WO2014156189A1 - ハードディスク用ガラス基板及びその製造方法 - Google Patents

ハードディスク用ガラス基板及びその製造方法 Download PDF

Info

Publication number
WO2014156189A1
WO2014156189A1 PCT/JP2014/001834 JP2014001834W WO2014156189A1 WO 2014156189 A1 WO2014156189 A1 WO 2014156189A1 JP 2014001834 W JP2014001834 W JP 2014001834W WO 2014156189 A1 WO2014156189 A1 WO 2014156189A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
polishing
shape
hard disk
difference
Prior art date
Application number
PCT/JP2014/001834
Other languages
English (en)
French (fr)
Inventor
塚田 和也
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Publication of WO2014156189A1 publication Critical patent/WO2014156189A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Definitions

  • the present invention relates to a glass substrate for a hard disk (magnetic information recording medium) used as a magnetic disk mounted on a hard disk (HDD) and a method for manufacturing the same.
  • a hard disk magnetic information recording medium
  • HDD hard disk
  • the present inventors examined such a problem to make the drive quality suitable for the high density requirement, and grasped the situation where the shape of the end face of the glass substrate had an influence.
  • the end shape of the magnetic disk is also a substantially flat shape with no undulations compared to the central part.
  • Patent Document 1 reports a technique for flattening an end portion by detecting the shape of the end portion formed in the first polishing step and polishing it so that it can be offset in the second polishing step.
  • both main surfaces of the glass substrate provided with a stress layer by chemical strengthening treatment are 10 to 200 ⁇ m on each side using a set of polishing pads.
  • Patent Document 2 A method of manufacturing a glass substrate for a magnetic recording medium that is simultaneously polished by 0.05 to 0.7 ⁇ m has also been proposed (Patent Document 2).
  • Patent Document 3 as a method for obtaining a reliable glass substrate for a magnetic disk that does not cause a crash failure even when the disk is rotated at a high speed, the end shape is uniform and flat in the circumferential direction. Has been reported.
  • Patent Document 1 is a technique for adjusting so as to cancel in a subsequent process as a means for adjusting the end shape, but the reference merely controls the macroscopic upper and lower end shape. There is no disclosure about controlling the shape difference between the upper and lower end portions.
  • the machining allowance between the upper and lower surfaces is suppressed and the flatness deterioration due to warpage is prevented
  • the machining allowance of each surface is set to 0.7 ⁇ m or less so as not to cut too much. You also need to do it. However, this is not a technique intended for the difference in the end shape between the upper and lower surfaces.
  • Patent Document 3 does not mention anything about adjusting the end shape difference between the upper and lower surfaces of the glass substrate.
  • the present invention has been made in view of such circumstances, and is capable of sufficiently suppressing fluttering and head crashes, and an excellent glass substrate for hard disk capable of ensuring quality capable of meeting the demand for higher density and a method for manufacturing the same.
  • the purpose is to provide.
  • JP 2008-103061 A JP-A-7-134823 WO2008 / 102751
  • the method of manufacturing a glass substrate for hard disk according to one aspect of the present invention has an outer diameter from the position where the end portions of both main surfaces of the glass substrate begin to descend or rise compared to the central portion on either the front surface or the back surface.
  • ⁇ C Ave
  • FIG. 1 is a cross-sectional view showing an example of the shape of a glass substrate.
  • FIG. 2 is a cross-sectional view showing another example of the shape of the glass substrate.
  • FIG. 3 is a top view of the glass substrate.
  • FIG. 4 is a schematic diagram of an apparatus for measuring fluttering characteristics.
  • the glass substrate 1 in the present embodiment has flat central portions 2, 2 'and end shapes 3, 3' on both main surfaces thereof.
  • the end shape 3, 3 ′ refers to a position starting to descend (so-called sagging, see FIG. 1) or uplift (so-called ski jump, see FIG. 2) as compared to the central portions 2, 2 ′. It refers to the range up to the outer diameter position.
  • FIG. 3 is a top view of the glass substrate 1, but the end shape 3 exists around the flat central portion 2.
  • the manufacturing method of the glass substrate for hard disks which concerns on this embodiment is the process which adjusts the said edge part shape so that the average value ((DELTA) CAve ) of the edge part shape difference of the surface and back surface in the glass substrate obtained may satisfy
  • fill a following formula. Including a process. ⁇ C Ave
  • a and B indicate the height difference between the end shape and the central portion at the same distance from the outer diameter position on the front surface side and the back surface side of the glass substrate, respectively, as shown in FIGS. .
  • the difference between the height difference A on the front surface side and the height difference B on the back surface side is defined as the end shape difference between the front surface and the back surface of the glass substrate.
  • the average value ( ⁇ C Ave ) of the end shape difference is usually 1000 nm or less, preferably 500 nm or less, more preferably 100 nm or less, as shown in the above formula.
  • the end shape difference ⁇ C is measured by setting measurement points every 30 degrees with respect to the doughnut-shaped glass substrate, and measuring and calculating the above A and B at a total of 12 circumferential measurement points with an outer diameter. By doing so, the average ⁇ C Ave of 12 points and the maximum value ⁇ C Max can be obtained.
  • the fluttering characteristic referred to in the present embodiment means an amplitude amount (surface runout) at the time of high-speed rotation of the glass substrate, and is defined by a relational expression such as the following formula (1).
  • F is a fluttering characteristic (unit: nm)
  • a is the outer radius of the glass substrate
  • is the Poisson's ratio of the glass substrate
  • E is the Young's modulus of the glass substrate
  • Indicates the attenuation coefficient of the glass substrate
  • h indicates the thickness of the glass substrate
  • ⁇ 4 is a model function parameter.
  • the outer radius and thickness of the glass substrate are made constant, the Poisson's ratio does not vary greatly depending on the chemical composition, and the fluttering characteristic F is related to the rightmost side.
  • the fluttering characteristic is the amount of amplitude at the time of high-speed rotation of the glass substrate as described above, it is preferable to reduce this. It has been considered that it is generally advantageous to increase the Young's modulus and the damping coefficient as in the above formula, but the flying height is getting lower on the substrate aiming at higher density, so it is more precise. Fluttering characteristics are required, and it has been found by the inventor's examination and research that it greatly affects the case where there is a difference in the end face shape between the upper and lower surfaces of the glass substrate.
  • fluttering characteristics at a rotation speed of 15000 rpm are preferably 120 nm or less, and 50 nm or less. It is more preferable that it is 48 nm or less.
  • the fluttering characteristic at a rotation speed of 7000 rpm is preferably 40 nm or less, more preferably 20 nm or less, and further preferably 18 nm or less.
  • the head and the HDD glass substrate can be prevented from coming into contact with each other, and inconveniences such as damage to the head can be prevented. it can.
  • the manufacturing method of the glass substrate for hard disks according to the present embodiment is not particularly limited with respect to the other steps as long as it includes the processing step of adjusting the end shape difference as described above, and is a conventionally known manufacturing method. Processes that can be used can be used as appropriate.
  • a melting step glass blank manufacturing step
  • a shape processing step a rough grinding step (first grinding step), a fine grinding step (second grinding step), a rough polishing step
  • Primary polishing step cleaning step, chemical strengthening step, precision polishing step (secondary polishing step), and a method including a final cleaning step.
  • the steps may be performed in this order, or the order of the chemical strengthening step and the precision polishing step (secondary polishing step) may be switched.
  • a method including steps other than these may be used.
  • a heat treatment step, a shape processing step, a coring step, an end surface polishing step, and an inspection step may be performed.
  • the processing step for adjusting the end shape may be performed in any of the above steps in the method of manufacturing a glass substrate for hard disk.
  • the shape processing step for determining the shape of the initial chamfer portion, the shape accuracy can be performed in the grinding process (including multiple grinding processes such as rough grinding and fine grinding performed according to the purpose), rough polishing process, precision polishing process, etc. Even if it adjusts, it can contribute to the improvement of fluttering property by adjusting so that an edge part shape may align in an up-and-down surface as mentioned above.
  • the processing step of the end shape may be performed in any one process, or may be performed in a plurality of processes among the processes.
  • the end shape is likely to change particularly in the rough polishing step and the precision polishing step, it is easier to control the end shape if the processing step is performed in any one of these steps. Moreover, since it becomes precise and can provide a higher level of edge shape quality, not only fluttering but also undulation of the substrate can be suppressed.
  • the treatment process is performed in both the rough polishing process and the precision polishing process. Therefore, the effects as described above can be obtained more reliably.
  • the shape of the end portion of the substrate in the shape processing step and the grinding step which are the first half steps among the above steps in the glass substrate manufacturing method.
  • the said process process for adjusting the said edge part shape difference ((DELTA) C) in a glass substrate to the range of this Embodiment may be performed in any process in the manufacturing method of a glass substrate, in the manufacturing process of a glass substrate.
  • the average value of the end portion shape difference ( ⁇ C Ave ) is adjusted to be 1000 nm or less, and the end portion shape difference does not deteriorate in the subsequent polishing step.
  • the average value ( ⁇ C Ave ) of the end shape difference at the end of the rough polishing step is preferably 1000 nm or less, and preferably 500 nm or less. In the rough polishing process, by accurately controlling the end shape difference, it is possible to reduce the load of shape adjustment in the subsequent precision polishing process.
  • the average value ( ⁇ C Ave ) of the end shape difference after the precise polishing step may be 1000 nm or less in the present embodiment. , Preferably 500 nm or less, and more preferably adjusted to 100 nm or less.
  • the means for controlling the shape difference ( ⁇ C) between the front and back surfaces is not particularly limited, and various means may be mentioned.
  • the process is temporarily stopped during the process of processing both surfaces of the glass substrate (for example, the grinding process or the polishing process), the glass substrate is turned over, the upper and lower surfaces are set upside down, and the rest
  • effective means include the method of processing.
  • the polishing process is performed for about 40 to 50 minutes using a polishing machine in the normal polishing process.
  • the edge shape difference can be reduced by stopping the polishing machine every 10 to 22 minutes in consideration of the balance between ease and effect and repeating the work of turning the glass substrate upside down several times.
  • the shape of the end portions of the front and back surfaces is devised so as not to cause a temperature difference between the upper and lower surface plates by means such as circulating cooling water.
  • the difference ( ⁇ C) can be controlled, and with such a method, the polishing step can be performed continuously.
  • polishing processing is performed by moving (revolving) between the upper and lower surface plates while rotating the carrier.
  • one of the methods for reducing the vertical difference of the end shape is to precisely control the vertical axis of the grinding during the shape processing step so that the initial chamfer portion is substantially uniform vertically. If there is a difference in the chamfer area between the upper and lower surfaces in the initial shaping process, an area difference will occur in the main plane of the glass substrate to be processed, and the load during processing per unit area will differ. It is considered that the shape of the end portion varies due to the difference in the method of application. Such variation also affects variation in the end face shape in the subsequent process, so by controlling the area difference of the chamfer part by the above means, the difference in the vertical difference in the end shape in the subsequent process is to some extent. It is thought that it can be suppressed.
  • the glass material used as the material for the glass substrate for hard disk is not particularly limited as long as it is a material that is normally used as the material for the glass substrate for hard disk.
  • aluminosilicate glass has an advantage that it can be chemically strengthened and can provide a magnetic disk substrate having excellent main surface flatness and substrate strength.
  • the glass melting method is not particularly limited, and a method of melting the glass material at a high temperature at a known temperature and time can be usually employed.
  • the method for obtaining blanks is not particularly limited, and for example, a method of obtaining a disk-shaped glass substrate (blanks) by pouring a molten glass material into a lower mold and press molding with an upper mold can be employed.
  • blanks are not restricted to press molding, For example, you may cut and produce the sheet glass formed by the down draw method, the float method, etc. with the grinding stone.
  • the size of the blanks is not particularly limited, and for example, blanks having various outer diameters of 2.5 inches, 1.8 inches, 1 inch, 0.8 inches, and the like can be produced. It does not specifically limit about the thickness of a glass substrate, For example, blanks of various thickness, such as 2 mm, 1 mm, 0.8 mm, 0.63 mm, can be produced.
  • Blanks produced by press molding or cutting can be alternately laminated with heat-stable setters and passed through a high-temperature electric furnace to promote reduction of warpage and crystallization of glass.
  • the heat treatment step is a step aimed at correcting the flatness of glass blanks and removing internal strain.
  • a method of heat processing For example, the method of using a setter (alumina, zirconia, etc.) and stacking alternately with glass blanks, putting into a heat processing furnace, and applying heat can be employ
  • the temperature during the heat treatment can be performed in a temperature range from Tg to Tg + 100 (° C.) of the glass blank.
  • a coring process is a process of forming an inner hole (center hole) in the center part of the surface of the obtained glass blanks using a diamond core drill.
  • the center of the glass blanks is determined by this coring process.
  • a glass blank means the glass molding before finishing the coring process and performing the grinding process (1st grinding process) of the main plane mentioned later.
  • the glass blanks that have been subjected to the coring (inner peripheral cut) process are ground with a diamond grindstone on the inner peripheral end face and the outer peripheral end face that face the hole in the center portion.
  • chamfering is also performed. For example, in the case of a 2.5 inch hard disk, a predetermined chamfering process is performed after setting the outer diameter to 65 mm and the inner diameter (diameter of the circular hole 1H in the center) to 20 mm.
  • the surface roughness of the end face of the glass blanks at this time is about 2 ⁇ m in Rmax.
  • ⁇ Rough grinding (first grinding) process Next, in the first grinding step, a surface grinding process is performed on both main surfaces of the formed glass blanks for the purpose of improving dimensional accuracy and shape accuracy.
  • the grinding process is performed, for example, using a double-side grinding (lapping) device using a planetary gear mechanism. Specifically, the lapping platen is pressed from above and below on both main surfaces of the glass blanks obtained above, the grinding liquid is supplied onto both main surfaces, and the glass blanks and lapping platen are relatively moved. Thus, a grinding process is performed. By the grinding process, the approximate parallelism, flatness, thickness and the like of the glass substrate are preliminarily adjusted, and a glass substrate (glass base material) having a substantially flat main surface is obtained.
  • the grinding liquid for example, a grinding liquid containing alumina abrasive grains having a particle size of # 400 (particle size of about 40 to 60 ⁇ m) is used. By setting the upper surface plate load to about 100 kg, both surfaces of the glass blanks are faced. It may be finished to an accuracy of 0 ⁇ m to 1 ⁇ m and a surface roughness Rmax of about 6 ⁇ m.
  • grinding may be performed by using a fixed abrasive type grinding pad (for example, a sheet-like one) in which diamond particles are supported on resin, ceramic, or metal, thereby improving the grinding speed and quality after grinding.
  • a fixed abrasive type grinding pad for example, a sheet-like one
  • the particle diameter of diamond can be appropriately changed depending on the purpose, but the average particle diameter used in the first grinding is preferably 2 ⁇ m to 10 ⁇ m.
  • the particle diameter of diamond is less than 2 ⁇ m, the processing speed is insufficient, and cracks generated on the main surface (upper and lower surfaces) of the glass substrate may not be removed. If the particle diameter of diamond exceeds 10 ⁇ m, there is a risk that cracks may occur on the main surfaces 2 and 3 of the glass substrate 1 due to diamond.
  • Precision grinding (second grinding) process grinding processing is performed on both main surfaces of the glass substrate in the same manner as in the first grinding step.
  • fine uneven shapes and processing damage such as fine scratches and protrusions formed on both main surfaces of the glass substrate in the first lapping or end face processing of the previous step are removed in advance. Therefore, it is possible to precisely control the polishing time of the main surface in the subsequent process, and to shorten it.
  • a diamond pad having a particle size smaller than that of the diamond particles used in the first grinding it is preferable to use a diamond pad having a particle size smaller than that of the diamond particles used in the first grinding, so that a surface suitable for polishing in the next step is used. Properties can be formed.
  • diamond particles having an average particle diameter of 1 ⁇ m to 5 ⁇ m are used. With the recent increase in density, the diamond particle diameter is becoming smaller, but a balance of workability is required, so 1.5 ⁇ m to 4 ⁇ m is more preferable.
  • the glass substrate main surface (upper and lower surfaces) is ground to a thickness of about 50 ⁇ m to 250 ⁇ m.
  • precision polishing by brush polishing may be performed on the inner peripheral end face of the glass substrate. Specifically, by supplying a polishing liquid containing an abrasive to the polishing brush, placing the polishing brush in contact with the inner peripheral end surface of the glass substrate, and then applying the polishing brush while rotating the glass substrate The inner peripheral end face of the glass substrate is polished.
  • abrasive cerium oxide is usually selected and supplied as a polishing liquid at an appropriate concentration.
  • the polishing brush a brush having an appropriate hardness and diameter is selected so that the polishing can be performed softly without damaging the end face.
  • an outer peripheral polishing step may be further performed.
  • the outer peripheral end surface of the glass substrate is subjected to precision polishing by brush polishing. Specifically, by supplying a polishing liquid containing an abrasive to the polishing brush, placing the polishing brush in contact with the outer peripheral end surface of the glass substrate, and applying the polishing brush while rotating the glass substrate, The outer peripheral end surface of the glass substrate is polished.
  • the abrasive and the polishing brush are selected in the same manner as the abrasive and the polishing brush used for polishing the inner peripheral end face of the glass substrate.
  • the rough polishing step is a step of polishing both main surfaces of the glass substrate using an abrasive slurry so that the surface roughness finally required in the subsequent precision polishing step can be efficiently obtained.
  • the polishing method employed in this step is not particularly limited, and in this embodiment, polishing can be performed using a double-side polishing machine.
  • the polishing pad to be used is preferably a hard pad because the shape change of the polishing surface increases when the hardness of the polishing pad decreases due to heat generated by polishing, for example, a foamed urethane pad or a suede pad can be used, It is particularly preferable to use a suede pad. The reason is as described above.
  • cerium oxide having an average primary particle diameter of 0.6 to 2.5 ⁇ m can be used, and such cerium oxide is dispersed in a solvent and used in a slurry form. It does not specifically limit as a solvent, Although neutral water and acidic and alkaline aqueous solution can be employ
  • the supply amount of the abrasive slurry is not particularly limited and is, for example, 5 to 10 L / min.
  • the polishing amount of the glass substrate in the rough polishing step is usually about 20 to 40 ⁇ m.
  • the polishing amount of the glass substrate is less than 20 ⁇ m, there is a tendency that scratches and defects are not sufficiently removed.
  • the polishing amount of the glass substrate exceeds 40 ⁇ m, the glass substrate is polished more than necessary, and the production efficiency tends to decrease.
  • the glass substrate after the rough polishing step is preferably washed with a neutral detergent, pure water, IPA or the like. Further, a cleaning step may be provided, and the surface of the glass substrate is cleaned while being etched using a cleaning solution containing sulfuric acid and / or hydrofluoric acid for the purpose of removing the polishing agent cerium oxide in the previous step.
  • the polishing slurry such as cerium oxide adhering to the surface of the glass substrate is appropriately removed by a strongly acidic cleaning liquid such as sulfuric acid and / or hydrofluoric acid. Thereafter, the glass substrate is cleaned using an acidic cleaning solution.
  • the cleaning liquid used in the cleaning step varies depending on the chemical resistance of the glass substrate, but a concentration of about 1% to 30% is preferable for sulfuric acid, and about 0.2% to 5% for hydrofluoric acid. Concentration is preferred. Cleaning using these cleaning liquids may be performed while applying ultrasonic waves in a cleaning machine in which an aqueous solution is stored.
  • the frequency of the ultrasonic wave used at this time is preferably 78 kHz or higher.
  • the chemical strengthening step is a step of immersing the glass substrate in a strengthening treatment liquid to improve the impact resistance, vibration resistance, heat resistance, and the like of the glass substrate.
  • the chemical strengthening step is a step of chemically strengthening the glass substrate.
  • the strengthening treatment liquid used for chemical strengthening include a mixed solution of potassium nitrate (60%) and sodium nitrate (40%).
  • Chemical strengthening can be performed by heating the strengthening treatment liquid to 300 to 400 ° C., preheating the glass substrate to 200 to 300 ° C., and immersing in the strengthening treatment liquid for 3 to 4 hours. In this immersion, it is preferable that the immersion is performed in a state of being housed in a holder that holds the end faces of the plurality of glass substrates so that both main surfaces of the glass substrate are chemically strengthened.
  • a standby process for waiting the glass substrate in the air and a water immersion process are adopted to remove the strengthening treatment liquid adhering to the surface of the glass substrate and to homogenize the surface of the glass substrate. It is preferable.
  • the chemically strengthened layer is formed uniformly, the compressive strain is uniform, deformation is difficult to occur, the flatness is good, and the mechanical strength is also good.
  • the waiting time and the water temperature in the water immersing step are not particularly limited. For example, it may be kept in the air for 1 to 60 seconds and immersed in water at about 35 to 100 ° C., and may be determined appropriately in consideration of production efficiency.
  • the precision polishing step is a step of polishing both main surfaces of the glass substrate more precisely.
  • a double-side polishing machine similar to the double-side polishing machine used in the rough polishing process can be used.
  • the polishing pad is preferably a soft pad having a lower hardness than the polishing pad used in the rough polishing step, and for example, a suede pad is preferably used.
  • the polishing slurry a slurry containing cerium oxide or the like similar to the rough polishing step can be used, but in order to make the surface of the glass substrate smoother, the polishing slurry has a finer grain size and less variation.
  • the polishing slurry has a finer grain size and less variation.
  • a dispersing agent can be added to these solvents.
  • the mixing ratio of the solvent and colloidal silica is preferably about 1: 9 to 3: 7.
  • the supply amount of the abrasive slurry is not particularly limited and is, for example, 0.5 to 1 L / min.
  • the polishing amount in the precision polishing step is preferably about 2 to 5 ⁇ m.
  • the obtained glass substrate can remove fine defects such as minute roughness and waviness generated on the surface of the glass substrate, or minute scratches generated in the previous process. Is done.
  • the glass substrate manufacturing method of the present embodiment can improve the flatness of the obtained glass substrate, and can manufacture a glass substrate on which the magnetic head can float more stably in the end region. .
  • the flatness of both main surfaces of the glass substrate is reduced to 3 ⁇ m or less and the surface roughness Ra of both main surfaces of the glass substrate is reduced to 0.1 nm by appropriately adjusting the polishing conditions in the precision polishing step. be able to.
  • the final cleaning step is a step of cleaning and cleaning the glass substrate. It does not specifically limit as a washing
  • a cleaning liquid such as a detergent or pure water is used.
  • the pH of the cleaning solution used for scrub cleaning is preferably 9.0 or more and 12.2 or less. Within this range, the ⁇ potential can be easily adjusted and scrub cleaning can be performed efficiently.
  • both scrub cleaning with a detergent and scrub cleaning with pure water may be performed.
  • the glass substrate 1 By using a detergent and pure water, the glass substrate 1 can be more appropriately cleaned.
  • the glass substrate 1 may be further rinsed with pure water between scrub cleaning with a detergent and scrub cleaning with pure water.
  • the glass substrate may be further subjected to ultrasonic cleaning.
  • ultrasonic cleaning with chemical solution such as sulfuric acid aqueous solution, ultrasonic cleaning with pure water, ultrasonic cleaning with detergent, ultrasonic cleaning with IPA, and / or steam drying with IPA, etc. Further, it may be performed.
  • the cleaned glass substrate is subjected to ultrasonic cleaning and drying processes as necessary.
  • the drying step is a step of drying the surface of the glass substrate after removing the cleaning liquid remaining on the surface of the glass substrate with isopropyl alcohol (IPA) or the like.
  • IPA isopropyl alcohol
  • a water rinse cleaning process is performed on the glass substrate after scrub cleaning for 2 minutes to remove the cleaning liquid residue.
  • an IPA cleaning process is performed for 2 minutes, and water remaining on the surface of the glass substrate is removed by IPA.
  • the IPA vapor drying step is performed for 2 minutes, and the liquid IPA adhering to the surface of the glass substrate is dried while being removed by the IPA vapor.
  • the drying process of the glass substrate is not particularly limited, and for example, a known drying method such as spin drying or air knife drying can be employed.
  • the glass substrate that has undergone the final cleaning step may be further subjected to an inspection step before shipment.
  • the inspection step is a step of inspecting the glass substrate that has undergone the above-described steps for the presence or absence of scratches, cracks, foreign matters, and the like.
  • the inspection is performed visually or using an optical surface analyzer (for example, “OSA6100” manufactured by KLA-TENCOL).
  • OSA6100 manufactured by KLA-TENCOL
  • the end shape of both main surfaces of the glass substrate starts from a position where it begins to descend or rise relative to the central portion on either the front surface or the back surface.
  • a processing step of adjusting the end shape so that the average value ( ⁇ C Ave ) of the end shape difference between the front surface and the back surface of the glass substrate satisfies the following formula when it is defined as the shape in the range up to the outer diameter position. It is characterized by including. ⁇ C Ave
  • Such a configuration can reduce the difference in polishing ability between the glass substrate on the upper surface plate side and the lower surface plate side, and can eliminate the difference in edge shape between the upper and lower surfaces of the glass substrate. Therefore, even if the HDD using the glass substrate obtained by the above method is rotated at a high speed, fluttering does not occur and a crash to the detection head can be suppressed. As a result, it is possible to provide an excellent quality glass substrate that can withstand high density and high speed rotation.
  • the average value ((DELTA) CAve ) of the said edge part shape difference is 500 nm or less.
  • the end shape difference (average value ( ⁇ C Ave )) is 100 nm or less, whereby the above-described effect can be obtained more reliably.
  • the processing step is preferably performed in a rough polishing step or a precision polishing step.
  • the rough polishing step and the precise polishing step are steps in which the end shape is likely to change, by adjusting the end shape in any one of these steps, the above-described method of the present invention can be performed very efficiently. An effect can be obtained. Furthermore, the end shape can be adjusted more easily and precisely, and a higher level of end shape quality can be provided, so that not only fluttering but also substrate waviness can be significantly suppressed.
  • a suede pad as a polishing pad in the rough polishing step. If a suede pad with low hardness is used in the rough polishing process, the occurrence of defects such as scratches due to polishing can be reduced, but the end face shape tends to collapse, the difference between the upper and lower end face shapes tends to increase, and fluttering characteristics tend to deteriorate. . However, according to the manufacturing method of the present invention, even when a suede pad is used as a polishing pad in the rough polishing step, there is an advantage that the occurrence of defects can be suppressed while suppressing deterioration of fluttering characteristics. is there.
  • the glass substrate for a hard disk has an outer diameter position from a position where the end portions of both main surfaces of the glass substrate begin to descend or rise compared to the central portion on either the front surface or the back surface.
  • the average value ( ⁇ C Ave ) of the edge shape difference between the front surface and the back surface of the glass substrate satisfies the following formula.
  • ⁇ C Ave
  • Such a configuration can provide an excellent quality glass substrate that can withstand high density and high-speed rotation. By using this glass substrate, fluttering does not occur even when the HDD is rotated at high speed, and a crash to the detection head can be suppressed.
  • a magnetic disk according to a further aspect of the present invention is characterized in that at least a magnetic film is formed on the surface of the glass substrate for hard disk.
  • Example 1 [Glass melting process] As glass materials, 65 mol% SiO 2 , 2 mol% Al 2 O 3 , 3 mol% Na 2 O, 5 mol% K 2 O, 6 mol% MgO, 14 mol% CaO, 5 mol In order to obtain an aluminosilicate glass containing% ZrO 2 , each raw material was prepared and melted at 1500 ° C. using a platinum crucible.
  • a glass gob supplied to the center of the lower mold forming surface was used with an upper mold facing the lower mold, and a tungsten-based material was used for the upper mold and the lower mold.
  • the pressing time was 1 second, and butt molding was performed so that the thickness of the blanks after molding was uniform.
  • the plate thickness after molding was 1.2 mm on average.
  • the main surface (upper and lower surfaces) of the glass substrate was processed by using diamond grains made of acrylic resin as abrasive grains. A diamond particle diameter of 9 ⁇ m was used.
  • Precision grinding (second grinding) process In the second grinding step, the main surface (upper and lower surfaces) of the glass substrate was processed using a diamond-shaped diamond resin sheet.
  • the diamond particle size was 2 ⁇ m.
  • the glass substrate 1 main surface (upper and lower surfaces) was ground to about 150 ⁇ m.
  • the polishing machine was stopped every 10 minutes to reverse the front and back of the glass substrate, and polishing was continued. This was repeated until the polishing amount was 30 ⁇ m.
  • the end shape difference ⁇ C after rough polishing was measured and shown in Table 1.
  • chemical strengthening process chemical strengthening was performed on the glass substrate after the above steps. Specifically, first, a mixed melt obtained by melting a solid of potassium nitrate and sodium nitrate was prepared. In addition, this mixed melt is mixed so that the mixing ratio of potassium nitrate and sodium nitrate is 6: 4 by mass ratio. Then, this mixed melt was heated to 400 ° C., and the washed glass base plate was immersed in the heated mixed melt for 60 minutes.
  • a precision polishing step was performed using a polishing apparatus (manufactured by Speed Fam Co., Ltd., double-side polishing machine). Also in this precision surface polishing step, the main surface of the glass substrate was polished with a suede pad. In addition, as the abrasive, a liquid prepared to pH 2.0 with 20% colloidal silica was used. As polishing conditions, the load was 100 g / cm 2 and the polishing amount of the glass substrate was 3.5 ⁇ m.
  • the polishing machine was stopped every 10 minutes to reverse the front and back of the glass substrate, and polishing was continued. This was repeated until the polishing amount became 3.5 ⁇ m.
  • the edge shape difference ⁇ C after precision polishing was measured and shown in Table 1.
  • the measurement method of ⁇ C was the same method as the rough polishing step.
  • the glass substrate was scrubbed.
  • a cleaning liquid a liquid obtained by diluting KOH and NaOH mixed at a mass ratio of 1: 1 with ultrapure water (DI water) and adding a nonionic surfactant to enhance the cleaning performance is obtained.
  • DI water ultrapure water
  • the cleaning liquid was supplied by spraying. After scrub cleaning, in order to remove the cleaning liquid remaining on the surface of the glass substrate, a water rinse cleaning process is performed in an ultrasonic bath for 2 minutes, an IPA cleaning process is performed in an ultrasonic bath for 2 minutes, and finally the glass substrate is cleaned with IPA vapor. The surface of was dried.
  • the glass substrate obtained as described above was subjected to an evaluation test described later.
  • Examples 2 to 14 and Comparative Examples 1 to 3 A glass substrate was produced in the same manner as in Example 1 except that the front / back reversal frequency of the glass substrate in the rough polishing step and / or the fine polishing step was changed as shown in Table 1.
  • Table 1 “-” means that the polishing machine is not stopped, and polishing is performed collectively until the polishing amount reaches 30 ⁇ m for rough polishing and until the polishing amount becomes 3.5 ⁇ m for fine polishing. It has been shown that.
  • Example 15 to 21 and Comparative Examples 4 to 6 Example except that the polishing pad in the rough polishing step was changed from the foamed urethane pad to the suede pad, and the front and back reversal frequency of the glass substrate in the rough polishing step and / or the fine polishing step was changed as shown in Table 2.
  • the glass substrate was manufactured by the same method as 1.
  • “-” means that the polishing machine is not stopped and the polishing amount is 30 ⁇ m for rough polishing and the polishing amount is 3.5 ⁇ m for precise polishing. It shows that polishing was performed.
  • microwaviness ⁇ Wa was measured using a non-contact surface shape measuring instrument (New View 5000) of “Zygo Corporation”.
  • the microwaviness ⁇ Wa is measured by optical interference (Newton ring), and the amount of deviation between the reference plane and the actual plane is measured as interference fringes.
  • the measurement principle is a method of measuring a subtle shape change of the surface by irradiating the surface of the substrate with white light and measuring an intensity change of interference between the reference light and the measurement light having different phases.
  • the average value of the surface waviness height obtained by extracting irregularities with a period of 30 to 200 ⁇ m from the obtained measurement data is defined as micro waviness ⁇ Wa.
  • polishing described in Table 1 is used for the final glass substrate. It can be considered as an end shape difference ( ⁇ C) after polishing.
  • fluttering characteristics and microwaviness were suppressed by adjusting the end shape difference ( ⁇ C) after precision polishing to 1000 nm or less using the production method according to the present invention. Therefore, it was shown that a high-quality glass substrate that can sufficiently withstand high-speed rotation and high density can be obtained by the manufacturing method according to the present invention.
  • the edge shape difference ( ⁇ C) after precision polishing was 500 nm or less, and it was found that fluttering characteristics and microwaviness were further suppressed.
  • the edge shape difference ( ⁇ C) after precision polishing was adjusted to 100 nm or less, fluttering characteristics were remarkably improved and micro waviness was sufficiently suppressed.
  • edge shape difference ( ⁇ C) by adjusting the edge shape difference ( ⁇ C) to 500 nm or less in the rough polishing step, which is the previous step, the polishing machine is not stopped (or the frequency at which it is stopped) in the subsequent precise polishing step.
  • the edge shape difference ( ⁇ C) after precision polishing can be easily reduced, and excellent results in fluttering characteristics and microwaviness were obtained. That is, it was shown that adjusting in both rough polishing and precision polishing processes is more advantageous from the viewpoint of productivity and the end face shape.
  • Example 2 when a suede pad is used in the rough polishing step, the end shape difference ⁇ C in the rough polishing step increases and fluttering characteristics deteriorate (Comparative Examples 1 to 3 and Comparative Example 4). This is improved by using the production method of the present invention. Moreover, by using the suede pad in the rough polishing step, it can be seen that the glass substrate obtained in Example 15 is further improved in the characteristics of microwaviness as compared with that in Example 1.
  • the present invention has wide industrial applicability in the technical field of glass substrates for hard disks and manufacturing methods thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

【課題】本発明は、フラッタリングやヘッドのクラッシュを十分に抑制でき、高密度化の要求に応えうる品質を確保できる、優れたハードディスク用ガラス基板を製造する方法を提供することを目的とする。 【解決手段】ハードディスク用ガラス基板の製造方法であって、前記ガラス基板の両主表面の端部形状を、表面および裏面のどちらかで中央部と比して下降もしくは隆起しはじめる位置から外径位置までの範囲の形状であると定義した時に、ガラス基板における表面と裏面の端部形状差の平均値(ΔCAve)が1000nm以下となるように、前記端部形状を調整する処理工程を含むことを特徴とする、ハードディスク用ガラス基板の製造方法。

Description

ハードディスク用ガラス基板及びその製造方法
 本発明は、ハードディスク(HDD)に搭載する磁気ディスクとして用いられるハードディスク(磁気情報記録媒体)用ガラス基板及びその製造方法に関する。
 HDDの高容量化の要求にともない、最近では、ハードディスク用ガラス基板の記録面を端面まで拡大する手段や高密度化に適する高品質化が検討されてきている。また、磁性メディアの高容量化による信号検出時間の増大を抑制するため、回転速度を向上させることについても検討されてきた。
 しかし、前記の基板記録面の拡大や、高密度化にともない、高回転速度を適用すると、従来は生じてなかったHDDの回転によるフラッタリング生じるようになり、検出ヘッドに衝突(クラッシュ)するという問題が生じることがわかった。
 これに対し、本発明者等はこのような問題に対して高密度化要求に適うドライブ品質にするべく検討し、ガラス基板の端面の形状が影響している状況を掴んだ。
 一方、これまでに、ガラス基板における端部形状の改良については、記録ヘッドの浮上を安定させるために、磁気ディスクの端部形状も、中央部分に比較して起伏のない実質的に平坦な形状とすることが提案されている(例えば、特許文献1)。この特許文献1では、第1研磨工程で形成された端部形状を検出後、第2研磨工程で相殺できるように研磨することで端部を平坦化する技術が報告されている。
 また、平坦度悪化を防止し、さらに磁気ヘッド浮上量を低減させるために、化学強化処理による応力層を10~200μm備えるガラス基板の両主表面を、一組の研磨パッドを用いて各面0.05~0.7μmづつ同時に研磨する磁気記録媒体用ガラス基板の製造方法も提案されている(特許文献2)。
 さらに、特許文献3には、ディスクを高速回転させてもクラッシュ障害を起こさない信頼性の高い磁気ディスク用ガラス基板を得るための方法として、端部形状が円周方向に均一で平坦とすることが報告されている。
 しかしながら、本発明者が、フラッタリング拡大から派生する検出ヘッドのクラッシュ課題に対するガラス基板の端部形状の影響について、さらに鋭意検討を重ねた結果、単に記録面拡大によるロールオフやスキージャンプなどの特徴的な端面形状の縮小や平坦化だけでは、HDDの高密度化に適する高品質化に応えるには十分でない場合があることを見出した。
 この点、前記特許文献1記載の発明は、端部形状を整える手段として後工程で相殺するように整える技術であるが、該文献は、単に巨視的な上下の端部形状を制御することを記載しているものであり上下面の端部形状差を制御することについては何ら開示されていない。
 また、前記特許文献2については、上下面の取り代差を抑え、反りによる平坦度悪化を防止することを開示しているが、削り過ぎないように各面の取り代を0.7μm以下にすることも必要としている。しかしながら、上下面の端部形状の差を意図した技術ではまったくない。
 さらに前記特許文献3においても、ガラス基板の上下面の端部形状差について調整することについては何も言及していない。
 また、何れの文献においても上下の端部形状の差による情報記録媒体のフラッタリング特性への影響は認識されていない。
 本発明はかかる事情に鑑みてなされたものであって、フラッタリングやヘッドのクラッシュを十分に抑制でき、高密度化の要求に応えうる品質を確保できる優れたハードディスク用ガラス基板及びその製造する方法を提供することを目的とする。
特開2008-103061号公報 特開平7-134823号公報 WO2008/102751
 本発明者が検討した結果、基板の上下面の端面形状に差が有る場合にフラッタリング特性が悪化する現象を突き止め、フラッタリングを防止する高い精度で上下面の端面形状をコントロールすることにより、上記課題を解決できることを見出した。そして、かかる知見に基づいて更に検討を重ねることによって本発明を完成した。
 本発明の一局面に係るハードディスク用ガラス基板の製造方法は、ガラス基板の両主表面の端部形状を、表面および裏面のどちらかで中央部と比して下降もしくは隆起しはじめる位置から外径位置までの範囲の形状であると定義した時に、ガラス基板における表面と裏面の端部形状差の平均値(ΔCAve)が下記式を満たすように、前記端部形状を調整する処理工程を含むことを特徴とする。
ΔCAve=|A-B|≦1000nm
(式中、AおよびBは、それぞれガラス基板の表面側および裏面側における、外径位置から同じ距離での端部形状と中央部との高低差を示す)
 本発明によれば、フラッタリングやヘッドのクラッシュを発生させることのない、高密度化や高速回転に耐えうる、優れた品質のガラス基板を効率よく提供することが可能である。
図1は、ガラス基板の形状の一例を示す断面図である。 図2は、ガラス基板の形状の別の一例を示す断面図である。 図3は、ガラス基板の上面図である。 図4は、フラッタリング特性を測定する装置の概略図である。
 以下、本発明に係る実施形態について具体的に説明するが、本発明はこれらに限定されるものではない。
 なお、各図面における主な符号の説明は以下の通りである:1 ガラス基板、2、2’ 中央部、3、3’ 端部形状、40 試料(ガラス基板)、41 支持台、42 レーザー振動計。
 本実施形態におけるガラス基板1は、図1および図2に示すように、その両主表面に平坦な中央部2、2’と、端部形状3、3’を有する。本明細書において、端部形状3、3’とは、前記中央部2、2’と比して下降(いわゆるダレ、図1参照)もしくは隆起(いわゆるスキージャンプ、図2参照)しはじめる位置から外径位置までの範囲のことを指す。図3は、ガラス基板1の上面図であるが、平坦な中央部2の周りに上記端部形状3が存在する。
 本実施形態に係るハードディスク用ガラス基板の製造方法は、得られるガラス基板における表面と裏面の端部形状差の平均値(ΔCAve)が下記式を満たすように、前記端部形状を調整する処理工程を含むことを特徴とする。
ΔCAve=|A-B|≦1000nm
 上記式において、AおよびBは、図1および図2に示すように、それぞれガラス基板の表面側および裏面側における、外径位置から同じ距離での端部形状と中央部との高低差を示す。このように、表面側における高低差Aと、裏面側における高低差Bとの差を、ガラス基板における表面と裏面の端部形状差と定義する。
 このように高い精度で、ガラス基板の端部形状が上下面で差がなくなるように調整することにより、フラッタリングを抑制し、ヘッドのクラッシュなどの発生も抑えることができる。ひいては、高密度化や高速回転に耐えうる、優れた品質のガラス基板を効率よく提供することができる。
 前記端部形状差の平均値(ΔCAve)は、通常、上述の式に示すように1000nm以下であるが、好ましくは500nm以下であり、より好ましくは100nm以下である。
 前記端部形状差の平均値(ΔCAve)が1000nmを超えると、ガラス基板の上下面で端部形状の差が大きくなり、フラッタリング特性が悪化するおそれがある。
 なお、より好ましい実施態様では、前記端部形状差の最大値(ΔCmax)が1000nm以下となるように、前記端部形状を調整する処理工程を含むことが望ましい。それにより、より確実に本発明の効果を得ることができる。さらに好ましくは、前記端部形状差の最大値(ΔCmax)が500nm以下、より好ましくは100nm以下となるように、前記端部形状を調整する処理工程を含むことが望ましい。
 なお、端部形状差ΔCの測定は、ドーナツ状ガラス基板に対して30度ごとに測定ポイントを設定し、計12点の外径の円周状の測定ポイントにおいて上記AおよびBを測定し計算することによって、12点の平均ΔCAveと最大値ΔCMaxを求めることができる。
 また、本実施形態でいうフラッタリング特性とは、ガラス基板の高速回転時の振幅量(面振れ)を意味し、下記式(1)のような関係式で規定される。
Figure JPOXMLDOC01-appb-M000001
 式(1)中、Fはフラッタリング特性(単位:nm)であり、aはガラス基板の外半径を示し、νはガラス基板のポアソン比を示し、Eはガラス基板のヤング率を示し、ξはガラス基板の減衰係数を示し、hはガラス基板の厚みを示し、λ4はモデル関数パラメータである。この場合、ガラス基板の外半径および厚みを一定にすれば、ポアソン比は化学組成による差があまりなく、フラッタリング特性Fは、最右辺により関係付けられる。
 すなわち、フラッタリング特性は、上記のようにガラス基板の高速回転時の振幅量であることから、これを小さくすることが好ましい。上記式のようにヤング率および減衰係数を大きくすることが一般的に有利であると考えられてきたが、より高密度化を狙う基板においてはフライングハイトが低くなってきていることから、より精密なフラッタリング特性が求められ、本発明者の検討・研究により、ガラス基板の上下面の端面形状差が有る場合に大きく影響することが判った。
 本実施形態のHDD用ガラス基板は、直径を60~70mmとし、厚みを0.7~0.9mmとする場合、回転数15000rpm時のフラッタリング特性は、120nm以下であることが好ましく、50nm以下であることがより好ましく、48nm以下であることがさらに好ましい。また、同様に、回転数7000rpm時のフラッタリング特性は、40nm以下であることが好ましく、20nm以下であることがより好ましく、18nm以下であることがさらに好ましい。これにより、ハードディスクドライブ等に該HDD用ガラス基板をセットし高速回転させた場合において、ヘッドと該HDD用ガラス基板とが接触することを防止でき、ヘッドを損傷する等の不都合を防止することができる。
 本実施形態に係るハードディスク用ガラス基板の製造方法は、上述したような、端部形状差を調整する処理工程を含んでいる限り、その他の工程については特に限定されず、従来公知の製造方法で用いられ得る工程を適宜使用することができる。
 ハードディスク用ガラス基板の製造方法としては、通常、例えば、溶融工程(ガラスブランクス製造工程)、形状加工工程、粗研削工程(第1研削工程)、精研削工程(第2研削工程)、粗研磨工程(1次研磨工程)、洗浄工程、化学強化工程、精密研磨工程(2次研磨工程)、及び最終洗浄工程等を備える方法等が挙げられる。そして、前記各工程を、この順番で行うものであってもよいし、化学強化工程と精密研磨工程(2次研磨工程)との順番が入れ替わったものであってもよい。さらに、これら以外の工程を備える方法であってもよい。例えば、上記以外に、熱処理工程、形状加工工程、コアリング工程、端面研磨工程や検査工程を行ってもよい。
 本実施形態において、端部形状を調整する処理工程は、ハードディスク用ガラス基板の製造方法における上記どの工程で行ってもよいが、例えば、初期のチャンファー部の形状を決める形状加工工程、形状精度を出す目的で行われる研削工程(目的に応じて行われる粗研削や精研削など複数の研削工程を含む)、粗研磨工程、精密研磨工程等において行うことができ、いずれの工程で端部形状を調整しても、上述したように端部形状が上下面で揃うように調整することによって、フラッタリング性の向上に寄与することができる。
 端部形状の前記処理工程は、いずれか一つの工程において行ってもよいし、前記工程のうち複数の工程において行ってもよい。
 好ましい態様としては、特に、粗研磨工程及び精密研磨工程では端部形状が変化しやすい工程であることから、これらの工程のいずれか一方で前記処理工程を行えば、端部形状のコントロールより容易かつ精密となり、より高いレベルの端部形状品質を提供できるため、フラッタリングだけでなく基板のうねりも抑制することができる。
 さらには、前記処理工程を、粗研磨工程及び精密研磨工程の両方において行うことがさらに好ましい。それにより、上述したような効果がより確実に得られる。
 また、さらに、ガラス基板の製造方法における上記各工程のうち、より前半の工程である形状加工工程や研削工程で、基板の端部形状を調整することも好ましい。そうすることによって、後半の工程においてより精密な研磨が可能となり、連鎖的に粗研磨工程及び/または精密研磨工程における端部形状の調整がさらに容易となり、いっそう高いレベルでの端部形状品質を提供でき、フラッタリングだけでなく基板のうねりも著しく向上する。またガラス基板の生産性も上がる。
 ガラス基板における前記端部形状差(ΔC)を本実施の形態の範囲に調整する為の前記処理工程は、ガラス基板の製造方法における何れの工程で行ってもよいが、ガラス基板の製造工程においては、上流の工程から下流の工程へと徐々に研削や研磨による取り代を減少させながら表面形状を精密に調整するのが一般的であり、上流の工程で、大きな端部形状差が発生すると、下流の工程で調整するのが困難である為、上流の工程から上下の端部形状差を調整することが好ましい。従って、チャンファー部の形状加工工程や研削工程の時点で、前記端部形状差の平均値(ΔCAve)が1000nm以下となるように調整し、後の研磨工程で端部形状差が悪化しないように調整することが好ましいが、チャンファー部の形状加工工程や研削工程で厳密に形状差をコントロールすることは困難である為、上述したように粗研磨工程又は精密研磨工程の中で調整することが好ましい。その場合、粗研磨工程終了時における前記端部形状差の平均値(ΔCAve)は1000nm以下であることが好ましく、500nm以下とすることが好ましい。粗研磨工程において、端部形状差を精密に制御することで、後の精密研磨工程における形状の調整の負荷を軽減することが可能となる。精密研磨工程後には端部形状差は大きく変化することはない為、本実施の形態においては、精密研磨工程後の前記端部形状差の平均値(ΔCAve)が1000nm以下であればよいが、500nm以下とすることが好ましく、更に100nm以下になるように調整することがそれぞれ好ましい。
 本実施形態の前記処理工程において、表裏面の端部形状差(ΔC)をコントロールする手段としては特に限定されず、種々の手段が挙げられる。
 具体的には、例えば、ガラス基板の両面を加工する工程(例えば、研削工程や研磨工程)の途中で加工をいったん停止して、ガラス基板をひっくり返し、上下面を逆にセットしてから残りの加工を行う方法等が有効な手段として挙げられる。
 例えば、研磨工程で表裏面の端部形状差(ΔC)を調整する場合、通常の研磨工程では研磨機を用いて40~50分ほど研磨するところ、5~25分(好ましくは、実施のし易さと効果とのバランスを考慮して10~22分)置きにいったん研磨機を止めて、ガラス基板の上下をひっくり返す作業を数回繰り返すことによって、端部形状差を減らすことができる。
 さらには、ガラス基板の上下面の加工性の均一にするという観点から、冷却水を循環させるなどの手段により上下定盤間に温度差が生じないようにする工夫によって、表裏面の端部形状差(ΔC)の制御が可能であり、このような方法であれば、研磨工程を連続的に行うことができる。一方で、一般的にガラス基板を製造する際には、複数のガラス基板を円盤状のキャリアで保持し、キャリアを自転させながら上下定盤間を移動(公転)させることで研磨加工が施される為、上下定盤の温度を厳密に制御して端部形状の上下差を低減させる為には、定盤の各所における温度差を制御する必要があり、装置が複雑化する場合がある。そのため、上述のように研磨工程でガラス基板を反転させることにより上下のガラス基板の研磨環境を調整する方法が好ましく用いられる。
 また、初期のチャンファー部が上下で略均一になるように形状加工工程時にグリンディングの上下軸を精密にコントロールすることも端部形状の上下差を低減させる方法の一つとして挙げられる。初期の形状工程での上下面でのチャンファー部の面積差が生じると、加工するガラス基板の主平面に面積差が生じ、単位面積あたりの加工時の荷重が異なってくるため端部の荷重のかかり方に違いが生じて、端部形状がばらつくものと考えられる。このようなバラツキは、その後の工程における端面形状のバラツキにも影響を与えるため、上記手段によってチャンファー部の面積差をコントロールすることで、後の工程における端部形状の上下差の悪化をある程度抑制することができると考えられる。
 以下に、本実施形態に係るハードディスク用ガラス基板の製造方法の一実施態様において実施されうる具体的な工程(溶融工程(ガラスブランクス製造工程)、形状加工工程、粗研削工程(第1研削工程)、精研削工程(第2研削工程)、粗研磨工程(1次研磨工程)、洗浄工程、化学強化工程、精密研磨工程(2次研磨工程)、及び最終洗浄工程等)について説明するが、本実施形態はこれらに限定されない。
 なお、本実施形態では、後述する各工程のうちいずれか1つまたは複数の工程において、それぞれの工程に適した、上述の端部形状を調整する処理工程を行う。
 <溶融(ガラスブランクス製造)工程>
 本実施形態において、ハードディスク用ガラス基板の材料として用いられるガラス素材は、ハードディスク用ガラス基板の素材として通常用いられる素材であれば特に限定されない。
 具体的には、例えば、ガラス素材の材料としては、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラス、LiO-SiO系ガラス、LiO-Al-SiO2系ガラス、R’O-Al-SiO系ガラス(R’=Mg、Ca、Sr、Ba)等を使用することができる。なかでも、アルミノシリケートガラスは、化学強化を施すことができ、また主表面の平坦性及び基板強度において優れた磁気ディスク用基板を供給することができるという利点がある。
 ガラスの溶融方法としては特に限定されず、通常は上記ガラス素材を公知の温度、時間にて高温で溶融する方法を採用することができる。ブランクスを得る方法としては特に限定されず、たとえば溶融したガラス素材を下型に流し込み、上型によってプレス成型して円板状のガラス基板(ブランクス)を得る方法を採用することができる。なお、ブランクスは、プレス成型に限られず、たとえばダウンドロー法やフロート法等で形成したシートガラスを研削砥石で切り出して作製してもよい。
 この成型工程において、ブランクスの表面近傍には、異物や気泡が混入し、あるいはキズがついて、欠陥が発生する。この欠陥を以下の工程で修正し、ガラス基板を製造する。
 ブランクスの大きさとしては特に限定されず、たとえば、外径が2.5インチ、1.8インチ、1インチ、0.8インチ等の種々の大きさのブランクスを作製することができる。ガラス基板の厚みについては特に限定されず、たとえば、2mm、1mm、0.8mm、0.63mm等の種々の厚みのブランクスを作製することができる。
 プレス成型や切り出しによって作製されたブランクスは、耐熱部材のセッターと交互に積層し、高温の電気炉を通過させることにより、反りの低減やガラスの結晶化を促進させることができる。
 <熱処理工程>
 熱処理工程は、ガラスブランクスの平坦度の修正および内部歪みの除去を目的とする工程である。熱処理の方法としては特に限定されないが、たとえばセッター(アルミナ、ジルコニア等)を用いて、ガラスブランクスと交互に積み重ねて熱処理炉に入れて熱を加える方法を採用することができる。
 熱処理の条件としては特に制限されない。たとえば、熱処理時の温度としては、ガラスブランクスのTgからTg+100(℃)の温度範囲で行うことができる。当該温度範囲内で熱処理を行うことにより、ガラスブランクスの平坦度を充分に修正することができるとともに、ガラスブランクスの形状の悪化を低減し、さらにセッターとの間の融着に起因する粘着痕の発生する可能性を低減することができる。
 <コアリング工程>
 コアリング工程は、得られたガラスブランクスの表面の中心部にダイヤモンドコアドリルを用いて内孔(中心孔)を形成する工程である。このコアリング工程によって、ガラスブランクスの中心が決定される。なお、本実施形態において、ガラスブランクスとは、コアリング工程を終え、後述する主平面の研削工程(第1研削工程)が行われる前のガラス成形物をいう。
 <形状加工工程>
 次に、形状加工工程においては、コアリング(内周カット)処理が施されたガラスブランクスを、中心部の孔に対向する内周端面、および、外周端面を、ダイヤモンド砥石によって研削し、所定の寸法に調整された後、面取り加工も実施される。例えば2.5インチ型ハードィスクの場合は外径を65mm、内径(中心部の円孔1Hの直径)を20mmとした後、所定の面取り加工が実施される。このときのガラスブランクスの端面の面粗さは、Rmaxで2μm程度である。
 <粗研削(第1研削)工程>
 次に、第1研削工程においては、成形されたガラスブランクスの両方の主表面に対して、寸法精度および形状精度の向上を目的として、表面研削処理が施される。
 研削処理は、例えば、遊星歯車機構を利用した両面研削(ラッピング)装置を用いて行なわれる。具体的には、上記で得られたガラスブランクスの両主表面に上下からラップ定盤を押圧させ、研削液を両主表面上に供給し、ガラスブランクスとラップ定盤とを相対的に移動させて、研削処理が行なわれる。研削処理によって、ガラス基板としてのおおよその平行度、平坦度および厚みなどが予備調整され、おおよそ平坦な主表面を有するガラス基板(ガラス母材)が得られる。研削液としては、例えば、粒度#400のアルミナ砥粒(粒径約40~60μm)を含有する研削液を用い、上定盤の荷重を100kg程度に設定することによって、ガラスブランクスの両面を面精度0μm~1μm、表面粗さRmaxで6μm程度に仕上げてもよい。
 好ましくは、ダイヤモンド粒子を樹脂もしくはセラミック、金属に担持させた固定砥粒式の研削パッド(例えば、シート状のもの)を用いて研削を行ってもよく、それにより研削速度と研削後の品質のバランスが良くなるという利点がある。ダイヤモンドの粒子径は目的よって適宜変更可能であるが、第1研削で使用する平均粒径は2μm~10μmが好ましい。ダイヤモンドの粒子径2μm未満となると加工速度が不足し、ガラス基板の主表面(上下面)に生じたクラックの除去を行なえない場合がある。ダイヤモンドの粒子径が10μmを超えると、逆にダイヤモンドによってガラス基板1の主表面2,3にクラックが発生するおそれがある。
 <精研削(第2研削)工程>
 次に、第2研削工程においては、ガラス基板の両主表面について、第1研削工程と同様に、研削処理が施される。この第2研削工程を行なうことにより、前工程の第1ラッピングまたは端面加工においてガラス基板の両主表面に形成された微細なキズや突起物などの、微細な凹凸形状及び加工ダメージを予め除去しておくことができ、後工程の主表面の研磨時間を精密に制御が可能となり、その短縮化も可能となる。
 第2研削工程にダイヤモンド粒子を担持させた研削パッドを用いる場合は第1研削で用いたダイヤモンド粒子の粒径より小さいものを用いることが好ましく、そうすることにより、次工程である研磨にふさわしい表面性状を形成出来る。好ましくは、平均粒径の1μm~5μmのダイヤモンド粒子が用いられる。近年の高密度化に伴い、ダイヤモンド粒子径は小さくなりつつあるが、加工性のバランスが必要であることから、1.5μm~4μmがさらに好ましい。
 なお、この第1、第2研削工程では、ガラス基板主表面(上下面)で50μm~250μm程度の研削を行なう。
 <内周研磨工程>
 次に、内周研磨工程においては、ガラス基板の内周端面について、ブラシ研磨による精密研磨が行なってもよい。具体的には、研磨ブラシに研磨材を含む研磨液を供給し、ガラス基板の内周端面に接触するように研磨ブラシを配置した上で、ガラス基板を回転させながら、研磨ブラシをあてることにより、ガラス基板の内周端面を研磨する。上記の研磨材は通常、酸化セリウムが選択され適度な濃度で研磨液として供給される。また研磨ブラシは、端面に傷をつけることなく軟らかい研磨できるように適度な硬さと直径をもつブラシが選定される。
 <外周研磨工程>
 次に、さらに外周研磨工程を行ってもよく、この工程においては、ガラス基板の外周端面について、ブラシ研磨による精密研磨が行なわれる。具体的には、研磨ブラシに研磨材を含む研磨液を供給し、ガラス基板の外周端面に接触するように研磨ブラシを配置した上で、ガラス基板を回転させながら、研磨ブラシをあてることにより、ガラス基板の外周端面を研磨する。上記の研磨材および研磨ブラシは、ガラス基板の内周端面の研磨の際に使用される研磨材および研磨ブラシと同様に選定される。
 <粗研磨工程>
 粗研磨工程は、後続する精密研磨工程において最終的に必要とされる面粗さが効率よく得られるように、ガラス基板の両主表面を研磨剤スラリーを用いて研磨加工する工程である。この工程で採用される研磨方法としては特に限定されず、本実施形態においては両面研磨機を用いて研磨することが可能である。
 使用する研磨パッドは、研磨パッドの硬度が研磨による発熱により低下すると研磨面の形状変化が大きくなるため、硬質パッドを使用することが好ましく、例えば、発泡ウレタンパッドやスエードパッドを用いることができ、特にスエードパッドを用いることが好ましい。その理由は上述した通りである。
 研磨液は、平均一次粒子径が0.6~2.5μmの酸化セリウムを使用することができ、そのような酸化セリウムを溶媒に分散させてスラリー状にして用いる。溶媒としては特に限定されず、中性の水や、酸性・アルカリ性の水溶液を採用することができるが、中性水が好ましい。また、これら溶媒には、分散剤を添加することができ、アクリル酸-マレイン酸共重合体からなるポリマー分散を添加できる。平均一次粒子径が0.6μm未満の場合には、研磨パッドは、両主表面を良好に研磨できない傾向がある。一方、平均一次粒子径が2.5μmを超える場合には、研磨パッドは、端面の平坦度を悪化させたり、傷を発生する可能性がある。
 溶媒と酸化セリウムとの混合比率は、酸化セリウム:溶媒=0.5:9.5~3:7程度である。
 研磨剤スラリーの供給量としては特に限定されず、たとえば、5~10L/分である。
 粗研磨工程におけるガラス基板の研磨量は、通常20~40μm程度である。ガラス基板の研磨量が20μm未満の場合には、キズや欠陥が充分に除去されない傾向がある。一方、ガラス基板の研磨量が40μmを超える場合には、ガラス基板は、必要以上に研磨されることになり、製造効率が低下する傾向がある。
 粗研磨工程を終えたガラス基板は、中性洗剤、純水、IPA等で洗浄することが好ましい。さらに洗浄工程を設けても良く、前工程の研磨剤酸化セリウムを除去する目的で硫酸およびまたはフッ化水素酸などを含む洗浄液を用いてガラス基板の表面をエッチングしながら洗浄する。ガラス基板の表面に付着していた酸化セリウムなどの研磨スラリーは、硫酸およびまたはフッ化水素酸などの強酸性の洗浄液によって適切に除去される。その後、ガラス基板は酸性の洗浄液を用いて洗浄される。
 洗浄工程において用いられる洗浄液は、ガラス基板の耐化学性によっても異なるが、硫酸であれば1%~30%程度の濃度が好ましく、フッ化水素酸であれば0.2%~5%程度の濃度が好ましい。これらの洗浄液を用いた洗浄は、水溶液が貯留された洗浄機の中で超音波を印加しながら行なわれるとよい。この際に用いられる超音波の周波数は、78kHz以上であることが好ましい。
 <化学強化工程>
 化学強化工程は、ガラス基板を強化処理液に浸漬し、ガラス基板の耐衝撃性、耐振動性及び耐熱性等を向上させる工程である。
 化学強化工程は、ガラス基板に化学強化を施す工程である。化学強化に用いる強化処理液としては、たとえば、硝酸カリウム(60%)と硝酸ナトリウム(40%)の混合溶液などを挙げることができる。化学強化においては、強化処理液を300℃~400℃に加熱し、ガラス基板を200~300℃に予熱し、強化処理液中に3~4時間浸漬することによって行うことができる。この浸漬の際に、ガラス基板の両主表面全体が化学強化されるように、複数のガラス基板の端面を保持するホルダに収納した状態で行うことが好ましい。
 なお、化学強化工程後に、ガラス基板を大気中に待機させる待機工程や、水浸漬工程を採用して、ガラス基板の表面に付着した強化処理液を除去するとともに、ガラス基板の表面を均質化することが好ましい。このような工程を採用することにより、化学強化層が均質に形成され圧縮歪が均質となり変形が生じ難く平坦度が良好で、機械的強度も良好となる。待機時間や水浸漬工程の水温は特に限定されず、たとえば大気中に1~60秒待機させ、35~100℃程度の水に浸漬させるとよく、製造効率を考慮して適宜決めればよい。
 <精密(鏡面)研磨工程>
 精密研磨工程は、ガラス基板の両主表面をさらに精密に研磨加工する工程である。精密研磨工程では、粗研磨工程で使用する両面研磨機と同様の両面研磨機を使用することができる。
 研磨パッドは、粗研磨工程で使用する研磨パッドよりも低硬度の軟質パッドを使用することが好ましく、例えば、スウェードバッドを使用するのが好ましい。
 研磨スラリーとしては、粗研磨工程と同様の酸化セリウム等を含有するスラリーを用いることができるが、ガラス基板の表面をより滑らかにするために、砥粒の粒径がより細かくバラツキが少ない研磨スラリーを用いるのが好ましい。たとえば、平均一次粒子径が40~70nmのコロイダルシリカを溶媒に分散させてスラリー状にしたものを研磨スラリーとして用いることが好ましい。溶媒としては特に限定されず、中性の水や、酸性アルカリ性の水溶液を採用することができる。また、これら溶媒には、分散剤を添加することができる。溶媒とコロイダルシリカとの混合比率は、1:9~3:7程度が好ましい。
 研磨剤スラリーの供給量としては特に限定されず、たとえば、0.5~1L/分である。
 精密研磨工程での研磨量は、2~5μm程度とするのが好ましい。研磨量をこのような範囲とすることにより、得られるガラス基板は、ガラス基板の表面に発生した微小な荒れやうねり、あるいはこれまでの工程で発生した微小なキズ痕といった微小欠陥が良好に除去される。その結果、本実施形態のガラス基板の製造方法は、得られるガラス基板の平坦度を向上させることができ、端部領域において磁気ヘッドがより安定して浮上し得るガラス基板を作製することができる。
 また、本工程では、精密研磨工程の研磨条件を適宜調整することにより、ガラス基板の両主表面の平坦度を3μm以下、ガラス基板の両主表面の面粗さRaを0.1nmまで小さくすることができる。
 <最終洗浄工程>
 最終洗浄工程は、ガラス基板を洗浄し、清浄にする工程である。洗浄方法としては特に限定されず、精密研磨工程後のガラス基板の表面を清浄にできる洗浄方法であればよい。本実施形態では、スクラブ洗浄を採用する。
 スクラブ洗浄としては、たとえば、洗剤または純水等の洗浄液が用いられる。スクラブ洗浄に用いられる洗浄液のpHは、9.0以上12.2以下であるとよい。この範囲内であれば、ζ電位を容易に調整でき、効率的にスクラブ洗浄を行なうことが可能となる。スクラブ洗浄としては、洗剤によるスクラブ洗浄と、純水によるスクラブ洗浄との双方を行なってもよい。洗剤および純水を用いることによって、より適切にガラス基板1を洗浄できる。洗剤によるスクラブ洗浄と純水によるスクラブ洗浄との間に、ガラス基板1を純水でさらにリンス処理してもよい。
 スクラブ洗浄を行なった後に、ガラス基板に対して超音波洗浄をさらに行なってもよい。洗剤および純水によるスクラブ洗浄を行なった後に、硫酸水溶液等の薬液による超音波洗浄、純水による超音波洗浄、洗剤による超音波洗浄、IPAによる超音波洗浄、およびまたは、IPAによる蒸気乾燥等を更に行なってもよい。
 洗浄されたガラス基板は、必要に応じて超音波による洗浄および乾燥工程を行う。乾燥工程は、ガラス基板の表面に残る洗浄液をイソプロピルアルコール(IPA)等により除去した後、ガラス基板の表面を乾燥させる工程である。たとえば、スクラブ洗浄後のガラス基板に水リンス洗浄工程を2分間行ない、洗浄液の残渣を除去する。次いで、IPA洗浄工程を2分間行い、ガラス基板の表面に残る水をIPAにより除去する。最後に、IPA蒸気乾燥工程を2分間行い、ガラス基板の表面に付着している液状のIPAをIPA蒸気により除去しつつ乾燥させる。ガラス基板の乾燥工程としては特に限定されず、たとえばスピン乾燥、エアーナイフ乾燥などの、ガラス基板の乾燥方法として公知の乾燥方法を採用することができる。
 <検査工程>
 最終洗浄工程を経たガラス基板をさらに出荷前に検査工程に供してもよい。検査工程は、上記工程を経たガラス基板に対して、キズ、割れ、異物の付着等の有無を検査する工程である。検査は、目視や光学表面アナライザ(たとえば、KLA-TENCOL社製の「OSA6100」)を用いて行う。検査後、ガラス基板は、異物等が表面に付着しないように、清浄な環境中で、専用収納カセットに収納され、真空パックされた後、出荷される。
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 すなわち、本発明の一局面に係るハードディスク用ガラス基板の製造方法は、ガラス基板の両主表面の端部形状を、表面および裏面のどちらかで中央部と比して下降もしくは隆起しはじめる位置から外径位置までの範囲の形状であると定義した時に、ガラス基板における表面と裏面の端部形状差の平均値(ΔCAve)が下記式を満たすように、前記端部形状を調整する処理工程を含むことを特徴とする。
ΔCAve=|A-B|≦1000nm
(式中、AおよびBは、それぞれガラス基板の表面側および裏面側における、外径位置から同じ距離での端部形状と中央部との高低差を示す)
 このような構成により、上定盤側と下定盤側のガラス基板の研磨能の差を縮小化でき、ガラス基板の上下面において端部形状の差をなくすことができる。よって、上記方法によって得られたガラス基板を用いたHDDを高速回転させても、フラッタリングが生じることがなく、検出ヘッドへのクラッシュも抑えることができる。その結果、高密度化や高速回転に耐えうる、優れた品質のガラス基板を提供することが可能である。
 さらに、前記製造方法において、前記端部形状差の平均値(ΔCAve)が500nm以下であることがより好ましい。それにより、フラッタリングの発生をより抑えることができる。
 また、前記端部形状差(の平均値(ΔCAve)が100nm以下であることがさらに好ましく、それにより、より確実に上記効果を得ることができる。
 さらに、前記製造方法において、前記処理工程を、粗研磨工程又は精密研磨工程において行うことが好ましい。
 粗研磨工程および精密研磨工程は端部形状が変化しやすい工程であるため、これらの工程のいずれか一方において、端部形状を調整することによって、非常に効率よく、上述したような本発明の効果を得ることができる。さらに、端部形状の調整がより容易かつ精密となり、より高いレベルの端部形状品質を提供できるため、フラッタリングだけでなく基板のうねりも著しく抑制することができる。
 さらには、前記処理工程を、粗研磨工程及び精密研磨工程の両方において行うことがより好ましい。それにより、上述したような効果がより確実に得られるからである。
 また、前記粗研磨工程の研磨パッドとしてスエードパッドを用いることが好ましい。粗研磨工程に硬度の低いスエードパッドを用いると研磨による傷などのディフェクトの発生は低減できるが、端面形状が崩れやすく、上下の端面形状の差が拡大し、フラッタリング特性が悪化する傾向にある。しかし、本発明の製造方法によれば、粗研磨工程の研磨パッドとしてスエードパッドを用いる場合であっても、フラッタリング特性の悪化を抑制しながら、ディフェクトの発生を抑制することができるという利点がある。
 本発明の他の局面に係るハードディスク用ガラス基板は、前記ガラス基板の両主表面の端部形状を、表面および裏面のどちらかで中央部と比して下降もしくは隆起しはじめる位置から外径位置までの範囲の形状であると定義した時に、ガラス基板における表面と裏面の端部形状差の平均値(ΔCAve)が下記式を満たすことを特徴とする。
ΔCAve=|A-B|≦1000nm
(式中、AおよびBは、それぞれガラス基板の表面側および裏面側における、外径位置から同じ距離での端部形状と中央部との高低差を示す)
 このような構成により、高密度化や高速回転に耐えうる、優れた品質のガラス基板を提供できる。そして、このガラス基板を用いることにより、HDDを高速回転させても、フラッタリングが生じることがなく、検出ヘッドへのクラッシュも抑えることができる。
 本発明のさらなる局面に係る磁気ディスクは、前記ハードディスク用ガラス基板の表面に少なくとも磁性膜が形成されていることを特徴とする。
 以下に、実施例により本発明をさらに具体的に説明するが、本発明は実施例により何ら限定されるものではない。
 (実施例1)
 [ガラス溶融工程]
 ガラス素材として、65モル%のSiO、2モル%のAl、3モル%のNaO、5モル%のKO、6モル%のMgO、14モル%のCaO、5モル%のZrOを含むアルミノシリケートガラスを得る為、各原料を調合し白金るつぼを用いて1500℃で溶融した。
[ブランクス成型工程]
 溶融ガラスを1300℃の溶融ノズルより流出させた。流出したガラスを一対のブレードで、10gごとに溶融ガラスを切断し、ガラスブランクスを得た。ブレードは平面視形状がV字形状となっているものを選択し、V字の内角を80°とした。V字が交わる部分の平面視形状は円弧形状のものを用いた。
 プレス成型は、下型成形面の中央に供給したガラスゴブを下型に対向する上型を用い、上型および下型の金型にはタングステン系材料を用いた。またプレス時間は1秒間とし、成形後のブランクスの板厚が均等となるように突き当て成形を行った。成形後の板厚は平均1.2mmであった。
 [熱処理工程]
 得られたガラスブランクス(Tg:670℃)に対して、内部歪みを除去するために670℃にて3時間の熱処理を行った。
 [コアリング・形状加工工程]
 円筒状のダイヤモンド砥石を備えたコアドリルを用いてブランクスの中心部に直径が約18.7mmの円形の中心孔を開けた。鼓状のダイヤモンド砥石を用いて、ブランクスの外周端面および内周端面を、外径65mm、内径20mmに内・外径加工した。
 [粗研削(第1研削)工程]
 第1研削工程においては、砥粒としてダイヤモンドをアクリル樹脂でシート状にしたものを用いて、ガラス基板の主表面(上下面)の加工を行なった。ダイヤモンドの粒子径は9μmのものを用いた。
 [精研削(第2研削)工程]
 第2研削工程では、砥粒としてダイヤモンドをアクリル樹脂でシート状にしたものを用いて、ガラス基板の主表面(上下面)の加工を行なった。ダイヤモンドの粒子径は2μmのものを用いた。
 この第1、第2研削工程では、ガラス基板1主表面(上下面)で150μm程度の研削を行なった。
 [内外周研磨工程]
 端面研磨工程においては、ブラシ研磨方法により、ガラス基板を回転させながらガラス基板の外周端面及び内周端面の表面の粗さを、Rmaxで30nm以下、Raで10nm以下になるように研磨した。そして、このような端面研磨を終えたガラス基板の表面を水洗浄した。
 [粗研磨工程]
 ガラス基板の両表面を、両面研磨機(スピードファム(株)製)を用いて粗研磨加工した。研磨パッドには発泡ウレタンパッドを、砥粒には平均粒径1μmの酸化セリウム砥粒を用いた。荷重は100g/cmとし、ガラス基板の研磨量は30μmとした。
 さらに、端部形状差を調整する処理工程として、10分置きに研磨機を止めてガラス基板の表裏を逆転させ、研磨を継続した。それを繰り返して、研磨量が30μmになるまで研磨を行った。そして、粗研磨後における端部形状差ΔCを測定し、表1に記した。
 ΔCの測定方法はドーナツ状ガラス基板に対して、外径の円周上に30度ごとに測定ポイントを設定し、12点の平均ΔC(Ave)とMax値ΔC(Max)を求めて表1に記した。具体的には各々の測定ポイントにおいて、円の中心から基板外径の測定ポイントまでの直線の位置上で、中央部の平坦面に比して下降もしくは隆起しはじめる位置から外径位置までの範囲の形状を測定し、外径位置から同じ距離での端部形状のポイントと中央部との高低差を測定し、両主平面(表裏面で定義)の表面側での差:Aと裏面側での差:Bとの差(ΔC=|A-B|)を求めた。
 [化学強化工程]
 化学強化工程においては、上記工程を終えたガラス基板に化学強化を施した。具体的には、まず、硝酸カリウムと硝酸ナトリウムの固体を溶融させた混合溶融液を用意した。なお、この混合溶融液は、硝酸カリウムと硝酸ナトリウムとの混合比が質量比で6:4となるように混合させたものである。そして、この混合溶融液を、400℃まで加熱して、その加熱した混合溶融液に、洗浄したガラス素板を、60分間浸漬させた。
 [精密研磨工程]
 続いて研磨装置(スピードファム(株)製、両面研磨機)を用いて精密研磨工程を行った。この精密面研磨工程においてもスエードパッドでガラス基板の主表面の研磨を行った。なお、研磨材としては、20%のコロイダルシリカでpH2.0に調製した液を用いた。研磨条件としては、荷重100g/cmとし、ガラス基板の研磨量は3.5μmとした。
 さらに、端部形状差を調整する処理工程として、10分置きに研磨機を止めてガラス基板の表裏を逆転させ、研磨を継続した。それを繰り返して、研磨量が3.5μmになるまで研磨を行った。そして、精密研磨後における端部形状差ΔCを測定し、表1に記した。
 ΔCの測定方法は、粗研磨工程と同じ方法を用いた。
 [最終洗浄工程]
 ガラス基板をスクラブ洗浄した。洗浄液として、KOHとNaOHとを質量比で1:1に混合したものを超純水(DI水)で希釈し、洗浄能力を高めるために非イオン界面活性剤を添加して得られた液体を用いた。洗浄液の供給は、スプレー噴霧によって行った。スクラブ洗浄後、ガラス基板の表面に残る洗浄液を除去するために、水リンス洗浄工程を超音波槽で2分間行い、IPA洗浄工程を超音波槽で2分間行い、最後に、IPA蒸気によりガラス基板の表面を乾燥させた。
 以上のようにして得られたガラス基板を、後述の評価試験に供した。
 (実施例2~14および比較例1~3)
 粗研磨工程および/または精研磨工程における、ガラス基板の表裏逆転頻度を表1に記載のように変更した以外は、実施例1と同じ方法でガラス基板を製造した。なお、表1において、「-」は、研磨機を停止させず、粗研磨であれば研磨量が30μmとなるまで、そして精研磨であれば研磨量が3.5μmとなるまで、一括で研磨を行ったことを示している。
 (実施例15~21および比較例4~6)
 粗研磨工程における研磨パッドを、発泡ウレタンパッドからスエードパッドに変更し、粗研磨工程および/または精研磨工程における、ガラス基板の表裏逆転頻度を表2に記載のように変更した以外は、実施例1と同じ方法でガラス基板を製造した。なお、表2においても、「-」は、研磨機を停止させず、粗研磨であれば研磨量が30μmとなるまで、そして精研磨であれば研磨量が3.5μmとなるまで、一括で研磨を行ったことを示している。
 そして、各実施例および比較例で得られたガラス基板を以下の評価試験で評価した。
 (評価方法)
 (フラッタリング特性)
 図1に示した装置を用いて測定した。試料40(上記で得られたそれぞれのガラス基板)をエアスピンドルモータ41によって矢印Aの方向に高速回転し、試料40の表面にレーザー振動計42によりレーザー光を照射した。試料40の表面で反射する光は、試料40の上下方向(スピンドルの軸方向)の振動により波長が変化するため、試料40の1周内のその変化量(振れ量)を測定することにより、その振れ量をフラッタリング特性とした。なお、試料40の外周から1.5mmの位置を測定点Pとし、その結果を表1および表2に示す。表1および表2に示されているように、各回転数(7000rpm、10000rpm、15000rpm)についてフラッタリング特性を測定した。
 (微小うねり)
 微小うねりμWaは、「Zygo Corporation」の非接触表面形状測定機(New View 5000)を用いて測定した。微小うねりμWaとは、光学的な干渉(ニュートンリング)によって測定され、基準平面と実際の平面とのずれ量を干渉縞として計測する。測定原理は、基板の表面に白色光を照射し、位相の異なる参照光と測定光の干渉の強度変化を測定することで、表面の微妙な形状変化を測定する方法である。得られた測定データから、30~200μmの周期の凹凸を抽出した表面うねり高さの平均値を微小うねりμWaと定義する。
 以上の結果を表1および2に記した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (考察)
 なお、ガラス基板の端部形状は、精密研磨後の洗浄工程等においては変化しない為、表1に記載される精密研磨後の研磨後の端部形状差(ΔC)を最終的なガラス基板の研磨後の端部形状差(ΔC)と考えることができる。表1からわかるように、本発明に係る製造方法を用いて、精密研磨後の端部形状差(ΔC)を1000nm以下に調整することによって、フラッタリング特性および微小うねりが抑えられた。よって、本発明に係る製造方法によって、高速回転および高密度化に十分に耐えうる高品質のガラス基板を得ることができることが示された。
 特に、研磨工程中に研磨機を停止し、ガラス基板の表裏を逆転させる頻度を上げたり、粗研磨と精密研磨の両方で端部形状差(ΔC)を調整する処理工程を行った場合は、精密研磨後の端部形状差(ΔC)を500nm以下となり、フラッタリング特性および微小うねりがさらに抑制されることがわかった。なかでも、精密研磨後の端部形状差(ΔC)を100nm以下に調整した場合は、フラッタリング特性が著しく向上し、微小うねりも十分に抑えられた。
 さらに、前工程である粗研磨工程において端部形状差(ΔC)を500nm以下に調整しておくことにより、後工程である精密研磨工程において研磨機を停止させなくても(あるいは、停止させる頻度が少なくても)、精密研磨後の端部形状差(ΔC)を容易に減少させることができ、フラッタリング特性および微小うねりにおいて優れた結果が得られた。つまり、粗研磨、精密研磨の両工程で調整することで生産性の観点、端面形状の観点からもより有利であることが示された。
 一方、精密研磨後の端部形状差(ΔC)が1000nmを超えている比較例において得られたガラス基板はいずれも、フラッタリング特性に劣り、微小うねりも発生していた。
 また、表2からわかるように、粗研磨工程でスエードパッドを使用すると、粗研磨工程での端部形状差ΔCは拡大し、フラッタリング特性が悪化するが(比較例1~3と比較例4~6を対比)、本発明の製造方法を用いることによって改善された。しかも、粗研磨工程におけるスエードパッドを用いることによって、実施例15で得られたガラス基板は、実施例1のものと比較して微小うねりの特性がさらに改善していることがわかる。
 この出願は、2013年3月28日に出願された日本国特許出願特願2013-069602を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、前述において図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明は、ハードディスク用ガラス基板及びその製造方法の技術分野において、広範な産業上の利用可能性を有する。
 

 

Claims (8)

  1.  ハードディスク用ガラス基板の製造方法であって、
     前記ガラス基板の両主表面の端部形状を、表面および裏面のどちらかで中央部と比して下降もしくは隆起しはじめる位置から外径位置までの範囲の形状であると定義した時に、ガラス基板における表面と裏面の端部形状差の平均値(ΔCAve)が下記式を満たすように、前記端部形状を調整する処理工程を含むことを特徴とする、ハードディスク用ガラス基板の製造方法。
    ΔCAve=|A-B|≦1000nm
    (式中、AおよびBは、それぞれガラス基板の表面側および裏面側における、外径位置から同じ距離での端部形状と中央部との高低差を示す)
  2.  前記端部形状差の平均値(ΔCAve)が500nm以下である、請求項1に記載のハードディスク用ガラス基板の製造方法。
  3.  前記端部形状差の平均値(ΔCAve)が100nm以下である、請求項1に記載のハードディスク用ガラス基板の製造方法。
  4.  前記処理工程を、粗研磨工程又は精密研磨工程において行う、請求項1~3のいずれかに記載のハードディスク用ガラス基板の製造方法。
  5.  前記処理工程を、粗研磨工程及び精密研磨工程において行う、請求項1~3のいずれかに記載のハードディスク用ガラス基板の製造方法。
  6.  前記粗研磨工程の研磨パッドとしてスエードパッドを用いる、請求項1~5のいずれかに記載のハードディスク用ガラス基板の製造方法。
  7.  ハードディスク用ガラス基板であって、
     前記ガラス基板の両主表面の端部形状を、表面および裏面のどちらかで中央部と比して下降もしくは隆起しはじめる位置から外径位置までの範囲の形状であると定義した時に、ガラス基板における表面と裏面の端部形状差の平均値(ΔCAve)が下記式を満たすことを特徴とする、ハードディスク用ガラス基板。
    ΔCAve=|A-B|≦1000nm
    (式中、AおよびBは、それぞれガラス基板の表面側および裏面側における、外径位置から同じ距離での端部形状と中央部との高低差を示す)
  8.  請求項7記載のハードディスク用ガラス基板の表面に少なくとも磁性膜が形成されていることを特徴とする磁気ディスク。
PCT/JP2014/001834 2013-03-28 2014-03-28 ハードディスク用ガラス基板及びその製造方法 WO2014156189A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-069602 2013-03-28
JP2013069602 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014156189A1 true WO2014156189A1 (ja) 2014-10-02

Family

ID=51623200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001834 WO2014156189A1 (ja) 2013-03-28 2014-03-28 ハードディスク用ガラス基板及びその製造方法

Country Status (1)

Country Link
WO (1) WO2014156189A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027140A1 (ja) * 2021-08-26 2023-03-02 古河電気工業株式会社 磁気ディスク用基板及びその製造方法並びに磁気ディスク

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073289A (ja) * 2008-09-22 2010-04-02 Hoya Corp 磁気ディスク用基板および磁気ディスク
JP2011000704A (ja) * 2006-03-24 2011-01-06 Hoya Corp 磁気ディスク用ガラス基板の製造方法および磁気ディスクの製造方法
JP2012022730A (ja) * 2010-07-12 2012-02-02 Asahi Glass Co Ltd 磁気ディスク用ガラス基板の製造方法。
JP2012198976A (ja) * 2011-03-09 2012-10-18 Kao Corp 磁気ディスク基板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000704A (ja) * 2006-03-24 2011-01-06 Hoya Corp 磁気ディスク用ガラス基板の製造方法および磁気ディスクの製造方法
JP2010073289A (ja) * 2008-09-22 2010-04-02 Hoya Corp 磁気ディスク用基板および磁気ディスク
JP2012022730A (ja) * 2010-07-12 2012-02-02 Asahi Glass Co Ltd 磁気ディスク用ガラス基板の製造方法。
JP2012198976A (ja) * 2011-03-09 2012-10-18 Kao Corp 磁気ディスク基板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027140A1 (ja) * 2021-08-26 2023-03-02 古河電気工業株式会社 磁気ディスク用基板及びその製造方法並びに磁気ディスク

Similar Documents

Publication Publication Date Title
JP5056961B2 (ja) 磁気記録媒体用ガラス基板及びその製造方法
JP5321594B2 (ja) ガラス基板の製造方法、および磁気記録媒体の製造方法
WO2013046583A1 (ja) Hdd用ガラス基板、hdd用ガラス基板の製造方法及びhdd用情報記録媒体の製造方法
WO2010041537A1 (ja) ガラス基板の製造方法、および磁気記録媒体の製造方法
WO2010041536A1 (ja) ガラス基板の製造方法、および磁気記録媒体の製造方法
WO2014208270A1 (ja) 情報記録媒体用ガラス基板の製造方法
US20100081013A1 (en) Magnetic disk substrate and magnetic disk
JP5297281B2 (ja) 磁気ディスク用ガラス基板の製造方法
JP6692006B2 (ja) 研磨液、ガラス基板の製造方法、及び、磁気ディスクの製造方法
JP2010079948A (ja) 磁気ディスク用ガラス基板の製造方法
JP2014188668A (ja) ガラス基板の製造方法
JP2007118173A (ja) 研磨用ブラシ、ブラシ調整用治具、および研磨用ブラシの調整方法
JP6059739B2 (ja) ハードディスク用ガラス基板の製造方法
WO2014156189A1 (ja) ハードディスク用ガラス基板及びその製造方法
WO2011021478A1 (ja) ガラス基板の製造方法、ガラス基板、磁気記録媒体の製造方法および磁気記録媒体
JP2010238298A (ja) 磁気ディスク用ガラス基板の製造方法
JP2010073243A (ja) 磁気ディスク用ガラス基板の製造方法
WO2012090755A1 (ja) 記録媒体用ガラス基板を製造する方法
WO2014115495A1 (ja) ハードディスク用ガラス基板の製造方法
WO2013099083A1 (ja) Hdd用ガラス基板の製造方法
WO2013099087A1 (ja) Hdd用ガラス基板の製造方法
JP5719030B2 (ja) 研磨パッドおよび該研磨パッドを用いたガラス基板の製造方法
JP6088534B2 (ja) 情報記録媒体用ガラス基板の製造方法、情報記録媒体の製造方法、および、円盤状のガラス基板
JP6034636B2 (ja) 磁気記録媒体用基板の製造方法
JP5310671B2 (ja) 磁気記録媒体用ガラス基板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14772841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP