WO2014156311A1 - 積層偏光板および有機el素子 - Google Patents

積層偏光板および有機el素子 Download PDF

Info

Publication number
WO2014156311A1
WO2014156311A1 PCT/JP2014/052562 JP2014052562W WO2014156311A1 WO 2014156311 A1 WO2014156311 A1 WO 2014156311A1 JP 2014052562 W JP2014052562 W JP 2014052562W WO 2014156311 A1 WO2014156311 A1 WO 2014156311A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic layer
optically anisotropic
layer
liquid crystal
polarizing plate
Prior art date
Application number
PCT/JP2014/052562
Other languages
English (en)
French (fr)
Inventor
吉弘 熊谷
吾郎 須崎
浩 今福
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2014156311A1 publication Critical patent/WO2014156311A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a laminated polarizing plate and an organic EL device, and more particularly to an organic EL device having excellent viewing angle characteristics with excellent visibility even in an oblique direction.
  • Organic electroluminescent devices (hereinafter referred to as organic EL devices) are self-luminous devices that are excellent in terms of thin and light weight, low power consumption, high contrast, and high-speed response, and are researched as video display devices such as displays and surface light sources. Development and practical use are in progress.
  • organic EL devices There are several forms of such an organic EL element, but as a main form, a transparent electrode as an anode, an organic light emitting layer, and a metal electrode as a cathode are sequentially laminated on a transparent support substrate. What has been proposed has been proposed and put to practical use.
  • the voltage applied between the transparent electrode and the metal electrode causes the electrons supplied from the cathode and the holes supplied from the anode to recombine in the organic light emitting layer.
  • the principle of EL emission is used when excitons generated along with this shift from the excited state to the ground state.
  • the organic EL element in order to extract light emitted from the organic light emitting layer, at least one of the electrodes must be transparent, and a transparent electrode usually formed of a transparent conductor such as indium tin oxide (ITO) is used as an anode. Used.
  • ITO indium tin oxide
  • metal electrodes made of metals or alloys such as Al, AlLi, MgAg, MgIn are used. .
  • These metal electrodes generally have a high light reflectivity and have a mirror structure, so that they not only function as electrodes, but also reflect light emitted in the direction of the metal electrodes by the organic light emitting layer and emit it from the transparent support substrate. It also plays a role in increasing the amount of light and improving the brightness.
  • the high light reflectivity of the metal electrode and the mirror surface structure also reflect external light. That is, in the presence of strong external light such as illumination or sunlight, the reflection is intense, and when used as a display, there is a problem that the contrast in a bright place is remarkably lowered.
  • Patent Document 1 discloses an example in which a circularly polarizing plate in which a polarizing plate and a quarter-wave plate are stacked is applied to an organic EL element.
  • Patent Document 2 discloses an example in which a circularly polarizing plate composed of a polarizing plate and a quarter-wave plate composed of a plurality of retardation plates is applied to an organic EL element.
  • these circularly polarizing plates function ideally for external light incident from the vertical direction on the circularly polarizing plate and the metal electrode, and for external light incident from an oblique direction, Since the optical path length of the light passing through the 1 ⁇ 4 wavelength plate becomes long, a deviation occurs from the 1 ⁇ 4 wavelength, and it does not function as an ideal circularly polarizing plate. That is, when the organic EL element is observed from the front, external light reflection is suppressed by the circularly polarizing plate, but when viewed from an oblique direction, external light reflection cannot be suppressed due to the viewing angle dependency of the circularly polarizing plate. The problem that the reflected light is visually recognized occurs.
  • the organic EL element itself is a self-luminous element, it does not have a viewing angle dependency like a liquid crystal display, but due to the characteristics of a circularly polarizing plate used for the purpose of preventing external light reflection, Angular dependence may occur.
  • Patent Document 3 is an organic EL element including a circularly polarizing plate in which quarter-wave plates composed of one or more stretched films or the like are laminated, Among the retardation plates constituting the 1 ⁇ 4 wavelength plate, at least one of the retardation plates has a refractive index in the direction orthogonal to the direction having the maximum in-plane refractive index, and a refractive index in the thickness direction.
  • An organic EL element satisfying ny ⁇ nz when nz is disclosed. However, nothing is shown about the relationship of the retardation value Rth of the thickness direction between several retardation films.
  • a polymer film can be formed by stretching or the like under the adhesion of a heat-shrinkable film in order to increase the refractive index nz in the thickness direction of the stretched film.
  • the stretching process under adhesion of the conductive film is complicated, and it is difficult to produce a stretched film with a large area, the production cost increases, and the thickness of the retardation film is increased in this production method. .
  • An object of the present invention is to provide a laminated polarizing plate and an organic EL element that can be thinned and have excellent viewing angle characteristics.
  • the present inventors have found that the above object can be achieved by the laminated polarizing plate shown below and an organic EL device using the same, and have completed the present invention. . That is, the present invention is as follows.
  • d1 is the thickness of the first optical anisotropic layer
  • nx1 is the maximum principal refractive index in the plane of the first optical anisotropic layer for light having a wavelength of 550 nm
  • ny1 is the first optical anisotropy for light having a wavelength of 550 nm.
  • nz1 is the main refractive index in the thickness direction of the first optical anisotropic layer for light having a wavelength of 550 nm
  • Rth2 is the first.
  • the maximum main refractive index in the second optical anisotropic layer surface for light of m ny2 is the main refractive index in the direction orthogonal to the direction having the maximum main refractive index in the second optical anisotropic layer surface for light having a wavelength of 550 nm.
  • nz2 is the main refractive index in the thickness direction of the second optically anisotropic layer with respect to light having a wavelength of 550 nm.
  • the first optical anisotropic layer satisfies the following [2] to [3], and the second optical anisotropic layer satisfies the following [4] to [5]:
  • Re1 means an in-plane retardation value of the first optically anisotropic layer
  • Re1 (450) and Re1 (550) are the first optical anisotropy in light having wavelengths of 450 nm and 550 nm, respectively.
  • the second optically anisotropic layer is composed of a homeotropic alignment liquid crystal film in which a liquid crystalline composition exhibiting positive uniaxiality is homeotropically aligned in a liquid crystal state and then fixed in alignment.
  • the laminated polarizing plate according to any one of ⁇ 1> to ⁇ 3>.
  • liquid crystalline composition exhibiting positive uniaxiality includes a side chain liquid crystalline polymer having an oxetanyl group.
  • ⁇ 6> The method according to any one of ⁇ 1> to ⁇ 5>, wherein the second optically anisotropic layer is formed by coating on the first optically anisotropic layer. Laminated polarizing plate.
  • ⁇ 7> The laminated polarizing plate according to any one of ⁇ 1> to ⁇ 6>, wherein the first optically anisotropic layer contains polycarbonate or cyclic polyolefin.
  • the laminated polarizing plate and the organic EL device of the present invention can be thinned, have little viewing angle dependency, and can display with high contrast even in an oblique direction.
  • the laminated polarizing plate of the present invention is a laminated polarizing plate in which at least a polarizer, a first optically anisotropic layer, and a second optically anisotropic layer are laminated in this order, and satisfy the following [1]. It is characterized by. [1] -40 nm ⁇ Rth1 + Rth2 ⁇ 40 nm
  • Rth1 means the retardation value in the thickness direction of the first optical anisotropic layer.
  • D1 is the thickness of the first optically anisotropic layer
  • nx1 is the maximum main refractive index in the plane of the first optically anisotropic layer with respect to light having a wavelength of 550 nm
  • ny1 is the first optically anisotropic layer with respect to light having a wavelength of 550 nm.
  • nz1 is the main refractive index in the thickness direction of the first optical anisotropic layer with respect to light having a wavelength of 550 nm.
  • Rth2 means the retardation value in the thickness direction of the second optically anisotropic layer.
  • D2 is the thickness of the second optically anisotropic layer
  • nx2 is the maximum main refractive index in the plane of the second optically anisotropic layer with respect to light having a wavelength of 550 nm
  • ny2 is the second optically anisotropic layer with respect to light having a wavelength of 550 nm.
  • nz2 is the main refractive index in the thickness direction of the second optical anisotropic layer for light having a wavelength of 550 nm.
  • Rth1 + Rth2 needs to be in the range of ⁇ 40 nm to 40 nm, and if it is out of this range, the viewing angle characteristics of the laminated polarizing plate deteriorate, which is not desirable.
  • the first optical anisotropic layer satisfies the following [2] to [3], and the second optical anisotropic layer has the following [4] to [4] 5] is preferably satisfied.
  • Re1 means an in-plane retardation value of the first optically anisotropic layer
  • Re1 (450) and Re1 (550) are the first optical anisotropy in light having wavelengths of 450 nm and 550 nm, respectively.
  • Re1 means an in-plane retardation value of the first optical anisotropic layer
  • Re1 (nx1 ⁇ ny1) ⁇ d1 [nm].
  • Re1 (550) means an in-plane retardation value of the first optical anisotropic layer for light having a wavelength of 550 nm.
  • Re1 (550) / 550 is preferably 0.2 or more and 0.3 or less, and more preferably 0.22 or more and 0.28 or less. If it is out of this range, it is not desirable because the circularly polarizing characteristic when the laminated polarizing plate is used as, for example, a circularly polarizing plate deteriorates due to a large shift from the phase difference required for the quarter wavelength plate.
  • Re1 (450) means an in-plane retardation value of the first optical anisotropic layer in light having a wavelength of 450 nm.
  • Re1 (450) / Re1 (550) is preferably 0.6 or more and 1.1 or less, more preferably 0.6 or more and 1.0 or less, and further preferably 0.7 or more and 0.95 or less. It is. If it is out of this range, the circularly polarizing property when used as a circularly polarizing plate is deteriorated, and it is also difficult to produce the first optically anisotropic layer. This is not desirable because the circular polarization characteristic when used as a plate is deteriorated.
  • Re2 depends on the configuration of the organic EL element and various optical parameters, but cannot be generally stated, but is preferably 0 nm or more and 20 nm or less, more preferably 0 nm or more and 10 nm or less, and further preferably 0 nm or more. The range is 5 nm or less. If it is out of this range, the laminated polarizing plate cannot obtain desired characteristics, which is not desirable.
  • Rth2 is preferably from ⁇ 500 nm to ⁇ 30 nm, more preferably from ⁇ 400 nm to ⁇ 45 nm, and even more preferably from ⁇ 300 nm to ⁇ 40 nm. Outside this range, the effect of improving the viewing angle characteristics of the laminated polarizing plate is reduced, and it is difficult to produce a film, which is not desirable.
  • the optically anisotropic layer used in the present invention will be described in order. First, the first optical anisotropic layer will be described.
  • the first optically anisotropic layer include cyclic polyolefins such as polycarbonate and norbornene resins, acrylics, polyvinyl alcohols, polystyrenes, polymethyl methacrylates, polyolefins, polyarylates, and polyamides.
  • a polymer selected from the group consisting of these, a binary, ternary copolymer, a graft copolymer, and a film made of a blend are uniaxially or biaxially stretched as described in JP-A-5-157911.
  • the wavelength dispersion of the first optically anisotropic layer can be widely used from the normal dispersion to the reverse dispersion as long as it substantially exhibits the antireflection function. Since the antireflection function can be expressed without depending on the above, flat dispersion or reverse dispersion is preferable, and reverse dispersion is particularly preferable.
  • the first optically anisotropic layer may be composed of a plurality of layers as long as it substantially exhibits an antireflection function, and the arrangement angle of each layer is not limited.
  • the thickness of the first optically anisotropic layer is not particularly limited as long as it can be used as a laminated polarizing plate and an organic EL device, but is preferably 300 to 5 ⁇ m, more preferably 200 to 10 ⁇ m, and still more preferably 100 to 15 ⁇ m. It is.
  • the second optical anisotropic layer of the present invention a film in which the refractive index in the film thickness direction is controlled to be larger than the in-plane direction by biaxially stretching a resin material having a negative intrinsic birefringence
  • a resin material having a negative intrinsic birefringence examples thereof include homeotropic alignment liquid crystal films in which a liquid crystal material exhibiting positive uniaxiality is homeotropically aligned in a liquid crystal state and then fixed in alignment.
  • the resin material having a negative intrinsic birefringence include polystyrene resins.
  • the liquid crystal material used for obtaining a liquid crystal film in which the homeotropic alignment of the liquid crystal material is fixed may be a positive uniaxial liquid crystal material in which the liquid crystal material formed on the substrate can be homeotropically aligned and the alignment can be fixed.
  • the material which consists of a low molecular liquid crystal compound, a liquid crystalline polymer compound, or these mixtures may be sufficient.
  • the low-molecular liquid crystal compound is preferably a compound having a reactive group that reacts with light or heat because the alignment can be easily fixed.
  • a reactive group a vinyl group, a (meth) acryloyl group, a vinyloxy group, an oxiranyl group, an oxetanyl group, an aziridinyl group and the like are preferable, but other reactive groups such as an isocyanate group, a hydroxyl group, an amino group, and an acid anhydride are preferable.
  • Groups, carboxyl groups and the like can also be used depending on the reaction conditions.
  • the liquid crystalline polymer compound includes a main chain type liquid crystal polymer and a side chain type liquid crystal polymer, both of which can be used.
  • the main chain type liquid crystal polymer include polyester, polyesterimide, polyamide, and polycarbonate.
  • liquid crystalline polyesters are preferable from the viewpoint of easiness of synthesis, orientation, glass transition point, and the like, and main chain type liquid crystalline polyesters bonded with cationic polymerizable groups are particularly preferable.
  • the side chain type liquid crystal polymer include polyacrylate, polymethacrylate, polymalonate, polysiloxane and the like.
  • the side chain type liquid crystal polymer those having the reactive group bonded to the side chain are preferable.
  • the homeotropic alignment liquid crystal film used in the present invention is cooled after, for example, developing the above-mentioned liquid crystal material on an alignment substrate, aligning the liquid crystal material, and then performing light irradiation and / or heat treatment as necessary. Thus, it can be produced by fixing the orientation state.
  • the main-chain liquid crystalline polyester includes an aromatic diol unit (hereinafter referred to as a structural unit (A)), an aromatic dicarboxylic acid unit (hereinafter referred to as a structural unit (B)) and an aromatic hydroxycarboxylic acid unit (
  • A) aromatic diol unit
  • B aromatic dicarboxylic acid unit
  • C aromatic hydroxycarboxylic acid unit
  • it is a main-chain liquid crystalline polyester containing at least two kinds of structural units (C) as essential units, and includes a structural unit having a cationically polymerizable group at least at one end of the main chain.
  • the main chain type liquid crystalline polyester will be sequentially described.
  • the compound for introducing the structural unit (A) is preferably a compound represented by the following general formula (a), specifically, catechol, resorcin, hydroquinone or the like or a substituted product thereof, 4,4′-biphenol 2,2 ′, 6,6′-tetramethyl-4,4′-biphenol, 2,6-naphthalenediol, and the like, and catechol, resorcin, hydroquinone, and the like, or substituted products thereof are particularly preferable.
  • general formula (a) specifically, catechol, resorcin, hydroquinone or the like or a substituted product thereof, 4,4′-biphenol 2,2 ′, 6,6′-tetramethyl-4,4′-biphenol, 2,6-naphthalenediol, and the like, and catechol, resorcin, hydroquinone, and the like, or substituted products thereof are particularly preferable.
  • —X in the formula is —H, —CH 3 , —C 2 H 5 , —CH 2 CH 2 CH 3 , —CH (CH 3 ) 2 , —CH 2 CH 2 CH 2 CH 3 , —CH 2 CH (CH 3 ) CH 3 , —CH (CH 3 ) CH 2 CH 3 , —C (CH 3 ) 3 , —OCH 3 , —OC 2 H 5 , —OC 6 H 5 , —OCH 2 C 6 H 5 , —F, —Cl, —Br, —NO 2 , or —CN, particularly preferably a compound represented by the following formula (a ′).
  • a compound represented by the following general formula (b) is preferable.
  • terephthalic acid, isophthalic acid, phthalic acid or the like or a substituted product thereof 4, 4 Examples include '-stilbene dicarboxylic acid or a substituted product thereof, 2,6-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, and the like, and terephthalic acid, isophthalic acid, phthalic acid, and the like or substituted products thereof are particularly preferable.
  • —X in the formula is —H, —CH 3 , —C 2 H 5 , —CH 2 CH 2 CH 3 , —CH (CH 3 ) 2 , —CH 2 CH 2 CH 2 CH 3 , —CH 2 CH (CH 3 ) CH 3 , —CH (CH 3 ) CH 2 CH 3 , —C (CH 3 ) 3 , —OCH 3 , —OC 2 H 5 , —OC 6 H 5 , —OCH 2 C 6 H 5 represents any group of —F, —Cl, —Br, —NO 2 , or —CN.
  • the compound for introducing the structural unit (C) is preferably a compound represented by the following general formula (c), specifically, hydroxybenzoic acid or a substituted product thereof, 4′-hydroxy-4-biphenylcarboxylic acid Or a substituted product thereof, 4′-hydroxy-4-stilbenecarboxylic acid or a substituted product thereof, 6-hydroxy-2-naphthoic acid, 4-hydroxycinnamic acid, and the like.
  • hydroxybenzoic acid and a substituted product thereof, 4 '-Hydroxy-4-biphenylcarboxylic acid or a substituted product thereof, and 4'-hydroxy-4-stilbenecarboxylic acid or a substituted product thereof are preferred.
  • —X, —X 1 , —X 2 in the formula are each independently —H, —CH 3 , —C 2 H 5 , —CH 2 CH 2 CH 3 , —CH (CH 3 ) 2 , —CH 2 CH 2 CH 2 CH 3 , —CH 2 CH (CH 3 ) CH 3 , —CH (CH 3 ) CH 2 CH 3 , —C (CH 3 ) 3 , —OCH 3 , —OC 2 H 5 , It represents any group of —OC 6 H 5 , —OCH 2 C 6 H 5 , —F, —Cl, —Br, —NO 2 , or —CN.
  • the main-chain liquid crystalline polyester has, as structural units, at least two of (A) aromatic diol units, (B) aromatic dicarboxylic acid units, and (C) aromatic hydroxycarboxylic acid units, preferably further Any structural unit may be used as long as it includes a structural unit having a cationically polymerizable group (hereinafter referred to as structural unit (D)) at least at one end of the main chain and exhibits thermotropic liquid crystallinity. Other structural units satisfy these conditions. As long as it does, it is not specifically limited.
  • the proportion of the structural units (A), (B) and (C) constituting the main chain type liquid crystalline polyester in the total structural units is such that the structural units (A), (B) and (C) are diols or dicarboxylic acids or In terms of the ratio of the total weight of the hydroxycarboxylic acid to the charged amount of all monomers, it is usually in the range of 20 to 99%, preferably 30 to 95%, particularly preferably 40 to 90%. If the amount is less than 20%, the temperature range in which the liquid crystallinity is exhibited may be extremely narrow. If the amount exceeds 99%, the number of units having a cationic polymerizable group is relatively small, and the orientation retention ability is reduced. The mechanical strength may not be improved.
  • the structural unit (D) having a cationic polymerizable group As the cationic polymerizable group, a functional group selected from the group consisting of an epoxy group, an oxetanyl group, and a vinyloxy group is preferable, and an oxetanyl group is particularly preferable.
  • the compound for introducing the structural unit (D) is selected from an epoxy group, an oxetanyl group, and a vinyloxy group as an aromatic compound having a phenolic hydroxyl group or a carboxyl group, as shown in the following general formula (d). It is a compound to which a functional group having cationic polymerizability is bonded. Moreover, you may have a suitable spacer part between an aromatic ring and the said cation polymeric group.
  • -X, -X 1 , -X 2 , -Y, -Z in the formula independently represent any of the groups shown below for each structural unit.
  • the bonding position of the cationic polymerizable group or the substituent containing the cationic polymerizable group and the phenolic hydroxyl group or carboxylic acid group is 1 when the skeleton to which these groups are bonded is a benzene ring.
  • the 4-position is a 2,6-position in the case of a naphthalene ring and a 4,4′-position in the case of a biphenyl skeleton or a stilbene skeleton.
  • 4-vinyloxybenzoic acid 4-vinyloxyphenol, 4-vinyloxyethoxybenzoic acid, 4-vinyloxyethoxyphenol, 4-glycidyloxybenzoic acid, 4-glycidyloxyphenol, 4- (oxetanyl) Methoxy) benzoic acid, 4- (oxetanylmethoxy) phenol, 4′-vinyloxy-4-biphenylcarboxylic acid, 4′-vinyloxy-4-hydroxybiphenyl, 4′-vinyloxyethoxy-4-biphenylcarboxylic acid, 4′- Vinyloxyethoxy-4-hydroxybiphenyl, 4′-glycidyloxy-4-biphenylcarboxylic acid, 4′-glycidyloxy-4-hydroxybiphenyl, 4′-oxetanylmethoxy-4-biphenylcarboxylic acid, 4′-oxetanylmethoxy-biphenylcarbox
  • the ratio of the structural unit (D) having a cationic polymerizable group to the total structural units constituting the main-chain liquid crystalline polyester is similarly expressed by the weight ratio in the composition charged with the structural unit (D) as carboxylic acid or phenol. In such a case, it is usually in the range of 1 to 60%, preferably 5 to 50%. If it is less than 1%, there is a possibility that the improvement of the orientation holding ability and the mechanical strength may not be obtained. If it exceeds 60%, the crystallinity is increased and the liquid crystal temperature range is narrowed. Is also not preferable.
  • Each structural unit of (A) to (D) has one or two carboxyl groups or phenolic hydroxyl groups, but the carboxyl groups and phenolic hydroxyl groups of (A) to (D) are charged. It is desirable that the total number of equivalents of the respective functional groups be roughly aligned at this stage.
  • the main-chain liquid crystalline polyester can contain structural units other than (A), (B), (C) and (D).
  • Other structural units that can be contained are not particularly limited, and compounds (monomers) known in the art can be used.
  • an optically active compound when used as a raw material for the units constituting the main chain type liquid crystalline polyester, it is possible to impart a chiral phase to the main chain type liquid crystalline polyester.
  • the optically active compound is not particularly limited.
  • an optically active aliphatic alcohol C n H 2n + 1 OH, where n represents an integer of 4 to 14
  • an optically active aliphatic group is bonded.
  • alkoxy benzoate (C n H 2n + 1 O -Ph-COOH, where n is 4 to 14 integer, Ph represents a phenylene group.), menthol, camphor acid, naproxen derivatives, binaphthol, 1,2-propanediol, 1 , 3-butanediol, 2-methylbutanediol, 2-chlorobutanediol, tartaric acid, methylsuccinic acid, 3-methyladipic acid and the like.
  • the molecular weight of the main chain type liquid crystalline polyester is preferably such that the logarithmic viscosity ⁇ measured at 30 ° C. in a phenol / tetrachloroethane mixed solvent (mass ratio 60/40) is 0.03 to 0.50 dl / g. Is 0.05 to 0.15 dl / g.
  • is smaller than 0.03 dl / g, the solution viscosity of the main-chain liquid crystalline polyester is low, and there is a possibility that a uniform coating film cannot be obtained when forming into a film.
  • it is larger than 0.50 dl / g, the alignment treatment temperature required for aligning the liquid crystal becomes high, and there is a risk that the alignment and the crosslinking occur simultaneously to deteriorate the alignment.
  • the molecular weight control of the main-chain liquid crystalline polyester is determined solely by the charged composition.
  • the main chain obtained by the relative content in the total charge composition of the monofunctional monomer that reacts in such a manner that both ends of the molecule are sealed, that is, the compound for introducing the structural unit (D) described above.
  • the average degree of polymerization of the liquid crystalline polyester (average number of bonds of the structural units (A) to (D)) is determined. Therefore, in order to obtain a main-chain liquid crystalline polyester having a desired logarithmic viscosity, it is necessary to adjust the charged composition according to the type of charged monomer.
  • the method for synthesizing the main chain type liquid crystalline polyester may be a method used when synthesizing a normal polyester, and is not particularly limited.
  • a method in which a carboxylic acid unit is activated to an acid chloride or a sulfonic acid anhydride and reacted with a phenol unit in the presence of a base (acid chloride method), a carboxylic acid unit and a phenol unit are converted into DCC (dicyclohexylcarbodiimide), etc.
  • a method of directly condensing using a condensing agent of the above, a method of acetylating a phenol unit, and deaceticating polymerization of this with a carboxylic acid unit under melting conditions can be used.
  • the main-chain liquid crystalline polyester thus obtained is identified by the analytical means such as NMR (nuclear magnetic resonance method) at what ratio each monomer is present in the main-chain liquid crystalline polyester. can do.
  • the average number of bonds of the main-chain liquid crystalline polyester can be calculated from the amount ratio of the cationic polymerizable group.
  • main-chain liquid crystalline polyester containing the cationic polymerizable group it is also possible to mix other compounds with the main-chain liquid crystalline polyester containing the cationic polymerizable group as long as the scope of the present invention is not exceeded.
  • Such low molecular weight compounds may or may not have liquid crystallinity, and may or may not have a polymerizable group capable of reacting with a crosslinkable main chain liquid crystalline polyester. It is preferable to use a liquid crystalline compound having a polymerizable group, and examples thereof include the following.
  • n an integer of 2 to 12
  • -V- and -W each represents one of the following groups.
  • V— Single bond, —O—, —O—C m H 2m —O— (where m is an integer of 2 to 12)
  • W :
  • a chiral liquid crystal phase can be induced as a composition.
  • Such a composition can be used for production of a film having a twisted nematic alignment structure or a cholesteric alignment structure.
  • side chain type liquid crystal polymer examples include poly (meth) acrylate, polymalonate, polysiloxane, and the like as described above.
  • each R 3 independently represents hydrogen or a methyl group
  • each R 4 independently represents hydrogen, methyl group, ethyl group, butyl group, hexyl group, octyl group, nonyl group, decyl group.
  • R 5 represents a hydrogen group, a methyl group or an ethyl group
  • R 6 represents a hydrocarbon group having 1 to 24 carbon atoms
  • L 2 each independently represents a group or a carboxyl group.
  • the molar ratio of each component may be arbitrary as long as this requirement is satisfied, but is preferably as follows.
  • a Preferably 0 to 0.80, more preferably 0.05 to 0.50 b: preferably 0 to 0.90, more preferably 0.10 to 0.70 c: preferably 0 to 0.50, more preferably 0.10 to 0.30 d: preferably 0 to 0.50, more preferably 0.10 to 0.30 e: preferably 0 to 0.50, more preferably 0.10 to 0.30 f: preferably 0 to 0.30, more preferably 0.01 to 0.10
  • each component in these poly (meth) acrylates does not need to be present in all six types as long as the above conditions are satisfied.
  • each of components a to f may have a plurality of structures.
  • R 4 is preferably hydrogen, methyl group, butyl group, methoxy group, cyano group, bromo group or fluoro group, particularly preferably hydrogen, methoxy group or cyano group
  • L 2 is preferably Is a single bond, —O—, —O—CO— or —CO—O—
  • R 6 preferably represents a hydrocarbon group having 2, 3, 4, 6 , 8 or 18 carbon atoms.
  • the birefringence of the side chain type polymer liquid crystalline compound represented by the general formula (1) varies depending on the molar ratio of each component a to f and the orientation form, but the birefringence when nematic orientation is adopted.
  • the rate is preferably 0.001 to 0.300, more preferably 0.05 to 0.25.
  • Each (meth) acrylic compound corresponding to each component of the above-mentioned side chain type liquid crystal polymer can be obtained by an ordinary organic chemical synthesis method.
  • Said side chain type liquid crystal polymer is easily synthesized by copolymerizing the (meth) acrylic group of each (meth) acrylic compound obtained by the above method corresponding to each component by radical polymerization or anionic polymerization. Can do. Polymerization conditions are not particularly limited, and normal conditions can be employed.
  • radical polymerization a (meth) acryl compound corresponding to each component is dissolved in a solvent such as dimethylformamide (DMF) or diethylene glycol dimethyl ether, and 2,2′-azobisisobutyronitrile (AIBN) or benzoyl peroxide is used.
  • a solvent such as dimethylformamide (DMF) or diethylene glycol dimethyl ether
  • AIBN 2,2′-azobisisobutyronitrile
  • BPO 2,2′-azobisisobutyronitrile
  • BPO 2,2′-azobisisobutyronitrile
  • BPO 2,2′-azobisisobutyronitrile
  • TEMPO 2,2,6,6-tetramethylpiperidinooxy free radical
  • anionic polymerization is a method in which a (meth) acrylic compound corresponding to each component is dissolved in a solvent such as tetrahydrofuran (THF) and reacted with a strong base such as an organic lithium compound, an organic sodium compound, or a Grignard reagent as an initiator. Can be mentioned.
  • a strong base such as an organic lithium compound, an organic sodium compound, or a Grignard reagent as an initiator.
  • the molecular weight distribution can be controlled by optimizing the initiator and the reaction temperature for living anionic polymerization.
  • the side chain type liquid crystal polymer preferably has a weight average molecular weight of 1,000 to 200,000, particularly preferably 3,000 to 50,000. Outside this range, the strength is insufficient or the orientation is deteriorated.
  • liquid crystal material used in the present invention in addition to the side chain type liquid crystal polymer, various compounds that can be mixed without impairing liquid crystallinity can be contained.
  • compounds that can be contained include compounds having a cationic polymerizable functional group such as an oxetanyl group, an epoxy group, and a vinyl ether group, various polymer substances having film-forming ability, and various low-molecular liquid crystal compounds having liquid crystallinity. And polymer liquid crystalline compounds.
  • the side chain type liquid crystal polymer is used as a composition, the proportion of the side chain type liquid crystal polymer in the entire composition is 10% by mass or more, preferably 30% by mass or more, more preferably 50% by mass or more. is there. If the content of the side chain type liquid crystal polymer is less than 10% by mass, the film forming ability is insufficient, the polymerizable group concentration in the composition becomes low, and the mechanical strength after polymerization becomes insufficient.
  • liquid crystal material of the present invention it is preferable to blend a dioxetane compound represented by the following general formula (2) into the side chain liquid crystal polymer.
  • each R 7 independently represents hydrogen, a methyl group or an ethyl group
  • each L 3 independently represents a single bond or — (CH 2 ) n — (n is an integer of 1 to 12)
  • X 1 represents each independently a single bond, —O—, —O—CO— or —CO—O—
  • M 1 is represented by Formula (3) or Formula (4)
  • P 1 in formulas (3) and (4) each independently represents a group selected from formula (5)
  • P 2 represents a group selected from formula (6)
  • L 4 Each independently represents a single bond, —CH ⁇ CH—, —C ⁇ C—, —O—, —O—CO— or —CO—O—.
  • Et represents an ethyl group
  • iPr represents an isopropyl group
  • nBu represents a normal butyl group
  • tBu represents a tertiary butyl group.
  • the linking groups connecting the left and right oxetanyl groups as viewed from the M 1 group may be different (asymmetric) or the same (symmetric), particularly when two L 3 are different or other Depending on the structure of the linking group, it may not exhibit liquid crystallinity, but it is not a restriction for use.
  • the compound represented by the general formula (2) can be exemplified by many compounds from the combination of M 1 , L 3 and X 1 , and preferably the following compounds can be mentioned.
  • These compounds can be synthesized according to a usual synthesis method in organic chemistry, and the synthesis method is not particularly limited.
  • the oxetanyl group since the oxetanyl group has cationic polymerizability, it is necessary to select reaction conditions in consideration of causing side reactions such as polymerization and ring opening under strong acidic conditions.
  • the oxetanyl group is less likely to cause a side reaction than an oxiranyl group that is a similar cationically polymerizable functional group.
  • various compounds such as similar alcohols, phenols, carboxylic acids and the like may be reacted one after another, and utilization of protecting groups may be considered as appropriate.
  • hydroxybenzoic acid is used as a starting compound, an oxetanyl group is bound by Williamson's ether synthesis method, etc., and then the resulting compound and a diol suitable for the present invention are combined with an acid chloride.
  • a reaction condition suitable for the form and reactivity of the compound to be used may be selected.
  • the reaction temperature is -20 ° C to 180 ° C, preferably 10 ° C to 150 ° C.
  • the reaction time is 10 minutes to 48 hours, preferably 30 minutes to 24 hours. Outside these ranges, the reaction does not proceed sufficiently or side reactions occur, which is not preferable.
  • the mixing ratio of the two is preferably 0.8 to 1.2 equivalents of the oxetane compound per equivalent of hydroxyl group.
  • the liquid crystal state can be fixed by cationically polymerizing the oxetanyl group and crosslinking.
  • the liquid crystal material contains a photocation generator and / or a thermal cation generator that generates cations by an external stimulus such as light or heat. If necessary, various sensitizers may be used in combination.
  • the photo cation generator means a compound capable of generating a cation by irradiating with light having an appropriate wavelength, and examples thereof include organic sulfonium salt systems, iodonium salt systems, and phosphonium salt systems. Antimonates, phosphates, borates and the like are preferably used as counter ions of these compounds. Specific examples of the compound include Ar 3 S + SbF 6 ⁇ , Ar 3 P + BF 4 ⁇ , Ar 2 I + PF 6 ⁇ (wherein Ar represents a phenyl group or a substituted phenyl group), and the like. In addition, sulfonic acid esters, triazines, diazomethanes, ⁇ -ketosulfone, iminosulfonate, benzoinsulfonate and the like can also be used.
  • the thermal cation generator is a compound capable of generating a cation by being heated to an appropriate temperature, for example, benzylsulfonium salts, benzylammonium salts, benzylpyridinium salts, benzylphosphonium salts, hydrazinium salts, carboxylic acid esters, Examples thereof include sulfonic acid esters, amine imides, antimony pentachloride-acetyl chloride complexes, diaryliodonium salts-dibenzyloxycopper, and boron halide-tertiary amine adducts.
  • the amount of these cation generators added to the liquid crystal material varies depending on the structure of the mesogenic part and spacer part, the oxetanyl group equivalent, the alignment condition of the liquid crystal, etc. constituting the side chain type liquid crystalline polymer material to be used. However, it is usually in the range of 100 mass ppm to 20 mass%, preferably 1000 mass ppm to 10 mass%, more preferably 0.2 mass% to 7 mass% with respect to the side chain type liquid crystalline polymer substance. is there. If the amount is less than 100 mass ppm, the amount of cations generated may not be sufficient and polymerization may not proceed. If the amount is more than 20 mass%, the remaining cation generator remains in the liquid crystal film. It is not preferable because there is a risk that the light resistance and the like may deteriorate due to an increase in the number of objects.
  • a substrate having a smooth plane is preferable, and examples thereof include a film or sheet made of an organic polymer material, a glass plate, and a metal plate. From the viewpoint of cost and continuous productivity, it is preferable to use a material made of an organic polymer.
  • organic polymer materials include polyvinyl alcohol, polyimide, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyether ketone, polyether ether ketone, polyarylate, polyethylene terephthalate, polyethylene naphthalate, etc.
  • Polyester cellulose such as diacetylcellulose and triacetylcellulose, polycarbonate, acrylic such as polymethyl methacrylate, styrene such as polystyrene and acrylonitrile / styrene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, etc.
  • examples thereof include olefin-based polymers, cyclic polyolefin-based films, vinyl chloride-based films, amide-based films such as nylon and aromatic polyamide. These may be blends.
  • a film cured with light or heat after film-forming a photocurable resin or thermosetting resin such as acrylic, epoxy, or oxetane can also be used.
  • alignment film material polyvinyl alcohol, polyimide, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyether ketone, polyether ether ketone, polyarylate, polyester such as polyethylene terephthalate and polyethylene naphthalate, Cellulose type such as diacetyl cellulose and triacetyl cellulose, acrylic type such as polycarbonate, polymethyl methacrylate, styrene type such as polystyrene, acrylonitrile / styrene copolymer, olefin type such as polyethylene, polypropylene, ethylene / propylene copolymer, Examples thereof include organic substances such as cyclic polyolefins, vinyl chlorides, amides such as nylon and aromatic polyamide.
  • a cured film that has been cured with light or heat after film-forming a photocurable resin or thermosetting resin such as acrylic, epoxy, or oxetane.
  • a method for forming these alignment films it is possible to use a direct or solution application method, vapor deposition, sputtering, co-extrusion with an alignment substrate, or the like.
  • the inorganic material layer may be formed on the alignment substrate by vapor deposition, sputtering, coating, or the like.
  • inorganic substances include inorganic metals such as aluminum and silver, and inorganic compounds such as silica, silicon oxide, and aluminum oxide.
  • the manufacturing method of the homeotropic alignment liquid crystal film used for this invention is demonstrated.
  • the method for producing the liquid crystal film is not limited to these, the above-described liquid crystal material is spread on the above-mentioned alignment substrate, and after aligning the liquid crystal material, light irradiation and / or heat treatment is performed as necessary. Then, it can be manufactured by fixing the alignment state by cooling.
  • the liquid crystal material is spread on the alignment substrate to form the liquid crystal material layer.
  • the liquid crystal material is applied directly on the alignment substrate in a molten state, or the liquid crystal material solution is applied on the alignment substrate, and then the coating film is applied. And drying the solvent to distill off the solvent.
  • the solvent used for preparing the solution is not particularly limited as long as it can dissolve the liquid crystal material of the present invention and can be distilled off under suitable conditions.
  • ketones such as acetone, methyl ethyl ketone, isophorone, and cyclohexanone
  • butoxyethyl Ethers such as alcohol, hexyloxyethyl alcohol, methoxy-2-propanol
  • glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether
  • esters such as ethyl acetate and ethyl lactate
  • phenols such as phenol and chlorophenol
  • N Amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, halogens such as chloroform, tetrachloroethane, dichlorobenzene, etc.
  • a surfactant in order to form a uniform coating film on the alignment substrate, a surfactant, an antifoaming agent, a leveling agent, a coloring agent, and the like may be added to the solution.
  • a surfactant in order to facilitate the fixation of the alignment of the liquid crystalline polymer compound, two groups having the same reactivity as the polymerizable group bonded to the liquid crystalline polymer compound are present in one molecule.
  • two groups having the same reactivity as the polymerizable group bonded to the liquid crystalline polymer compound are present in one molecule.
  • Various low-molecular compounds whether liquid crystallinity or non-liquid crystallinity
  • various compounds that can improve adhesiveness can be added.
  • the application method is not particularly limited as long as the uniformity of the coating film is ensured, and a known method may be adopted. It can. Examples thereof include spin coating, die coating, curtain coating, dip coating, and roll coating.
  • a drying step for removing the solvent after the application As long as the uniformity of a coating film is maintained, this drying process can employ
  • the film thickness of the liquid crystal film cannot be generally described because it depends on the type of liquid crystal display device and various optical parameters, but is usually 0.1 ⁇ m to 10 ⁇ m, preferably 0.2 ⁇ m to 5 ⁇ m, more preferably 0.3 ⁇ m. ⁇ 2 ⁇ m.
  • the film thickness is less than 0.1 ⁇ m, there is a possibility that sufficient viewing angle improvement or brightness enhancement effects cannot be obtained.
  • it exceeds 10 ⁇ m the desired orientation may not be obtained.
  • the liquid crystal material layer formed on the alignment substrate is formed into a liquid crystal alignment by a method such as heat treatment, and is irradiated with light and / or heat as necessary, and then cured by cooling and fixed.
  • the liquid crystal is aligned by the self-alignment ability inherent in the liquid crystal material by heating to the liquid crystal phase expression temperature range of the used liquid crystal material.
  • the conditions for the heat treatment cannot be generally stated because the optimum conditions and limit values differ depending on the liquid crystal phase behavior temperature (transition temperature) of the liquid crystal material to be used, but are usually 10 to 250 ° C., preferably 30 to 160 ° C.
  • the liquid crystal material has a glass transition temperature
  • Tg glass transition point
  • the heat treatment time is usually in the range of 3 seconds to 30 minutes, preferably 10 seconds to 20 minutes. If the heat treatment time is shorter than 3 seconds, the liquid crystal alignment may not be completed sufficiently, and if the heat treatment time exceeds 30 minutes, the productivity is deteriorated.
  • the liquid crystal material After forming the liquid crystal alignment by a method such as heat treatment after cooling the liquid crystal material layer, the liquid crystal material is cooled and fixed in a glass state, or if necessary, the liquid crystal material is maintained in the liquid crystal alignment state and the reactivity such as oxetanyl group in the composition It is cured by a polymerization reaction of the group.
  • the curing step is aimed at fixing the liquid crystal alignment state of the completed liquid crystal alignment by a curing (crosslinking) reaction and modifying it into a stronger film.
  • the liquid crystal material used in the present invention has a polymerizable oxetanyl group
  • a cationic polymerization initiator cation generator
  • the polymerization initiator it is preferable to use a photo cation generator rather than a thermal cation generator.
  • the liquid crystal material can be obtained by adding the photo cation generator to the heat treatment for aligning the liquid crystal under dark conditions (light blocking conditions that do not cause the photo cation generator to dissociate). The liquid crystal can be aligned with sufficient fluidity without curing until the alignment stage. Thereafter, the liquid crystal material layer is cured by generating cations by irradiating light from a light source that emits light of an appropriate wavelength.
  • a photocation is generated by irradiating light from a light source such as a metal halide lamp, a high pressure mercury lamp, a low pressure mercury lamp, a xenon lamp, an arc lamp, or a laser having a spectrum in the absorption wavelength region of the photocation generator used. Cleave the generator.
  • the dose per square centimeter is usually in the range of 1 to 2000 mJ, preferably 10 to 1000 mJ, as the cumulative dose. However, this is not the case when the absorption region of the photocation generator and the spectrum of the light source are significantly different, or when the liquid crystal material itself has the ability to absorb light from the light source.
  • the temperature at the time of light irradiation needs to be within a temperature range in which the liquid crystal material takes liquid crystal alignment. In order to sufficiently enhance the curing effect, it is preferable to perform light irradiation at a temperature equal to or higher than Tg of the liquid crystal material.
  • the liquid crystal material layer produced by the above process is a sufficiently strong film.
  • the mesogens are three-dimensionally bonded by the curing reaction, and not only the heat resistance (the upper limit temperature for maintaining the liquid crystal alignment) is improved as compared to before curing, but also scratch resistance, abrasion resistance, crack resistance.
  • the mechanical strength such as property is also greatly improved.
  • the alignment substrate it is not optically isotropic, or the liquid crystal film to be obtained is finally opaque in the intended use wavelength region, or the alignment substrate is too thick, resulting in problems in actual use.
  • a form transferred from a form formed on an alignment substrate to a polarizing plate, a substrate that does not become an obstacle in the intended wavelength range of use, or a stretched film having a retardation function can also be used.
  • a transfer method a known method can be adopted.
  • a liquid crystal film layer is laminated on a substrate different from the alignment substrate via an adhesive or an adhesive, and then the lamination A method of transferring only the liquid crystal film by peeling the alignment substrate from the body can be exemplified.
  • the pressure-sensitive adhesive or adhesive used for transfer is not particularly limited as long as it is of optical grade as described later, and those generally used such as acrylic, epoxy, and urethane can be used.
  • the homeotropically aligned liquid crystal film layer obtained as described above can be quantified by measuring the optical phase difference of the liquid crystal material layer at an angle inclined from normal incidence. In the case of homeotropic alignment liquid crystal layers, this retardation value is symmetric with respect to normal incidence.
  • Several methods can be used to measure the optical phase difference. For example, an automatic birefringence measuring device KOBRA-WR manufactured by Oji Scientific Instruments Co., Ltd., an AxoScan manufactured by AXOMETRICS, and a polarizing microscope can be used. This homeotropic alignment liquid crystal layer appears black between the crossed Nicol polarizers. Thus, homeotropic orientation was evaluated.
  • the thickness of the second optically anisotropic layer is not particularly limited as long as it can be used as a laminated polarizing plate and an organic EL device, but is preferably 0.1 to 200 ⁇ m, more preferably 0.2 to 150 ⁇ m, and still more preferably. Is 0.3 to 100 ⁇ m.
  • the polarizer constituting the laminated polarizing plate of the present invention one having a protective film on one side or both sides of the polarizer is usually used.
  • the polarizer is not particularly limited, and various types can be used.
  • a hydrophilic polymer film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, an ethylene / vinyl acetate copolymer partially saponified film.
  • Uniaxially stretched by adsorbing dichroic substances such as iodine and dichroic dyes
  • polyene-based alignment films such as dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride
  • alignment films containing lyotropic liquid crystals Etc one having a protective film on one side or both sides of the polarizer is usually used.
  • the polarizer is not particularly limited, and various types can be used.
  • a hydrophilic polymer film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film
  • the thickness of the polarizer is not particularly limited, but is generally about 5 to 80 ⁇ m.
  • a polarizer obtained by dyeing a polyvinyl alcohol film with iodine and uniaxially stretching it can be produced, for example, by dyeing polyvinyl alcohol in an aqueous iodine solution and stretching it 3 to 7 times the original length. If necessary, it can be immersed in an aqueous solution of boric acid or potassium iodide. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing. In addition to washing the polyvinyl alcohol film surface with dirt and anti-blocking agents by washing the polyvinyl alcohol film with water, it also has the effect of preventing unevenness such as uneven coloring by swelling the polyvinyl alcohol film. is there.
  • Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching.
  • the film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • the protective film provided on one side or both sides of the polarizer preferably has excellent transparency, mechanical strength, thermal stability, moisture shielding properties, isotropic properties, and the like.
  • the material for the protective film include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, acrylic polymers such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymer, and the like.
  • polyester polymers such as polyethylene terephthalate and polyethylene naphthalate
  • cellulose polymers such as diacetyl cellulose and triacetyl cellulose
  • acrylic polymers such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymer, and the like.
  • styrene polymers such as coalesced (AS resin), polycarbonate polymers, and the like.
  • polyolefin polymers such as polyethylene, polypropylene, ethylene / propylene copolymers, polyolefins having a cyclo or norbornene structure, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers , Polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or the above
  • polymer that forms the protective film include polymer blends.
  • the thickness of the protective film is generally 500 ⁇ m or less, and preferably 1 to 300 ⁇ m. In particular, the thickness is preferably 5 to 200 ⁇ m.
  • a cellulose polymer such as triacetyl cellulose is preferable from the viewpoints of polarization characteristics and durability.
  • a triacetyl cellulose film is particularly preferable.
  • the protective film which consists of the same polymer material may be used by the front and back, and the protective film which consists of a different polymer material etc. may be used.
  • the polarizer and the protective film are usually in close contact with each other via an adhesive or an adhesive.
  • the adhesive include polyvinyl alcohol adhesives, gelatin adhesives, vinyl latexes, aqueous polyurethanes, aqueous polyesters, and the like.
  • a hard coat layer As the protective film, a hard coat layer, an antireflection treatment, an anti-sticking treatment, or a treatment subjected to diffusion or anti-glare treatment can be used.
  • Hard coat treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate.
  • a cured film having excellent hardness and slipping properties with an appropriate ultraviolet curable resin such as acrylic or silicone is applied to the protective film. It can be formed by a method of adding to the surface.
  • the antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be achieved by forming an antireflection film or the like according to the conventional art. Further, the anti-sticking treatment is performed for the purpose of preventing adhesion with an adjacent layer.
  • Anti-glare treatment is applied for the purpose of preventing external light from being reflected on the surface of the polarizing plate and obstructing the visibility of the light transmitted through the polarizing plate. For example, roughening by sandblasting or embossing. It can be formed by imparting a fine concavo-convex structure to the surface of the protective film by an appropriate method such as a method or a compounding method of transparent fine particles.
  • the fine particles to be included in the formation of the fine surface uneven structure include conductive particles made of silica, alumina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, antimony oxide, and the like having an average particle size of 0.5 to 50 ⁇ m.
  • transparent fine particles such as inorganic fine particles, organic fine particles composed of a crosslinked or uncrosslinked polymer, and the like are used.
  • the amount of fine particles used is generally about 2 to 50 parts by weight, preferably 5 to 25 parts by weight, based on 100 parts by weight of the transparent resin forming the surface fine uneven structure.
  • the antiglare layer may also serve as a diffusion layer (viewing angle expanding function or the like) for diffusing the light transmitted through the polarizing plate to expand the viewing angle.
  • the antireflection layer, antisticking layer, diffusion layer, antiglare layer, and the like can be provided on the protective film itself, or can be provided separately from the transparent protective layer as an optical layer.
  • the laminated polarizing plate of the present invention comprising at least the polarizer, the first optically anisotropic layer, and the second optically anisotropic layer is prepared by bonding each other through an adhesive / adhesive layer. Can do.
  • the alignment substrate used for realizing homeotropic alignment after the homeotropic alignment liquid crystal film produced on the alignment substrate is bonded to the first optical anisotropic layer via the adhesive / adhesive layer
  • a method of laminating the first and second optically anisotropic layers for example, a method of directly laminating both using an adhesive / adhesive layer described later, a liquid crystal alignment ability on one optically anisotropic layer
  • a method of providing a liquid crystalline polymer having a uniform and monodomain liquid crystal alignment property and capable of easily fixing the alignment state by means such as coating, and the first optical substrate as an alignment substrate An anisotropic layer is selected, and a liquid crystalline polymer that exhibits uniform and monodomain liquid crystal alignment and can easily fix the alignment state is directly provided on the first optical anisotropic layer by means such as coating.
  • a technique or the like is preferably used.
  • members such as a light diffusion layer, a light control film, a light guide plate, and a prism sheet may be added as necessary.
  • the pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer used for laminating and transferring the polarizer, the first optically anisotropic layer, and the second optically anisotropic layer is optically isotropic and transparent. If it is a thing, it will not restrict
  • an acrylic polymer, silicone polymer, polyester, polyurethane, polyamide, polyether, fluorine-based or rubber-based polymer as a base polymer can be appropriately selected and used.
  • crosslinks can also be used.
  • those having excellent optical transparency, such as an acrylic pressure-sensitive adhesive, exhibiting appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and having excellent weather resistance, heat resistance, and the like can be preferably used.
  • the formation of the adhesive / adhesive layer can be performed by an appropriate method.
  • a pressure sensitive adhesive solution of about 10 to 40% by mass in which a base polymer or a composition thereof is dissolved or dispersed in a solvent consisting of a suitable solvent alone or a mixture such as toluene and ethyl acetate is prepared.
  • a method of directly attaching on the polarizer, the first optical anisotropic layer, or the second optical anisotropic layer by an appropriate development method such as a casting method or a coating method, or a separator according to the above Examples thereof include a method in which an adhesive / adhesive layer is formed thereon and transferred onto the polarizer, the first optical anisotropic layer, or the second optical anisotropic layer.
  • the adhesive / adhesive layer includes, for example, natural and synthetic resins, in particular, tackifier resins, fillers made of glass fiber, glass beads, metal powder, other inorganic powders, pigments, coloring
  • it may be an adhesive / adhesive layer containing fine particles and exhibiting light diffusibility.
  • the thickness of the adhesive / adhesive layer is not particularly limited as long as the member to be adhered can be adhered and sufficient adhesion can be maintained. Can be selected.
  • the thickness of the adhesive / adhesive is preferably thin, but is usually 2 to 80 ⁇ m, preferably 3 to 50 ⁇ m, and more preferably 5 to 40 ⁇ m. Outside this range, it is not preferable because the adhesive strength is insufficient, or it oozes out from the end portion during lamination or storage of the laminated polarizing plate.
  • a homeotropic alignment liquid crystal layer with a fixed liquid crystal alignment formed on an alignment substrate is directly attached to the first optical anisotropic layer via the adhesive layer 1, and the alignment substrate is peeled off.
  • the homeotropic alignment liquid crystal layer is transferred to the first optically anisotropic layer.
  • the alignment substrate After the homeotropic alignment liquid crystal layer formed on the alignment substrate, on which the liquid crystal alignment is fixed, is adhered to the re-peelable substrate 1 through the adhesive layer 1, the alignment substrate is peeled to remove the homeotropic layer.
  • the alignment liquid crystal layer is transferred to the releasable substrate 1 to produce an intermediate 1 composed of the releasable substrate 1 / adhesive layer 1 / homeotropic alignment liquid crystal layer, and the releasable substrate via the adhesive layer 2 2, the releasable substrate 1 is peeled off to produce an intermediate 2 comprising an adhesive layer 1 / homeotropic alignment liquid crystal layer / adhesive layer 2 / removable substrate 2, and further an adhesive layer
  • the separate film After pasting the non-carrier paste with a separate film on one side, the separate film is peeled off and stuck to the first optical anisotropic layer, and the releasable substrate 2 is peeled off.
  • the adhesion between the releasable substrate and the homeotropic alignment liquid crystal layer is reduced, and the releasable substrate and By maintaining the adhesive force with the adhesive layer, the adhesive layer can be peeled off while adhering to the removable substrate side.
  • an additive such as a surface modifier
  • the type and amount of the surfactant and additive used in this case as long as they do not adversely affect the optical defect inspection property and peelability.
  • the alignment substrate After the homeotropic alignment liquid crystal layer formed on the alignment substrate and having the liquid crystal alignment fixed thereto is adhered to the removable substrate 1 through the adhesive layer 1, the alignment substrate is peeled to remove the homeotropic layer.
  • the alignment liquid crystal layer is transferred to the releasable substrate 1 to produce an intermediate 1 composed of the releasable substrate 1 / adhesive layer 1 / homeotropic alignment liquid crystal layer, and the releasable substrate via the adhesive layer 2 2, the releasable substrate 1 is peeled off to produce an intermediate 2 comprising an adhesive layer 1 / homeotropic alignment liquid crystal layer / adhesive layer 2 / removable substrate 2, and further an adhesive layer
  • the releasable substrate 2 After pasting a non-carrier paste with a separate film on one side, the releasable substrate 2 is peeled off with the adhesive layer 2 adhered, and a separate film / adhesive layer / adhesive layer 1 / homeotropic orientation.
  • intermediate 5 consisting of liquid crystal layer
  • a non-carrier adhesive with a separate film is also bonded to the homeotropic alignment liquid crystal layer side, and a separate film / adhesive layer / adhesive layer 1 / homeotropic alignment liquid crystal layer / adhesive layer 2 / adhesive layer / separate film.
  • An intermediate body 6 is prepared, and the separate film is peeled off and attached to the first optically anisotropic layer.
  • the surface of the homeotropic alignment liquid crystal film is surface-treated to adhere to the adhesive / adhesive layer.
  • the surface treatment means is not particularly limited, and a surface treatment method such as corona discharge treatment, sputtering treatment, low-pressure UV irradiation, or plasma treatment that can maintain the transparency of the liquid crystal film surface can be suitably employed. Among these surface treatment methods, corona discharge treatment is good.
  • the homeotropic alignment liquid crystal film is spread on the alignment substrate and the liquid crystal material is aligned on the first optically anisotropic layer without using the adhesive / adhesive layer. It can also be produced by fixing the alignment state by light irradiation and / or heat treatment. If necessary, the alignment layer is disposed on the first optically anisotropic layer, the liquid crystal material is spread on the alignment substrate, the liquid crystal material is aligned, and then light irradiation is performed. And it can also manufacture by fixing the said orientation state by heat-processing.
  • the thickness of the laminated polarizing plate of the present invention is not particularly limited as long as it can be used as an organic EL device, but is preferably 40 to 500 ⁇ m, more preferably 50 to 400 ⁇ m, and still more preferably 60 to 300 ⁇ m.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the organic EL element of the present invention.
  • the organic EL element of the present invention includes a laminated polarizing plate 4 including at least a polarizer 1, a first optical anisotropic layer 2, and a second optical anisotropic layer 3.
  • the transmission axis of the polarizer and the optical axis of the first optically anisotropic layer are arranged to intersect at 45 degrees or 135 degrees, and the linearly polarized light transmitted through the polarizer is the first optically anisotropic. It is converted into circularly polarized light by the property layer.
  • the organic EL element 9 includes at least a transparent substrate 5, an anode 6, a light emitting layer 7, and a cathode 8.
  • the organic EL element 9 having such a configuration electrons are injected from the cathode 8 and holes are injected from the anode 6, and both are recombined in the light emitting layer 7, so that the light emission characteristics of the light emitting layer 7 are satisfied. Emits light at a wavelength.
  • the light generated in the light emitting layer 7 is reflected directly or by the cathode 8, and then passes through the anode 6, the transparent substrate 5, and the laminated polarizing plate 4 and is emitted to the outside.
  • the external light incident perpendicularly to the element surface from the outside of the organic EL element 9 by sunlight or indoor lighting is absorbed by the polarizer 1 and at least half of the light is transmitted as linearly polarized light.
  • the light emitted from the first optically anisotropic layer 2 is incident on the second optically anisotropic layer 3, but the second optically anisotropic layer 3 has a very small front phase difference. It has little effect on the state of polarization.
  • the circularly polarized light that has passed through the second optically anisotropic layer 3 passes through the transparent substrate 5, the anode 6, and the light emitting layer 7, and is specularly reflected by the cathode 8. Reflected as circularly polarized light, which is the reverse of the incident light.
  • the reversely circularly polarized light passes through the light emitting layer 7, the anode 6, the transparent substrate 5, and the second optically anisotropic layer 3 almost without affecting the state of the circularly polarized light, and enters the first optically anisotropic layer 2.
  • incident since it is converted into linearly polarized light orthogonal to the transmission axis of the polarizer by the first optically anisotropic layer 2, it is absorbed by the polarizer 1 and is not emitted outside.
  • the external light incident from an oblique direction has a long optical path length when passing through the first optical anisotropic layer 2, and therefore when there is no second optical anisotropic layer, the first optical The anisotropic layer 2 alone does not function as a quarter-wave plate, becomes elliptically polarized light, and the reflected light partially transmits when passing through the polarizer 1 and is visually recognized by an observer. That is, the conventional circularly polarizing plate without the second optically anisotropic layer 3 has a problem that the effect of preventing the reflection of light from the oblique direction is greatly reduced compared to the front direction.
  • the laminated polarizing plate of the present invention has the second optical anisotropic layer 3 in addition to the first optical anisotropic layer 2, as a whole, the laminated polarizing plate has substantially 1 / even with respect to light from an oblique direction. It becomes possible to function as a four phase difference plate, and reflection of external light can be prevented not only from the front but also from an oblique direction.
  • the organic EL element of the present invention can be provided with other constituent members in addition to the constituent members described above. For example, by attaching a color filter to the organic EL element of the present invention, an organic EL element capable of performing multicolor or full color display with high color purity can be produced.
  • each analysis method used in the Example is as follows.
  • (1) Measurement of GPC The compound was dissolved in tetrahydrofuran and measured with an 8020 GPC system manufactured by Tosoh Corporation. The column was measured by connecting TSK-GEL SuperH1000, SuperH2000, SuperH3000, and SuperH4000 in series and using tetrahydrofuran as an eluent. Polystyrene standards were used for molecular weight calibration.
  • a method of obtaining the film thickness from the interference wave measurement (UV-visible / near-infrared spectrophotometer V-570 manufactured by JASCO Corporation) and the refractive index data was used in combination.
  • (5) Measurement of optical retardation The retardation value Re in the film plane and the retardation value Rth in the film thickness direction were measured using an automatic birefringence meter KOBRA-WR manufactured by Oji Scientific Instruments Co., Ltd., and AxoScan manufactured by AXOMETRICS. did.
  • the glass transition temperature at the time of temperature increase was 59 ° C., and a temperature higher than that showed a nematic liquid crystal phase and an isotropic phase at 175 ° C. or higher.
  • the dioxetane compound of the formula (8) was observed by polarizing microscope and DSC measurement.
  • the crystal phase changed from the crystal phase to the nematic liquid crystal phase at 74 ° C. at the time of temperature increase, became an isotropic phase at 96 ° C., and 88 ° C. at the time of temperature decrease.
  • a crystalline phase was exhibited at 54 ° C.
  • the acrylic compound of Formula (9) did not show a liquid crystal phase as a result of polarizing microscope observation and DSC measurement, and melted at 30 ° C. when the temperature was raised.
  • a part of the liquid crystal material composition solution 1 was applied on a glass substrate by a spin coating method, and heated on a hot plate at 55 ° C. for 60 minutes to remove the solvent.
  • the composition was scraped from the glass substrate, and the thermal behavior was confirmed by polarizing microscope observation and DSC measurement.
  • the glass transition temperature at the time of temperature increase was 50 ° C., showing a liquid crystal phase up to 155 ° C., and more An isotropic phase was exhibited at a temperature of.
  • the glass transition temperature at the time of temperature increase was 62 ° C.
  • a smectic liquid crystal phase was observed up to 102 ° C.
  • a nematic liquid crystal phase was exhibited at a temperature higher than that, and an isotropic phase was exhibited at 196 ° C. or higher.
  • the dioxetane compound of Formula (11) did not show a liquid crystal phase as a result of observation with a polarizing microscope and DSC, and melted at 130 ° C. when the temperature was increased.
  • a part of the liquid crystal material composition solution 2 was applied onto a glass substrate by a spin coating method, and heated on a hot plate at 55 ° C. for 60 minutes to remove the solvent. The composition was scraped from the glass substrate, and the thermal behavior was confirmed by polarization microscope observation and DSC measurement.
  • the glass transition temperature at the time of temperature increase was 53 ° C., showing a liquid crystal phase up to 165 ° C. An isotropic phase was exhibited at the above temperature.
  • a 50 ⁇ m-thick polyethylene naphthalate (PEN) film (manufactured by Teijin DuPont Films Co., Ltd., trade name Q51) was cut into a 15 cm square and subjected to corona discharge treatment (100 W ⁇ min / m 2 ), and then a thickness of 1.1 mm , Fixed on a 13 cm square glass substrate and set on a spin coater.
  • the PVA solution is applied by spin coating at 300 rpm for 30 seconds, dried on a hot plate at 50 ° C. for 30 minutes, and then heated in an oven at 120 ° C. for 10 minutes to form a PVA orientation comprising a PVA layer and a PEN film.
  • a substrate was obtained.
  • the film thickness of the obtained PVA layer was 1.2 ⁇ m.
  • Example 1 (First optical anisotropic layer)
  • a COP film (ARTON manufactured by JSR Co., Ltd.) having a thickness of 20 ⁇ m and 200 mm square prepared by longitudinal uniaxial stretching was prepared.
  • the in-plane retardation value Re1 (450) was 136 nm
  • Re1 (550) was 135 nm
  • the retardation value Rth1 (550) in the thickness direction was 67 nm. That is, the value of Re1 (550) / 550 is 0.25, and the value of Re1 (450) / Re1 (550) is 1.01.
  • the COP film was subjected to corona discharge treatment (100 W ⁇ min / m 2 ) on both sides.
  • the liquid crystal material solution prepared in Reference Example 1 was applied on the PVA alignment substrate prepared in Reference Example 3 by spin coating. Subsequently, it dried for 10 minutes with a 55 degreeC hotplate, and aligned the liquid crystal material by heat-processing for 3 minutes in 100 degreeC oven.
  • the sample was placed in close contact with an aluminum plate heated to 70 ° C., and then irradiated with 300 mJ / cm 2 of ultraviolet light (however, the amount of light measured at 365 nm) with a high-pressure mercury lamp lamp in the air, and oxetanyl group
  • the second optically anisotropic layer made of a liquid crystal layer was formed on the PVA-aligned substrate by causing the cation reaction to cure the liquid crystal material. Since the polyethylene naphthalate film used as the substrate has a large birefringence and the optical measurement of the second optical anisotropic layer is difficult, the obtained liquid crystal layer on the PVA-aligned substrate is optically isotropic.
  • an acrylic UV curable adhesive is applied as a UV curable resin layer to a thickness of 5 ⁇ m on the cured liquid crystal layer on the PVA layer, laminated with a glass substrate, and 600 mJ / mm from the glass substrate side.
  • the PVA oriented substrate is peeled off, and a laminate with a glass substrate (glass substrate / UV curable resin layer / second optically anisotropic layer) )
  • a laminate with a glass substrate glass substrate / UV curable resin layer / second optically anisotropic layer
  • the obtained laminate is observed under a polarizing microscope with crossed Nicols, it is found that there is no disclination and uniform orientation of the monodomain, and that the homeotropic orientation has a positive uniaxial refractive index structure from conoscopic observation. all right.
  • this film was tilted and light was incident from an oblique direction and observed in the same manner with crossed Nicols, light transmission was observed.
  • the in-plane retardation value Re2 (550) of the second optically anisotropic layer alone was 0 nm, and the retardation value Rth2 (550) in the thickness direction was It was ⁇ 81 nm.
  • nx2 in wavelength 550nm of the 2nd optically anisotropic layer was 1.541, ny2 was 1.541, and nz2 was 1.725.
  • a second optical anisotropic layer which is a liquid crystal layer formed on a PVA alignment substrate, was transferred onto the first optical anisotropic layer using an acrylic UV curable resin. That is, an acrylic UV curable resin is applied as a UV curable resin layer to a thickness of 5 ⁇ m on the cured liquid crystal layer on the PVA layer, laminated with a COP film, and 600 mJ / cm from the COP film side.
  • the PVA alignment substrate was peeled off, and an optically anisotropic laminate (COP film (first optically anisotropic layer) / UV curable resin layer) was peeled off. / Liquid crystal layer (second optically anisotropic layer)).
  • the value of Rth1 (550) + Rth2 (550) of the optically anisotropic laminate is ⁇ 14 nm.
  • TAC triacetylcellulose
  • the axis and the slow axis of the first optical anisotropic layer are crossed and bonded at an angle of 45 degrees, and transparent protective layer / adhesive layer / polarizer / adhesive layer / first optical anisotropic layer / UV
  • the laminated polarizing plate 1 consisting of a curable resin layer / second optically anisotropic layer was obtained.
  • the bonding angle between the absorption axis of the polarizer and the slow axis of the first optically anisotropic layer may be 45 degrees or 135 degrees, depending on how the laminated polarizing plate is used. What is necessary is just to select suitably.
  • Example 2 (First optical anisotropic layer)
  • a COP film (ARTON manufactured by JSR Co., Ltd.) having a thickness of 20 ⁇ m and 200 mm square prepared by longitudinal uniaxial stretching was prepared.
  • the in-plane retardation value Re1 (450) was 139 nm
  • Re1 (550) was 138 nm
  • the retardation value Rth1 (550) in the thickness direction was 69 nm. That is, the value of Re1 (550) / 550 is 0.25, and the value of Re1 (450) / Re1 (550) is 1.01.
  • the COP film was subjected to corona discharge treatment (100 W ⁇ min / m 2 ) on both sides. Also, ⁇ -butyrolactone was applied on the COP film by a spin coating method, then dried on a hot plate at 55 ° C. for 10 minutes, and heat-treated in an oven at 90 ° C. for 3 minutes. Although it measured, there was no change and it confirmed that there was no influence of a solvent.
  • the liquid crystal material solution prepared in Reference Example 2 was applied on the COP film, which was the first optically anisotropic layer, by spin coating. Subsequently, it dried for 10 minutes with a 55 degreeC hotplate, and orientated the liquid crystal material by heat-processing for 3 minutes in 90 degreeC oven.
  • the sample was placed in close contact with an aluminum plate heated to 70 ° C., and then irradiated with 300 mJ / cm 2 of ultraviolet light (however, the amount of light measured at 365 nm) with a high-pressure mercury lamp lamp in the air, and oxetanyl group
  • the second optically anisotropic layer composed of the liquid crystal layer is directly formed on the COP film as the first optically anisotropic layer by curing the liquid crystal material by cationic reaction of the optically anisotropic layer.
  • a laminate was obtained. When the obtained optically anisotropic layer laminate was observed under a polarizing microscope with crossed Nicols, there was no disclination and the monodomain was uniformly oriented.
  • the in-plane retardation value Re (550) of the COP film as the first optically anisotropic layer was 138 nm, and the retardation in the thickness direction.
  • the retardation value Rth (550) is 69 nm
  • the in-plane retardation value Re (550) of the liquid crystal layer as the second optically anisotropic layer is 0 nm
  • the retardation value Rth (550) in the thickness direction was ⁇ 60 nm, confirming homeotropic alignment. That is, the value of Rth1 (550) + Rth2 (550) of this optically anisotropic layered product is 9 nm.
  • nx2 in wavelength 550nm of the 2nd optically anisotropic layer was 1.551
  • ny2 was 1.551
  • nz2 was 1.735.
  • a transparent protective layer was formed by adhering a 40 ⁇ m thick triacetylcellulose (TAC) film to one side of the polarizer obtained in Reference Example 1 via a 5 ⁇ m thick adhesive layer.
  • TAC triacetylcellulose
  • the absorption axis of the polarizer and the COP film (first optical anisotropic layer) side of the optically anisotropic layer laminate are placed on the other surface of the polarizer via an adhesive layer having a thickness of 5 ⁇ m.
  • the absorption axis and the slow axis of the first optical anisotropic layer are crossed and bonded at an angle of 45 degrees, and transparent protective layer / adhesive layer / polarizer / adhesive layer / first optical anisotropic layer /
  • the laminated polarizing plate 2 which consists of a 2nd optically anisotropic layer was obtained. Note that the bonding angle between the absorption axis of the polarizer and the slow axis of the first optically anisotropic layer may be 45 degrees or 135 degrees, depending on how the laminated polarizing plate is used. What is necessary is just to select suitably.
  • Example 3 Application of a liquid crystal layer as a second optically anisotropic layer using a 20 ⁇ m thick, 200 mm square COP film (ARTON manufactured by JSR Corporation) produced by transverse stretching as the first optically anisotropic layer A laminated polarizing plate 3 was produced in the same manner as in Example 2 except that the conditions were changed.
  • the in-plane retardation value Re1 (450) was 139 nm
  • Re1 (550) was 138 nm
  • the retardation value Rth1 (550) in the thickness direction was 124 nm.
  • the value of Re1 (550) / 550 is 0.25, and the value of Re1 (450) / Re1 (550) is 1.01.
  • the in-plane retardation value Re (550) of the liquid crystal layer as the second optically anisotropic layer was 0 nm, and the retardation value Rth (550) in the thickness direction was ⁇ 84 nm. That is, the value of Rth1 (550) + Rth2 (550) of the optically anisotropic laminate including the first optically anisotropic layer and the second optically anisotropic layer is 40 nm.
  • Example 4 Application of a liquid crystal layer as a second optically anisotropic layer using a 20 ⁇ m thick, 200 mm square COP film (ARTON manufactured by JSR Corporation) produced by transverse stretching as the first optically anisotropic layer A laminated polarizing plate 4 was produced in the same manner as in Example 2 except that the conditions were changed.
  • the in-plane retardation value Re1 (450) was 139 nm
  • Re1 (550) was 138 nm
  • the retardation value Rth1 (550) in the thickness direction was 145 nm.
  • the value of Re1 (550) / 550 is 0.25, and the value of Re1 (450) / Re1 (550) is 1.01.
  • the in-plane retardation value Re (550) of the liquid crystal layer as the second optically anisotropic layer was 0 nm, and the retardation value Rth (550) in the thickness direction was ⁇ 150 nm. That is, the value of Rth1 (550) + Rth2 (550) of the optically anisotropic laminate including the first optically anisotropic layer and the second optically anisotropic layer is ⁇ 5 nm.
  • Example 5 (First optical anisotropic layer)
  • a polycarbonate film (Pure Ace WR manufactured by Teijin Chemicals Ltd.) having a fluorene skeleton having a thickness of 50 ⁇ m and a square of 200 mm prepared by longitudinal uniaxial stretching was prepared.
  • the in-plane retardation value Re1 (450) was 130 nm
  • Re1 (550) was 145 nm
  • the retardation value Rth1 (550) in the thickness direction was It was 73 nm.
  • the value of Re1 (550) / 550 is 0.26, and the value of Re1 (450) / Re1 (550) is 0.90.
  • the polycarbonate film was subjected to corona discharge treatment (100 W ⁇ min / m 2) on both sides.
  • the PVA solution prepared in Reference Example 3 was applied by spin coating at 300 rpm for 30 seconds, dried on a 50 ° C. hot plate for 30 minutes, and then heated in an oven at 100 ° C. for 10 minutes.
  • a PVA layer was provided on the polycarbonate film.
  • the film thickness of the obtained PVA layer was 1.2 ⁇ m.
  • the PVA layer is optically isotropic.
  • the liquid crystal material solution prepared in Reference Example 1 was applied on the PVA layer formed on the polycarbonate film as the first optical anisotropic layer by a spin coating method.
  • the in-plane retardation value Re (550) of the polycarbonate film which is the first optically anisotropic layer was 145 nm, and the retardation in the thickness direction.
  • the retardation value Rth (550) is 73 nm
  • the in-plane retardation value Re (550) of the liquid crystal layer as the second optical anisotropic layer is 0 nm
  • the retardation value Rth (550) in the thickness direction was ⁇ 62 nm, confirming homeotropic alignment.
  • Rth1 (550) + Rth2 (550) of this optically anisotropic layered product is 11 nm.
  • nx2 in wavelength 550nm of the 2nd optically anisotropic layer was 1.541
  • ny2 was 1.541
  • nz2 was 1.725.
  • a transparent protective layer was formed by adhering a 40 ⁇ m thick triacetylcellulose (TAC) film to one side of the polarizer obtained in Reference Example 1 via a 5 ⁇ m thick adhesive layer.
  • TAC triacetylcellulose
  • the absorption axis of the polarizer and the polycarbonate film (first optical anisotropic layer) side of the optically anisotropic layer laminate are disposed on the other surface of the polarizer via an acrylic adhesive layer having a thickness of 15 ⁇ m.
  • the bonding angle between the absorption axis of the polarizer and the slow axis of the first optically anisotropic layer may be 45 degrees or 135 degrees, depending on how the laminated polarizing plate is used. What is necessary is just to select suitably.
  • Example 6 (First optical anisotropic layer)
  • a polycarbonate film (Pure Ace WR manufactured by Teijin Chemicals Ltd.) having a fluorene skeleton having a thickness of 50 ⁇ m and a square of 200 mm prepared by longitudinal uniaxial stretching was prepared.
  • the in-plane retardation value Re1 (450) was 130 nm
  • Re1 (550) was 145 nm
  • the retardation value Rth1 (550) in the thickness direction was It was 73 nm.
  • the value of Re1 (550) / 550 is 0.26, and the value of Re1 (450) / Re1 (550) is 0.90.
  • the polycarbonate film was subjected to corona discharge treatment (100 W ⁇ min / m 2 ) on both sides.
  • the liquid crystal material solution prepared in Reference Example 1 was applied on the PVA alignment substrate prepared in Reference Example 3 by spin coating. Subsequently, it dried for 10 minutes with a 55 degreeC hotplate, and aligned the liquid crystal material by heat-processing for 3 minutes in 100 degreeC oven.
  • the sample was placed in close contact with an aluminum plate heated to 70 ° C., and then irradiated with 300 mJ / cm 2 of ultraviolet light (however, the amount of light measured at 365 nm) with a high-pressure mercury lamp lamp in the air,
  • the second optically anisotropic layer made of a liquid crystal layer was formed on the PVA-aligned substrate by causing the cation reaction to cure the liquid crystal material.
  • the liquid crystal layer on the obtained PVA alignment substrate was transferred to a polyethylene terephthalate (PET) film having a thickness of 50 ⁇ m (manufactured by Teijin DuPont Films, trade name G2) via an acrylic UV curable resin.
  • PET polyethylene terephthalate
  • the UV curable resin layer 1 is applied on the liquid crystal layer on the PVA alignment substrate so as to have a thickness of 5 ⁇ m, laminated with a PET film, and then irradiated with an ultraviolet ray of 600 mJ / cm 2 by a high pressure mercury lamp from the PET film side.
  • the UV curable resin layer 1 was cured by irradiation with light (however, the amount of light measured at 365 nm).
  • the PVA alignment substrate was peeled off to obtain an intermediate laminate A composed of PET film / UV cured resin layer 1 / liquid crystal layer (second optically anisotropic layer).
  • an acrylic UV curable resin is applied as a UV curable resin layer 2 so as to have a thickness of 5 ⁇ m and laminated with a 40 ⁇ m thick triacetyl cellulose (TAC) film.
  • the UV cured resin layer 2 is cured by irradiating 600 mJ / cm 2 of ultraviolet light (however, the amount of light measured at 365 nm) from the TAC film side with a high pressure mercury lamp lamp lamp, and then the PET film is peeled off and UV cured.
  • An intermediate laminate B composed of resin layer 1 / liquid crystal layer / UV curable resin layer 2 / TAC film was obtained.
  • the UV curable resin layers 1 and 2 are optically isotropic.
  • a commercially available non-carrier pressure-sensitive adhesive was bonded to the UV curable resin layer 1 side of the obtained intermediate laminate B with a separate film, and a separate film / adhesive layer / UV curable resin layer 1 / liquid crystal layer / UV.
  • Intermediate laminate C made of cured resin layer 2 / TAC film was obtained.
  • the non-carrier pressure-sensitive adhesive has a thickness of 20 ⁇ m and is optically isotropic.
  • the TAC film side is peeled off to obtain the polycarbonate film (first optical anisotropy).
  • Layer) / adhesive layer / UV curable resin layer 1 / liquid crystal layer / UV curable resin layer 2 was obtained.
  • the in-plane retardation value Re (550) of the polycarbonate film which is the first optically anisotropic layer was 145 nm, and the retardation in the thickness direction.
  • the retardation value Rth (550) is 73 nm
  • the in-plane retardation value Re (550) of the liquid crystal layer as the second optical anisotropic layer is 0 nm
  • the retardation value Rth (550) in the thickness direction was -100 nm, confirming homeotropic alignment. That is, the value of Rth1 (550) + Rth2 (550) of the optically anisotropic layer laminate is ⁇ 27 nm.
  • nx2 in wavelength 550nm of the 2nd optically anisotropic layer was 1.541
  • ny2 was 1.541
  • nz2 was 1.725.
  • a transparent protective layer was formed by adhering a 40 ⁇ m thick triacetylcellulose (TAC) film to one side of the polarizer obtained in Reference Example 1 via a 5 ⁇ m thick adhesive layer.
  • TAC triacetylcellulose
  • the absorption axis of the polarizer and the polycarbonate film (first optical anisotropic layer) side of the optically anisotropic layer laminate are disposed on the other surface of the polarizer via an acrylic adhesive layer having a thickness of 15 ⁇ m.
  • transparent protective layer / adhesive layer / polarizer / adhesive layer / first optical was obtained.
  • the bonding angle between the absorption axis of the polarizer and the slow axis of the first optically anisotropic layer may be 45 degrees or 135 degrees, depending on how the laminated polarizing plate is used. What is necessary is just to select suitably.
  • Example 7 A laminated polarizing plate 7 was produced in the same manner as in Example 6 except that the coating conditions for the liquid crystal layer as the second optically anisotropic layer were changed.
  • the in-plane retardation value Re1 (450) was 130 nm
  • Re1 (550) was 145 nm
  • the retardation value Rth1 (550) in the thickness direction. was 73 nm. That is, the value of Re1 (550) / 550 is 0.26, and the value of Re1 (450) / Re1 (550) is 0.90.
  • the in-plane retardation value Re (550) of the liquid crystal layer as the second optically anisotropic layer was 0 nm, and the retardation value Rth (550) in the thickness direction was ⁇ 49 nm. That is, the value of Rth1 (550) + Rth2 (550) of the first optical anisotropic layer and the second optical anisotropic layer laminate is 24 nm.
  • Example 8 As the first optically anisotropic layer, a polycarbonate film (pure ace WR manufactured by Teijin Chemicals Ltd.) having a fluorene skeleton having a thickness of 50 ⁇ m and 200 mm square produced by transverse stretching is used. A laminated polarizing plate 8 was produced in the same manner as in Example 6 except that the coating conditions for the liquid crystal layer, which was a isotropic layer, were changed.
  • the in-plane retardation value Re1 (450) was 130 nm
  • Re1 (550) was 145 nm
  • the retardation value Rth1 (550) in the thickness direction was 100 nm.
  • the value of Re1 (550) / 550 is 0.26, and the value of Re1 (450) / Re1 (550) is 0.90.
  • the in-plane retardation value Re (550) of the liquid crystal layer as the second optically anisotropic layer was 0 nm, and the retardation value Rth (550) in the thickness direction was ⁇ 100 nm. That is, the value of Rth1 (550) + Rth2 (550) of the first optically anisotropic layer and the second optically anisotropic layer laminate is 0 nm.
  • Example 1 Using the first optically anisotropic layer used in Example 1, the following laminated polarizing plate 9 without the second optically anisotropic layer was produced. That is, a transparent protective layer was formed by adhering a 40 ⁇ m thick triacetyl cellulose (TAC) film to one side of the polarizer obtained in Reference Example 1 via a 5 ⁇ m thick adhesive layer. The absorption axis of the polarizer and the COP film (first optical anisotropic layer) are connected to the other surface of the polarizer via a 5 ⁇ m-thick adhesive layer, and the absorption axis of the polarizer and the first optical anisotropy.
  • TAC triacetyl cellulose
  • the laminated polarizing plate 9 comprising transparent protective layer / adhesive layer / polarizer / adhesive layer / first optically anisotropic layer was obtained by crossing and bonding the slow axis of the adhesive layer at an angle of 45 degrees.
  • the bonding angle between the absorption axis of the polarizer and the slow axis of the first optically anisotropic layer may be 45 degrees or 135 degrees, depending on how the laminated polarizing plate is used. What is necessary is just to select suitably.
  • the value of Rth1 (550) + Rth2 (550) is 67 nm.
  • Example 2 Using the first optical anisotropic layer used in Example 3, the following laminated polarizing plate 10 without the second optical anisotropic layer was produced. That is, a transparent protective layer was formed by adhering a 40 ⁇ m thick triacetyl cellulose (TAC) film to one side of the polarizer obtained in Reference Example 1 via a 5 ⁇ m thick adhesive layer. The absorption axis of the polarizer and the COP film (first optical anisotropic layer) are connected to the other surface of the polarizer via a 5 ⁇ m-thick adhesive layer, and the absorption axis of the polarizer and the first optical anisotropy.
  • TAC triacetyl cellulose
  • the laminated polarizing plate 10 comprising transparent protective layer / adhesive layer / polarizer / adhesive layer / first optical anisotropic layer was obtained by crossing and bonding the slow axis of the adhesive layer at an angle of 45 degrees.
  • the bonding angle between the absorption axis of the polarizer and the slow axis of the first optically anisotropic layer may be 45 degrees or 135 degrees, depending on how the laminated polarizing plate is used. What is necessary is just to select suitably.
  • the value of Rth1 (550) + Rth2 (550) is 124 nm.
  • Example 3 A laminated polarizing plate 11 was produced in the same manner as in Example 2 except that the coating conditions for the liquid crystal layer as the second optically anisotropic layer were changed.
  • the in-plane retardation value Re1 (450) was 139 nm
  • Re1 (550) was 138 nm
  • the retardation value Rth1 (550) in the thickness direction. was 69 nm. That is, the value of Re1 (550) / 550 is 0.25, and the value of Re1 (450) / Re1 (550) is 1.01.
  • the in-plane retardation value Re (550) of the liquid crystal layer as the second optically anisotropic layer was 0 nm, and the retardation value Rth (550) in the thickness direction was ⁇ 130 nm. That is, the value of Rth1 (550) + Rth2 (550) of the first optical anisotropic layer and the second optical anisotropic layer laminate is ⁇ 61 nm.
  • a laminated polarizing plate 12 was produced in the same manner as in Example 4 except that the coating conditions for the liquid crystal layer as the second optically anisotropic layer were changed.
  • the in-plane retardation value Re1 (450) was 139 nm
  • Re1 (550) was 138 nm
  • the retardation value Rth1 (550) in the thickness direction. was 145 nm. That is, the value of Re1 (550) / 550 is 0.25, and the value of Re1 (450) / Re1 (550) is 1.01.
  • the in-plane retardation value Re (550) of the liquid crystal layer as the second optically anisotropic layer was 0 nm, and the retardation value Rth (550) in the thickness direction was ⁇ 75 nm. That is, the value of Rth1 (550) + Rth2 (550) of the first optical anisotropic layer and the second optical anisotropic layer stack is 70 nm.
  • Example 5 Using the first optically anisotropic layer used in Example 5, the following laminated polarizing plate 13 without the second optically anisotropic layer was produced. That is, a transparent protective layer was formed by adhering a 40 ⁇ m thick triacetyl cellulose (TAC) film to one side of the polarizer obtained in Reference Example 1 via a 5 ⁇ m thick adhesive layer. The absorption axis of the polarizer and the polycarbonate film (first optical anisotropic layer) are connected to the other axis of the polarizer via an acrylic pressure-sensitive adhesive layer having a thickness of 15 ⁇ m.
  • TAC triacetyl cellulose
  • a laminated polarizing plate comprising a transparent protective layer / adhesive layer / polarizer / pressure-sensitive adhesive layer / first optical anisotropic layer, which is bonded by crossing the slow axis of the optically anisotropic layer at an angle of 45 degrees. 13 was obtained. Note that the bonding angle between the absorption axis of the polarizer and the slow axis of the first optically anisotropic layer may be 45 degrees or 135 degrees, depending on how the laminated polarizing plate is used. What is necessary is just to select suitably. Note that since there is no second optically anisotropic layer, the value of Rth1 (550) + Rth2 (550) is 73 nm.
  • Example 6 Using the first optical anisotropic layer used in Example 8, the following laminated polarizing plate 14 without the second optical anisotropic layer was produced. That is, a transparent protective layer was formed by adhering a 40 ⁇ m thick triacetyl cellulose (TAC) film to one side of the polarizer obtained in Reference Example 1 via a 5 ⁇ m thick adhesive layer. The absorption axis of the polarizer and the polycarbonate film (first optical anisotropic layer) are connected to the other axis of the polarizer via an acrylic pressure-sensitive adhesive layer having a thickness of 15 ⁇ m.
  • TAC triacetyl cellulose
  • a laminated polarizing plate comprising a transparent protective layer / adhesive layer / polarizer / pressure-sensitive adhesive layer / first optical anisotropic layer, which is bonded by crossing the slow axis of the optically anisotropic layer at an angle of 45 degrees. 14 was obtained. Note that the bonding angle between the absorption axis of the polarizer and the slow axis of the first optically anisotropic layer may be 45 degrees or 135 degrees, depending on how the laminated polarizing plate is used. What is necessary is just to select suitably. Note that since there is no second optically anisotropic layer, the value of Rth1 (550) + Rth2 (550) is 100 nm.
  • Example 7 A laminated polarizing plate 15 was produced in the same manner as in Example 6 except that the coating condition of the liquid crystal layer as the second optically anisotropic layer was changed.
  • the in-plane retardation value Re1 (450) was 130 nm
  • Re1 (550) was 145 nm
  • the retardation value Rth1 (550) in the thickness direction. was 73 nm. That is, the value of Re1 (550) / 550 is 0.26, and the value of Re1 (450) / Re1 (550) is 0.90.
  • the in-plane retardation value Re (550) of the liquid crystal layer as the second optically anisotropic layer was 0 nm, and the retardation value Rth (550) in the thickness direction was ⁇ 25 nm. That is, the value of Rth1 (550) + Rth2 (550) of the first optical anisotropic layer and the second optical anisotropic layer laminate is 48 nm.
  • Example 8 A laminated polarizing plate 16 was produced in the same manner as in Example 6 except that the coating conditions for the liquid crystal layer as the second optically anisotropic layer were changed.
  • the in-plane retardation value Re1 (450) was 130 nm
  • Re1 (550) was 145 nm
  • the retardation value Rth1 (550) in the thickness direction. was 73 nm. That is, the value of Re1 (550) / 550 is 0.26, and the value of Re1 (450) / Re1 (550) is 0.90.
  • the in-plane retardation value Re (550) of the liquid crystal layer as the second optically anisotropic layer was 0 nm, and the retardation value Rth (550) in the thickness direction was ⁇ 130 nm. That is, the value of Rth1 (550) + Rth2 (550) of the first optical anisotropic layer and the second optical anisotropic layer laminate is ⁇ 57 nm.
  • the laminated polarizing plates 1 to 16 prepared in Examples 1 to 8 and Comparative Examples 1 to 8 were bonded to an organic EL element via an acrylic adhesive having a thickness of 20 ⁇ m, and the following (A) and (B) Evaluation was conducted.
  • an organic EL element an organic EL element mounted on Sony Walkman (registered trademark) NW-A855 was used, and the circularly polarizing plate bonded in advance was peeled off.
  • Tables 1 and 2 show the evaluation results of (A) and (B) described above.
  • the laminated polarizing plates of the organic EL elements of Examples 1 to 8 were excellent in the effect of preventing external light reflection during front observation and also had good viewing angle characteristics.
  • the laminated polarizing plates of Comparative Examples 1 to 8 have an excellent effect of preventing external light reflection during frontal observation, but have poor viewing angle characteristics, and reflection of external light is observed in black display when viewed from an oblique direction. The color change compared with the front direction was confirmed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 特に斜め方向でも視認性に優れた視野角特性の良好な積層偏光板およびそれを用いた有機EL素子として、少なくとも偏光子、第1の光学異方性層および第2の光学異方性層がこの順に積層された積層偏光板であって、以下の[1]を満たす積層偏光板およびそれを用いた有機EL素子を提供する。 [1]-40nm≦Rth1+Rth2≦40nm (ここで、Rth1は第1の光学異方性層の厚さ方向のリターデーション値、Rth2は第2の光学異方性層の厚さ方向のリターデーション値を意味する。)

Description

積層偏光板および有機EL素子
 本発明は、積層偏光板および有機EL素子に関し、特に斜め方向でも視認性に優れた視野角特性の良好な有機EL素子に関する。
 有機エレクトロルミネセンス素子(以下、有機EL素子という)は、薄型軽量、低消費電力、高コントラスト、高速応答性の点で優れた自発光素子であり、ディスプレイ等の映像表示装置や面光源として研究開発、実用化が進められている。このような有機EL素子には、いくつかの形態があるが、主要な形態として、透明支持基板上に陽極である透明電極と、有機発光層と、陰極である金属電極を順に積層して作製されたものが提案、実用化されている。このような有機EL素子においては、透明電極と金属電極との間で印加された電圧により、陰極から供給された電子と陽極から供給されたホール(正孔)とが有機発光層で再結合し、これに伴って生成される励起子が励起状態から基底状態へ移行する際にEL発光する原理を利用している。
 有機EL素子においては、有機発光層での発光を取り出すために、少なくとも一方の電極が透明でなくてはならず、通常酸化インジウムスズ(ITO)などの透明導電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常AlやAlLi、MgAg、MgIn等の金属や合金からなる金属電極が使用される。これらの金属電極は一般的に光反射率が高く、また鏡面構造であるため、電極として機能するだけではなく、有機発光層で金属電極方向に発光した光を反射し、透明支持基板から出射する光量を高め、輝度を向上させる役割も担っている。
 しかしながら、金属電極が持つ光反射率の高さや、鏡面構造は、逆に外光も反射してしまうことになる。すなわち、照明や太陽光などの強い外光の存在下では映りこみが激しく、ディスプレイとして使用する場合には、明所コントラストが著しく低下するという問題点を有する。
 鏡面における外光反射を防止する方法として、偏光板と1/4波長板からなる円偏光板を使用することが知られている。例えば特許文献1には、偏光板と1/4波長板1枚を積層した円偏光板を有機EL素子に適用した例が開示されている。また、特許文献2には、偏光板と複数の位相差板からなる1/4波長板で構成される円偏光板を有機EL素子に適用した例が開示されている。しかしながら、これらの円偏光板が理想的に機能するのは、円偏光板や金属電極に対して垂直方向から入射する外光に対してであり、斜め方向から入射した外光に対しては、1/4波長板を通過する光の光路長が長くなるため、1/4波長からずれが生じてしまい、理想的な円偏光板としては機能しなくなる。すなわち、正面から有機EL素子を観察した場合は、円偏光板によって外光反射が抑制されるが、斜め方向から観察した場合は、円偏光板の視野角依存性により外光反射が抑制できず、反射光が視認されるという問題が発生する。以上の理由から、有機EL素子自身は、自発光素子であるため、液晶ディスプレイのような視野角依存性はないものの、外光反射防止目的で使用する円偏光板の特性により、黒表示において視野角依存性が発生する場合がある。
 このような現象を抑制する方法として、例えば特許文献3には、1つまたは複数の延伸フィルム等から構成された1/4波長板を積層した円偏光板を具備する有機EL素子であって、前記1/4波長板を構成する位相差板の内、少なくとも1つ以上の位相差板が、面内の最大屈折率を有する方向に直交する方向の屈折率をny、厚み方向の屈折率をnzとしたとき、ny<nzを満たす有機EL素子が開示されている。しかしながら、複数の位相差フィルム間の厚み方向のリターデーション値Rthの関係については、なんら示されていない。また、延伸フィルムの厚み方向の屈折率nzを大きくするために、熱収縮性フィルムの接着下で、高分子フィルムを延伸処理等することにより形成することができることが記載されているが、熱収縮性フィルムの接着下での延伸処理は煩雑であり、大面積の延伸フィルムが作製しにくく、製造コストも上昇すること、また、本製造法では位相差フィルムの厚みも厚くなるという問題があった。
特開平8-321381号公報 特開平9-127885号公報 特開2003-332068号公報
 本発明は、薄型化が可能であり、かつ視野角特性の優れた積層偏光板及び有機EL素子を提供することを目的とする。
 本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、以下に示す積層偏光板およびそれを用いた有機EL素子により、前記目的を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
 <1>少なくとも偏光子、第1の光学異方性層および第2の光学異方性層がこの順に積層された積層偏光板であって、以下の[1]を満たすことを特徴とする積層偏光板。
 [1]-40nm≦Rth1+Rth2≦40nm
(ここで、Rth1は第1の光学異方性層の厚さ方向のリターデーション値を意味する。Rth1は、Rth1={(nx1+ny1)/2-nz1}×d1[nm]である。なお、d1は第1の光学異方性層の厚さ、nx1は波長550nmの光に対する第1の光学異方性層面内の最大主屈折率、ny1は波長550nmの光に対する第1の光学異方性層面内の最大主屈折率を有する方向に直交する方向の主屈折率、nz1は波長550nmの光に対する第1の光学異方性層の厚さ方向の主屈折率である。また、Rth2は第2の光学異方性層の厚さ方向のリターデーション値を意味する。Rth2は、Rth2={(nx2+ny2)/2-nz2}×d2[nm]である。なお、d2は第2の光学異方性層の厚さ、nx2は波長550nmの光に対する第2の光学異方性層面内の最大主屈折率、ny2は波長550nmの光に対する第2の光学異方性層面内の最大主屈折率を有する方向に直交する方向の主屈折率、nz2は波長550nmの光に対する第2の光学異方性層の厚さ方向の主屈折率である。)
 <2>前記第1の光学異方性層が以下の[2]~[3]を満たし、前記第2の光学異方性層が以下の[4]~[5]を満たすことを特徴とする前記<1>に記載の積層偏光板。
 [2]0.2≦Re1(550)/550≦0.3
 [3]0.6≦Re1(450)/Re1(550)≦1.1
(ここで、Re1は第1の光学異方性層の面内のリターデーション値を意味し、Re1(450)、Re1(550)は、波長450nm、550nmの光における第1の光学異方性層の面内のリターデーション値を意味する。Re1は、Re1=(nx1-ny1)×d1[nm]である。)
 [4]0nm≦Re2≦20nm
 [5]-500nm≦Rth2≦-30nm
(ここで、Re2は第2の光学異方性層の面内のリターデーション値を意味し、Rth2は第2の光学異方性層の厚さ方向のリターデーション値を意味する。Re2及びRth2は、それぞれRe2=(nx2-ny2)×d2[nm]、Rth2={(nx2+ny2)/2-nz2}×d2[nm]である。)
 <3>[3]が、
 [3-1]0.6≦Re1(450)/Re1(550)≦1.0
であることを特徴とする前記<2>に記載の積層偏光板。
 <4>前記第2の光学異方性層が、正の一軸性を示す液晶性組成物を液晶状態においてホメオトロピック配向させた後、配向固定化したホメオトロピック配向液晶フィルムからなることを特徴とする前記<1>~<3>のいずれかに記載の積層偏光板。
 <5>前記の正の一軸性を示す液晶性組成物が、オキセタニル基を有する側鎖型液晶性高分子を含むことを特徴とする前記<4>に記載の積層偏光板。
 <6>前記第2の光学異方性層が、前記第1の光学異方性層上に塗布することにより形成されたことを特徴とする前記<1>~<5>のいずれかに記載の積層偏光板。
 <7>前記第1の光学異方性層が、ポリカーボネートあるいは環状ポリオレフィンを含むことを特徴とする前記<1>~<6>のいずれかに記載の積層偏光板。
 <8>前記偏光子の吸収軸と前記第1の光学異方性層の遅相軸とのなす角度をrとしたときに、40°≦r≦50°を満たすように積層されていることを特徴とする前記<1>~<7>のいずれかに記載の積層偏光板。
 <9>前記<1>~<8>のいずれかに記載の積層偏光板を用いた有機EL素子。
 本発明の積層偏光板及び有機EL素子は、薄型化が可能で視野角依存性が少なく、斜め方向においても高コントラストな表示が可能である。
本発明の積層偏光板及び有機EL素子の断面模式図である。
 以下、本発明を詳細に説明する。
 本発明の積層偏光板は、少なくとも偏光子、第1の光学異方性層および第2の光学異方性層がこの順に積層された積層偏光板であって、以下の[1]を満たすことを特徴とする。
 [1]-40nm≦Rth1+Rth2≦40nm
 [1]において、Rth1は第1の光学異方性層の厚さ方向のリターデーション値を意味する。Rth1は、Rth1={(nx1+ny1)/2-nz1}×d1[nm]である。なお、d1は第1の光学異方性層の厚さ、nx1は波長550nmの光に対する第1の光学異方性層面内の最大主屈折率、ny1は波長550nmの光に対する第1の光学異方性層面内の最大主屈折率を有する方向に直交する方向の主屈折率、nz1は波長550nmの光に対する第1の光学異方性層の厚さ方向の主屈折率である。また、Rth2は第2の光学異方性層の厚さ方向のリターデーション値を意味する。Rth2は、Rth2={(nx2+ny2)/2-nz2}×d2[nm]である。なお、d2は第2の光学異方性層の厚さ、nx2は波長550nmの光に対する第2の光学異方性層面内の最大主屈折率、ny2は波長550nmの光に対する第2の光学異方性層面内の最大主屈折率を有する方向に直交する方向の主屈折率、nz2は波長550nmの光に対する第2の光学異方性層の厚さ方向の主屈折率である。
 Rth1+Rth2は、-40nm以上40nm以下の範囲であることが必要であり、この範囲を外れた場合、積層偏光板の視野角特性が悪くなるため望ましくない。
 また本発明の積層偏光板は、前記第1の光学異方性層が、以下の[2]~[3]を満たし、前記第2の光学異方性層が、以下の[4]~[5]を満たすことが好ましい。
 [2]0.2≦Re1(550)/550≦0.3
 [3]0.6≦Re1(450)/Re1(550)≦1.1
(ここで、Re1は第1の光学異方性層の面内のリターデーション値を意味し、Re1(450)、Re1(550)は、波長450nm、550nmの光における第1の光学異方性層の面内のリターデーション値を意味する。Re1は、Re1=(nx1-ny1)×d1[nm]である。)
 [4]0nm≦Re2≦20nm
 [5]-500nm≦Rth2≦-30nm
(ここで、Re2は第2の光学異方性層の面内のリターデーション値を意味し、Rth2は第2の光学異方性層の厚さ方向のリターデーション値を意味する。Re2及びRth2は、それぞれRe2=(nx2-ny2)×d2[nm]、Rth2={(nx2+ny2)/2-nz2}×d2[nm]である。)
 [2]について説明する。
 [2]において、Re1は第1の光学異方性層の面内のリターデーション値を意味し、Re1=(nx1-ny1)×d1[nm]である。また、Re1(550)は、波長550nmの光における第1の光学異方性層の面内のリターデーション値を意味する。
 Re1(550)/550は、0.2以上0.3以下であることが好ましく、より好ましくは0.22以上0.28以下である。この範囲を外れた場合、1/4波長板に求められる位相差から大きくずれることによって積層偏光板を例えば円偏光板として使用する際の円偏光特性が悪くなるため望ましくない。
 [3]について説明する。
 [3]において、Re1(450)は、波長450nmの光における第1の光学異方性層の面内のリターデーション値を意味する。
 Re1(450)/Re1(550)は、0.6以上1.1以下であることが好ましく、より好ましくは0.6以上1.0以下であり、さらに好ましくは0.7以上0.95以下である。この範囲を外れた場合、円偏光板として使用する際の円偏光特性が悪くなり、また第1の光学異方性層の製造も困難となるため望ましくなく、上限値を超えた場合、円偏光板として使用する際の円偏光特性が悪くなるため望ましくない。
 [4]について説明する。
 [4]において、Re2は第2の光学異方性層の面内のリターデーション値を意味し、Re2=(nx2-ny2)×d2[nm]である。
 Re2は、有機EL素子の構成や種々の光学パラメーターに依存することから一概には言えないが、0nm以上20nm以下であることが好ましく、より好ましくは0nm以上10nm以下であり、さらに好ましくは0nm以上5nm以下の範囲である。この範囲を外れた場合、積層偏光板が所望の特性を得られなくなるため望ましくない。
 [5]について説明する。
 [5]において、Rth2は第2の光学異方性層の厚さ方向のリターデーション値を意味し、Rth2={(nx2+ny2)/2-nz2}×d2[nm]である。
 Rth2は、-500nm以上-30nm以下であることが好ましく、より好ましくは-400nm以上-45nm以下であり、さらに好ましくは-300nm以上-40nm以下の範囲に制御されたものである。この範囲を外れた場合、積層偏光板の視野角特性を改善する効果が低下し、また、フィルムの製造が困難であるため望ましくない。
 本発明に使用する光学異方性層について順に説明する。
 まず、第1の光学異方性層について説明する。
 前記第1の光学異方性層としては、例えば、ポリカーボネート系、ノルボルネン系樹脂等の環状ポリオレフィン系、アクリル系、ポリビニルアルコール系、ポリスチレン系、ポリメチルメタクリレート系、ポリオレフィン系、ポリアリレート系、ポリアミド系から選ばれるポリマー、これらの二元系、三元系共重合体、グラフト共重合体、ブレンド物からなるフィルムを一軸あるいは二軸延伸処理する手法や特開平5-157911号公報に示されるような熱収縮フィルムにより長尺フィルムの幅方向を熱収縮させて厚み方向に位相差を大きくする手法により製造した複屈折フィルム、液晶ポリマーなどの液晶材料からなる配向フィルム、液晶材料の配向層をフィルムにて支持したものなどが挙げられ、好ましくはフルオレン骨格を有するポリカーボネート系、ノルボルネン系樹脂等の環状ポリオレフィン系であり、さらに好ましくは上記[3]のRe1(450)/Re1(550)の値の上限が1.0以下である点でフルオレン骨格を有するポリカーボネートが望ましい。一軸延伸や二軸延伸等の延伸でフィルムを作製した場合、延伸方向(縦延伸、横延伸、斜め延伸)や延伸条件によって、面内のリターデーション値Reが同じ値でも、厚さ方向のリターデーション値Rthが異なる場合があるが、本発明ではいずれの延伸フィルムにも対応することができる。
 第1の光学異方性層の波長分散性としては、実質的に反射防止機能を発現する範囲であれば正分散性から逆分散性のものまで幅広く使用することができるが、その中でも波長に依存することなく反射防止機能を発現できることから、フラット分散または逆分散性であることが好ましく、特に逆分散性であることが好ましい。第1の光学異方性層は、実質的に反射防止機能を発現する範囲であれば複数の層から構成されていても良く、各層の配置角度も限定されない。
 第1の光学異方性層の厚みは、積層偏光板および有機EL素子として使用できる範囲ならば特に制限はないが、300~5μmが好ましく、より好ましくは200~10μm、さらに好ましくは100~15μmである。
 次に、第2の光学異方性層について説明する。
 本発明の第2の光学異方性層としては、固有複屈折が負の樹脂材料を二軸延伸するなどして、膜厚方向の屈折率を面内方向よりも大きい状態に制御したフィルムや、正の一軸性を示す液晶材料を液晶状態においてホメオトロピック配向させた後、配向固定化したホメオトロピック配向液晶フィルムが挙げられる。固有複屈折が負の樹脂材料としては、ポリスチレン系樹脂などが挙げられる。液晶材料のホメオトロピック配向を固定化した液晶フィルムを得るに当たって用いられる液晶材料としては、基板上で形成させた液晶材料がホメオトロピック配向し、その配向を固定化しうる正の一軸性液晶材料であればよく、低分子液晶化合物、液晶性高分子化合物やこれらの混合物からなる材料であってもよい。
 前記の低分子液晶化合物は光や熱により反応する反応性基を結合した化合物が配向を容易に固定化できるので好ましい。反応性基としては、ビニル基、(メタ)アクリロイル基、ビニルオキシ基、オキシラニル基、オキセタニル基、アジリジニル基等が好ましいが、他の反応性基、例えばイソシアナート基、水酸基、アミノ基、酸無水物基、カルボキシル基なども反応条件等によっては使用することができる。
 前記の液晶性高分子化合物には主鎖型液晶ポリマーと側鎖型液晶ポリマーとがあるがいずれも使用することができる。主鎖型液晶ポリマーとしては、ポリエステル、ポリエステルイミド、ポリアミド、ポリカーボネート等が挙げられる。なかでも合成の容易さ、配向性、ガラス転移点などの面から液晶性ポリエステルが好ましく、カチオン重合性基を結合した主鎖型液晶性ポリエステルが特に好ましい。側鎖型液晶ポリマーとしては、ポリアクリレート、ポリメタクリレート、ポリマロネート、ポリシロキサン等を挙げることができる。側鎖型液晶ポリマーとしては前記の反応性基を側鎖に結合したものが好ましい。
 本発明に使用されるホメオトロピック配向液晶フィルムは、例えば前述の液晶材料を配向基板上に展開し、当該液晶材料を配向させた後、必要により光照射および/または加熱処理してから、冷却することにより当該配向状態を固定化することにより製造することができる。
 前記の主鎖型液晶性ポリエステルは、芳香族ジオール単位(以下、構造単位(A)という。)、芳香族ジカルボン酸単位(以下、構造単位(B)という。)および芳香族ヒドロキシカルボン酸単位(以下、構造単位(C)という。)のうち少なくとも2種を必須単位として含む主鎖型液晶性ポリエステルであって、主鎖末端の少なくとも一方にカチオン重合性基を有する構造単位を含むことを特徴とする主鎖型液晶性ポリエステルである。以下に、構造単位(A)、(B)および(C)について順次説明する。
 構造単位(A)を導入するための化合物としては下記一般式(a)で表される化合物が好ましく、具体的には、カテコール、レゾルシン、ヒドロキノン等若しくはそれらの置換体、4,4’―ビフェノール、2,2’,6,6’-テトラメチル-4,4’-ビフェノール、2,6-ナフタレンジオールなどが挙げられ、特に、カテコール、レゾルシン、ヒドロキノン等若しくはそれらの置換体が好ましい。
Figure JPOXMLDOC01-appb-C000001
 ただし、式中の-Xは、-H、-CH、-C、-CHCHCH、-CH(CH、-CHCHCHCH、-CHCH(CH)CH、-CH(CH)CHCH、-C(CH、-OCH、-OC、-OC、-OCH、-F、-Cl、-Br、-NO、または-CNのいずれかの基であり、特に下記式(a’)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000002
 構造単位(B)を導入するための化合物としては下記一般式(b)で表される化合物が好ましく、具体的には、テレフタル酸、イソフタル酸、フタル酸等若しくはそれらの置換体、4,4’-スチルベンジカルボン酸若しくはその置換体、2,6-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸などが挙げられ、特に、テレフタル酸、イソフタル酸、フタル酸等若しくはそれらの置換体が好ましい。
Figure JPOXMLDOC01-appb-C000003
 ただし、式中の-Xは、-H、-CH、-C、-CHCHCH、-CH(CH、-CHCHCHCH、-CHCH(CH)CH、-CH(CH)CHCH、-C(CH、-OCH、-OC、-OC、-OCH、-F、-Cl、-Br、-NO、または-CNのいずれかの基を表す。
 構造単位(C)を導入するための化合物としては下記一般式(c)で表される化合物が好ましく、具体的には、ヒドロキシ安息香酸若しくはその置換体、4’-ヒドロキシ-4-ビフェニルカルボン酸若しくはその置換体、4’-ヒドロキシ-4-スチルベンカルボン酸若しくはその置換体、6-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ桂皮酸などが挙げられ、特に、ヒドロキシ安息香酸およびその置換体、4’-ヒドロキシ-4-ビフェニルカルボン酸若しくはその置換体、4’-ヒドロキシ-4-スチルベンカルボン酸若しくはその置換体が好ましい。
Figure JPOXMLDOC01-appb-C000004
 ただし、式中の-X、-X、-Xは、それぞれ個別に、-H、-CH、-C、-CHCHCH、-CH(CH、-CHCHCHCH、-CHCH(CH)CH、-CH(CH)CHCH、-C(CH、-OCH、-OC、-OC、-OCH、-F、-Cl、-Br、-NO、または-CNのいずれかの基を表す。
 主鎖型液晶性ポリエステルは、構造単位として、(A)芳香族ジオール単位、(B)芳香族ジカルボン酸単位、および(C)芳香族ヒドロキシカルボン酸単位のうちから少なくとも2種と、好ましくはさらに主鎖末端の少なくとも一方にカチオン重合性基を有する構造単位(以下、構造単位(D)という。)を含み、サーモトロピック液晶性を示すものであればよく、他の構造単位はこれら条件を満足する限り特に限定されるものではない。
 主鎖型液晶性ポリエステルを構成する構造単位(A)、(B)および(C)の全構造単位に占める割合は、構造単位(A)、(B)および(C)がジオールあるいはジカルボン酸あるいはヒドロキシカルボン酸として全モノマーの仕込み量に対して占める重量和の比率で表した場合、通常20~99%、好ましくは30~95%、特に好ましくは40~90%の範囲である。20%より少ない場合には、液晶性を発現する温度領域が極端に狭くなるおそれがあり、また99%を越える場合には、カチオン重合性基を有する単位が相対的に少なくなり、配向保持能、機械的強度の向上が得られない恐れがある。
 次にカチオン重合性基を有する構造単位(D)について説明する。カチオン重合性基としては、エポキシ基、オキセタニル基、およびビニルオキシ基からなる群から選ばれる官能基が好ましく、特にオキセタニル基が好ましい。構造単位(D)を導入するための化合物としては、下記の一般式(d)に示すごとく、フェノール性水酸基あるいはカルボキシル基を有する芳香族化合物に、エポキシ基、オキセタニル基、およびビニルオキシ基から選ばれるカチオン重合性を有する官能基が結合した化合物である。また、芳香環と上記カチオン重合性基との間には、適当なスペーサ部分を有していても良い。
Figure JPOXMLDOC01-appb-C000005
 ただし、式中の-X、-X、-X、-Y、-Zは、各構造単位毎にそれぞれ独立に以下に示すいずれかの基を表す。
(1)-X、-X、-X:-H、-CH、-C、-CHCHCH、-CH(CH、-CHCHCHCH、-CHCH(CH)CH、-CH(CH)CHCH、-C(CH、-OCH、-OC、-OC、-OCH、-F、-Cl、-Br、-NO、または-CN
(2)-Y:単結合、-(CH-、-O-、-O-(CH-、-(CH-O-、-O-(CH-O-、-O-CO-、-CO-O-、-O-CO-(CH-、-CO-O-(CH-、-(CH-O-CO-、-(CH-CO-O-、-O-(CH-O-CO-、-O-(CH-CO-O-、-O-CO-(CH-O-、-CO-O-(CH-O-、-O-CO-(CH-O-CO-、-O-CO-(CH-CO-O-、-CO-O-(CH-O-CO-、または-CO-O-(CH-CO-O-(ただし、nは1~12の整数を示す。)
(3)Z:
Figure JPOXMLDOC01-appb-C000006
 構造単位(D)の中では、カチオン重合性基もしくはカチオン重合性基を含む置換基とフェノール性水酸基あるいはカルボン酸基の結合位置は、これらの基が結合する骨格がベンゼン環の場合は1,4-の位置関係を、ナフタレン環の場合は2,6-の位置関係を、ビフェニル骨格、スチルベン骨格の場合は4,4’-の位置関係にあるものが液晶性の点から好ましい。より具体的には、4-ビニルオキシ安息香酸、4-ビニルオキシフェノール、4-ビニルオキシエトキシ安息香酸、4-ビニルオキシエトキシフェノール、4-グリシジルオキシ安息香酸、4-グリシジルオキシフェノール、4-(オキセタニルメトキシ)安息香酸、4-(オキセタニルメトキシ)フェノール、4’-ビニルオキシ-4-ビフェニルカルボン酸、4’-ビニルオキシ-4-ヒドロキシビフェニル、4’-ビニルオキシエトキシ-4-ビフェニルカルボン酸、4’-ビニルオキシエトキシ-4-ヒドロキシビフェニル、4’-グリシジルオキシ-4-ビフェニルカルボン酸、4’-グリシジルオキシ-4-ヒドロキシビフェニル、4’-オキセタニルメトキシ-4-ビフェニルカルボン酸、4’-オキセタニルメトキシ-4-ヒドロキシビフェニル、6-ビニルオキシ-2-ナフタレンカルボン酸、6-ビニルオキシ-2-ヒドロキシナフタレン、6-ビニルオキシエトキシ-2-ナフタレンカルボン酸、6-ビニルオキシエトキシ-2-ヒドロキシナフタレン、6-グリシジルオキシ-2-ナフタレンカルボン酸、6-グリシジルオキシ-2-ヒドロキシナフタレン、6-オキセタニルメトキシ-2-ナフタレンカルボン酸、6-オキセタニルメトキシ-2-ヒドロキシナフタレン、4-ビニルオキシ桂皮酸、4-ビニルオキシエトキシ桂皮酸、4-グリシジルオキシ桂皮酸、4-オキセタニルメトキシ桂皮酸、4’-ビニルオキシ-4-スチルベンカルボン酸、4’-ビニルオキシ-3’-メトキシ-4-スチルベンカルボン酸、4’-ビニルオキシ-4-ヒドロキシスチルベン、4’-ビニルオキシエトキシ-4-スチルベンカルボン酸、4’-ビニルオキシエトキシ-3’-メトキシ-4-スチルベンカルボン酸、4’-ビニルオキシエトキシ-4-ヒドロキシスチルベン、4’-グリシジルオキシ-4-スチルベンカルボン酸、4’-グリシジルオキシ-3’-メトキシ-4-スチルベンカルボン酸、4’-グリシジルオキシ-4-ヒドロキシスチルベン、4’-オキセタニルメトキシ-4-スチルベンカルボン酸、4’-オキセタニルメトキシ-3’-メトキシ-4-スチルベンカルボン酸、4’-オキセタニルメトキシ-4-ヒドロキシスチルベンなどが好ましい。
 カチオン重合性基を有する構造単位(D)の主鎖型液晶性ポリエステルを構成する全構造単位に占める割合は、同様に構造単位(D)をカルボン酸あるいはフェノールとして仕込み組成中の重量割合で表した場合、通常1~60%、好ましくは5~50%の範囲である。1%よりも少ない場合には、配向保持能、機械的強度の向上が得られない恐れがあり、また60%を越える場合には、結晶性が上がることにより液晶温度範囲が狭まり、どちらの場合も好ましくない。
 (A)~(D)の各構造単位は、それぞれ1つまたは2つのカルボキシル基あるいはフェノール性水酸基を有しているが、(A)~(D)の有するカルボキシル基、フェノール性水酸基は、仕込みの段階においてそれぞれの官能基の当量数の総和を概ねそろえることが望ましい。すなわち、構造単位(D)が遊離のカルボキシル基を有する単位である場合には、((A)のモル数×2)=((B)のモル数×2)+((D)のモル数)、構造単位(D)が遊離のフェノール性水酸基を有する単位である場合には、((A)のモル数×2)+((D)のモル数)=((B)のモル数×2)なる関係を概ね満たすことが望ましい。この関係式から大きく外れる仕込み組成の場合には、カチオン重合に関わる単位以外のカルボン酸あるいはフェノール、もしくはそれらの誘導体が分子末端となることになり、十分なカチオン重合性が得られないばかりか、これら酸性の残基が存在することにより、プロセス上の望む段階以外で重合反応や分解反応が起きてしまうおそれがあり好ましくない。
 主鎖型液晶性ポリエステルは、(A)、(B)、(C)および(D)以外の構造単位を含有することができる。含有することができる他の構造単位としては、特に限定はなく当該分野で公知の化合物(モノマー)を使用することができる。例えば、ナフタレンジカルボン酸、ビフェニルジカルボン酸、脂肪族ジカルボン酸およびこれら化合物にハロゲン基やアルキル基を導入した化合物や、ビフェノール、ナフタレンジオール、脂肪族ジオールおよびこれら化合物にハロゲン基やアルキル基を導入した化合物等を挙げることができる。
 また、主鎖型液晶性ポリエステルを構成する単位の原料として光学活性な化合物を用いた場合、該主鎖型液晶性ポリエステルにカイラルな相を付与せしめることが可能となる。かかる光学活性な化合物としては特に制限はないが、例えば、光学活性な脂肪族アルコール(C2n+1OH、ただしnは4から14の整数を表す。)、光学活性な脂肪族基を結合したアルコキシ安息香酸(C2n+1O-Ph-COOH、ただしnは4から14の整数、Phはフェニレン基を表す。)、メントール、カンファー酸、ナプロキセン誘導体、ビナフトール、1,2-プロパンジオール、1,3-ブタンジオール、2-メチルブタンジオール、2-クロロブタンジオール、酒石酸、メチルコハク酸、3-メチルアジピン酸などを挙げることができる。
 主鎖型液晶性ポリエステルの分子量は、フェノール/テトラクロロエタン混合溶媒(質量比60/40)中、30℃で測定した対数粘度ηが0.03~0.50dl/gであることが好ましくより好ましくは0.05~0.15dl/gである。ηが0.03dl/gより小さい場合には、主鎖型液晶性ポリエステルの溶液粘度が低く、フィルム化する際に均一な塗膜が得られない恐れがある。また、0.50dl/gより大きい場合には、液晶配向時に要する配向処理温度が高くなり、配向と架橋が同時に起こり配向性を低下させる危険性がある。
 本発明において、主鎖型液晶性ポリエステルの分子量制御は専ら仕込み組成により決定される。具体的には分子両末端を封印する形で反応する1官能性モノマー、すなわち前記した構造単位(D)を導入するための化合物の、全仕込み組成における相対的な含有量により、得られる主鎖型液晶性ポリエステルの平均的な重合度(構造単位(A)~(D)の平均結合数)が決定される。したがって、所望の対数粘度を有する主鎖型液晶性ポリエステルを得るためには、仕込みモノマーの種類に応じて仕込み組成を調整する必要がある。
 主鎖型液晶性ポリエステルの合成方法としては、通常のポリエステルを合成する際に用いられる方法を採ることができ、特に限定されるものではない。例えば、カルボン酸単位を酸クロリドやスルホン酸無水物などに活性化し、それを塩基の存在下でフェノール単位と反応させる方法(酸クロリド法)、カルボン酸単位とフェノール単位をDCC(ジシクロヘキシルカルボジイミド)などの縮合剤を用いて直接縮合させる方法、フェノール単位をアセチル化して、これとカルボン酸単位とを溶融条件下で脱酢酸重合する方法などを用いることが出来る。ただし、溶融条件下での脱酢酸重合を用いる場合には、カチオン重合性基を有するモノマー単位が反応条件下で重合や分解反応を起こすおそれがあるため、反応条件を厳密に制御する必要がある場合が多く、場合によっては適当な保護基を用いたり、あるいは一度別な官能基を有する化合物を反応させておいてから、後でカチオン重合性基を導入するなどの方法を採ることが望ましい場合もある。また、重合反応により得られた粗主鎖型液晶性ポリエステルを、再結晶、再沈などの方法により精製してもよい。
 このようにして得られた主鎖型液晶性ポリエステルは、NMR(核磁気共鳴法)などの分析手段により、それぞれのモノマーがどのような比率で主鎖型液晶性ポリエステル中に存在するかを同定することができる。特に、カチオン重合性基の量比から、主鎖型液晶性ポリエステルの平均結合数を算出する事ができる。
 前記カチオン重合性基を含む主鎖型液晶性ポリエステルに他の化合物を配合することも、本発明の範囲を超えない限り可能である。例えば、本発明に用いる主鎖型液晶性ポリエステルと混和しうる他の高分子化合物や各種低分子化合物等を添加しても良い。かかる低分子化合物は、液晶性を有していても有していなくとも良く、架橋性の主鎖型液晶性ポリエステルと反応できる重合性基を有していてもいなくとも良い。重合性基を有する液晶性化合物を用いることが好ましく、例えば以下のものを例示できる。
Figure JPOXMLDOC01-appb-C000007
 ここで、nは2~12の整数を、また-V-および-Wはそれぞれ以下のいずれかの基を表す。
 -V-: 単結合、-O-、-O-C2m-O-(ただし、mは2~12の整数)
 -W: 
Figure JPOXMLDOC01-appb-C000008
 なお、添加する高分子化合物や低分子化合物が光学活性である場合、組成物としてカイラルな液晶相を誘起させることができる。かかる組成物は、ねじれネマチック配向構造やコレステリック配向構造を有するフィルムの製造に利用することができる。
 側鎖型液晶ポリマーとしては、前述のようにポリ(メタ)アクリレート、ポリマロネート、ポリシロキサン等が挙げられるが、中でも下記一般式(1)で表される反応性基を結合したポリ(メタ)アクリレートが好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(1)において、Rは、それぞれ独立に、水素またはメチル基を表し、Rは、それぞれ独立に、水素、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、デシルオキシ基、ドデシルオキシ基、シアノ基、ブロモ基、クロロ基、フルオロ基またはカルボキシル基を表し、Rは、それぞれ独立に、水素、メチル基またはエチル基を表し、Rは、炭素数1から24までの炭化水素基を表し、Lは、それぞれ独立に、単結合、-O-、-O-CO-、-CO-O-、-CH=CH-または-C≡C-を表し、pは、1から10までの整数を表し、qは、0から10までの整数を表し、a、b、c、d、eおよびfは、ポリマー中の各ユニットのモル比(a+b+c+d+e+f=1.0、ただし、c+d+e=0ではない)を表す。
 式(1)で表される側鎖型高分子液晶性化合物を構成する各成分のモル比は、a+b+c+d+e+f=1.0、c+d+e=0ではなく、かつ、液晶性を示すことが必要である。この要件を満たせば各成分のモル比は任意でよいが、以下のとおりであることが好ましい。
 a:好ましくは0~0.80、より好ましくは0.05~0.50
 b:好ましくは0~0.90、より好ましくは0.10~0.70
 c:好ましくは0~0.50、より好ましくは0.10~0.30
 d:好ましくは0~0.50、より好ましくは0.10~0.30
 e:好ましくは0~0.50、より好ましくは0.10~0.30
 f:好ましくは0~0.30、より好ましくは0.01~0.10
 これらのポリ(メタ)アクリレート中の各成分は、上記の条件を満たせば、6種類の成分すべてが存在する必要もない。また、a~fの各成分は、それぞれ複数の構造からなっていてもよい。
 また、Rは、好ましくは、水素、メチル基、ブチル基、メトキシ基、シアノ基、ブロモ基、フルオロ基であり、特に好ましくは、水素、メトキシ基またはシアノ基であり、Lは、好ましくは、単結合、-O-、-O-CO-または-CO-O-であり、Rは、好ましくは、炭素数2、3、4、6、8および18の炭化水素基を表す。
 さらに、一般式(1)で表される側鎖型高分子液晶性化合物は、各成分a~fのモル比や配向形態により複屈折率が変化するが、ネマチック配向をとった場合の複屈折率は0.001~0.300であることが好ましく、より好ましくは0.05~0.25である。
 上記の側鎖型液晶ポリマーの各成分に該当するそれぞれの(メタ)アクリル化合物は、通常の有機化学の合成方法により得ることができる。
 上記の側鎖型液晶ポリマーは、各成分に該当する上記方法で得られたそれぞれの(メタ)アクリル化合物の(メタ)アクリル基をラジカル重合またはアニオン重合により共重合することにより容易に合成することができる。重合条件は特に限定されるものではなく、通常の条件を採用することができる。
 ラジカル重合の例としては、各成分に該当する(メタ)アクリル化合物をジメチルホルムアミド(DMF)、ジエチレングリコールジメチルエーテルなどの溶媒に溶かし、2,2’-アゾビスイソブチロニトリル(AIBN)や過酸化ベンゾイル(BPO)などを開始剤として、60~120℃で数時間反応させる方法が挙げられる。また、液晶相を安定に出現させるために、臭化銅(I)/2,2’-ビピリジル系や2,2,6,6-テトラメチルピペリジノオキシ・フリーラジカル(TEMPO)系などを開始剤としたリビングラジカル重合を行い、分子量分布を制御する方法も有効である。これらのラジカル重合は脱酸素条件下に行う必要がある。
 アニオン重合の例としては、各成分に該当する(メタ)アクリル化合物をテトラヒドロフラン(THF)などの溶媒に溶かし、有機リチウム化合物、有機ナトリウム化合物、グリニャール試薬などの強塩基を開始剤として反応させる方法が挙げられる。また、開始剤や反応温度を最適化することでリビングアニオン重合とし、分子量分布を制御することもできる。これらのアニオン重合は、脱水かつ脱酸素条件で行う必要がある。
 側鎖型液晶ポリマーは、重量平均分子量が1,000~200,000であるものが好ましく、3,000~50,000のものが特に好ましい。この範囲外では強度が不足したり、配向性が悪化したりして好ましくない。
 本発明で用いる液晶材料においては、前記側鎖型液晶ポリマーの他に、液晶性を損なわずに混和し得る種々の化合物を含有することができる。含有することができる化合物としては、オキセタニル基、エポキシ基、ビニルエーテル基などのカチオン重合性官能基を有する化合物、フィルム形成能を有する各種の高分子物質、液晶性を示す各種の低分子液晶性化合物や高分子液晶性化合物などが挙げられる。前記の側鎖型液晶ポリマーを組成物として用いる場合、組成物全体に占める前記の側鎖型液晶ポリマーの割合は、10質量%以上、好ましくは30質量%以上、さらに好ましくは50質量%以上である。側鎖型液晶ポリマーの含有量が10質量%未満ではフィルム形成能が不足したり、組成物中に占める重合性基濃度が低くなり、重合後の機械的強度が不十分となるため好ましくない。
 本発明の液晶材料においては、前記側鎖型液晶ポリマーに下記一般式(2)で表されるジオキセタン化合物を配合することが好ましい。
Figure JPOXMLDOC01-appb-C000010
 式(2)において、Rは、それぞれ独立に、水素、メチル基またはエチル基を表し、Lは、それぞれ独立に、単結合または-(CH-(nは1~12の整数)を表し、Xは、それぞれ独立に、単結合、-O-、-O-CO-または-CO-O-を表し、Mは、式(3)または式(4)で表されるいずれかであり、式(3)および式(4)中のPは、それぞれ独立に式(5)から選ばれる基を表し、Pは式(6)から選ばれる基を表し、Lは、それぞれ独立に単結合、-CH=CH-、-C≡C-、-O-、-O-CO-または-CO-O-を表す。
 -P-L-P-L-P- (3)
 -P-L-P- (4)
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 式(5)および式(6)において、Etはエチル基を、iPrはイソプロピル基を、nBuはノルマルブチル基を、tBuはターシャリーブチル基をそれぞれ表す。
 より具体的には、M基から見て左右のオキセタニル基を結合している連結基は異なっても(非対称型)同一でも(対称型)よく、特に2つのLが異なる場合や他の連結基の構造によっては液晶性を示さないこともあるが、使用には制約とならない。
 一般式(2)で表される化合物は、M、LおよびXの組み合わせから多くの化合物を例示することができるが、好ましくは、下記の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000013
 これらの化合物は有機化学における通常の合成方法に従って合成することができ、合成方法は特に限定されるものではない。
 合成にあたっては、オキセタニル基がカチオン重合性を有するため、強い酸性条件下では、重合や開環などの副反応を起こすことを考慮して、反応条件を選ぶ必要がある。なお、オキセタニル基は類似のカチオン重合性官能基であるオキシラニル基などと比べて、副反応を起こす可能性が低い。さらに、類似したアルコール、フェノール、カルボン酸などの各種化合物をつぎつぎに反応させることもあり、適宜保護基の活用を考慮してもよい。
 より具体的な合成方法としては、例えば、ヒドロキシ安息香酸を出発化合物として、ウィリアムソンのエーテル合成法等によりオキセタニル基を結合させ、次いで得られた化合物と本発明に適したジオールとを、酸クロリド法やカルボジイミドによる縮合法等を用いて結合させる方法や、逆に予めヒドロキシ安息香酸の水酸基を適当な保護基で保護し、本発明に適したジオールと縮合後、保護基を脱離させ、適当なオキセタニル基を有する化合物(オキセタン化合物)、例えばハロアルキルオキセタン等と水酸基とを反応させる方法などが挙げられる。
 オキセタン化合物と水酸基との反応は、用いられる化合物の形態や反応性により適した反応条件を選定すればよいが、通常、反応温度は-20℃~180℃、好ましくは10℃~150℃が選ばれ、反応時間は10分~48時間、好ましくは30分~24時間である。これらの範囲外では反応が充分に進行しなかったり、副反応が生じたりして好ましくない。また、両者の混合割合は、水酸基1当量につき、オキセタン化合物0.8~1.2当量が好ましい。
 また前記液晶材料は配向処理された後、オキセタニル基をカチオン重合させて架橋することにより、当該液晶状態を固定化することができる。このため、液晶材料中に、光や熱などの外部刺激でカチオンを発生する光カチオン発生剤および/または熱カチオン発生剤を含有させておくことが好ましい。また必要によっては各種の増感剤を併用してもよい。
 光カチオン発生剤とは、適当な波長の光を照射することによりカチオンを発生できる化合物を意味し、有機スルフォニウム塩系、ヨードニウム塩系、フォスフォニウム塩系などを例示することが出来る。これら化合物の対イオンとしては、アンチモネート、フォスフェート、ボレートなどが好ましく用いられる。具体的な化合物としては、ArSbF 、ArBF 、ArPF (ただし、Arはフェニル基または置換フェニル基を示す。)などが挙げられる。また、スルホン酸エステル類、トリアジン類、ジアゾメタン類、β-ケトスルホン、イミノスルホナート、ベンゾインスルホナートなども用いることができる。
 熱カチオン発生剤とは、適当な温度に加熱されることによりカチオンを発生できる化合物であり、例えば、ベンジルスルホニウム塩類、ベンジルアンモニウム塩類、ベンジルピリジニウム塩類、ベンジルホスホニウム塩類、ヒドラジニウム塩類、カルボン酸エステル類、スルホン酸エステル類、アミンイミド類、五塩化アンチモン-塩化アセチル錯体、ジアリールヨードニウム塩-ジベンジルオキシ銅、ハロゲン化ホウ素-三級アミン付加物などを挙げることができる。
 これらのカチオン発生剤の液晶材料中への添加量は、用いる側鎖型液晶性高分子物質を構成するメソゲン部分やスペーサ部分の構造や、オキセタニル基当量、液晶の配向条件などにより異なるため一概には言えないが、側鎖型液晶性高分子物質に対し、通常100質量ppm~20質量%、好ましくは1000質量ppm~10質量%、より好ましくは0.2質量%~7質量%の範囲である。100質量ppmよりも少ない場合には、発生するカチオンの量が十分でなく重合が進行しないおそれがあり、また20質量%よりも多い場合には、液晶フィルム中に残存するカチオン発生剤の分解残存物等が多くなり耐光性などが悪化するおそれがあるため好ましくない。
 次に配向基板について説明する。
 配向基板としては、まず平滑な平面を有するものが好ましく、有機高分子材料からなるフィルムやシート、ガラス板、金属板などを挙げることができる。コストや連続生産性の観点からは有機高分子からなる材料を用いることが好ましい。有機高分子材料の例としては、ポリビニルアルコール系、ポリイミド系、ポリフェニレンオキシド系、ポリフェニレンスルフィド系、ポリスルホン系、ポリエーテルケトン系、ポリエーテルエーテルケトン系、ポリアリレート系、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系、ジアセチルセルロースやトリアセチルセルロース等のセルロース系、ポリカーボネート系、ポリメチルメタクリレート等のアクリル系、ポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のオレフィン系ポリマー、環状ポリオレフィン系、塩化ビニル系、ナイロンや芳香族ポリアミド等のアミド系等フィルムが挙げられる。これらはブレンド物であってもよい。アクリル系やエポキシ系、オキセタン系等の光硬化性樹脂または熱硬化性樹脂を製膜した後、光又は熱で硬化させたフィルムも使用することができる。
 これら配向基板には安定したホメオトロピック配向を得るため、配向基板の耐溶剤性を向上させるため、密着性をコントロールするため等の観点から、必要に応じてさらに配向膜を設けたものを使用してもよい。配向膜材料としては、ポリビニルアルコール系、ポリイミド系、ポリフェニレンオキシド系、ポリフェニレンスルフィド系、ポリスルホン系、ポリエーテルケトン系、ポリエーテルエーテルケトン系、ポリアリレート系、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系、ジアセチルセルロースやトリアセチルセルロース等のセルロース系、ポリカーボネート系、ポリメチルメタクリレート等のアクリル系、ポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のオレフィン系、環状ポリオレフィン系、塩化ビニル系、ナイロンや芳香族ポリアミド等のアミド系等の有機系物質が挙げられる。これらはブレンド物であってもよい。アクリル系やエポキシ系、オキセタン系等の光硬化性樹脂または熱硬化性樹脂を製膜した後、光又は熱で硬化させた硬化膜も使用することができる。これら配向膜を形成する手法としては、直接あるいは溶液化して塗布する方法、蒸着やスパッタリング、配向基板との共押出などを利用することができる。また、無機系物質の層を配向基板上に蒸着、スパッタリング、塗布などの方法で形成してもよい。無機系物質の例としては、アルミニウム、銀等の無機金属や、シリカ、酸化ケイ素、酸化アルミニウム等の無機化合物が挙げられる。
 次に、本発明に使用されるホメオトロピック配向液晶フィルムの製造方法について説明する。液晶フィルム製造の方法としてはこれらに限定されるものではないが、前述の液晶材料を前述の配向基板上に展開し、当該液晶材料を配向させた後、必要により光照射および/または加熱処理してから、冷却することにより当該配向状態を固定化することにより製造することができる。
 液晶材料を配向基板上に展開して液晶材料層を形成する方法としては、液晶材料を溶融状態で直接配向基板上に塗布する方法や、液晶材料の溶液を配向基板上に塗布後、塗膜を乾燥して溶媒を留去させる方法が挙げられる。
 溶液の調製に用いる溶媒に関しては、本発明の液晶材料を溶解でき適当な条件で留去できる溶媒であれば特に制限はなく、一般的にアセトン、メチルエチルケトン、イソホロン、シクロヘキサノンなどのケトン類、ブトキシエチルアルコール、ヘキシルオキシエチルアルコール、メトキシ-2-プロパノールなどのエーテルアルコール類、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルなどのグリコールエーテル類、酢酸エチル、乳酸エチルなどのエステル類、フェノール、クロロフェノールなどのフェノール類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドンなどのアミド類、クロロホルム、テトラクロロエタン、ジクロロベンゼンなどのハロゲン系などやこれらの混合系が好ましく用いられる。また、配向基板上に均一な塗膜を形成するために、界面活性剤、消泡剤、レベリング剤、着色剤などを溶液に添加してもよい。
 さらに、前述の液晶性高分子化合物の配向の固定化を容易ならしめるために、液晶性高分子化合物に結合されている重合可能な基と同一の反応性を有する基を1分子内に2個以上有する低分子化合物(液晶性、非液晶性を問わない)や接着性を向上させうるような各種化合物を添加することもできる。
 液晶材料を直接塗布する方法でも、溶液を塗布する方法でも、塗布方法については、塗膜の均一性が確保される方法であれば、特に限定されることはなく公知の方法を採用することができる。例えば、スピンコート法、ダイコート法、カーテンコート法、ディップコート法、ロールコート法などが挙げられる。
液晶材料の溶液を塗布する方法では、塗布後に溶媒を除去するための乾燥工程を入れることが好ましい。この乾燥工程は、塗膜の均一性が維持される方法であれば、特に限定されることなく公知の方法を採用することができる。例えば、ヒーター(炉)、温風吹きつけなどの方法が挙げられる。
 液晶フィルムの膜厚は、液晶表示装置の方式や種々の光学パラメーターに依存することから一概には言えないが、通常0.1μm~10μm、好ましくは0.2μm~5μm、さらに好ましくは0.3μm~2μmである。膜厚が0.1μmより薄い場合、十分な視野角改良あるいは輝度向上効果を得ることができない恐れがある。また10μmを越えると、所望の配向が得られなくなる等の恐れがある。
 続いて、配向基板上に形成された液晶材料層を、熱処理などの方法で液晶配向を形成し、必要により光照射および/または加熱処理してから、冷却することで硬化を行い固定化する。最初の熱処理では、使用した液晶材料の液晶相発現温度範囲に加熱することで、該液晶材料が本来有する自己配向能により液晶を配向させる。熱処理の条件としては、用いる液晶材料の液晶相挙動温度(転移温度)により最適条件や限界値が異なるため一概には言えないが、通常10~250℃、好ましくは30℃~160℃の範囲であり、該液晶材料にガラス転移温度が存在する場合には、ガラス転移点(Tg)以上の温度、さらに好ましくはTgより10℃以上高い温度で熱処理するのが好ましい。低温すぎる場合には、液晶配向が充分に進行しないおそれがあり、また高温では液晶材料中のカチオン重合性反応基や配向基板に悪影響を与えるおそれがある。また、熱処理時間については、通常3秒~30分、好ましくは10秒~20分の範囲である。3秒より短い熱処理時間では、液晶配向が充分に完成しないおそれがあり、また30分を超える熱処理時間では、生産性が悪くなるため、どちらの場合も好ましくない。該液晶材料層を熱処理などの方法で液晶配向を形成したのち、冷却してガラス状態として固定化するか、必要により液晶配向状態を保ったまま液晶材料を組成物中のオキセタニル基等の反応性基の重合反応により硬化させる。硬化工程は、完成した液晶配向を硬化(架橋)反応により液晶配向状態を固定化し、より強固な膜に変性することを目的にしている。
 本発明に使用される液晶材料が重合性のオキセタニル基を持つ場合、その反応基の重合(架橋)には、カチオン重合開始剤(カチオン発生剤)を用いるのが好ましいことは前述のとおりである。また、重合開始剤としては、熱カチオン発生剤より光カチオン発生剤の使用が好ましい。
 光カチオン発生剤を用いた場合、光カチオン発生剤の添加後、液晶配向のための熱処理までの工程を暗条件(光カチオン発生剤が解離しない程度の光遮断条件)で行えば、液晶材料は配向段階までは硬化することなく、充分な流動性をもって液晶配向することができる。この後、適当な波長の光を発する光源からの光を照射することによりカチオンを発生させ、液晶材料層を硬化させる。
 光照射の方法としては、用いる光カチオン発生剤の吸収波長領域にスペクトルを有するようなメタルハライドランプ、高圧水銀灯、低圧水銀灯、キセノンランプ、アークランプ、レーザーなどの光源からの光を照射し、光カチオン発生剤を開裂させる。1平方センチメートルあたりの照射量としては、積算照射量として通常1~2000mJ、好ましくは10~1000mJの範囲である。ただし、光カチオン発生剤の吸収領域と光源のスペクトルが著しく異なる場合や、液晶材料自身に光源からの光の吸収能がある場合などはこの限りではない。これらの場合には、適当な光増感剤や、吸収波長の異なる2種以上の光カチオン発生剤を混合して用いるなどの方法を採ることもできる。
 光照射時の温度は、該液晶材料が液晶配向をとる温度範囲である必要がある。また、硬化の効果を充分にあげるためには、該液晶材料のTg以上の温度で光照射を行うのが好ましい。
 以上のような工程により製造した液晶材料層は、充分強固な膜となっている。具体的には、硬化反応によりメソゲンが3次元的に結合され、硬化前と比べて耐熱性(液晶配向保持の上限温度)が向上するのみでなく、耐スクラッチ性、耐磨耗性、耐クラック性などの機械的強度に関しても大幅に向上する。
 なお、配向基板として、光学的に等方でない、あるいは得られる液晶フィルムが最終的に目的とする使用波長領域において不透明である、もしくは配向基板の膜厚が厚すぎて実際の使用に支障を生じるなどの問題がある場合、配向基板上で形成された形態から、偏光板、目的とする使用波長領域で障害とならないような基板や位相差機能を有する延伸フィルムに転写した形態も使用しうる。転写方法としては公知の方法を採用することができる。例えば、特開平4-57017号公報や特開平5-333313号公報に記載されているように液晶フィルム層を粘着剤もしくは接着剤を介して、配向基板とは異なる基板を積層した後に、該積層体から配向基板を剥離することで液晶フィルムのみを転写する方法等を挙げることができる。
 転写に使用する粘着剤もしくは接着剤は、後述のように光学グレードのものであれば特に制限はなく、アクリル系、エポキシ系、ウレタン系など一般に用いられているものを用いることができる。
 以上のようにして得られるホメオトロピック配向液晶フィルム層は、当該液晶材料層の光学位相差を垂直入射から傾けた角度で測定することによって定量化することができる。ホメオトロピック配向液晶層の場合、この位相差値は垂直入射について対称的である。
 光学位相差の測定には数種の方法を利用することができ、例えば王子計測機器(株)製自動複屈折測定装置KOBRA-WRやAXOMETRICS社製AxoScan、および偏光顕微鏡を利用することができる。このホメオトロピック配向液晶層はクロスニコル偏光子間で黒色に見える。このようにしてホメオトロピック配向性を評価した。
 第2の光学異方性層の厚みは、積層偏光板および有機EL素子として使用できる範囲ならば特に制限はないが、0.1~200μmが好ましく、より好ましくは0.2~150μm、さらに好ましくは0.3~100μmである。
 本発明の積層偏光板を構成する偏光子としては、通常、偏光子の片側または両側に保護フィルムを有するものが使用される。偏光子は、特に制限されず、各種のものを使用でき、例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等のポリエン系配向フィルム、リオトロピック液晶を含む配向フィルム等が挙げられる。これらのなかでもポリビニルアルコール系フィルムを延伸して二色性材料(沃素、染料)を吸着・配向したものが好適に用いられる。偏光子の厚さも特に制限されないが、5~80μm程度が一般的である。
 ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製することができる。必要に応じてホウ酸やヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸してもよく、また延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中でも延伸することができる。
 前記偏光子の片側または両側に設けられている保護フィルムには、透明性、機械的強度、熱安定性、水分遮蔽性、等方性などに優れるものが好ましい。前記保護フィルムの材料としては、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロース等のセルロース系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー、ポリカーボネート系ポリマーなどが挙げられる。また、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、シクロ系ないしはノルボルネン構造を有するポリオレフィン、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、あるいは前記ポリマーのブレンド物などが保護フィルムを形成するポリマーの例として挙げられる。その他、アクリル系やウレタン系、アクリルウレタン系やエポキシ系、シリコーン系等の熱硬化型ないし紫外線硬化型樹脂などをフィルム化したものなどが挙げられる。保護フィルムの厚さは、一般には500μm以下であり、1~300μmが好ましい。特に5~200μmとするのが好ましい。
 保護フィルムとしては、偏光特性や耐久性などの点より、トリアセチルセルロース等のセルロース系ポリマーが好ましい。特にトリアセチルセルロースフィルムが好適である。
 なお、偏光子の両側に保護フィルムを設ける場合、その表裏で同じポリマー材料からなる保護フィルムを用いてもよく、異なるポリマー材料等からなる保護フィルムを用いてもよい。前記偏光子と保護フィルムとは通常、粘着剤や接着剤等を介して密着している。
 接着剤としては、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリウレタン、水系ポリエステル等を例示できる。
 前記保護フィルムとしては、ハードコート層や反射防止処理、スティッキング防止や、拡散ないしアンチグレアを目的とした処理を施したものを用いることができる。
 ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例えばアクリル系、シリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑り特性等に優れる硬化皮膜を保護フィルムの表面に付加する方式などにて形成することができる。反射防止処理は偏光板表面での外光の反射防止を目的に施されるものであり、従来に準じた反射防止膜などの形成により達成することができる。また、スティッキング防止処理は隣接層との密着防止を目的に施される。
 またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を阻害することの防止等を目的に施されるものであり、例えば、サンドブラスト方式やエンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式にて保護フィルムの表面に微細凹凸構造を付与することにより形成することができる。前記表面微細凹凸構造の形成に含有させる微粒子としては、例えば平均粒径が0.5~50μmのシリカ、アルミナ、チタニア、ジルコニア、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモン等からなる導電性のこともある無機系微粒子、架橋又は未架橋のポリマー等からなる有機系微粒子などの透明微粒子が用いられる。表面微細凹凸構造を形成する場合、微粒子の使用量は、表面微細凹凸構造を形成する透明樹脂100重量部に対して一般的に2~50重量部程度であり、5~25重量部が好ましい。アンチグレア層は、偏光板透過光を拡散して視角などを拡大するための拡散層(視角拡大機能など)を兼ねるものであってもよい。
 なお、前記反射防止層、スティッキング防止層、拡散層やアンチグレア層等は、保護フィルムそのものに設けることができるほか、別途光学層として透明保護層とは別体のものとして設けることもできる。
 前記の偏光子と第1の光学異方性層、第2の光学異方性層から少なくともなる本発明の積層偏光板は、それぞれ粘・接着剤層を介して互いに貼り合わせることにより作製することができる。また、配向基板上に作製されたホメオトロピック配向液晶フィルムを、粘・接着剤層を介して第1の光学異方性層に貼着した後、ホメオトロピック配向を実現するために使用した配向基板を剥離してホメオトロピック配向した液晶部分のみを第1の光学異方性層に転写する手法によっても積層させることができる。
 また、第1、第2の光学異方性層同士の積層方法としては、例えば後述の粘・接着剤層を用いて直接両者を積層する手法、一方の光学異方性層上に液晶配向能を有する配向膜を設け、均一でモノドメインな液晶配向性を示し、かつその配向状態を容易に固定化できる液晶性高分子を塗布等の手段により設ける手法、さらには配向基板として第1の光学異方性層を選択し、均一でモノドメインな液晶配向性を示し、かつその配向状態を容易に固定化できる液晶性高分子を塗布等の手段により直接第1の光学異方性層に設ける手法等が好適に用いられる。
 本発明の積層偏光板は、必要に応じて光拡散層、光制御フィルム、導光板、プリズムシート等の部材を追加してもよい。
 なお、偏光子、第1の光学異方性層、第2の光学異方性層の積層や転写に用いる粘・接着剤層を形成する粘・接着剤は光学的に等方性で透明なものであれば特に制限されない。例えば、アクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。また、光や電子線、熱などの外部刺激により反応し重合や架橋するような反応性のものも用いることができる。これらの中でも特に、アクリル系粘着剤の如く光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく用いうる。
 粘・接着剤層の形成は、適宜な方式で行うことができる。その例としては、トルエンや酢酸エチル等の適宜な溶剤の単独物又は混合物からなる溶媒にベースポリマーまたはその組成物を溶解又は分散させた10~40質量%程度の粘着剤溶液を調製し、それを流延方式や塗工方式等の適宜な展開方式で前記の偏光子、第1の光学異方性層、または第2の光学異方性層上に直接付設する方式、あるいは前記に準じセパレータ上に粘・接着剤層を形成してそれを前記の偏光子、第1の光学異方性層、または第2の光学異方性層上に移着する方式などが挙げられる。また、粘・接着剤層には、例えば天然物や合成物の樹脂類、特に、粘着性付与樹脂や、ガラス繊維、ガラスビーズ、金属粉、その他の無機粉末等からなる充填剤、顔料、着色剤、酸化防止剤などの粘着層に添加されることのある添加剤を含有していてもよい。また微粒子を含有して光拡散性を示す粘・接着剤層などであってもよい。
 粘・接着剤層の厚さは、貼着する部材を貼着しかつ十分な密着力を維持できる限り特に膜厚に制限はなく、粘・接着剤の特性や粘・接着される部材により適宜選定することができる。楕円偏光板の総厚の低減要求の強いことから、粘・接着剤の厚さは薄いほうが好ましいが、通常は2~80μm、好ましくは3~50μm、さらに好ましくは5~40μmである。この範囲外では、接着力が不足したり、積層時や積層偏光板の保存時に端部から滲み出すなどして好ましくない。
 なお、第2の光学異方性層としてホメオトロピック配向液晶フィルムを用いる場合、ホメオトロピック配向液晶フィルムを粘・接着剤層を介して、第1光学異方性層に転写する際には、転写が容易となるよう下記(A)~(C)のようなプロセスを適宜用いることもできる。
 (A)配向基板上に形成された液晶配向が固定化されたホメオトロピック配向液晶層を、接着剤層1を介して直接第1の光学異方性層へ貼着し、配向基板を剥離してホメオトロピック配向液晶層を第1の光学異方性層へ転写する。
 (B)配向基板上に形成された液晶配向が固定化されたホメオトロピック配向液晶層を、接着剤層1を介して再剥離性基板1と接着せしめた後、配向基板を剥離してホメオトロピック配向液晶層を再剥離性基板1に転写し、再剥離性基板1/接着剤層1/ホメオトロピック配向液晶層からなる中間体1を作製し、さらに接着剤層2を介して再剥離性基板2と接着せしめた後、再剥離性基板1を剥離し、接着剤層1/ホメオトロピック配向液晶層/接着剤層2/再剥離性基板2からなる中間体2を作製し、さらに接着剤層1側にセパレートフィルム付きのノンキャリア糊を貼合した後、セパレートフィルムを剥離し第1の光学異方性層へ貼着し、再剥離性基板2を剥離する。
 (C)配向基板上に形成された液晶配向が固定化されたホメオトロピック配向液晶層を、接着剤層1を介して再剥離性基板1と接着せしめた後、配向基板を剥離してホメオトロピック配向液晶層を再剥離性基板1に転写し、再剥離性基板1/接着剤層1/ホメオトロピック配向液晶層からなる中間体1を作製し、さらに接着剤層2を介して再剥離性基板2と接着せしめた後、再剥離性基板1を剥離し、接着剤層1/ホメオトロピック配向液晶層/接着剤層2/再剥離性基板2からなる中間体2を作製し、さらに接着剤層1側にセパレートフィルム付きのノンキャリア糊を貼合した後、再剥離性基板2を剥離し、セパレートフィルム/粘着剤層/接着剤層1/ホメオトロピック配向液晶層/接着剤層2からなる中間体3を作製し、さらに接着剤層2側にもセパレートフィルム付きのノンキャリア糊を貼合し、セパレートフィルム/粘着剤層/接着剤層1/ホメオトロピック配向液晶層/接着剤層2/粘着剤層/セパレートフィルムからなる中間体4を作製し、セパレートフィルムを剥離し第1の光学異方性層へ貼着する。
 さらに接着剤に適宜表面改質剤等の添加剤を添加することで、再剥離性基板とホメオトロピック配向液晶層との貼着の際の両者の密着力を低減させ、かつ再剥離性基板と接着剤層との密着力を維持させることで再剥離性基板側に接着剤層が貼着したまま剥離することもできる。その際に用いられる界面活性剤、および添加剤としては光学的欠陥の検査性や剥離性に悪影響を及ぼさない範囲であれば種類、添加量に特に制限はない。このような手法により第1の光学異方性層に転写する際には、転写が容易となるよう下記(D)、(E)のようなプロセスを適宜用いることもできる。
 (D)配向基板上に形成された液晶配向が固定化されたホメオトロピック配向液晶層を、接着剤層1を介して再剥離性基板1と接着せしめた後、配向基板を剥離してホメオトロピック配向液晶層を再剥離性基板1に転写し、再剥離性基板1/接着剤層1/ホメオトロピック配向液晶層からなる中間体1を作製し、さらに接着剤層2を介して再剥離性基板2と接着せしめた後、再剥離性基板1を剥離し、接着剤層1/ホメオトロピック配向液晶層/接着剤層2/再剥離性基板2からなる中間体2を作製し、さらに接着剤層1側にセパレートフィルム付きのノンキャリア糊を貼合した後、セパレートフィルムを剥離し第1の光学異方性層へ貼着し、再剥離性基板2を接着剤層2が貼着した状態で剥離する。
 (E)配向基板上に形成された液晶配向が固定化されたホメオトロピック配向液晶層を、接着剤層1を介して再剥離性基板1と接着せしめた後、配向基板を剥離してホメオトロピック配向液晶層を再剥離性基板1に転写し、再剥離性基板1/接着剤層1/ホメオトロピック配向液晶層からなる中間体1を作製し、さらに接着剤層2を介して再剥離性基板2と接着せしめた後、再剥離性基板1を剥離し、接着剤層1/ホメオトロピック配向液晶層/接着剤層2/再剥離性基板2からなる中間体2を作製し、さらに接着剤層1側にセパレートフィルム付きのノンキャリア糊を貼合した後、再剥離性基板2を接着剤層2が貼着した状態で剥離し、セパレートフィルム/粘着剤層/接着剤層1/ホメオトロピック配向液晶層からなる中間体5を作製し、さらにホメオトロピック配向液晶層側にもセパレートフィルム付きのノンキャリア糊を貼合しセパレートフィルム/粘着剤層/接着剤層1/ホメオトロピック配向液晶層/接着剤層2/粘着剤層/セパレートフィルムからなる中間体6を作製し、セパレートフィルムを剥離し第1の光学異方性層へ貼着する。
 またホメオトロピック配向液晶フィルムを粘・接着剤層を介して、第1の光学異方性層に転写する際には、ホメオトロピック配向液晶フィルム表面を表面処理して粘・接着剤層との密着性を向上することができる。表面処理の手段は、特に制限されないが、前記液晶フィルム表面の透明性を維持できるコロナ放電処理、スパッタ処理、低圧UV照射、プラズマ処理などの表面処理法を好適に採用できる。これら表面処理法のなかでもコロナ放電処理が良好である。
 さらに、ホメオトロピック配向液晶フィルムを粘・接着剤層を介さずとも、第1の光学異方性層上に前述の液晶材料を前述の配向基板上に展開し、当該液晶材料を配向させた後、光照射および/または加熱処理することにより当該配向状態を固定化することにより製造することもできる。適宜必要であれば前記第1の光学異方性層上に前述の配向膜を設置してから前述の液晶材料を前述の配向基板上に展開し、当該液晶材料を配向させた後、光照射および/または加熱処理することにより当該配向状態を固定化することにより製造することもできる。
 本発明の積層偏光板の厚みは、有機EL素子として使用できる範囲ならば特に制限はないが、40~500μmが好ましく、より好ましくは50~400μm、さらに好ましくは60~300μmである。
 本発明の有機EL素子について、図面を参照しつつ説明する。図1は本発明の有機EL素子の概略構成を示す断面図である。図1に示すように、本発明の有機EL素子は、少なくとも偏光子1と第1の光学異方性層2と、第2の光学異方性層3からなる積層偏光板4を備えている。ここで、偏光子の透過軸と第1の光学異方性層の光軸は45度または135度で交差するように配置されており、偏光子を透過した直線偏光は第1の光学異方性層によって円偏光に変換される。
 さらに有機EL素子9は、透明基板5、陽極6、発光層7、陰極8から少なくとも構成される。このような構成を有する有機EL素子9において、陰極8からは電子が、陽極6からは正孔が注入され、両者が発光層7で再結合することにより、発光層7の発光特性に応じた波長で発光する。発光層7で生じた光は、直接または陰極8で反射した後、陽極6、透明基板5、積層偏光板4を通過して外部に出射する。
 太陽光や室内照明等により有機EL素子9の外部から素子面に対して垂直に入射した外光は、偏光子1により少なくとも半分の光は吸収され、残りが直線偏光として透過し、第1の光学異方性層2に入射する。第1の光学異方性層2は、1/4波長板として機能するため、第1の光学異方性層2を通過する際に円偏光に変換される。第1の光学異方性層2を出射した光は、第2の光学異方性層3に入射するが、第2の光学異方性層3は、正面位相差が非常に小さいため、円偏光の状態にはほとんど影響を与えない。第2の光学異方性層3を通過した円偏光は、透明基板5、陽極6、発光層7を通過し、陰極8で鏡面反射するが、反射する際に位相が180度反転するため、入射時とは逆の円偏光として反射される。この逆回りの円偏光は、発光層7、陽極6、透明基板5、第2の光学異方性層3を円偏光の状態にほぼ影響なく通過し、第1の光学異方性層2に入射するが、第1の光学異方性層2によって偏光子の透過軸と直交する直線偏光に変換されるため、偏光子1で吸収され、外部に出射されない。
 一方、斜め方向から入射した外光は、第1の光学異方性層2を通過する際の光路長が長くなるため、第2の光学異方性層がない場合には、第1の光学異方性層2のみでは1/4波長板として機能せず、楕円偏光となり、反射光は偏光子1を通過する際に一部透過して、観察者に視認されていた。すなわち、第2の光学異方性層3のない従来の円偏光板では、斜め方向からの光の外光反射防止効果が、正面方向と比べて大幅に低下する問題があった。
 しかしながら、本発明の積層偏光板では、第1の光学異方性層2に加えて第2の光学異方性層3を有するため、それら全体として斜め方向からの光に対してもほぼ1/4位相差板として機能させることが可能となり、正面だけではなく、斜め方向からの光に対しても外光反射を防止することが可能となる。
 本発明の有機EL素子は、前記した構成部材以外にも他の構成部材を付設することができる。例えば、カラーフィルターを本発明の有機EL素子に付設することにより、色純度の高いマルチカラー又はフルカラー表示を行うことができる有機EL素子を作製することができる。
 以下に実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 なお、実施例で用いた各分析方法は以下の通りである。
(1)GPCの測定
 化合物をテトラヒドロフランに溶解し、東ソー社製8020GPCシステムにて測定した。カラムはTSK-GEL SuperH1000、SuperH2000、SuperH3000、SuperH4000を直列につなぎ、溶出液としてテトラヒドロフランを用いて測定した。分子量の較正にはポリスチレンスタンダードを用いた。
(2)液晶材料の熱挙動の確認
 液晶材料の相挙動はメトラー社製ホットステージFP82HT上で、試料を加熱しつつ、オリンパス社製BH2偏光顕微鏡で観察した。ガラス転移温度、相転移温度は、Perkin-Elmer社製示差走査熱量計DSC8000により昇降温速度20℃/分で測定した。
(3)フィルムの顕微鏡観察
 オリンパス光学社製BH2偏光顕微鏡で液晶の配向状態を観察した。
(4)膜厚測定法
 SLOAN社製SURFACE TEXTURE ANALYSIS SYSTEM Dektak 3030ST、もしくはニコン社製DIGIMICRO MFC-101を用いた。また、干渉波測定(日本分光(株)製 紫外・可視・近赤外分光光度計V-570)と屈折率のデータから膜厚を求める方法も併用した。
(5)光学位相差の測定
 フィルム面内のリターデーション値Re及び膜厚方向のリターデーション値Rthは、王子計測機器(株)製自動複屈折計KOBRA-WR、AXOMETRICS社製AxoScanを用いて測定した。
(6)屈折率の測定
 アタゴ社製アッベ屈折計NAR-1T SOLID、もしくはメトリコン社製2010プリズムカプラーを使用して配向フィルムを測定した。
[参考例1]
(ポリマー溶液1の調製)
 特開2004-315736号公報、特開2007-277462号公報を参考にして、ラジカル重合により、下記式(7)で表される側鎖型液晶性ポリマー化合物を合成した。GPC測定による分子量はポリスチレン換算で、数平均分子量Mnは8,900、重量平均分子量Mwは19,600であった。なお、式(7)における数字は各ユニットのモル組成比を表すものであって、ブロック共重合体を意味するものではない。DSC測定の結果、昇温時のガラス転移温度は59℃で、それ以上の温度ではネマチック液晶相を示し、175℃以上で等方相を示した。
 式(7)で表される側鎖型液晶性ポリマーを0.9gと、式(8)で表されるジオキセタン化合物を0.05g、式(9)で表されるアクリル化合物0.05gを、9gのシクロヘキサノンに溶解し、暗所でカチオン系光開始剤トリアリルスルフォニウムヘキサフルオロアンチモネートの50%プロピレンカーボネート溶液(アルドリッチ社製、試薬)0.1g(式(7)、式(8)、式(9)の化合物3種からなる液晶材料の総重量に対して濃度5重量%)、界面活性剤としてパーフルオロアルキル基含有界面活性剤を0.002g(式(7)、式(8)、式(9)の化合物3種からなる液晶材料の総重量に対して濃度0.2重量%)を加えた後、孔径0.5μmのポリテトラフルオロエチレン製フィルター(アドバンテック東洋(株)製、品名25JP050AN)でろ過して液晶材料組成物の溶液を調製した。なお、式(8)のジオキセタン化合物は、偏光顕微鏡観察及びDSC測定の結果、昇温時は74℃で結晶相からネマチック液晶相に転移し、96℃で等方相となり、降温時は88℃で等方相からネマチック相に転移した後、54℃で結晶相を示した。また、式(9)のアクリル化合物は、偏光顕微鏡観察及びDSC測定の結果、液晶相を示さず、昇温時30℃で融解した。なお、本液晶材料組成物溶液1の一部をガラス基板上にスピンコート法により塗布し、55℃のホットプレートで60分加熱して溶剤を除去した。本組成物をガラス基板上からかき取り、熱挙動の確認を偏光顕微鏡観察およびDSC測定にて行ったところ、昇温時のガラス転移温度は50℃で、155℃まで液晶相を示し、それ以上の温度で等方相を示した。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
[参考例2]
(ポリマー溶液2の調製)
 参考例1と同様に、ラジカル重合により、下記式(10)で表される側鎖型液晶性ポリマー化合物を合成した。GPC測定による分子量はポリスチレン換算で、数平均分子量Mnは8,000、重量平均分子量Mwは17,500であった。なお、式(10)における数字は各ユニットのモル組成比を表すものであって、ブロック共重合体を意味するものではない。DSC測定の結果、昇温時のガラス転移温度は62℃で、102℃までスメクチック液晶相を、それ以上の温度ではネマチック液晶相を示し、196℃以上で等方相を示した。
 式(10)で表される側鎖型液晶性ポリマー0.85gと、式(11)で表されるジオキセタン化合物0.05g、式(9)で表されるアクリル化合物0.10gを、9gのγ-ブチロラクトンに溶かし、暗所でカチオン系光開始剤トリアリルスルフォニウムヘキサフルオロホスフェートの50%プロピレンカーボネート溶液(アルドリッチ社製、試薬)0.08g(式(10)、式(11)、式(9)の化合物3種からなる液晶材料の総重量に対して濃度4重量%)、界面活性剤としてパーフルオロアルキル基含有界面活性剤を0.002g(式(10)、式(11)、式(9)の化合物3種からなる液晶材料の総重量に対して濃度0.2重量%)を加えた後、孔径0.5μmのポリテトラフルオロエチレン製フィルター(アドバンテック東洋(株)製、品名25JP050AN)でろ過して液晶材料組成物の溶液を調製した。なお、式(11)のジオキセタン化合物は、偏光顕微鏡観察及びDSC測定の結果、液晶相を示さず、昇温時130℃で融解した。なお、本液晶材料組成物溶液2の一部をガラス基板上にスピンコート法により塗布し、55℃のホットプレートで60分加熱して溶剤を除去した。本組成物をガラス基板上からかき取り、熱挙動の確認を偏光顕微鏡観察および、DSC測定にて行ったところ、昇温時のガラス転移温度は53℃で、165℃まで液晶相を示し、それ以上の温度で等方相を示した。
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
[参考例3]
(PVA溶液の調製及びPVA配向基板の作製)
 還流冷却器および攪拌機の付いた1L三口フラスコにPVA(日本酢ビ・ポバール(株)製、商品名JL-18E、ケン化度83~86%、平均重合度1800)24.0gおよび脱イオン水460.8g(電気伝導度値;1μS/cm以下)を投入し、95℃、3時間加熱し攪拌溶解後、70℃まで冷却した。イソプロピルアルコール115.2g(関東化学(株)製、鹿一級、純度99%以上)を徐々に加え、65℃~70℃で2時間攪拌し、透明な均一溶液を得た。室温まで冷却し、前記槽からPVA溶液を濾過しながら抜き出した。濾過は、平均粒径1μmの粒子を捕集できるカートリッジフィルター(ADVANTEC TCP-JX-S1FE(1μm))を使用し、固形分濃度約4質量%の溶液350gを得た。
 配向基板は以下のようにして調製した。厚さ50μmのポリエチレンナフタレート(PEN)フィルム(帝人デュポンフィルム(株)製、商品名Q51)を15cm角に切り出し、コロナ放電処理(100W・min/m)を施した後、厚み1.1mm、13cm角のガラス基板上に固定し、スピンコーターにセットした。前記PVA溶液を300rpmで30秒の条件でスピンコート法により塗布し、50℃のホットプレートで30分乾燥した後、120℃のオーブンで10分間加熱して、PVA層とPENフィルムからなるPVA配向基板を得た。得られたPVA層の膜厚は1.2μmであった。
[参考例4]
(偏光子の作製)
 ポリビニルアルコールフィルムを温水中に浸漬して膨張させたあと、ヨウ素/ヨウ化カリウム水溶液中にて染色し、次いでホウ酸水溶液中で一軸延伸処理して偏光子を得た。これの偏光子は、分光光度計にて単体透過率、平行透過率および直交透過率を調べたところ、厚み20μm、透過率43.5%、偏光度99.9%であった。
[実施例1]
(第1の光学異方性層)
 第1の光学異方性層として、縦一軸延伸により作製された厚み20μm、200mm角のCOPフィルム(JSR(株)製ARTON)を用意した。該第1の光学異方性層の光学位相差を測定したところ、面内のリターデーション値Re1(450)は136nm、Re1(550)は135nm、厚さ方向のリターデーション値Rth1(550)は、67nmであった。すなわち、Re1(550)/550の値は0.25であり、Re1(450)/Re1(550)の値は、1.01である。本COPフィルムには両面にコロナ放電処理(100W・min/m)を実施した。
(第2の光学異方性層)
 参考例1で調製した液晶材料溶液を、参考例3で作製したPVA配向基板上にスピンコート法により塗布した。次いで55℃のホットプレートで10分乾燥し、100℃のオーブンで3分間熱処理することで液晶材料を配向させた。次いで、70℃に加熱したアルミ板に試料を密着させて置き、その上から、高圧水銀灯ランプにより300mJ/cmの紫外光(ただし365nmで測定した光量)を空気中で照射して、オキセタニル基をカチオン反応させて液晶材料を硬化させることで、PVA配向基板上に液晶層からなる第2の光学異方性層を形成させた。
 なお、基板として用いたポリエチレンナフタレートフィルムは大きな複屈折を持ち、第2の光学異方性層の光学測定が困難なため、得られたPVA配向基板上の液晶層を、光学的に等方性であるアクリル系UV硬化型樹脂を介して、厚み0.5mm、40mm角の光学的に等方性のガラス基板上に転写した。すなわち、PVA層上の硬化した液晶層の上に、UV硬化型樹脂層としてアクリル系UV硬化型接着剤を5μm厚となるように塗布し、ガラス基板でラミネートして、ガラス基板側から600mJ/cmの紫外線を照射してUV硬化型樹脂層を硬化させた後、PVA配向基板を剥離し、ガラス基板付きの積層体(ガラス基板/UV硬化型樹脂層/第2の光学異方性層)を得た。
 得られた積層体をクロスニコルにした偏光顕微鏡下で観察すると、ディスクリネーションがなくモノドメインの均一な配向で、コノスコープ観察から正の一軸性屈折率構造を有するホメオトロピック配向であることがわかった。このフィルムを傾けて斜めから光を入射し、同様にクロスニコルで観察したところ、光の透過が観測された。また、同積層体の光学位相差を測定した結果、本第2の光学異方性層単独の面内のリターデーション値Re2(550)は0nm、厚さ方向のリターデーション値Rth2(550)は-81nmであった。なお、第2の光学異方性層の波長550nmにおけるnx2は1.541、ny2は1.541、nz2は1.725であった。
(積層偏光板1の作製)
 まず、第1の光学異方性層上にPVA配向基板上に形成した液晶層である第2の光学異方性層をアクリル系UV硬化型樹脂を用いて転写した。すなわち、PVA層上の硬化した液晶層の上に、UV硬化型樹脂層としてアクリル系UV硬化型樹脂を5μm厚となるように塗布し、COPフィルムでラミネートして、COPフィルム側から600mJ/cmの紫外線を照射してUV硬化型樹脂層を硬化させた後、PVA配向基板を剥離し、光学異方性積層体(COPフィルム(第1の光学異方性層)/UV硬化型樹脂層/液晶層(第2の光学異方性層))を得た。本光学異方性積層体のRth1(550)+Rth2(550)の値は-14nmである。
 次に参考例1で得た偏光子の片面に厚さ5μmの接着層を介して、厚み40μmのトリアセチルセルロース(TAC)フィルムを接着して透明保護層を形成した。その偏光子の他面に厚さ5μmの接着層を介して、偏光子の吸収軸と前記積層光学異方性層のCOPフィルム(第1の光学異方性層)側を、偏光子の吸収軸と第1の光学異方性層の遅相軸とを45度の角度で交差させて接着し、透明保護層/接着層/偏光子/接着層/第1の光学異方性層/UV硬化型樹脂層/第2の光学異方性層からなる積層偏光板1を得た。なお、偏光子の吸収軸と第1の光学異方性層の遅相軸の貼合角は45度と135度の場合があるが、どちらに設定するかは、積層偏光板の使用方法により適宜選択すればよい。
[実施例2]
(第1の光学異方性層)
 第1の光学異方性層として、縦一軸延伸により作製された厚み20μm、200mm角のCOPフィルム(JSR(株)製ARTON)を用意した。該第1の光学異方性層の光学位相差を測定したところ、面内のリターデーション値Re1(450)は139nm、Re1(550)は138nm、厚さ方向のリターデーション値Rth1(550)は、69nmであった。すなわち、Re1(550)/550の値は0.25であり、Re1(450)/Re1(550)の値は、1.01である。本COPフィルムには両面にコロナ放電処理(100W・min/m)を実施した。また、本COPフィルム上にγ-ブチロラクトンをスピンコート法により塗布し、次いで55℃のホットプレートで10分乾燥し、90℃のオーブンで3分間熱処理したものについて、上記と同様に光学位相差を測定したが変化はなく、溶剤の影響はないことを確認した。
(第2の光学異方性層と光学異方性層積層体)
 第1の光学異方性層であるCOPフィルム上に、参考例2で調製した液晶材料溶液を、スピンコート法により塗布した。次いで55℃のホットプレートで10分乾燥し、90℃のオーブンで3分間熱処理することで液晶材料を配向させた。次いで、70℃に加熱したアルミ板に試料を密着させて置き、その上から、高圧水銀灯ランプにより300mJ/cmの紫外光(ただし365nmで測定した光量)を空気中で照射して、オキセタニル基をカチオン反応させて液晶材料を硬化させることで、第1の光学異方性層であるCOPフィルム上に液晶層からなる第2の光学異方性層を直接形成させて、光学異方性層積層体を得た。
 得られた光学異方性層積層体をクロスニコルにした偏光顕微鏡下で観察すると、ディスクリネーションがなくモノドメインの均一な配向であった。また、同光学異方性層積層体の光学位相差を測定したところ、第1の光学異方性層であるCOPフィルムの面内のリターデーション値Re(550)は138nm、厚さ方向のリターデーション値Rth(550)は69nmであり、また、第2の光学異方性層である液晶層の面内のリターデーション値Re(550)は0nm、厚さ方向のリターデーション値Rth(550)は-60nmであり、ホメオトロピック配向であることを確認した。すなわち、本光学異方性層積層体のRth1(550)+Rth2(550)の値は9nmである。なお、第2の光学異方性層の波長550nmにおけるnx2は1.551、ny2は1.551、nz2は1.735であった。
(積層偏光板2の作製)
 参考例1で得た偏光子の片面に厚さ5μmの接着層を介して、厚み40μmのトリアセチルセルロース(TAC)フィルムを接着して透明保護層を形成した。その偏光子の他面に厚さ5μmの接着層を介して、偏光子の吸収軸と前記光学異方性層積層体のCOPフィルム(第1の光学異方性層)側を、偏光子の吸収軸と第1の光学異方性層の遅相軸とを45度の角度で交差させて接着し、透明保護層/接着層/偏光子/接着層/第1の光学異方性層/第2の光学異方性層からなる積層偏光板2を得た。なお、偏光子の吸収軸と第1の光学異方性層の遅相軸の貼合角は45度と135度の場合があるが、どちらに設定するかは、積層偏光板の使用方法により適宜選択すればよい。
[実施例3]
 第1の光学異方性層として、横延伸により作製された厚み20μm、200mm角のCOPフィルム(JSR(株)製ARTON)を使用し、第2の光学異方性層である液晶層の塗布条件を変更した以外は実施例2と同様にして、積層偏光板3を作製した。なお、第1の光学異方性層の光学位相差を測定したところ、面内のリターデーション値Re1(450)は139nm、Re1(550)は138nm、厚さ方向のリターデーション値Rth1(550)は124nmであった。すなわち、Re1(550)/550の値は0.25であり、Re1(450)/Re1(550)の値は1.01である。また、第2の光学異方性層である液晶層の面内のリターデーション値Re(550)は0nm、厚さ方向のリターデーション値Rth(550)は-84nmあった。すなわち、第1の光学異方性層と第2の光学異方性層からなる光学異方性積層体積層体のRth1(550)+Rth2(550)の値は40nmである。
[実施例4]
 第1の光学異方性層として、横延伸により作製された厚み20μm、200mm角のCOPフィルム(JSR(株)製ARTON)を使用し、第2の光学異方性層である液晶層の塗布条件を変更した以外は実施例2と同様にして、積層偏光板4を作製した。なお、第1の光学異方性層の光学位相差を測定したところ、面内のリターデーション値Re1(450)は139nm、Re1(550)は138nm、厚さ方向のリターデーション値Rth1(550)は145nmであった。すなわち、Re1(550)/550の値は0.25であり、Re1(450)/Re1(550)の値は1.01である。また、第2の光学異方性層である液晶層の面内のリターデーション値Re(550)は0nm、厚さ方向のリターデーション値Rth(550)は-150nmあった。すなわち、第1の光学異方性層と第2の光学異方性層からなる光学異方性積層体積層体のRth1(550)+Rth2(550)の値は-5nmである。
[実施例5]
(第1の光学異方性層)
 第1の光学異方性層として、縦一軸延伸により作製された厚み50μm、200mm角のフルオレン骨格を有するポリカーボネートフィルム(帝人化成(株)製ピュアエースWR)を用意した。該第1の光学異方性層の光学位相差を測定したところ、面内のリターデーション値Re1(450)は130nm、Re1(550)は145nm、厚さ方向のリターデーション値Rth1(550)は73nmであった。すなわち、Re1(550)/550の値は0.26であり、Re1(450)/Re1(550)の値は0.90である。本ポリカーボネートフィルムには両面にコロナ放電処理(100W・min/m2)を実施した。
(第2の光学異方性層と光学異方性層積層体)
 次に参考例3で調製したPVA溶液を、300rpmで30秒の条件でスピンコート法により塗布し、50℃のホットプレートで30分乾燥した後、100℃のオーブンで10分間加熱して、前記ポリカーボネートフィルム上にPVA層を設けた。得られたPVA層の膜厚は1.2μmであった。なお、本PVA層は光学的に等方性である。
 第1の光学異方性層であるポリカーボネートフィルムに形成した前記PVA層上に、参考例1で調製した液晶材料溶液を、スピンコート法により塗布した。次いで55℃のホットプレートで10分乾燥し、100℃のオーブンで3分間熱処理することで液晶材料を配向させた。次いで、70℃に加熱したアルミ板に試料を密着させて置き、その上から、高圧水銀灯ランプにより300mJ/cmの紫外光(ただし365nmで測定した光量)を空気中で照射して、オキセタニル基をカチオン反応させて液晶材料を硬化させることで、第1の光学異方性層であるポリカーボネートフィルムに形成した前記PVA層上に液晶層からなる第2の光学異方性層を形成させて、光学異方性層積層体を得た。
 得られた光学異方性層積層体をクロスニコルにした偏光顕微鏡下で観察すると、ディスクリネーションがなくモノドメインの均一な配向であった。また、同光学異方性層積層体の光学位相差を測定したところ、第1の光学異方性層であるポリカーボネートフィルムの面内のリターデーション値Re(550)は145nm、厚さ方向のリターデーション値Rth(550)は73nmであり、また、第2の光学異方性層である液晶層の面内のリターデーション値Re(550)は0nm、厚さ方向のリターデーション値Rth(550)は-62nmであり、ホメオトロピック配向であることを確認した。すなわち、本光学異方性層積層体のRth1(550)+Rth2(550)の値は11nmである。なお、第2の光学異方性層の波長550nmにおけるnx2は1.541、ny2は1.541、nz2は1.725であった。
(積層偏光板5の作製)
 参考例1で得た偏光子の片面に厚さ5μmの接着層を介して、厚み40μmのトリアセチルセルロース(TAC)フィルムを接着して透明保護層を形成した。その偏光子の他面に厚さ15μmのアクリル系の粘着剤層を介して、偏光子の吸収軸と前記光学異方性層積層体のポリカーボネートフィルム(第1の光学異方性層)側を、偏光子の吸収軸と第1の光学異方性層の遅相軸とを45度の角度で交差させて接着し、透明保護層/接着層/偏光子/粘着剤層/第1の光学異方性層/PVA層/第2の光学異方性層からなる積層偏光板5を得た。なお、偏光子の吸収軸と第1の光学異方性層の遅相軸の貼合角は45度と135度の場合があるが、どちらに設定するかは、積層偏光板の使用方法により適宜選択すればよい。
[実施例6]
(第1の光学異方性層)
 第1の光学異方性層として、縦一軸延伸により作製された厚み50μm、200mm角のフルオレン骨格を有するポリカーボネートフィルム(帝人化成(株)製ピュアエースWR)を用意した。該第1の光学異方性層の光学位相差を測定したところ、面内のリターデーション値Re1(450)は130nm、Re1(550)は145nm、厚さ方向のリターデーション値Rth1(550)は73nmであった。すなわち、Re1(550)/550の値は0.26であり、Re1(450)/Re1(550)の値は0.90である。本ポリカーボネートフィルムには両面にコロナ放電処理(100W・min/m)を実施した。
(第2の光学異方性層)
 参考例1で調製した液晶材料溶液を、参考例3で作製したPVA配向基板上にスピンコート法により塗布した。次いで55℃のホットプレートで10分乾燥し、100℃のオーブンで3分間熱処理することで液晶材料を配向させた。次いで、70℃に加熱したアルミ板に試料を密着させて置き、その上から、高圧水銀灯ランプにより300mJ/cmの紫外光(ただし365nmで測定した光量)を空気中で照射して、オキセタニル基をカチオン反応させて液晶材料を硬化させることで、PVA配向基板上に液晶層からなる第2の光学異方性層を形成させた。
 得られたPVA配向基板上の液晶層を、アクリル系のUV硬化型樹脂を介して厚さ50μmのポリエチレンテレフタレート(PET)フィルム(帝人デュポンフィルム(株)製、商品名G2)に転写した。すなわち、PVA配向基板上の液晶層の上に、UV硬化樹脂層1を厚さ5μmとなるように塗布し、PETフィルムでラミネートした後、PETフィルム側から高圧水銀灯ランプにより600mJ/cmの紫外光(ただし365nmで測定した光量)を照射してUV硬化樹脂層1を硬化させた。次にPVA配向基板を剥離して、PETフィルム/UV硬化樹脂層1/液晶層(第2の光学異方性層)からなる中間積層体Aを得た。
 得られた中間積層体Aの液晶層上に、アクリル系のUV硬化型樹脂をUV硬化樹脂層2として厚さ5μmとなるように塗布し、厚さ40μmのトリアセチルセルロース(TAC)フィルムでラミネートして、TACフィルム側から高圧水銀灯ランプにより600mJ/cmの紫外光(ただし365nmで測定した光量)を照射してUV硬化樹脂層2を硬化させた後、PETフィルムを剥離して、UV硬化樹脂層1/液晶層/UV硬化樹脂層2/TACフィルムからなる中間積層体Bを得た。なお、UV硬化樹脂層1、2は光学的に等方性である。
 得られた中間積層体BのUV硬化樹脂層1側に市販のノンキャリア粘着剤をセパレートフィルム付きの状態で貼合して、セパレートフィルム/粘着剤層/UV硬化樹脂層1/液晶層/UV硬化樹脂層2/TACフィルムからなる中間積層体Cを得た。なお、ノンキャリア粘着剤は厚み20μmであり、また、光学的に等方性である。
 次に、中間積層体Cのセパレートフィルムを剥離し、第1の光学異方性層であるポリカーボネートフィルムに貼合した後、TACフィルム側を剥離して、ポリカーボネートフィルム(第1の光学異方性層)/粘着剤層/UV硬化樹脂層1/液晶層/UV硬化樹脂層2からなる光学異方積層体を得た。
 得られた光学異方性層積層体をクロスニコルにした偏光顕微鏡下で観察すると、ディスクリネーションがなくモノドメインの均一な配向であった。また、同光学異方性層積層体の光学位相差を測定したところ、第1の光学異方性層であるポリカーボネートフィルムの面内のリターデーション値Re(550)は145nm、厚さ方向のリターデーション値Rth(550)は73nmであり、また、第2の光学異方性層である液晶層の面内のリターデーション値Re(550)は0nm、厚さ方向のリターデーション値Rth(550)は-100nmであり、ホメオトロピック配向であることを確認した。すなわち、本光学異方性層積層体のRth1(550)+Rth2(550)の値は-27nmである。なお、第2の光学異方性層の波長550nmにおけるnx2は1.541、ny2は1.541、nz2は1.725であった。
(積層偏光板6の作製)
 参考例1で得た偏光子の片面に厚さ5μmの接着層を介して、厚み40μmのトリアセチルセルロース(TAC)フィルムを接着して透明保護層を形成した。その偏光子の他面に厚さ15μmのアクリル系の粘着剤層を介して、偏光子の吸収軸と前記光学異方性層積層体のポリカーボネートフィルム(第1の光学異方性層)側を、偏光子の吸収軸と第1の光学異方性層の遅相軸とを45度の角度で交差させて接着し、透明保護層/接着層/偏光子/粘着剤層/第1の光学異方性層/粘着剤層/UV硬化樹脂層1/第2の光学異方性層/UV硬化樹脂層2からなる積層偏光板6を得た。なお、偏光子の吸収軸と第1の光学異方性層の遅相軸の貼合角は45度と135度の場合があるが、どちらに設定するかは、積層偏光板の使用方法により適宜選択すればよい。
[実施例7]
 第2の光学異方性層である液晶層の塗布条件を変更した以外は実施例6と同様にして、積層偏光板7を作製した。なお、第1の光学異方性層の光学位相差を測定したところ、面内のリターデーション値Re1(450)は130nm、Re1(550)は145nm、厚さ方向のリターデーション値Rth1(550)は73nmであった。すなわち、Re1(550)/550の値は0.26であり、Re1(450)/Re1(550)の値は0.90である。また、第2の光学異方性層である液晶層の面内のリターデーション値Re(550)は0nm、厚さ方向のリターデーション値Rth(550)は-49nmあった。すなわち、第1の光学異方性層と第2の光学異方性層積層体のRth1(550)+Rth2(550)の値は24nmである。
[実施例8]
 第1の光学異方性層として、横延伸により作製された厚み50μm、200mm角のフルオレン骨格を有するポリカーボネートフィルム(帝人化成(株)製ピュアエースWR)を使用し、また、第2の光学異方性層である液晶層の塗布条件を変更した以外は実施例6と同様にして、積層偏光板8を作製した。なお、第1の光学異方性層の光学位相差を測定したところ、面内のリターデーション値Re1(450)は130nm、Re1(550)は145nm、厚さ方向のリターデーション値Rth1(550)は100nmであった。すなわち、Re1(550)/550の値は0.26であり、Re1(450)/Re1(550)の値は0.90である。また、第2の光学異方性層である液晶層の面内のリターデーション値Re(550)は0nm、厚さ方向のリターデーション値Rth(550)は-100nmあった。すなわち、第1の光学異方性層と第2の光学異方性層積層体のRth1(550)+Rth2(550)の値は0nmである。
[比較例1]
 実施例1で使用した第1の光学異方性層を用いて、第2の光学異方性層の無い、以下の積層偏光板9を作製した。すなわち、参考例1で得た偏光子の片面に厚さ5μmの接着層を介して、厚み40μmのトリアセチルセルロース(TAC)フィルムを接着して透明保護層を形成した。その偏光子の他面に厚さ5μmの接着層を介して、偏光子の吸収軸と前記COPフィルム(第1の光学異方性層)を、偏光子の吸収軸と第1の光学異方性層の遅相軸とを45度の角度で交差させて接着し、透明保護層/接着層/偏光子/接着層/第1の光学異方性層からなる積層偏光板9を得た。なお、偏光子の吸収軸と第1の光学異方性層の遅相軸の貼合角は45度と135度の場合があるが、どちらに設定するかは、積層偏光板の使用方法により適宜選択すればよい。なお、第2の光学異方性層はないため、Rth1(550)+Rth2(550)の値は67nmである。
[比較例2]
 実施例3で使用した第1の光学異方性層を用いて、第2の光学異方性層の無い、以下の積層偏光板10を作製した。すなわち、参考例1で得た偏光子の片面に厚さ5μmの接着層を介して、厚み40μmのトリアセチルセルロース(TAC)フィルムを接着して透明保護層を形成した。その偏光子の他面に厚さ5μmの接着層を介して、偏光子の吸収軸と前記COPフィルム(第1の光学異方性層)を、偏光子の吸収軸と第1の光学異方性層の遅相軸とを45度の角度で交差させて接着し、透明保護層/接着層/偏光子/接着層/第1の光学異方性層からなる積層偏光板10を得た。なお、偏光子の吸収軸と第1の光学異方性層の遅相軸の貼合角は45度と135度の場合があるが、どちらに設定するかは、積層偏光板の使用方法により適宜選択すればよい。なお、第2の光学異方性層はないため、Rth1(550)+Rth2(550)の値は124nmである。
[比較例3]
 第2の光学異方性層である液晶層の塗布条件を変更した以外は実施例2と同様にして、積層偏光板11を作製した。なお、第1の光学異方性層の光学位相差を測定したところ、面内のリターデーション値Re1(450)は139nm、Re1(550)は138nm、厚さ方向のリターデーション値Rth1(550)は69nmであった。すなわち、Re1(550)/550の値は0.25であり、Re1(450)/Re1(550)の値は1.01である。また、第2の光学異方性層である液晶層の面内のリターデーション値Re(550)は0nm、厚さ方向のリターデーション値Rth(550)は-130nmあった。すなわち、第1の光学異方性層と第2の光学異方性層積層体のRth1(550)+Rth2(550)の値は-61nmである。
[比較例4]
 第2の光学異方性層である液晶層の塗布条件を変更した以外は実施例4と同様にして、積層偏光板12を作製した。なお、第1の光学異方性層の光学位相差を測定したところ、面内のリターデーション値Re1(450)は139nm、Re1(550)は138nm、厚さ方向のリターデーション値Rth1(550)は145nmであった。すなわち、Re1(550)/550の値は0.25であり、Re1(450)/Re1(550)の値は1.01である。また、第2の光学異方性層である液晶層の面内のリターデーション値Re(550)は0nm、厚さ方向のリターデーション値Rth(550)は-75nmあった。すなわち、第1の光学異方性層と第2の光学異方性層積層体のRth1(550)+Rth2(550)の値は70nmである。
[比較例5]
 実施例5で使用した第1の光学異方性層を用いて、第2の光学異方性層の無い、以下の積層偏光板13を作製した。すなわち、参考例1で得た偏光子の片面に厚さ5μmの接着層を介して、厚み40μmのトリアセチルセルロース(TAC)フィルムを接着して透明保護層を形成した。その偏光子の他面に厚さ15μmのアクリル系の粘着剤層を介して、偏光子の吸収軸と前記ポリカーボネートフィルム(第1の光学異方性層)を、偏光子の吸収軸と第1の光学異方性層の遅相軸とを45度の角度で交差させて接着し、透明保護層/接着層/偏光子/粘着剤層/第1の光学異方性層からなる積層偏光板13を得た。なお、偏光子の吸収軸と第1の光学異方性層の遅相軸の貼合角は45度と135度の場合があるが、どちらに設定するかは、積層偏光板の使用方法により適宜選択すればよい。なお、第2の光学異方性層はないため、Rth1(550)+Rth2(550)の値は73nmである。
[比較例6]
 実施例8で使用した第1の光学異方性層を用いて、第2の光学異方性層の無い、以下の積層偏光板14を作製した。すなわち、参考例1で得た偏光子の片面に厚さ5μmの接着層を介して、厚み40μmのトリアセチルセルロース(TAC)フィルムを接着して透明保護層を形成した。その偏光子の他面に厚さ15μmのアクリル系の粘着剤層を介して、偏光子の吸収軸と前記ポリカーボネートフィルム(第1の光学異方性層)を、偏光子の吸収軸と第1の光学異方性層の遅相軸とを45度の角度で交差させて接着し、透明保護層/接着層/偏光子/粘着剤層/第1の光学異方性層からなる積層偏光板14を得た。なお、偏光子の吸収軸と第1の光学異方性層の遅相軸の貼合角は45度と135度の場合があるが、どちらに設定するかは、積層偏光板の使用方法により適宜選択すればよい。なお、第2の光学異方性層はないため、Rth1(550)+Rth2(550)の値は100nmである。
[比較例7]
 第2の光学異方性層である液晶層の塗布条件を変更した以外は実施例6と同様にして、積層偏光板15を作製した。なお、第1の光学異方性層の光学位相差を測定したところ、面内のリターデーション値Re1(450)は130nm、Re1(550)は145nm、厚さ方向のリターデーション値Rth1(550)は73nmであった。すなわち、Re1(550)/550の値は0.26であり、Re1(450)/Re1(550)の値は0.90である。また、第2の光学異方性層である液晶層の面内のリターデーション値Re(550)は0nm、厚さ方向のリターデーション値Rth(550)は-25nmあった。すなわち、第1の光学異方性層と第2の光学異方性層積層体のRth1(550)+Rth2(550)の値は48nmである。
[比較例8]
 第2の光学異方性層である液晶層の塗布条件を変更した以外は実施例6と同様にして、積層偏光板16を作製した。なお、第1の光学異方性層の光学位相差を測定したところ、面内のリターデーション値Re1(450)は130nm、Re1(550)は145nm、厚さ方向のリターデーション値Rth1(550)は73nmであった。すなわち、Re1(550)/550の値は0.26であり、Re1(450)/Re1(550)の値は0.90である。また、第2の光学異方性層である液晶層の面内のリターデーション値Re(550)は0nm、厚さ方向のリターデーション値Rth(550)は-130nmあった。すなわち、第1の光学異方性層と第2の光学異方性層積層体のRth1(550)+Rth2(550)の値は-57nmである。
 実施例1から8、および比較例1から8で作成した積層偏光板1から16を、厚さ20μmのアクリル系粘着剤を介して有機EL素子に貼合し、以下(A)、(B)の評価を実施した。なお、有機EL素子は、ソニー社製ウォークマン(登録商標)NW-A855に搭載されている有機EL素子からあらかじめ貼合されている円偏光板を剥がしたものを使用した。
(A)正面観察時の外光反射防止効果の評価
 有機EL素子に電圧を印加しない状態で、照度約100ルックスの環境下に置き、積層偏光板貼合部分の反射色の黒味を官能評価した。黒味は以下の4つのレベルのいずれに該当するかを確認した。
 1:ほぼ完全に外光反射が無く、色身も黒色である。
 2:1よりは劣るが、十分に外光反射が抑えられ、色味もほぼ黒色である。
 3:外光反射がやや視認される。
 4:外光反射が極めて視認される。
(B)外光反射防止効果の視野角特性の評価
 有機EL素子に電圧を印加しない状態で、照度約100ルックスの環境下に置き、正面と斜め45度における積層偏光板貼合部分の反射色の黒味を官能評価した。黒味は以下の4つのレベルのいずれに該当するかを確認した。
 1:正面と斜め方向でほぼ外光反射に変化は見られない。
 2:1より劣るが、正面と斜め方向での外光反射の差はわずかである。
 3:正面と斜め方向で外光反射に差が認められる。
 4:正面と斜め方向で外光反射に差がかなり認められる
 以上に説明した(A)、(B)の評価結果を表1、2に示す。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 表1、2に示すように、実施例1から8の有機EL素子の積層偏光板は、正面観察時の外光反射防止効果に優れるとともに、視野角特性も良好であることが分かった。一方で、比較例1から8の積層偏光板は、正面観察時の外光反射防止効果は優れるものの、視野角特性は悪く、斜め方向から見た時の黒表示に外光反射が認められたり、正面方向と比較した色味変化が確認された。

Claims (9)

  1.  少なくとも偏光子、第1の光学異方性層および第2の光学異方性層がこの順に積層された積層偏光板であって、以下の[1]を満たすことを特徴とする積層偏光板。
     [1]-40nm≦Rth1+Rth2≦40nm
    (ここで、Rth1は第1の光学異方性層の厚さ方向のリターデーション値を意味する。Rth1は、Rth1={(nx1+ny1)/2-nz1}×d1[nm]である。なお、d1は第1の光学異方性層の厚さ、nx1は波長550nmの光に対する第1の光学異方性層面内の最大主屈折率、ny1は波長550nmの光に対する第1の光学異方性層面内の最大主屈折率を有する方向に直交する方向の主屈折率、nz1は波長550nmの光に対する第1の光学異方性層の厚さ方向の主屈折率である。また、Rth2は第2の光学異方性層の厚さ方向のリターデーション値を意味する。Rth2は、Rth2={(nx2+ny2)/2-nz2}×d2[nm]である。なお、d2は第2の光学異方性層の厚さ、nx2は波長550nmの光に対する第2の光学異方性層面内の最大主屈折率、ny2は波長550nmの光に対する第2の光学異方性層面内の最大主屈折率を有する方向に直交する方向の主屈折率、nz2は波長550nmの光に対する第2の光学異方性層の厚さ方向の主屈折率である。)
  2.  前記第1の光学異方性層が以下の[2]~[3]を満たし、前記第2の光学異方性層が以下の[4]~[5]を満たすことを特徴とする請求項1に記載の積層偏光板。
     [2]0.2≦Re1(550)/550≦0.3
     [3]0.6≦Re1(450)/Re1(550)≦1.1
    (ここで、Re1は第1の光学異方性層の面内のリターデーション値を意味し、Re1(450)、Re1(550)は、波長450nm、550nmの光における第1の光学異方性層の面内のリターデーション値を意味する。Re1は、Re1=(nx1-ny1)×d1[nm]である。)
     [4]0nm≦Re2≦20nm
     [5]-500nm≦Rth2≦-30nm
    (ここで、Re2は第2の光学異方性層の面内のリターデーション値を意味し、Rth2は第2の光学異方性層の厚さ方向のリターデーション値を意味する。Re2及びRth2は、それぞれRe2=(nx2-ny2)×d2[nm]、Rth2={(nx2+ny2)/2-nz2}×d2[nm]である。)
  3.  [3]が、
     [3-1]0.6≦Re1(450)/Re1(550)≦1.0
    であることを特徴とする請求項2に記載の積層偏光板。
  4.  前記第2の光学異方性層が、正の一軸性を示す液晶性組成物を液晶状態においてホメオトロピック配向させた後、配向固定化したホメオトロピック配向液晶フィルムからなることを特徴とする請求項1~3のいずれかに記載の積層偏光板。
  5.  前記の正の一軸性を示す液晶性組成物が、オキセタニル基を有する側鎖型液晶性高分子を含むことを特徴とする請求項4に記載の積層偏光板。
  6.  前記第2の光学異方性層が、前記第1の光学異方性層上に塗布することにより形成されたことを特徴とする請求項1~5のいずれかに記載の積層偏光板。
  7.  前記第1の光学異方性層が、ポリカーボネートあるいは環状ポリオレフィンを含むことを特徴とする請求項1~6のいずれかに記載の積層偏光板。
  8.  前記偏光子の吸収軸と前記第1の光学異方性層の遅相軸とのなす角度をrとしたときに、40°≦r≦50°を満たすように積層されていることを特徴とする請求項1~7のいずれかに記載の積層偏光板。
  9.  請求項1~8のいずれかに記載の積層偏光板を用いた有機EL素子。
     
PCT/JP2014/052562 2013-03-26 2014-02-04 積層偏光板および有機el素子 WO2014156311A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-063846 2013-03-26
JP2013063846A JP2014191028A (ja) 2013-03-26 2013-03-26 積層偏光板および有機el素子

Publications (1)

Publication Number Publication Date
WO2014156311A1 true WO2014156311A1 (ja) 2014-10-02

Family

ID=51623312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052562 WO2014156311A1 (ja) 2013-03-26 2014-02-04 積層偏光板および有機el素子

Country Status (3)

Country Link
JP (1) JP2014191028A (ja)
TW (1) TW201447395A (ja)
WO (1) WO2014156311A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166991A1 (ja) * 2014-05-01 2015-11-05 富士フイルム株式会社 有機el表示装置
JP2017058519A (ja) * 2015-09-16 2017-03-23 日東電工株式会社 粘着剤層付偏光フィルム、光学部材、及び画像表示装置
EP3229286A1 (en) * 2016-04-05 2017-10-11 Samsung Electronics Co., Ltd Organic light emitting diode device
WO2020080172A1 (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
WO2020080173A1 (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064291A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064292A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6359421B2 (ja) * 2014-10-23 2018-07-18 Jxtgエネルギー株式会社 積層偏光板および表示装置
JP6689031B2 (ja) 2015-03-27 2020-04-28 日東電工株式会社 光学積層体
JP6668605B2 (ja) * 2015-04-15 2020-03-18 大日本印刷株式会社 光学フィルム
JP6665420B2 (ja) * 2015-04-15 2020-03-13 大日本印刷株式会社 光学フィルム
JP2016218304A (ja) * 2015-05-22 2016-12-22 住友化学株式会社 積層体及び液晶表示装置
JPWO2016208574A1 (ja) * 2015-06-25 2017-10-26 Dic株式会社 重合性液晶組成物及び光学異方体
JP7055425B2 (ja) 2017-01-25 2022-04-18 エルジー・ケム・リミテッド 反射防止用光学フィルタおよび有機発光装置
JP7325333B2 (ja) * 2017-11-30 2023-08-14 住友化学株式会社 光学異方性フィルム
WO2019182118A1 (ja) 2018-03-23 2019-09-26 富士フイルム株式会社 偏光子、偏光子の製造方法、積層体および画像表示装置
JP2021076673A (ja) * 2019-11-07 2021-05-20 株式会社アスカネット 光学結像装置及び光学結像方法並びに光学結像装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231438A (ja) * 2001-01-31 2002-08-16 Fuji Photo Film Co Ltd エレクトロルミネッセンスディスプレイ
JP2008191630A (ja) * 2007-01-09 2008-08-21 Nippon Oil Corp 楕円偏光板、その製造方法、輝度向上フィルムおよび画像表示装置
WO2009016888A1 (ja) * 2007-07-30 2009-02-05 Konica Minolta Opto, Inc. 円偏光素子、エレクトロルミネッセンス素子
WO2013191152A1 (ja) * 2012-06-21 2013-12-27 日東電工株式会社 偏光板および有機elパネル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231438A (ja) * 2001-01-31 2002-08-16 Fuji Photo Film Co Ltd エレクトロルミネッセンスディスプレイ
JP2008191630A (ja) * 2007-01-09 2008-08-21 Nippon Oil Corp 楕円偏光板、その製造方法、輝度向上フィルムおよび画像表示装置
WO2009016888A1 (ja) * 2007-07-30 2009-02-05 Konica Minolta Opto, Inc. 円偏光素子、エレクトロルミネッセンス素子
WO2013191152A1 (ja) * 2012-06-21 2013-12-27 日東電工株式会社 偏光板および有機elパネル

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166991A1 (ja) * 2014-05-01 2015-11-05 富士フイルム株式会社 有機el表示装置
JPWO2015166991A1 (ja) * 2014-05-01 2017-04-20 富士フイルム株式会社 有機el表示装置
US10026929B2 (en) 2014-05-01 2018-07-17 Fujifilm Corporation Organic el display device
JP2017058519A (ja) * 2015-09-16 2017-03-23 日東電工株式会社 粘着剤層付偏光フィルム、光学部材、及び画像表示装置
EP3229286A1 (en) * 2016-04-05 2017-10-11 Samsung Electronics Co., Ltd Organic light emitting diode device
US10509149B2 (en) 2016-04-05 2019-12-17 Samsung Electronics Co., Ltd. Organic light emitting diode device
JP2020064291A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
WO2020080173A1 (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
WO2020080172A1 (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064292A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
CN112840251A (zh) * 2018-10-15 2021-05-25 日东电工株式会社 带相位差层的偏光板及使用其的图像显示装置
JP2021140182A (ja) * 2018-10-15 2021-09-16 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP6999059B2 (ja) 2018-10-15 2022-01-18 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
CN112840251B (zh) * 2018-10-15 2022-07-01 日东电工株式会社 带相位差层的偏光板及使用其的图像显示装置
CN115236785A (zh) * 2018-10-15 2022-10-25 日东电工株式会社 带相位差层的偏光板及使用其的图像显示装置
CN115236785B (zh) * 2018-10-15 2023-02-28 日东电工株式会社 带相位差层的偏光板及使用其的图像显示装置

Also Published As

Publication number Publication date
JP2014191028A (ja) 2014-10-06
TW201447395A (zh) 2014-12-16

Similar Documents

Publication Publication Date Title
WO2014156311A1 (ja) 積層偏光板および有機el素子
JP4207180B2 (ja) 位相差板およびその製造方法、光学フィルム
JP3969637B2 (ja) 液晶配向フィルムの製造方法、液晶配向フィルム、光学フィルムおよび画像表示装置
JP5723077B1 (ja) 位相差板、楕円偏光板およびそれを用いた表示装置
JP6392257B2 (ja) 位相差板、位相差板を用いた積層偏光板、および位相差板を用いた表示装置
JP2015161714A (ja) 位相差板、楕円偏光板およびそれを用いた表示装置
JP2008191630A (ja) 楕円偏光板、その製造方法、輝度向上フィルムおよび画像表示装置
JP2016090613A (ja) 積層偏光板および表示装置
JP2016133728A (ja) 積層体の製造方法、積層体、偏光板および画像表示装置
JP2009053292A (ja) 楕円偏光板、その製造方法およびそれを用いた液晶表示装置
JP2016139566A (ja) 有機エレクトロルミネッセンス表示装置
JP2007017637A (ja) 積層位相差板、その製造方法、輝度向上フィルムおよび画像表示装置
JP4201259B2 (ja) 被膜シートの製造方法
JP2008209872A (ja) 垂直配向型液晶表示装置用楕円偏光板およびそれを用いた垂直配向型液晶表示装置
JP3992969B2 (ja) ホメオトロピック配向液晶フィルム、輝度向上フィルムおよび光学フィルム
JP2006337575A (ja) ホメオトロピック配向液晶フィルムおよびそれを用いた装置
JP2009294521A (ja) 位相差フィルム、位相差フィルムの製造方法、偏光板および液晶表示装置
WO2014157182A1 (ja) 積層偏光板及び水平配向型液晶表示装置
JP2016138941A (ja) 液晶フィルムの製造方法、液晶フィルム、積層体、偏光板および画像表示装置
JP6359421B2 (ja) 積層偏光板および表示装置
JP2016085447A (ja) 位相差板、楕円偏光板、それを用いた表示装置および位相差板用重合性二色性色素
JP4223927B2 (ja) 垂直配向膜、液晶配向膜及びその製造方法、光学フィルム並びに画像表示装置
JP2006133718A (ja) 光配向膜の製造方法、光配向膜、液晶配向フィルムの製造方法、液晶配向フィルム、光学フィルムおよび画像表示装置
JP4059683B2 (ja) 複屈折性フィルム、その製造方法、光学フィルムおよび画像表示装置
JP2016139058A (ja) 積層体、偏光板および画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773754

Country of ref document: EP

Kind code of ref document: A1