WO2014156168A1 - 内視鏡 - Google Patents

内視鏡 Download PDF

Info

Publication number
WO2014156168A1
WO2014156168A1 PCT/JP2014/001791 JP2014001791W WO2014156168A1 WO 2014156168 A1 WO2014156168 A1 WO 2014156168A1 JP 2014001791 W JP2014001791 W JP 2014001791W WO 2014156168 A1 WO2014156168 A1 WO 2014156168A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting element
transmission means
endoscope
Prior art date
Application number
PCT/JP2014/001791
Other languages
English (en)
French (fr)
Inventor
伸浩 土橋
直之 原口
崇史 真田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014156168A1 publication Critical patent/WO2014156168A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/0011Manufacturing of endoscope parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • A61B1/00124Connectors, fasteners and adapters, e.g. on the endoscope handle electrical, e.g. electrical plug-and-socket connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • A61B1/00167Details of optical fibre bundles, e.g. shape or fibre distribution
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4284Electrical aspects of optical modules with disconnectable electrical connectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide
    • G02B6/4243Mounting of the optical light guide into a groove
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]

Definitions

  • the present invention relates to an endoscope for imaging the inside of an observation object that can not be observed directly from the outside, and in particular, a light source for illumination inside the endoscope, and an optical fiber for guiding light from the light source to the insertion portion of the endoscope tip
  • the present invention relates to an endoscope provided with
  • an endoscope system provided with an endoscope of this type, for example, a processor device provided with an endoscope main body provided with an illumination lens (illumination window) at the tip of an insertion section, and a light source for illumination (Image processing apparatus), and the light source connection sleeve provided in the endoscope main body is connected to the processor apparatus, whereby light from the light source in the processor apparatus is transmitted through the light source connection sleeve to the endoscope It is known to be introduced into the main body (Patent Document 1).
  • a light emitting element as a light source is incorporated in a grip provided at the rear of the insertion section in the endoscope main body, and an optical fiber for transmitting light emitted from the light emitting element to the observation site is provided.
  • Patent Document 2 a technique for positioning an emission end face of an element and an incidence end face of an optical fiber in a directly attached state
  • the covering member is placed on the light incident end of the optical fiber, and the end face of the optical fiber is directly held and fixed to the light emitting element by the adhesive.
  • the adhesive may melt.
  • the inorganic adhesive is brittle in the cured film, and when it receives an external impact, it peels off from the light emitting element, and the cured film is a light emitting element. There is a risk of blocking the emitted light.
  • the present invention has been made to solve the problems of the prior art as described above, and the main object of the present invention is to use a light emitting element for illumination inside the endoscope and light emitted from the light emitting element.
  • An object of the present invention is to provide an endoscope capable of efficiently incorporating light emitted from a light emitting element into an optical transmission means in a configuration provided with an optical transmission means leading to a tip.
  • the insertion portion inserted into the inside of the observation object, the light emitting element, the light transmission means for guiding the emitted light of the light emitting element incident from the incident end face thereof to the insertion portion,
  • Top view of the main part showing how the optical fiber is supported by the fiber holder
  • the present invention which has been made to solve the above problems, has an insertion portion inserted inside the object to be observed, a light emitting element, and an optical transmission means for guiding the emitted light of the light emitting element incident from the incident end face thereof to the insertion portion. And a holder for supporting the light transmission means with respect to the light emitting element, wherein the holder separates the incident end face of the light transmission means from the light emitting surface of the light emitting element by a predetermined distance. It comprises the structure which supports the said optical transmission means.
  • the light incident end face of the light transmitting means does not contact the light emitting surface of the light emitting element, and the light emitting surface of the light emitting element is not damaged, and the tolerance of dimensional tolerance can be further increased.
  • the cost of the entire endoscope can be reduced.
  • the light transmission means is adhered to the holder to position the incident end face with respect to the light emitting surface of the light emitting element.
  • the light transmission means with respect to the light emitting element at a position separated from the light emitting element, it is possible to prevent the melting and deterioration of the adhesive due to the heat generated by the light emitting element.
  • the holder comprises a first guide and a second guide for guiding the light transmission means to the light emitting element
  • the second guide is constituted by a perforated portion provided in the holder, the light
  • the transmission means is configured such that the extension direction is changed by the first guide, and the light transmission means whose extension direction is changed by the first guide is guided to the light emitting element by the second guide.
  • the light transmission means is bent by the first guide and is pressed against the side wall inside the second guide which is the perforated portion by the elasticity of the light transmission means itself, so that the light transmission means is prevented from moving in the perforated portion It is possible to
  • the first guide is configured by a groove portion provided in the holder.
  • the groove forming the first guide has an arc shape having a predetermined curvature, and the extending direction of the light transmission means is a normal to the light emitting surface of the light emitting element by the arc shaped groove. It is configured to change direction.
  • the light transmission means is constituted by a plurality of optical fibers.
  • FIG. 1 is an overall perspective view showing an overview of an endoscope 2 and a video processor 3 connected to the endoscope 2 according to the first embodiment.
  • the endoscope system 1 includes an endoscope main body (hereinafter simply referred to as "endoscope") 2 which is a soft mirror for medical use, and still images and moving images obtained by photographing the inside of an observation target.
  • a video processor (processor device) 3 mainly performs desired image processing and the like.
  • the endoscope 2 includes an insertion portion 5 inserted into the inside of an observation target (here, a human body), and a plug portion 6 connected at the rear of the insertion portion 5 to support the insertion portion 5.
  • the video processor 3 has a substantially rectangular parallelepiped metal housing, and the housing accommodates the socket 7 to which the plug 6 is connected.
  • the socket portion 7 has an opening 8 that opens in a substantially rectangular shape in the front wall 3a of the housing of the video processor 3.
  • the plug portion 6 is connected to the socket part 7.
  • the plug portion 6 is a portion to be gripped when the user handles the endoscope 2, such as a connection operation between the endoscope 2 and the video processor 3 or a connection release operation thereof.
  • the insertion portion 5 has a circular cross section in the direction perpendicular to the front-rear direction, and has an appropriate length with respect to the observation target.
  • the insertion portion 5 has a flexible flexible portion 11 whose rear end is connected to the plug portion 6 and a rigid portion 12 connected to the front end of the soft portion 11 to form an insertion portion tip.
  • the outer peripheral portion of the flexible portion 11 is formed of a flexible material, and the outer peripheral portion of the hard portion 12 is formed of a highly rigid member.
  • the internal space of the insertion portion 5 is in a sealed state except for the communication with the plug portion 6, and dust and the like are prevented from entering.
  • a transmission cable 36 for transmitting and receiving the above-described video signal and control signal, and an optical fiber 35 for transmitting illumination light for illuminating a diseased part, etc. (light transmission means; see FIG. 4).
  • a water injection pipe (not shown) or the like for transporting water for cleaning the affected area is provided.
  • the rigid unit 12 accommodates an imaging unit (not shown) used for imaging an observation site.
  • the imaging unit has a known configuration including a lens unit forming an objective optical system, a solid-state imaging device, and the like.
  • the front end portion 12 a of the rigid portion 12 is made of a translucent optical material and functions as an illumination lens from which illumination light is emitted.
  • the optical fiber 35 described above extends to the front end portion 12 a of the rigid portion 12 via the plug portion 6 and the insertion portion 5.
  • FIG. 2 is a top perspective view showing the configuration of the plug portion 6 of the endoscope 2.
  • the schematic configuration of the plug portion 6, particularly the routing of the optical fiber 35 in the plug portion 6 will be described.
  • the plug portion 6 includes a fiber support substrate 95 at its front and a light source unit 30 at its rear.
  • the light source unit 30 includes a light emitting element (hereinafter referred to as an “LED module”) 22 including an LED (Light Emitting Diode) chip as described later in detail (see FIG. 5 and the like).
  • the light emitted from the light emitting surface of the LED module 22 is taken into a bundle of a plurality of optical fibers 35.
  • the bundle of optical fibers 35 is temporarily supported by the fiber holder 37 and drawn forward, and further drawn to the insertion part 5 via the fiber support substrate 95.
  • each of the optical fibers 35 is made of so-called multicomponent glass, and in the first embodiment, the bundle of the optical fibers 35 is configured by bundling 56 fibers having a diameter of 50 ⁇ m.
  • the diameter of the optical fiber 35 is as described above, the thickness of the bundle of the optical fiber 35 is about 0.5 mm.
  • two types of optical fibers 35 having different diameters for example, two types of 30 ⁇ m and 50 ⁇ m may be bundled together.
  • the bundle of optical fibers 35 is drawn straight up from the guide hole (second guide, perforated portion) 37 b provided immediately above the LED module 22 in the fiber holder 37 and the guide groove (First guide, groove) is extended forward through the groove 37a.
  • the guide groove First guide, groove
  • each of the optical fibers 35 constituting the bundle is not entirely constrained (that is, not bundled or the entire bundle is not coated or the like), and the individual optical fibers 35 do not Locked as a group by 95d.
  • the locking by the fiber locking members 95a to 95e is gentle, and the optical fiber 35 is supported displaceably (movably) on the plane formed by the fiber support substrate 95.
  • the displacement is regulated by the fiber locking members 95a to 95e.
  • the light incident end face (the rear end of the optical fiber 35) of the optical fiber 35 is fixed at a predetermined position at a position facing the light emitting surface of the LED module 22.
  • the tip of the optical fiber 35 is also individually fixed at the tip of the insertion portion 5 (the front end 12a of the rigid portion 12) depending on the position of the illumination optical system.
  • the positions of the front end and the rear end of the optical fiber 35 are fixed, the lengths of the individual fibers constituting the optical fiber 35 have tolerances, and the flexible portion 11 is used in the condition of use of the endoscope 2 Therefore, a mechanism for adjusting the length of each optical fiber 35 is required.
  • the length of each optical fiber 35 is adjusted by allowing the movement of the optical fiber 35 in the fiber support substrate 95 in a state where the optical fiber 35 is made to go around on the fiber support substrate 95, and The tension and stress are not concentrated on the optical fiber 35 of FIG.
  • FIG. 3 is an exploded perspective view of an essential part of the plug part 6 of the endoscope 2
  • FIG. 4 is an essential part cross-sectional view of the internal structure of the plug part 6 in the endoscope 2.
  • the internal structure of the plug portion 6 will be described with reference to FIGS. 3 and 4.
  • the plug portion 6 is connected to the upper plug cover 20 constituting the upper side of the casing (outer shell) and the upper plug cover 20 to form the lower plug cover constituting the lower side of the casing.
  • the upper and lower plug covers 20, 21 are made of a resin material (here, polypropylene), and in their coupled state, have front portions 20a, 21a that form a tapered internal space S1 forward.
  • the optical fiber 35 and the transmission cable 36 from the insertion portion 5 are passed through the opening 2a formed at the tip of the front portion 20a, 21a.
  • Image data captured by an imaging device (not shown) such as a CMOS (Complementary Metal Oxide Semiconductor) provided at the tip of the insertion portion 5 and digitized in the imaging device is temporarily transmitted through the transmission cable 36 to the LED substrate
  • the signal is relayed at 23 and sent to the video processor 3 from a terminal portion 41 which constitutes the rear end of the LED substrate 23.
  • control signals or the like for controlling the imaging device are sent to the insertion unit 5 via the transmission cable 36.
  • the upper and lower plug covers 20, 21 have rear portions 20b, 21b which form a substantially rectangular parallelepiped internal space S2 in their coupled state.
  • each component or member such as the light source unit 30 and the fiber support substrate 95 shown in FIG. 2 is accommodated.
  • a substantially rectangular notch 40 that exposes the plate spring 27 is formed in the bottom wall 39 of the lower plug cover 21 that defines the internal space S2. Note that the configuration of the notch 40 can be variously changed, and, for example, one or more openings can be provided instead of the notch 40.
  • the light source unit 30 is provided between the upper and lower plug covers 20 and 21.
  • the configuration of the light source unit 30 will be described in detail using FIGS. 3 and 4.
  • the light source unit 30 includes an LED substrate 23, a fixing plate 25, a fiber holder 37, a plate spring 27, and a holder member 28.
  • the LED substrate 23 is obtained by forming a copper foil in a predetermined pattern on an insulating base made of glass epoxy.
  • the LED module 22 is mounted on the LED substrate 23.
  • the LED module 22 has a substantially rectangular parallelepiped shape, and is provided with a light emitting surface made of glass on the upper surface thereof.
  • the LED module 22 internally includes a white LED chip with high brightness (for example, 2 W output), and emits illumination light from the light emission surface.
  • the thermal conductivity of the glass epoxy constituting the LED substrate 23 is 0.471 W / m ⁇ K at normal temperature (27 ° C.).
  • the thermal conductivity of copper is 402 W / m ⁇ K, which transfers heat more efficiently than glass epoxy.
  • this copper foil is laminated to about 70 ⁇ m.
  • the front and back of LED board 23 is connected by the via hole with which copper was filled.
  • the higher the brightness of the LED the larger the heat generation.
  • the above-described configuration improves the thermal conductivity of the LED substrate 23 itself and diffuses the heat generated by the LED module 22 to the entire LED substrate 23.
  • a terminal portion 41 for electrically connecting to the video processor 3 is provided on the rear end side of the substrate main body having a rectangular shape in a plan view.
  • the LED substrate 23 is provided with a temperature sensor (not shown) for monitoring the temperature of the LED module 22, and the amount of light emitted from the LED module 22 based on the sensor output signal and control signal exchanged via the terminal portion 41. Is controlled by the video processor 3.
  • a CPU Central Processing Unit
  • a non-volatile memory storing LED control information based on the light emission continuation time, etc. are disposed on the LED substrate 23 and a light quantity control unit closed in the LED substrate 23 May be configured.
  • the illumination device of the endoscope system 1 is configured of the LED substrate 23, the LED module 22, the optical fiber 35, the illumination lens, and the like.
  • the fixing plate 25 is obtained by insulating the surface of a metal material (here, aluminum) which is excellent in heat conduction characteristics and easy to secure processing accuracy.
  • the fixing plate 25 has a substantially rectangular shape in plan view.
  • convex portions 46 and 47 are provided to project forward and backward, respectively.
  • circular protrusions (positioning pins) 51 disposed at positions respectively corresponding to the diameters of the positioning holes 43 of the LED substrate 23 are provided.
  • the screw 89 a is inserted into the through hole 42 provided in the LED substrate 23 and screwed into the screw hole 50 of the fixing plate 25, whereby the LED substrate 23 is attached to the fixing plate 25.
  • an insulating sheet for example, silicone rubber for heat dissipation
  • an insulating sheet having excellent insulating properties and heat conduction characteristics may be interposed between the fixing plate 25 and the LED substrate 23.
  • the fiber holder 37 is a block-like member made of a metal material (here, aluminum) as the fixing plate 25 does.
  • the fiber holder 37 holds the rear end side of the optical fiber 35 for guiding the light emitted from the LED module 22 to the tip of the insertion portion 5 of the endoscope 2 and moves the optical fiber 35 from the vicinity of the LED module 22 toward the insertion portion 5 Lead.
  • a guide groove 37a is provided on the upper surface of the fiber holder 37, and a guide hole 37b penetrating the fiber holder 37 in the vertical direction is formed on the rear (see FIGS. ).
  • the optical fiber 35 is guided to the light emitting surface of the LED module 22 by these guides.
  • Mounting pieces 91, 91 protruding from the fiber holder 37 are provided flush with the bottom surface of the fiber holder 37 on the front left side and rear right side of the fiber holder 37, and the screw 89b is inserted through the mounting pieces 91, 91
  • the fiber holder 37 is attached to the fixing plate 25 by screwing it into the screw hole 25 a of the fixing plate 25.
  • the LED board 23 is provided with an opening 23a, and the screw 89b inserted into the rear attachment piece 91 is screwed to the fixing plate 25 through the opening 23a.
  • Both are positioned with high accuracy by fixing the LED substrate 23 by guiding the cylindrical protrusion 51 to the fixing plate 25 made of aluminum which is excellent in processability.
  • the fiber holder 37 similarly made of aluminum is fixed to the fixing plate 25. As a result, the fiber holder 37 and the LED substrate 23 are positioned with high accuracy to each other.
  • the light emitting surface of the LED module 22 it is important how the light emitted from the light emitting surface of the LED module 22 can be efficiently taken into the optical fiber 35.
  • the light utilization efficiency captured light quantity / total emitted light quantity
  • the LED substrate on which the LED module 22 is mounted 23 and the fiber holder 37 supporting the bundle of optical fibers 35 a relative inclination of about 5 deg or less is permitted. This is an angle that can be achieved even if there is a difference in unevenness of 0.2 mm in the LED substrate 23, and it is a basis on which a glass epoxy substrate can be adopted as the LED substrate 23.
  • the leaf spring 27 is made of a thin (here, stainless steel) metal material (here, having a thickness of 0.1 mm) and has a substantially rectangular bottom wall 27a in plan view and a front edge of the bottom wall 27a. It has a front wall 27b extending upward and a rear wall 27c extending upward from the rear edge of the bottom wall 27a. Rectangular attachment holes 27d and 27e for attaching the fixing plate 25 are respectively formed at the center in the width direction of the front wall 27b and the rear wall 27c.
  • the upper portion of the front wall 27b is bent so as to incline obliquely upward and forward, and the upper portion of the rear wall 27c is bent forward so as to be substantially horizontal.
  • an inclined surface 62 is formed which inclines upward toward the lower edge of the rear wall 27c.
  • the holder member 28 is made of a metal material (here, aluminum), and has an upper wall 28a disposed to face the upper wall of the upper plug cover 20, and spaces between the front and rear of the upper wall 28a.
  • the pair of leg pieces 28b and 28c are formed to extend downward from the left and right side edges, respectively.
  • notch parts 64 and 65 into which the convex parts 48 and 49 of the fixing plate 25 are respectively fitted are provided.
  • the holder member 28 holds the respective components and members constituting the light source unit 30. That is, the LED substrate 23, the fiber holder 37 and the plate spring 27 are supported by the fixing plate 25, and the fixing plate 25 is supported by the holder member 28.
  • the holder member 28 is sandwiched and fixed between the upper plug cover 20 and the lower plug cover 21.
  • the heat generated from the LED module 22 is first diffused to the whole of the LED substrate 23 covered with the copper foil, and then transmitted to the fixing plate 25 and the plate spring 27 in order. Then, when the LED substrate 23 is connected to the socket portion 7, the LED substrate 23 is electrically connected via the video processor 3 and the terminal portion 41 and also thermally connected via the plate spring 27, Heat is transmitted to the processor 3 side, and heat is dissipated by a cooling fan or the like (not shown).
  • the potting agent 71 is inject
  • the opening 72 at the rear of the plug portion 6 is closed by the potting agent 71 except for the exposure of the terminal portion 41 of the LED substrate 23.
  • the lower portion of the lower plug cover 21 is closed by the bottom wall 27 a of the plate spring 27.
  • FIG. 5 is a side view of the main part showing the supporting state of the optical fiber 35 by the fiber holder 37.
  • FIG. 6 is a perspective view of the main part showing the supporting state of the optical fiber 35 by the fiber holder 37.
  • FIG. 6 is a top view of the main part showing a supported state of the optical fiber 35 by the fiber holder 37.
  • FIG. 5 is a side view, an imaginary line is described through the fiber holder 37 to facilitate the description.
  • FIG. 6 is a perspective view, but for the same reason, it shows a state in which the fiber holder 37 is seen through. In the following description, it is assumed that the potting agent 71 described with reference to FIG. 4 has been removed.
  • the fiber holder 37 has a guide groove 37a formed in the front-rear direction on the upper surface thereof.
  • the guide groove 37a is formed by molding a mold or cutting the fiber holder 37, and the width thereof is larger by 25 ⁇ m in the lateral direction than the diameter of the bundle of optical fibers 35 (here, 0.5 mm). It is formed.
  • the guide groove 37a has a simple configuration, and a desired shape can be easily obtained. Therefore, as described later, the bundle of the optical fibers 35 is guided without giving unnecessary stress to the optical fibers 35. be able to.
  • the bottom surface of the guide groove 37a has a locus drawn as a thick broken line. That is, the locus has a horizontal area continuing in the front-rear direction at the front of the fiber holder 37, and further has an arc-shaped area (slope) of radius r consisting of a part of the imaginary circle C1 at the rear.
  • the front horizontal region and the rear arcuate region are smoothly connected.
  • a stage portion 37f is provided which forms a plane parallel to the fixing plate 25 and the main surface It is done.
  • the position of the stage portion 37f in the vertical direction coincides with the position of the center O1 of the virtual circle C1.
  • guide holes 37b are formed in the vertical direction (that is, the normal direction of the light emitting surface of the LED module 22 mounted on the LED substrate 23).
  • the guide hole 37b penetrates the stage portion 37f in the top-bottom direction, and the axis of the guide hole 37b is provided almost immediately above the light emission center of the LED chip (not shown) mounted on the LED module 22.
  • the bundle of optical fibers 35 is disposed in the air.
  • the hollow optical fiber 35 draws a locus extending the virtual circle C1 downward at the rear of the fiber holder 37 (more precisely, the locus extending the virtual circle C1 in the space above the stage portion 37f Assuming that the bottom surface of the guide groove 37a exists, it is guided to the guide hole 37b while being supported by the hypothetical guide groove 37a.
  • the guide hole 37b has a circular shape in top view, and the first opening 37g in the stage portion 37f is C-chamfered. Except for the C-chamfered portion, the diameter of the guide hole 37 b is set to be 50 ⁇ m larger than the diameter of the bundle of optical fibers 35. In the first embodiment, since the diameter of the bundle of optical fibers 35 is 0.5 mm, if the axis of the bundle of optical fibers 35 is inserted along the axis of the guide hole 37b, the outer periphery of the bundle of optical fibers 35 And the guide hole 37b are separated by 25 ⁇ m (L3).
  • a gap 37c is provided over the entire periphery including the upper portion of the LED module 22 in a portion facing the second opening 37h of the guide hole 37b which penetrates the stage 37f.
  • the optical fiber 35 extends from the front (insertion portion 5 side) to the fiber holder 37, passes through the horizontal region of the guide groove 37a, and then smoothly enters the arc-like region, and the arc-like region After being guided upward from the front-rear direction), the light is turned 90 ° clockwise with respect to the horizontal direction and is led downward to the guide hole 37b.
  • the first opening 37g of the guide hole 37b is a virtual circle C1 including a normal to the light emitting surface of the LED module 22 (normal to the light emission center of the LED) and an arc guiding the optical fiber 35 in the stage 37f. It is provided in the position where the tangent of and a match. More precisely, the open end of the first opening 37g is provided at a position shown as a point P3 in FIG. By this configuration, the normal at the light emission center of the LED substantially coincides with the axis of the bundle of the optical fibers 35.
  • the bundle of optical fibers 35 inserted into the guide holes 37 b is subjected to a direction change of about 90 ° downward with respect to the original extension direction (front-rear direction), so that the optical fibers 35 are
  • the bundle of [3] tends to be displaced from the vertical direction to the longitudinal direction (horizontal direction) by elasticity.
  • the first opening 37g is provided in the stage portion 37f such that the position of the stage portion 37f in the vertical direction coincides with the position of the center O1 of the virtual circle C1
  • an optical fiber is obtained at the first opening 37g (point P3).
  • the elastic restoring force 35 does not include the vector in the vertical direction, and the optical fiber 35 is elastically pressed to the side wall (in particular, the rear side wall) of the guide hole 37b.
  • the optical fiber 35 is attached to the bonding site (site P1 and site P2 shown in FIG. Once fixed, the bundle of optical fibers 35 once inserted into the guide hole 37b will not move in the vertical direction.
  • a specific solution can be injected into the guide hole 37b to chemically apply a satin finish to the inner wall of the guide hole 37b. By thus increasing the coefficient of friction of the inner wall of the guide hole 37b, the movement of the bundle of the optical fibers 35 is further prevented.
  • the bundle of optical fibers 35 is bonded by an adhesive at a portion P1 and a portion P2 shown in FIG.
  • the position of the portion P2 is set immediately before the bundle of optical fibers 35 comes out of the guide groove 37a to the upper portion of the stage portion 37f.
  • the bundle of optical fibers 35 is fixed very near the point of contact with the horizontal line).
  • the portion P1 and the portion P2 are separated from the LED module 22 by at least 5 mm or more.
  • the heat-resistant temperature of the organic adhesive is 60 to 80 ° C., and the junction temperature of the high-power LED may exceed this. According to the present invention, even if the LED module 22 itself is thus heated to a high temperature, the adhesive does not melt.
  • an organic UV curing adhesive can be used for fixing the optical fiber 35.
  • an organic adhesive may be used at the site P1 and an inorganic adhesive may be used at the site P2.
  • an organic adhesive may be used at the site P1 and an inorganic adhesive may be used at the site P2.
  • the lower surface of the fiber holder 37 in the air gap 37c (the surface provided with the opening of the second opening 37h) and the LED
  • the jig includes the LED substrate 23 mounted on the fixed plate 25 described above and a member simulating the LED module 22 mounted on the LED substrate 23 (of course, an actual object may be diverted), and further the LED module 22
  • the control member having the height L1 is provided on the surface assuming the light emission surface of This L1 is set to, for example, 0.1 mm as described above.
  • the operator attaches the fiber holder 37 to the member simulating the fixing plate 25 with respect to the jig configured as described above (in the same manner as shown in FIG. 3, screwing is performed using the screw 89b). Then, the gap 37c of the fiber holder 37 is occupied by the restriction member described above, and the second opening 37h of the guide hole 37b provided in the gap 37c is closed.
  • the end portions of the optical fibers 35 constituting the bundle are processed in advance by another jig so as to make the end surfaces of the bundle flush. Specifically, after gripping a plurality of optical fibers 35 and projecting one time forward excessively, the end faces of the plurality of optical fibers 35 are flush by pushing back so that the end faces of the optical fibers 35 are aligned with a predetermined front end face. Aligned to The end of the optical fiber 35 is then immersed in a volatile liquid, such as alcohol. By soaking in the liquid, the capillary action causes the liquid to enter the gaps between the plurality of optical fibers 35, and the surface tension of the liquid maintains the positional relationship between the respective optical fibers 35.
  • a volatile liquid such as alcohol
  • the penetration of the liquid in the axial direction (longitudinal direction) of the bundle of optical fibers 35 produces a holding force as a surface between the optical fibers 35, and in particular, substantially rigid in the axial direction of the optical fibers 35. It can be regarded as one structure, and the end face of the bundle of optical fibers 35 is prevented from being uneven during operation, and the optical fibers 35 are prevented from coming apart at the end.
  • the worker inserts the bundle of optical fibers 35 into the guide hole 37b through the first opening 37g provided in the stage portion 37f.
  • the end face of the bundle of optical fibers 35 is pushed in until it abuts on the restriction member (not shown) of the jig, and then the bundle of optical fibers 35 is deformed along the guide groove 37a.
  • the bundle of optical fibers 35 is guided as it is to the arc-shaped area by the guide groove 37a via the tangent of the imaginary circle C1 at the point P3 (the first opening 37g of the guide hole 37b). Can be smoothly routed without applying unnecessary stress to the optical fiber 35.
  • the operator brings the lower surface of the bundle of drawn optical fibers 35 into contact with the bottom of the guide groove 37a, and first applies an organic UV curing adhesive to the site P1 and applies UV radiation to the applied area.
  • an organic UV curing adhesive to the site P1 and applies UV radiation to the applied area.
  • the portion P1 is fixed in a state in which the end face of the bundle of optical fibers 35 is in contact with the restriction member of the jig and the drawn optical fibers 35 are in contact with the bottom surface of the guide groove 37a, as described above
  • the first opening 37g provided in the portion 37f only a force in the front-rear direction is generated in the optical fiber 35, so the optical fiber 35 can not move vertically in the guide hole 37b.
  • the worker bonds the bundle of optical fibers 35 to the fiber holder 37 at the portion P2.
  • either an organic or inorganic adhesive may be used.
  • the bundle of optical fibers 35 is adhered to the fiber holder 37 at the site P2, and the adjustment operation is completed when it is cured.
  • a bundle of the optical fibers 35 may be adhered to the guide groove 37a between the horizontal area or the circular area at the rear and the horizontal area described above. Further, it is not essential to bring the bundle of optical fibers 35 into contact with the bottom surface of the guide groove 37a between the horizontal region or the horizontal region and the rear arc region, and the bundle of optical fibers 35 is in the left-right direction (see FIG. 7). Movement should be restricted to).
  • the end (rear end) of the bundle of optical fibers 35 does not protrude from the second opening 37 h in the air gap 37 c of the fiber holder 37 and has the same height as the bottom surface of the fiber holder 37 in the air gap 37 c. Maintained at L1.
  • the light incident end face of the bundle of the optical fibers 35 is positioned with respect to the light emitting surface of the LED module 22.
  • the operator removes the fiber holder 37 to which the bundle of optical fibers 35 is adhered from the jig, and screws it onto the actual fixing plate 25. Since the liquid such as alcohol mentioned above evaporates after bonding the bundle of optical fibers 35 to the fiber holder 37, it does not affect the elements constituting the endoscope 2 at all.
  • the light emitting element 22 used by the endoscope 2 may be used.
  • no coupling optical system is provided between the light emitting surface of the LED module 22 and the light incident surface of the bundle of the optical fibers 35.
  • the bundle of the optical fibers 35 has a diameter of about 0.5 mm, it is possible to take in light with high efficiency by the optical fibers 35 by using an LED having a light emitting region at least larger than this, an EL light source or the like. It becomes.
  • the video processor 3 is preferable in terms of convenience in which electrical connection and thermal connection can be simultaneously performed, but it is not limited to this. Absent.
  • the guide groove 37a is provided in the fiber holder 37, but it is essential that such a "groove” is provided, that is, a configuration in which walls are provided on both sides in the extension direction of the bundle of optical fibers 35 Absent.
  • a convex portion single wall portion continuous in the front-rear direction in the fiber holder 37 may be provided, and the bundle of optical fibers 35 may be disposed along the convex portion. Even with such a configuration, the same effect as the guide groove 37a can be exhibited by bonding at the site P1 and the site P2.
  • the present invention has been described above based on the specific embodiments, these embodiments are merely examples, and the present invention is not limited by these embodiments.
  • the endoscope 2 according to the present invention is applicable not only to soft mirrors but also to rigid mirrors, and the application (observation target) is not limited to medical use.
  • the endoscope 2 is described as an example, but the present invention can be applied to other than the endoscope 2.
  • light for decoration emitted from the other end of the optical fiber 35 is received by receiving the light emitted from the light emitting element 22 configured of an LED or the like at one end of the optical fiber 35 and transmitting the light at the transmission destination
  • the element 22 remotely from the object to be irradiated with light and apply the configuration in which the optical fiber 35 bundle is coupled between them.
  • the present invention has a configuration as a light coupling device for taking the light emitted from the light emitting element 22 into the optical fiber 35.
  • the endoscope according to the present invention has a configuration in which a light emitting element for illumination and an optical fiber for guiding light emitted by the light emitting element to the tip of the endoscope are provided inside the endoscope, the efficiency of the emitted light of the light emitting element is increased.
  • a light emitting element for illumination and an optical fiber for guiding light emitted by the light emitting element to the tip of the endoscope are provided inside the endoscope, the efficiency of the emitted light of the light emitting element is increased.
  • an optical coupling device for taking the emitted light of a light emitting element into an optical fiber, etc. Is possible.
  • Endoscope System 2 Endoscope Body (Endoscope) Reference Signs List 3 video processor 5 insertion portion 6 plug portion 7 socket portion 11 flexible portion 12 rigid portion 20 upper plug cover 21 lower plug cover 22 LED module (light emitting element) 23 LED substrate 25 fixed plate 27 plate spring 28 holder member 30 light source unit 35 optical fiber (light transmission means) 37 Fiber Holder 37a Guide groove (groove, first guide) 37b Guide hole (perforated part, second guide) 37c Air gap 37f Stage 37g First opening 37h Second opening 91 Mounting piece 95 Fiber support substrate 95a to 95e Fiber locking member

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

【課題】内視鏡本体に照明用の発光素子と発光素子が出射する光を内視鏡先端に導く光伝送手段が設けられた構成において、発光素子の出射光を効率よく光伝送手段に入光することが可能な内視鏡を提供すること。 【解決手段】観察対象の内部に挿入される挿入部と、発光素子22と、入射端面を備え前記発光素子22の出射光を前記挿入部に導く光伝送手段35と、前記発光素子22に対して前記光伝送手段35を支持するホルダ37と、を備え、前記ホルダ37は、前記光伝送手段35の入射端面が、前記発光素子22の光出射面から所定距離L1だけ離間するように、前記光伝送手段22を支持する。

Description

内視鏡
 本発明は、外部から直接観察できない観察対象の内部を撮像する内視鏡に関し、特に内視鏡内部に照明用の光源と、光源からの光を内視鏡先端の挿入部に導く光ファイバとが設けられた内視鏡に関する。
 従来、内視鏡では、後方に配置された光源からの光を観察対象の内部に挿入される挿入部の先端に導くように構成された照明装置を備えたものが普及している。この照明装置により、施術者は観察対象の内部(体腔内等)を照らしながら内視鏡による観察や撮影等を行うことが可能となっている。
 この種の内視鏡を備えた内視鏡システムとして、例えば、挿入部の先端に照明用レンズ(照明用窓)が設けられた内視鏡本体と、照明用の光源が設けられたプロセッサ装置(画像処理装置)とを備え、内視鏡本体に設けられた光源用接続スリーブがプロセッサ装置に接続されることにより、プロセッサ装置内の光源からの光が光源用接続スリーブを介して内視鏡本体内に導かれるものが知られている(特許文献1)。
 また、他の例として、内視鏡本体において挿入部の後方に設けられた把持部に光源としての発光素子を内蔵し、発光素子から放射する光を観察部位へ伝送する光ファイバを備え、発光素子の出射端面と、光ファイバの入射端面とを直付け状態で位置決めする技術が開示されている(特許文献2)。
特開2012-120746号公報 特開2006-087902号公報
 しかしながら、特許文献1に開示された技術では、内視鏡を使用しない状況において、内視鏡とプロセッサ装置とが分離されると、光の経路(光源用接続スリーブおよびそのスリーブの接続孔等)が外部に露出するため、この光の経路に塵埃等が侵入して照明光の照度が極端に低下するおそれがある。
 また、特許文献2に開示された技術では、発光素子の光出射面および光ファイバ端面の加工精度および両者の位置決め精度を高水準に維持する必要があり、一般に高コストとなってしまう。逆に位置決め精度を緩和すると光ファイバと発光素子とが強く当接して発光素子が破損するおそれがある。
 また、特許文献2では、光ファイバの光入射端に被覆部材を当てて、接着剤によって発光素子に光ファイバ端面を直接的に保持・固定しているが、一般に高出力の発光素子は発熱が大きく、特に有機接着剤を用いた場合に接着剤が溶融してしまう場合がある。ここで、耐熱性が高い無機接着剤を用いることも考えられるが、無機接着剤は硬化被膜が脆く、外部からの衝撃を受けた場合、発光素子から剥がれてしまい、この硬化被膜が発光素子の出射光を遮ってしまうおそれがある。
 本発明は、このような従来技術の課題を解決するべく案出されたものであり、その主な目的は、内視鏡内部に照明用の発光素子と発光素子が出射する光を内視鏡先端に導く光伝送手段とが設けられた構成において、発光素子の出射光を効率よく光伝送手段に取り込むことが可能な内視鏡を提供することにある。
 本発明は、観察対象の内部に挿入される挿入部と、発光素子と、その入射端面から入射した前記発光素子の出射光を前記挿入部に導く光伝送手段と、前記発光素子に対して前記光伝送手段を支持するホルダと、を備え、前記ホルダは、前記光伝送手段の入射端面が、前記発光素子の光出射面から所定距離だけ離間するように、前記光伝送手段を支持する内視鏡である。
第1実施形態に係る内視鏡および内視鏡に接続されたビデオプロセッサの概要を示す全体斜視図 内視鏡のプラグ部の構成を示す上面透視図 内視鏡のプラグ部の要部分解斜視図 内視鏡におけるプラグ部の内部構造の要部断面図 ファイバホルダによる光ファイバの支持状態を示す要部側面図 ファイバホルダによる光ファイバの支持状態を示す要部斜視図 ファイバホルダによる光ファイバの支持状態を示す要部上面図
 前記課題を解決するためになされた本発明は、観察対象の内部に挿入される挿入部と、発光素子と、その入射端面から入射した前記発光素子の出射光を前記挿入部に導く光伝送手段と、前記発光素子に対して前記光伝送手段を支持するホルダと、を備え、前記ホルダは、前記光伝送手段の入射端面が、前記発光素子の光出射面から所定距離だけ離間するように、前記光伝送手段を支持する構成を備えるものである。
 これによって、発光素子の光出射面に光伝送手段の光入射端面が接触しなくなり、発光素子の光出射面が傷つくことがなく、更に寸法公差の許容値を大きくすることができることから、部品単価を抑えることができ、内視鏡全体のコストを低減することが可能となる。
 また、本発明は、前記ホルダに前記光伝送手段を接着することで、前記発光素子の光出射面に対して前記入射端面を位置決めするようにしたものである。
 これによって、発光素子に対する光伝送手段の位置決めを、発光素子から離間した位置で行うことで、発光素子が発生する熱によって、接着剤の溶融や劣化を防止することが可能となる。
 また、本発明は、前記ホルダは、前記光伝送手段を前記発光素子まで案内する第1ガイドおよび第2ガイドを備え、前記第2ガイドを、前記ホルダに設けた穿孔部で構成し、前記光伝送手段は、前記第1ガイドによって延伸方向を変えられ、前記第1ガイドによって延伸方向を変えられた光伝送手段は、前記第2ガイドによって前記発光素子まで導かれるように構成したものである。
 これによって、内視鏡を構成する挿入部から引き込まれる光伝送手段の延伸方向を変えて発光素子に導くことで、発光素子を搭載する基板の設置角度を調整することが可能となり、内視鏡を構成する構成要素のレイアウトの自由度が向上する。また、光伝送手段は第1ガイドによって曲げられており、光伝送手段自体の弾性によって穿孔部である第2ガイド内部の側壁に押圧されるため、光伝送手段が穿孔部内で移動することを防止することが可能となる。
 また、本発明は、前記第1ガイドを、前記ホルダに設けた溝部で構成したものである。
 これによって、金型成形または切削といった簡易な加工によってホルダ上にガイドを形成することが可能となる。また、溝部は単純な構成であり、容易に所望の形状が得られることから、不必要な応力を与えることなく光伝送手段を案内することが可能となる。
 また、本発明は、前記第1ガイドを構成する溝部は、所定の曲率を有する円弧形状をなし、前記円弧形状の溝部によって前記光伝送手段の延伸方向を前記発光素子の光出射面の法線方向に変えるように構成したものである。
 これによって、発光素子に至る経路において、光伝送手段に不必要な応力が作用することが防止でき、光伝送手段の入射端面が、発光素子の光出射面から所定距離だけ離間した状態を維持することが可能となる。
 また、本発明は、前記光伝送手段を複数の光ファイバで構成したものである。
 これによって、1個の発光素子が出射する光を複数の光ファイバを用いて伝搬することで、内視鏡の挿入部の先端から様々な角度、方向に照明用の光を出射することが可能となる。
(第1実施形態)
 以下、本発明の実施の形態について図面を参照しながら説明する。なお、説明における方向については、原則として各図中の方向の記載に従うものとする。
 図1は、第1実施形態に係る内視鏡2および内視鏡2に接続されたビデオプロセッサ3の概要を示す全体斜視図である。内視鏡システム1は、医療用の軟性鏡である内視鏡本体(以降、単に「内視鏡」と呼称する)2と、観察対象の内部を撮影して得られた静止画および動画に対して所望の画像処理等を行うビデオプロセッサ(プロセッサ装置)3とから主として構成される。内視鏡2は、観察対象(ここでは、人体)の内部に挿入される挿入部5と、挿入部5の後部で接続されて挿入部5を支持するプラグ部6とを備える。
 ビデオプロセッサ3は、略直方体状をなす金属製の筐体を有し、その筐体には、プラグ部6が連結されるソケット部7が収容されている。ソケット部7は、ビデオプロセッサ3の筐体の前壁3aにおいて略矩形状に開口する開口部8を有しており、この開口部8にプラグ部6の後部6aが挿入されることにより、プラグ部6がソケット部7に連結される。これにより、内視鏡2は、ビデオプロセッサ3との間で電力受給や各種信号(映像信号、制御信号など)を送受信する。なお、プラグ部6は、内視鏡2とビデオプロセッサ3との連結操作またはその連結解除操作などのように、ユーザが内視鏡2を取り扱う際に把持される部位となる。
 挿入部5は、前後方向と垂直な方向に円形断面を有すると共に、観察対象に対して適正な長さを有している。挿入部5は、プラグ部6に後端が接続された可撓性の軟性部11と、この軟性部11の前端に連なり挿入部先端を形成する硬性部12とを有している。軟性部11の外周部は、可撓性の材料から形成されており、また、硬性部12の外周部は、剛性の高い部材から形成されている。挿入部5の内部空間は、プラグ部6との連通を除いて密閉状態にあり、塵埃等の侵入が防止されている。
 また、挿入部5内には、上述した映像信号や制御信号を送受信する伝送ケーブル36(図4参照)、患部等を照明する照明光を伝送する光ファイバ35(光伝送手段。図4参照)、患部を洗浄する水を搬送する注水パイプ(図示せず)等が配設されている。
 硬性部12には、観察部位の撮像に用いられる撮像ユニット(図示せず)が収容されている。この撮像ユニットは、対物光学系をなすレンズユニットや固体撮像素子等を含む周知の構成を有している。硬性部12の前端部12aは透光性の光学材料からなり、照明光が出射される照明用レンズとして機能する。上述した光ファイバ35はプラグ部6、挿入部5を経由して、硬性部12の前端部12aまで延在している。
 図2は、内視鏡2のプラグ部6の構成を示す上面透視図である。以降、プラグ部6の概略構成、特にプラグ部6内における光ファイバ35の引き回しについて説明する。
 プラグ部6は、その前方にファイバ支持基板95と後方に光源ユニット30とを備える。光源ユニット30は、後に詳細に説明するように、LED(Light Emitting Diode)チップを含む発光素子(以降、「LEDモジュール」と呼称する)22を備える(図5等を参照)。LEDモジュール22の光出射面から出射された光は、複数の光ファイバ35の束に取り込まれる。このように、LEDモジュール22が出射する光を複数の光ファイバ35を用いて伝搬することで、内視鏡2の挿入部5の先端から様々な角度、方向に照明用の光を出射することが可能となる。LEDモジュール22の上方において、光ファイバ35の束はファイバホルダ37で一旦支持されて前方に延伸され、ファイバ支持基板95を経由して更に挿入部5へと延伸される。
 ここで、個々の光ファイバ35は、いわゆる多成分ガラスによって構成され、第1実施形態では光ファイバ35の束を径が50μmのものを56本束ねて構成している。光ファイバ35の径を上述のものとした場合、光ファイバ35の束の太さは0.5mm程度となる。なお、径の異なる2種類の光ファイバ35、例えば30μmおよび50μmの2種類のものを一緒に束ねてもよい。
 光が伝搬するルートの順に従えば、光ファイバ35の束は、ファイバホルダ37においてLEDモジュール22の直上に設けられたガイド孔(第2ガイド、穿孔部)37bから真上に引き出され、ガイド溝(第1ガイド、溝部)37aを通って前方に延伸される。そして、光ファイバ35の束はファイバホルダ37の前方にてガイド溝37aから離脱する際に、右方に進路が変更されて、ファイバ支持基板95へ引き込まれる。光ファイバ35の束は、ファイバ支持基板95に設けたファイバ係止部材95a~95dによって、ファイバ支持基板95上で略楕円形状を描くように引き回されて係止される。そして、光ファイバ35は、ファイバ支持基板95上を1周するとファイバ係止部材95eによって延伸方向が変えられて、挿入部5の方向(前方)に導かれる。ただし、束を構成する各光ファイバ35は全体を拘束されておらず(即ち、結束されておらず、または束全体が被覆等されていない)、個々の光ファイバ35はファイバ係止部材95a~95dによって群として係止されている。また、ファイバ係止部材95a~95eによる係止は緩やかなものであり、光ファイバ35はファイバ支持基板95が構成する平面上を変位自在(移動自在)に支持されている。ただし上下方向については、ファイバ係止部材95a~95eによって変位は規制されている。
 後述するように、LEDモジュール22の光出射面と対向する位置において、光ファイバ35の光入射端面(光ファイバ35の後端)は所定の位置に固定されている。一方、挿入部5の先端(硬性部12の前端部12a)においても、光ファイバ35の先端は、照明用光学系の位置に依存して個別に固定されている。このように光ファイバ35の先端および後端の位置は固定されており、光ファイバ35を構成する個々のファイバの長さには公差があり、更に、軟性部11は内視鏡2の使用状況に応じて変位することから、各光ファイバ35の長さを調整等する機構が必要となる。第1実施形態では、ファイバ支持基板95上で光ファイバ35を一周させる状態として、ファイバ支持基板95において光ファイバ35の移動を許容することで、各光ファイバ35の長さを調整するとともに、特定の光ファイバ35に張力・応力が集中しないようにいる。
 図3は、内視鏡2のプラグ部6の要部分解斜視図、図4は、内視鏡2におけるプラグ部6の内部構造の要部断面図である。以降、図3および図4を用いてプラグ部6の内部構造について説明する。
 図3に示すように、プラグ部6は、その筐体(外殻)の上側を構成する上プラグカバー20と、この上プラグカバー20と結合して筐体の下側を構成する下プラグカバー21とを有している。上下のプラグカバー20、21は、樹脂材料(ここでは、ポリプロピレン)からなり、それらの結合状態において、前方に向けて先細り状の内部空間S1を形成する前部20a、21aを有している。前部20a、21aの先端に形成される開口2aには、挿入部5からの光ファイバ35および伝送ケーブル36が通される。
 挿入部5の先端に設けられたCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子(図示せず)で撮像され、撮像素子内でディジタル化された画像データは、伝送ケーブル36を介して一旦LED基板23で中継され、LED基板23の後端を構成する端子部41からビデオプロセッサ3へと送られる。また逆に、撮像素子を制御する制御信号等が伝送ケーブル36を介して挿入部5に送られる。
 また、上下のプラグカバー20、21は、それらの結合状態において、略直方体状の内部空間S2を形成する後部20b、21bを有している。内部空間S2には、図2に示す光源ユニット30やファイバ支持基板95等の各部品または部材が収容される。
 内部空間S2を画成する下プラグカバー21の底壁39には、板ばね27を露出する略矩形の切欠き部40が形成されている。なお、切欠き部40の構成は種々の変更が可能であり、例えば、切欠き部40の代わりに1以上の開口を設けることも可能である。
 さて、上述のように上下のプラグカバー20、21の間には光源ユニット30が設けられている。以降、図3および図4を用いて光源ユニット30の構成について詳細に説明する。図3に示すように、光源ユニット30は、LED基板23と、固定板25と、ファイバホルダ37と、板ばね27と、ホルダ部材28とで構成される。
 まず、LED基板23について説明する。LED基板23は、ガラスエポキシで構成された絶縁性の基材上に所定のパターンで銅箔を形成したものである。LED基板23にはLEDモジュール22が搭載されている。LEDモジュール22は略直方体形状をなし、その上面にガラスで構成された光出射面を備える。LEDモジュール22は、内部に高輝度(例えば、出力2W)の白色LEDチップを包含しており、光出射面から照明光を出射する。
 ここで、LED基板23を構成するガラスエポキシの熱伝導率は常温(27℃)で0.471W/m・Kである。他方、銅の熱伝導率は402W/m・Kであり、ガラスエポキシよりも効率よく熱を伝達する。第1実施形態では、この銅箔を約70μm程度に積層している。更に、当該銅箔を形成した部分においてLED基板23の表裏は銅を充填したviaホールで連結されている。一般に高輝度のLEDになるほど発熱が大きいが、上述の構成によってLED基板23自体の熱伝導導性を改善し、LEDモジュール22が発生する熱をLED基板23の全体に拡散している。
 LED基板23において、平面視において矩形状を有する基板本体の後端側には、ビデオプロセッサ3と電気的に接続するための端子部41が設けられている。LED基板23には、LEDモジュール22の温度を監視する温度センサ(図示せず)が備えられ、端子部41を介してやりとりされるセンサ出力信号、制御信号に基づいて、LEDモジュール22の出射光量はビデオプロセッサ3によって制御される。なお、LED基板23に、温度センサの他にCPU(Central Processing Unit)や、発光継続時間に基づくLED制御情報等を格納する不揮発性メモリ等を配置し、LED基板23内で閉じた光量制御部を構成してもよい。このLED基板23と、LEDモジュール22と、光ファイバ35及び照明用レンズ等とから内視鏡システム1の照明装置が構成される。
 次に固定板25について説明する。固定板25は、熱伝導特性に優れ、かつ加工精度を確保しやすい金属材料(ここでは、アルミニウム)を基体として表面を絶縁加工したものである。固定板25は平面視において略矩形状をなす。固定板25の前縁および後縁には、それぞれ前方および後方に突設された凸部46、47が形成されている。また、固定板25の左右側縁には、その前端および後端においてそれぞれ側方に向けて延設された対をなす凸部48、49が形成されている。また、固定板25の上面には、LED基板23の各位置決め孔43の径にそれぞれ対応する位置に配置された円形突起(位置決めピン)51が設けられている。LED基板23に設けた貫通孔42に螺子89aを挿通し、固定板25の螺子穴50に螺着することでLED基板23が固定板25に取り付けられる。なお、固定板25とLED基板23との間に、絶縁性および熱伝導特性に優れる絶縁シート(例えば、放熱用シリコーンゴム)を挟んでもよい。
 次に、ファイバホルダ37について概略を説明する。ファイバホルダ37は、固定板25と同様に金属材料(ここでは、アルミニウム)で構成されたブロック状の部材である。ファイバホルダ37は、LEDモジュール22の出射光を内視鏡2の挿入部5の先端まで導く光ファイバ35の後端側を保持して、光ファイバ35をLEDモジュール22近傍から挿入部5側へと導く。後に詳細に説明するように、ファイバホルダ37の上面にはガイド溝37aが設けられ、後部にはファイバホルダ37を上下方向に貫通するガイド孔37bが形成されている(図2、図7等参照)。これらのガイドによって光ファイバ35がLEDモジュール22の光出射面まで導かれる。
 ファイバホルダ37の前方左側および後方右側には、ファイバホルダ37から突出する取付片91,91がファイバホルダ37の底面と面一に設けられており、取付片91,91に螺子89bを挿通し、固定板25の螺子穴25aに螺着することでファイバホルダ37が固定板25に取り付けられる。なお、LED基板23には開口23aが設けられており、後方の取付片91に挿通された螺子89bは開口23aを介して固定板25に螺着される。
 加工性に優れるアルミニウムで構成した固定板25に、円筒突起51でガイドしてLED基板23を固定することで、両者は高精度に位置決めされる。他方、同様にアルミニウムで構成したファイバホルダ37は固定板25に固定され、結果的に、ファイバホルダ37とLED基板23とは、相互に高精度に位置決めがなされる。
 第1実施形態では、LEDモジュール22の光出射面から出射される光をいかにして光ファイバ35に効率よく取り込めるかが重要となる。この際、LEDモジュール22の光出射面と光ファイバ35の端面とが互いに平行配置されているのが理想的である。シミュレーションによれば、両者を平行配置したときの光利用効率(取り込み光量/全出射光量)を100とし、光利用効率が90に低下するまでを許容範囲とすると、LEDモジュール22を搭載するLED基板23と、光ファイバ35の束を支持するファイバホルダ37とは、相対的に約5deg以下の傾斜が許容される。これは、LED基板23に0.2mmの凹凸差あっても達成できる角度であり、LED基板23としてガラスエポキシ基板を採用できる根拠となっている。
 次に板ばね27について説明する。板ばね27は、薄い(ここでは、0.1mmの厚さを有する)金属材料(ここでは、ステンレス)からなり、平面視において略矩形状をなす底壁27aと、底壁27aの前縁から上方に延びる前壁27bと、底壁27aの後縁から上方に延びる後壁27cとを有している。前壁27bおよび後壁27cの幅方向中央には、固定板25を取り付けるための矩形の取付孔27d、27eがそれぞれ形成されている。前壁27bの上部は前斜め上方に傾斜するように折り曲げられており、また、後壁27cの上部は、略水平となるように前方に折り曲げられている。底壁27aの後端側には、図4にも示すように、後壁27cの下縁側に向けて上方に傾斜する傾斜面62が形成されている。
 次にホルダ部材28について説明する。ホルダ部材28は、金属材料(ここでは、アルミニウム)から構成され、上プラグカバー20の上壁と対向するように配置される上壁28aと、この上壁28aの前部および後部に間隔をおいて左右側縁からそれぞれ下方に延出するように形成された対をなす脚片28b、28cとを有している。脚片28b、28cの下部には、それぞれ固定板25の凸部48、49が嵌め込まれる切欠き部64、65が設けられている。
 ホルダ部材28は、光源ユニット30を構成する各部品や部材を保持する。即ち、LED基板23、ファイバホルダ37および板ばね27は固定板25に支持され、固定板25はホルダ部材28に支持される。そして、ホルダ部材28は上プラグカバー20と下プラグカバー21とに挟まれて固定されている。
 このような構成とすることで、LEDモジュール22から発生する熱は、まず銅箔で被覆されたLED基板23の全体に拡散し、その後固定板25、板ばね27の順に伝達していく。そして、LED基板23をソケット部7に連結すると、LED基板23はビデオプロセッサ3と端子部41とを介して電気的に接続されるとともに、板ばね27を介して熱的にも接続され、ビデオプロセッサ3側に熱が伝達して、図示しない冷却ファン等によって放熱が行われる。
 また、図4に示すように、光源ユニット30が配置されたプラグ部6の内部空間S2には、ポッティング剤71が注入されている。これにより、プラグ部6の後部の開口72は、LED基板23の端子部41の露出を除いてポッティング剤71により閉鎖されている。また、下プラグカバー21の下部は板ばね27の底壁27aによって閉鎖されている。このような構成により、プラグ部6の内部空間S1、S2は、挿入部5との連通を除けば密閉状態にあり、非使用時(プラグ部6をソケット部7から抜いた状態)における塵埃等の侵入や、内視鏡2の高温滅菌処理時における高温蒸気等の侵入が防止される。また、ポッティング剤71の断熱効果により、ユーザによって把持されるプラグ部6部の筐体が高温となることが回避される。
 図5は、ファイバホルダ37による光ファイバ35の支持状態を示す要部側面図であり、図6は、ファイバホルダ37による光ファイバ35の支持状態を示す要部斜視図であり、図7は、ファイバホルダ37による光ファイバ35の支持状態を示す要部上面図である。以降、図5ないし図7を用いて、ファイバホルダ37によって光ファイバ35の束を支持する構成、特にLEDモジュール22の光出射面と光ファイバ35の端面との位置関係を固定する構成について詳細に説明する。
 なお、図5は側面図であるが、説明を容易にするためファイバホルダ37を透視して想像線を記載している。また図6は斜視図であるが、同様の理由でファイバホルダ37を透視した状態を描いている。また、以降の説明では、図4を用いて説明したポッティング剤71が除去された状態を想定している。
 図示するようにファイバホルダ37は、その上面に前後方向に連なるガイド溝37aが形成されている。ガイド溝37aは、金型成形により、あるいはファイバホルダ37を切削加工して形成され、その幅は、光ファイバ35の束の径(ここでは、0.5mm)よりも、左右方向に25μmずつ大きく形成されている。このようにガイド溝37aは単純な構成であり、所望の形状が容易に得られることから、後述するように、光ファイバ35に不必要な応力を与えることなく、光ファイバ35の束を案内することができる。
 また、図5に示すように、側面視においてファイバホルダ37を透視すると、ガイド溝37aの底面は、太い破線として描く軌跡を有している。即ち、当該軌跡は、ファイバホルダ37の前部においては、前後方向に連なる水平領域を有し、更に後部では仮想円C1の一部からなる半径rの円弧状領域(スロープ)を有する。そして前部の水平領域と後部の円弧状領域との間は滑らかに連結されている。なお、第1実施形態では、光ファイバ35の曲率半径の限度は3mmであるのに対し、円弧状領域の半径はr=4.5mmに設定している。
 更に、ファイバホルダ37の後部において、光ファイバ35がガイド溝37aから離脱する部分(部位P2)の下部には、固定板25およびLED基板23の主面と平行な面をなすステージ部37fが設けられている。上下方向におけるステージ部37fの位置は、仮想円C1の中心O1の位置と一致している。そして、このステージ部37fには、上下方向(即ち、LED基板23に搭載されたLEDモジュール22の光出射面の法線方向)に、ガイド孔37bが形成されている。ガイド孔37bはステージ部37fを上下方向に貫通し、ガイド孔37bの軸線は、LEDモジュール22に搭載されたLEDチップ(図示せず)の発光中心のほぼ直上となるように設けられている。
 ただし、後述するように、ガイド孔37bに挿入された光ファイバ35の束は、ガイド孔37bの後方の側壁に押圧されることから、この状態を考慮してガイド孔37bの軸線が発光中心より若干(後述のL3=25μm程度)前方となるようにガイド孔37bを形成しておくのが望ましい。
 ステージ部37fの上方においては、光ファイバ35の束が中空に配置される。そして中空にある光ファイバ35は、ファイバホルダ37の後部において仮想円C1を下方に延長した軌跡を描いて(より正確には、ステージ部37fの上方の空間において、仮想円C1を延長した軌跡にガイド溝37aの底面が存在すると仮定して、この仮定のガイド溝37aにより支持された状態で)、ガイド孔37bに導かれる。
 ガイド孔37bは上面視で円形状をなし、ステージ部37fにおける第1開口37gにはC面取りが施されている。このC面取りがなされた部分を除いて、ガイド孔37bの直径は光ファイバ35の束の径よりも50μmだけ大きく設定されている。第1実施形態においては、光ファイバ35の束の径は0.5mmであるから、光ファイバ35の束の軸がガイド孔37bの軸線に沿って挿入されたとすると、光ファイバ35の束の外周とガイド孔37bとは25μm(L3)だけ離間することになる。
 また、ファイバホルダ37の下面において、ステージ部37fを貫通したガイド孔37bの第2開口37hと対向する部分には、LEDモジュール22の上部を含む全周囲にわたって空隙部37cが設けられている。そして、空隙部37cにおいて、ファイバホルダ37の下面(第2開口37hが開口する面)と、ステージ部37fの上面との間隔はL2=5mmとされている。即ち、ステージ部37fを貫通するガイド孔37bは上下方向に5mmの長さを備える。このようにガイド孔37bを5mm程度とすることで、金型成形によってファイバホルダ37を製造できるようになる。もちろん、ファイバホルダ37にドリルを用いて穿孔してもよい。
 光ファイバ35は前方(挿入部5側)よりファイバホルダ37に延在されており、ガイド溝37aの水平領域を経た後、滑らかに円弧状領域に入り、円弧状領域によってそれまでの水平方向(前後方向)から、一旦上方に導かれたのち、水平方向に対して時計回りに90゜の方向転換をされて、下方向にガイド孔37bに導かれる。このような構成を採用することで、LEDモジュール22を搭載するLED基板23の設置角度を調整すること、即ち、LED基板23を水平配置することが可能となり、内視鏡2を構成する各要素のレイアウトの自由度が向上する。
 ここで、ガイド孔37bの第1開口37gは、ステージ部37fにおいて、LEDモジュール22の光出射面の法線(LEDの発光中心における法線)と光ファイバ35を案内する円弧を含む仮想円C1の接線とが一致する位置に設けられている。なお、より正確には、図5に点P3として示す位置に第1開口37gの開口端が設けられている。この構成によって、LEDの発光中心における法線は、光ファイバ35の束の軸線と略一致する。
 ガイド孔37bに挿入された光ファイバ35の束は、上述したように、もともとの延在方向(前後方向)に対して下方に略90゜の方向転換が施されていることから、光ファイバ35の束は弾性によって上下方向から前後方向(水平方向)に変位しようとする。ところが上下方向におけるステージ部37fの位置と、仮想円C1の中心O1の位置とを一致させて、ステージ部37fに第1開口37gを設けると、当該第1開口37g(点P3)において、光ファイバ35の弾性による復元力は、上下方向のベクトルを含まず、光ファイバ35は弾性によってガイド孔37bの側壁(特に、後方の側壁)に押圧されることになる。
 つまり、光ファイバ35の弾性に基づく復元力は、ガイド孔37bの内部において実質的に前後方向のみに発生するため、後述する接着部位(図5に示す部位P1,部位P2)において光ファイバ35を固定しておけば、一旦ガイド孔37bに挿入された光ファイバ35の束が上下方向に移動することはないのである。なお、特定の溶液をガイド孔37bに注入して、ガイド孔37bの内壁に化学的に梨地面を付与することができる。このようにしてガイド孔37bの内壁の摩擦係数を高めると、更に光ファイバ35の束の移動が防止される。
 ファイバホルダ37において、光ファイバ35の束は、図5に示す部位P1と部位P2とにおいて接着剤により接着される。部位P2の位置は、光ファイバ35の束がガイド溝37aからステージ部37fの上部に抜け出る直前に設定されている。これによって、仮想円C1の延長線上に配置された光ファイバ35の延伸方向と、LEDモジュール22の光出射面の法線方向とが一致する部位(即ち、仮想円C1とこの中心O1を通過する水平線との接点)の極めて近傍で光ファイバ35の束が固定されることとなる。
 上述したように上下方向におけるガイド孔37bの長さを5mmとしているため、部位P1および部位P2は、LEDモジュール22から少なくとも5mm以上離間している。このように光ファイバ35の束を固定する部位をLEDモジュール22から離間させることで、接着剤の耐熱性を考慮する必要がなくなる。
 一般に、有機系の接着剤の耐熱温度は60~80℃とされており、高出力のLEDのジャンクション温度はこれを越える場合がある。本発明によれば、このようにLEDモジュール22自体が高温になっても、接着剤が溶融するようなことはない。これによって、第1実施形態の内視鏡2では、光ファイバ35の固定用に例えば有機系のUV硬化型接着剤を用いることが可能となる。
 もっとも、熱による劣化に対する信頼性を更に担保するために、例えば部位P1に有機系の接着剤を用い、部位P2に無機系の接着剤を用いるようにしてもよい。この場合でも、少なくとも部位P1についてはUV硬化型接着剤が利用可能であることから、部位P1において光ファイバ35の束をファイバホルダ37に簡易に仮留めできるため、製造工程が短縮されて低コスト化に寄与できる。
 さて、第1実施形態では、ファイバホルダ37とLED基板23を固定板25に組み付けた状態で、空隙部37cにおけるファイバホルダ37の下面(第2開口37hの開口が設けられた面)と、LEDモジュール22の光出射面との間をL1=0.1mmだけ離間させている。即ち、上述したように、図5に示すL1=0.1mmであるから、光ファイバ35の束の端面は、ファイバホルダ37の下面と一致させるように調整される。このような調整を行うことで、LEDモジュール22の光出射面に光ファイバ35の束の端面(光入射端面)が接触しない状態が維持され、LEDモジュール22の光出射面が機械的に傷つくことが防止される。更にこの構成に従えば、寸法公差の許容値を大きくすることができることから、部品単価を抑えることができ、内視鏡全体のコストが低減される。
 以降、ファイバホルダ37の下面とLEDモジュール22の光出射面との間に0.1mmの空隙を設ける調整工程について説明する。調整工程には図示しない治具が使用される。当該治具は、上述した固定板25に実装されたLED基板23およびLED基板23に実装されたLEDモジュール22を模擬した部材(もちろん、実物を流用してもよい)を含み、更にLEDモジュール22の光出射面を想定した面上に高さL1の規制部材を有している。このL1は上述したように例えば0.1mmに設定されている。
 このように構成された治具に対し、作業者は固定板25を模擬した部材にファイバホルダ37を取り付ける(図3に示すのと同様、螺子89bを用いて螺着する)。そうすると、上述した規制部材によって、ファイバホルダ37の空隙部37cが占められ、空隙部37cに設けたガイド孔37bの第2開口37hが閉塞される。
 なお、束を構成する各光ファイバ35の端部は、他の治具によって、予め束の端面を面一とするような加工が施されている。具体的には、複数の光ファイバ35を把持した後に一度前方に過剰に突き出した後、光ファイバ35の端面が所定の前端面に揃うように押し戻すことで複数の光ファイバ35の端面が面一に揃えられる。そして、光ファイバ35の端部は例えばアルコールのような揮発性の液体に浸される。液体に浸すことで、毛管現象によって複数の光ファイバ35の間の空隙に液体が侵入し、液体の表面張力によって各光ファイバ35の相互の位置関係が保たれる。光ファイバ35の束の軸方向(長さ方向)に液体が侵入することで各光ファイバ35の間には面としての保持力が生じ、特に光ファイバ35の軸方向については実質的にリジットな1つの構造物とみなすことができ、作業中に光ファイバ35の束の端面が凹凸状になることや、端部において各光ファイバ35がばらけることが防止される。
 この状態で、作業者はステージ部37fに設けられた第1開口37gを介してガイド孔37bに光ファイバ35の束を挿入する。その後光ファイバ35の束の端面が、治具の規制部材(図示せず)に当接するまで押し込んだ後、光ファイバ35の束をガイド溝37aに沿わせて変形させる。上述したように、光ファイバ35の束は点P3(ガイド孔37bの第1開口37g)における仮想円C1の接線を経由して、そのままガイド溝37aによって円弧状領域に案内されるため、作業者は光ファイバ35には不必要な応力が加えることなく、スムーズに引き回すことができる。
 そして作業者は、引き回した光ファイバ35の束の下面を、ガイド溝37aの底に接触させておいて、まず部位P1に有機系のUV硬化型接着剤を塗布し、当該塗布部分にUV照射を行って光ファイバ35の束をファイバホルダ37に仮固定する。光ファイバ35の束の端面が治具の規制部材に当接し、かつ引き回された光ファイバ35がガイド溝37aの底面に接触している状態で部位P1を固定すると、上述したように、ステージ部37fに設けられた第1開口37gにおいては、光ファイバ35には前後方向の力しか発生しないため、光ファイバ35はガイド孔37b内を上下方向に動くことができない。
 そして、部位P1における接着が完了した後、作業者は、部位P2において光ファイバ35の束をファイバホルダ37に接着する。部位P2では、有機系、無機系のいずれの接着剤を使用してもよい。部位P2で光ファイバ35の束をファイバホルダ37に接着し、これが硬化した時点で調整作業が完了する。なお、上述した水平領域、または水平領域と後部の円弧状領域の間において、ガイド溝37aに光ファイバ35の束を接着しても構わない。また、水平領域、または水平領域と後部の円弧状領域の間において、ガイド溝37aの底面に光ファイバ35の束を接触させることは必須ではなく、光ファイバ35の束は左右方向(図7参照)に動きを規制されていればよい。
 最終的に光ファイバ35の束の端部(後端)は、ファイバホルダ37の空隙部37cにおいて、第2開口37hから突出することなく、空隙部37cにおけるファイバホルダ37の底面と同一の高さL1に維持される。このようにして、LEDモジュール22の光出射面に対して光ファイバ35の束の光入射端面が位置決めされる。
 この後、作業者は、光ファイバ35の束を接着したファイバホルダ37を治具から取り外し、これを実際の固定板25に螺着する。なお、上述したアルコール等の液体は、光ファイバ35の束をファイバホルダ37に接着した後に揮発するため、内視鏡2を構成する要素には何ら影響を与えない。
 なお、内視鏡2で用いる発光素子22としては、比較的小型のLEDが好ましいが、これに限らず他の周知の光源が用いられてもよい。第1実施形態では、LEDモジュール22の光出射面と光ファイバ35の束の光入射面との間には結合光学系が備えられていない。ここで光ファイバ35の束は直径約0.5mmであるから、少なくともこれよりも大きい発光領域を有するLEDや、EL光源等を用いることで、光ファイバ35により高効率に光を取り込むことが可能となる。
 また、内視鏡2に接続される放熱用装置としては、電気的な接続と熱的な接続とを同時に行うことができる利便性からビデオプロセッサ3が好ましいが、必ずしもこれに限定されるものではない。
 また、第1実施形態では、ファイバホルダ37にガイド溝37aを設けているが、このように「溝」であること、即ち光ファイバ35の束の延伸方向の両側に壁を備える構成は必須ではない。この構成に替えて、例えばファイバホルダ37において前後方向に連なる凸部(単一の壁部)を設けて、光ファイバ35の束を、当該凸部に沿わせるように配置してもよい。このような構成としても、部位P1、部位P2で接着を施すことで、ガイド溝37aと同様の効果を発揮することができる。
 以上、本発明を特定の実施形態に基づいて説明したが、これらの実施形態はあくまでも例示であって、本発明はこれらの実施形態によって限定されるものではない。例えば、本発明による内視鏡2は、軟性鏡に限らず硬性鏡にも適用可能であり、その用途(観察対象)も医療用に限定されない。
 即ち、上述した実施形態では、内視鏡2を例にして説明をしたが、本発明は、内視鏡2以外にも応用することができる。例えば、LED等で構成される発光素子22から出射された光を光ファイバ35の一端で受けて伝達し、その伝達先で光ファイバ35の他端から光を出射する装飾用の照明や、発光素子22を光で照射される対象から遠隔に配置し、これらの間を光ファイバ35の束で結合する構成に応用することが可能である。即ち、本発明は、発光素子22から出射する光を光ファイバ35に取り込む光結合装置としての構成を有している。
 なお、上述の実施形態に示した本発明に係る内視鏡の各構成要素は、必ずしも全てが必須ではなく、少なくとも本発明の範囲を逸脱しない限りにおいて適宜取捨選択することが可能である。
 本発明に係る内視鏡は、内視鏡内部に照明用の発光素子と発光素子が出射する光を内視鏡先端に導く光ファイバとが設けられた構成において、発光素子の出射光を効率よく光ファイバに取り込むことが可能であることから、外部から直接観察できない観察対象の内部を撮像する内視鏡や、発光素子の出射光を光ファイバに取り込む光結合装置などに好適に利用することが可能である。
1 内視鏡システム
2 内視鏡本体(内視鏡)
3 ビデオプロセッサ
5 挿入部
6 プラグ部
7 ソケット部
11 軟性部
12 硬性部
20 上プラグカバー
21 下プラグカバー
22 LEDモジュール(発光素子)
23 LED基板
25 固定板
27 板ばね
28 ホルダ部材
30 光源ユニット
35 光ファイバ(光伝送手段)
37 ファイバホルダ(ホルダ)
37a ガイド溝(溝部、第1ガイド)
37b ガイド孔(穿孔部、第2ガイド)
37c 空隙部
37f ステージ部
37g 第1開口
37h 第2開口
91 取付片
95 ファイバ支持基板
95a~95e ファイバ係止部材

Claims (6)

  1.  観察対象の内部に挿入される挿入部と、
     発光素子と、
     その入射端面から入射した前記発光素子の出射光を前記挿入部に導く光伝送手段と、
     前記発光素子に対して前記光伝送手段を支持するホルダと、
    を備え、
     前記ホルダは、前記光伝送手段の入射端面が、前記発光素子の光出射面から所定距離だけ離間するように、前記光伝送手段を支持することを特徴とする内視鏡。
  2.  前記ホルダに前記光伝送手段を接着することで、前記発光素子の光出射面に対して前記入射端面を位置決めすることを特徴とする請求項1に記載の内視鏡。
  3.  前記ホルダは、前記光伝送手段を前記発光素子まで案内する第1ガイドおよび第2ガイドを備え、
     前記第2ガイドを、前記ホルダに設けた穿孔部で構成し、
     前記光伝送手段は、前記第1ガイドによって延伸方向を変えられ、
     前記第1ガイドによって延伸方向を変えられた光伝送手段は、前記第2ガイドによって前記発光素子まで導かれることを特徴とする請求項1または請求項2に記載の内視鏡。
  4.  前記第1ガイドを、前記ホルダに設けた溝部で構成したことを特徴とする請求項3に記載の内視鏡。
  5.  前記第1ガイドを構成する溝部は、所定の曲率を有する円弧形状をなし、
     前記円弧形状の溝部によって前記光伝送手段の延伸方向を前記発光素子の光出射面の法線方向に変えることを特徴とする請求項4に記載の内視鏡。
  6.  前記光伝送手段を複数の光ファイバで構成したことを特徴とする請求項1ないし請求項5のいずれか1項に記載の内視鏡。
PCT/JP2014/001791 2013-03-27 2014-03-27 内視鏡 WO2014156168A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-067042 2013-03-27
JP2013067042A JP2014188206A (ja) 2013-03-27 2013-03-27 内視鏡

Publications (1)

Publication Number Publication Date
WO2014156168A1 true WO2014156168A1 (ja) 2014-10-02

Family

ID=51623180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001791 WO2014156168A1 (ja) 2013-03-27 2014-03-27 内視鏡

Country Status (2)

Country Link
JP (1) JP2014188206A (ja)
WO (1) WO2014156168A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6420434B1 (ja) * 2017-09-15 2018-11-07 国立大学法人大阪大学 内視鏡用プラグ
US11931490B2 (en) 2018-10-05 2024-03-19 Seoul Viosys Co., Ltd. Air purification module and refrigerator comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102163A (ja) * 2000-10-04 2002-04-09 Asahi Optical Co Ltd 電子内視鏡装置
JP2002112953A (ja) * 2000-10-10 2002-04-16 Asahi Optical Co Ltd 携帯内視鏡の光源装置
JP2006255296A (ja) * 2005-03-18 2006-09-28 Kyocera Corp ファイバ用の光源及びファイバ光源装置とそれを用いた内視鏡
WO2013011778A1 (ja) * 2011-07-15 2013-01-24 オリンパスメディカルシステムズ株式会社 プローブ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102163A (ja) * 2000-10-04 2002-04-09 Asahi Optical Co Ltd 電子内視鏡装置
JP2002112953A (ja) * 2000-10-10 2002-04-16 Asahi Optical Co Ltd 携帯内視鏡の光源装置
JP2006255296A (ja) * 2005-03-18 2006-09-28 Kyocera Corp ファイバ用の光源及びファイバ光源装置とそれを用いた内視鏡
WO2013011778A1 (ja) * 2011-07-15 2013-01-24 オリンパスメディカルシステムズ株式会社 プローブ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6420434B1 (ja) * 2017-09-15 2018-11-07 国立大学法人大阪大学 内視鏡用プラグ
JP2019051110A (ja) * 2017-09-15 2019-04-04 国立大学法人大阪大学 内視鏡用プラグ
US11122963B2 (en) 2017-09-15 2021-09-21 Osaka University Plug for endoscope
US11931490B2 (en) 2018-10-05 2024-03-19 Seoul Viosys Co., Ltd. Air purification module and refrigerator comprising the same

Also Published As

Publication number Publication date
JP2014188206A (ja) 2014-10-06

Similar Documents

Publication Publication Date Title
US9943221B2 (en) Medical, in particular dental, diagnostic device having image capture means
US8485967B2 (en) Endoscopic imaging device and endoscope apparatus having a configuration to prevent condensation
EP2594187B1 (en) Endoscope
JP5586402B2 (ja) 内視鏡装置及びその撮像素子放熱方法
JP5341279B2 (ja) 内視鏡装置
JP5303414B2 (ja) 撮像装置及び内視鏡
US9110248B2 (en) Connector assembly
JP2010069217A (ja) 電子内視鏡用撮像装置、および電子内視鏡
WO2014156168A1 (ja) 内視鏡
JP2010279527A (ja) 内視鏡
JP2012050756A (ja) 内視鏡装置及びその撮像素子放熱方法
TWI777147B (zh) 內視鏡系統
TWI540353B (zh) 連接器組件
JP4709661B2 (ja) 撮像装置
JP5740180B2 (ja) 撮像装置及び内視鏡装置
JP5738645B2 (ja) 内視鏡
JP6349286B2 (ja) 光学装置及び電子内視鏡、並びに、光学装置の製造方法
JP2011000346A (ja) 電子内視鏡挿入部の放熱構造
JP6349287B2 (ja) 内視鏡
JP6018794B2 (ja) 電子内視鏡装置、内視鏡用撮像モジュール、及び、電子内視鏡装置の作動方法
JP2014113350A (ja) 内視鏡および内視鏡システム
JP2013099469A (ja) 撮像装置、内視鏡
JP5836189B2 (ja) 内視鏡用撮像モジュール及び電子内視鏡装置
JP2003169776A (ja) 内視鏡の照明系の構造
JPH03280921A (ja) 電子内視鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14776088

Country of ref document: EP

Kind code of ref document: A1