apparatuses 110 and 150 is completed.
  • FIG. 11 is a diagram for explaining alignment of laser radiation in the prior art.
  • the laser beam typically has a spot diameter of less than several tens of ⁇ m.
  • the directivity of the laser light is high, and the laser light emitted from the laser power transmitting device 500 is observed as a point on the laser power receiving device 510 side, and positioning becomes difficult.
  • a reflecting plate 512 having a predetermined area is installed in the laser power receiving device 510, and the laser reflected light from the reflecting plate 512 is observed by the imaging device 502 provided in the laser power transmitting device 500. The fine adjustment was done by.
  • the emission of laser radiation is performed while detecting the spot position by performing image processing so that the beam spot 524 observed on the image 520 captured by the imaging device 502 is positioned in the light receiving region 522 of the laser power receiving device 510. It was necessary to adjust the direction.
  • image processing requires computation resources and a reflector, which increases the instrumentation cost.
  • the spot of the laser beam can be generally contained in the light receiving region by the above-described rough alignment by beam forming using the wireless communication link. Further, after the rough alignment, fine adjustment is performed on the power transmission device side 110 by receiving feedback of the actual power reception amount from the power reception device 150 side using the wireless communication link. For this reason, the reflecting plate 512, the imaging device 502, the image processing IC and the like are not necessary, and an increase in instrumentation cost can be suppressed.
  • FIG. 10 shows a graph in which the total supply power (W) satisfying the class 1 standard defined in JIS C 6802 is plotted against the release duration (s).
  • W total supply power
  • s release duration
  • TAT In 2.4 GHz, 5 GHz frequency band wireless LAN communication standardized by IEEE (The Institute of Electrical and Electronics Engineers, Inc.) 802.11, TAT is 1.0 ⁇ 10 ⁇ 4 to 1 shown in FIG. The range is 0 ⁇ 10 ⁇ 3 s. Furthermore, in these frequency bands, directivity is limited, and the frequency is further delayed by an increase in latency due to CSMA / CD (Carrier Sense Multiple Access / Collision Detection). Furthermore, in the CSMA / CD system, the efficiency may be significantly reduced due to an increase in the number of connected clients. Therefore, the CSMA / CD method is further delayed depending on the environment, and the response delay time varies greatly. In an actual environment, the TAT of the wireless LAN is about several tens of ms. Then, in the case of a wireless LAN communication link, about 1 mW is a limit in the actual environment according to the class 1 standard.
  • millimeter wave refers to a frequency of 30 to 300 GHz
  • millimeter wave wireless communication typically uses a frequency band of 60 GHz.
  • electromagnetic waves in these frequency bands have high directivity.
  • a direct link between radio stations can be formed, and a response delay time after the link is established can be shortened.
  • the millimeter wave wireless communication in which the direct link is formed does not increase the latency due to such a method and shortens the TAT, compared with the wireless LAN communication adopting the CSMA / CD method described above. Is advantageous.
  • the millimeter wave TAT can typically be about 1.0 ⁇ 10 ⁇ 6 [s] as shown in FIG. Therefore, it is expected that the power of around 10 W can be supplied even with the class 1 standard. If power supply in units of watts can be performed, various loads can be provided to cover power consumption, so that power supply of a wide range of devices can be made wireless. Furthermore, by using higher-speed wireless communication links that will be developed in the future (millimeter wave wireless communication using a higher frequency band than that currently in practical use and terahertz wave communication (frequency of 100 GHz to 10 THz), further reaction is achieved. It is expected that the time TAT can be shortened and higher power supply can be realized.
  • millimeter wave radio communication can form a direct link and maintain a radio communication link between radio stations continuously, it is advantageous in stably maintaining the above-described response delay time during laser emission. It is. Also, in millimeter wave communication, directivity can be optimized by beam forming targeting the communication partner of the direct link, so that the response delay time can be continuously optimized. Further, since the millimeter wave has high directivity as compared with the electromagnetic wave having a long wavelength, it is advantageous also in the alignment by the beam forming described above.
  • the power transmission device, the power receiving device, and the power transmission device that enable power transmission by radiation of electromagnetic waves while the exposure that can be assumed when abnormality occurs satisfy the predetermined standard
  • a power supply system and a power supply method can be provided. Furthermore, according to the embodiment of the present invention, it is possible to increase the output of power transmission by radiation of electromagnetic waves while ensuring that exposure that can be assumed when an abnormality occurs satisfies a predetermined standard.
  • the power receiving device can be configured as any device that receives power supply by radiation of electromagnetic waves and supplies power to a predetermined load.
  • the power receiving device can be a wired electronic device with a high installation cost, such as a projector or a monitoring camera installed at a high place, an access point for millimeter wave wireless communication, or the like.
  • a device with high power consumption such as a personal computer, a tablet terminal, or a mobile phone may be used as the power receiving device.
  • a relay device that relays wireless data communication and wireless power supply may be configured as a device that includes both the power receiving device and the power transmitting device.
  • a part or all of the functional units can be mounted on a programmable device (PD) such as a field programmable gate array (FPGA), or mounted as an ASIC (application-specific integration).
  • Circuit configuration data bitstream data to be downloaded to the PD to realize the functional unit on the PD
  • HDL Hardware Description Language
  • VHDL Very IC High Speed Integrated Circuits
  • Hardware Description Language data described in Verilog-HDL or the like can be distributed on a recording medium.
  • the maximum allowable exposure dose (MPE) and the exposure release limit (AEL) have been described as examples.
  • the exposure criteria are not particularly limited. Exposure to standards includes all forms of exposure, including exposure of human bodies to electromagnetic waves, as well as exposure of animals, articles, etc., and exposure standards are acceptable for all forms of exposure. It may be a standard for determining the exposure dose to be applied or recommended as the upper limit.
  • DESCRIPTION OF SYMBOLS 100 ... Laser power supply system, 102 ... Power supply, 110 ... Laser power transmission device, 112 ... Antenna, 114 ... Laser element, 120 ... Wireless data communication part, 122 ... Maximum output calculation part, 124 ... Laser output control part, 126 ... Abnormality Detecting unit, 128... Laser emitting unit for power transmission, 130... Pre-stage alignment unit, 152 .. Post-position alignment unit, 150... Laser receiving device, 152. Photoelectric conversion unit for receiving power, 164 ... abnormality detection unit, 190 ... load

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)

Abstract

 電磁波の放射により電力を送電することができる送電装置、受電装置、電力供給システムおよび電力供給方法を提供する。送電装置110は、当該送電装置110および受電装置150の間の通信リンクで観測される応答遅延時間に基づき、被ばくの基準を満たす電磁波の放射の出力の最大値を計算する計算部122と、最大値を超えない出力で、受電装置150との間の電力供給リンクを介して送電する送電部128と、通信リンクを介した受電装置150との通信に基づき、電力供給リンクでの異常を検知する異常検知部126と、電力供給リンクでの異常の検知に基づいて、出力を制限する出力制限部124とを含む。

Description

送電装置、受電装置、電力供給システムおよび電力供給方法
 本発明は、送電装置、受電装置、電力供給システムおよび電力供給方法に関し、より詳細には、電磁波の放射により電力を送電することができる送電装置、受電装置、電力供給システムおよび電力供給方法に関する。
 近年の無線データ通信の高速化に伴い、有線で行われている種々の通信が無線に置き換え可能となっている。しかしながら、電力に関しては、有線での供給となり、無線通信装置の設置には、電力を供給するための配線の敷設が必要となる。このため、通信および電力供給を含めた無線化を図るためには、無線による電力供給技術の開発が必須である。
 近年、無線での電力供給に関し、非接触電力伝送技術(例えば特開2009-261156号公報:特許文献1)が注目されているが、これらは、主として電磁誘導に基づく、非放射のエネルギーを利用した送電方式である。このため、電力の送電側と受電側の距離が離れるにつれて効率が低下し、実用的には数mm~数十cm程度であり、電磁界共鳴方式でも1m以下での近距離の電力供給が限界である。これらの技術は、非接触、比較的近距離の電力供給には有効であるが、屋内や屋外に敷設される電力配線を代替できるものではない。
 その他の非接触電力伝送方式としては、自由空間でのマイクロ波やレーザー光による送電技術が研究されている。これらの研究は、主として、宇宙空間と地表間といった遠距離の送電技術であり、遠距離送電技術固有の課題等の観点から実用化には時間がかかる。
 レーザー光送電に関しては、近年、電気自動車などの移動体に対する送電方式として提案されている。例えば、特開2010-166675号公報(特許文献2)は、レーザービームを受給し電力に変換し、電力を動力として移動する電気自動車と、該電気自動車の外部にて配置され、相対位置を自動的に調整しながら電気自動車にレーザービームを供給する電力源とからなる、レーザービーム送電システムを開示する。特許文献2では、橋梁骨組、トンネル内部の天井などに備えられたフェイズアレイ型発光装置から、電気自動車の屋根などに設けられたフェイズアレイ型受光装置へレーザービームを照射しており、比較的近距離のレーザー送電技術である。これらのレーザー光送電技術は、位置合わせの難しさや効率の悪さなどの理由から、実用化には至っていない。
 また、レーザー機器の安全性に関しては、国際標準の安全基準(International Electro-technical Commission(IEC)の60825-1「レーザー機器及びその使用者のための安全指針」)がある。レーザー機器は、上記国際基準および該国際基準に準拠した各国の安全基準によって、最大許容露光量(MPE)、被ばく放出限界(AEL)といった指標によって規制されている。上記安全基準によりレーザー機器はクラス分けされているが、筐体やその他のセーフティ・インターロックなど被ばく放出を制限するような技術的手段によって、組み込まれているレーザーの本来の能力よりも低いクラスに割り当てられたレーザー製品もある。例えばDVD機器やBlu-ray(登録商標)機器、レーザープリンタなどは、そのような安全基準に則り市販されている製品である。
 また、コンサート会場などのレーザー・ディスプレイやレーザーライトショーでは、~1W級の出力のレーザー装置も用いられている。このような走査されたレーザー光を放出するレーザー機器は、走査されたレーザー光の放出を基準にクラス分けされ得るが、走査の故障、走査速度または走査振幅の変化の結果として、該当するクラスの被ばく放出限界(AEL)を超える被ばくが起こらないような安全防御が講じられている。
 高速無線データ通信可能な無線通信装置を、電力供給を含めてワイヤレス化する観点からは、レーザー光などの電磁波の放射による送電技術は有望である。しかしながら、充分な電力を供給するためには放射の出力を大きくすることが必要となる。したがって、被ばくの基準を満たすようにしながら、より高出力の電磁波の放射による送電を可能とする技術の開発が望まれていた。
 光による電力供給に関する異常時の停止機能としては、特開平11-230856号公報(特許文献3)が知られている。特許文献3は、光パワーを伝送する光ファイバと同一のケーブル中に収容された別の光ファイバを通して本体機に戻った光の異常の有無を検出する構成を開示する。しかしながら、特許文献3の従来技術は、有線での光パワー給電に関するものであり、電力供給を含めた無線化を図ることができるものではなかった。
特開2009-261156号公報 特開2010-166675号公報 特開平11-230856号公報
 本発明は、上記従来技術の充分ではない点に鑑みてなされたものであり、本発明は、異常が発生した場合に想定され得る被ばくが所定基準を満たすようにしながら、電磁波の放射による送電を可能とする送電装置、受電装置、電力供給システムおよび電力供給方法を提供することを目的とする。本発明の他の目的は、よりいっそうの安全性を高めることができる送電装置、受電装置、電力供給システムおよび電力供給方法を提供することを目的とする。
 本発明では、上記課題を解決するために、電磁波の放射により受電装置へ送電可能な送電装置であって、下記特徴を有した送電装置を提供する。送電装置は、当該送電装置および相手方の受電装置の間の通信リンクで観測される応答遅延時間に基づき、被ばくの基準を満たす電磁波の放射の出力の最大値を計算する。そして、送電装置は、最大値を超えない出力で、上記受電装置との間の電力供給リンクを介して送電する。さらに、送電装置は、上記通信リンクを介した受電装置との通信に基づき、電力供給リンクでの異常の検知を行っており、電力供給リンクでの異常の検知に基づいて、上記電磁波の放射の出力を制限する。
 さらに、本発明によれば、電磁波の放射により上記送電装置から供給される電力を受電可能な受電装置であって、下記特徴を有する受電装置を提供することができる。受電装置は、当該受電装置および相手方の送電装置の間の通信リンクを介して、通信の応答遅延時間を評価するために通信を行う。受電装置は、応答遅延時間に応じた、被ばくの基準を満たす最大値を超えない電磁波の放射の出力で上記送電装置との間の電力供給リンクを介して供給される電力を受電する。受電装置は、さらに、電力供給リンクでの異常の発生に対応して送電装置で出力の制限を行うために当該受電装置での受電量を取得する。
 本発明によれば、また、電磁波の放射により送電可能な送電装置と、送電装置から供給される電力を受電可能な受電装置とを含む電力供給システムが提供される。
 本発明によれば、さらに、電磁波の放射により送電可能な送電装置と、送電装置から供給される電力を受電可能な受電装置との間で実行される電力供給方法を提供することができる。電力供給方法は、送電装置および受電装置との間の通信リンクを介した通信の応答遅延時間を評価するステップと、応答遅延時間に基づいて、被ばくの基準を満たす電磁波の放射の出力の最大値を計算するステップと、送電装置が、最大値を超えない出力で、受電装置との電力供給リンクを介して送電するステップとを含む。電力供給方法は、さらに、通信リンクを介した通信に基づき、電力供給リンクでの異常を検知するステップと、送電装置が、電力供給リンクでの異常の検知に基づいて、電力供給リンクの出力を制限するステップとを含む。
 上記構成により、異常が発生した場合に想定され得る被ばくが所定基準を満たすようにしながら、電磁波の放射による送電を可能とすることができる。
本発明の実施形態によるレーザー電力供給システムを示す概略図。 本発明の実施形態によるレーザー電力供給システムにおけるレーザー送電装置およびレーザー受電装置の機能ブロックおよびデータフローを示す図。 レーザー出力の制御方法を説明する図。 本発明の実施形態による、レーザー送電装置が実行する制御を示すフローチャート。 本発明の実施形態において、レーザー送電装置およびレーザー受電装置間で交換される情報と、レーザー出力の関係をタイミングと共に模式的に示す図。 本発明の他の実施形態によるレーザー電力供給システムにおけるレーザー送電装置およびレーザー受電装置の機能ブロックおよびデータフローを示す図。 本発明の他の実施形態において、レーザー送電装置およびレーザー受電装置間で交換される情報と、レーザー出力との関係をタイミングとともに模式的に説明する図。 本発明の実施形態における、無線通信リンクおよび無線電力供給リンクの位置合わせに関する機能ブロック図。 本発明の実施形態による、レーザー送電装置が実行する位置合わせ制御を示すフローチャート。 放出持続時間(s)に対して、安全基準のクラス1の基準を満たす総供給電力(W)をプロットしたグラフ。 従来技術におけるレーザー放射の位置合わせについて説明する図。
 以下、本発明について特定の実施形態をもって説明するが、本発明は、以下に説明する実施形態に限定されるものではない。なお、以下に説明する実施形態では、送電装置、受電装置および電力供給システムの一例として、それぞれ、レーザー送電装置110、レーザー受電装置150およびレーザー電力供給システム100を用いて説明する。
 図1は、本発明の実施形態によるレーザー電力供給システム100を示す概略図である。本実施形態によるレーザー電力供給システム100は、レーザー送電装置110と、このレーザー送電装置110から離間して設置されるレーザー受電装置150とを含み構成される。
 レーザー送電装置110は、レーザー素子114を備えており、電源102からの電力供給を受けて、レーザー素子114からレーザー放射を放出し、これによって、レーザー受電装置150へ無線で電力を送信する。レーザー受電装置150は、光電変換素子154を備えており、レーザー送電装置110から放出されたレーザー放射を光電変換素子154で受光し、これによって無線で電力を受信する。
 ここで、レーザー送電装置110とレーザー受電装置150との間で確立される電力供給のためのリンクを無線電力供給リンクと参照する。この無線電力供給リンクは、送受電装置110,150間で、レーザー素子114から放出されたレーザー光が光電変換素子154に適切に入射されるように、レーザー放射の放出方向を位置合わせすることによって確立される。本実施形態において、無線電力供給リンクは、導波路により画定されるものではなく、空間を伝播するレーザー光の光路によって画定される。
 上述したレーザー放射は、赤外線、可視光線または紫外線などの単色の電磁波、またはこれらの電磁波が混合されたものとされる。なお、説明する実施形態では、レーザー放射により電力供給を行うものとして説明するが、電力供給で用いられる電磁波の放射は、レーザー光に限定されるものではない。他の実施形態では、マイクロ波など、他の波長帯の電磁波の放射を利用して電力供給が行われてもよい。
 レーザー受電装置150は、受電した電力を、外部接続され、または内蔵された負荷190に供給する。負荷190は、特に限定されるものではなく、例えば、プロジェクタ、監視カメラ、二次電池などの電力を消費または蓄積する如何なる装置および部品とすることができる。
 本実施形態によるレーザー送電装置110およびレーザー受電装置150は、さらに、それぞれアンテナ112,152を備えており、無線データ通信が確立可能に構成されている。ここで、レーザー送電装置110とレーザー受電装置150との間で確立されるデータ通信のためのリンクを無線通信リンクと参照する。無線通信リンクは、上述した無線電力供給リンクとは異なるものが採用される。無線通信リンクは、指向性が高いものとすることが好ましいが、典型的には、無線電力供給リンクの方が無線通信リンクよりも高い指向性を有している。好適な実施形態では、数Gbps以上のデータ通信速度を実現可能な、数十GHz(典型的には60GHz)周波数帯の電磁波(ミリ波)による無線通信リンクを採用することができる。
 アンテナ112,152は、特に限定されるものではないが、好適な実施形態では、複数のアンテナが配列されるアダプティブ・アレイ・アンテナといった、指向性が制御可能なアンテナを採用することができる。上記レーザー送電装置110,150は、それぞれ、無線通信リンクにおいて、送信機および受信機の両方の立場で相手方とデータ通信することができる。
 図1に示すレーザー送電装置110は、無線通信リンクを介したデータ通信により、レーザー受電装置150と間での情報交換を行いながらレーザー放射の出力を制御し、受電装置150に対し電力を無線供給する。なお、送受電装置110,150間の距離は、レーザー光および無線電波の指向性や使用する環境にも依存することになるが、レーザー光を充分な効率で伝達可能であり、かつ、充分な速度の無線データ通信が維持可能な範囲の任意の距離とすることができる。
 上記レーザー送電装置110のようなレーザー機器は、レーザー機器の安全性に関する国際基準(IEC 60825-1「レーザー機器及びその使用者のための安全指針」)やこれに準拠した国内基準(JIS C 6802)の対象となる。
 JIS C6802の規格では、例えば「クラス1のレーザー製品」は、「運転中に、該当する波長および放出持続時間に対するクラス1の被ばく放出限界AELを超えるレーザー放射を人体に被ばくさせることのない全てのレーザー製品」と定義されている。また、「放出持続時間」は、「レーザー製品の運転、保守またはサービスの結果として生じるレーザー放射を人体に被ばくさせ得るパルス、パルス列または連続放出の持続時間」と定義されている。ここで、単一のパルスの場合は、放出持続時間は、パルスの立ち上がり半値点と立ち下がり半値点との間の時間幅とされ、連続パルス列(または主パルス列中のサブパルス群)の場合は,最初のパルスの立ち上がり半値点と最後のパルスの立ち下がり半値点との間の時間幅とされている。
 また、「被ばく放出限界AEL(Accessible Emission Limit)」は、「対応するクラスで許容される最大の被ばく放出」として定義され、被ばく放出(量)(Accessible Emission)は、規定の開口絞り[AELをワット(W)またはジュール(J)の単位で与える場合]を用いて、または限界開口[AELをワット毎平方メートル(W・m-2)またはジュール毎平方メートル(J・m-2)の単位で与える場合]を用いて、ある位置において決定される放出レベル」として定義される。また、「最大許容露光量MPE(Maximum Permissible Exposure)」は、「通常の環境下で、人体に照射しても有害な影響を与えることがないレーザー放射のレベル」として定義され、「MPEレベル」は、「目もしくは皮膚が被ばく直後または長期にわたり結果的に損傷を受けずに被ばくできる最大のレベル」とされている。被ばく放出限界(AEL)は、一般に、最大許容露光量(MPE)から導かれる。
 図1に示すレーザー電力供給システム100では、レーザー送電装置110からレーザー受電装置150へレーザー光が空間を伝播する。このとき、送受電装置110,150間に遮蔽物が割り込み、光路が遮断されると、遮蔽物表面での反射などにより、光路から外れてレーザー光が放出されてしまう可能性がある。あるいは、遮蔽物自体が被ばくしてしまう。したがって、遮蔽物による光路の遮断などの異常が発生してから、レーザー出力を充分に制限するまでの反応時間の間に放出される可能性のある放出レベルを、所定基準以下に制御することが求められる。
 そこで、本実施形態によるレーザー電力供給システム100では、所定出力範囲内で無線電力供給リンクを介した送電を行いつつ、上記無線通信リンクを介したデータ通信に基づいて無線電力供給リンクおよび無線通信リンクで発生した異常を検知し、異常の発生に応答してレーザー出力に制限をかける構成を採用する。以下、図2~図10を参照しながら、本実施形態による送受電装置110,150間で実行される電力供給方法について、詳細を説明する。
 図2は、本発明の実施形態によるレーザー電力供給システム100におけるレーザー送電装置110およびレーザー受電装置150の機能ブロックおよびデータフローを示す図である。図2に示すレーザー送電装置110は、無線データ通信部120と、最大出力計算部122と、レーザー出力制御部124と、異常検知部126と、送電用レーザー放出部128とを含み構成される。また、図2に示すレーザー受電装置150は、無線データ通信部160と、受電用光電変換部162とを含み構成される。
 両装置110,150の無線データ通信部120,160は、双方向の無線データ通信を行うための無線通信インタフェースである。無線データ通信部120,160は、受信時には、空間中を伝播してきた搬送波の電波をアンテナ112,152で受信し、所定の変調方式に基づいて受信データを復元する。送信時には、無線データ通信部120は、送信データを所定の変調方式に基づいて変調し、搬送波の電波として空間中に放射する。上記変調方式は、特に限定されるものではないが、MPSK(M-ary Phase Shift Keying)方式、MQAM(M-ary Quadrature Amplitude Modulation)といった変調方式を挙げることができる。
 レーザー送電装置110側の送電用レーザー放出部128は、典型的には、GaAs、InGaAs、InGaAsPなどの半導体レーザー素子を含み構成される。しかしながら、他の実施形態では、レーザー素子114は、気体レーザー、固体レーザーを用いてもよい。また、レーザー素子の動作モードとしては、連続発振(CW)動作モードおよびパルス発振動作モードのいずれであってもよい。レーザー素子が発光するレーザー放射の波長としては、特に限定されるものではない。
 レーザー受電装置150側の受電用光電変換部162は、受光したレーザー光を光電変換して起電力を生じさせる光電変換素子を含み構成される。光電変換素子としては、上記送電用レーザー放出部128が放出するレーザー放射に対応した波長に高い変換効率を有したフォトダイオードや太陽電池などを用いればよい。
 最大出力計算部122は、送受電装置110,150の間の無線通信リンクで観測される応答遅延時間を評価し、評価した応答遅延時間に基づき、許容される被ばくの基準を満たすレーザー放射の出力の許容される最大値(最大許容値)を計算する。ここで、レーザー放射の出力の最大許容値は、異常が発生してからレーザー出力を充分低いレベルに制限するまでにかかる反応時間にわたり最大許容値の出力でレーザー放射が放出された場合に、所定基準で定められた被ばくレベルを超えないようにするという条件のもと計算される。
 本実施形態では、無線電力供給リンクで発生した異常は、無線通信リンクを介したデータ通信に基づいて検知される。このため、上記反応時間は、送受電装置110,150間の無線通信リンクを介したデータ通信の応答遅延時間(レイテンシ)に依存したものとなる。上記反応時間は、より詳細には、異常検知するためのデータ通信にかかる応答遅延時間と、伝送されたデータに基づき異常を検知するまでにかかる時間と、異常を検知してからレーザー出力を所定レベル以下に低下させるまでにかかる時間と、所定のマージン時間とを含み得るが、典型的には、無線通信の応答遅延時間が支配的となる。
 上記条件のもと計算される最大許容値は、上記応答遅延時間に応じた反応時間の間に放出される可能性のある放出レベルを所定基準以下とすることを保証できる、許容された最大の出力値となる。したがって、この最大許容値を超えない出力でレーザー放射が放出されていれば、無線電力供給リンクに異常が生じたとしても、異常が生じてから出力制限を行うまでの時間に、被ばくの基準を超えて、遮蔽物自体が被ばくしたり、レーザー光が光路外に放出されたりしてしまうことが防止される。また、最大許容値は、上記反応時間が短縮されるにつれて大きくすることができ、より高出力の電力供給が可能となる。
 応答遅延時間は、既知の長さを有するデータ(例えば測定用データ)の転送にかかる所要時間を計測し、その所要時間に基づきデータ転送レートを測定し、データ転送レートに基づいて評価することができる。また、ここで評価される応答遅延時間は、採用する異常検知の通信方式にも依存するが、往復レイテンシまたは片道レイテンシとすることができる。本実施形態においては、最大許容値の計算は、応答遅延時間またはデータ転送レートの実測値から所定の計算式で算出してもよいし、応答遅延時間またはデータ転送レートに最大許容値を対応付けるテーブルを参照して値を取得することにより行ってもよい。
 送受電装置110,150間の相対的な位置関係が固定されている場合は、典型的には、上記応答遅延時間の評価および最大許容値の計算は、無線電力供給リンクを確立して本番の電力供給を行う前に一度行えばよい。しかしながら、相対的な位置関係に変化が生じ得る場合は、応答遅延時間の評価と、評価された応答遅延時間に基づく最大許容値の計算とを適切な頻度で繰り返し実行してもよい。この場合は、異常検知のために行うデータ通信でデータ転送レートを実測することができ、計算された最新の最大許容値を使用するように構成される。
 レーザー出力制御部124は、送電用レーザー放出部128の動作を制御する制御手段であり、最大出力計算部122が算出したレーザー出力の最大許容値に基づき、最大許容値を超えないようにレーザー出力を制御する。レーザー出力制御部124は、無線通信リンクを介したデータ通信に基づき、受電側の受電量を確認しながら、ゼロから最大許容値までレーザー出力を段階的に引き上げることができる。
 送電用レーザー放出部128は、レーザー出力制御部124の制御の下、最大許容値を超えない出力でレーザー放射を放出し、これによってレーザー受電装置150に対して送電する送電部を構成する。なお、レーザー出力の制御方法は、特に限定されるものではない。
 図3は、レーザー出力の制御方法を説明する図である。図3に示すテーブルの左カラムに示すように、レーザー放射を連続放出する場合は、その光子密度によりレーザー放射のパワーを増減させることができる。あるいは、レーザー放射をパルス放出する場合は、レーザー放射のパワーは、図3に示すテーブルの中央カラムおよび右カラムにそれぞれ示すように、所定パルス周期におけるパルス幅(デューティ比)により増減させることができ、または、パルス周期またはパルス頻度(単位時間当たりのパルス数)により増減させることができる。
 異常検知部126は、上記無線通信リンクを介したレーザー受電装置150とのデータ通信に基づき、上記無線電力供給リンクの状態を監視しており、異常の発生を検知することができる。異常は、各装置110,150での変換効率を考慮して、レーザー送電装置110が送電した送電量(電力)と、レーザー受電装置150が受電した受電量(電力)との比較に基づいて検知することができる。
 レーザー送電装置110が放出した放射パワー(入力された電力×電気光変換効率または出力設定値に対し既知の放射パワー)に対する、レーザー受電装置150が受光した放射パワー(受電された電力/光電変換効率)の差分または割合が、所定基準から外れる場合は、何らかの理由で無視できない損失を生じていることを示唆しており、無線電力供給リンクにおいて異常が発生したと判断できる。このような損失は、典型的には、遮蔽物による光路の遮断、散乱や乱反射を引き起こす塵や煙の光路への入り込み、レーザーのアライメントのズレ、光電変換素子の劣化または故障などに起因して発生し、このような異常が発生した場合は、管理上、レーザー出力に制限をかけることが好ましい。
 図2に示す実施形態では、レーザー受電装置150側で、受電量取得部として受電用光電変換部162で受電量が取得され、取得された受電量が、無線データ通信部160によってレーザー送電装置110側へ通知される。そして、レーザー送電装置110側で、異常検知部126が、送電用レーザー放出部128から送電量を取得し、レーザー受電装置150から通知された受電量と、取得した送電量とを変換効率を考慮して比較する。比較の結果、所定閾値以上の損失が生じていた場合は、無線電力供給リンクにおいて異常が発生したと判断される。
 また、異常検知部126は、受電量および送電量の比較に基づく無線電力供給リンクの異常検知に加えて、無線通信リンクの異常を検知することができる。無線通信リンクの異常としては、例えば、無線通信リンク自体の不通、SNR(Signal to Noise Ratio)の急速な低下、あるいは適応制御されるアンテナのビーム方向の急激な変化などを挙げることができる。
 本実施形態では、無線通信リンクを用いて無線電力供給リンクの異常を検知しているので、上述のような異常は、無線電力供給リンクの異常検知に支障をきたす。そこで、本実施形態による異常検知部126は、無線通信リンクおよび無線電力供給リンクの少なくとも一方で異常が発生したことを検知した場合は、レーザー出力制御部124に対し、レーザー出力制限指令、より具体的には、レーザー出力停止指令を速やかに発行する。
 レーザー出力制御部124は、無線電力供給リンクまたは無線通信リンクでの異常の検知に基づいて上記指令が行われたことに応答して、送電用レーザー放出部128からのレーザー放出の出力を基準レベル以下に制限する出力制限部である。より具体的には、レーザー出力制御部124は、レーザー出力停止指令に応答して、送電用レーザー放出部128のレーザー素子への駆動電流を直ちに停止させることで、レーザー放射の放出を停止させる。
 以下、図4および図5を参照しながら、上述したレーザー電力供給システム100における電力供給時の動作の詳細に説明する。図4は、本発明の実施形態による、レーザー送電装置110が実行する制御のフローチャートである。図5は、本発明の実施形態において、レーザー送電装置110およびレーザー受電装置150間で交換される情報と、レーザー出力との関係をタイミングとともに模式的に説明する図である。
 図4に示す制御は、例えばオペレータがレーザー送電装置110に対し電力供給開始の操作を行ったことに応答して、ステップS100から開始される。ステップS101では、レーザー送電装置110は、レーザー受電装置150との間の無線通信リンクおよび無線電力供給リンクの位置合わせおよび特性情報(送信レーザーの種類や変換効率などを含む。)の交換を行う。なお、位置合わせ処理については、詳細を後述する。
 ステップS102では、レーザー送電装置110は、無線データ通信部120によりデータ通信を行い、上記最大出力計算部122により、無線通信リンクのデータ転送速度を計算する。ステップS103では、レーザー送電装置110は、最大出力計算部122により、実測されたデータ転送速度に基づき、無線通信リンクの通信で観測される応答遅延時間を評価する。ステップS104では、レーザー送電装置110は、最大出力計算部122により、評価された応答遅延時間に応じたレーザー出力の最大許容値を計算する。
 ステップS105では、レーザー送電装置110は、無線データ通信部120により、レーザー受電装置150に対し、無線通信リンク確認を出力する(図5で黒色の四角で示す。)。リンク確認の入力を受けたレーザー受電装置150は、レーザー送電装置110に対して無線通信リンク応答を出力する(図5で灰色の四角で示す。)。ステップS106では、レーザー送電装置110は、リンク確認に対するリンク応答が有ったか否かを判定する。ステップS106で、リンク応答が無いと判定された場合(NO)は、無線通信リンクに異常があるので、エラーであるとしてレーザー出力を開始せずに、ステップS113で本制御を終了させる。
 一方、ステップS106で、リンク応答が有ったと判定された場合(YES)は、ステップS107へ制御を進める。ステップS107では、レーザー送電装置110は、計算された最大許容値を設定し、レーザー制御部124の制御の下、初期レベルから、送電用レーザー放出部128からのレーザー放射の放出を開始させる。
 ステップS108では、レーザー送電装置110は、無線データ通信部120により、レーザー受電装置150からリンク応答に後続して送信される受電量(図5で数字入りの四角で示す。)を受信する。ステップS109では、レーザー送電装置110は、送電用レーザー放出部128から送電量を取得する。ステップS110では、レーザー送電装置110は、異常検知部126により、無線電力供給リンクおよび無線通信リンクの少なくともいずれかで異常が発生していないかを判定する。ステップS110で、異常なしと判定された場合(YES)は、ステップS111へ制御が進められる。
 ステップS111では、レーザー送電装置110は、レーザー出力制御部124により、最大許容値を超えない範囲でレーザー出力を段階的に増大させて、ステップS108へ制御をループさせる。図5には、レーザー受電装置150からレーザー送電装置110へ受電量が継続的に送信され、受電量と送電量との比較の結果に基づいて、レーザー出力が段階的に引き上げられている様子が示されている。
 ステップS110で、異常有りと判定された場合(NO)は、ステップS112へ制御が分岐される。受電量の通知が受信されなかったり(無線通信リンクの異常)、受電量と送電量との比較から損失が基準以上に大きかったり(無線電力供給リンクの異常)した場合は、異常有りと判定される。また、ここでは、オペレータからの明示の停止命令があった場合もステップS112へ制御を分岐させればよい。
 ステップS112では、レーザー送電装置110は、レーザー出力制御部124により、レーザー素子に対する駆動電流の供給を遮断し、レーザー発振を停止して、ステップS113で本制御を終了させる。
 図5(A)には、無線電力供給リンクが遮断されたことにより、異常が発生した場合の異常の検知から停止までの流れが示されている。図5(A)に示すように、無線電力供給リンクが遮断された場合は、レーザー受電装置150で受光する放射パワーに損失が発生し、見込みより小さな受電量がレーザー送電装置110に通知されることになる。この場合、レーザー送電装置110は、この通知された受電量と、自身が送電した送電量とを比較して、無線電力供給リンクの異常を検知し、直ちにレーザー放出を停止することができる。
 図5(B)には、無線通信リンクが何らかの理由で不通となった場合の異常の検知から停止までの流れが示されている。図5(B)に示すように、無線通信リンクが途絶えた場合でも、レーザー受電装置150は、適正な受電量を送信するが、受電量は、レーザー送電装置110には伝達されない。この場合は、レーザー送電装置110は、受電量が所定時間内に受信できなかったことを検出し、無線通信リンクの異常を検知し、直ちにレーザー出力を停止することができる。
 なお、図2~図5で示した実施形態では、無線通信リンクを介してレーザー受電装置150側からレーザー送電装置110側へ継続的に受電量が送信している。このとき、送信側で受電量を知るためには、送信側から受信側への方向の通信は、必ずしも要さない。したがって、上述した実施形態では、最大許容値の計算に際して評価する応答遅延時間は、レーザー受電装置150側からレーザー送電装置110側への片道レイテンシとしてよい。図2~図5で示した実施形態では、このように片道リンクの通信で済むため、反応時間を短縮する観点からは好ましいといえる。
 また、リンク確認を行った以降は、レーザー送電装置110側からは異常検知のためのデータ送信を要しないので、リンク確認以降、無線データ通信部120の送信方向のリンクを停止し、省電力化を図ってもよい。また、最初に行っていたリンク確認が省略される実施形態であれば、無線データ通信部120の送信方向リンク自体を省略してもよい。
 上述した実施形態では、レーザー送電装置110側で、無線通信リンクを介して受電量を受け取って異常を検知していた。しかしながら、異常検知方法は、上述したものに限定されるものではない。以下、図6および図7を参照しながら、レーザー受電装置150側で異常検知を行う他の実施形態について説明する。
 図6は、本発明の他の実施形態によるレーザー電力供給システム100におけるレーザー送電装置110およびレーザー受電装置150の機能ブロックおよびデータフローを示す図である。なお、図2で示した実施形態と同様の構成部については、同一の符番を付して参照し、以下相違点を中心に説明する。
 図6に示すレーザー送電装置110は、無線データ通信部120、最大出力計算部122、レーザー出力制御部124、異常検知部126および送電用レーザー放出部128を含む。図6に示すレーザー受電装置150は、無線データ通信部160および受電用光電変換部162に加えて、異常検知部164を含み構成される。無線データ通信部120,160、最大出力計算部122、レーザー出力制御部124、送電用レーザー放出部128および受電用光電変換部162は、図2を参照して説明した実施形態と同様の役割を果たす。
 レーザー送電装置110側の異常検知部126は、上述した実施形態と同様に、上記無線通信リンクを介したレーザー受電装置150とのデータ通信に基づき、上記無線電力供給リンクの状態を監視し、異常の発生を検知することができる。しかしながら、図6に示す実施形態では、図2に示した実施形態とは異なる方法で無線電力供給リンクの異常を検知する。
 まず、レーザー送電装置110側では、送電用レーザー放出部128から送電量が取得され、取得された送電量が、無線データ通信部120によって、レーザー受電装置150側へ送信される。そして、レーザー受電装置150側の異常検知部164が、受電用光電変換部162から取得した受電量と、レーザー送電装置110から通知された送電量とを比較し、その結果から損失が所定閾値以上とならないかを判定する。
 損失が所定閾値以上となった場合は、無線電力供給リンクにおいて異常が発生したと判断される。この場合、レーザー受電装置150は、無線データ通信部160を介して、レーザー送電装置110側へ異常の発生を通知する。レーザー送電装置110側の異常検知部126は、レーザー受電装置150側からの異常の通知を受けて、無線電力供給リンクの異常が発生したことを検知する。
 図7は、他の実施形態において、レーザー送電装置110およびレーザー受電装置150間で交換される情報と、レーザー出力との関係をタイミングとともに模式的に説明する図である。まず、レーザー送電装置110は、無線データ通信部120により、レーザー受電装置150に対し、無線通信リンク確認を出力する(図7で黒色の四角で示す。)。リンク確認の入力を受けたレーザー受電装置150は、レーザー送電装置110に対して無線通信リンク応答を出力する(図7で灰色の四角で示す。)。リンク応答の入力を受けたレーザー送電装置110は、レーザー受電装置150に対して送電量(図7で数字入りの四角で示す。)の送信を開始する。
 レーザー受電装置150は、レーザー送電装置110から送電量の通知を受信し、受信した送電量と、自身の受電量とを比較し、適正な送受電が行われるかを判定し、その判定結果をレーザー送電装置110に対し返信する。レーザー送電装置110は、適正な送受電が行われている旨の判定結果を受信した場合は、レーザー出力制御部124により、最大許容値を超えない範囲で、レーザー出力を段階的に増大させて行く。
 図7には、さらに、無線電力供給リンクが遮断された場合の異常の検知から停止までの流れが示されている。図7に示すように、無線電力供給リンクが遮断された場合は、レーザー受電装置150が受光する放射パワーに損失が発生し、通知された送電量から見込まれるよりも少ない受電量となる。レーザー受電装置150は、異常が発生したことを検知すると、異常が発生した旨をレーザー送電装置110に通知する。レーザー送電装置110は、この通知に基づいて異常を検知して、直ちにレーザー放出を停止することができる。
 上述した他の実施形態では、レーザー送電装置110側からレーザー受電装置150側へ継続的に送電量が無線通信リンクを介して送信される。そして、レーザー受電装置150側からレーザー送電装置110側へ判定結果の通知が無線通信リンクを介して送信される。このとき、送電側で異常を検知するためには、往復の通信が発生する。したがって、最大許容値の計算に際して評価する応答遅延時間は、往復レイテンシとすればよい。
 以下、図8および図9を参照して、送受電装置110,150間の無線通信リンクおよび無線電力供給リンクの位置合わせについて詳細を説明する。図8は、無線通信リンクおよび無線電力供給リンクの位置合わせに関する機能ブロック図である。
 図8に示すように、送電用レーザー放出部128は、前段位置合わせ部130と、後段位置合わせ部132とを含み構成される。前段位置合わせ部130は、無線データ通信部120,160間の無線通信リンクの確立を通じて無線電力供給リンクの粗い位置合わせを行う。後段位置合わせ部132は、前段位置合わせ部130による粗調整された結果に基づき、さらにレーザー受電装置150からの無線通信リンクを介したフィードバックにより無線電力供給リンクの位置合わせの微調整を行う。
 好適な実施形態では、無線データ通信部120,160は、上述したようにアダプティブ・アレイ・アンテナなどのビームフォーミング・アンテナを実装することができる。ビームフォーミング・アンテナは、複数のアンテナ素子を備え、それぞれのアンテナ素子に異なる位相の信号を入力し、空間で信号合成することにより、ビームの指向性を制御することが可能なアンテナである。ビームフォーミング・アンテナを用いることにより、位相制御によりビームの向きを電子的に変化させることが可能となる。なお、ビームフォーミングの実装は、特に限定されるものではなく、RF(Radio Frequency)フロント・エンドで実装してもよし、デジタル信号処理で実装してもよい。
 上記無線通信リンクの確立を通じて、ビームフォーミングにより、無線通信リンクの指向性が最適化されるので、その指向性を規定する位置合わせ情報(位相情報)が取得される。前段位置合わせ部130は、この位置合わせ情報を無線データ通信部120から取得し、取得された位置合わせ情報に基づき、レーザー放射の放出方向の初期値を決定する。これにより、レーザー放射の放出方向を粗く調整した状態から、後段の位置合わせを開始させることができる。
 レーザー送電装置110は、前段の位置合わせがされた状態で、送電用レーザー放出部128からレーザー放射を放出させる。レーザー受電装置150は、受光用光電変換部162でレーザー放射を受光し、無線データ通信部160により、レーザー送電装置110に対し、自身が受電した受電量をフィードバックする。後段位置合わせ部132は、このフィードバックされる受電量に基づいて、受電量が改善する方向にレーザー照射の放出方向の最適化を行う。
 なお、レーザー放射の放出方向は、典型的には、レーザー素子の外部に設置された反射鏡の向きを機械的に制御し、レーザー素子から放出されたビームを反射鏡で偏向することにより、制御することができる。このような外部光学系を用いる方法の他、フォトニック結晶を用いたレーザー共振器によりビーム出射方向を制御可能な半導体レーザーも知られている。
 図9は、本発明の実施形態による、レーザー送電装置110が実行する位置合わせ制御を示すフローチャートである。図9に示す処理は、図4に示したステップS101で呼び出されたことに応答してステップS200から開始される。ステップS201では、レーザー送電装置110は、レーザー受電装置150との間で、ビームフォーミングにより、無線通信リンクを確立させる。なお、説明する実施形態では、本番の電力供給に先だって無線通信リンクが確立される。ここで、本番の電力供給前のレーザー受電装置150が必要とする電力は、例えば前回の電力供給時に充電された二次電池、レーザー受電装置150が備える一次電池などの適切な手段により賄われているものとする。
 ステップ202では、レーザー送電装置110は、前段位置合わせ部130により、ビームフォーミングの結果として得られる位置合わせ情報に基づいて、無線電力供給リンクの粗い位置合わせを行う。ステップS203では、レーザー送電装置110は、送電用レーザー放出部128からレーザー放射の放出を開始する。
 ステップS204では、レーザー送電装置110は、無線データ通信部120により、無線通信リンクを介してレーザー受電装置150から受電量を受信する。ステップS205では、後段位置合わせ部132により、所定の収束条件を満たしたか否かを判定する。ここで、収束条件は、受電量が最大となる放出方向を求めて、処理を打ち切るための条件である。
 ステップS205で、受電量が収束していないと判定された場合(NO)は、ステップS206へ制御を分岐させる。ステップS206では、レーザー送電装置110は、反射鏡の2軸のあおり角を調整するなどによって、レーザー放射の放出方向を調整し、ステップS204へ制御をループさせる。一方、ステップS205で、受電量が収束したと判定された場合(YES)は、ステップS207へ制御を分岐させて、本処理を終了し、図4に示した元の制御に戻す。これにより、送受電装置110,150間の無線通信リンクおよび無線電力供給リンクの位置合わせが完了する。
 図11は、従来技術におけるレーザー放射の位置合わせについて説明する図である。レーザー光は、典型的には、数10μm未満のスポット径を有する。レーザー光の指向性は高く、レーザー送電装置500から放出したレーザー光は、レーザー受電装置510側では点として観測され、位置合わせは困難となる。図11に示す従来技術では、所定の広さを有する反射板512をレーザー受電装置510に設置し、レーザー送電装置500に設けた撮像装置502で、反射板512からのレーザー反射光を観測することによって微調整を行っていた。
 したがって、撮像装置502が撮影する画像520上で観測されるビームスポット524が、レーザー受電装置510の受光領域522に位置するように、画像処理を行ってスポット位置を検出しながら、レーザー放射の放出方向を調整する必要があった。このような画像処理は、演算リソースを必要とし、また反射板を設ける必要があるので、計装コストを増大させる要因となっていた。
 これに対して、上述した実施形態による位置合わせでは、上述した無線通信リンクを用いたビームフォーミングによる粗い位置合わせによって、概ねレーザー光のスポットを受光領域内に収めることができるようになる。さらに、粗い位置合わせの後は、無線通信リンクを用いて、受電装置150側から実際の受電量のフィードバックを受けることによって、送電装置側110で微調整がなされる。このため、反射板512や撮像装置502、画像処理ICなどが不要となり、計装コストの増大を抑制することができる。
 以下、上述した無線通信リンクを介したデータ通信に基づいて異常を検知し、異常の発生に応答して無線電力供給リンクのレーザー出力に制限をかける構成を採用することによって供給可能となる電力について、図10を参照しながら説明する。
 上述したように、無線通信リンクの応答遅延時間が短いほど、異常が発生してからレーザー放出を制限するまでの反応時間(TAT:ターン・アラウンド・タイム)を短縮することができる。ひいては、被ばくの所定基準を満たす条件の下では、応答遅延時間が短くなるほど、より高出力のレーザー放射が可能となる。図10は、放出持続時間(s)に対して、JIS C 6802で規定されるクラス1の基準を満たす総供給電力(W)をプロットしたグラフを示す。なお、ここで具体的なクラス1を用いて説明するが、例示を目的とするものであって、特に限定されるものではない。
 安全衛生情報センターによる「レーザー光線による障害の防止対策について」(http://anzeninfo.mhlw.go.jp/anzen/hor/hombun/hor1-29/hor1-29-16-1-0.htm)の別表I(クラス1のレーザー機器に関する被ばく放出限界)によれば、クラス1では、放出持続時間t>10-9s、波長200~302nmにおいて、2.4×10-5Jが被ばく放出限界AELとされている。上述したレーザー放出停止までの反応時間(TAT)をT[s]とすると、このT[s]が上記放出持続時間となる。放出持続時間T(s)で2.4×10-5Jが上限とされるので、T[s]の場合の1秒間当たりの放射エネルギー(放出電力)は、2.4×10-5/T[W]となる。図10を参照しても明らかなように、被ばくの基準を満たす条件の下では、反応時間Tが短縮するほど、より大きな電力を供給することが可能となることが理解される。
 IEEE(The Institute of Electrical and Electronics Engineers, Inc.)802.11に規格される2.4GHz、5GHz周波数帯の無線LAN通信では、TATは、図10に図示する1.0×10-4~1.0×10-3sの範囲となる。さらに、これらの周波数帯では、指向性が限定的であり、CSMA/CD(Carrier Sense Multiple Access/Collision Detection)によるレイテンシの増加により、さらに遅くなってしまう。さらに、CSMA/CD方式では、接続クライアント数の増加により効率が著しく低下する場合があるため、環境によってはさらに遅くなり、応答遅延時間の変動も大きくなる。実環境では、上記無線LANのTATは、数十ms程度となる。そうすると、無線LAN通信リンクの場合、上記クラス1の基準では、実環境で1mW程度が限界ということになる。
 一方、ミリ波は、周波数30~300GHzをいい、ミリ波無線通信は、典型的には60GHzの周波数帯を利用したものが知られているが、これらの周波数帯の電磁波は、指向性が高く、無線局間のダイレクトリンクが形成可能であり、リンク確立後の応答遅延時間を短縮することができる。また、ダイレクトリンクが形成されるミリ波無線通信は、上述したCSMA/CD方式を採用する無線LAN通信と比較して、このような方式に起因したレイテンシ増加も見られず、TATを短縮する上で有利である。
 ミリ波のTATは、典型的には、図10に図示するように1.0×10-6[s]程度とすることができる。したがって、上記クラス1の基準でも、10W前後の電力を供給できることが期待される。そして、ワット単位の電力供給が行えれば、消費電力をまかなえる負荷も種々のものが可能となるので、幅広い機器の電力供給を無線化することができる。さらに、今後開発されるより高速な無線通信リンク(現在の実用化されているものより高周波数の帯域を用いるミリ波無線通信や、テラヘルツ波通信(周波数100GHz~10THz)を用いることにより、さらに反応時間TATを短縮することが可能となり、より高出力の電力供給が可能となることも期待される。
 また、ミリ波無線通信は、ダイレクトリンクが形成され、無線局間の無線通信リンクを継続的に維持することができるので、レーザー放射中、上述した応答遅延時間を安定的に維持する上でも有利である。また、ミリ波通信では、ダイレクトリンクの通信相手を目標にビームフォーミングにより指向性の最適化が行えるので、応答遅延時間は継続的に最適化が図られる。また、ミリ波は、長い波長の電磁波に比較して高い指向性を有することから、上述したビームフォーミングによる位置合わせにおいても有利となる。
 以上説明したように、本発明の実施形態によれば、異常が発生した場合に想定され得る被ばくが所定基準を満たすようにしながら、電磁波の放射による送電を可能とする、送電装置、受電装置、電力供給システムおよび電力供給方法を提供することができる。さらに、本発明の実施形態によれば、異常が発生した場合に想定され得る被ばくが所定基準を満たすようにしながら、電磁波の放射による送電の高出力化を図ることができる。
 上述までの実施形態の構成により、商用電源からの受電装置への最後の線(Last one wire)である電源ケーブルを除去することが可能となる。なお、受電装置としては、電磁波の放射による電力供給を受け、所定の負荷に電力を供給する如何なる装置として構成することができる。受電装置としては、好適には、有線の設置コストの高い電子機器、例えば高所に設置されるプロジェクタや監視カメラ、ミリ波無線通信のアクセスポイントなどとすることができる。また、磁界共鳴方式の無線給電より大容量の電力供給が期待できることから、パーソナル・コンピュータ、タブレット端末、携帯電話などの消費電力の大きな装置を受電装置としてもよい。さらに、受電装置および送電装置の両方の構成を備える機器として、無線データ通信および無線電力供給を中継する中継装置を構成してもよい。
 なお、上記機能部の一部または全部は、例えばフィールド・プログラマブル・ゲート・アレイ(FPGA)などのプログラマブル・デバイス(PD)上に実装することができ、あるいはASIC(特定用途向集積)として実装することができ、上記機能部をPD上に実現するためにPDにダウンロードする回路構成データ(ビットストリームデータ)、回路構成データを生成するためのHDL(Hardware Description Language)、VHDL(VHSIC(Very High Speed Integrated Circuits) Hardware Description Language))、Verilog-HDLなどにより記述されたデータとして記録媒体により配布することができる。
 また、これまで本発明の実施形態について、最大許容露光量(MPE)および被ばく放出限界(AEL)を一例として説明してきたが、被ばくの基準は、特に限定されるものではない。基準にかかる被ばくは、人体が電磁波に曝されることの他、動物、物品等が電磁波にさらされることなど、あらゆる態様の被ばくを含み、被ばくの基準は、これらあらゆる態様の被ばくに対し、許容される、あるいは上限として推奨される、被ばく量を定める基準であってよい。
 これまで本発明の実施形態について説明してきたが、本発明の実施形態は上述した実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。
100…レーザー電力供給システム、102…電源、110…レーザー送電装置、112…アンテナ、114…レーザー素子、120…無線データ通信部、122…最大出力計算部、124…レーザー出力制御部、126…異常検知部、128…送電用レーザー放出部、130…前段位置合わせ部、152…後段位置合わせ部、150…レーザー受電装置、152…アンテナ、154…光電変換素子、160…無線データ通信部、162…受電用光電変換部、164…異常検知部、190…負荷

Claims (16)

  1.  電磁波の放射により受電装置へ送電可能な送電装置であって、
     当該送電装置および前記受電装置の間の通信リンクで観測される応答遅延時間に基づき、被ばくの基準を満たす前記電磁波の放射の出力の最大値を計算する計算部と、
     前記最大値を超えない出力で、前記受電装置との間の電力供給リンクを介して送電する送電部と、
     前記通信リンクを介した前記受電装置との通信に基づき、前記電力供給リンクでの異常を検知する異常検知部と、
     前記電力供給リンクでの異常の検知に基づいて、前記出力を制限する出力制限部と
     を含む、送電装置。
  2.  前記電磁波の放射は、指向性を有し、前記計算部は、前記電磁波の放射の出力の最大値を、少なくとも前記応答遅延時間を含む反応時間にわたり前記最大値での電磁波の放射を放出した場合に、定められた被ばくレベルを超えない条件のもと計算し、前記出力制限部は、前記電力供給リンクで異常が検知されたことに応答して、前記電力供給リンクでの前記電磁波の放射の出力を停止することを特徴とする、請求項1に記載の送電装置。
  3.  前記異常検知部は、前記通信リンクを介して前記受電装置から受信した受電量と、当該送電装置からの送電量との比較に基づき、前記電力供給リンクで異常が発生したことを検知する、請求項2に記載の送電装置。
  4.  前記異常検知部は、前記通信リンクを介して前記受電装置から受信した、当該送電装置の送電量と前記受電装置での受電量との比較に基づく通知により、前記電力供給リンクで異常が発生したことを検知する、請求項2に記載の送電装置。
  5.  前記異常検知部は、さらに、前記通信リンクの異常を検知し、前記出力制限部は、前記通信リンクおよび前記電力供給リンクの少なくとも一方で異常が発生したことに応答して、前記出力の制限を行う、請求項1に記載の送電装置。
  6.  前記計算部は、前記通信リンクを介した通信の応答遅延時間の評価と、評価された応答遅延時間に基づく最大値の計算とを繰り返し実行し、前記送電部は、計算された最新の最大値に基づき、前記電力供給リンクを介した送電を行うことを特徴とする、請求項1に記載の送電装置。
  7.  前記通信リンクは、指向性を有する無線通信リンクであり、前記無線通信リンクの確立を通じて前記電力供給リンクの位置合わせを行う前段位置合わせ部と、前記無線通信リンクを介して前記受電装置から受信した前記電力供給リンクでの受電量に基づき前記電力供給リンクの位置合わせの調整を行う後段位置合わせ部とを含む、請求項1に記載の送電装置。
  8.  前記電磁波の放射は、レーザー放射であり、前記通信リンクは、ミリ波通信リンクである、請求項1に記載の送電装置。
  9.  電磁波の放射により送電装置から供給される電力を受電可能な受電装置であって、
     当該受電装置および前記送電装置の間の通信リンクを介して、通信の応答遅延時間を評価するために通信を行う通信部と、
     前記応答遅延時間に応じた、被ばくの基準を満たす最大値を超えない前記電磁波の放射の出力で、前記送電装置との間の電力供給リンクを介して供給される電力を受電する受電部と、
     前記電力供給リンクでの異常の発生に対応して前記送電装置で前記出力の制限を行うために当該受電装置での受電量を取得する受電量取得部と
     を含む、受電装置。
  10.  電磁波の放射により送電可能な送電装置と、前記送電装置から供給される電力を受電可能な受電装置とを含む電力供給システムであって、
     前記送電装置および前記受電装置の間の通信リンクで観測される応答遅延時間に基づき、被ばくの基準を満たす前記電磁波の放射の出力の最大値を計算する計算部と、
     前記最大値を超えない出力で、前記受電装置との間の電力供給リンクを介して送電する前記送電装置の送電部と、
     前記通信リンクを介した通信に基づき、前記電力供給リンクでの異常を検知する異常検知部と、
     前記電力供給リンクでの異常の検知に基づいて、前記出力を制限する前記送電装置の出力制限部と
     を含む、電力供給システム。
  11.  電磁波の放射により送電可能な送電装置と、前記送電装置から供給される電力を受電可能な受電装置との間で実行される電力供給方法であって、
     前記送電装置および前記受電装置との間の通信リンクを介した通信の応答遅延時間を評価するステップと、
     前記応答遅延時間に基づいて、被ばくの基準を満たす前記電磁波の放射の出力の最大値を計算するステップと、
     前記送電装置が、前記最大値を超えない出力で、前記受電装置との電力供給リンクを介して送電するステップと
     を含み、前記電力供給方法は、さらに、
     前記通信リンクを介した通信に基づき、前記電力供給リンクでの異常を検知するステップと、
     前記送電装置が、前記電力供給リンクでの異常の検知に基づいて、前記電力供給リンクの出力を制限するステップと
     を含む、電力供給方法。
  12.  前記電磁波の放射は、指向性を有し、前記計算するステップは、前記電磁波の放射の出力の最大値を、少なくとも前記応答遅延時間を含む反応時間にわたり前記最大値での電磁波の放射を放出した場合に、定められた被ばくレベルを超えない条件のもと計算するステップであり、前記出力を制限するステップは、前記送電装置が、前記電力供給リンクで異常が検知されたことに応答して、前記電力供給リンクでの前記電磁波の放射の出力を停止することを特徴とする、請求項11に記載の電力供給方法。
  13.  前記異常を検知するステップは、前記送電装置が、前記通信リンクを介して前記受電装置から受電量を受信するステップと、前記送電装置が、前記受電量と前記送電装置からの送電量との比較に基づき、前記電力供給リンクで異常が発生したことを検知するステップとを含む、請求項12に記載の電力供給方法。
  14.  前記異常を検知するステップは、前記送電装置が、前記通信リンクを介して前記受電装置へ前記送電装置の送電量を送信するステップと、前記受電装置が、前記送電量と前記受電装置での受電量との比較に基づき前記電力供給リンクで異常が発生したことを検知するステップと、前記受電装置が、検知した前記異常を前記送電装置に通知するステップとを含む、請求項12に記載の電力供給方法。
  15.  前記送電装置が、前記通信リンクの異常を検知するステップをさらに含み、前記出力を制限するステップは、前記通信リンクおよび前記電力供給リンクの少なくともいずれかでの異常の発生に応答して、前記電磁波の放射の出力を制限するステップである、請求項11に記載の電力供給方法。
  16.  前記通信リンクは、指向性を有する無線通信リンクであり、前記電力供給方法は、さらに、前記送電するステップの前に、
     前記無線通信リンクの確立を通じて前記電力供給リンクの前段位置合わせを行うステップと、
     前記無線通信リンクを介して前記受電装置から受信した前記電力供給リンクでの受電量に基づき前記電力供給リンクの位置合わせの調整を行うステップと
     を含む、請求項11に記載の電力供給方法。
PCT/JP2014/055033 2013-03-27 2014-02-28 送電装置、受電装置、電力供給システムおよび電力供給方法 WO2014156465A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US14/780,432 US9711998B2 (en) 2013-03-27 2014-02-28 Power transmitting device, power receiving device, power supply system, and power supply method
JP2015508205A JP5916004B2 (ja) 2013-03-27 2014-02-28 送電装置、受電装置、電力供給システムおよび電力供給方法
DE112014000582.7T DE112014000582B4 (de) 2013-03-27 2014-02-28 Energieübertragungsvorrichtung, energieversorgungssystem und energieversorgungsverfahren
US15/493,354 US10069347B2 (en) 2013-03-27 2017-04-21 Power transmitting device, power receiving device, power supply system, and power supply method
US15/682,742 US10014727B2 (en) 2013-03-27 2017-08-22 Power transmitting device, power receiving device, power supply system, and power supply method
US15/682,768 US10020689B2 (en) 2013-03-27 2017-08-22 Power transmitting device, power receiving device, power supply system, and power supply method
US15/682,757 US10008885B2 (en) 2013-03-27 2017-08-22 Power transmitting device, power receiving device, power supply system, and power supply method
US16/054,533 US10903689B2 (en) 2013-03-27 2018-08-03 Power transmitting device, power receiving device, power supply system, and power supply method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-066617 2013-03-27
JP2013066617 2013-03-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/780,432 A-371-Of-International US9711998B2 (en) 2013-03-27 2014-02-28 Power transmitting device, power receiving device, power supply system, and power supply method
US15/493,354 Continuation US10069347B2 (en) 2013-03-27 2017-04-21 Power transmitting device, power receiving device, power supply system, and power supply method

Publications (1)

Publication Number Publication Date
WO2014156465A1 true WO2014156465A1 (ja) 2014-10-02

Family

ID=51623459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055033 WO2014156465A1 (ja) 2013-03-27 2014-02-28 送電装置、受電装置、電力供給システムおよび電力供給方法

Country Status (4)

Country Link
US (6) US9711998B2 (ja)
JP (1) JP5916004B2 (ja)
DE (1) DE112014000582B4 (ja)
WO (1) WO2014156465A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105656171A (zh) * 2016-02-26 2016-06-08 王宝根 一种悬浮无接触充电装置
JP2016171616A (ja) * 2015-03-11 2016-09-23 日産自動車株式会社 移動体用光給電システム、移動体用光給電方法
JP2017509296A (ja) * 2014-02-14 2017-03-30 クゥアルコム・インコーポレイテッドQualcomm Incorporated 動的なインピーダンス変化測定によるデバイス検出
JP2017135800A (ja) * 2016-01-26 2017-08-03 市川 雅英 コードレス送電システム
JP2018007437A (ja) * 2016-07-04 2018-01-11 市川 雅英 コードレス送電システム
CN108028553A (zh) * 2015-07-16 2018-05-11 Wi-电荷有限公司 光学无线供电系统
JP2019506120A (ja) * 2015-12-29 2019-02-28 エナージャス コーポレイション 無線電力伝送システム内で電力波を生成するためのシステム及び方法
KR20190028994A (ko) * 2017-09-11 2019-03-20 전자부품연구원 지능형 무선전력 전송장치, 지능형 무선전력을 이용한 충전 시스템 및 지능형 무선전력 제공방법
KR20200060749A (ko) * 2017-09-28 2020-06-01 위-차지 리미티드. 이중-안전 광학 무선 전력 공급장치
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US11018779B2 (en) 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
JP2021515533A (ja) * 2018-02-23 2021-06-17 ファイオン・テクノロジーズ・リミテッド・ライアビリティ・カンパニーPhion Technologies LLC 安全でセキュアな自由空間電力伝送及びデータ伝送の方法
CN113904716A (zh) * 2021-10-26 2022-01-07 中国电信股份有限公司 光通信故障检测装置、系统及方法
US11322991B2 (en) 2017-05-15 2022-05-03 Wi-Charge Ltd. Flexible management system for optical wireless power supply
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11356183B2 (en) 2016-03-14 2022-06-07 Wi-Charge Ltd. System for optical wireless power supply
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
JP2023101342A (ja) * 2022-01-07 2023-07-20 株式会社ジェーシービー プログラム、情報処理方法、及び情報処理装置
US11777328B2 (en) 2015-09-16 2023-10-03 Energous Corporation Systems and methods for determining when to wirelessly transmit power to a location within a transmission field based on predicted specific absorption rate values at the location

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156465A1 (ja) 2013-03-27 2014-10-02 インターナショナル・ビジネス・マシーンズ・コーポレーション 送電装置、受電装置、電力供給システムおよび電力供給方法
EP2908291B1 (en) * 2014-02-14 2020-09-30 Assa Abloy AB Wireless interaction with access control devices
US10632852B2 (en) * 2015-11-13 2020-04-28 Nio Usa, Inc. Electric vehicle optical charging system and method of use
US10532663B2 (en) 2015-11-13 2020-01-14 Nio Usa, Inc. Electric vehicle overhead charging system and method of use
US10155586B2 (en) * 2015-12-29 2018-12-18 Facebook, Inc. Remotely supplied power for unmanned aerial vehicle
US10389184B2 (en) * 2016-08-31 2019-08-20 Intel Corporation Data transfer using beamed power
FR3062266B1 (fr) * 2017-01-26 2019-04-19 Ingenico Group Transpondeur pour la transmission de donnees dans le proche infrarouge
DE102017110584A1 (de) * 2017-05-16 2018-11-22 enerSyst UG (haftungsbeschränkt) Energieverteilvorrichtung
JP6969315B2 (ja) * 2017-11-22 2021-11-24 株式会社アイシン 無線送電システム
US11616404B2 (en) * 2018-11-06 2023-03-28 Gray Manufacturing Company, Inc. Wireless vehicle lift charging using light
US11316385B2 (en) * 2018-11-27 2022-04-26 International Business Machines Corporation Wireless energy transfer
US11296555B2 (en) * 2019-03-19 2022-04-05 Ricoh Company, Ltd. Power transmission system, light output apparatus, and light receiving apparatus
US11764879B2 (en) * 2019-04-08 2023-09-19 Signify Holding B.V. Optical wireless charging and data transmission system
WO2020237107A1 (en) * 2019-05-21 2020-11-26 Lasermotive, Inc. Safe power beam startup
US10718638B1 (en) 2019-06-10 2020-07-21 Pony Ai Inc. Systems and methods for using photonics to detect alignment anomaly
KR102326382B1 (ko) * 2019-06-11 2021-11-16 (주)투비시스템 고압 송전탑 안전 점검 방법 및 이를 실행하기 위하여 기록매체에 기록된 컴퓨터 프로그램
JP6878514B2 (ja) * 2019-07-22 2021-05-26 京セラ株式会社 受電装置及び光ファイバー給電システム
JP6790190B1 (ja) * 2019-07-22 2020-11-25 京セラ株式会社 光ファイバー給電システム
US11297567B2 (en) 2019-08-01 2022-04-05 Qualcomm Incorporated Modem control using millimeter wave energy measurement
EP4029163B1 (en) * 2019-09-13 2023-06-28 Signify Holding B.V. Systems and methods for enabling high-speed wireless file transfer
KR20220086668A (ko) * 2019-10-31 2022-06-23 위-차지 리미티드. 적응형 동적 안전 관리 기능을 가지는 무선 파워 전송 시스템
DE102019008569B4 (de) * 2019-12-11 2024-02-01 Diehl Aerospace Gmbh Kabineninnenanordnung mit einer Energieübertragungsanordnung für ein Flugzeug sowie Flugzeug mit der Kabineninnenanordnung
US11595127B2 (en) * 2020-06-30 2023-02-28 Rohde & Schwarz Gmbh & Co. Kg Power-over-fiber system and method for operating a power-over-fiber system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715895A (ja) * 1993-06-25 1995-01-17 Kansai Electric Power Co Inc:The レーザー光によるエネルギ輸送システム
JP2010510766A (ja) * 2006-11-21 2010-04-02 パワービーム インコーポレイテッド 電気的にパワー供給される装置への光学的パワービーミング

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236204A (ja) 1994-02-22 1995-09-05 Hitachi Ltd 電気自動車の充電システムおよび充電方法
JPH10135915A (ja) 1996-09-06 1998-05-22 Ricoh Co Ltd 光情報通信システム
JPH10108386A (ja) 1996-09-25 1998-04-24 Nec Data Terminal Ltd 光通信による充電方法およびシステム
JPH11230856A (ja) * 1998-02-13 1999-08-27 Nippon Telegr & Teleph Corp <Ntt> 光パワー給電における異常検出方法及び光パワー給電装置
TW442652B (en) * 2000-09-11 2001-06-23 Asia Optical Co Inc Optical receiver circuit of laser range-finder
US7680516B2 (en) * 2001-05-02 2010-03-16 Trex Enterprises Corp. Mobile millimeter wave communication link
JP3938135B2 (ja) * 2003-10-28 2007-06-27 日本電気株式会社 送受信器及び送受信システム
US20060266917A1 (en) * 2005-05-23 2006-11-30 Baldis Sisinio F Wireless Power Transmission System
JP4572754B2 (ja) 2005-06-21 2010-11-04 Kddi株式会社 電力伝送システム及び方法
JP2008245404A (ja) 2007-03-27 2008-10-09 Kddi Corp 電力伝送システム
JP2009261156A (ja) 2008-04-17 2009-11-05 Sony Corp 無線通信装置、電力供給方法、プログラム、及び無線通信システム
JP2010166675A (ja) 2009-01-14 2010-07-29 Univ Of Electro-Communications 移動体のレーザービーム給電システム
JP5536209B2 (ja) 2010-06-14 2014-07-02 富士通テレコムネットワークス株式会社 光伝送システム
US9337894B2 (en) * 2010-09-03 2016-05-10 Hitachi, Ltd. Electromagnetic wave transmission medium and electromagnetic wave transmission system
WO2012036137A1 (ja) * 2010-09-15 2012-03-22 イマジニアリング株式会社 分析装置及び分析方法
WO2014156465A1 (ja) 2013-03-27 2014-10-02 インターナショナル・ビジネス・マシーンズ・コーポレーション 送電装置、受電装置、電力供給システムおよび電力供給方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715895A (ja) * 1993-06-25 1995-01-17 Kansai Electric Power Co Inc:The レーザー光によるエネルギ輸送システム
JP2010510766A (ja) * 2006-11-21 2010-04-02 パワービーム インコーポレイテッド 電気的にパワー供給される装置への光学的パワービーミング

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11652369B2 (en) 2012-07-06 2023-05-16 Energous Corporation Systems and methods of determining a location of a receiver device and wirelessly delivering power to a focus region associated with the receiver device
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
JP2017509296A (ja) * 2014-02-14 2017-03-30 クゥアルコム・インコーポレイテッドQualcomm Incorporated 動的なインピーダンス変化測定によるデバイス検出
JP2016171616A (ja) * 2015-03-11 2016-09-23 日産自動車株式会社 移動体用光給電システム、移動体用光給電方法
JP2021192430A (ja) * 2015-07-16 2021-12-16 ワイ−チャージ リミテッド 電力を無線で伝送するシステム
CN108028553A (zh) * 2015-07-16 2018-05-11 Wi-电荷有限公司 光学无线供电系统
EP3323212A4 (en) * 2015-07-16 2018-12-19 Wi-Charge Ltd. System for optical wireless power supply
US11527919B2 (en) 2015-07-16 2022-12-13 Wi-Charge Ltd. System for optical wireless power supply
JP7277519B2 (ja) 2015-07-16 2023-05-19 ワイ-チャージ リミテッド 電力を無線で伝送するシステム
US11201505B2 (en) 2015-07-16 2021-12-14 Wi-Charge Ltd. System for optical wireless power supply
CN108028553B (zh) * 2015-07-16 2021-12-10 Wi-电荷有限公司 光学无线供电系统
EP3726703A1 (en) * 2015-07-16 2020-10-21 Wi-Charge Ltd. System for optical wireless power supply
US11777328B2 (en) 2015-09-16 2023-10-03 Energous Corporation Systems and methods for determining when to wirelessly transmit power to a location within a transmission field based on predicted specific absorption rate values at the location
JP2019506120A (ja) * 2015-12-29 2019-02-28 エナージャス コーポレイション 無線電力伝送システム内で電力波を生成するためのシステム及び方法
JP2017135800A (ja) * 2016-01-26 2017-08-03 市川 雅英 コードレス送電システム
CN107979189B (zh) * 2016-02-26 2019-09-03 李江河 悬浮无接触充电装置
CN105656171A (zh) * 2016-02-26 2016-06-08 王宝根 一种悬浮无接触充电装置
CN105656171B (zh) * 2016-02-26 2017-12-08 海宁萃智智能机器人有限公司 一种悬浮无接触充电装置
CN107979189A (zh) * 2016-02-26 2018-05-01 海宁萃智智能机器人有限公司 悬浮无接触充电装置
US11356183B2 (en) 2016-03-14 2022-06-07 Wi-Charge Ltd. System for optical wireless power supply
JP2018007437A (ja) * 2016-07-04 2018-01-11 市川 雅英 コードレス送電システム
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US11322991B2 (en) 2017-05-15 2022-05-03 Wi-Charge Ltd. Flexible management system for optical wireless power supply
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US10797532B2 (en) 2017-09-11 2020-10-06 Korea Electronics Technology Institute Intelligent wireless power transmitter, charging system using intelligent wireless power and intelligent wireless power-providing method
KR102029919B1 (ko) * 2017-09-11 2019-10-08 전자부품연구원 지능형 무선전력 전송장치, 지능형 무선전력을 이용한 충전 시스템 및 지능형 무선전력 제공방법
KR20190028994A (ko) * 2017-09-11 2019-03-20 전자부품연구원 지능형 무선전력 전송장치, 지능형 무선전력을 이용한 충전 시스템 및 지능형 무선전력 제공방법
JP2020535782A (ja) * 2017-09-28 2020-12-03 ワイ−チャージ リミテッド フェイルセーフ光無線給電
KR102638874B1 (ko) 2017-09-28 2024-02-20 위-차지 리미티드. 이중-안전 광학 무선 전력 공급장치
KR20200060749A (ko) * 2017-09-28 2020-06-01 위-차지 리미티드. 이중-안전 광학 무선 전력 공급장치
JP7199428B2 (ja) 2017-09-28 2023-01-05 ワイ-チャージ リミテッド 無線送電のシステムと方法
JP7450695B2 (ja) 2017-09-28 2024-03-15 ワイ-チャージ リミテッド 無線送電のシステム
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11817721B2 (en) 2017-10-30 2023-11-14 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11876105B2 (en) 2018-02-23 2024-01-16 Phion Technologies Llc Laser light collecting assembly for a wireless power receiver
US11616087B2 (en) 2018-02-23 2023-03-28 Phion Technologies Corp. Transceiver assembly for free space power transfer and data communication system
US11600643B2 (en) 2018-02-23 2023-03-07 Phion Technologies Corp. Assembly for optical to electrical power conversion transfer
JP7208654B2 (ja) 2018-02-23 2023-01-19 ファイオン・テクノロジーズ・コーポレイション 安全でセキュアな自由空間電力伝送及びデータ伝送の方法
JP2021515533A (ja) * 2018-02-23 2021-06-17 ファイオン・テクノロジーズ・リミテッド・ライアビリティ・カンパニーPhion Technologies LLC 安全でセキュアな自由空間電力伝送及びデータ伝送の方法
US11784726B2 (en) 2019-02-06 2023-10-10 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11018779B2 (en) 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11463179B2 (en) 2019-02-06 2022-10-04 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
CN113904716A (zh) * 2021-10-26 2022-01-07 中国电信股份有限公司 光通信故障检测装置、系统及方法
JP2023101342A (ja) * 2022-01-07 2023-07-20 株式会社ジェーシービー プログラム、情報処理方法、及び情報処理装置

Also Published As

Publication number Publication date
US10069347B2 (en) 2018-09-04
DE112014000582T5 (de) 2015-10-08
JPWO2014156465A1 (ja) 2017-02-16
US20170353059A1 (en) 2017-12-07
US20160049831A1 (en) 2016-02-18
US20170353058A1 (en) 2017-12-07
US20170222487A1 (en) 2017-08-03
JP5916004B2 (ja) 2016-05-11
US9711998B2 (en) 2017-07-18
US20180375381A1 (en) 2018-12-27
DE112014000582B4 (de) 2021-05-06
US10008885B2 (en) 2018-06-26
US10020689B2 (en) 2018-07-10
US10014727B2 (en) 2018-07-03
US20170353057A1 (en) 2017-12-07
US10903689B2 (en) 2021-01-26

Similar Documents

Publication Publication Date Title
JP5916004B2 (ja) 送電装置、受電装置、電力供給システムおよび電力供給方法
JP7291412B2 (ja) 自由空間電力伝送及びデータ通信システムのための送信機アセンブリ
US9705606B2 (en) Directional light transmitter and receiver
US10063109B2 (en) System for optical wireless power supply
Liu et al. Charging a smartphone over the air: The resonant beam charging method
Rommel et al. Outdoor $ W $-Band Hybrid Photonic Wireless Link Based on an Optical SFP+ Module
Stöhr et al. Robust 71-76 GHz radio-over-fiber wireless link with high-dynamic range photonic assisted transmitter and laser phase-noise insensitive SBD receiver
Khankalantary et al. BER performance analysis of drone-assisted optical wireless systems with APD receiver
CN110635582B (zh) 一种电磁回波激励放大的无线能量传输系统
Huang et al. Implementation of a fiber-based resonant beam system for multiuser optical wireless information and power transfer
Kirubakaran et al. Extending uav's operational time through laser beam charging: System model analysis
Xiong et al. Performance of a high power and capacity mobile SLIPT scheme
Sun et al. Free Space Optics as Full Duplex Fronthauling for Drone-Assisted Mobile Networks
Chizh et al. Impulse transmitting photonic antenna for ultra-wideband applications
Chizh et al. Transmitting and receiving photonic antennas for wireless LAN
Jungnickel et al. Laser-based LiFi for 6G: Potential and applications
CN115189770B (zh) 一种安全传输远程数据与能量的自保护共振波束系统
Wang et al. Experimental demonstration of a centralized optical wireless indoor localization system for high-speed communications in personal areas
Wang et al. Experimental demonstration of optical wireless indoor localization system with background light power estimation
Wang et al. High-speed full-duplex optical wireless communication systems for indoor applications
CN116707652A (zh) 一种可移动自保护的无线数能同传系统
Tzeremes et al. Wireless communication with smart photonic antennas using transmission power control
Challa Indoor Mobile Optical Wireless Antennas for Portable Devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508205

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014000582

Country of ref document: DE

Ref document number: 1120140005827

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14780432

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14776510

Country of ref document: EP

Kind code of ref document: A1