WO2014156273A1 - 力学量測定装置およびその製造方法 - Google Patents

力学量測定装置およびその製造方法 Download PDF

Info

Publication number
WO2014156273A1
WO2014156273A1 PCT/JP2014/051822 JP2014051822W WO2014156273A1 WO 2014156273 A1 WO2014156273 A1 WO 2014156273A1 JP 2014051822 W JP2014051822 W JP 2014051822W WO 2014156273 A1 WO2014156273 A1 WO 2014156273A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solder
sensor chip
alloy
base substrate
Prior art date
Application number
PCT/JP2014/051822
Other languages
English (en)
French (fr)
Inventor
英恵 下川
拓人 山口
秦 昌平
太田 裕之
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2014156273A1 publication Critical patent/WO2014156273A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • G01B7/20Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance formed by printed-circuit technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8381Soldering or alloying involving forming an intermetallic compound at the bonding interface

Definitions

  • the present invention relates to a mounting structure of a semiconductor mechanical quantity measuring device and a manufacturing method thereof.
  • strain gauge As a method for measuring the deformation (strain) of a measurement object, a technique using a metal foil strain gauge utilizing the fact that the resistance value of the metal foil changes due to the strain is known. By attaching this strain gauge to the object to be measured, the length of the metal foil is changed following the strain of the object to be measured, and the resistance value of the metal foil that changes as a result can be detected to enable strain measurement of the object to be measured.
  • Technology Up to now, there are strain gauges using Cu-Ni alloy foils and Ni-Cr alloy foils, etc. In addition to ensuring and stabilizing strain gauge attachment (sticking), it is also moisture and impact resistant. High protector strain gauges have also been proposed.
  • this semiconductor strain gauge semiconductor dynamic quantity measuring device
  • it has a flexible thin film provided with a plurality of electrodes, and a semiconductor substrate on which a plurality of electric elements are formed.
  • a structure of a semiconductor strain gauge, which is attached to the semiconductor substrate and in which the plurality of electrodes and the plurality of electric elements are electrically connected, is disclosed in JP-A-2001-264188 ( Patent Document 1) proposes.
  • Patent Document 2 Japanese Laid-Open Patent Publication No. 2001-272287 (Patent Document 2) has a strain detection element formed of a silicon chip and a pedestal that transmits the strain to be detected to the strain detection element.
  • the pedestal has a thermal expansion coefficient of silicon.
  • a strain detection sensor formed of a material that falls within a range of ⁇ 50% of the thermal expansion coefficient of the above, and the strain detection element is formed by heating and fixing a glass-based fixing material.
  • the first important item is to correctly transmit the strain generated in the object to be measured to the strain detector of the semiconductor chip (hereinafter referred to as sensor chip) when performing strain measurement. That is, the accuracy and sensitivity when detecting the strain generated in the object to be measured are important.
  • the second important item is that the sensor chip shows the same detection value even when the same amount of strain has occurred in the object to be measured for a long time. That is, the stability of the sensor output value is important. This item becomes a more difficult problem when the object to be measured is used at a high temperature.
  • a mechanical quantity measuring device such as strain and pressure
  • it may be used for, for example, operation control of automobiles and monitoring of important infrastructure in addition to general household goods. In this case, it is necessary to assume a usage range from about ⁇ 50 ° C. at low temperature to about 150 ° C. at high temperature.
  • a sensor chip has fine wiring on the surface, but the main material is silicon, and the object to be measured is joined using a joining material such as solder. This bonding needs to be performed at a temperature lower than the heat resistance temperature of the sensor chip.
  • solder As general solder, Sn-3 wt% Ag-0.5 wt% Cu solder having a melting point of about 217 ° C, Pb-5 wt% Sn solder having a melting point of about 310 ° C, and the like are known.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-264188 (Patent Document 1), which has been filed so far, it is predicted that it is difficult to use at high temperatures because an organic thin film is used.
  • Patent Document 2 shows a structure in which a glass-based fixing material is heated and melted and can be expected to be a hard material, but is destroyed by an external force such as an impact. There is a concern about this, and it is considered necessary to restrict the use environment.
  • the joint between the sensor chip having the strain detection unit on the semiconductor substrate and the object to be measured is optimized, the strain generated in the object to be measured is detected with high sensitivity even in a high temperature environment, and for a long time. It is an object of the present invention to provide a joint structure capable of producing a stable sensor output with little creep deformation even when strain is applied, and a manufacturing method thereof.
  • the present application includes a plurality of means for solving the above-described problems.
  • a sensor chip having a strain detection unit for detecting expansion and contraction in the in-plane direction on a semiconductor substrate, an object to be measured, and the sensor chip, A base substrate that supports the sensor chip and transmits the strain of the measurement object to be detected to the sensor chip, and a wiring portion that leads the wiring from the electrode of the sensor chip to the outside.
  • the back surface of the sensor chip opposite to the surface having the strain detector and the base substrate are bonded via a bonding layer in which an intermetallic compound layer and a high melting point metal layer are laminated.
  • a measuring device was constructed.
  • the bonding layer that bonds the back surface of the sensor chip and the surface of the base substrate includes a first intermetallic compound layer, a high melting point metal layer, and a second metal.
  • the mechanical quantity measuring apparatus according to the above-described is characterized in that it has a three-layer structure in which intermetallic compound layers are laminated.
  • a base substrate is placed in a heating furnace, and a core layer made of a refractory metal is laminated on the base substrate.
  • a sensor chip having a strain detection unit for detecting expansion and contraction in the in-plane direction on the semiconductor substrate is mounted on the composite solder material having a three-layer structure composed of a low melting point surface solder layer. The surface opposite to the surface having the surface is placed on the composite solder material, heated to the melting point of the surface solder layer or higher, the molten surface solder layer is reacted with the metal of the core layer, and the surface solder Heating was continued until the layer solder sufficiently formed the intermetallic compound.
  • the strain generated in the object to be measured is detected with high sensitivity even at a high temperature, even when a strain is applied for a long period of time, since the creep deformation of the bonding layer is small, a stable and accurate sensor output is possible, and a high-performance semiconductor dynamic quantity measuring device can be provided.
  • Example 1 which joined the mechanical quantity measuring apparatus 100 of Example 1 of this invention, and the to-be-measured object 30.
  • FIG. It is sectional drawing of Example 2 which joined the mechanical quantity measuring apparatus 100 of Example 1 and the to-be-measured object 30 of this invention.
  • FIG. 1 and 2 show examples of a cross-sectional structure and a planar structure of the mechanical quantity measuring device 100 of the present embodiment.
  • the sensor chip 1 has a strain detection unit 2 on the main surface 1a, and the sensor chip back surface 1b, which is the surface opposite to the main surface 1a of the sensor chip 1, is connected to the base substrate 4 via the bonding layer 3. .
  • the strain detector 2 is provided near the center of the sensor chip 1, and a Wheatstone bridge circuit composed of four impurity diffusion resistors is formed.
  • the amount of strain is detected by changing the resistance value of the impurity diffusion resistance due to the expansion and contraction generated in the planar direction of the sensor chip 1.
  • the sensor chip 1 is disposed at substantially the center of the base substrate 4, but is not limited to the center.
  • the printed circuit board 20 is disposed on the base substrate 4, and the electrode pads 28 on the printed circuit board 20 and the electrode pads 29 of the sensor chip 1 are connected by wire bonding 21 using Au wire or the like.
  • At least the surface of the sensor chip 1 and the wire bonding 21 are provided.
  • the portion to be included may be covered with an insulating material or the like. Alternatively, it may be possible to cover the whole with a cap or the like.
  • the bonding layer 3 has a structure in which an intermediate layer 5 made of a high melting point metal is centered and sandwiched between intermetallic compound layers 6a and 6b on both sides. That is, the first intermetallic compound layer 6a is formed on the back surface 1b of the sensor chip 1, and the intermediate layer 5 made of a metal having a high melting point is formed on the surface opposite to the sensor chip 1 bonding interface of the intermetallic compound layer 6a.
  • a second intermetallic compound layer 6 b is formed between the intermediate layer 5 and the base substrate 4.
  • the first intermetallic compound layer 6a is mainly composed of Cu and Sn, and the chemical composition includes Cu 3 Sn, Cu 6 Sn 5 , or other elements.
  • the intermediate layer 5 made of a high melting point metal contains Cu or Cu as a main component and contains other elements.
  • the second intermetallic compound layer 6b is mainly composed of Cu and Sn and has a chemical composition of Cu 3 Sn, Cu 6 Sn 5 , or other elements. It is comprised by the component containing.
  • FIG. 3 shows a cross-sectional configuration of the original composite solder material 7 for forming the bonding layer 3.
  • the composite solder material 7 is composed of three layers: a core layer 8 made of a high melting point metal, and a low melting point surface solder layer 9 laminated on both sides thereof.
  • the material of the core layer 8 is Cu
  • the surface solder layer 9 laminated on both surfaces thereof is Sn. This surface layer Sn was formed on the Cu core layer 8 by plating.
  • FIG. 4 is a diagram illustrating a process for joining the sensor chip 1 and the base substrate 4 in the heating furnace in the method for manufacturing the mechanical quantity measuring device 100. That is, a composite solder material 7 composed of a total of three layers of a core layer 8 and a surface solder layer 9 is mounted on the base substrate 4, and then the surface opposite to the main surface 1 a on which the strain detection portion 2 of the sensor chip 1 is provided. 1b is mounted so as to contact the composite solder material 7. These are put in the heating furnace 10 and heated by, for example, a heater 11 or the like.
  • the low-melting surface solder layer 9 formed on the surface of the core layer 8 of the composite solder material 7 is melted and bonded to the back surface 1b of the sensor chip 1 and the base substrate 4.
  • a part of Cu of the core layer 8 melts into the surface solder layer 9, and Cu and Sn of the surface solder layer 9 react to form an intermetallic compound.
  • the thickness of the surface solder layer 9, the heating temperature By optimizing the time, Sn of the surface solder layer 9 is changed to a CuSn-based intermetallic compound, and a low melting point Sn hardly remains.
  • Two types of intermetallic compounds are known between Cu and Sn.
  • Cu 3 Sn and Cu 6 Sn 5 have melting points of 640 ° C. and 415 ° C., respectively. Since the melting point of Sn of the original surface solder layer 9 is 232 ° C., it can be said that the surface solder layer 9 has changed to the high melting point intermetallic compound layer 6.
  • an Au layer, an Ag layer, or the like is applied to the back surface 1b of the sensor chip 1 by plating, vapor deposition, sputtering, or the like so that the surface solder layer 9 of the composite solder material 7 can be easily connected.
  • These surface Au, Ag layers and the like are generally thin and melt into the solder at the time of connection, and the Ni layer (not shown) formed thereunder and the surface solder layer 9 are joined.
  • oxidation of the surface solder layer 9 of the composite solder material 7 at a high temperature can be suppressed, and good bonding can be obtained.
  • N 2, argon, helium and the like are effective for the atmosphere, but in addition thereto, reducing hydrogen, a mixture thereof, or an organic acid such as formic acid may be used.
  • an organic substance such as a flux capable of reducing a surface oxide such as Sn may be used.
  • a bonding correction jig 12 such as a weight 16 or a guide may be used. It is also effective to reduce the voids by applying a vacuum. By performing such a device, a better bonding layer 3 can be obtained.
  • FIG. 5 shows an example of a cross section of the bonding layer 3 between the sensor chip 1 and the base substrate 4 on the sensor chip 1 side.
  • the Ti, Ni, Au layer is previously applied to the surface of the back surface 1b of the sensor chip 1, it reacts with Sn of the surface solder layer 9 of the composite solder material 7 and can be joined.
  • a Cu 3 Sn layer 13 and a Cu 6 Sn 5 layer 14 are formed in order on the Cu of the intermediate layer 5. This confirms that the intermetallic compound layer 6b on the base substrate side also shows a similar configuration.
  • the Cu 3 Sn layer 13 and the Cu 6 Sn 5 layer 14 are intermetallic compounds, and have a Young's modulus at room temperature of about 80 GPa or more, a yield strength of about 1800 MPa, and a micro Knoop hardness of 70 or more.
  • the melting point of the Cu 6 Sn 5 layer 14 is 415 ° C.
  • the melting point of the Cu 3 Sn layer 13 is 640 ° C. In general, material deformation at a high temperature is greatly influenced by the ratio between the use environment temperature and the melting point.
  • the sensor sensitivity is high by having the intermetallic compound layer 6 composed of the Cu 3 Sn layer 13 and the Cu 6 Sn 5 layer 14 which are already hard materials at room temperature, and 100 ° C. to 150 ° C. Even under a use environment at a high temperature in the vicinity, creep deformation in the intermetallic compound layer 6 is small, and a stable sensor output can be exhibited over a long period of time.
  • the Sn solder Compared to the conventional Sn solder with a melting point of 220 ° C to 230 ° C, the Sn solder has a Young's modulus of approximately 50 GPa or less at room temperature, a yield strength of approximately 50 MPa or less, and a Micronoop hardness of approximately 7. Yes, softer than the intermetallic compound layer 6 described above.
  • the melting point is also around 220 ° C. to 230 ° C., and the usage environment of 100 ° C. to 150 ° C. is a temperature close to the melting point for this Sn-based solder and is easily deformed. Therefore, in the above high temperature use environment of 100 ° C. to 150 ° C., the Sn-based solder layer is likely to be creep-deformed, and the solder layer relaxes the strain generated in the object to be measured, resulting in poor sensitivity. This leads to fluctuations in the sensor output value.
  • the problem of manufacturing restrictions will be described.
  • the Cu layer and the Sn layer are formed on the back surface 1 b of the sensor chip 1 or the surface of the base substrate 4. Set them aside.
  • the Sn layer cannot be made too thick. The thickness of the bonding layer between the sensor chip 1 and the base substrate 4 is reduced.
  • the bonding layer is thin, so that the stress applied to the bonding layer also increases, and chip cracking or the like may occur. Even when chip cracking does not occur, a large stress is generated in the thin intermetallic compound layer, and there is a concern that the bonding layer 3 may be destroyed if voids or the like are generated during manufacturing. Therefore, from the viewpoint of manufacturing, in a structure in which only thin intermetallic compound layers are joined, there is a concern that chip cracking may occur depending on the substrate material. In particular, when a sensor chip is directly bonded to the object to be measured without using the base substrate, it is difficult to optimize the physical properties of the object to be measured.
  • the necessity of the intermediate layer 5 will be described from the viewpoint of sensor characteristics and reliability.
  • a metal such as Cu has a higher Young's modulus (about 100 GPa or more) and a higher yield stress than ordinary solder materials. There is little concern about creep.
  • the melting point is high, creep deformation in the intermediate layer 5 hardly poses a problem even when the operating environment temperature is around 100 ° C. to 150 ° C. Therefore, in the bonding layer 3 of the present invention, by forming the hard intermetallic compound layer 6, the strain generated in the object to be measured is transmitted with good sensitivity because the intermetallic compound layer 6 hardly deforms, and the intermediate layer 5.
  • the thickness of the intermediate layer 5 such as a Cu layer is desirably 5 ⁇ m or more in order to suppress the creep deformation of the entire bonding layer 3 even from the viewpoint of preventing cracking of the intermetallic compound layer and the sensor chip 1 and the maximum allowable strain of measurement. Also, from the viewpoint of handling the composite solder material 7 at the time of manufacture, the intermediate layer 5 is desirably 5 ⁇ m or more as described above. On the other hand, if the intermediate layer 5 is too thick, there is a concern that the strain generated in the object to be measured is not transmitted to the sensor chip 1, and the intermediate layer such as Cu is used from the upper limit of the thickness at which the maximum strain to be detected is transmitted.
  • the thickness of 5 is desirably about 500 ⁇ m or less.
  • the thickness of the surface solder layer 9 is preferably at least 2 ⁇ m because it is difficult to secure wetness if it is too thin. Further, in order to proceed with sufficient compounding, if the surface solder layer 9 is thick, a long-time treatment is required, so about 30 ⁇ m or less is desirable.
  • the shape of the portion related to the bonding layer of this embodiment is such that the sensor chip 1 is about 1 to 5 mm square, the thickness is about 50 to 400 ⁇ m, and the bonding layer 3 has a maximum thickness of 500 to 600 ⁇ m.
  • the base substrate 4 has a thickness of about 0.1 to 10 mm.
  • the core layer 8 uses a 40 ⁇ m thick Cu
  • the surface solder layer 9 uses a composite solder material 7 of 15 ⁇ m thick Sn
  • a 2 mm square sensor chip 1 having a thickness of 100 ⁇ m
  • a surface This is a structure in which a base substrate is joined by a 1 mm thick SUS substrate to which 3 ⁇ m Ni and 0.1 ⁇ m Au are applied.
  • the core layer 8 is Cu and the surface solder layer 9 is Sn as an example of the composite solder material 7 is not limited to this as long as the same effect can be obtained.
  • the high melting point metal layer is considered a temperature range of 500 ° C. or more, for example, the core layer is a Cu-based alloy, Fe-based alloy, Ni-based alloy, Al-based alloy, SUS, W, Mo 42 alloy, Invar, etc. can be applied.
  • the surface solder layer 9 is SnAg-based, SnIn-based, SnCu-based, SnZn-based, SnBi-based, SnSb-based, AuSn-based solder, or ternary solder in which other elements are added, or quaternary solder. Can also be used.
  • the Sn surface solder layer 9 is formed on the Cu core layer 8 by plating, but in addition, the core layer 8 and the surface solder layer 9 are obtained. It is also possible to manufacture by clad rolling with the Cu material and the Sn material overlapped. Alternatively, a dipping method may be employed in which Sn is deposited by dipping a Cu foil in a Sn solder solution that is heated and melted. Alternatively, the solder layer may be formed by supplying a paste-like solder mixed with solder powder and an organic material by a printing method and heating, and then washing if necessary. Alternatively, a method such as vapor deposition or sputtering may be used.
  • the composition and thickness of the surface solder layer 9 can be changed on both sides of the core layer 8.
  • the surface solder layer 9 on the side in contact with the sensor chip 1 is made thick, and the surface solder layer 9 on the side in contact with the opposite base substrate 4 is made thin.
  • the base substrate 4, the composite solder material 7, and the sensor chip 1 are often laminated and heated in this order, but the solder on the core layer 8 is below the core layer 8 due to the influence of gravity and the like. Even when heated to the same solder layer and heated at the same temperature, compounding may be insufficient with the solder on the lower side of the core layer 8, and thus, on both sides of the core layer 8 of the composite solder material 7. If the thickness of the surface solder layer 9 is changed, optimization of the finished thickness and control of compounding become easy.
  • the surface solder layer 9 usually has an oxide film on the surface, and there is a concern that the wettability may be lowered due to the presence of the oxide film depending on the atmosphere and process during bonding. Therefore, a protective layer for preventing oxidation of the surface solder layer 9 may be provided on the outermost surface in order to improve the bonding quality.
  • a protective layer for preventing oxidation of the surface solder layer 9 may be provided on the outermost surface in order to improve the bonding quality.
  • an Au layer, an Ag layer, a Cu layer, or a two-layer protective layer of these Ag layers / Au layers, etc., the thickness of the entire protective layer is sufficient to be several ⁇ m or less.
  • Au, Ag, Cu, etc. are formed by vapor deposition, plating, clad method, etc.
  • the protective layer is thin and easily dissolved in the solder, it does not cause problems such as melting into the solder during bonding and remaining protective layer.
  • the Cu protective layer Cu itself oxidizes, but the Cu oxide film is more easily reduced than the Sn oxide film, and particularly good bonding can be achieved by using hydrogen, formic acid, etc. Is also stable. Cost is also advantageous.
  • the core layer 8 under the surface solder layer 9 may be flat, but a dimple or the like may be used, or a core layer having increased roughness by roughening treatment may be used.
  • a core layer 8 in which small-diameter openings are provided at several locations, at random, or at an equal pitch may be used.
  • the surface area of the core idea is increased, and the effect of shortening the production by promoting the compounding can be expected.
  • the adhesion can be improved, and the stabilization effect can be expected by improving the bonding strength.
  • the main material of the sensor chip is silicon.
  • the present invention is not limited to this, and SiC or the like may be used. If the temperature sensing unit is also formed on the same chip, the output value can be temperature-corrected with high accuracy.
  • FIG. 6 sectional drawing of the example which joined the mechanical quantity measuring apparatus 100 of this invention and the to-be-measured object 30 is shown.
  • the back surface of the base substrate 4 and the device under test 13 are fixed at several places with screws 18.
  • FIG. 7 shows an example in which the mechanical quantity measuring device 100 of the present invention and the object to be measured 30 are joined by the adhesive 19. By connecting in this way, it becomes possible to detect the strain of the object to be measured with high sensitivity.
  • a method using welding, a method using heat due to friction, or the like may be used.
  • Example 1 the sensor chip 1 is bonded to the base substrate 4 and these are connected to the object to be measured 30, but the sensor chip 1 is measured using the bonding layer 3 of the present invention without using the base substrate. It is also possible to join to 30.
  • the composite solder material 7 has an example of a three-layer structure of the core layer 8 and the surface solder layer 9, but a five-layer structure in which the base layer 23 is inserted between the core layer 8 and the surface solder layer 9.
  • An example of the composite solder material 22 is shown in FIG. This is because it is necessary for the metal of the core layer 8 to be dissolved and diffused to the surface solder layer 9 at a certain rate in order to form an intermetallic compound within a working time that can be put to practical use to some extent. This is a limitation in material selection.
  • the surface solder layer 9 and the base layer 23 are selected from Sn-based solder that is easy to form an intermetallic compound, Cu, Ni, Ag, or Au,
  • an appropriate metal material can be selected from the viewpoints of thermal expansion coefficient, Young's modulus, material cost, and the like.
  • a material such as 42 alloy has a merit that it has a low coefficient of thermal expansion, although dissolution in the surface solder layer 9 is slow. Therefore, by using 42 alloy as the core layer 8, Cu as the underlayer 23, and Sn layer on the surface, the underlayer 23 and the surface solder layer 9 can be made into an intermetallic compound within a certain working time in the joining process. The melting point and strength can be increased. At the same time, the presence of the 42 alloy used for the core layer 8 makes it possible to optimize the deformation behavior and reliability of the entire bonding layer.
  • FIG. 9 shows a bonding structure formed when the composite solder material 22 having the five-layer structure is applied to the manufacture of a mechanical quantity measuring device.
  • a bonding layer 24 is formed between the sensor chip 1 and the base substrate 4. Comprises an intermediate layer 25, an unreacted portion 26 of the underlayer 23, and an intermetallic compound layer 27 above and below the intermediate layer 25.
  • a pressure sensor module 400 whose sectional view is shown in FIG. 10 includes a container 54 including a cylindrical portion 52 provided with a hollow hole 51 inside and a lid portion 53 that closes an upper portion of the hollow hole 51 in the cylindrical portion 52. . Further, a region of a diaphragm 56 is formed in the lid portion 53 at the upper part of the hollow hole 51, and the sensor chip 1 includes the intermetallic compound layer of the present invention and a high melting point metal layer.
  • a sensor module 57 attached to the base substrate 4 via the bonding layer 3 is attached to the surface opposite to the hollow hole 51 of the diaphragm 56 portion.
  • a printed circuit board 20 is attached via wire bonding 21 in order to output a strain detection amount from the sensor chip 1. Further, a case 58 and a connector (not shown) are attached to the periphery in order to protect these sensor module 57 portions and output measurement values.
  • the base substrate 4 is made of, for example, a CIC substrate, Mo, 42 Alloy, SUS, Al, ceramic, or the like, and the cylindrical portion 52, the diaphragm 56, or the like is made of, for example, SUS material.
  • the case 58 is made of resin or the like, but may be made of a metal material if it does not have heat resistance.
  • the joining of the diaphragm 56 and the base substrate 4 is performed using welding, brazing material, screw fixing, caulking, heat due to friction, or the like. Further, when the volume of the pressure sensor module 400 is limited and cannot be stored, the printed board 20 uses a flexible board or a springy thing such as a connector or a probe pin to extract a signal. It is also possible.
  • the pressure sensor module 400 has a joint portion 55 connected to, for example, a hydraulic piping of an automobile. Therefore, the sensor chip 1 connected to the base substrate 4 bonded to the diaphragm 56 via the bonding layer 3 of the present invention is distorted via the diaphragm 56 according to the change of the hydraulic pressure, so that the change of the pressure is an electric signal. Convert to and measure.
  • the sensor module 57 in which the sensor chip 1 is attached to the base substrate 4 using the bonding layer 3 may be separately prepared and then attached to the lid portion 53.
  • a process of attaching the sensor chip 1 after attaching the substrate 4 first may be used.
  • a pressure sensor module 500 structure in which the sensor chip 1 is directly joined to the diaphragm 56 without using the base substrate 4 is also possible.
  • An example of this is shown in FIG. 11, in which the sensor chip 1 is directly bonded to the diaphragm 56 using the bonding layer 3 having the intermetallic compound layer of the present invention and a high melting point metal layer.
  • the diaphragm 56 is distorted in accordance with the change in hydraulic pressure, and the amount of distortion is detected by the strain detector 2 of the sensor chip 1 to convert the change in pressure into an electrical signal.
  • a surface treatment layer that can ensure the wetting of the solder layer may be required on the surface of the diaphragm 56 opposite to the hollow hole 51.
  • the joint 3 of the sensor chip 1 is stable with little creep deformation even at a high temperature, and has high reliability such as a temperature cycle. For this reason, even when used in a high-temperature environment such as measuring the fuel pressure of gasoline in an automobile or the like, the change in pressure can be measured with high sensitivity and stably for a long period of time. Further, in this method, there are few chip cracking defects in the bonding process of the sensor chip 1, and the yield at the time of manufacture is good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

 半導体基板にひずみ検出部を有するセンサチップとベース基板との接合部を最適化し、被測定物に生じたひずみを高温下でも高感度に検出し、且つ、長期間ひずみが負荷された場合でも、正確なセンサ出力が可能な接合構造を提案する。 そのために、半導体基板に面内方向の伸縮を検出するひずみ検出部を有するセンサチップと、ベース基板と、前記センサチップの電極から外部に配線を引き出す配線部とを有し、前記ひずみ検出部を備えた面と反対のセンサチップ裏面とベース基板表面は、金属間化合物の層と高融点の金属層とを介して接合されたことを特徴とする力学量測定装置を構成する。

Description

力学量測定装置およびその製造方法
 本発明は、半導体力学量測定装置の実装構造、およびその製造方法に関する。
 測定対象の変形(ひずみ)を測定する方法として、金属箔の抵抗値がひずみによって変化することを利用した金属箔ひずみゲージを用いる技術が知られている。このひずみゲージを測定対象に接着することで測定対象のひずみに追従して金属箔の長さを変化させ、その結果変化する金属箔の抵抗値を検出することにより測定対象のひずみ測定を可能にする技術である。これまでに、Cu-Ni系合金箔やNi-Cr系合金箔などを用いたひずみゲージがあり、また、ひずみゲージ添着(貼付け)の確実、安定化を図るとともに、防湿性、耐衝撃性の高いプロテクタ付きひずみゲージも提案されている。
 しかしながら、これらは消費電力が大きいため、電池がすぐに消費してしまう問題があった。そこで、低消費電力化するために、シリコンにひずみ感応抵抗体を形成した半導体力学量測定装置が提案されている。
 この半導体歪ゲージ(半導体力学量測定装置)の構造としては、複数の電極が設けられた可橈性薄膜と、複数の電気素子が形成された半導体基板とを有し、上記可橈性薄膜は、上記半導体基板に被着されていて、上記複数の電極と上記複数の電気素子とは電気的に接続されていることを特徴とする半導体歪ゲージの構造が、特開2001-264188号公報(特許文献1)に提案されている。
 また、特開2001-272287号公報(特許文献2)には、シリコンチップで構成される歪み検出素子と、検出すべき歪みを歪み検出素子に伝える台座を有し、台座は熱膨張係数がシリコンの熱膨張係数の±50%の範囲に入る材料で形成され、上記歪み検出素子はガラス系固定材を加熱溶融して固定した歪み検出センサが開示されている。
特開2001-264188号公報 特開2001-272287号公報
 半導体力学量測定装置に必要な性能としては、主に2つの重要な項目がある。
  第1の重要項目は、ひずみ測定を行う場合、被測定物に生じたひずみを、半導体チップ(以下センサチップと呼ぶ)のひずみ検出部に正しく伝えることである。すなわち、被測定物に生じるひずみを検出する時の精度、感度が重要となる。
 第2の重要項目は、被測定物に同じ量のひずみが長時間生じている場合にも、センサチップでは同じ検出値を示すことである。すなわち、センサ出力値の安定性が重要である。この項目は、被測定物が高温で使用される場合には、より難しい課題となる。ひずみや圧力などの力学量測定装置の用途としては、一般的な家庭用品のほかに、たとえば、自動車の動作制御や、重要なインフラの監視などに用いられることも考えられる。この場合の使用環境は、低温では-50℃程度から、高温では150℃程度の温度範囲まで想定する必要がある。
 通常センサチップは、表面に細かい配線などが施されているが主な材質はシリコンであり、被測定物とは、はんだなどの接合材料を用いて接合される。この接合はセンサチップの耐熱温度以下で行う必要がある。一般的なはんだとしては、融点が217℃付近のSn-3wt%Ag-0.5wt%Cuはんだや、融点が約310℃のPb-5wt%Snはんだなどが知られる。Sn-3wt%Ag-0.5wt%Cuはんだでは、100℃~150℃付近の使用環境では融点に近い温度となり、はんだの降伏応力が小さくなってはんだが軟化し、感度低下が懸念されるとともに、高温でひずみが負荷されるような環境では、接合層のクリープ変形が起き、センサ出力の変動が問題となる。鉛を多く含むPb-5wt%Snはんだは、Sn系はんだと比較して融点は高いが、柔らかい材料であるため、感度低下、クリープ変形によるセンサ出力の精度低下がやはり懸念される。
 そこで、高温環境でのセンサ出力の安定性を確保するために、非常に高融点の接合材料を用いてセンサチップと被測定物とを接合することも考えられるが、接合温度はセンサチップの耐熱温度を越えることはできない。また、高温で接合する場合にはセンサチップの主な材質であるシリコンと被測定物との熱膨張係数差により、シリコンチップに割れが生じる確率が増し、製造時の歩留まり低下が懸念される。
 これまで出願されている特開2001-264188号公報(特許文献1)では有機薄膜を用いているため、高温での使用は難しいと予測される。また、特開2001-272287号公報(特許文献2)では、ガラス系固定材を加熱溶融して用いる構造が示されていて、硬い材料であると期待できるが、衝撃などの外力によって破壊されることが懸念され、使用環境の制約も必要と考えられる。
 このように、半導体力学量測定装置においては、センサチップと被測定物間の接合部の構造によって、感度やセンサ出力安定性などの計測機器として重要な性能が大きく影響される。このため、本発明では、半導体基板にひずみ検出部を有するセンサチップと被測定物との接合部を最適化し、被測定物に生じたひずみを高温環境でも高感度に検出し、且つ、長期間ひずみが負荷された場合でもクリープ変形が少なく、安定したセンサ出力が可能な接合構造、及びその製造方法を提供することを目的とする。
 また、センサチップと被測定物の接合時のチップ割れ不良を防ぎ、高歩留まりで製造可能なセンサチップ接合構造、及びその製造方法を提供することも目的とする。
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、半導体基板に面内方向の伸縮を検出するひずみ検出部を有するセンサチップと、被測定物と前記センサチップとの間に介在して、前記センサチップを支持すると共に、検出すべき前記被測定物のひずみを前記センサチップに伝えるベース基板と、前記センサチップの電極から外部に配線を引き出す配線部とを備え、前記ひずみ検出部を有する面と反対のセンサチップ裏面と前記ベース基板は、金属間化合物の層と高融点の金属層が積層した接合層を介して接合されていることを特徴とする力学量測定装置を構成した。
 また、上記課題を解決するために本発明では、前記センサチップ裏面と、前記ベース基板表面とを接合する前記接合層は、第1の金属間化合物層、高融点の金属層、第2の金属間化合物層が積層された3層構成となっていることを特徴とする前記記載の力学量測定装置を構成した。
 また、上記課題を解決するために本発明では、力学量測定装置の製造方法において、加熱炉内に、ベース基板を載置し、その上に高融点金属によるコア層と、その両面に積層される低融点の表面はんだ層からなる3層構造の複合はんだ材料を載置し、更にその上に、半導体基板に面内方向の伸縮を検出するひずみ検出部を有するセンサチップを、前記ひずみ検出部を有する面とは反対の面を前記複合はんだ材料の上に載置し、前記表面はんだ層の融点以上に加熱して、溶融した表面はんだ層を前記コア層の金属と反応させ、前記表面はんだ層のはんだが金属間化合物を十分形成するまで加熱を継続するようにした。
 本発明によれば、センサチップとベース基板は、硬い金属間化合物層と高融点の金属層を介して接合されているため、被測定物に生じたひずみを高温下でも高感度に検出し、且つ、長期間ひずみが負荷された場合でも接合層のクリープ変形が少ないため、安定して正確なセンサ出力が可能であり、高性能な半導体力学量測定装置を提供することができる。
 且つ、センサチップとベース基板接合時のセンサチップ割れ不良も低減でき、製造時の歩留まりも向上可能である。
本発明の実施例1の力学量測定装置の断面構成図の例である。 本発明の実施例1の力学量測定装置の平面構成図の例である。 本発明の実施例1の力学量測定装置の製造に用いる複合はんだ材料の断面構成図の例である。 本発明の実施例1の力学量測定装置の製造方法において、加熱炉内でセンサチップとベース基板とを接合するプロセスを説明する図である。 センサチップとベース基板との接合層3の、センサチップ側の断面例を示す図である。 本発明の実施例1の力学量測定装置100と被測定物30とを接合させた例1の断面図である。 本発明の実施例1の力学量測定装置100と被測定物30とを接合させた例2の断面図である。 本発明の実施例2の力学量測定装置の製造に用いる5層構造の複合はんだ材料の断面構成図の例である。 本発明の実施例2の力学量測定装置の製造に5層構造の複合はんだ材料を適用したときに形成される接合構造の断面図である。 本発明の実施例3の力学量測定装置を圧力センサモジュールに適用した第1の例を示す断面図である。 本発明の実施例3の力学量測定装置を圧力センサモジュールに適用した第2の例を示す断面図である。
 以下、本発明の実施例について、図面を用いて説明する。
 本実施例では、半導体力学量測定装置の構成部品であるセンサチップとベース基板の接合部の構造の例を説明する。
  図1、図2は、本実施例の力学量測定装置100の断面構造と平面構造の例を示す。センサチップ1は、主面1aにひずみ検出部2を有し、センサチップ1の主面1aの反対の面であるセンサチップ裏面1bは接合層3を介して、ベース基板4に接続されている。ひずみ検出部2はセンサチップ1の中央付近に設けられていて、4つの不純物拡散抵抗からなるホイートストンブリッジ回路が形成されている。これにより、センサチップ1の平面方向に生じた伸縮によって不純物拡散抵抗の抵抗値が変化することによりひずみ量を検出する。この例では、このセンサチップ1は、ベース基板4のほぼ中央部に配置されているが、中央部に限るものではない。
 ベース基板4上には、プリント基板20が配置され、プリント基板20上の電極パッド28とセンサチップ1の電極パッド29とがAu線などを用いたワイヤボンディング21により接続される。
 また、図示していないが、これらの力学量測定装置100のセンサチップ1の表面保護、或いはワイヤボンディング21などの保護、或いは電気的ショートを防止するため、少なくともセンサチップ1表面とワイヤボンディング21を含む部分を絶縁材料などで覆ってもよい。または、キャップなどで全体を覆うことも考えられる。
 接合層3は、高融点の金属からなる中間層5を中心に、両側に金属間化合物層6a,6bで挟んだ構成をとっている。すなわちセンサチップ1の裏面1bに第1の金属間化合物層6aが形成されていて、上記金属間化合物層6aのセンサチップ1接合界面と反対の面に高融点の金属からなる中間層5が形成され、上記中間層5とベース基板4の間には、第2の金属間化合物層6bが形成されている。
 接合層3の材料構成例としては、第1の金属間化合物層6aは、CuとSnを主成分とし、化学組成としてはCu3Sn、 Cu6Sn5、あるいはこれらに、他の元素が含まれるものであり、高融点の金属からなる中間層5は、Cu、あるいはCuを主成分として他元素を含むものである。第2の金属間化合物層6bは、第1の金属間化合物層6aと同様に、CuとSnを主成分とし、化学組成としてはCu3Sn、 Cu6Sn5、あるいはこれらに、他の元素が含まれる成分で構成される。
 図3には、接合層3を形成するための元の複合はんだ材料7の断面構成を示す。複合はんだ材料7は高融点金属によるコア層8、またその両面に積層される低融点の表面はんだ層9の3層からなる。本実施例では、コア層8の材質はCuであり、その両面に積層された表面はんだ層9はSnである。この表面層のSnは、Cuコア層8にめっき処理によって形成した。
 図4には、力学量測定装置100の製造方法において、加熱炉内でセンサチップ1とベース基板4とを接合するプロセスを説明する図を示す。すなわちベース基板4上に、コア層8、表面はんだ層9の合計3層からなる複合はんだ材料7を搭載し、次にこれにセンサチップ1のひずみ検出部2のある主面1aと反対の面1bが複合はんだ材料7に接するように搭載させる。これらを加熱炉10内に入れ、例えばヒータ11などによって加熱する。
  加熱、昇温と共に、複合はんだ材料7のコア層8表面に形成した低融点の表面はんだ層9が溶融し、センサチップ1の裏面1b、及びベース基板4に接合される。このとき、コア層8のCuの一部が表面はんだ層9に溶け込み、Cuと表面はんだ層9のSnが反応し、金属間化合物を形成するが、表面はんだ層9の厚みと、加熱温度と時間を最適化することによって、表面はんだ層9のSnがCuSn系の金属間化合物に変化し、低融点のSnがほぼ残存しない構造となる。CuとSnの間には、2種類の金属間化合物が知られ、Cu比率が多い順から、Cu3Sn、Cu6Sn5であり、これらの融点は、それぞれ640℃、415℃である。元の表面はんだ層9のSnの融点が232℃であることから、表面はんだ層9は高融点の金属間化合物層6に変化したと言える。
 センサチップ1の裏面1bには、複合はんだ材料7の表面はんだ層9が接続し易いようにAu層、Ag層などをめっき、あるいは蒸着、スパッタなどにより施しておくことが望ましい。これらの表層のAu、Ag層などは一般的に薄く、接続時にはんだ中に溶け込み、その下に形成したNi層(図示していない)などと表面はんだ層9は接合されることとなる。
 ここで、加熱炉10の内部は雰囲気制御を行うことで、複合はんだ材料7の表面はんだ層9の高温での酸化を抑制し、良好な接合を得ることができる。例えば、雰囲気はN2、アルゴン、ヘリウムなどが有効であるが、このほかに、還元性のある水素、あるいはこれらの混合物、または、ギ酸などの有機酸を用いても良い。他には、Snなどの表面酸化物を還元可能なフラックスなどの有機物を用いても良い。またセンサチップ1のベース基板4との平行性、位置制御、所望の接合高さ確保、ボイド低減などの接合品質向上を図るために、重り16やガイドなどの接合補正冶具12を用いても良いし、真空にしてボイドを低減させることも効果的である。このような工夫を行うことで、より良好な接合層3を得ることが可能になる。
 前記加熱炉10において、表面はんだ層9のSnを十分に金属間化合物化させるために、例えば200℃~400℃程度の温度で数分~数時間加熱して、上記のように接合された、センサチップ1とベース基板4の接合層3の、センサチップ1側の断面の例を図5に示す。この例では、センサチップ1の裏面1bの表面には予め、Ti、Ni、Au層を施してあるため、複合はんだ材料7の表面はんだ層9のSnと反応し、接合が可能となっている。また、中間層5のCu上には、Cu3Sn層13、Cu6Sn5層14が、順に層状に形成されている。これは、ベース基板側の金属間化合物層6bでも同様な構成を示すことを確認している。
 次に、Cu3Sn層13、 Cu6Sn5層14からなる金属間化合物層6が形成されたことによる効果を説明する。Cu3Sn層13、 Cu6Sn5層14は金属間化合物であり、室温でのヤング率はほぼ80GPa以上、降伏強度は1800MPa程度、マイクロヌープ硬度は70以上を示す。また、 Cu6Sn5層14の融点は415℃、Cu3Sn層13の融点は640℃である。一般的に高温での材料変形は使用環境温度と融点との比率に大きく影響される。このため、融点が高いということは、高温でのクリープなどの変形への耐性が大きいことを意味する。したがって、本実施例では、室温で既に硬い材料であるCu3Sn層13、 Cu6Sn5層14からなる金属間化合物層6を有することにより、センサの感度は高く、また100℃~150℃付近の高温での使用環境下でも、金属間化合物層6内でのクリープ変形は少なく、長期的に安定したセンサ出力を示すことが可能となる。
 これを、従来の融点が220℃~230℃付近のSn系はんだと比較すると、Sn系はんだは、室温でのヤング率はほぼ50GPa以下、降伏強度はほぼ50MPa以下、マイクロヌープ硬度は7程度であり、上記の金属間化合物層6より柔らかい。また融点も220℃~230℃付近であり、100℃~150℃の使用環境は、このSn系はんだにとって融点に近い温度であり、変形しやすい。従って、上記の100℃~150℃の高温の使用環境では、Sn系はんだ層のクリープ変形が生じやすく、被測定物に生じたひずみをはんだ層が緩和してしまうこととなり、感度が悪く、またセンサ出力値の変動につながってしまう。
 以上から、本実施例の複合はんだ材料7を用いた接合では、表面はんだ層9に、融点が232℃のSnを用いたため、センサチップ1の耐熱温度内で、且つ、通常の半田付け装置を用いセンサチップ1をベース基板4に接合可能であるが、その後の冷却工程中、或いは一旦冷却後に再度高温処理を行うことにより接合層3が化合物化して硬度が上昇し、更に、接合層3の高融点化も可能となる。従って、硬く、且つ変形が起こりにくい接合構造が必要な、高精度の力学量測定装置の接合方式として適するものといえる。逆に、初めからCu3Sn、 Cu6Sn5を用いて接合することも考えられるが、これらの融点以上の加熱が必要となり、より高温対応の特別な接合装置が必要なほか、センサチップ1の耐熱性も問題となり、チップ割れ不良も懸念される。
 次に、センサチップ1とベース基板4間の接合層3に、中間層5を有する理由を説明する。
 まず、製造上の制約の問題から説明する。
  中間層5を介さないで、センサチップ1とベース基板4を金属間化合物層のみで接合するためには、センサチップ1の裏面1b、あるいはベース基板4表面に、Cu層、及びSn層を形成しておき、これらを接合させる。しかし、この方法では、Cu とSnが金属間化合物を形成してSn層が残存しないようにするための高温での保持時間を考慮すると、あまりSn層を厚くすることはできず、全体として、センサチップ1とベース基板4の接合層の厚みが薄くなる。このため、センサチップ1とベース基板4とを構成する材料の熱膨張係数の違いが大きいと、接合層が薄いので、接合層に加わる応力も大きくなり、チップ割れなどが生じる可能性がある。またチップ割れを起こさない場合にも、薄い金属間化合物層に大きな応力が発生することになり、製造時にボイドなどが発生してしまうと、接合層3も破壊されることが懸念される。従って、製造上の観点から、薄い金属間化合物層のみで接合される構造では、基板材料によってはチップ割れ発生などが懸念される。特に、ベース基板を用いずに被測定物に直接センサチップを接合する場合などは、被測定物の物性を適正化しにくいこともあり、適用が難しい。
 またセンサ特性、信頼性の観点から、中間層5の必要性を説明する。Cuなどの高融点金属による中間層5を有することにより、Cuなどの金属は通常のはんだ材料と比較してヤング率が大きく(約100GPa以上)、且つ降伏応力も高いため、この金属層内でクリープを起こす懸念は小さい。また、融点が高いため、使用環境温度が100℃~150℃付近となっても、中間層5でのクリープ変形は、ほとんど問題とならない。従って、本発明の接合層3では、硬い金属間化合物層6を形成することによって、被測定物に生じたひずみは、金属間化合物層6では変形が起きにくいため感度よく伝わり、また中間層5では高融点でヤング率の高い金属層により構成されるため、ひずみの負荷に対して主に弾性変形によって対応でき、クリープしにくい。この結果、接合層3全体でクリープ変形を防止可能であり、100℃~150℃付近での高温でも安定的なセンサ出力と、高い感度を得ることができる。
 金属間化合物層、センサチップ1の割れ防止の観点、及び、測定最大許容ひずみにおいても接合層3全体のクリープ変形を抑えるためにCu層のような中間層5の厚みは5μm以上が望ましい。また、製造時の複合はんだ材7の取り扱いの観点からも上記のように中間層5は5μm以上が望ましい。一方、中間層5が厚すぎる場合には、被測定物に生じるひずみがセンサチップ1に伝わらないことが懸念され、検出すべき最大のひずみ量が伝わる厚みの上限から、Cuのような中間層5の厚みは、約500μm以下が望ましい。
 表面はんだ層9の厚みは、あまり薄いとぬれが確保しにくいため最低2μm以上が望ましい。また、十分な化合物化を進めるためには、表面はんだ層9が厚いと長時間の処理が必要となるため、約30μm以下が望ましい。
 以上から、本実施例の接合層に関わる部分の形状は、センサチップ1は例えば1~5mm角程度、厚さは50~400μm程度のサイズであり、接合層3の厚さは最大500~600μm以下であり、ベース基板4は0.1~10mm程度の厚さである。
 一例である本実施例の接合構造では、コア層8は40μm厚みのCu、表面はんだ層9は15μm厚みのSnによる複合はんだ材料7を用い、2mm角、厚み100μmのセンサチップ1と、表面に3μmのNi、これに0.1μmのAuを施した1mm厚のSUS基板によるベース基板を接合した構造である。
 上記には、複合はんだ材料7の例として、コア層8がCu、表面はんだ層9がSnの場合を示したが、同様の効果が得られれば、これに限るものではない。本発明での高融点の金属層とは、500℃以上の温度域を考えていて、例えば、コア層は、Cu系合金、Fe系合金、Ni系合金、Al系合金、SUS、W、Mo、42アロイ、インバーなどが適用できる。
  表面はんだ層9はSn以外には、SnAg系、SnIn系、SnCu系、SnZn系、SnBi系、SnSb系、AuSn系はんだ、またはこれらに他元素を添加した3元系はんだ、あるいは4元系はんだも用いることができる。
 本実施例では、図3に示す複合はんだ材料7の製造方法として、Cuコア層8にめっき処理によってSnの表面はんだ層9を形成したが、その他に、コア層8、表面はんだ層9となるCu材と、Sn材を重ねてクラッド圧延を行うことにより製造することでもよい。また、Cuの箔を加熱溶融しているSnはんだ液に浸してSnを付着させるディップ法を採用してもよい。または、はんだ粉末と有機材料を混ぜたペースト状のはんだを印刷方式により供給して加熱し、必要であればその後洗浄してはんだ層を形成してもよい。或いは、蒸着やスパッタなどの方式を用いてもよい。
 表面はんだ層9はコア層8の両側で組成や厚みを変えることも可能である。例えば、センサチップ1に接する側の表面はんだ層9は厚くし、反対のベース基板4に接する側の表面はんだ層9は薄くするなどである。上記の例では、通常プロセスにおいてはベース基板4、複合はんだ材料7、センサチップ1の順に積層し加熱することが多いが、重力などの影響でコア層8の上のはんだがコア層8の下のはんだ層に流れ込み、同じ温度で加熱しても、コア層8の下側のはんだでは化合物化が不十分となる場合があるためで、このように、複合はんだ材料7のコア層8両側の表面はんだ層9の厚みを変えておけば、出来上がりの厚みの最適化、化合物化の制御が容易となる。
 また上記の表面はんだ層9は、通常、表面に酸化膜が存在し、接合時の雰囲気やプロセスによっては上記酸化膜の存在によりぬれ性が低くなることも懸念される。そこで、接合品質向上のため、表面はんだ層9の酸化を防止する保護層を最表面に設けてもよい。例えば、Au層、Ag層、Cu層、またこれらのAg層/Au層の2層保護層などで、保護層全体の厚みは数μm以下で十分である。Au、Ag、Cuなどは蒸着、めっき、クラッド方式などで形成する。また保護層は薄く、且つはんだに溶解しやすい材質なので、接合時にはんだ中に溶け込み、保護層残りなどの問題とならない。またCu保護層の場合は、Cu自体酸化するが、Cu酸化膜はSn酸化膜より還元されやすく、特に水素やギ酸などを用いれば良好な接合が可能であるため、ぬれ性が向上し、品質も安定する。コストも有利である。
 表面はんだ層9の下のコア層8は平坦なものでもよいが、ディンプルなどを形成したり、粗化処理をして粗さを増したコア層を用いてもよい。他に、小径の開口部を数箇所、ランダムに、或いは等ピッチに設けたコア層8を用いてもよい。これにより、コア想の表面積が増し、化合物化が推進され製造が短時間化する効果が期待できる。また、もし低融点のSnなどが残存してしまった場合でも、コア層8の表面段差によって、残存した低融点Sn層が分散しやすく、クリープ変形を起こしにくい構造となる。また密着性も向上し、接合強度向上による安定化の効果が期待できる。
 また、この例ではセンサチップの主な材質をシリコンとしたがこれに限らずSiCなどを用いてもよい。また、温度感知部も同じチップ上に形成しておけば、出力値を高精度に温度補正することが可能となる。
 図6には、本発明の力学量測定装置100と被測定物30とを接合させた例の断面図を示す。これはベース基板4の裏面と被測定物13とを、ねじ18で数箇所固定したものである。
  図7には、本発明の力学量測定装置100と被測定物30とを接着材19により接合させた例を示したものである。このように接続させたことにより、被測定物のひずみを高感度に検出することが可能となる。
  図6、図7に示した方法の他に、溶接による方法、摩擦による熱を利用する方法などを用いてもよい。
 また、実施例1ではセンサチップ1をベース基板4に接合し、これらを被測定物30に接続したが、ベース基板を用いずにセンサチップ1を本発明の接合層3を用いて被測定物30に接合することも可能である。
 実施例1では、複合はんだ材料7は、コア層8と表面はんだ層9の3層構造の例を示したが、コア層8と表面はんだ層9の間に下地層23を入れた5層構造の複合はんだ材料22の例を図8に示す。
  これは、ある程度実用化可能な作業時間内に金属間化合物化するためには、表面はんだ層9へコア層8の金属がある程度の速さで溶解、拡散することが必要となり、コア層8の材料選定における制約となる。そこで、このような5層構造の複合はんだ材料22とすることで、表面はんだ層9と下地層23は、金属間化合物化し易いSn系はんだと、Cu、Ni、AgあるはAuを選択し、コア層8は熱膨張係数やヤング率、材料コストなどの観点から適切な金属材料を選定することが可能となる。
 例えば、42アロイなどの材料は、表面はんだ層9への溶解は遅いが、熱膨張係数が低いというメリットがある。そこで、42アロイをコア層8として用い、下地層23としてCu、表面にSn層を設けることにより、接合プロセスにおいてある程度の作業時間内で、下地層23と表面はんだ層9とを金属間化合物化させ、高融点化、高強度化可能である。とともに、コア層8に用いた42アロイの存在により、接合層全体としての変形挙動、信頼性を最適化することが可能となる。
 この5層構造の複合はんだ材料22を力学量測定装置の製造に適用したときに形成される接合構造を図9に示すが、センサチップ1とベース基板4間に接合層24が形成され、これは、中間層25とその上下に下地層23の未反応の部分26と金属間化合物層27から構成される。このような構造にすることにより、接合を司る部分と、センサモジュールの性能を司る部分の役割分担がより可能となり、センサ感度、長期的信頼性共に優れる力学量測定装置を提供することができる。
 この他に、コア層8のどちらか片面のみに下地層23を形成したのち表面はんだ層9を設け、コア層8の別の面には表面はんだ層9のみ設けることも可能である。
 本発明の力学量測定装置を圧力センサモジュールに適用した例を図10に示す。
  図10に断面図を示す圧力センサモジュール400は、中空孔51を内側に設けた筒部52とこの筒部52における中空孔51の上部を閉塞する蓋部分53からなる容器54を有している。また、中空孔51の上部の蓋部分53にはダイアフラム56の領域が形成されていて、センサチップ1を、本発明の金属間化合物の層と高融点の金属層とを有することを特徴とする接合層3を介してベース基板4に取り付けたセンサモジュール57がダイアフラム56部分の中空孔51と反対側の面に取り付けられている。またセンサチップ1からはひずみ検出量を出力するため、ワイヤボンディング21を介してプリント基板20が取り付けられている。更にこれらのセンサモジュール57部分を保護し、且つ計測値を出力するためにケース58、また図示していないがコネクタが周囲にとりつけられている。
 ベース基板4は、例えばCIC基板、Mo、42Alloy、SUS、Al、セラミックなどを素材として、筒部52、ダイアフラム56部分などは例えばSUS材料などが適用される。また、ケース58は樹脂などが適用されるが、耐熱性が持たない場合には金属材料のものでも良い。
 ダイアフラム56とベース基板4との接合は、溶接、ロウ材、ねじ固定、かしめ、摩擦による熱などを用いて行う。またプリント基板20は、圧力センサモジュール400の容積が限られていて収納できない場合には、フレキシブル基板のようなものを用いたり、コネクタ、プローブピンのようなばね性のものを用いて信号を取り出すことも可能である。
 この圧力センサモジュール400は、例えば自動車の油圧系の配管などに継手部55が接続される。そこで、ダイアフラム56上に貼り合わされたベース基板4上に本発明の接合層3を介して接続されたセンサチップ1が、油圧の変化に従ってダイアフラム56を介して歪むことによって、圧力の変化を電気信号に変換し、計測する。
 この圧力センサモジュール400の製造においては、センサチップ1をベース基板4に接合層3を用いて取り付けたセンサモジュール57を別途作成してから蓋部分53に取り付けても良いし、蓋部分53にベース基板4を先に取り付けてからセンサチップ1を接合するプロセスでも良い。
 ベース基板4を用いずにダイアフラム56に直接センサチップ1を接合した圧力センサモジュール500構造も可能である。この例を図11に示すが、センサチップ1は、本発明の金属間化合物の層と高融点の金属層とを有することを特徴とする接合層3を用いてダイアフラム56に直接接合されていて、油圧の変化に従ってダイアフラム56が歪み、この歪み量をセンサチップ1のひずみ検出部2で検出することによって、圧力の変化を電気信号に変換する。この例のようにベース基板4を用いない場合には、ダイアフラム56の中空孔51の反対側の面には、はんだ層のぬれを確保できる表面処理層が必要となる場合がある。
 このように作成した圧力センサモジュール400、500では、センサチップ1の接合部3が高温でもクリープ変形が少なく安定で、且つ温度サイクルなどの信頼性も高い。このため、自動車などでガソリンの燃料圧などを計測するような高温の環境で使用される場合でも、圧力の変化を感度良く、且つ長期間安定して計測可能である。また、本方式では、センサチップ1の接合プロセスにおいてもチップ割れ不良も少なく、製造時の歩留まりも良好である。
1 センサチップ
1a センサチップの主面
1b センサチップ裏面
2 ひずみ検出部
3 接合層
4 ベース基板
5 接合層の中間層
6,6a,6b 金属間化合物層
7 複合はんだ材料
8 コア層
9 表面はんだ層
10 加熱炉
11 ヒータ
12 接合補正冶具
13 金属間化合物層(Cu3Sn層)
14 金属間化合物層(Cu6Sn5層)
16 重り
18 ねじ
19 接着剤
20 プリント基板
21 ワイヤボンディング
22 5層構造の複合はんだ材料
23 下地層
24 接合層
25 中間層
26 下地層の未反応の部分
27 金属間化合物層
28 電極パッド
29 電極パッド
30 被測定物
51 中空孔
52 筒部
53 蓋部分
54 容器
55 継手部
56 ダイアフラム
57 センサモジュール
58 ケース
100 力学量測定装置
400 圧力センサモジュール
500 圧力センサモジュール

Claims (9)

  1.  半導体基板に面内方向の伸縮を検出するひずみ検出部を有するセンサチップと、
     被測定物と前記センサチップとの間に介在して、前記センサチップを支持すると共に、検出すべき前記被測定物のひずみを前記センサチップに伝えるベース基板と、
     前記センサチップの電極から外部に配線を引き出す配線部とを備え、
     前記ひずみ検出部を有する面と反対のセンサチップ裏面と前記ベース基板は、金属間化合物の層と高融点の金属層が積層した接合層を介して接合されていることを特徴とする力学量測定装置。
  2.  前記センサチップ裏面と、前記ベース基板とを接合する前記接合層は、第1の金属間化合物層、高融点の金属層、第2の金属間化合物層が積層された3層構成となっていることを特徴とする請求項1に記載の力学量測定装置。
  3.  前記金属間化合物の層は、CuとSn、NiとSn、AuとSn、あるいはAgとSnを主成分とすることを特徴とする請求項1、または請求項2に記載の力学量測定装置。
  4.  前記金属層は、Cu、Cu系合金、Ni、Ni系合金、Al、Al系合金、Fe系合金、SUS、W、Mo、42アロイ、インバーのうちのいずれかからなることを特徴とする請求項1、または請求項2に記載の力学量測定装置。
  5.  前記金属層の厚みは5μm~500μmの範囲であることを特徴とする請求項1、または請求項2に記載の力学量測定装置。
  6.  加熱炉内に、ベース基板を載置し、
     その上に高融点金属によるコア層と、その両面に積層される低融点の表面はんだ層からなる3層構造の複合はんだ材料を載置し、
     更にその上に、半導体基板に面内方向の伸縮を検出するひずみ検出部を有するセンサチップを、前記ひずみ検出部を有する面とは反対の面を前記複合はんだ材料の上に載置し、
     前記表面はんだ層の融点以上に加熱して、溶融した表面はんだ層を前記コア層の金属と反応させ、
     前記表面はんだ層のはんだが金属間化合物を形成するまで加熱を継続することを特徴とする力学量測定装置の製造方法。
  7.  前記複合はんだ材料のコア層は、Cu、Cu系合金、Ni、Ni系合金、Al、Al系合金、Fe系合金、SUS、W、Mo、42アロイ、インバーのうちのいずれかの材料で構成されていることを特徴とする請求項6に記載の力学量測定装置の製造方法。
  8.  前記複合はんだ材料の表面はんだ層は、Sn、SnAg系はんだ、SnIn系はんだ、SnCu系はんだ、SnZn系はんだ、SnBi系はんだ、SnSb系はんだ、AuSn系はんだ、またはこれらに1種類または2種類の他元素を添加したはんだ、のいずれかの材料で構成されていることを特徴とする請求項6に記載の力学量測定装置の製造方法。
  9.  前記3層構造の複合はんだ材料のコア層と表面はんだ層との間にそれぞれ下地層を入れた5層構造の複合はんだ材料に替えて、
     前記表面はんだ層と前記下地層は、互いに金属間化合物化し易い材料により構成され、
     前記コア層は、被測定物に生じたひずみによってクリープ変形が起こらない程度のヤング率を持つ金属材料で構成されることを特徴とする請求項6に記載の力学量測定装置の製造方法。
PCT/JP2014/051822 2013-03-27 2014-01-28 力学量測定装置およびその製造方法 WO2014156273A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013067416A JP2014190875A (ja) 2013-03-27 2013-03-27 力学量測定装置およびその製造方法
JP2013-067416 2013-03-27

Publications (1)

Publication Number Publication Date
WO2014156273A1 true WO2014156273A1 (ja) 2014-10-02

Family

ID=51623275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051822 WO2014156273A1 (ja) 2013-03-27 2014-01-28 力学量測定装置およびその製造方法

Country Status (2)

Country Link
JP (1) JP2014190875A (ja)
WO (1) WO2014156273A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106595469A (zh) * 2017-01-10 2017-04-26 昆山工研院新型平板显示技术中心有限公司 一种弯曲传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232824A (ja) * 1990-07-24 1992-08-21 Pfister Messtechnik Gmbh 圧力センサ及びその製造方法
JP2006237215A (ja) * 2005-02-24 2006-09-07 Renesas Technology Corp 半導体装置およびその製造方法
JP2009053005A (ja) * 2007-08-27 2009-03-12 Hitachi Metals Ltd 半導体歪センサーおよび半導体歪センサーの取付け方法
JP2012169524A (ja) * 2011-02-16 2012-09-06 Mitsubishi Electric Corp 半導体装置及びその試験方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232824A (ja) * 1990-07-24 1992-08-21 Pfister Messtechnik Gmbh 圧力センサ及びその製造方法
JP2006237215A (ja) * 2005-02-24 2006-09-07 Renesas Technology Corp 半導体装置およびその製造方法
JP2009053005A (ja) * 2007-08-27 2009-03-12 Hitachi Metals Ltd 半導体歪センサーおよび半導体歪センサーの取付け方法
JP2012169524A (ja) * 2011-02-16 2012-09-06 Mitsubishi Electric Corp 半導体装置及びその試験方法

Also Published As

Publication number Publication date
JP2014190875A (ja) 2014-10-06

Similar Documents

Publication Publication Date Title
JP3989254B2 (ja) 異種材料接合体及びその製造方法
US10481023B2 (en) Mechanical quantity measuring device and sensor unit
KR102202323B1 (ko) 금속-세라믹 땜납 연결을 생성하는 방법
JP2009053005A (ja) 半導体歪センサーおよび半導体歪センサーの取付け方法
JP6302142B2 (ja) 半導体装置、力学量測定装置および半導体装置の製造方法
JP3949459B2 (ja) 異種材料の接合体及びその製造方法
WO2014156273A1 (ja) 力学量測定装置およびその製造方法
JP6129980B2 (ja) 力学量測定装置及びその製造方法
JP6842600B2 (ja) 温度センサ及び温度センサを備えた装置
US20150369677A1 (en) Sensor having simple connection technology
WO2015040737A1 (ja) 半導体素子の接合構造
JPS6154272B2 (ja)
JP5779487B2 (ja) 圧力センサモジュール
JP2014147966A (ja) 接合材料、接合方法、接合構造、および半導体装置
JP6208098B2 (ja) 半導体素子接続ユニットおよびそれを備えた力学量測定装置
JP2013164332A (ja) 圧力センサモジュール
WO2024053270A1 (ja) 半導体チップをガラス接合する方法、圧力センサの製造方法及び接合装置
JP5135630B2 (ja) 測定用基板及び温度測定用基板
CN220867105U (zh) 一种mems器件固定结构和电子设备
JP2018195647A (ja) 半導体装置
JP6502588B2 (ja) 温度センサ及び温度センサを備えた装置
JP2008294021A (ja) 電子部品モジュールおよびその製造方法
JP2896884B2 (ja) 導電性積層体
JP2006177860A (ja) 圧力検出装置
JPS5926608Y2 (ja) 半導体変位変換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773964

Country of ref document: EP

Kind code of ref document: A1