JP7208654B2 - 安全でセキュアな自由空間電力伝送及びデータ伝送の方法 - Google Patents

安全でセキュアな自由空間電力伝送及びデータ伝送の方法 Download PDF

Info

Publication number
JP7208654B2
JP7208654B2 JP2020567449A JP2020567449A JP7208654B2 JP 7208654 B2 JP7208654 B2 JP 7208654B2 JP 2020567449 A JP2020567449 A JP 2020567449A JP 2020567449 A JP2020567449 A JP 2020567449A JP 7208654 B2 JP7208654 B2 JP 7208654B2
Authority
JP
Japan
Prior art keywords
receiver
transmitter
power laser
laser beam
high power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020567449A
Other languages
English (en)
Other versions
JP2021515533A (ja
JPWO2019165299A5 (ja
Inventor
ジョナサン・ナイデル
スティーブ・レイバー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phion Technologies Corp
Original Assignee
Phion Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phion Technologies Corp filed Critical Phion Technologies Corp
Publication of JP2021515533A publication Critical patent/JP2021515533A/ja
Publication of JPWO2019165299A5 publication Critical patent/JPWO2019165299A5/ja
Application granted granted Critical
Publication of JP7208654B2 publication Critical patent/JP7208654B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/009Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with infrared radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02024Position sensitive and lateral effect photodetectors; Quadrant photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells the devices comprising monocrystalline or polycrystalline materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/30Circuit arrangements or systems for wireless supply or distribution of electric power using light, e.g. lasers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1123Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/1143Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/502LED transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/807Optical power feeding, i.e. transmitting power using an optical signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/024Arrangements for cooling, heating, ventilating or temperature compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0475PV cell arrays made by cells in a planar, e.g. repetitive, configuration on a single semiconductor substrate; PV cell microarrays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Communication System (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Photovoltaic Devices (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Led Device Packages (AREA)

Description

本開示は、自由空間電力伝送及びデータ伝送に関し、特に、安全な電力伝送及びセキュアなデータ伝送に関する。
無線給電は、電子機器及び電気機器の移動性を高め、それらの利便性を高め、民生用電子機器、産業用機器、物のインターネット(IoT)、ヘルスケアアプリケーションにおいて、デバイス(装置)設計の自由度を高めるための魅力的な解決法を提供する。スマートフォン、時計、その他の携帯機器のような家電製品に関しては、近距離(NFC)無線電力伝送は中間的な解決法であるが、より柔軟で有用な長期的解決策よりも不十分である。近距離無線電力伝送の場合、電力を供給される無線デバイスは、一般的にインピーダンス整合ネットワークに接続された金属コイルと、例えば電池などの電力負荷に使用される整流器とで構成される受信機を含み、給電デバイスは、一般に発振器と電源に接続される受信機と同様のコイルで構成される送信機を含む。送信デバイスに時間依存の電圧と対応する電流が供給されると、コイル電流は周期的にハイとローの状態を交互に駆動される時間依存磁界を発生させ、これにより、受信機のコイルと結合し、送信デバイスから無線デバイスに電力を伝送できる。高周波電界に基づく金属電極間の容量性結合は、近接場電力伝送のために同様に利用され得る。どちらの場合でも、無線デバイスは送信デバイスに物理的に近接している必要があり、しばしば正確にアライメント(位置合わせ)される必要があり、このことは技術の有用性を制限する要因である。
米国特許第6633026号明細書 米国特許第7068991号明細書 米国特許第7423767号明細書 米国出願公開第2010/0012819号明細書 米国特許第5229593号明細書
遠距離無線電力伝送は典型的には、例えば無線周波数、レーザビームなどの電磁放射のビームによって伝送される電力に依存する。遠距離電力伝送に関連する制限要因には、方向性、安全性、及び全体的な電力伝送効率がある。一般に「パワービーム」と呼ばれる、パワーを伝送するためのレーザビームの使用は、送信機又は光源と、受信機又は負荷との間に直接の見通しラインが必要であり、このことは、レーザ放射が短い時間間隔のための低電力レベルに曝露されたヒト及び動物における失明を引き起こす可能性があるので、安全上の懸念を引き起こす一方、持続的な曝露期間におけるハイパワーレベルは致命的となる可能性がある。
パワービームのいくつかの制限に対するいくつかの可能な解決策が開発された。例えば特許文献1では、仮想絶縁体を形成する単一のパワービームの周りに1つ又はそれ以上の光源が生成される。周囲の光源のいずれかが遮られると、パワービームをオフにするトリガが生成される。このシステムは、この特許では、無線デバイスから物理的に分離し、システムとして主に静止する受信機に依存する。モバイル電子デバイス及び電気機械デバイスを追跡する機能はない。システムはまた、以下の2つの部分からなるプロセスに依存して、パワービームをオンにし、1つは、以前から知られている場所及びパワービームでパワーを必要とする受信機のための第1の光源探索であり、受信機が見つかったら仮想絶縁体をオンにする。特許文献2には、複雑な電力伝送システムが記載されており、当該システムは、マイクロ波又はレーザビームを含み、電力の伝送と、データ通信の両方を提供するが、技術的な詳細、つまり電力が伝送されるプロセスについては説明していない。特許文献1と同様に、特許文献2に記載されたシステムは、送信機が優先電力要求信号を受信機に送信することに依存しており、これにより、送信機の範囲内にデバイスがない場合、又は完全に充電されたデバイスのみがある場合に、電力が浪費される。
特許文献3には以下の別のアプローチが記載され、受信機を受信電力信号に合わせるために機械的なビームステアリングに依存するが、これはシステムの機械的側面に関連する多くの欠点をもたらす。デバイスの位置特定及び追跡は、当業者が本発明を物理システムに実装するのに十分詳細には説明されていない。この特許は、受信機からの反射に基づいて受信機を検出することのみを説明する。このことは、今度は反射リングの中心点の位置を特定する必要があり、多数のマッピングされたポイントのそれぞれからの反射光を比較する。送信機ビームがリング反射器の中心に近づくと、反射が著しく減少する光起電デバイスに影響を与え、その影響は同様に、送信ビームが半径方向にリングの中心から離れてゆくと、それにより目標を外す。反射は大幅に減少する。これら2つの状態がどのように区別されるかについての説明はない。同様に、特許文献4は、ポインティング機構に装着される透過型レーザとレンズを開示する。説明されるビームステアリング解決法では、例えばフォトダイオードなど、10mm未満のスポットサイズのビームを向けるのに十分な精度の受信機などの光電変換器を見つけるためにカメラが必要である。実際には、このことは、無線デバイスの光学要素に大きなサイズの制約が生じ、すべての安全機能が送信機に課され、その送信機の故障への耐性がない一方、安全性は、ここで説明する発明では送信機と受信機の両方で処理される。特許文献5は、パワービームが受信機によって受信されていないとき、並びに受信されるときに危険なレベルではないときに、安全なレベルで動作する固定式の送信機と受信機が記載される。送信機と受信機の可動性の制限は、家電やモバイル電気機械システムではなく、例えば放送塔又は通信局として恒久的な構造又は端末デバイスに適する。
遠方界送電システムの重要な要素は受信機であり、受信機の重要な側面は光エネルギーが電気エネルギーに変換される方法である。電気的変換を最適化するための既存の解決策の1つは、フォトニックセンサの感光領域のサイズを大きくすることである。しかし、これには受信側でより多くの物理スペースが必要であるが、これにより、ユーティリティが削減され、デバイスコストが増加する。例えば太陽電池アレイなどの太陽電池は、電子に光子を変換するにはるかに効率的になるが、一般に可視光用に最適化されており、かなりの量の物理的なスペースが必要であり、例えば屋上設置で使用されるソーラーパネルの平均サイズは65インチ×39インチで、個々の太陽電池は6インチ×6インチである。そのような球は、小さな入口ポートと出口ポートを持つ中空の体積を有し、入射光を内面から反射して、光をエネルギーに変換する光電子デバイスに送る。そのような球は効率が悪い傾向があり、より多くの物理的なスペースを必要とする。一般的には、モバイル機器や他の多くの用途に有用であるためには余りにも大きい。多大の熱発生のため、必要な物理的スペースが少なく、広い帯域幅で動作できるが、光エネルギーを熱に変換した後電気エネルギーに変換するため効率が悪い。光起電モードで動作する多くのセンサは(電気的接続により)感光性領域への入射光を不明瞭にする接触配置を実装しているため、結合効率が低下する。同様のデバイスは、シングルモードライト用に特別に設計された材料構成や幾何学的配置なしで構築され、レーザから放射することができる。
送信機と受信機の間の無線電力伝送とデータ通信を調整する方法が開示される。この方法は、受信機が、受信機に電気的に結合されたエネルギー貯蔵には電荷が必要であることを受信機で認識することと、受信機とエネルギー貯蔵装置の充電状態に関する情報を含むビーコン信号を受信機から送信機に送信することとを備える。この方法にはさらに、受信機が送信機からの第1の位置特定信号を認識することと、第1の位置特定信号に応答して、受信機と送信機との間のローパワーレーザ光接続を確立することとを含み、ローパワーレーザ光接続は受信機とエネルギー貯蔵装置の充電状態に関する追加情報を含み、この方法は、受信機が送信機からの第2の位置特定信号を認識することと、第2の位置特定信号に応答して、光パワーがハイパワーレーザビームを介して送信機から受信機に伝送されるときに、受信機と送信機との間のハイパワーレーザ光接続を確立することとを含む。この方法はさらに、受信機への光パワーの安全な伝送を監視するように、光パワーが送信機から受信機にハイパワーのレーザビームを介して伝送されるときに、ローパワーレーザビームを介して周期的に受信機から送信機に追加情報を伝送することを含む。
実施形態に係る送信機を示すブロック図である。 実施形態に係る送信機筐体の図である。 実施形態に係る受信機を示すブロック図である。 実施形態に係る受信機の複合放物面集光ミラーの図である。 別の実施形態に係る、受信機の先細りした入口を有する複合放物面集光ミラーの図である。 実施形態に係る受信機のフォトダイオードアセンブリの断面図である。 光の侵入深さをその波長の関数として示す。 実施形態に係る、フォトダイオードアセンブリの光吸収及び電子変換機能をよりよく説明するために、図6のフォトダイオードアセンブリの一部をさらに示す断面図である。 実施形態に係る、図5のフォトダイオードアセンブリのPIN構造と、キャリア輸送メカニズムをさらに示す断面図である。 実施形態に係る、図5のフォトダイオードアセンブリのバックコンタクトパターンの上面図を示す。 別の実施形態に係る、図5のフォトダイオードアセンブリのバックコンタクトパターンの上面図を示す。 実施形態に係る、プリント回路基板(PCB)構成に統合された図9に図示されたバックコンタクトパターンを用いた図5のフォトダイオードアセンブリの断面図を示す。 図10のPCB構成の上面図である。 実施形態に係る、フレネルレンズとフォトダイオードアレイの間の光の相互作のための断面図である。 実施形態に係るレンズスタックの図である。
本開示の無線電力伝送システムは、送信機と受信機の、2つのコア要素から構成され得る。送信機と受信機は同時に単一の受信機又は複数の受信機に送信機から無線で電力の効率的な伝送を可能にし、コリメートされた赤外線レーザビームを使用する。送信機は静止していて、信頼性の高い電源に接続されており、適度にコストに敏感で、適度なスペースに制約がある。受信機は移動体である場合があり、電池又は容量性電源を含む場合があり(すなわち、そこから電力を供給し、消費する、つまり、出力と入力)、コストに敏感であるペースに制約がある。
運用上の観点から、送信機は環境の検知、適切な受信機の存在の検出を担当する場合があり、それらの受信機との双方向通信に参加して、それらの光学素子の正確な位置を決定する。この最初のデバイスの位置の配置中に、以下でさらに説明するように、安全システムが実装され、公称機能中に一定の動作で維持される。送信機は、赤外線(IR)レーザパワービームの送信も制御し、規制の安全要件を満たしている方法で、受信機の光学素子に電力を供給することに関連する光学系を制御する。システムの安全を維持するために、安全システムが中断を検出したとき、送信機は可能な限り短時間でハイパワーレーザビームを遮断するよう努めることができ、予想情報を受信せず、パワービームがずれ又は受信機の位置が失われる。送信機は、接続された受信機に関するデータを受信し、処理し、保存し、集中デジタルデータベースに伝送する。
受信機は、その存在を環境にブロードキャストし、送信機と双方向通信する能力を有する。送信機は、多数の潜在的な受信者のそれぞれとの資格情報の交換に基づいて、無線電力伝送の優先順位を調整する機能を有し、順序を確立するために、各受信機が充電される各受信機の優先度をランク付けすることができる。優先順位の選好は、無線電力伝送システムのユーザ/所有者が設定でき、もしくは、同じ方法で事前にスケジュール設定され、出荷時の設定で決定された状態のままにできる。受信機はまた、受信機の光学要素の正確な位置を決定するために送信機と協働することができる。受信機が送信機と通信するか、送信機との通信を確立すると、連続的に送信機に電力と充電状態情報を伝送することができる。
電力の安全な無線送信に関連する特定の電力とタイミングの制限を考えると、受信機は、デバイス固有の情報を送信機に返信する(つまり、センサデータは、無線パワー伝送で適切なオーバーヘッドが与えられると、自由空間光通信(FSOC)リンクを介して送信機に渡される)。同様に、送信機は、無線電力伝送に適切なオーバーヘッドの所定の受信機にFSOCリンクを介してコマンド又はデータを通信する。送信機は、無線又は有線接続を介して、システム又はデバイス固有の情報又は診断をクラウド又は接続されたデータベースに送信する。従って、送信機及び受信機は、デバイス自体の電力動作又は位置に関係のないデータの伝送を可能にする双方向データ通信チャネルを確立する。種々のIoT又は他の同様のデバイス又はデバイスが、無線電力伝送システムを通じて電力と他のデータ及び/又はコマンドの両方を受信できる。例えば、スマートサーモスタットは、室温情報を無線電力伝送システムに送信し、次いで、無線電力伝送システムはHVACコントローラにその温度情報を伝送し、もしくは、無線電力伝送システムを介して給電される自動ウィンドウシェードを伝送する。
実施形態に係る送信機の図が図2に示される。図のように、送信機10は、電源12と、1つ又はそれ以上のパワービーム及び1つ又はそれ以上の光ビームを発生させるレーザシステム14と、ビームステアリングのための光学機械デバイス(オプトメカニクス)16と、プロセッサ18と、レーザシステム14及び光学機械デバイス16を制御するための関連する電力制御ロジック19とを備え、さらに通信サブシステムと安全サブシステムも備える。送信機10は、システムを正確かつ安全に保つために必要な主要な計算プロセスのすべてを実行することができる。ロジック(論理)レベルでは、ARM Cortexプロセッサなどのプロセッサ18は、送信機が担当する大部分の機能にわたってハイレベルの制御を提供する。プロセッサは、例えばビームステアリング、パワービーム出力制御、FSOCデータ処理、熱制御、センサデータの伝送、センサフュージョン、及びシステムレポートなどの種々の送信機機能に固有のコマンドセットを含む。追加のハウスキーピング集積回路(IC)11を利用して、DC/DC変換器/レギュレータ15の過電流及び過電流保護/監視、ならびに全体的な障害管理、報告、及び消去を提供することができる。これは、無線電力伝送システムは、種々の障害のシステムの安全な状態を維持する大きな必要性が存在するときに、医療、航空宇宙及び他のより高いリスク環境を利用するときに関わらず発生する可能性があるときに特に便利であって、これにより、一般にこれらのアプリケーションで使用されるデバイスに関する政府の規制で要求されるフォールトトレラント(耐故障性)システムが作成される。
この実施形態では、送信機10の電力は、電力線フィルタ及びESD保護回路13を介してレーザAC/DC電源20に結合された安定した電源12から得られる。電源12は、例えば高電圧電池、壁コンセント又は主電力グリッドから離れた他の2次発電機などの多くの形態であり得る。入力信号はAC120Vacから240Vacで、標準の壁コンセントに差し込むことができ(北米では15A/20A、EUでは16A+)、又は、システム要件に見合った振幅の標準DC電圧である。入力電力12は、電源20を通過することができ、これは、AC電圧をDC電圧に変換する2段変換器を含む場合があり、そして、出力を複数の電圧に調整するためのDC-DC変換器/レギュレータ15を含む。そこから、電圧は必要に応じてダウンコンバートされ、さまざまなサブ回路に供給される。
この実施形態では、3つの電源バスを含めることができ、例えば、レーザコンポーネントにバイアスをかけるためのレーザバス、処理及び計算コンポーネントにバイアスをかけるためのロジックバス、電気機械負荷又はサブシステムにバイアスをかけるためのモータバスなどである。送信機10の各サブシステムは、これらの3つのバスの1つから電力を引き出すことができる。ノイズを分離するためには、電力バスは受動部品、分割された理由、又はオンボードシールド(例えば、エッグクレート)を介して互いに分離されてもよい。ロジックバスは、複合プログラマブルロジックデバイス(CPLD)22を介して提供されてもよい。当業者が理解するように、使用するコンポーネント及び変換器に応じて、異なるバス及び/又は配電方法を使用できる。
レーザシステム14のレーザダイオードのための電源20は、電流制御モードで動作する高度に調整された(安定化された)電流供給であり得る。供給された電流は、現在の設定点に対して監視され、エラー値を生成する。そのエラー値は、出力を微調整するために、電源ロジック及び/又はコントローラ/レーザダイオードドライバ17にフィードバックされてもよい。電源20及び/又は電源20に結合されたレーザダイオードドライバ17は、安全システムのCPLD22からの出力に関連付けられたコマンド入力を組み込むこともでき、前記安全システムは電源20を無効にするのに役立ち、及び/又は、レーザダイオードドライバ17は、いずれかの部分的又は完全な閉塞の障害光ビームのパス検出又は他の安全上の理由のためにすべきである。電源又はドライバをすばやく遮断するために、電源の帯域幅は5kHzより大きい場合がある。レーザ光源24は、Cマウント/TO-Can/統合モジュールパッケージ上のレーザダイオードであり得るが、これに限定されず、所定の位置に固定され得る。送信機が複数の受信機に対応できるように、同一のレーザダイオード光源24の数(n)は、同一の電源20から、もしくは各レーザダイオードのための別個の電源によって供給されてもよい。電源、レギュレータ、及びドライバコンポーネントを温度調整するために、アクティブな冷却デバイスを備えた、又は備えていないヒートシンクを含めることができる。
実施形態では、レーザ光源24の出力は、ビームスプリッタ、光学フィルタ、又はミラーによって2つ以上の別個のビーム経路に分割(分岐)されてもよい。結果として得られるビームは、単一の光源から2つ以上のデバイスに供給するために、個別のパワービームチャネルで使用できる。単一の光源が複数の受信機に供給できる実施形態では、一連のアクティブ光学デバイスは、1つの受信機がブロックされ他の受信機ではブロックされえいないときに単一チャネルのための光出力パワーを減少させるために使用し、これにより、1つのデバイスでブロックが発生した場合に、両方のデバイスへの単一のレーザ光源をオフにする必要がなくなります。
パワービームがレーザバスから同じように供給されることに加えて、異なる、より低いパワービームは、1つ又はそれ以上のFSOCレーザによって供給されてもよい。FSOCチャネルは、単一又は複数の発光ダイオード(LED)を用いて、もしくは、光学データを送信するためのローパワーレーザダイオード、及び、光データを受信するための単一又は複数のフォトダイオードを用いて確立することができる。FSOCコンポーネントは、サブシステムの電圧要件と効率に依存して、レーザ又はロジックバスのいずれかで動作するように構成できる。送信機と受信機は、同じFSOCコンポーネントを実装することでモジュール化でき、ここで、送信機からの送信デバイスは、送信機の受信デバイスへの受信機の送信デバイスと同様に、受信機の受信デバイスと通信する。
ロジックバスは、ロジック機能を制御するすべてのコンポーネントに基準電圧を提供することができる。これは、(例えばXILINX又はIntelのCPLDのような)CPLD(安全性)22と、(例えばインテル、フリースケールなどの)プロセッサ18と、(例えばARM Cortex又は、XILINX又はNVIDIAによる類似製品のような)マイクロコントローラユニット(MCU)26と、カメラ28と、補助センサ又は2次電源再生器と、最後に、(例えば可変ビームスプリッタ/減衰器、偏光板などの)将来のデバイス機能に必要なアクティブな光学アプリケーションとを含む場合がある。
モータバスは、2軸ビームステアリングブラシレスDC(BLDC)モータ30に主要な光学機械部品16として適切な電圧を供給する機能を有する。2軸モータ30は、反射又は屈折光学系を含み、(図2にさらに示されるように)送信機ハウジング32の光インターフェースから段階分けされた部屋の壁及び/又は床の場所まで延在する範囲の広い錐体を提供するように光を投影するために使用する。フィードバックループによる増強モータ30の制御はモータコントローラ31によって提供され、モータコントローラ31はMCUプロセッサ26のロジック駆動コンポーネントである。例えばMEMSミラー、ジンバルアセンブリ、等のリズレープリズム、液晶導波路、光フェーズドアレイ、又は他の固体ビームステアリングアセンブリなどのビームステアリングの代替方法は、当業者によく知られているものを用いることができ、この開示から除外されない。
上記のように、プロセッサ18は、送信機と、部分的なFSOCフォトダイオード27とカメラ28の監視、FSOC LED25コマンド、及び光学機械システム16のビームステアリングロジックコマンドのロジック制御のほとんどを提供する。FSOC LED25とFSOCフォトダイオード27との間の通信結合は、IR送受信機29によって提供されてもよく、IR送受信機29はプロセッサ18に結合され、エンコーダ/デコーダを含む。別個のMCUプロセッサ26は、補助入力を光学機械システム16に供給して、ビームステアリング精度及び熱的要件をよりよく支援することができ、前記MCUプロセッサ26は、熱電対又は温度センサ(図示せず)からの熱測定値に基づくファン又は熱発電機(TEG)33又はクーラーのコマンドと、微細な加速度計34のフィードバックに基づくビームステアリングの調整と、潜在的な将来のアクティブな光学系(図示せず)の要件に基づく位置又は構成の変更とを含むがこれに限定されない。TEG33の電力管理は、昇圧変圧器35によって提供されてもよい。
直接に受信機距離検出を支援するFSOC LED25の閉ループ制御は、カメラ28によって検出され、プロセッサ18によって処理された、部屋又は場所の事前に調整された照明条件に基づいて、FSOC LED送信信号の必要な強度を決定するコンピュータビジョンベースのアルゴリズムを介して提供される。言い換えると、場合開示された無線電力伝送システムは、有意な周囲温度又はシフト自然光が部屋又は場所で利用され、調整するためにカメラ28によって撮影された画像を利用すること、つまり、FSOC LED25の出力電力を増大することが望ましい場合がある。部屋又は場所の照明が事前に較正された照明条件を下回っていた場合、FSOC LED25の出力電力は減少する可能性がある。必要な出力電力の量を調整することにより、動作環境のフィードバック照明条件に基づいて、伝送効率を実現できる。
CPLD22は個別のICであり、その機能がより複雑なICに統合されるか、専のための安全/制御コンポーネントであってもよく、また安全サブシステムの全体的なコマンドと制御を担当する場合がある。このことは、レーザダイオード電源20へのシャットダウンコマンドを含み、当該コマンドは、モニターフォトダイオード又はオプトエレクトロニックセンサ(図示せず)からの光パワーレベルの処理と、プロセッサへのエラー又は障害メッセージの生成18と、ハイパワーレーザビームの衝突の結果としてユーザの安全を維持することに関連する他のアクションに関するものである。CPLD22は、次の2つの信号の存在を必要とする場合がある。最適パワービーミングレベルに到達するためにレーザ光源24を有効にするために、
1)追加のプロセッサ26;及び
2)メインプロセッサ18。
追加の電気素子(ほとんどは表示されていません)は、フィルタリング、接地、シールドなどを担当する受動デバイスと、電力変換、WiFi、Bluetooth、又は専用RFリンクを介したテレメトリの送信のためのデバイスと、初期校正に必要なセンサと、ユーザの利益のために提供される追加のインジケータLED又は画面(システム機能などには必要ありません)とを含む。
送信機10の光学的及び光学機械的構成要素は、2つの軸におけるレーザビーム特性を成形及び制御し得る。コリメート光学系40の第1のセットは、レーザダイオード24の端面から離れて配置される。コリメート光学系40は、n個のレンズの成形されたセットであってもよい。ビームステアリングアセンブリへの注入のために2つの軸に平行なビームを生成する機能がある。コリメート光学系40は、ビームを2次元で成形するための高速軸コリメータ(FAC)及びスロー軸レンズを含み得る。FACは、適切な直径と厚さの非球面円筒、ボールレンズ、光ファイバケーブルの小さなセクションで構成でき、又は、組み合わせて又は独立して使用される複数の光学系で構成できる。適切な光ファイバケーブルの小さな切頭部分を、高速軸コリメーションのための安価で迅速なレンズとして使用できる。実施形態では、レーザ端面の長い方の寸法よりも僅かに長い光ファイバケーブルの断面は、長軸が平行と面の長軸に隣接しているようにこの面の前面に機械的手段によって固定される。光ファイバケーブルは、レーザ又はわずかな光源からのすべての発散光線を平行化することにより、非球面円筒レンズと同様に機能する。この方法は、デリケートでしばしば高価な速軸レンズを使用するよりも、コリメーションを達成するためのより速い方法を提供する。
レーザダイオード24は、レーザキャビティ領域を独自に成形又は成長させることにより単一偏光を有する光を生成するように独自に設計されてもよい。受信機表面での反射は、ハイパワーの自由空間光学システムでは問題になるため、生成された光が確実にp偏光されるようにすると、ビームの入射角が60度を超えても、反射を減らすことができる。これは、対応する視準光学系40の上に置かれたp偏光波長板42を追加することで実現できる(すなわち、n個の波長板42があってもよく、これはコリメート光学系40とレーザ光源24に対応する)。Vコーティングを施した空間フィルタを追加して、出力ビームのプロファイルを均一にすることもできる。
実施形態では、残りの光学系は、光学機械デバイス16の一部で構成してもよい。光学機械デバイス16は、回転BLDCモータ30によって駆動される2軸ガルバノミラーを有するビームステアリングを有するアセンブリ44を含む。ガルバノメータモータ制御は、FSOCフォトダイオード27からの解釈されたフィードバックに基づいて、モータ30へのコマンドを使用して、MCU18によって調整される。光学機械デバイス16の構造はモジュール形式であって、このことは、光学機械デバイス16の構造は、異なるパッケージの内側と外側で挿入されてもよく、従って、複数のデバイス、ハウジング及び筐体で使用することができる。光学機械デバイス16の複数のミラーは、コーティングされたIR波長範囲で最高の応答と環境の耐久性を有して、薄膜、多層銀及び/又は金であってもよい。複数のミラーはモータ30の位置に応じて回転し、ビームを受信機に向けて偏向させる。出力光学系の最後のセットであるアウトレットレンズアセンブリ46は、パワービームをアクティブに集束させるために含まれ得る。このシステムのビーム距離を最大50フィートの範囲に制限すると、ダイナミックフォーカシングが不要になる場合がある。しかし、現在の開示はこの特定の距離に限定されず、より長い自由空間光学用途に使用されてもよい。長波パスフィルタ(図示せず)は、FSOC光学機械デバイスの前段の潜在的なレンズにも使用でき、FSOC光学機械デバイスは、IRカメラ28、FSOCフォトダイオード27及びFSOC LED25を含む。理想的には、これらのフィルタを追加する必要はないが、完全を期すためにここに記載する。
送信機筐体32は図2にさらに示され、例えば照明器具、煙探知機、防犯カメラ、ドローン、及びその他のモバイルシステムや静的システムなど、その使のための性質と場所に応じて限定されず、スタンドアロンの構造であるか、又は他のデバイスに組み込まれるかである。物理的構造32は、送信機10のすべての構成要素を収容することができる。機械的構造は、無線パワービームシステムの性能及び環境要件を満たすように設計できる。構造は、パワービームレーザダイオード24及び/又は他の高電流負荷に対する従来の対流及び放射熱散逸を増加させるための機械的特徴と特定の材料とを含む。機械的アイソレータを利用して、例えばHVACシステムなどの機械系の影響とともに、種々の構造の部屋を横切る人間の動きに関連する固有の振動共振からシステムを安定させることができる。実施形態では、筐体32の一部は、可視波長では不透明であり近赤外波長範囲では透明である任意の光ビームが通過する材料で作ることができ、筐体32全体もまた、この材料で作られ得る。そのように、ユーザは、天井の火災感知器の外側ではなく、アクティブ/内部コンポーネントのような、筐体が表示される。材料及び全体的な機械的構造により、複数の環境で使用してもよい。
パワービームは人や動物にとって危険な形で送信されるため、システムの安全面は非常に重要である。従って、本開示の実施形態は、安全規制の最も制限的なレベルをトリガする目の安全レベルを超えるレーザ放射への人間、動物、障害物への曝露を防ぐための組み込みの安全システムを含む。本開示によれば、このシステムは、本質的に安全であり、これは、システムのアーキテクチャを参照して次のように定義される。双方向ローパワーレーザビーム、又はFSOCチャネルは送信機と1つ又はそれ以上の遠隔受信機との間に確立され、それらの1つ又は両方がモバイルである可能性がある。チャネルレーザパワーが最大許容露出(MPE)の制限を下回っているため、目の安全に分類され、従って、交差する物体への悪影響を心配することなく、すべての回数で運用することができる。チャネルは、それらは受信機への送信の光インターフェースから実質的に全体の距離をより1~10ミリメートル以上離れていないように、ハイパワーレーザビームと実質的に同一方向に伝播する。それらが近接しているために、ハイパワーレーザビームが遮断される前にローパワーレーザビームが遮断され、ローパワーレーザビームが遮断されるとハイパワービームレーザがシャットダウンされる。知られているように、レーザ放射は、送信機と受信機間の十分に確立された見通しライン(LOS)が存在するときに通信に使用することができる。実施形態では、このLOSが障害物や状況、任意の数のために壊れている場合に、ハイパワーレーザは、最大許容露光量(MPE)の遵守のための時間要件許容アクセ排出制限(AEL)で一致を制限値内で終端するように設計される。クラスIの場合、目の安全な分類、AELはMPEと同等である。LOSはシステムの安全機能と全体的な機能に組み込まれているため、一方は他方なしでは存在できません。従って、システムは「本質的に安全」として分類できる。
実施形態では、安全システムのハードウェア及びソフトウェアの実装は、送信ソースを備え、その1つは通常は信頼性が高く安定した電源に接続され、さらに、最小限の電気部品を含み、基本的なデジタル信号処理(DSP)を実装し、ホストデバイスと組み合わせられて統合されるモバイル又は周辺機器の受信機を備える。安全システムのこの実施形態は、近赤外線(NIR)波長領域でのハイパワーレーザビームのために明示的に設計されてもよい。システムのタイミングは、可視光又はUV光に関連するスケーリングの安全要件に対応するために簡単に調整できる。この実施形態におけるシステムの前提は、その最大許容露光量(MPE)レベルのシステム待ち時間の依存性に結合するビーム経路内の障害物の高速かつ正確な検出に依存し得る。以下でさらに説明するように、安全システムの追加の実施形態は、他の理由のためにハイパワーレーザビームダウンを停止するハードウェア及びソフトウェアの実装を含む。
背景として、消費者が販売した製品のレーザ安全性及びレーザ安全性認証の現在の統治基準は、「米国内の発光製品の性能基準」と題する21連邦規則(CFR)パート1040と、IEC60825-1であり、そのうちの後者は、欧州におけるレーザ製品の安全性と世界の残りの部分を調整する。2007年、FDAは条件を説明するレーザ通知(LaserNotice)50を発行し、ここでは、どの機器メーカは、IEC60825-1規格に準拠し、米国の通商レーザ製品に導入してもよいことが開示されている。この文書は、ヨーロッパと米国の認証基準を効果的に調和させ、「最も負担の少ないアプローチ」を提供した。レーザ通知50は、IEC60825-1を参照して、ビーム操作の安全性に関与するすべてのシステム遅延と検出メカニズムを確立した。人気のあるANSI Z136.1のドキュメントには、そのようなレーザを分類するためのガイドラインと、その安全な操作に関連する安全/制御手段も記載されていますが、上記の認定を求める製品を比較する認定基準としては適用されません。当然、これらの基準は変更される可能性がある。
一般的な認証ガバナンスでは、レーザ製品は、その出力特性によってクラスに離散化される。パルス波又は連続波(一定又はCW)出力に応じて、ワット又はジュール(ワット秒)のいずれかの制限レベルが通常適用される。アクセス可能な排出制限値又は(AEL)は、制限開口と呼ばれる面積係数を掛けた積としてMPEの製品として決定される。
本開示に関して、レーザ光源の動作は、CW又はパルスであり得る。CW動作では、多くの場合、平均電力供給はパルスシステムよりもはるかに高くなる。開示を容易にするためにCWシステムについて以下に説明するが、様々なパルス長のパルスシステムはまた、使用することができる。この構成は、(より低い電力定格の)受信機デバイスにも、動的電力制御なしで、送信機で動作中に実装できる。実施形態では、送信機デバイスは、ハイパワーのCW光を放射する。同時に、ハイパワービームと一緒に伝播し、並行して、隣接するローパワーレーザビームも別の電気部品から光学部品に放射されるが、ハイパワー光源から数ミリメートルの範囲内に配置される。ローパワーのレーザビームは、ハイパワーのビームよりもはるかに大きな発散を有し、従って、ハイパワーのビームよりも短い距離で発散することがある。本開示の目的のために、このシステムの動作距離又は作動距離は、1フィートから30+フィートの範囲内であり得る。この動作距離により、受信機の低消費電力のフォトダイオードアセンブリは、配置に対する許容度が高くなるが、感度に対する要件が高くなる。共同伝播するローパワーレーザビームは、それにより、動作距離にわたってハイパワービームの周囲に仮想筐体を作成する。 システムが上記で指定された距離などで使用される場合、大気の吸収と散乱は問題を引き起こさない場合がある。
システムの有用性と能力を高めるために、デジタルデータストリームは、ローパワーレーザビーム上に変調することができる。変調方式にはさまざまな形式と複雑さがある。効率的なシステムを構築するために、オーバーヘッドの低い電力消費に大きく依存している可能性があり、もしくは換言すれば、可能な限り低いなどの安全システムの他のすべての部分によって使用される電力を維持する。従って、変調方式はバランスをとるために慎重に選択される。
1.消費電力のオーバーヘッドは、処理、データストレージ、A/D又はD/A変換、及び送信を含む。
2.レートであるシリアルデータレートであって、そのシステムが適切に受信情報と送信機を通信し、適切なアクション/コマンドに従うために、上記の情報を解釈できる。
3.部品数/タイプであり、つまり、パーツ数を減少させる。特にモバイル受信側では、そのようなサブシステムの実装に必要なフットプリントとスペースを削減する。
4.複数のアクセス、又は単一の送信機で複数のモバイル受信機に対応する機能。
送信機/受信機システムは、固有の周波数、タイミング、又は信号品質を結合されたデバイスに関連付ける結合された変調/復調アーキテクチャを備える。この実施形態では、シリアルデータレート、パルス振幅、又は送信のタイミングによって区別される単一の送信機で多数の受信機デバイスをサポートすることが可能である。これは、NTIAのスペクトラム管理局又はFCCがスペクトラムの使用を管理する方法、つまり、送信機がデバイスの波長の使用を管理する方法に似ている。OFDM、OCDMA、又はM-PPMも許容可能な変調方法であり、本開示から除外されない。
最も簡単な形式では、ローパワーレーザビームをオン/オフすることで変調(オン/オフキーイング-OOK)を使用して、一連のビット又はビットシーケンスを伝送でき、これは、強度変調/直接検出(IM/DD)スキームにおける一般的な通信プロトコルとして考えられる。送信機と、結合する受信機の両方に既知のビットシーケンスライブラリは、交互のビットシーケンスに意味を提供する。OOKは処理のオーバーヘッド要件を低く保ち、システムの有効帯域幅を増加させ、これにより、信号伝送(シグナリング)の速度が向上し、その結果、遅延が減少する(処理のボトルネックがハードウェア/チップ速度に起因するところまで)。OOKはそのような変調方式の1つであり、通信及び安全要件の完全又は部分的な満足として使用できる。同様の目的を達成するために他の変調方式を効果的に使用できることは、当業者には明らかであろう。
MPE/AELレベルは、露出が短ければ短いほど、パルス動作の同じエネルギー露出レベルを満たすために許容される光パワーが高くなるように設計されてもよい。本質的に、システムがCW出力で動作している場合でも、送信機によって達成可能なカットオフ時間を考慮して、ビームへの障害物露出はパルス露出と見なすことができる。IR-A及びすべてのIR-B波長の上部波長範囲では、放射線は長波長であるため、一般に眼に安全と見なされ、つまり、眼は網膜に放射線の焦点を合わせず、放射線は浸透せず、表皮のレベルを低下させる。レーザ光線への角膜の露出は、スポット加熱にとって危険であり、同じことがこれらの波長の他の軟組織にも当てはまる。スポット加熱には、指定された時間、小さな表面積に大きな出力のハイパワーレーザ光源を適用する必要がある。従って、このシステムの危険な状態は一時的なものである。本開示のいくつかの実施形態は、そのようなタイミング要件を満たすことを求める。
開示されたシステムが、制御されていないと見なされる環境、つまり居住者が名目上レーザ放射への暴露に気づいていない環境に配備される場合、安全性はクラス1のレベルを超えるレーザの要件である。このような状況では、レーザ放射の危険性は、曝露時間、放射パワーレベル、及びレーザ放射の波長に依存する。実施形態では、パワービームレーザの波長は、いくつかの要因に基づいて選択することができる。そのような要因の1つは、知らないユーザにとって放射線の危険が最も少ない波長範囲である。そのような場合、網膜に集束されないレーザの波長はより高い露出制限値を有し、従って、実施形態にとって好ましい。
実際、送信機のアーキテクチャは、受信機回路のウォッチドッグとして機能する。送信機が受信機からデータを受信しない所定の期間が経過するか、ビットの欠如が受信機からカウントされるか、特定のビットシーケンスが受信機から送信される場合、送信機はこの不在/ビットシーケンスを特定のメッセージに関連付けて、レーザダイオードをオフにするか、出力をクラス1のレベルに下げる。受信機と送信機の間に一定のフィードバックを提供することにより、システムは安全に機能するだけでなく、受信機を追跡することができます。受信機のフィードバックデータに加えて、送信機内のいくつかの異なる電圧及び/又は電流レベルを無数の目的で監視できるが、以下に限定されない:
1.[送信機]レーザダイオードの前段-電圧と電流;
2.[受信機]フォトダイオードアセンブリの下流-電圧と電流;
3.[受信機]DC/DC変換器の下流-電圧のみ;及び
4.[送信機]FSOCフォトダイオードの下流-電圧のみ。
これらの測定は、あらゆる状況でのシステムの安全性に関する決定を行うために必要なすべての情報を生成する。受信機は常に送信機に対してその状態を更新する。その状態の更新の中断、又は受電の理想的なパラメータへの不一致により、ハイパワーレーザビームの出力が低下する。システムのビーム遮断タイミング要件は、レーザダイオードの出力とビームスポットに依存する場合がある。従って、必要に応じて送信機と受信機の間で動的にカットオフ時間を割り当てることが可能である。
その完全な実装において、本開示は、故障検出を提供でき、いくつかの例では、フォールトレランス(耐故障性)を提供し得る。すべての重要な安全機能について、ハードウェアとソフトウェアに1つ又はそれ以上のフォールトトレランスが組み込まれている場合がある。危険な状態は送信機、つまりハイパワーレーザビームによってのみ生成されるため、安全上重要なハードウェアはシステムの送信機側に単独で含まれる場合がある。この重要なハードウェアは、光電センサ、オペアンプ、種々の形式で実装可能なプロセッサ、及びレーザダイオード電源を含む。
フォールトトレランス条件には、次のようなものがある。
1.光電センサの電気的短絡又は開回路を介した単一障害。このような障害は、開回路の場合、短絡又は浮遊状態の場合、ゼロの電圧出力を引き起こす。いずれかの障害状態では、プロセッサは、ビームのシャットダウンを自動的にトリガする数クロックサイクルにわたって繰り返されるビットシーケンスを認識する。
2.プロセッサ又はレーザ電源のいずれかに単一の障害が発生し、電気的短絡又は開回路が発生した。開回路の場合、そこには電流給電電源回路がないであろう。従って、レーザダイオードへの通電のための可能なメカニズムは存在しないであろう。短絡の場合、プロセッサは、レーザ電源スイッチにプロセッサのトリガ状態に対して、前述の監視対象のレーザダイオード電流のチェックを実行する機能を持っている。現在の読み取り値は、回路に存在する電流又は存在しない電流をそれぞれ表す1又は0として解釈される。そのバイナリ出力は、OR演算を介してプロセッサのトリガ状態と比較できる。この比較は、危険な状況でレーザダイオードへの供給を停止する信号を出力する場合がある。
3.障害状態に関する追加のソフトウェアチェック。これには、レーザのハイパワー供給を開始する前に、割り当てられた予想信号が複数存在する必要がある。これらの特定の信号の不在又は公称外の値があると、レーザダイオードはオフのままになる。
実施形態では、安全性光電子部品は、IR波長で特異的に検出するために設計されたが、ハイパワーのレーザ波長とは異なることができる。同じ動作波長に対応するフォトダイオード/LEDペアを使用することで、追加の集束光学素子や調整光学素子を必要とせずに、ほぼ180度の全角視野(FOV)で通信できる。
本明細書に記載される安全システムの動作及び実装の方法は、システム状態データの、ユーザインターフェース(UI)を介して決定可能な任意のリモートプロセッサへの通信を同様に可能にする。これは、障害物や中断を手動で削除することにより、潜在的な接続問題を修正するためにさらに使用できる。この実施形態では、特定のビット数(時間)に対する信号の欠如は、現在の故障をユーザに通知送信されるUIメッセージにつながる可能性がある。メッセージタイプは、ローパワーレーザビーム、FSOCリンクから受信したデータから解釈される。FSO信号を使用するために大幅に簡略化されるが、内部の電気的変調又はメッセージは、プロセッサに負担をかけることなく、はるかに複雑であることができる。これにより、システムの稼働時間、全体的な機能効率、使いやすさが向上する。
次に、図2に最初に示されている受信機に戻り、図3に示すように、受信機又はホスト構造、すなわち受信機60が設置されるデバイスの一部として、受信機60は、フォトダイオードアレイ63を含むフォトダイオードアセンブリ62から構成される。フォトダイオードアレイ63又はダイオードは、ダイオードベースの技術に限定されず、現在存在するか又は将来開発され、同様に実行することができる代替技術で実装されてもよい。また、フォトダイオードアセンブリ62は、無線電力伝送の実施形態に限定されない。本開示のフォトダイオードアセンブリは、正確な位置合わせを必要とする用途、極端な環境での光信号を伴う用途、又は同様の実施形態において、電流及び電圧への光の効率的な伝送が望まれる他の様々な実施形態に容易に適合され得る。
実施形態では、フォトダイオードアセンブリ63は、電流及び電圧の形式で電力を受け取り、例えばブースト変換器などの電圧と電流を電池充電に使用可能な電圧と電流に変換する光電変換器64と、充電式蓄電デバイス又は電池68に印加される電流とバイアス電圧の流れを制御する電池充電管理部66と、低電力プロセッサ/コントローラ70とを介して、適切に電圧を変換する高光電変換及び関連するパワーエレクトロニクス回路で対応することができる。プロセッサコントローラは、フォトダイオードアセンブリ62と電池充電管理部66の両方からの電圧と電流の出力をサンプリングし、遠隔の送信機ユニットとの間でデジタル信号とアナログ信号をエンコード及び変調/復調し、ローカルバッファから送信されたユーザ情報を、RF接続(これは、Bluetooth、WiFi、又は類似の形式)にプッシュし、温度センサ72を介してフォトダイオードアセンブリのヒートシンクの温度を監視し、アンテナ73又はローパワーレーザビームを介して遠隔の送信機にその状態を通知する。
カオス的で予測不可能なユーザ環境に配置されたシステムの使いやすさを向上させるために、RGBステータスLED75などの1つ又はそれ以上のビジュアルUIインジケータを追加できる。実施形態では、メインUI75は、異なる又は類似の状態を有するが、同一の状態ではない視覚的インジケータを表示する。各状態は、単純な意味で、受信機、送信機、又はその両方の全体的な状態を表す。そのような視覚的インジケータを介した複数の状態表現により、ユーザはシステムとより効率的に対話することができる。実施形態では、中央にドットがある小さな円は、視覚的インジケータ及び1つの状態を表す。ドットが点滅している小さな円は、第2の状態を表す。ドットのない円は、第3の状態を表す。点滅する円は4番目の状態を表す。追加の状態を表すために、種々の色を種々の組み合わせで円と点に使用できる。これらの前述の無秩序な環境では、視覚的インジケータがユーザの知識の手がかりを提供する。そのような実装の1つでは、第2の状態は、送信機と受信機の間のLOSに部分的又は完全なブロックがあることを意味する可能性がある。第1の状態は、デバイスが無線電力伝送に従事していることを表し、第3の状態は、送信機が受信機を見つけようとしていることを表し、第4の状態は、送信機と受信機が同期していないことを表す。
さらなる受信機60の要素は、以下を含む。
ハイパワーレーザビームを受けたときにフォトダイオードアセンブリの熱特性を制御することができるヒートシンク/スプレッダ要素74;
フォトダイオードアセンブリ63と一緒に配置されたIR通信フォトダイオード76;
フォトダイオードアセンブリ63及び複合放物面集光器(CPC)ミラー要素80と同じ場所に配置されたIRLED78;
反射防止(AR)コーティングされた、引っかき抵抗性のある窓面(図示せず)であって、ミラー要素80上のコレクタ入口にある窓面;
電池68のモジュラアタッチメント又は受信機再充電可能ユニットの組み込みのためのリチウムイオン又はリチウムポリマー電池筐体(図示せず);
上記の要素をパッケージング及び/又は収容するためのデバイス筐体(図示せず)。
実施形態では、受信機デバイスは、家庭用電化製品、医療、又は産業の産業で使用されるより大きなデバイスに統合することができる。
フォトダイオードアセンブリ63は、ハイパワー光ビームを捕捉し、電流及び電圧の形式で電力に変換することができる。パワーエレクトロニクス回路は、フォトダイオードアセンブリからの出力電圧及び電流を使用し、それを電圧コンバータ64を通して、電池又は再充電可能な負荷インピーダンスに応じて、電池の充電に適用可能な電圧に変換することができる。いくつかの実施形態では、フォトダイオードアセンブリ63の生の出力が、接続されたエネルギー貯蔵装置65の動作電圧及び電流内に収まる場合があるため、電圧変換器64は必要でない場合がある。パワーエレクトロニクス回路はまた、フォトダイオードアセンブリ63の入力インピーダンスを追跡し、このデバイスインピーダンスに基づいて、最大電力点追跡(MPPT)の形式で電圧及び電流を制御し得る。電池充電管理部66の回路は、再充電可能な記憶デバイスの構成毎の最適な充電サイクルに基づいて、再充電可能な記憶デバイス68への電流及び電圧を制御することを担当することができる。電池充電管理部66によって出力された電流及び/又は電圧は、電流/電圧測定器67によって測定され得る。フォトダイオードアセンブリからの出力は、受信機システムの他のアクティブ(能動)素子に一時的に電力を供給するために使用することもできる。
ARM Cortex又は同様のプロセッサなどのプロセッサ又はコントローラ70は、フォトダイオードアセンブリ63及び電圧変換器64の出力電圧情報からデータを収集し、エンコーダ/デコーダ77を介して、IR送信機82による変調プロセスを介して搬送波にその情報をエンコードすることができる。電圧フィードバック情報は、送信機ビームの着陸精度と緊急又は危険検出信号の解釈を提供する。プロセッサ70はまた、受信された任意の送信機生成信号の復調、その情報の復号、及びその情報に起因する任意の提案されたアクションの処理及び実行を担当することもできる。プロセッサ70はさらに、Bluetooth、WiFi、又は他のRF接続へのその後のプッシュのために、必要な情報に基づいて遠隔の蓄電位置に伝送するためのシステム効率及びシステムヘルスに関する情報や統計などの情報を、必要な特定の情報のタイミングに基づいてローカルバッファ(図示せず)に保存する。
IRフォトダイオード76は、入射するIRローパワーレーザビーム信号を電気パルスに変換し、電気パルスは増幅されてプロセッサ又はコントローラ70に送られる。IR LED78は、広いFOVで受信機の機械的構造の外部に送信するために、電気パルスを光信号に変換する。CPCデバイス80の入力端子に接続され、フォトダイオードアセンブリ62の上のウィンドウ素子などの光学機械デバイス筐体(図示せず)は、敏感な光学機械デバイスの表面を密封し、受信機/構造の連続的な外部モールドライン(OML)を確保し、入射光と出射光の好ましい光路を確保する。
図13のレンズステージによってさらに示されるように、入口を密封するために使用される窓は、CPC80の内部の後方反射が外部環境に集束するのを防ぐために、最外表面近くに分散特性を有することもできる。出口での光の収集を支援するため、最内面近くの集光特性。そのような特性は、図12によってさらに示されるように、フレネルレンズ600の配置で達成することができる。フレネルレンズ600は、入射光をフォトダイオードアセンブリ602に集束させ、CPC80内で反射され、フォトダイオードアセンブリによって捕捉されなかった放射を拡散させる。より具体的には、フレネルレンズ又は他のレンズ600は、入射放射線を入口で出口の開口及びフォトダイオードアセンブリ602に集中させるために正の焦点距離を有することができる。同時に、フレネルレンズの最も内側の表面は、CPC80内の反射された放射をより広い領域にわたってCPC80に拡散させるために、負の焦点距離を有することができる。受信機の入口からの光の発散は、システム全体のレーザの安全性をさらに高める。図13に示すように、1つ又はそれ以上のフレネルレンズ600は、2つのプライマ層602及び604の間、2つの熱硬化ディップコート606及び608の間、2つの硬質反射防止スタック610及び612の間に挟まれ、これらの外面は超撥油性/疎水性トップコート614でコーティングされる。
図4A及び図4Bを参照して以下でさらに説明するように、CPCミラー80が使用され、受信機60が配置される筐体に合わせたサイズにされる。CPCミラー80は、純粋な光収集のために、受信機10のFOV光捕捉を増加させるために、及びフォトダイオードアセンブリ63の改善調整された均一な照明のために使用されてもよい。ミラー80の内面は、可能な限り最大限にビーム出力を維持するために、堆積された金属の薄層でコーティングされてもよい。図4Bに示す実施形態では、CPCミラー80は、システムのFOVをさらに増大させるために、入口に向かって浅い角度81で切り取られるか、もしくは延長されてもよい。浅い角度又は面取りされた表面は、CPCの周りに360度又はアプリケーションの優先度が少ない場合もある。完全な受信デバイスに構成可能であって電気的に接続される、リチウムイオン又はLiPo電池セル又はコンデンサのバンク又はスーパー電池を含むが、これらに限定されない、コンパクトなエネルギー貯蔵装置68を収納するための機械的構造を含むモジュラ式電池ハウジング(図示せず)も使用できる。
受信機は、電力受信サブシステムと通信サブシステムの2つの主要なサブシステムで構成される。サブシステムの機能は、モジュール間のインターフェース要件を最小限に抑えてモジュール化するように設計できる。モジュールシステム設計の目的は、電源のみの実装又は通信のみの実装、あるいはその両方を可能にすることである。モジュール設計では、他からの入力に基づいて機能タスクを実行するインターフェース(つまり、サブシステムIO)を別のホストシステムに再プログラムするか、開いたままにすることができる。これの技術的な意味は、FSOCサブシステム又は電力受信チェーンだけを複数の上流システムに組み込む能力である。
受信機の構成要素は、シンプルさと小さなフォームファクタを念頭に置いて設計できる。受信機を家庭用電化製品に組み込むことにより、サイズ、電力使用量、及び電力密度の要件が設定される可能性があり、これらは後でそのようなデバイスの標準に開発できる。ボード/デバイスのスペースと電力消費を減らすために、電気回路はできるだけシンプルに保つことができる。電圧変換器64は、デバイスサイズを減少させることにおいて役割を果たすことができる。ブースト変換器64は、トランスデューサの出力電圧を適切な電池充電電圧に増加させることに関与し得る。すべての変換器ステージでも電力の使用が必要な場合がある(これらはアクティブスイッチング構成要素であるため)。これにより、受信機10の全体的な効率が低下する。この段階で効率の損失を8%未満に減らすために、ブースト変換器64は、太陽電池システムで同様に実装されているが、IRで使用されることが知られていない最大多重電力点追跡(MPPT)を、最初の変換器ステージ内のレーザベースのシステムにおいて使用できる。MPPTアーキテクチャは、回路とデバイスのインピーダンスを確実に一致させることにより、フォトダイオードアセンブリから供給される電力を最大化するために、必要な入力インピーダンスをプローブする「テスト及び調整」タイプである。
追加の電池充電管理部66を使用して、リチウムイオン、リチウムポリマー、又は他の電池ケミストリーの完全な充電サイクルに対応できるようにすることができる。ホスト受信機の電池又はストレージデバイスがリチウムベースでない場合、充電管理部は不要である。フォトダイオードアセンブリ62と電圧変換器64との間で、フィルタ電力を電圧変換器64に提供するために、バルク/ストレージコンデンサ84も使用され得る。
受信機60の設計はまた、リードをできるだけ短くしてリード抵抗及び分布インダクタンスを最小限に抑えることを求めてもよく、つまり、過渡充電サイクル用に求めてもよい。光/電気変換器の実施形態であるフォトダイオードアセンブリの電圧出力は、プロセッサ70によってサンプリングされてもよく、安全サブシステムの一部とみなすことができる。サンプリングされたデータを保存し、エンコーダ/デコーダ77に伝送して、FSOC LED78によって送信される所定のキャリア周波数でビットシーケンスをエンコードすることができる。このアーキテクチャの独自性の1つは、受信機60が単純なビットストリームを送信機10に送信し、メッセージオーバーヘッドをほとんど必要としないメッセージを送信することである。送信機10のプロセッサは、ビットシーケンスを解釈するという点で、重いリフティング動作を実行する。
最後に、受信機60のコアロジックは、プロセッサ70で構成してもよい。プロセッサ70は、IR送受信機82及びエンコーダ/デコーダ77からのフィードバックを解釈することができる。受信機60はまた、IrDA(赤外線データ協会)標準に対する改良である通信システムを組み込んでもよい。IrDA規格は1cmから1mの間で動作するように設計されるため、現在開示される技術をより有用かつ際立たせるためには、より広い範囲が必要である。同時に、周囲の光源がセンサを汚染し、小さな光入力信号に干渉を引き起こす可能性がある。実施形態においてこの問題を克服するために、フォトダイオード受信機76上の半球レンズとIRFSOC光の倍率を増加させ、フォトダイオード受信機のバックエンドに狭帯域のバンドパスフィルタを設計することが望ましいかもしれない。DC環境の外部電源と散発的な外部電源の両方を抑圧するときに、バンドパスフィルタを介して、波長の特定の帯域のみを可能にする。FSOC LEDを最大供給レベルで駆動すると、目の安全制限値を維持しながら、距離がさらに増加する場合がある。
受信機60の光学アーキテクチャは、図4A、図4B及び図13に示されるように、主に、耐スクラッチ性の疎水性、及びおそらく疎油性の反射防止(AR)コーティングされた光学窓90から構成され得る。光学窓90は、レンズスタックとして知られており、受信機60が組み込まれている受信機とインターフェースをとる。受信機と周囲環境との外部光インターフェースは、オフセット又は隆起面(又はドーム面)で発生することがあり傷や破損を回避するように面一であってもよい。窓自体は、ARコーティングされていて、耐スクラッチ性と疎水性/疎油性を示す。これにより、CPCの入口できれいなIR透過面が維持され、光学面の汚れ、湿気、汚れの貯蔵を防ぎながら受信機のフォトダイオードアセンブリへのビーム経路の忠実度が確保される。
前述のように、さらに図4A及び図4Bに示すように、CPCミラー80は、その出口で、フォトダイオードアセンブリ63にその入口に入射光の焦点を合わせることができる。光電変換器は、図3のFSOC LED78及びIRフォトダイオード76と結合されてもよい。CPCミラー80は、光コレクタとして独特の形状であってもよく、システム全体のFOVを実質的に増加させ得る。CPCミラーの利点の1つは、フォトダイオードに対する光の合焦のための集光レンズが不要になることである。CPCの内部壁は、100~300nmの銀又は金又はアルミニウムでコーティングされる。部品寿命を延ばすために環境保護層を備えた実施形態に依存する。コーティングの背後にあるポイントは、IRビーム波長範囲全体で最大の反射率を確保することである。この界面での反射又は吸収による損失は1%未満である場合がある。CPCミラー80の全体的な形状は、2つの放物線の交差に基づくことができ、外観のようなコーンやボウルを有することができる。図4Bに示すように、CPCはさらにOML又は増大システムFOVを可能にするための接続に縁端部81をテーパ化することを可能にするために、ミラーの入口側で切りとることもある。
フォトダイオードアセンブリ63は、CPCミラー80のベースに統合されて、入射光への最大の露出を確実にすることができる。上述したように、NIRARコーティングは、デバイスの外面と同一平面である上部ウィンドウ表面90に適用されてもよい。確率的なユーザ環境に耐えるために、表面を劣化させ従ってシステムの全体的な有効性を劣化させる表面のスクラッチの可能性を減少させるために、上面にハードコートを維持する必要があるかもしれない。さらに、指紋やその他の環境汚染物質は、部品の寿命中に存在する可能性がある。疎水性表面は、表面汚染を最小限に抑えるのに役立つ。疎水性層は、製造中及び使用中に、一時的及び永続的なコーティングを介して実装可能であり得る。同様の統合を疎油性コーティングに使用することができる。従って、ユーザは必要に応じて光学面を「修正」することができ、これは性能の向上につながる可能性がある。IR LED78及びIR PD76は、受信機60の通信及び安全サブシステムのベースを形成する。前述のように、FSOCローパワーレーザビームはハイパワービームと一緒に伝播して、ハイパワービームの周囲に仮想筐体を形成する。従って、ハイパワーレーザビームの構成要素であるFOVは、ハイパワーレーザビームがFSOCローパワーレーザビームとの通信リンクの光円錐内に含まれたままとなりかつ可能なすべてのパワービーム位置において送信機10との通信リンクが保持されることを確実にするために、ハイパワーレーザビームの構成要素であるFOV以上である必要がある。様々な実施形態では、いずれかのアクティブ又はパッシブレンズや光学材料は、さらに収束させるためFSOCビームを発散し、パワービームに対してそのようなカバレッジを確保するために、ローパワーレーザビームのビーム経路に追加することができる。FSOC光電子部品は、受電フォトダイオードアセンブリのできるだけ近くに配置される。これらの実施形態は、さらに伝送範囲の要件があるアプリケーションを含むかもしれない。
統合される受信機の全体的な物理サイズは、その受信機が使用される環境と互換性があるように設計される場合がある。多くのモバイル家電アプリケーションでは、これは、1辺当たりの寸法が10mm以下の範囲であることを意味する。しかしながら、これらの寸法は単なる例示であり、本開示はそのような寸法に限定されない。それでも、小さなボリュームを維持することで、技術をさまざまなハードウェアデバイスに統合できる場合がある。CPCミラー80の全体的な支持構造(図示せず)は、CPC/フォトダイオードアセンブリの安定化を中心とすることができる。CPC自体は個別に製造することも、光学材料でできた立方体から切り出すこともできる。CPCとフォトダイオードの統合は、受信機への統合と同時に、又はそれ以前に行われる場合がある。
次に、図5~図11を参照して、受信機のフォトダイオードアセンブリ63に移る。フォトダイオードアセンブリ63は、特にハイパワーレーザ光から電気への変換のために設計されたバックコンタクトフォトダイオードアセンブリであり得る。図9A及び図9Bを参照して以下でさらに説明するように、パイウェッジ光子露出を最大化し、部品実装面積を減少させ、さらにはパイウェッジ内の各フォトダイオードからの均一な応答を実現するために、バックコンタクトフォトダイオードアセンブリは、パイウェッジにおいて配置された複数の感光性領域から構成されてもよい。デバイスのバンド構造は、そこから形成されるInGa1-xAs半導体材料の組成の操作により、狭波長の吸収を最適化するように特別に設計できる。つまり、「x」は、光が効率的に(>95%)2~5μmの厚さで吸収されるように慎重に選択され、一方、バンドギャップは光子エネルギーよりわずかに小さいだけで、電力変換効率を最大化できる。電気経路と熱経路の両方として機能するバックコンタクトは、最小の直列抵抗、十分な熱容量、放熱のため、及び大量生産のための大きな表面積を持つサイズにすることができる。これらの各側面について、以下でさらに詳しく説明する。
図5に示すように、基板上面100、すなわち、光が入射する面は途切れのない(遮断されない)バルクであって低濃度にドープされたInP基板である。この明細書では、低濃度にドープされたとは、不純物の濃度が<1016原子/cmであることを意味する。入射する放射線がInPの表面で反射するのを防ぐために、上部基板層100は、厚さの薄い反射防止層102で被覆することができ、この厚さは目的の入射放射線の4分の1波長に一致する。反射防止(AR)層102は、屈折率の積(nair×nsemiconductor)の平方根に近い屈折率を有するSi又は別の化合物であってよい。基板100及び下にある層は、InP/InGaAsの材料において、1400~1600nmの光の吸収係数に基づいて、サイズが決められてもよい。波長の関数としての光の侵入深さは、図6にさらに示される。プロットに示されるように、アクティブInGaAs領域200内では、ほとんどの光が数ミクロン以内で完全に吸収される。
フォトダイオードアセンブリ63の活性領域に関する追加の考慮事項は、撮像された電子及び正孔がこの領域内の電界設定によりn+及びp+領域に拡散する空乏幅のサイズ又は面積である。この活性領域内では、電界は、電子が電子正孔対を生成するために分離されるように非常に強い可能性がある。分離に必要な対応するエネルギーは、バンドギャップエネルギーとして知られる。バンドギャップエネルギーと入射光の波長の知識を組み合わせると、材料の原子濃度を最適化できる場合がある。基板層100とInGaAs層104との間には、さらに図7に示すように、電子と正孔がInP基板層100に漏れて戻るのを防ぐヘテロ接合バッファ層106がある。言い換えると、106バッファヘテロ接合は、一方向(一番上のInP層ではなく、一番下のn+/p+電極領域108のみ)フォトキャリアの収集を実行する。これは、効率的な光エネルギーから電気エネルギーへの変換を実現するための理想的な状況である。
図8にさらに示されるように、電子正孔対は、入射光の関数としてアクティブなn+/p+電極領域108内に生成される。従って、PIN構造は、それらと電極領域108との間に小さな幅を有する交互のn+/p+電極領域108を介して形成することができる。分離距離が短いと、アクティブ領域内の解放された電子114がn+領域に向かって掃引され、アクティブ領域内の正孔116がp+領域に向かって掃引され、安定した電流が生成される。n+及びp+電極領域108は、互いにかみ合ったバックコンタクト110への導電経路が存在するように構成され得る。バックコンタクト間の薄いパッシベーション層112は、電極領域が直接短絡するのを防ぐことができる。パッシベーション層112は、複数の適切な材料(Cu、Al、Agなど)から作製され得る。
前述のように、バックコンタクト、指状構造の形態の各々は、p+/n+電極領域108との間の間隔に基づいて噛み合わされる。これは、フォトダイオードアセンブリ63の裏側に等間隔で配置された分散型周期構造を有することにより、収集効率を向上させることができる。バックコンタクトは、直列抵抗を低減するために、パイ形状のセクションに形成された微細構造である場合がある。図9Aに示す実施形態では、交互の嵌合指210と212は、実質的にまっすぐである。図9Bに示す第2の実施形態では、互いに嵌合した指210及び212は、デバイス全体の曲率半径に一致するように形作られてもよい。例えば、図9Bに示すように、各パイ形状のセクション250は、中央領域252に向かって小さく、実質的に長い外側の領域254に向けて指を互いに嵌合するフォトダイオードアセンブリ63の円形の形状に適合するように、わずかに湾曲して互いに嵌合した指を有する。p+/n+領域を成形することにより、当該領域は、フォトダイオードアセンブリ63の円形の形状に適合するように、バックコンタクト電極に隣接し、全体的な捕集効率と電力変換効率を向上させることができる。
アノード200は、フォトダイオードアセンブリ63の周りのカソード202ccw(反時計回り)に直列に接続される。シリアル接続により、個々のセクションのそれぞれによって生成されるしきい値電圧を加算することができ、これにより、デバイス端子で総電圧が生成される。アセンブリのセクションは、各セクションの相対的な照度を決定するように、図11の監視ポイント400によって示されるように出力電圧を測定することでさらに監視できる。この電圧情報は、送信機に伝送されて、ビーム指向を改善調整するのに役立つ。微細な指構造は、p+/n+電極領域108の真下に配置され、ここで、最大の写真のコレクション-活性領域内に発生した電子が発生する可能性がある。互いに嵌合した(インターデジタル)設計により、電極領域の指を細かく配置して、n+/p+電極領域108にまたがる連続フィールド構造をセットアップできる。直列抵抗を減らすために指の長さを最小化することができ、周期電極レールセクションにセクションから低抵抗接続を提供する。微細な指構造の短絡、シリコーンポリマ、h-BN、又は同様の電気抵抗材料によるギャップ充填を防ぐため、裏面は、十分なアイソレーション206を提供することができる。上部のInP表面100は、本発明の必要バルク基板100の光電子性能に依存しないので、エッチング又はバックコンタクトパターンのような離散的なセクションに分割する必要がないことに注意すべきである。
本開示のフォトダイオードアセンブリ63は、様々な形態で統合され得る。図10にさらに示されるような1つのそのような方法は、アノードとカソードがトレース等のデバイスからルーティングされるようにPCB(プリント回路基板)への統合を含む。この実施形態では、デバイスは、様々な形態で使用されてもよく、例えば、共同設置デバイスに電力を供給するレーザベースの無線電力伝送システム、ハイパワーレーザを含む用途に使用されるセンサで使用される受容体要素、個々のセクションのフィードバックに基づいて、又は複数の他の光学ベースのシステムに基づいて個別に配線した場合において微調整又はアライメントセンサとして使用されてもよい。アプリケーションに基づいて、複雑なシステム又はスタンドアロンシステムへのさらなる統合も可能である。
図10及び図11において、InGaAsのアセンブリ/チップ300は、銅薄膜302の小さな部分に接着されてもよい。結合領域は、小さな電気絶縁層(図示せず)を銅薄膜と背面電極接点との間に適用して、フォトダイオードアセンブリ/チップ300の背面全体をカバーしてもよい。銅薄膜302は、熱伝導エポキシ層304によって、PCB上において、ヒートシンク306及び/又はブランク銅注入308に結合されてもよい(その厚さは異なる場合がある)。アノード電極は、チップの側面から出て、トレース又は配線を介してPCBに直接に接続できる。従って、開示されたデバイスは、モジュール性を高め、電極パッドを介したコンポーネントの統合を容易にするためにコンパクトなフォームファクタを維持することができる。開示されたデバイスはまた、負荷の要件と下流の回路への入力の期待に依存して並列配線を可能にすることができる。
電力伝送デバイスの全体的な動作は、以下のように説明され得る。受信機は、充電状態(「SOC」)又は電源電圧又は、他の複数のインジケータが、事前定義されたしきい値よりも低いことを認識し、組み込みの無線電力伝送ハードウェアに対してpingを送信することでネットワーク接続を確認して起動させる。受信機の前面にあるIR LEDは、近くの送信機への「ビーコン信号」として定期的に光を放射し始める。ビーコン信号は、キャリア信号の上に変調された短いデジタルデータストリームで構成され、デバイスの一意ID(デバイス名、製造元、リビジョン、タイプ等)、充電状態(SOC)の表示、ロックIDを生成するための送信機のための情報を含むFSOC信号である。ロックIDは、受信機の最後の既知の位置の位置ベースのレコード(ビームステアリングサブアセンブリに対する座標)として送信機内で生成されて、FSOCリンクを介して受信機によって確認される。別の実施形態では、受信機は、近くの送信機に状態情報を通信するためにRFアンテナに内蔵されて使用することができる。送信機は、内蔵RFアンテナを使用して、受信機のSOC、電池電圧などをチェックでき、無線電力ビーミングプロセスに参加する受信機の能力を決定する。実施形態では、送信機は、送信機が受信機の電池残量が少ないために有益であると判断した場合において、無線電力ビーム(ビーム操向)工程で受信機と係合しないように選択することができる。送信機は、デバイスの優先順位が次のように設定される場合、特定の受信機との関与を拒否することもできる。
1)他のより重要なユニットは、送信機が要求側デバイスに提供できる以上の電力を必要とする;
2)送信したデバイスIDは、ターゲット送信機によって修理できないと判断される(例えばデバイスのファームウェア又はハードウェアは、認可日切れ又は無認可である);もしくは、
3)受信機において認識エラー状態の集合がある。
次に、送信機は受信機への接続を解放することで、他の受信機の機能は、優先順位を取ることができる。
その間、送信機は、ビーコン信号のために、そのIRフォトダイオードを監視し、そのフォトダイオードがビーコン信号によって活性化されるとき、受信機のデジタル情報を処理することができる。ビーコン信号が検出されると、送信機のIRカメラが「アイドル」状態から「アクティブ」状態に切り替わり、受信機からのIRビーコンの位置特定を開始する。IRカメラの状態が変わり、つまり、所定の「検出なし」期間が経過した後にのみアクティブからアイドルに状態が変化する時間は、送信機のIRフォトダイオードが最後に信号を検出した後約30秒になる(時間期間であって、すなわち、本実施形態の方法を変更しないより長い又はより少ない時間である)。
送信機のIRカメラがビーコン信号のおおよその位置を特定した後、FSOCを介した継続的な通信リンクを確立できる。送信機のIRローパワーレーザダイオードは、識別された受信機のおおよその位置の近くで、局所的なスキャンパターンを実行し始める。そのスキャンが受信フォトダイオードによってキャッチされると、通信リンク/ハンドシェイクが確立される。リンクを確立するための所定の期間は、「ハンドシェイクイベント時間」と呼ばれる。上述のように、ローパワー送信機のIRビームは送信機のハイパワービームと一致する。送信機のローパワーレーザビームは、受信機のビーコンフォトダイオードで、受信機の出力ビームフォトダイオードで送信機のハイパワービームよりも大きなスポットサイズを生成する。
ハンドシェイクのイベントが発生すると、ローパワー設定において送信機のハイパワーレーザビームは、受信機のフォトダイオードに対してビーム放射する電力を見つけるために、送信機のローパワーレーザダイオードによって局所領域を横切って掃引する。ローパワーレーザダイオードは、状態に基づいて出力スポットを変更してもよい。これは、電気的にアクティブ化された光学系を含み、例えば液体レンズであってもよい。受信機のLEDは、確立された通信チャネルを介して、マイクロ秒間隔で送信機にバックパワーデータを報告する。送信機のIRパワービームが極大値を横切って戻ると、受信機IR LEDによって報告され、位置特定は完了したと見なすことができ、デバイスのタイプに合わせてハイパワービーム供給を増やすことができる。ローパワーレーザビームは送信機のフォトダイオードとの連続的な通信を維持することで、伝送効率、受信電力、SOC、及びパワーフォトダイオードからの電流と電圧の読み取り値に関する情報を提供する。
所定の安全遮断時間よりも長く続く報告された情報の損失は、安全なレベルまでビームパワーを減少させるために、送信機レーザドライバに対して内部で生成危険警告信号を生じさせる。ビームの終わりのアクティビティは、(データの欠落又は特定のビットシーケンスを通じて)受信機のIR LEDによって直接通知され、送信機IRフォトダイオードによって解釈される。ビーム終了アクティビティ信号の持続時間は、所定の安全遮断時間より長くはない。
ビーム動作が終了した場合、例えば、受信機電源のフォトダイオードアセンブリからのリンクマージン効率や電圧/電流の統計が違反した場合、送信機は、受信機の最後の既知の位置と、追跡が要求されたときの送信機によって格納された前記ロックIDとを用いて、受信機のパワーのフォトダイオードに対して再び位置特定を試みる。前記同じ送信機のスキャンパターンは、受信機のIR LEDが報告する入射パワーともに用いられる。
送信機又は受信機の電子機器が(外部LOSの中断に対する)公称動作が阻害する内部状態を決定した場合、送信機/受信機はそれを受信機/送信機に伝え、フェイルセーフモードに入る。障害が解消されるまで、それ以上の通信や電力伝送は行われない。障害は以下のカテゴリごとに分類される:内部リセット可能、外部リセット可能、ユーザ機器「UE」、交換など。送信機又は受信機のいずれかがフェイルセーフモードであることの表示は、UEに送信し、エラーメッセージに点滅LEDで視覚的に示される。現在説明される動作方法は、本明細書に記載される特に開示された電力伝送システムの文脈で説明されるが、操作方法は、ちょうど記載されたデバイスに限定されるものではなく、本開示に係る電力伝送デバイスの異なるタイプで実現することができる。
実施形態では、送信機と受信機の間の無線電力伝送とデータ通信を調整する方法は、
受信機が、受信機に電気的に結合されたエネルギー貯蔵装置に充電が必要とすることを認識することと;
受信機とエネルギー貯蔵装置の充電状態に関する情報を含むビーコン信号を受信機から送信機に送信することと;
受信機が送信機からの第1の位置特定信号を認識し、第1の位置特定信号に応答して、受信機とエネルギー貯蔵装置の充電状態に関する追加情報を含むローパワーレーザ光接続を受信機と送信機との間で確立することと;
受信機が送信機からの第2の位置特定信号を認識し、第2の位置特定信号に応答して、光パワーがハイパワーレーザビームを介して送信機から受信機に伝送されるときに、受信機と送信機との間のハイパワーレーザ光接続を確立することと;
ローパワーレーザビームを介して受信機から送信機への追加情報を周期的に通信することとを含み、前記通信するときに、受信機への光パワーの安全な伝送を監視するために送信できるように光パワーが送信機から受信機にハイパワーレーザビームを介して伝送される。
実施形態では、受信機から送信することは、受信機に基づく情報を送信することを含む。実施形態では、受信機に基づく情報は、受信機の動作に関する診断情報を含む。実施形態では、受信機に基づく情報は、受信機のフォトダイオードアセンブリを有するハイパワーレーザビームの位置合わせ(アライメント)についての情報を含む。実施形態では、受信機に基づく情報は、エネルギー貯蔵装置に伝送される光パワーの量についての情報を含む。実施形態では、受信機に基づく情報は、エネルギー貯蔵装置の電圧に関する情報を含む。実施形態では、受信機に基づく情報は、送受信機システムが埋め込まれているデバイスに関する情報を含む。実施形態では、受信機に基づく情報は、温度読取値と、公称値から外れている、又は予想される制限値から外れている電流センサ読取値のうちの1つ又はそれ以上を含む。
実施形態では、送信機と受信機の間の電力及びデータ通信の無線伝送を調整する方法は、
送信機が、受信機と電気的に受信機に結合された電池の充電状態に関する情報を含むビーコン信号であって、受信機から送信されたビーコン信号を認識することと;
送信機から第1の位置特定信号を受信機に送信し、第1の位置特定信号が受信機によって認識されるとき、受信機と電池の充電状態に関する追加情報を含むローパワーレーザ光接続であって、送信機と受信機との間のローパワーレーザ光接続を確立することと;
送信機から第2の位置特定信号を受信機に送信し、第2の位置特定信号が受信機によって認識されるときに、光パワーがハイパワーレーザビームを介して送信機から受信機に伝送される、送信機と受信機の間にハイパワーレーザビーム接続を確立することと;
送信機と受信機の間の衝突についてローパワーレーザビーム接続を監視し、衝突が発生した場合はハイパワーレーザビーム接続を低減又は終了することと;
追加情報のためのローパワービームを監視し、追加情報が、
(a)所定のしきい値よりも長く受信されないことと、
(b)否定的な情報(無効な情報)を含むことと、
のうちの1つ又はそれ以上であるときに、ハイパワービーム接続を低減し又は終了することとを含む。
実施形態では、送信機は、カメラ及び1つ又はそれ以上の光センサを含み、そしてさらに、カメラ及び1つ又はそれ以上の光学センサを用いて、送信機と受信機との間の透明な物体を識別して追跡することを含む。実施形態では、透明な物体が送信機と受信機との間のパスを遮断するときに、ハイパワーレーザビーム接続を終了することをさらに含む。
実施形態では、無効な情報(否定的な情報)は、
(a)公称値外の性能と一致するデータ信号と、
(b)周囲の照明又は激しい反射による干渉と、
(c)受信機での状態変化と、
のうちの1つ又はそれ以上を含む。実施形態では、無効な情報(否定的な情報)は、
(a)公称値から外れている、又は予想される制限値から外れている温度読取値と、
(b)公称値から外れている、又は予想される範囲から外れている電流センサ読取値と、
のうちの1つ又はそれ以上を含む。
実施形態では、
(a)1つ又はそれ以上のハイパワーレーザ光源に電力を供給することと、
(b)1つ又はそれ以上のハイパワーレーザ光源が最適なパワービームレベルに到達することを可能にすることと、
のうちの1つ又はそれ以上を実行するために、送信機が、送信機をハイレベルで制御するように構成されたメインプロセッサからの第1の信号と、ハイパワーレーザビーム及びローパワーレーザビームステアリングシステムの一次制御を提供するように構成された2次プロセッサからの第2の信号とを要求することをさらに備える。
実施形態では、ハイパワーレーザビームを低減することは、クラス1レーザのMPE/AELレベル未満のハイパワーレーザ光源の出力レベルを減少させることを含む。実施形態では、ハイパワーレーザビームを低減することは、規制エネルギー要件から導出された時間内に発生する。
実施形態では、ローパワーレーザビーム接続の1つ又はそれ以上のローパワーレーザビームは、ハイパワーレーザビーム接続の第1のハイパワーレーザビームを取り囲む。
以上説明したように、無線電力伝送システムの異なる実施形態及びそれを動作させる方法を説明したが、記載された方法及びデバイスの特定の利点が達成されたことは、当業者には明らかであろう。特に、無線電力伝送システムの送受信機アセンブリを実装することができ、本明細書に記載される異なるタイプのハードウェア、ソフトウェア、及びそれらの組み合わせを使用し、記載されるものとは異なる様々な方法で動作することは当業者によって理解されるべきである。また、本開示の範囲及び趣旨の範囲内で、その様々な修正、適応、及び代替実施形態を行うことができる。

Claims (17)

  1. 送信機と受信機の間の無線電力伝送とデータ通信を調整する方法であって、
    前記方法は、
    前記受信機が、前記受信機に電気的に結合されたエネルギー貯蔵装置が充電を必要とすることを認識することと、
    前記受信機と前記エネルギー貯蔵装置の充電状態に関する情報を含むビーコン信号を、前記受信機から前記送信機に送信することと、
    前記受信機が前記送信機からの第1の位置特定信号を認識し、前記第1の位置特定信号に応答して、前記受信機と前記送信機との間でローパワーレーザビーム接続を確立することとを含み、
    前記ローパワーレーザビーム接続は、前記受信機と前記エネルギー貯蔵装置の充電状態に関する追加情報を含み、
    前記方法は、
    前記受信機が前記送信機から第2の位置特定信号を認識し、前記第2の位置特定信号に応答して、前記受信機と前記送信機との間で、光パワーがハイパワーレーザビームを介して前記送信機から前記受信機に伝送されるハイパワーレーザビーム接続を確立することを含み、
    1つ以上のローパワーレーザビームの中断がハイパワーレーザビームの中断の前に発生しかつ1つ以上のローパワーレーザビームの中断によりハイパワーレーザビームが停止されるように、前記ハイパワーレーザビームが前記受信機へ光パワーを伝達するときに、前記ローパワーレーザビーム接続の1つ以上のローパワーレーザビームを前記ハイパワーレーザビームと共伝搬させ、
    前記方法は、
    前記ローパワーレーザビームを介して前記受信機から前記送信機への前記追加情報を周期的に通信することとを含み、前記通信するときに、前記送信機が前記受信機への光パワーの安全な伝送を監視できるように光パワーが前記送信機から前記受信機にハイパワーレーザビームを介して伝送される、方法。
  2. 前記受信機から送信することは、前記受信機に基づく情報を送信することを含む、請求項1に記載の方法。
  3. 前記受信機に基づく情報は、前記受信機の動作に関する診断情報を含む、請求項2に記載の方法。
  4. 前記受信機に基づく情報は、ハイパワーレーザビームと前記受信機のフォトダイオードアセンブリとの位置合わせに関する情報を含む、請求項2に記載の方法。
  5. 前記受信機に基づく情報は、前記エネルギー貯蔵装置に伝送された光パワーの量に関する情報を含む、請求項2に記載の方法。
  6. 前記受信機に基づく情報は、前記エネルギー貯蔵装置の電圧に関する情報を含む、請求項2に記載の方法。
  7. 前記受信機に基づく情報は、送受信機システムが埋め込まれたデバイスに関する情報を含む、請求項2に記載の方法。
  8. 前記受信機に基づく情報は、温度測定値と、公称値から外れている、又は予想される制限値を超えている電流センサ測定値のうちの1つ又はそれ以上を含む、請求項2に記載の方法。
  9. 送信機と受信機の間の電力及びデータ通信の無線伝送を調整する方法であって、
    前記方法は、
    前記送信機が、受信機から送信されたビーコン信号であって、前記受信機と電気的に受信機に結合された電池の充電状態に関する情報を含むビーコン信号を認識することと、
    前記送信機から前記受信機に第1の位置特定信号を送信し、前記第1の位置特定信号が前記受信機により認識されたときに、前記送信機と前記受信機との間のローパワーレーザ光接続を確立することとを含み、
    前記ローパワーレーザ光接続は、前記受信機と電池の充電状態に関する追加情報を含み、
    前記方法は、
    前記送信機から第2の位置特定信号を前記受信機に送信し、前記第2の位置特定信号が前記受信機により認識されたときに、前記送信機と前記受信機の間で、光パワーがハイパワーレーザビームを介して前記送信機から前記受信機に伝送されるハイパワーレーザビーム接続を確立することを含み、
    1つ以上のローパワーレーザビームの中断がハイパワーレーザビームの中断の前に発生しかつ1つ以上のローパワーレーザビームの中断によりハイパワーレーザビームが停止されるように、前記ハイパワーレーザビームが前記受信機へ光パワーを伝達するときに、前記ローパワーレーザビーム接続の1つ以上のローパワーレーザビームを前記ハイパワーレーザビームと共伝搬させ、
    前記方法は、
    前記送信機と前記受信機の間の衝突について前記ローパワーレーザビーム接続を監視し、衝突が発生したときに、前記ハイパワーレーザビーム接続を低減し又は終了することと、
    前記追加情報のためのローパワーレーザビームを監視し、前記追加情報が、
    (a)所定のしきい値よりも長く受信されないことと、
    (b)否定的な情報を含むことと、
    のうちの1つ又はそれ以上であるときに、ハイパワービーム接続を低減し又は終了することとを含む、方法。
  10. 前記送信機は、カメラ及び1つ又はそれ以上の光学センサを含み、
    前記方法はさらに、
    前記カメラと前記1つ又はそれ以上の光学センサを使用して、前記送信機と前記受信機の間の透明な物体を識別して追跡することを含む、請求項9に記載の方法。
  11. 前記透明な物体が前記送信機と前記受信機の間のパスをブロックするときに、前記ハイパワーレーザビーム接続を終了することをさらに含む、請求項10に記載の方法。
  12. 前記否定的な情報は、
    (a)公称値外の性能と一致するデータ信号と、
    (b)周囲の照明又は激しい反射による干渉と、
    (c)前記受信機での状態変化と、
    のうちの1つ又はそれ以上を含む、請求項9に記載の方法。
  13. 前記否定的な情報は、
    (a)公称値から外れている、又は期待される制限値から外れている温度読取値と、
    (b)公称値から外れている、又は期待される範囲から外れている電流センサ読取値と、
    のうちの1つ又はそれ以上を含む、請求項9に記載の方法。
  14. 前記方法は、
    (a)1つ又はそれ以上のハイパワーレーザ光源に電力を供給することと、
    (b)1つ又はそれ以上のハイパワーレーザ光源が最適なパワービームレベルに到達することを可能にすること、
    とのうちの1つ又はそれ以上を実行するために、前記送信機が、前記送信機をハイレベルで制御するように構成されたメインプロセッサからの第1の信号と、ハイパワーレーザビーム及びローパワーレーザビームのステアリングシステムの一次制御を提供するように構成された2次プロセッサからの第2の信号とを要求することをさらに備える、請求項9に記載の方法。
  15. 前記ハイパワーレーザビームを低減することは、ハイパワーレーザ光源の出力レベルをクラス1レーザのMPE/AELレベル未満に低減することを含む、請求項9に記載の方法。
  16. 前記ハイパワーレーザビームを低減することは、規制エネルギー要件から導出される期間内に発生する、請求項9に記載の方法。
  17. 前記ローパワーレーザビーム接続の1つ又はそれ以上のローパワーレーザビームは、前記ハイパワーレーザビーム接続の第1のハイパワーレーザビームを取り囲む、請求項9に記載の方法。
JP2020567449A 2018-02-23 2019-02-22 安全でセキュアな自由空間電力伝送及びデータ伝送の方法 Active JP7208654B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862634732P 2018-02-23 2018-02-23
US201862634735P 2018-02-23 2018-02-23
US62/634,732 2018-02-23
US62/634,735 2018-02-23
PCT/US2019/019282 WO2019165299A1 (en) 2018-02-23 2019-02-22 A method for safe and secure free space power and data transfer

Publications (3)

Publication Number Publication Date
JP2021515533A JP2021515533A (ja) 2021-06-17
JPWO2019165299A5 JPWO2019165299A5 (ja) 2022-02-04
JP7208654B2 true JP7208654B2 (ja) 2023-01-19

Family

ID=67687273

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2020567446A Pending JP2021516534A (ja) 2018-02-23 2019-02-22 自由空間電力伝送及びデータ通信システムのための送受信機アセンブリ
JP2020567449A Active JP7208654B2 (ja) 2018-02-23 2019-02-22 安全でセキュアな自由空間電力伝送及びデータ伝送の方法
JP2020567448A Active JP7391386B2 (ja) 2018-02-23 2019-02-22 光電力変換のためのアセンブリ
JP2020567447A Active JP7291412B2 (ja) 2018-02-23 2019-02-22 自由空間電力伝送及びデータ通信システムのための送信機アセンブリ
JP2023100978A Pending JP2023126811A (ja) 2018-02-23 2023-06-20 自由空間電力伝送及びデータ通信システムのための送受信機アセンブリ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020567446A Pending JP2021516534A (ja) 2018-02-23 2019-02-22 自由空間電力伝送及びデータ通信システムのための送受信機アセンブリ

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2020567448A Active JP7391386B2 (ja) 2018-02-23 2019-02-22 光電力変換のためのアセンブリ
JP2020567447A Active JP7291412B2 (ja) 2018-02-23 2019-02-22 自由空間電力伝送及びデータ通信システムのための送信機アセンブリ
JP2023100978A Pending JP2023126811A (ja) 2018-02-23 2023-06-20 自由空間電力伝送及びデータ通信システムのための送受信機アセンブリ

Country Status (3)

Country Link
US (8) US11876105B2 (ja)
JP (5) JP2021516534A (ja)
WO (5) WO2019165293A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312701B1 (en) * 2015-07-16 2016-04-12 Wi-Charge Ltd System for optical wireless power supply
WO2018211506A1 (en) * 2017-05-15 2018-11-22 Wi-Charge Ltd Flexible management system for optical wireless power supply
WO2019165293A1 (en) 2018-02-23 2019-08-29 Phion Technologies Llc Transmitter assembly for free space power transfer and data communication system
US11792606B2 (en) * 2018-06-25 2023-10-17 Nokia Technologies Oy Position determination
CN209606807U (zh) * 2019-03-07 2019-11-08 达智汇智能制造(苏州)有限公司 数据采集电路板及设备监控系统
WO2020207812A1 (en) * 2019-04-08 2020-10-15 Signify Holding B.V. An optical wireless charging and data tranmission system
US20220224165A1 (en) * 2019-05-21 2022-07-14 Lasermotive, Inc. Safe power beam startup
CN110995353B (zh) * 2019-12-13 2021-07-06 北京无线电计量测试研究所 一种宽带模拟调制的激光收发模块及控制方法
WO2021126927A1 (en) * 2019-12-16 2021-06-24 The George Washington University Photovoltaic receiver for free-space optical power beaming
CN111682507A (zh) * 2020-06-10 2020-09-18 昂纳信息技术(深圳)有限公司 一种激光驱动器的监控装置、监控系统及监控方法
US11899468B2 (en) * 2020-12-22 2024-02-13 Waymo Llc Sensor for flashing light detection
WO2022150780A1 (en) * 2021-01-11 2022-07-14 GuRu Wireless, Inc. Wireless power delivery systems and methods of delivering wireless power
CA3220369A1 (en) * 2021-05-25 2023-01-12 eSTS, Inc. System and method for configurable invisible light communications
WO2023031964A1 (en) * 2021-09-02 2023-03-09 Lightspeedai Labs Private Limited A system and method for enabling an opto-mechanics based high data rate transmission and reception
CN114499662A (zh) * 2022-02-18 2022-05-13 中国科学院空间应用工程与技术中心 一种通信装置及无线光通信、传能定位一体化系统
CN114499663A (zh) * 2022-02-18 2022-05-13 中国科学院空间应用工程与技术中心 无线光通信、定位、传能一体化系统、方法、介质及设备
WO2023205664A2 (en) * 2022-04-19 2023-10-26 Lasermotive, Inc. Power receivers and high power over fiber
CN115173586B (zh) * 2022-08-09 2023-04-21 云南大学 一种远场无线充电调度方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006558A (ja) 2005-06-21 2007-01-11 Kddi Corp 電力伝送システム及び方法
WO2014156465A1 (ja) 2013-03-27 2014-10-02 インターナショナル・ビジネス・マシーンズ・コーポレーション 送電装置、受電装置、電力供給システムおよび電力供給方法
JP2020520225A (ja) 2017-05-15 2020-07-02 ワイ−チャージ リミテッド 光無線給電の柔軟管理システム

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229593A (en) 1991-10-08 1993-07-20 International Business Machines Corporation Apparatus and method for safe, free space laser communication
JP2943712B2 (ja) 1996-08-23 1999-08-30 日本電気株式会社 遠隔制御方式
US5982139A (en) * 1997-05-09 1999-11-09 Parise; Ronald J. Remote charging system for a vehicle
US7068991B2 (en) * 1997-05-09 2006-06-27 Parise Ronald J Remote power recharge for electronic equipment
US6057505A (en) 1997-11-21 2000-05-02 Ortabasi; Ugur Space concentrator for advanced solar cells
JP2001284616A (ja) 2000-04-03 2001-10-12 Toyota Motor Corp 熱光発電装置用光電変換素子
US6717045B2 (en) * 2001-10-23 2004-04-06 Leon L. C. Chen Photovoltaic array module design for solar electric power generation systems
FI111670B (fi) 2001-10-24 2003-08-29 Patria Ailon Oy Langaton tehonsiirto
US7619159B1 (en) 2002-05-17 2009-11-17 Ugur Ortabasi Integrating sphere photovoltaic receiver (powersphere) for laser light to electric power conversion
US7656001B2 (en) 2006-11-01 2010-02-02 Udt Sensors, Inc. Front-side illuminated, back-side contact double-sided PN-junction photodiode arrays
JP4155899B2 (ja) 2003-09-24 2008-09-24 三洋電機株式会社 光起電力素子の製造方法
EP1519422B1 (en) 2003-09-24 2018-05-16 Panasonic Intellectual Property Management Co., Ltd. Photovoltaic cell and its fabrication method
DE102004008681A1 (de) 2004-02-21 2005-09-08 Eads Space Transportation Gmbh Verfahren zur Energieübertragung mittels kohärenter elektromagnetischer Strahlung
KR100772504B1 (ko) 2005-12-01 2007-11-01 한국전자통신연구원 높은 전송 전력 효율을 가지는 ofdm 세기 변조 /직접검파방식의 유/무선 통신 시스템 변조/복조 장치와 방법
US20100012819A1 (en) * 2006-11-21 2010-01-21 Graham David S Optical Power Beaming to Electrically Powered Devices
US7414193B1 (en) * 2007-02-09 2008-08-19 Amx Llc Wall box mounting apparatus
JP2008245404A (ja) 2007-03-27 2008-10-09 Kddi Corp 電力伝送システム
US20090056789A1 (en) * 2007-08-30 2009-03-05 Vladimir Draganov Solar concentrator and solar concentrator array
WO2009055687A2 (en) 2007-10-25 2009-04-30 Stuart Martin A Laser energy source device and method
WO2009083990A2 (en) * 2008-01-03 2009-07-09 Wi-Charge Ltd. Wireless laser power transmitter
KR20090121629A (ko) * 2008-05-22 2009-11-26 삼성전자주식회사 태양전지 셀 및 이를 이용하는 태양전지 모듈
GB0816113D0 (en) 2008-09-04 2008-10-15 Clive Barry M Photvoltaic cell apparatus
EP2331884B1 (en) * 2008-09-18 2014-07-30 Kloben S.a.s. Di Turco Adelino E C. Non-tracking solar collector device
US8684545B2 (en) * 2009-07-30 2014-04-01 The Regents Of The University Of California Light concentration apparatus, systems and methods
KR101139443B1 (ko) 2009-09-04 2012-04-30 엘지전자 주식회사 이종접합 태양전지와 그 제조방법
EP2560266B1 (en) 2010-04-13 2018-12-05 Fujitsu Limited Power supply system, power transmitter, and power receiver
US8598673B2 (en) 2010-08-23 2013-12-03 Discovery Semiconductors, Inc. Low-noise large-area photoreceivers with low capacitance photodiodes
US8946939B2 (en) 2011-03-31 2015-02-03 Qualcomm Incorporated Systems and methods for detecting and protecting a wireless power communication device in a wireless power system
NL2006932C2 (en) 2011-06-14 2012-12-17 Stichting Energie Photovoltaic cell.
US8794229B2 (en) 2011-06-15 2014-08-05 Feng Shi Solar concentrator
JP2013257212A (ja) 2012-06-12 2013-12-26 Ricoh Co Ltd 照明装置、通信装置及び位置情報管理システム
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
CN103078678B (zh) * 2012-12-29 2016-06-29 中国航天科技集团公司第五研究院第五一三研究所 星载激光无线能量传输系统
US8853522B1 (en) * 2013-03-15 2014-10-07 Bingwu Gu Concentrated photovoltaic and solar heating system
US8952478B2 (en) 2013-04-24 2015-02-10 Infineon Technologies Austria Ag Radiation conversion device and method of manufacturing a radiation conversion device
US20150091495A1 (en) * 2013-09-27 2015-04-02 Rashed Mahameed Electronic device having wireless laser charging
US10097041B2 (en) * 2013-10-31 2018-10-09 Lg Electronics Inc. Wireless power transmission device and control method therefor
CN106104815A (zh) * 2014-01-13 2016-11-09 索莱克赛尔公司 用于背接触式太阳能电池的不连续发射极和基极岛
US9383080B1 (en) * 2014-05-21 2016-07-05 The United States Of America As Represented By The Director, National Security Agency Wide field of view concentrator
JP6246664B2 (ja) * 2014-06-04 2017-12-13 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US20160020342A1 (en) 2014-07-17 2016-01-21 Solarcity Corporation Solar cell with interdigitated back contact
US9813151B2 (en) * 2014-08-05 2017-11-07 Massachusetts Institute Of Technology Free-space optical communication module for small satellites
US20160234778A1 (en) 2015-02-09 2016-08-11 Qualcomm Incorporated Battery status indication within a wi-fi beacon
US10204514B2 (en) 2015-03-27 2019-02-12 Penguin Automated Systems Inc. Omnidirectional optical wireless communications receiver and system
KR102365346B1 (ko) * 2015-03-27 2022-02-21 삼성전자 주식회사 전자 장치 및 전자 장치의 무선 충전 방법
KR20170021011A (ko) 2015-08-17 2017-02-27 엘지이노텍 주식회사 무선 전력 송신기 및 이와 연결되는 차량 제어 유닛
KR20170023523A (ko) 2015-08-24 2017-03-06 엘지이노텍 주식회사 무선 충전 배터리 및 무선 충전 제어 방법
US11368054B2 (en) 2016-02-22 2022-06-21 Lasermotive, Inc. Remote power safety system
CN109690287B (zh) 2016-04-11 2022-09-09 Wi-电荷有限公司 光学无线供电系统
WO2017205549A2 (en) * 2016-05-24 2017-11-30 California Institute Of Technology Laser wireless power transfer system with active and passive safety measures
US10601506B2 (en) * 2016-06-13 2020-03-24 Bae Systems, Plc Optical communication device
US10955531B2 (en) * 2017-06-21 2021-03-23 Apple Inc. Focal region optical elements for high-performance optical scanners
CN206920332U (zh) * 2017-07-13 2018-01-23 燕山大学 一种基于复合抛物面聚光器的小型近红外光谱仪光学系统
WO2019165293A1 (en) 2018-02-23 2019-08-29 Phion Technologies Llc Transmitter assembly for free space power transfer and data communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006558A (ja) 2005-06-21 2007-01-11 Kddi Corp 電力伝送システム及び方法
WO2014156465A1 (ja) 2013-03-27 2014-10-02 インターナショナル・ビジネス・マシーンズ・コーポレーション 送電装置、受電装置、電力供給システムおよび電力供給方法
JP2020520225A (ja) 2017-05-15 2020-07-02 ワイ−チャージ リミテッド 光無線給電の柔軟管理システム

Also Published As

Publication number Publication date
JP2023126811A (ja) 2023-09-12
US20210296942A1 (en) 2021-09-23
WO2019165295A1 (en) 2019-08-29
US20200403457A1 (en) 2020-12-24
US11600643B2 (en) 2023-03-07
WO2019165293A1 (en) 2019-08-29
JP7391386B2 (ja) 2023-12-05
US20210036175A1 (en) 2021-02-04
US11876105B2 (en) 2024-01-16
US20220158503A1 (en) 2022-05-19
WO2019165282A1 (en) 2019-08-29
US11277040B2 (en) 2022-03-15
JP2021514174A (ja) 2021-06-03
JP7291412B2 (ja) 2023-06-15
US11349351B2 (en) 2022-05-31
US11056933B2 (en) 2021-07-06
US20200412174A1 (en) 2020-12-31
US20220247240A1 (en) 2022-08-04
JP2021515533A (ja) 2021-06-17
US20210119492A1 (en) 2021-04-22
US11336126B2 (en) 2022-05-17
JP2021516534A (ja) 2021-07-01
WO2019165287A1 (en) 2019-08-29
US20210167227A1 (en) 2021-06-03
WO2019165299A1 (en) 2019-08-29
US11616087B2 (en) 2023-03-28
JP2021515532A (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
JP7208654B2 (ja) 安全でセキュアな自由空間電力伝送及びデータ伝送の方法
KR102399819B1 (ko) 광 무선 전력 공급장치용 시스템
JP6925316B2 (ja) 光によって無線電力を伝送するシステムと方法
KR102455846B1 (ko) 광 무선 전력 공급장치용 시스템
US20100012819A1 (en) Optical Power Beaming to Electrically Powered Devices
US20070019693A1 (en) Wireless power beaming to common electronic devices
KR102721881B1 (ko) 광 무선 전력 공급장치용 시스템

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221226

R150 Certificate of patent or registration of utility model

Ref document number: 7208654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150