WO2012036137A1 - 分析装置及び分析方法 - Google Patents
分析装置及び分析方法 Download PDFInfo
- Publication number
- WO2012036137A1 WO2012036137A1 PCT/JP2011/070773 JP2011070773W WO2012036137A1 WO 2012036137 A1 WO2012036137 A1 WO 2012036137A1 JP 2011070773 W JP2011070773 W JP 2011070773W WO 2012036137 A1 WO2012036137 A1 WO 2012036137A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plasma
- emission intensity
- substance
- analysis
- analysis target
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 125
- 239000013076 target substance Substances 0.000 claims description 75
- 239000000126 substance Substances 0.000 claims description 72
- 230000003287 optical effect Effects 0.000 claims description 64
- 230000008859 change Effects 0.000 claims description 37
- 230000007423 decrease Effects 0.000 claims description 24
- 239000012491 analyte Substances 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 239000013077 target material Substances 0.000 claims 2
- 238000005375 photometry Methods 0.000 abstract 2
- 210000002381 plasma Anatomy 0.000 description 228
- 238000012545 processing Methods 0.000 description 28
- 230000010355 oscillation Effects 0.000 description 12
- 238000012986 modification Methods 0.000 description 7
- 239000013307 optical fiber Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000008033 biological extinction Effects 0.000 description 4
- 230000008034 disappearance Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005404 monopole Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
- G01N21/73—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/66—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
- G01N21/68—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using high frequency electric fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0208—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0218—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0294—Multi-channel spectroscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/443—Emission spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
- G01N21/718—Laser microanalysis, i.e. with formation of sample plasma
Definitions
- the present invention relates to an analysis apparatus and an analysis method for analyzing a substance to be analyzed by analyzing light emitted from plasma.
- Patent Document 1 discloses this type of analyzer.
- Patent Document 1 describes an elemental analyzer using laser-induced breakdown (spectrum).
- this elemental analyzer pulse laser light emitted from a laser oscillator is condensed on the sample surface, and a part of the sample surface is turned into plasma.
- the constituent elements on the sample surface become atoms in an excited state.
- the atom in the excited state emits fluorescence when transitioning to the lower level.
- the emitted fluorescence enters the fluorescence detector via the optical fiber.
- the fluorescence detector converts information about the wavelength of fluorescence and the intensity of this wavelength into an electrical signal.
- the computer for measurement control performs elemental analysis based on the converted electrical signal.
- the plasma light emitted from the plasma is spectroscopically analyzed to find the wavelength component having a strong emission intensity and analyze the analysis target substance.
- the inventor of the present application has found that a substance to be analyzed can be analyzed depending on how the emission intensity of plasma light changes during the period in which plasma is formed.
- the present invention has been made in view of the above points, and an object of the present invention is to provide plasma light in a period in which plasma is formed in an analysis apparatus that analyzes a substance to be analyzed by analyzing plasma light emitted from plasma.
- the object is to realize an analyzer that analyzes a substance to be analyzed using a change in emission intensity.
- energy is instantaneously applied to a substance to be analyzed to generate an initial plasma in which the substance to be analyzed is in a plasma state, and the initial plasma is irradiated with an electromagnetic wave for a predetermined time to change the plasma state.
- the plasma generation means to be maintained and the information on the emission intensity from the peak of the emission intensity of the initial plasma to the electromagnetic wave maintained by the electromagnetic wave until the emission intensity increases to reach a substantially constant value, or the irradiation of the electromagnetic wave is stopped.
- An analysis apparatus comprising: an optical analysis means for identifying a component of an analysis target substance by using information on emission intensity later.
- the plasma generating means instantaneously applies energy to the analysis target substance to generate initial plasma, and irradiates the initial plasma with electromagnetic waves to maintain the plasma state.
- the time-series change in the emission intensity of the plasma light emitted from the plasma during the period in which the plasma is formed for example, as shown in FIG. 3, first, the peak of the emission intensity due to the initial plasma is instantaneously seen. As a result, the light emission intensity once decreases to a minimum value. Then, after the emission intensity reaches the minimum value, the emission intensity is increased again by the electromagnetic wave plasma, and the emission intensity is reduced to zero as the irradiation of the electromagnetic wave is stopped.
- the inventor of the present application has a delay time (T S ) of emission of electromagnetic plasma relative to emission of initial plasma, and an increase amount per unit time of emission intensity when emission intensity is increased by electromagnetic plasma immediately after the emission of initial plasma. ( ⁇ I / ⁇ t), the time until the emission intensity becomes zero after the irradiation of electromagnetic waves is stopped, the amount of decrease in the emission intensity per unit time after the irradiation of electromagnetic waves is stopped, and the like vary depending on the type of substance. I found out.
- the change in the emission intensity from the peak of the emission intensity of the initial plasma until the emission intensity is increased by the electromagnetic wave plasma to reach a substantially constant value, and the change in the emission intensity after the irradiation of the electromagnetic wave is stopped differs depending on the type of substance.
- the optical analysis means stopped the information on the emission intensity from the peak of the emission intensity of the initial plasma until the emission intensity increased by the electromagnetic wave plasma to reach a substantially constant value, or the irradiation of the electromagnetic wave.
- the component of the substance to be analyzed is identified using the information on the emission intensity later.
- the optical analysis means identifies a component of the substance to be analyzed using a delay time of the electromagnetic wave plasma emission with respect to the emission of the initial plasma.
- the component of the substance to be analyzed is identified using the delay time (T S ) of the emission of the electromagnetic wave plasma with respect to the emission of the initial plasma.
- the optical analysis means calculates an increase amount per unit time of the emission intensity when the emission intensity is increased by the electromagnetic wave plasma immediately after the emission of the initial plasma. To identify the components of the analyte.
- the component of the substance to be analyzed is identified using the amount of increase ( ⁇ I / ⁇ t) per unit time of the emission intensity when the emission intensity is increased by the electromagnetic wave plasma immediately after the emission of the initial plasma. . That is, the component of the substance to be analyzed is identified using the slope of the emission intensity graph (see FIG. 3) when the emission intensity is increased by the electromagnetic wave plasma immediately after the initial plasma emission.
- a plasma generation means for applying energy to an analysis target substance contained in a fluid to bring the analysis target substance into a plasma state, and the analysis included in the light emitted from the plasma generated by the plasma generation means
- An analysis apparatus comprising: an optical analysis means for detecting at least one of the concentration and the substance amount of the analysis target substance using a change amount per unit time of the emission intensity of the wavelength corresponding to the target substance.
- the concentration and the substance of the analyte are analyzed using the change amount (either increase or decrease) per unit time of the emission intensity of the wavelength corresponding to the analyte contained in the plasma light. At least one of the quantities is detected.
- the amount of change per unit time of the emission intensity of the wavelength corresponding to the analyte is the amount of the analyte. It takes different values depending on the concentration and the amount of substance. The amount of change decreases as the concentration of the analysis target substance increases, and decreases as the amount of the analysis target substance increases.
- the concentration and amount of the analysis target substance can be detected from the amount of change per unit time in the emission intensity of the wavelength corresponding to the analysis target substance. Therefore, in the fourth aspect of the invention, at least one of the concentration of the analysis target substance and the amount of substance is detected using the amount of change per unit time of the emission intensity of the wavelength corresponding to the analysis target substance contained in the plasma light.
- the plasma generating means generates initial plasma generating means for applying energy to the analysis target substance to change the analysis target substance into a plasma state
- the initial plasma generation means Plasma maintaining means for irradiating the generated initial plasma with electromagnetic waves for a predetermined time to maintain the plasma state
- the optical analysis means extinguishes the plasma after the plasma maintaining means stops the irradiation of electromagnetic waves
- concentration or amount of the substance to be analyzed is detected using the amount of decrease in emission intensity per unit time.
- the concentration of the substance to be analyzed and the amount of the substance are detected using the amount of decrease in emission intensity per unit time when the plasma is extinguished after the plasma maintaining means stops the irradiation of the electromagnetic wave.
- energy is instantaneously applied to a substance to be analyzed to generate an initial plasma in which the substance to be analyzed is in a plasma state, and the initial plasma is irradiated with an electromagnetic wave for a predetermined time to change the plasma state.
- the information on the emission intensity until the emission intensity increased by the electromagnetic wave plasma maintained by the electromagnetic wave to reach a substantially constant value, or the irradiation of the electromagnetic wave was stopped.
- a plasma generation step in which energy is supplied to an analysis target substance contained in a fluid to bring the analysis target substance into a plasma state, and the analysis included in the light emitted from the plasma generated by the plasma generation step And an optical analysis step of detecting at least one of the concentration and the amount of the substance to be analyzed using a change amount per unit time of the emission intensity of the wavelength corresponding to the target substance.
- the emission intensity changes from the peak of the emission intensity of the initial plasma until the emission intensity increases by the electromagnetic wave plasma to reach a substantially constant value, or the irradiation of electromagnetic waves. Since the change in emission intensity after stopping depends on the type of substance, information on the emission intensity from the peak of the emission intensity of the initial plasma until the emission intensity increases by the electromagnetic wave plasma to reach a substantially constant value, or electromagnetic waves The component of the substance to be analyzed is identified using the information on the emission intensity after stopping the irradiation. Therefore, it is possible to realize an analyzer that can identify the component of the analysis target substance using the change in the emission intensity of the plasma light during the period in which the plasma is formed.
- the amount of change per unit time in the emission intensity of the wavelength corresponding to the analysis target substance contained in the plasma light varies depending on the concentration and quantity of the analysis target substance. Using the amount of change per unit time in the emission intensity of the wavelength corresponding to the analysis target substance, at least one of the concentration of the analysis target substance and the substance amount is detected. Therefore, it is possible to realize an analyzer that can detect the concentration and amount of a substance to be analyzed using a change in the emission intensity of plasma light during a period in which plasma is formed.
- FIG. 1 is a schematic configuration diagram of an analyzer according to the first embodiment.
- FIG. 2 is a diagram for explaining the plasma generation maintaining operation of the first embodiment.
- FIG. 3 is a graph showing time-series changes in the emission intensity of light emitted from the plasma generated by the plasma generation apparatus of the first embodiment.
- FIG. 4 is a graph showing a time-series change in light emission intensity when light emitted from a plasma generated by the plasma generation apparatus of Embodiment 1 includes light emission of a plurality of substances.
- FIG. 5 is a schematic configuration diagram of the analyzer according to the second embodiment.
- FIG. 6 is a schematic configuration diagram of the analyzer according to the third embodiment.
- FIG. 7 is a schematic configuration diagram of the plasma generation apparatus according to the third embodiment.
- Embodiment 1 is essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
- the analyzer 10 includes a plasma generator 11, a cavity 12, an optical analyzer 13, and a controller 14.
- the control device 14 controls the plasma generation device 11 and the optical analysis device 13.
- the analyzer 10 of this Embodiment 1 is a substance which can be made into a plasma state with the plasma production
- the plasma generator 11 includes a laser light source 21, a condensing optical system 22, a microwave oscillator 23, microwave transmission paths 24 to 27, an antenna 28, and a pulse power source 29.
- the plasma generation device 11 instantaneously applies energy to the analysis target substance 15 to generate an initial plasma in which the analysis target substance 15 is brought into a plasma state, and irradiates the initial plasma with an electromagnetic wave for a predetermined time to change the plasma state.
- the plasma generating means to maintain is comprised.
- the laser light source 21 and the condensing optical system 22 constitute initial plasma generating means for applying energy to the analysis target substance 15 to change the analysis target substance 15 into a plasma state.
- the microwave oscillator 23, the microwave transmission paths 24 to 27, the antenna 28, and the pulse power source 29 are plasmas that maintain the plasma state by irradiating the initial plasma generated by the initial plasma generating means with electromagnetic waves for a predetermined time. It constitutes a maintenance means.
- the laser light source 21 oscillates a laser beam for bringing the analysis target substance 15 into a plasma state.
- the laser light oscillated from the laser light source 21 passes through the condensing optical system 22 and is condensed at the focal point of the condensing optical system 22.
- the focal point of the condensing optical system 22 is located in the cavity 12.
- the laser light source 21 for example, an Nd: YAG laser light source is used.
- a convex lens is used for the condensing optical system 22.
- the plasma generation device 11 is configured such that the energy density of the laser beam condensed at the focal point of the condensing optical system 22 is equal to or higher than the breakdown threshold of the analysis target substance 15. That is, the output of the laser beam is set to a value higher than that necessary for the analysis target substance 15 present at the focal point to be converted into plasma.
- the microwave oscillator 23 is connected to the antenna 28 via microwave transmission paths 24 to 27.
- the microwave transmission paths 24 to 27 include a waveguide 24 connected to the microwave oscillator 23, an isolator 25 connected to the waveguide 24, a coaxial waveguide converter 26 connected to the isolator 25, A coaxial cable 27 is connected to the coaxial waveguide converter 26.
- the microwave oscillator 23 is connected to a pulse power supply 29. The microwave oscillator 23 oscillates a microwave when supplied with power from the pulse power supply 29.
- the antenna 28 is connected to the coaxial cable 27.
- the tip of the antenna 28 is directed to the focal position of the condensing optical system 22.
- the microwave oscillated from the microwave oscillator 23 is irradiated from the antenna 28 toward the focal position of the condensing optical system 22 through the microwave transmission paths 24 to 27.
- microwave oscillator 23 for example, a magnetron that oscillates a microwave of 2.45 GHz is used.
- antenna 28 for example, a 3/4 wavelength monopole antenna is used as an antenna having a sufficient gain with respect to the microwave oscillated from the microwave oscillator 23.
- pulse power supply 29 for example, an inverter type power supply device is used.
- the cavity 12 is a substantially cylindrical container having a microwave resonance structure, and prevents the microwave from leaking to the outside.
- the cavity 12 is provided with a support member (not shown) that supports the analysis target substance 15.
- the cavity 12 is provided with an introduction window for introducing laser light oscillated from the laser light source 21. Laser light oscillated from the laser light source 21 is incident on the cavity 12.
- the substance to be analyzed 15 is brought into a plasma state by the laser light.
- the microwave is irradiated from the antenna 28 to the analysis target substance 15 in the plasma state.
- the plasma generation device 11 performs a plasma generation maintenance operation for maintaining the plasma state by setting the analyte 15 to a plasma state in accordance with an instruction from the control device 14.
- the pulse power supply 29 receives the start signal output from the control device 14, the supply of power to the microwave oscillator 23 is started.
- the microwave oscillator 23 starts the oscillation of the microwave, and the analysis target substance 15 in the cavity 12 is irradiated with the microwave from the antenna 28.
- the microwaves resonate to form a standing wave.
- the vicinity of the laser irradiation surface of the analysis target substance 15 becomes an antinode of a standing wave and becomes a strong electric field region.
- the laser light source 21 receives the oscillation signal output from the control device 14, it oscillates only one pulsed laser beam.
- the laser light is oscillated immediately after the start of microwave irradiation.
- the laser light oscillated from the laser light source 21 is condensed on the surface of the analysis target substance 15 by the condensing optical system 22.
- the analysis target substance 15 is instantaneously given a high density energy.
- the energy density in the laser light irradiation region increases and exceeds the breakdown threshold of the analysis target substance 15. Then, as shown in FIG. 2, the substance in the laser light irradiation region is ionized to be in a plasma state. That is, plasma is generated using the analysis target substance 15 as a raw material.
- plasma generated by laser light is referred to as “laser plasma”.
- Laser plasma corresponds to initial plasma.
- microwave plasma corresponds to electromagnetic plasma.
- the microwave oscillator 23 stops the oscillation of the microwave.
- the microwave oscillator 23 is stopped after the laser light is oscillated.
- the microwave irradiation is stopped, for example, 5 seconds after the end of the laser light oscillation. Then, recombination of electrons occurs and the microwave plasma disappears.
- the pulse power supply 29 repeatedly supplies a pulse wave (or burst wave) to the microwave oscillator 23 during the period from the reception of the start signal to the reception of the stop signal.
- the pulse power supply 29 supplies power to the microwave oscillator 23 at a predetermined duty ratio (on / off duty ratio).
- the microwave oscillator 23 repeats the oscillation and stoppage of the microwave at a predetermined duty ratio.
- the microwave plasma does not become a thermal plasma and is maintained as a non-equilibrium plasma.
- the start of microwave oscillation is the time when the first pulse wave is received
- the end of the microwave oscillation is the time when the last pulse wave is received.
- the period from receiving the start signal to receiving the stop signal is a microwave irradiation period. Further, the energy per unit time of the microwave is kept constant without being adjusted over the microwave irradiation period.
- the microwave oscillation start timing is before the laser beam oscillation, but may be after the laser beam oscillation as long as the laser plasma is extinguished.
- the peak of the emission intensity due to the laser plasma is first seen instantaneously as shown in FIG.
- the emission intensity decreases to a minimum value near zero. Then, after the emission intensity reaches the minimum value, the emission intensity is increased again by the microwave plasma, and the emission intensity is kept at a certain level until the disappearance of the microwave plasma is started.
- laser plasma plasma up to a minimum value immediately after the peak of emission intensity by laser plasma
- microwave plasma plasma after the minimum value
- the plasma generating apparatus 11 is configured so that the maximum value of the emission intensity of laser plasma is larger than that of microwave plasma.
- the output of the laser light source 21 and the output of the microwave oscillator 23 are set so that the energy density in the plasma is higher in the microwave plasma than in the laser plasma.
- the optical analyzer 13 analyzes the plasma light emitted from the plasma during the plasma generation maintaining operation.
- the optical analysis device 13 uses the information on the emission intensity from the peak of the emission intensity of the laser plasma until the emission intensity increases by the microwave plasma to reach a substantially constant value, and identifies the component of the analyte 15 Means.
- the optical analyzer 13 includes a beam sampler 30, a first power meter 31A, a second power meter 31B, an optical element 32, an optical fiber 33, a spectroscope 34, a photodetector 35, and a signal processing device 36.
- the beam sampler 30 is disposed between the laser light emitting portion of the laser light source 21 and the condensing optical system 22.
- the beam sampler 30 separates a part of the laser light oscillated from the laser light source 21.
- the first power meter 31A receives the light separated by the beam sampler 30.
- the output signal of the first power meter 31A is input to the signal processing device 36.
- the second power meter 31 ⁇ / b> B is disposed on the opposite side of the cavity 12 with respect to the laser light source 21 and receives the laser light that has passed through the cavity 12.
- the output signal of the second power meter 31B is input to the signal processing device 36.
- the optical element 32 includes a lens that transmits light.
- a condensing optical system is used as the optical element 32.
- the optical element 32 is arranged so that its focal point is located in the formation region of the microwave plasma.
- the spectroscope 34 is connected to the optical element 32 via the optical fiber 33.
- the spectroscope 34 receives plasma light incident on the optical element 32.
- the spectroscope 34 uses a diffraction grating or a prism to disperse the incident plasma light in different directions depending on the wavelength.
- the photodetector 35 is disposed so as to receive light in a predetermined wavelength band among the plasma light dispersed by the spectrometer 34. In response to the command signal output from the control device 14, the photodetector 35 converts the received light in the wavelength band into an electrical signal and outputs the electrical signal.
- a photomultiplier tube for example, a photomultiplier tube (PMT) is used.
- the electrical signal output from the photodetector 35 is input to the signal processing device 36.
- a light detector other than the photomultiplier may be used as long as it has a high time response.
- the signal processing device 36 detects time-series changes in the intensity of light received by the photodetector 35 based on the electrical signal output from the photodetector 35.
- the signal processing device 36 creates a graph showing the time-series change of the emission intensity as shown in FIG. 3, for example.
- the signal processing device 36 calculates the delay time (T S ) of the emission of the microwave plasma with respect to the emission of the laser plasma. Then, the signal processing device 36 identifies the component of the analysis target substance 15 using the delay time (T S ).
- the signal processing device 36 detects the energy of the laser light oscillated from the laser light source 21 by using the output value of the first power meter 31A and the separation rate of the laser light by the beam sampler 30.
- the signal processing device 36 detects the energy of the laser light that has passed through the cavity 12 using the output value of the second power meter 31B.
- the signal processing device 36 detects the energy absorbed in the plasma from the difference between the energy of the laser light oscillated from the laser light source 21 and the energy of the laser light that has passed through the cavity 12.
- the optical analyzer 13 performs an optical analysis operation for analyzing plasma light emitted from the plasma in accordance with instructions from the control device 14.
- the optical analysis operation is performed in conjunction with the plasma generation maintaining operation.
- plasma light emitted from plasma passes through the optical element 32 and the optical fiber 33 in order and enters the spectroscope 34.
- the incident plasma light is dispersed in different directions depending on the wavelength.
- plasma light having a predetermined wavelength band reaches the photodetector 35.
- the photodetector 35 the received plasma light in the wavelength band is converted into an electrical signal and output.
- the signal processing device 36 a time-series change in the emission intensity of the plasma light is detected based on the output signal of the photodetector 35.
- the delay time (T S ) of the emission of the microwave plasma relative to the emission of the laser plasma is calculated, and the component of the analysis target substance 15 is identified based on the delay time (T S ).
- the name of the identified substance is displayed on the monitor of the signal processing device 36.
- the signal treatment device 36 stores delay times (T S ) corresponding to a plurality of substances in a memory.
- the delay time (T S ) stored in the signal treatment device 36 is a value obtained when the energy per unit time of the microwave is used as the output of the microwave oscillator 23 of the first embodiment under predetermined temperature and pressure conditions. is there.
- the signal treatment device 36 reads a substance corresponding to the delay time (T S ) from the memory, and uses the substance as a component of the analysis target substance 15.
- the calculation of the delay time (T S ) is larger than the minimum value (I min ) of the emission intensity after the peak of the laser plasma, and more than the emission intensity (I S ) when the microwave plasma has a substantially constant value. This is done using a small emission intensity (I X ).
- the signal processing device 36 from the time the light emission intensity is I X in the course of the emission intensity of the laser plasma is reduced, a delay time up to the point of emission intensity is I X in the process of light emission intensity of the microwave plasma is increased Calculated as time (T S ).
- the peak time of the laser plasma may be the start time of the delay time (T S ), or the time when the emission intensity becomes the minimum value (I min ) after the peak of the laser plasma is set as the start time of the delay time (T S ). Also good. Also, the time point at which the emission intensity reaches a certain value due to the microwave plasma may be the end point of the delay time (T S ), or the time point of the inflection point of the emission intensity when the emission intensity increases due to the microwave plasma. It may be the end point of the delay time (T S ).
- the light received by the photodetector 35 includes light emission of a plurality of substances, as shown in FIG. 4, when the light emission intensity is increased by the microwave, the light emission intensity is stepped. Change.
- the substance corresponding to S2 ) can be identified as a component of the target substance.
- the emission intensity of the laser plasma is The component of the substance to be analyzed 15 is identified using information about the emission intensity from the peak until the emission intensity increases by the microwave plasma and reaches a substantially constant value. Therefore, it is possible to realize the analyzer 10 that can identify the component of the analysis target substance 15 using the change in the emission intensity of the plasma light during the period in which the plasma is formed.
- the signal processing device 36 increases the emission intensity per unit time when the emission intensity is increased by the microwave plasma immediately after the emission of the laser plasma (hereinafter, “target increase amount”). To identify the component of the substance 15 to be analyzed.
- the signal treatment device 36 stores a target increase amount corresponding to a plurality of substances in a memory.
- the substance corresponding to the target increase amount ( ⁇ I / ⁇ t) is read from the memory, and the substance is stored in the analysis target substance 15. Identify as a component.
- any two points in the process of increasing the emission intensity by the microwave may be selected as the interval for calculating the target increase amount ( ⁇ I / ⁇ t), or the emission intensity after the peak of the laser plasma. May be from the time when becomes the minimum value (I min ) to the time when the emission intensity reaches a certain value by the microwave plasma.
- the signal processing device 36 uses the decrease amount of the emission intensity after the microwave irradiation is stopped (hereinafter referred to as “target decrease amount”), and the component of the analysis target substance 15 is used. Is identified.
- the signal treatment device 36 stores target reduction amounts corresponding to a plurality of substances in a memory.
- the signal processing device 36 reads a substance corresponding to the target decrease amount from the memory and identifies the substance as a component of the analysis target substance 15.
- the optical analysis device 13 constitutes an optical analysis unit that identifies the component of the analysis target substance 15 using information on the emission intensity after the irradiation of electromagnetic waves is stopped.
- the signal processing device 36 may identify the component of the analysis target substance 15 using the time from when the microwave irradiation is stopped until the emission intensity becomes zero.
- the analysis device 10 of the second embodiment is a device that detects the amount and concentration of a specific substance (for example, hydrogen, carbon monoxide, carbon dioxide, OH radical) contained in a gas as an analysis target substance.
- a specific substance for example, hydrogen, carbon monoxide, carbon dioxide, OH radical
- the plasma generation device 11 constitutes a plasma generation unit that applies energy to the analysis target substance contained in the fluid to bring the analysis target substance into a plasma state.
- the optical analysis device 13 uses the amount of change per unit time of the emission intensity of the wavelength corresponding to the analysis target substance contained in the light emitted from the plasma generated by the plasma generation means, and the concentration and the amount of the analysis target substance Constitutes an optical analysis means for detecting.
- the plasma generator 11 has the same configuration as that of the first embodiment.
- the optical analyzer 13 uses an optical filter 38 for extracting light having a wavelength corresponding to the substance to be analyzed from plasma light, instead of the spectroscope 34.
- plasma light emitted from plasma passes through the optical element 32, the optical fiber 33, and the optical filter 38 in order, and reaches the photodetector 35.
- the photodetector 35 receives light having an analysis wavelength corresponding to the substance to be analyzed, converts the light having the analysis wavelength into an electrical signal, and outputs the electrical signal.
- the signal processing device 36 detects a time-series change in the emission intensity of the light having the analysis wavelength based on the output signal of the photodetector 35. Then, the signal processing device 36 calculates a decrease amount per unit time of the emission intensity of the analysis wavelength when the microwave plasma is extinguished (hereinafter referred to as “decrease amount upon extinction”), and the decrease amount upon extinction. Is used to detect the amount of the substance to be analyzed.
- the signal processing device 36 stores, in the memory, values of the decrease amount at the time of disappearance corresponding to each of the plurality of values of the substance amount of the analysis target substance.
- the value stored in the signal treatment device 36 is a value obtained when the energy per unit time of the microwave is used as the output of the microwave oscillator 23 of the second embodiment under predetermined temperature and pressure conditions. The larger the amount of the substance to be analyzed, the longer the time required for the plasma to disappear, so the amount of decrease at the time of disappearance is a small value.
- the signal processing device 36 reads the value of the substance amount of the analysis target substance corresponding to the detected decrease amount at the time of disappearance from the memory, and sets the value as the substance quantity of the analysis target substance.
- the signal processing device 36 stores in the memory the volume of the region that takes in plasma light from the optical element 32 in the microwave formation region.
- the signal processing device 36 calculates the concentration (molar concentration) of the substance to be analyzed by dividing the detected substance amount by the volume read from the memory.
- the signal processing device 36 may correct the amount of substance calculated from the decrease amount at the time of extinction using the detected value of the energy of the laser light oscillated from the laser light source 21, or the energy absorbed in the plasma. You may correct
- the amount of change per unit time in the emission intensity of the analysis wavelength contained in the plasma light varies depending on the concentration and amount of the substance to be analyzed. Used to detect the concentration and amount of the substance to be analyzed. Therefore, it is possible to realize the analyzer 10 capable of detecting the concentration and the amount of the substance to be analyzed using the change in the emission intensity of the plasma light during the period in which the plasma is formed.
- the signal processing device 36 uses a decrease amount per unit time of the emission intensity of the wavelength corresponding to the analysis target substance included in the light emitted from the laser plasma generated by the laser light, Detect the concentration or amount of substance to be analyzed.
- the concentration or amount of the substance to be analyzed is detected using the amount of decrease in the process in which the emission intensity of the laser plasma decreases from the peak value.
- the plasma generation apparatus 11 does not need to maintain plasma by microwaves, and may include at least the laser light source 21 and the condensing optical system 22.
- the plasma generation apparatus 11 does not need to maintain plasma by microwaves, and may include at least the laser light source 21 and the condensing optical system 22.
- Embodiment 3 The third embodiment is different from the first and second embodiments in the initial plasma generation means.
- a discharge device for example, a spark plug
- the plasma generator 11 includes a pulse voltage generator 51, a microwave oscillator 23, a mixer 52, a matching unit 53, and a spark plug 54.
- the pulse voltage generator 51, the mixer 52, the matching unit 53, and the spark plug 54 are integrated to form a discharge unit 58 (the description of the matching unit 53 is omitted in FIG. 6). is doing).
- the pulse voltage generator 51 is supplied with DC power from an external DC power supply 60. Upon receiving the discharge signal output from the control device 14, the pulse voltage generator 51 generates and outputs a high voltage pulse voltage.
- the pulse voltage is an impulse voltage signal having a peak voltage of about 6 kV to 40 kV, for example.
- the specifications of the pulse voltage may be set as appropriate so that dielectric breakdown occurs when the pulse voltage is applied to the spark plug 54.
- the mixer 52 receives a pulse voltage from the pulse voltage generator 51 and a microwave from the microwave oscillator 23.
- the mixer 52 generates and outputs a mixed signal obtained by mixing the pulse voltage and the microwave.
- the mixed signal is transmitted to the spark plug 54 via the matching unit 53.
- the matching unit 53 performs impedance matching of the microwave output from the mixer 52.
- a discharge gap is formed between the discharge electrode 54a and the ground electrode 54b.
- a discharge is generated and a microwave is emitted.
- a small discharge plasma (initial plasma) is formed by the discharge, and the discharge plasma absorbs microwave energy and expands.
- the expanded plasma becomes microwave plasma.
- the microwave is irradiated for a predetermined time.
- the oscillation start timing of the microwave is before the spark discharge, but may be after the spark discharge as long as it is before the discharge plasma is extinguished.
- the analysis target substance 15 is arranged in the discharge gap.
- the analysis target substance 15 is supported by a support member (not shown).
- the light emitted from the analysis target substance 15 in the plasma state is incident on the optical element 32 disposed so as to face the analysis target substance 15, and similarly to the first and second embodiments, The optical analysis device 13 analyzes the analysis target substance 15.
- the above embodiment may be configured as follows.
- a solid laser light source other than the Nd: YAG laser light source may be used, or a liquid laser light source, a gas laser light source, a semiconductor laser light source, or a free electron laser light source may be used.
- the initial plasma generation unit only needs to be able to give sufficient energy to cause breakdown.
- a thermionic generator such as a glow plug, a laser It may be a diode, a high-intensity light emitting diode semiconductor light emitting element, or the like.
- microwave oscillator 23 another oscillator such as a semiconductor oscillator may be used as the microwave oscillator 23.
- the present invention is useful for an analysis apparatus and an analysis method for analyzing a substance to be analyzed by analyzing light emitted from plasma.
- Analyzer 11 Plasma generator (Plasma generator) 12 Cavity 13 Optical analyzer (Optical analysis means) 21 Laser light source 22 Condensing optical system 23 Microwave oscillator 28 Antenna 32 Optical element 33 Optical fiber
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
分析装置は、プラズマ生成装置と光分析装置とを備えている。プラズマ生成装置は、分析対象物質にエネルギーを瞬間的に与えて分析対象物質をプラズマ状態にした初期プラズマを生成し、初期プラズマに電磁波を所定の時間に亘って照射してプラズマ状態を維持する。そして、光分析装置が、初期プラズマの発光強度のピークから、電磁波により維持される電磁波プラズマにより発光強度が増加して概ね一定値に達するまでの発光強度に関する情報、又は電磁波の照射を停止した後の発光強度の情報を用いて分析対象物質を同定する。
Description
本発明は、プラズマから発せられる光を分析することにより分析対象物質を分析する分析装置及び分析方法に関するものである。
従来より、プラズマから発せられる光を分析することにより分析対象物質を分析する分析装置及び分析方法が知られている。例えば特許文献1には、この種の分析装置が開示されている。
具体的に、特許文献1には、レーザー誘起ブレイクダウン分光法(Laser-Induced Breakdown Spectroscopy)を利用した元素分析装置が記載されている。この元素分析装置では、レーザー発振器から発せられたパルスレーザー光を試料表面に集光させて、試料表面の一部をプラズマ化させる。試料表面の構成元素は励起状態の原子になる。この励起状態の原子は、下準位に遷移するときに蛍光を放出する。放出された蛍光は、光ファイバーを介して蛍光検出器に入射する。蛍光検出器は、蛍光の波長およびこの波長の強度に関する情報を電気信号に変換する。計測制御用コンピュータは、変換された電気信号に基づいて元素分析を行う。
ところで、従来の分析装置では、プラズマから発せられるプラズマ光を分光分析し、発光強度が強い波長成分を見つけて分析対象物質を分析していた。それに対して、本願の発明者は、プラズマが形成されている期間にプラズマ光の発光強度がどのように変化をするかによって分析対象物質を分析できることを見つけだした。
本発明は、かかる点に鑑みてなされたものであり、その目的は、プラズマから発せられるプラズマ光を分析することにより分析対象物質を分析する分析装置において、プラズマが形成されている期間におけるプラズマ光の発光強度の変化を用いて分析対象物質を分析する分析装置を実現することにある。
第1の発明は、分析対象物質にエネルギーを瞬間的に与えて該分析対象物質をプラズマ状態にした初期プラズマを生成し、該初期プラズマに電磁波を所定の時間に亘って照射してプラズマ状態を維持するプラズマ生成手段と、上記初期プラズマの発光強度のピークから、電磁波により維持される電磁波プラズマにより発光強度が増加して概ね一定値に達するまでの発光強度に関する情報、又は電磁波の照射を停止した後の発光強度の情報を用いて分析対象物質の成分を同定する光分析手段とを備えている分析装置。
第1の発明では、プラズマ生成手段が、分析対象物質にエネルギーを瞬間的に与えて初期プラズマを生成し、初期プラズマに電磁波を照射してプラズマ状態を維持する。ここで、プラズマが形成されている期間において、プラズマから発せられるプラズマ光の発光強度の時系列変化を見ると、例えば図3に示すように、まず初期プラズマによる発光強度のピークが瞬間的に見られ、発光強度が極小値まで一旦低下する。そして、発光強度が極小値になった後に、電磁波プラズマにより発光強度が再び増加し、電磁波の照射の停止に伴って発光強度が減少してゼロになる。本願発明者は、例えば、初期プラズマの発光に対する電磁波プラズマの発光の遅れ時間(TS)、初期プラズマの発光の直後に電磁波プラズマにより発光強度が増加する際の発光強度の単位時間当たりの増加量(ΔI/Δt)、電磁波の照射を停止した後に発光強度がゼロになるまでの時間、及び電磁波の照射を停止した後の発光強度の単位時間当たりの減少量などが、物質の種類によって異なることを見つけ出した。初期プラズマの発光強度のピークから、電磁波プラズマにより発光強度が増加して概ね一定値に達するまでの発光強度の変化や、電磁波の照射を停止した後の発光強度の変化は、物質の種類によって異なる。そこで、第1の発明では、光分析手段が、初期プラズマの発光強度のピークから、電磁波プラズマにより発光強度が増加して概ね一定値に達するまでの発光強度に関する情報、又は電磁波の照射を停止した後の発光強度の情報を用いて分析対象物質の成分を同定する。
第2の発明は、第1の発明において、上記光分析手段が、上記初期プラズマの発光に対する上記電磁波プラズマの発光の遅れ時間を用いて、分析対象物質の成分を同定する。
第2の発明では、初期プラズマの発光に対する電磁波プラズマの発光の遅れ時間(TS)を用いて、分析対象物質の成分が同定される。
第3の発明は、第1又は第2の発明において、上記光分析手段が、上記初期プラズマの発光の直後に上記電磁波プラズマにより発光強度が増加する際の発光強度の単位時間当たりの増加量を用いて、分析対象物質の成分を同定する。
第3の発明では、初期プラズマの発光の直後に電磁波プラズマにより発光強度が増加する際の発光強度の単位時間当たりの増加量(ΔI/Δt)を用いて、分析対象物質の成分が同定される。つまり、初期プラズマの発光の直後に電磁波プラズマにより発光強度が増加する際の発光強度のグラフの傾き(図3参照)を用いて、分析対象物質の成分が同定される。
第4の発明は、流体に含まれる分析対象物質にエネルギーを与えて該分析対象物質をプラズマ状態にするプラズマ生成手段と、上記プラズマ生成手段により生成されたプラズマから発せられる光に含まれる上記分析対象物質に対応する波長の発光強度の単位時間当たりの変化量を用いて、上記分析対象物質の濃度及び物質量の少なくとも一方を検出する光分析手段とを備えている分析装置。
第4の発明では、プラズマ光に含まれる分析対象物質に対応する波長の発光強度の単位時間当たりの変化量(増加量と減少量のどちらでもよい)を用いて、分析対象物質の濃度及び物質量の少なくとも一方が検出される。ここで、特定の分析対象物質がプラズマ化された場合に、プラズマ光に含まれる波長成分の中で、分析対象物質に対応する波長の発光強度の単位時間当たりの変化量は、分析対象物質の濃度や物質量に応じて異なる値をとる。この変化量は、分析対象物質の濃度が高いほど小さくなり、分析対象物質の物質量が多いほど小さくなる。この知見は、分析対象物質に対応する波長の発光強度の単位時間当たりの変化量から、分析対象物質の濃度や物質量を検出可能であることを意味している。そこで、第4の発明では、プラズマ光に含まれる分析対象物質に対応する波長の発光強度の単位時間当たりの変化量を用いて、分析対象物質の濃度及び物質量の少なくとも一方が検出される。
第5の発明は、第4の発明において、上記プラズマ生成手段が、上記分析対象物質にエネルギーを与えて上記分析対象物質をプラズマ状態に変化させる初期プラズマ生成手段と、該初期プラズマ生成手段により生成された初期プラズマに電磁波を所定の時間に亘って照射してプラズマ状態を維持するプラズマ維持手段とを備え、上記光分析手段が、上記プラズマ維持手段が電磁波の照射を停止した後にプラズマが消滅する際の発光強度の単位時間当たりの減少量を用いて、上記分析対象物質の濃度又は物質量を検出する。
第5の発明では、プラズマ維持手段が電磁波の照射を停止した後にプラズマが消滅する際の発光強度の単位時間当たりの減少量を用いて、分析対象物質の濃度及び物質量の少なくとも一方が検出される。
第6の発明は、分析対象物質にエネルギーを瞬間的に与えて該分析対象物質をプラズマ状態にした初期プラズマを生成し、該初期プラズマに電磁波を所定の時間に亘って照射してプラズマ状態を維持するプラズマ生成ステップと、上記初期プラズマの発光強度のピークから、電磁波により維持される電磁波プラズマにより発光強度が増加して概ね一定値に達するまでの発光強度に関する情報、又は電磁波の照射を停止した後の発光強度に関する情報を用いて分析対象物質の成分を同定する光分析ステップとを備えている分析方法。
第7の発明は、流体に含まれる分析対象物質にエネルギーを与えて該分析対象物質をプラズマ状態にするプラズマ生成ステップと、上記プラズマ生成ステップにより生成されるプラズマから発せられる光に含まれる上記分析対象物質に対応する波長の発光強度の単位時間当たりの変化量を用いて、上記分析対象物質の濃度及び物質量の少なくとも一方を検出する光分析ステップとを備えている分析方法。
第1,第2,第3,第6の各発明では、初期プラズマの発光強度のピークから、電磁波プラズマにより発光強度が増加して概ね一定値に達するまでの発光強度の変化や、電磁波の照射を停止した後の発光強度の変化が、物質の種類によって異なるので、初期プラズマの発光強度のピークから、電磁波プラズマにより発光強度が増加して概ね一定値に達するまでの発光強度に関する情報、又は電磁波の照射を停止した後の発光強度の情報を用いて、分析対象物質の成分が同定される。従って、プラズマが形成されている期間におけるプラズマ光の発光強度の変化を用いて分析対象物質の成分を同定可能な分析装置を実現することができる。
また、第4,第5,第7の各発明では、プラズマ光に含まれる分析対象物質に対応する波長の発光強度の単位時間当たりの変化量が分析対象物質の濃度や物質量により異なるので、その分析対象物質に対応する波長の発光強度の単位時間当たりの変化量を用いて、分析対象物質の濃度及び物質量の少なくとも一方が検出される。従って、プラズマが形成されている期間におけるプラズマ光の発光強度の変化を用いて分析対象物質の濃度や物質量を検出可能な分析装置を実現することができる。
以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
《実施形態1》
《実施形態1》
本実施形態1の分析装置10は、図1に示すように、プラズマ生成装置11、キャビティー12、光分析装置13及び制御装置14を備えている。制御装置14は、プラズマ生成装置11及び光分析装置13を制御する。なお、本実施形態1の分析装置10は、プラズマ生成装置11によりプラズマ状態にすることができる物質であれば、固体、液体、及び気体の相状態を問わず、分析対象物質として分析することができる。
-プラズマ生成装置の構成-
-プラズマ生成装置の構成-
プラズマ生成装置11は、レーザー光源21、集光光学系22、マイクロ波発振器23、マイクロ波伝送路24~27、アンテナ28、及びパルス電源29を備えている。プラズマ生成装置11は、分析対象物質15にエネルギーを瞬間的に与えて分析対象物質15をプラズマ状態にした初期プラズマを生成し、初期プラズマに電磁波を所定の時間に亘って照射してプラズマ状態を維持するプラズマ生成手段を構成している。レーザー光源21及び集光光学系22は、分析対象物質15にエネルギーを与えて分析対象物質15をプラズマ状態に変化させる初期プラズマ生成手段を構成している。マイクロ波発振器23、マイクロ波伝送路24~27、アンテナ28、及びパルス電源29は、初期プラズマ生成手段により生成された初期プラズマに電磁波を所定の時間に亘って照射してプラズマ状態を維持するプラズマ維持手段を構成している。
レーザー光源21は、分析対象物質15をプラズマ状態にするためのレーザー光を発振する。レーザー光源21から発振されたレーザー光は、集光光学系22を通過し、集光光学系22の焦点に集光される。集光光学系22の焦点は、キャビティー12内に位置している。なお、レーザー光源21には、例えば、Nd:YAGレーザー光源が用いられる。集光光学系22には、例えば、凸レンズが用いられる。
プラズマ生成装置11は、集光光学系22の焦点に集光されたレーザー光のエネルギー密度が分析対象物質15のブレイクダウン閾値以上になるように構成されている。すなわち、レーザー光の出力は、焦点に存在する分析対象物質15がプラズマ化するのに必要な値以上に設定されている。
マイクロ波発振器23は、マイクロ波伝送路24~27を介してアンテナ28に接続されている。マイクロ波伝送路24~27は、マイクロ波発振器23に接続された導波管24と、導波管24に接続されたアイソレータ25と、アイソレータ25に接続された同軸導波管変換器26と、同軸導波管変換器26に接続された同軸ケーブル27により構成されている。また、マイクロ波発振器23は、パルス電源29に接続されている。マイクロ波発振器23は、パルス電源29から電力の供給を受けるとマイクロ波を発振する。
アンテナ28は、同軸ケーブル27に接続されている。アンテナ28の先端は、集光光学系22の焦点位置に向けられている。マイクロ波発振器23から発振されたマイクロ波は、マイクロ波伝送路24~27を経て、アンテナ28から集光光学系22の焦点位置に向けて照射される。
なお、マイクロ波発振器23には、例えば、2.45GHzのマイクロ波を発振するマグネトロンが用いられる。また、アンテナ28には、マイクロ波発振器23から発振されたマイクロ波に対して十分な利得を有するアンテナとして、例えば、3/4波長モノポールアンテナが用いられる。また、パルス電源29には、例えば、インバータ方式の電源装置が用いられる。
キャビティー12は、マイクロ波の共振構造を有する略筒状の容器であり、マイクロ波が外部へ漏洩することを阻止する。キャビティー12には、分析対象物質15を支持する支持部材(図示省略)が設けられている。キャビティー12には、レーザー光源21から発振されたレーザー光を導入するための導入窓が設けられている。キャビティー12には、レーザー光源21から発振されたレーザー光が入射される。キャビティー12の内側では、レーザー光により分析対象物質15がプラズマ状態になる。また、キャビティー12の内側では、プラズマ状態の分析対象物質15にアンテナ28からマイクロ波が照射される。
-プラズマ生成装置の動作-
プラズマ生成装置11は、制御装置14の指示に従って、分析対象物質15をプラズマ状態にしてプラズマ状態を維持するプラズマ生成維持動作を行う。
-プラズマ生成装置の動作-
プラズマ生成装置11は、制御装置14の指示に従って、分析対象物質15をプラズマ状態にしてプラズマ状態を維持するプラズマ生成維持動作を行う。
プラズマ生成維持動作では、パルス電源29が、制御装置14から出力された開始信号を受けるとマイクロ波発振器23への電力の供給を開始する。これにより、マイクロ波発振器23はマイクロ波の発振を開始し、アンテナ28からキャビティー12内の分析対象物質15にマイクロ波が照射される。キャビティー12内では、マイクロ波が共振し定在波を形成する。分析対象物質15のレーザー照射面付近は、定在波の腹となって強電場領域となる。
続いて、レーザー光源21が、制御装置14から出力された発振信号を受けるとパルス状のレーザー光を1発だけ発振する。レーザー光は、マイクロ波の照射開始直後に発振される。レーザー光源21から発振されたレーザー光は、集光光学系22により分析対象物質15の表面に集光される。分析対象物質15には、瞬間的に高密度のエネルギーが与えられる。
分析対象物質15の表面では、レーザー光の照射領域のエネルギー密度が上昇して分析対象物質15のブレイクダウン閾値を超える。そうすると、図2に示すように、レーザー光の照射領域の物質が電離し、プラズマ状態になる。すなわち、分析対象物質15を原料とするプラズマが生成される。なお、以下では、レーザー光により生成されるプラズマを「レーザープラズマ」という。レーザープラズマは、初期プラズマに相当する。
レーザー発振終了の直後は、マイクロ波の照射が継続されている。従って、レーザープラズマは、図2に示すように、マイクロ波のエネルギーを吸収して拡大する。拡大したプラズマは、マイクロ波により維持される。以下では、マイクロ波により維持されるプラズマを「マイクロ波プラズマ」という。マイクロ波プラズマは、電磁波プラズマに相当する。
その後、パルス電源29が、制御装置14から出力された停止信号を受けるとマイクロ波発振器23への電力の供給を停止する。これにより、マイクロ波発振器23はマイクロ波の発振を停止する。マイクロ波発振器23は、レーザー光の発振後に停止される。マイクロ波の照射は、レーザー光の発振の終了から例えば5秒後に停止される。そうすると、電子の再結合が起こり、マイクロ波プラズマが消滅する。
なお、パルス電源29は、開始信号を受けてから停止信号を受けるまでの間に亘って、パルス波(又はバースト波)を繰り返しマイクロ波発振器23へ供給する。パルス電源29は、所定のデューティー比(オン/オフのデューティー比)で電力をマイクロ波発振器23へ供給する。マイクロ波発振器23は、マイクロ波の発振と停止を所定のデューティー比で繰り返す。マイクロ波プラズマは、熱プラズマになることがなく、非平衡プラズマで維持される。本実施形態1では、マイクロ波の発振開始は、最初のパルス波を受けた時点であり、マイクロ波の発振終了は、最後のパルス波を受けた時点である。開始信号を受けてから停止信号を受けるまでの間は、マイクロ波の照射期間としている。また、マイクロ波の単位時間当たりのエネルギーは、マイクロ波の照射期間に亘って、調節されることなく一定に保たれる。
また、本実施形態1では、マイクロ波の発振開始タイミングは、レーザー光の発振前であるが、レーザープラズマが消滅する前であればレーザー光の発振後であってもよい。
ここで、プラズマが形成されている期間において、プラズマから発せられるプラズマ光の発光強度の時系列変化を見ると、図3に示すように、まずレーザープラズマによる発光強度のピークが瞬間的に見られ、発光強度がゼロ近くの極小値まで低下する。そして、発光強度が極小値となった後、マイクロ波プラズマにより発光強度が再び増加し、マイクロ波プラズマの消滅が開始されるまで、発光強度がある程度一定の強さに保たれる。
なお、本明細書では、レーザープラズマによる発光強度のピーク直後の極小値までのプラズマを「レーザープラズマ」と定義し、極小値以降のプラズマを「マイクロ波プラズマ」と定義する。本実施形態1では、レーザープラズマの方がマイクロ波プラズマよりも発光強度の最大値が大きくなるように、プラズマ生成装置11が構成されている。レーザープラズマよりもマイクロ波プラズマの方がプラズマにおけるエネルギー密度が高くなるように、レーザー光源21の出力とマイクロ波発振器23の出力が設定されている。
-光分析装置の構成-
-光分析装置の構成-
光分析装置13は、プラズマ生成維持動作中にプラズマから発せられるプラズマ光を分析する。光分析装置13は、レーザープラズマの発光強度のピークから、マイクロ波プラズマにより発光強度が増加して概ね一定値に達するまでの発光強度に関する情報を用いて分析対象物質15の成分を同定する光分析手段を構成している。光分析装置13は、ビームサンプラー30、第1パワーメータ31A、第2パワーメータ31B、光学素子32、光ファイバー33、分光器34、光検出器35、及び信号処理装置36を備えている。
ビームサンプラー30は、レーザー光源21におけるレーザー光の出射部と集光光学系22との間に配置されている。ビームサンプラー30は、レーザー光源21から発振されたレーザー光の一部を分離する。第1パワーメータ31Aは、ビームサンプラー30により分離された光を受光する。第1パワーメータ31Aの出力信号は、信号処理装置36に入力される。一方、第2パワーメータ31Bは、レーザー光源21に対してキャビティー12の反対側に配置され、キャビティー12を通過したレーザー光を受光する。第2パワーメータ31Bの出力信号は、信号処理装置36に入力される。
光学素子32は、光が透過するレンズ等により構成されている。光学素子32には、例えば、集光光学系のものが使用される。その場合は、光学素子32は、その焦点がマイクロ波プラズマの形成領域に位置するように配置される。
分光器34は、光ファイバー33を介して光学素子32に接続されている。分光器34には、光学素子32に入射したプラズマ光が取り込まれる。分光器34は、回折格子又はプリズムを用いて、入射したプラズマ光を波長に応じて異なる向きに分散させる。
光検出器35は、分光器34により分散されたプラズマ光のうち所定の波長帯域の光を受光するように配置されている。光検出器35は、制御装置14から出力された指令信号に応答して、受光した波長帯域の光を電気信号に変換して出力する。光検出器35には、例えば、光電子増倍管(PMT)が用いられる。光検出器35から出力された電気信号は、信号処理装置36に入力される。なお、光検出器35としては、時間応答性が高いものであれば、光電子増倍管以外のものを使用してもよい。
信号処理装置36は、光検出器35から出力された電気信号に基づいて、光検出器35が受けた光の強度の時系列変化を検出する。信号処理装置36は、例えば図3に示すような発光強度の時系列変化を示すグラフを作成する。
また、信号処理装置36は、レーザープラズマの発光に対するマイクロ波プラズマの発光の遅れ時間(TS)を算出する。そして、信号処理装置36は、その遅れ時間(TS)を用いて分析対象物質15の成分を同定する。
また、信号処理装置36は、第1パワーメータ31Aの出力値と、ビームサンプラー30によるレーザー光の分離率とを用いて、レーザー光源21から発振されたレーザー光のエネルギーを検出する。また、信号処理装置36は、第2パワーメータ31Bの出力値を用いて、キャビティー12を通過したレーザー光のエネルギーを検出する。信号処理装置36は、レーザー光源21から発振されたレーザー光のエネルギーと、キャビティー12を通過したレーザー光のエネルギーとの差から、プラズマに吸収されたエネルギーを検出する。
-光分析装置の動作-
-光分析装置の動作-
光分析装置13は、制御装置14の指示に従って、プラズマから発せられるプラズマ光を分析する光分析動作を行う。光分析動作は、プラズマ生成維持動作に連動して行われる。
具体的に、光分析装置13では、プラズマから発せられるプラズマ光が、光学素子32、光ファイバー33を順番に通過して分光器34に入射する。分光器34では、入射したプラズマ光が波長に応じて異なる向きに分散される。そして、所定の波長帯域のプラズマ光が光検出器35に到達する。光検出器35では、受光した波長帯域のプラズマ光が電気信号に変換されて出力される。信号処理装置36では、光検出器35の出力信号に基づいて、プラズマ光の発光強度の時系列変化が検出される。そして、信号処理装置36では、レーザープラズマの発光に対するマイクロ波プラズマの発光の遅れ時間(TS)が算出され、その遅れ時間(TS)に基づいて分析対象物質15の成分が同定される。同定された物質の名称は、信号処理装置36のモニターに表示される。
ここで、信号処置装置36は、複数の物質に対応する遅れ時間(TS)をメモリーに記憶している。信号処置装置36が記憶する遅れ時間(TS)は、所定の温度及び圧力条件下において、マイクロ波の単位時間当たりのエネルギーを本実施形態1のマイクロ波発振器23の出力にした時の値である。信号処置装置36は、遅れ時間(TS)に対応する物質をメモリーから読み出し、その物質を分析対象物質15の成分とする。
また、遅れ時間(TS)の算出は、レーザープラズマのピーク後の発光強度の極小値(Imin)よりも大きく、マイクロ波プラズマが概ね一定値になるときの発光強度(IS)よりも小さい発光強度(IX)を用いて行われる。信号処理装置36は、レーザープラズマの発光強度が減少する過程で発光強度がIXになる時点から、マイクロ波プラズマの発光強度が増加する過程で発光強度がIXになる時点までの時間を遅れ時間(TS)として算出する。なお、レーザープラズマのピーク時点を遅れ時間(TS)の開始時点としてもよいし、レーザープラズマのピーク後に発光強度が極小値(Imin)になる時点を遅れ時間(TS)の開始時点としてもよい。また、マイクロ波プラズマにより発光強度が一定値に達した時点を遅れ時間(TS)の終了時点としてもよいし、マイクロ波プラズマにより発光強度が増加する際の発光強度の変曲点の時点を遅れ時間(TS)の終了時点としてもよい。
なお、光検出器35が受光した光に、複数の物質の発光が含まれている場合には、図4に示すように、マイクロ波により発光強度が増加する際に、発光強度が階段状に変化する。そのような場合は、発光強度の変化点などの情報から発光強度のラインを分離することで、それぞれのラインの遅れ時間(TS1,TS2)を検出でき、各遅れ時間(TS1,TS2)に対応する物質を対象物質の成分として同定することができる。
-実施形態1の効果-
-実施形態1の効果-
本実施形態1では、レーザープラズマの発光強度のピークから、マイクロ波プラズマにより発光強度が増加して概ね一定値に達するまでの発光強度の変化が物質の種類によって異なるので、レーザープラズマの発光強度のピークから、マイクロ波プラズマにより発光強度が増加して概ね一定値に達するまでの発光強度に関する情報を用いて分析対象物質15の成分が同定される。従って、プラズマが形成されている期間におけるプラズマ光の発光強度の変化を用いて分析対象物質15の成分を同定可能な分析装置10を実現することができる。
-実施形態1の変形例1-
-実施形態1の変形例1-
実施形態1の変形例1では、信号処理装置36が、レーザープラズマの発光の直後にマイクロ波プラズマにより発光強度が増加する際の発光強度の単位時間当たりの増加量(以下、「対象増加量」という。)を用いて、分析対象物質15の成分を同定する。信号処置装置36は、複数の物質に対応する対象増加量をメモリーに記憶している。光分析動作では、信号処理装置36が、対象増加量(ΔI/Δt)を算出した後に、その対象増加量(ΔI/Δt)に対応する物質をメモリーから読み出し、その物質を分析対象物質15の成分として同定する。
なお、対象増加量(ΔI/Δt)を算出する区間は、図3に示すように、マイクロ波により発光強度が増加する過程の任意の2点を選んでもよいし、レーザープラズマのピーク後に発光強度が極小値(Imin)になる時点から、マイクロ波プラズマにより発光強度が一定値に達した時点までとしてもよい。
-実施形態1の変形例2-
-実施形態1の変形例2-
実施形態1の変形例2では、信号処理装置36が、マイクロ波の照射を停止した後の発光強度の減少量(以下、「対象減少量」という。)を用いて、分析対象物質15の成分を同定する。信号処置装置36は、複数の物質に対応する対象減少量をメモリーに記憶している。光分析動作では、信号処理装置36が、対象減少量を算出した後に、その対象減少量に対応する物質をメモリーから読み出し、その物質を分析対象物質15の成分として同定する。
変形例2では、光分析装置13が、電磁波の照射を停止した後の発光強度の情報を用いて分析対象物質15の成分を同定する光分析手段を構成している。
なお、信号処理装置36は、マイクロ波の照射を停止した時点から発光強度がゼロになるまでの時間を用いて、分析対象物質15の成分を同定してもよい。
《実施形態2》
なお、信号処理装置36は、マイクロ波の照射を停止した時点から発光強度がゼロになるまでの時間を用いて、分析対象物質15の成分を同定してもよい。
《実施形態2》
本実施形態2の分析装置10は、ガスに含まれる特定の物質(例えば、水素、一酸化炭素、二酸化炭素、OHラジカル)を分析対象物質として、その物質量及び濃度を検出する装置である。
本実施形態2では、プラズマ生成装置11が、流体に含まれる分析対象物質にエネルギーを与えて分析対象物質をプラズマ状態にするプラズマ生成手段を構成している。光分析装置13が、プラズマ生成手段により生成されたプラズマから発せられる光に含まれる分析対象物質に対応する波長の発光強度の単位時間当たりの変化量を用いて、分析対象物質の濃度及び物質量を検出する光分析手段を構成している。
プラズマ生成装置11は、実施形態1と同じ構成である。光分析装置13は、図5に示すように、分光器34の代わりに、プラズマ光から分析対象物質に対応する波長の光を抽出するための光学フィルター38が用いられている。
光分析動作では、プラズマから発せられるプラズマ光が、光学素子32、光ファイバー33、光学フィルター38を順番に通過して、光検出器35に到達する。光検出器35は、分析対象物質に対応する分析波長の光を受光し、その分析波長の光を電気信号に変換して出力する。信号処理装置36では、光検出器35の出力信号に基づいて、分析波長の光の発光強度の時系列変化を検出する。そして、信号処理装置36は、マイクロ波プラズマが消滅する際の分析波長の発光強度の単位時間当たりの減少量(以下、「消滅時の減少量」という。)を算出し、その消滅時減少量を用いて、分析対象物質の物質量を検出する。
ここで、信号処置装置36は、分析対象物質の物質量の複数の値のそれぞれに対応する消滅時の減少量の値をメモリーに記憶している。信号処置装置36が記憶する値は、所定の温度及び圧力条件下において、マイクロ波の単位時間当たりのエネルギーを本実施形態2のマイクロ波発振器23の出力にした時の値である。分析対象物質の物質量が多いほど、プラズマの消滅に要する時間が長くなるので、消滅時の減少量が小さな値になっている。信号処置装置36は、検出した消滅時減少量に対応する分析対象物質の物質量の値をメモリーから読み出し、その値を分析対象物質の物質量とする。
また、信号処理装置36は、マイクロ波の形成領域のうち光学素子32からプラズマ光を取り込む領域の体積をメモリーに記憶している。信号処理装置36は、メモリーから読み出した体積で、検出した物質量を除することにより、分析対象物質の濃度(モル濃度)を算出する。
なお、信号処理装置36が、レーザー光源21から発振されたレーザー光のエネルギーの検出値を用いて、消滅時減少量から算出した物質量を補正してもよいし、プラズマに吸収されたエネルギーの検出値を用いて、消滅時減少量から算出した物質量を補正してもよい。
-実施形態2の効果-
-実施形態2の効果-
本実施形態2では、プラズマ光に含まれる分析波長の発光強度の単位時間当たりの変化量が分析対象物質の濃度と物質量により異なるので、その分析波長の発光強度の単位時間当たりの変化量を用いて、分析対象物質の濃度及び物質量が検出される。従って、プラズマが形成されている期間におけるプラズマ光の発光強度の変化を用いて分析対象物質の濃度及び物質量を検出可能な分析装置10を実現することができる。
-実施形態2の変形例-
-実施形態2の変形例-
実施形態2の変形例では、信号処理装置36が、レーザー光により生成されたレーザープラズマから発せられる光に含まれる分析対象物質に対応する波長の発光強度の単位時間当たりの減少量を用いて、分析対象物質の濃度又は物質量を検出する。レーザープラズマの発光強度がピーク値から減少する過程の減少量を用いて、分析対象物質の濃度又は物質量が検出される。
この場合は、プラズマ生成装置11は、マイクロ波によりプラズマを維持する必要がなく、少なくともレーザー光源21と集光光学系22を備えていればよい。
《実施形態3》
本実施形態3は、初期プラズマ生成手段が実施形態1及び実施形態2とは異なる。
《実施形態3》
本実施形態3は、初期プラズマ生成手段が実施形態1及び実施形態2とは異なる。
実施形態3では、分析対象物質をプラズマ状態に変化させるのに、放電装置(例えば、スパークプラグ)が用いられる。具体的に、図6及び図7に示すように、プラズマ生成装置11は、パルス電圧生成器51、マイクロ波発振器23、混合器52、整合器53、及びスパークプラグ54を備えている。図6に示すように、パルス電圧生成器51、混合器52、整合器53、及びスパークプラグ54は、一体化されて放電ユニット58を構成している(図6において整合器53の記載は省略している)。
パルス電圧生成器51は、外部の直流電源60から直流電力の供給を受ける。パルス電圧生成器51は、制御装置14から出力された放電信号を受けると、高電圧のパルス電圧を生成して出力する。パルス電圧は、ピーク電圧が例えば6kV~40kV程度のインパルス状の電圧信号である。パルス電圧の諸元は、スパークプラグ54にパルス電圧を印加した場合に絶縁破壊を生じるように適宜設定すればよい。
混合器52は、パルス電圧生成器51からパルス電圧を受けると共に、マイクロ波発振器23からマイクロ波を受ける。混合器52は、パルス電圧とマイクロ波とを混合した混合信号を生成して出力する。混合信号は、整合器53を介してスパークプラグ54に伝送される。整合器53は、混合器52から出力されたマイクロ波のインピーダンス整合がとる。
スパークプラグ54では、放電電極54aと接地電極54bの間に放電ギャップが形成されている。スパークプラグ54では、混合信号の印加を受けると、放電が生じると共に、マイクロ波が放射される。その結果、スパークプラグ54の先端の放電ギャップでは、放電により小規模の放電プラズマ(初期プラズマ)が形成され、その放電プラズマがマイクロ波のエネルギーを吸収して拡大する。拡大したプラズマは、マイクロ波プラズマとなる。マイクロ波は、所定の時間に亘って照射される。
なお、本実施形態3では、マイクロ波の発振開始タイミングは、スパーク放電前であるが、放電プラズマが消滅する前であればスパーク放電後であってもよい。
本実施形態3では、図6に示すように、放電ギャップに分析対象物質15が配置される。分析対象物質15は、支持部材(図示省略)により支持されている。
本実施形態3では、図6に示すように、放電ギャップに分析対象物質15が配置される。分析対象物質15は、支持部材(図示省略)により支持されている。
プラズマ生成維持動作では、プラズマ状態の分析対象物質15から発せられた光が、分析対象物質15に対面するように配置された光学素子32に入射し、実施形態1及び実施形態2と同様に、光分析装置13において分析対象物質15の分析が行われる。
《その他の実施形態》
上記実施形態は、以下のように構成してもよい。
《その他の実施形態》
上記実施形態は、以下のように構成してもよい。
上記実施形態において、レーザー光源21として、Nd:YAGレーザー光源以外の固体レーザー光源を用いてもよいし、液体レーザー光源、ガスレーザー光源、半導体レーザー光源、または、自由電子レーザー光源を用いてもよい。
また、上記実施形態において、初期プラズマ生成手段は、ブレイクダウンを生じさせるのに十分なエネルギーを与えることができればよく、レーザー光源21やスパークプラグ54以外に、グロープラグなどの熱電子生成器、レーザーダイオード、高輝度発光ダイオード半導体発光素子などであってもよい。
また、上記実施形態においては、マイクロ波発振器23として、半導体発振器などの他の発振器を使用してもよい。
以上説明したように、本発明は、プラズマから発せられる光を分析することにより分析対象物質を分析する分析装置及び分析方法について有用である。
10 分析装置
11 プラズマ生成装置(プラズマ生成手段)
12 キャビティー
13 光分析装置(光分析手段)
21 レーザー光源
22 集光光学系
23 マイクロ波発振器
28 アンテナ
32 光学素子
33 光ファイバー
11 プラズマ生成装置(プラズマ生成手段)
12 キャビティー
13 光分析装置(光分析手段)
21 レーザー光源
22 集光光学系
23 マイクロ波発振器
28 アンテナ
32 光学素子
33 光ファイバー
Claims (7)
- 分析対象物質にエネルギーを瞬間的に与えて該分析対象物質をプラズマ状態にした初期プラズマを生成し、該初期プラズマに電磁波を所定の時間に亘って照射してプラズマ状態を維持するプラズマ生成手段と、
上記初期プラズマの発光強度のピークから、電磁波により維持される電磁波プラズマにより発光強度が増加して概ね一定値に達するまでの発光強度に関する情報、又は電磁波の照射を停止した後の発光強度に関する情報を用いて分析対象物質の成分を同定する光分析手段とを備えている
ことを特徴とする分析装置。 - 請求項1において、
上記光分析手段は、上記初期プラズマの発光に対する上記電磁波プラズマの発光の遅れ時間を用いて、分析対象物質の成分を同定する
ことを特徴とする分析装置。 - 請求項1又は2において、
上記光分析手段は、上記初期プラズマの発光の直後に上記電磁波プラズマにより発光強度が増加する際の発光強度の単位時間当たりの増加量を用いて、分析対象物質の成分を同定する
ことを特徴とする分析装置。 - 流体に含まれる分析対象物質にエネルギーを与えて該分析対象物質をプラズマ状態にするプラズマ生成手段と、
上記プラズマ生成手段により生成されるプラズマから発せられる光に含まれる上記分析対象物質に対応する波長の発光強度の単位時間当たりの変化量を用いて、上記分析対象物質の濃度及び物質量の少なくとも一方を検出する光分析手段とを備えている
ことを特徴とする分析装置。 - 請求項4において、
上記プラズマ生成手段は、上記分析対象物質にエネルギーを与えて上記分析対象物質をプラズマ状態に変化させる初期プラズマ生成手段と、該初期プラズマ生成手段により生成された初期プラズマに電磁波を所定の時間に亘って照射してプラズマ状態を維持するプラズマ維持手段とを備え、
上記光分析手段は、上記プラズマ維持手段が電磁波の照射を停止した後にプラズマが消滅する際の発光強度の単位時間当たりの減少量を用いて、上記分析対象物質の濃度及び物質量の少なくとも一方を検出する
ことを特徴とする分析装置。 - 分析対象物質にエネルギーを瞬間的に与えて該分析対象物質をプラズマ状態にした初期プラズマを生成し、該初期プラズマに電磁波を所定の時間に亘って照射してプラズマ状態を維持するプラズマ生成ステップと、
上記初期プラズマの発光強度のピークから、電磁波により維持される電磁波プラズマにより発光強度が増加して概ね一定値に達するまでの発光強度に関する情報、又は電磁波の照射を停止した後の発光強度に関する情報を用いて分析対象物質の成分を同定する光分析ステップとを備えている
ことを特徴とする分析方法。 - 流体に含まれる分析対象物質にエネルギーを与えて該分析対象物質をプラズマ状態にするプラズマ生成ステップと、
上記プラズマ生成ステップにより生成されるプラズマから発せられる光に含まれる上記分析対象物質に対応する波長の発光強度の単位時間当たりの変化量を用いて、上記分析対象物質の濃度及び物質量の少なくとも一方を検出する光分析ステップとを備えている
ことを特徴とする分析方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11825139.6A EP2618131A4 (en) | 2010-09-15 | 2011-09-12 | ANALYSIS DEVICE AND ANALYSIS PROCEDURE |
JP2012534003A JP5906500B2 (ja) | 2010-09-15 | 2011-09-12 | 分析装置 |
US13/839,748 US8879062B2 (en) | 2010-09-15 | 2013-03-15 | Analysis apparatus and analysis method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010207384 | 2010-09-15 | ||
JP2010-207384 | 2010-09-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/839,748 Continuation US8879062B2 (en) | 2010-09-15 | 2013-03-15 | Analysis apparatus and analysis method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012036137A1 true WO2012036137A1 (ja) | 2012-03-22 |
Family
ID=45831596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/070773 WO2012036137A1 (ja) | 2010-09-15 | 2011-09-12 | 分析装置及び分析方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8879062B2 (ja) |
EP (1) | EP2618131A4 (ja) |
JP (1) | JP5906500B2 (ja) |
WO (1) | WO2012036137A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021043041A (ja) * | 2019-09-10 | 2021-03-18 | トヨタ自動車株式会社 | 元素組成分析方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112014000582B4 (de) * | 2013-03-27 | 2021-05-06 | International Business Machines Corp. | Energieübertragungsvorrichtung, energieversorgungssystem und energieversorgungsverfahren |
US9873315B2 (en) | 2014-04-08 | 2018-01-23 | West Virginia University | Dual signal coaxial cavity resonator plasma generation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001349832A (ja) * | 2000-06-12 | 2001-12-21 | Agency Of Ind Science & Technol | レーザを用いた成分分析方法 |
JP2010025869A (ja) * | 2008-07-23 | 2010-02-04 | Imagineering Inc | 物質分析装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5715053A (en) * | 1995-10-23 | 1998-02-03 | Loge; Gary W. | Method for determining the concentration of atomic species in gases and solids |
US6008897A (en) * | 1999-01-19 | 1999-12-28 | National Research Council Of Canada | Method and apparatus for materials analysis by enhanced laser induced plasma spectroscopy |
WO2008115287A2 (en) * | 2006-10-18 | 2008-09-25 | Efthimion Enterprises, Inc. | Laser assisted microwave plasma spectroscopy |
US7821634B2 (en) * | 2007-04-20 | 2010-10-26 | Thermo Niton Analyzers Llc | Laser-triggered plasma apparatus for atomic emission spectroscopy |
-
2011
- 2011-09-12 JP JP2012534003A patent/JP5906500B2/ja active Active
- 2011-09-12 WO PCT/JP2011/070773 patent/WO2012036137A1/ja active Application Filing
- 2011-09-12 EP EP11825139.6A patent/EP2618131A4/en not_active Withdrawn
-
2013
- 2013-03-15 US US13/839,748 patent/US8879062B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001349832A (ja) * | 2000-06-12 | 2001-12-21 | Agency Of Ind Science & Technol | レーザを用いた成分分析方法 |
JP2010025869A (ja) * | 2008-07-23 | 2010-02-04 | Imagineering Inc | 物質分析装置 |
Non-Patent Citations (2)
Title |
---|
See also references of EP2618131A4 * |
SHOJI KANEKO ET AL.: "Micro-ha Assist Breakdown Bunkoho no Kenkyu", PREPRINTS OF MEETING ON AUTOMOTIVE ENGINEERS, 20 May 2009 (2009-05-20), pages 1 - 4, XP008169859 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021043041A (ja) * | 2019-09-10 | 2021-03-18 | トヨタ自動車株式会社 | 元素組成分析方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2618131A1 (en) | 2013-07-24 |
JPWO2012036137A1 (ja) | 2014-02-03 |
JP5906500B2 (ja) | 2016-04-20 |
EP2618131A4 (en) | 2016-04-06 |
US8879062B2 (en) | 2014-11-04 |
US20130208274A1 (en) | 2013-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Houard et al. | Strong Enhancement of Terahertz Radiation from Laser Filaments in Air<? format?> by a Static Electric Field | |
US8248602B2 (en) | Laser assisted microwave plasma spectroscopy | |
JP5906501B2 (ja) | 分析装置 | |
JP5906500B2 (ja) | 分析装置 | |
JP2009288068A (ja) | 分析方法およびその装置 | |
Boisvert et al. | Influence of the excitation frequency on the density of helium metastable atoms in an atmospheric pressure dielectric barrier discharge | |
WO2013099923A1 (ja) | ガス濃度推定装置 | |
WO2011129189A1 (ja) | 元素分析装置及び方法 | |
JP2003035671A (ja) | レーザ多段励起発光分光分析方法及びその装置 | |
JP4436262B2 (ja) | 微量成分計測装置 | |
JP6111473B2 (ja) | 分析装置及び分析方法 | |
Omenetto et al. | Time-resolved fluorescence as a direct experimental approach to the study of excitation and ionization processes in different atom reservoirs | |
JP4981872B2 (ja) | 微量成分計測装置 | |
WO2015190617A1 (ja) | 分析方法及び分析装置 | |
JP2007279016A (ja) | 物質の励起および/またはイオン化方法、ならびにそれを用いた分析方法および分析装置 | |
Efthimion | Advances in laser assisted microwave plasma spectroscopy (LAMPS) | |
Ghosal et al. | Studies on temperature dependence of rubidium lamp for atomic frequency standard | |
JP2012052828A (ja) | 鋼中Siの発光分光分析方法 | |
JP2003083939A (ja) | 微量ガス濃度計測システム | |
Watts et al. | Artemis: An ultrafast beamline for measuring photo-induced reactions | |
Dinklage et al. | 74 nm radiative efficiency of a DC neon glow discharge | |
Antipov et al. | Selective mode excitation in a multimode THz slow-wave structure by a relativistic bunch train | |
Clayton et al. | Experimental study of the plasma beat wave accelerator | |
Blajan et al. | Spatial distribution of light emission in microplasma under 100 µm gaps | |
CN114878558A (zh) | 一种sd影响libs中原子线和分子带光谱强度的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11825139 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012534003 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011825139 Country of ref document: EP |