WO2014156129A1 - 成膜装置及び成膜方法 - Google Patents
成膜装置及び成膜方法 Download PDFInfo
- Publication number
- WO2014156129A1 WO2014156129A1 PCT/JP2014/001715 JP2014001715W WO2014156129A1 WO 2014156129 A1 WO2014156129 A1 WO 2014156129A1 JP 2014001715 W JP2014001715 W JP 2014001715W WO 2014156129 A1 WO2014156129 A1 WO 2014156129A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- film forming
- chamber
- rollers
- pair
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/562—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3266—Magnetic control means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32733—Means for moving the material to be treated
- H01J37/32752—Means for moving the material to be treated for moving the material across the discharge
- H01J37/32761—Continuous moving
Definitions
- the present invention relates to a film forming apparatus and a film forming method for continuously forming a film on a belt-like base material such as a film.
- organic EL has been attracting attention as an alternative illumination method to replace fluorescent lamps, and when organic EL is used for this purpose, it is required to use a plastic film for reasons such as weight reduction and ensuring safety.
- the glass substrate When comparing a glass substrate with a plastic film, the glass substrate has a gas barrier property that is necessary for suppressing deterioration of internal elements due to oxygen and water vapor derived from the environment from the beginning.
- the gas barrier film for packaging materials does not reach the barrier level equivalent to that of the glass substrate as it is. Therefore, a higher barrier property is required when a plastic film is used.
- an industrial material such as a solar battery back sheet to which a plastic film can be applied requires a barrier property several times that of a barrier film for food packaging materials, and 10 for a sealing film for a display such as electronic paper and organic EL. It is said that a water vapor barrier property of ⁇ 2 g / m 2 / day or less is necessary.
- a water vapor barrier property of 1 g / m 2 / day or less and a higher barrier property may be required depending on the type of the thin film.
- PVD method As a means for imparting such a high gas barrier property to a plastic film, there is a technique of forming a film on the plastic film, and as such means, a physical vapor deposition method such as an induction heating method, a resistance heating method, an electron beam vapor deposition method, or a sputtering method. (PVD method) is being studied. This PVD method is promising as a method for producing a gas barrier film because it is easy to increase the area and roll-to-roll.
- the PVD method is roughly divided into an evaporation method such as an induction heating method, a resistance heating method, and an electron beam evaporation method, and a sputtering method.
- an evaporation method such as an induction heating method, a resistance heating method, and an electron beam evaporation method
- a sputtering method can obtain a dense film having a high gas barrier property although the film forming speed is low.
- the barrier performance is not so high, and the former vapor deposition method is often used as a method for producing a gas barrier film for food packaging materials, while high barrier performance is achieved.
- Sputtering may be used for the production of gas barrier films used for industrial materials that are required.
- the film formation rate by the sputtering method is slow, there arises a problem that even if the film is formed in a large area, the price per m 2 becomes higher than the vapor deposition method.
- Patent Document 1 and Patent Document 2 are known for the purpose of realizing high barrier performance while using a highly productive vapor deposition method.
- Patent Document 1 in order to improve the film quality of a film formed by a vapor deposition method, a film forming roller (referred to as “cooling can” in Patent Document 1) is introduced while introducing a gas under a certain pressure condition.
- a method of forming a film while applying a high-frequency voltage of 100 kHz or more is disclosed.
- film quality improvement such as improvement in peel strength can be realized by generating glow discharge around the film forming roller during film formation. It is also preferable to apply a magnetic field around the film forming roller and to superimpose a direct current voltage on the high frequency voltage.
- Patent Document 2 proposes an apparatus including vapor deposition means and means for activating vapor deposition material separately from plasma.
- This Patent Document 2 shows that the vapor deposition material is accelerated by an electric field, and it is also disclosed that a voltage is applied to the film forming roller in order to form the electric field.
- Patent Document 2 by independently controlling the evaporation rate of the material and the plasma density, the film formation rate and the gas barrier property when forming a film by the vapor deposition method can be adjusted freely and individually. It is possible to produce a transparent or translucent gas barrier laminate having excellent oxygen barrier properties and water vapor barrier properties.
- film formation may be performed continuously on a film base material of several thousand meters or more, and in some cases 10,000 meters or more. Must be operated continuously over a long period of time.
- Patent Document 1 discloses that vapor deposition is performed by applying a high-frequency voltage of 100 kHz or more to the film forming roller to generate glow discharge. Note that the figure of Patent Document 1 only shows that a high-frequency voltage is applied to the film forming roller, and the counter electrode of the power supply is not shown, but in the apparatus of Patent Document 1, a grounded vacuum chamber or the like is the counter electrode. It is common to think.
- a transparent barrier film such as alumina is formed by the film forming apparatus disclosed in Patent Document 1. This is achieved by evaporating aluminum from the deposition source, supplying oxygen gas around the coating region, and performing reactive deposition. At this time, by applying a high frequency voltage to the film forming roller, plasma by glow discharge is formed in the film forming region, and a film with improved film quality is formed with the assistance of plasma.
- This deposited material is a film of oxide or the like generated by the reaction between the supplied oxygen gas and evaporated aluminum, that is, an insulating film (or a film having a large electric resistance).
- an insulating film or a film having a large electric resistance.
- the film forming apparatus of Patent Document 2 may cause problems such as film quality fluctuations.
- the substrate and the evaporation source held by the film forming roller are discharged by discharge between the hollow cathode and the anode so that the evaporated evaporation material is activated before being deposited on the film substrate. Plasma is generated during this period. Since the hollow cathode and the anode face the region where the evaporation material evaporates, it is considered that a part of the evaporation material is deposited on the hollow cathode and the anode although the amount is smaller than that of the film substrate.
- a film having an insulating property is gradually deposited on the surfaces of the hollow cathode and the anode.
- the deposits on the plasma generation mechanism gradually change the plasma generation state, thereby changing the film quality of the film to be formed, and in extreme cases, the discharge is disabled. There is a risk of creating a situation where the operation must be interrupted by stabilizing the operation.
- An object of the present invention is to provide a film forming apparatus and a film forming method capable of performing film formation by vapor deposition stably over a long period of time.
- This invention provides the film-forming apparatus which vapor-deposits vapor deposition material to the said film base material, conveying a film base material by roll-to-roll under pressure reduction.
- the film forming apparatus includes a chamber whose pressure is reduced, a pair of rollers disposed in the chamber and guided around the chamber by winding a film substrate around an outer peripheral surface, and an evaporation for evaporating the deposition material.
- An apparatus a plasma generating power source for applying an AC voltage between the pair of rollers, and a means for introducing a gas into the chamber, wherein the pair of rollers generates plasma on a surface holding a film substrate. While being generated, the evaporation apparatus evaporates the deposition material and deposits it as a film on the surface of the film substrate.
- the film forming method of the present invention performs film formation using a film forming apparatus for depositing a vapor deposition material on the film base material while conveying the film base material by roll-to-roll under reduced pressure, A chamber in which the inside is depressurized, a pair of rollers disposed in the chamber and guiding the inside of the chamber by winding a film base material on an outer peripheral surface, an evaporation device for evaporating the deposition material, and the pair of A plasma generation power source for applying an alternating voltage between the rollers and a means for introducing a gas into the chamber are provided, and while generating plasma on the surface holding the film substrate using the pair of rollers, The evaporation material is evaporated using the evaporation apparatus and is deposited as a film on the surface of the film substrate.
- FIG. 1 is a cross-sectional front view of a film forming apparatus according to an embodiment of the present invention. It is a front view which shows the principal part of the film-forming apparatus which concerns on the 1st modification of the said embodiment. It is a front view which shows the principal part of the film-forming apparatus which concerns on the 2nd modification of the said embodiment. It is a front view which shows the principal part of the film-forming apparatus which concerns on the 3rd modification of the said embodiment. It is a front view which shows the principal part of the film-forming apparatus which concerns on the 4th modification of the said embodiment. It is a front view which shows the principal part of the film-forming apparatus which concerns on the 5th modification of the said embodiment.
- FIG. 1 is a sectional front view showing the film forming apparatus 1 according to the embodiment.
- This film forming apparatus 1 deposits a deposition material M activated by plasma on the surface of a film substrate W.
- the film forming apparatus 1 includes a chamber 2 whose inside is depressurized, a pair of film forming rollers 3 and 3 disposed in the chamber 2, an evaporation apparatus 4 for evaporating the vapor deposition material M, and the pair.
- a plasma generating power source 5 for applying an AC voltage between the film forming rollers 3 and 3, a gas introducing device 6 for introducing a gas into the chamber 2, and a conveying means 10.
- Each of the film forming rollers 3 has an outer peripheral surface on which the film base W is wound, and guides the film base W in the chamber 2.
- the film substrate W is formed into a sheet shape with a synthetic resin such as nylon or PET.
- the specific material is not limited, and a known material can be used.
- the resin constituting the film substrate W include polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene terephthalate, polyethylene naphthalate, etc.), polyamide (nylon-6, nylon-66, etc.), polystyrene, and the like. , Ethylene vinyl alcohol, polyvinyl chloride, polyimide, polyvinyl alcohol, polycarbonate, polyether sulfone, acrylic, and cellulose (triacetyl cellulose, diacetyl cellulose, etc.).
- the type of synthetic resin described above is appropriately selected depending on the application and required physical properties.
- the use of polyethylene terephthalate, polypropylene, nylon, or the like is suitable for packaging medical supplies, drugs, foods, and the like in terms of cost.
- High gas barrier properties such as polyethylene naphthalate, polyimides, polyethersulfone, etc. are beneficial for packaging that protects extremely moisture-sensitive contents such as electronic members and optical members.
- the thickness of the film substrate W is not limited. For example, in the case of the above-mentioned use, a thing of about 6 ⁇ m to 200 ⁇ m is often used.
- the chamber 2 described above is a bowl-shaped member, and the inside thereof is evacuated to a vacuum state.
- a film forming chamber 7 for forming a film on the film substrate W by vapor deposition Inside the chamber 2 are a film forming chamber 7 for forming a film on the film substrate W by vapor deposition, and a winding chamber 8 for winding the film substrate W formed in the film forming chamber 7. It is divided into and. Specifically, a partition portion 9 is provided between the film forming chamber 7 and the winding chamber 8 to partition them.
- the film forming chamber 7 is provided with a vacuum pump 13.
- the vacuum pump 13 can reduce the pressure in the film forming chamber 7 to a vacuum state or a low pressure state.
- the transport means 10 is provided in the chamber 2 and transports the film substrate W in a roll-to-roll manner.
- the vacuum pump may also be provided in the winding chamber 8.
- the conveying means 10 includes an unwinding roll 11 wound with a non-film-formed film base W, a take-up roll 12 for winding the film base W formed, and a pair of film-forming rollers 3 and 3. And an auxiliary guide roller 14.
- the conveying means 10 can convey the film substrate W in the order of “unwinding roll 11 ⁇ film forming roller 3 ⁇ auxiliary guide roller 14 ⁇ film forming roller 3 ⁇ winding roll 12”.
- the unwinding roll 11, the winding roll 12 and the auxiliary guide roller 14 are provided in the winding chamber 8, and the pair of film forming rollers 3 and 3 are attached to the partition portion 9.
- the pair of film forming rollers 3 and 3 are disposed so as to straddle both the film forming chamber 7 and the winding chamber 8.
- the vapor deposition material M is formed on the surface of the film base W when the film base W unwound from the unwinding roll 11 passes through the pair of film forming rollers 3 and 3. Vapor deposition is performed, thereby forming a deposited film.
- the pair of film forming rollers 3 and 3 will be described in detail later.
- the evaporation device 4 evaporates the vapor deposition material M in order to deposit the vapor deposition material M on the film substrate W.
- the evaporation device 4 is provided inside the film forming chamber 7 of the chamber 2, specifically, at a position facing the portion located in the film forming chamber 7 on the outer peripheral surface of the film forming roller 3.
- the evaporation apparatus 4 of the present embodiment employs a configuration (evaporation apparatus using resistance heating means) that evaporates the vapor deposition material M by filling the material filling type resistance heating crucible 15 with the vapor deposition material M and heating it. Yes.
- a resistance heating power source 16 for heating the material filling type resistance heating crucible 15 is connected to the material filling type resistance heating crucible 15.
- the vapor deposition material M is preferably a material that can be wired, for example, a metal material.
- the evaporation apparatus 4 is exemplified by a material-filled resistance heating crucible 15 (resistance heating means).
- a material-filled resistance heating crucible 15 resistance heating means
- an electron beam means such as a high-voltage electron beam or a plasma is used, or You may use what employ
- the vapor deposition material M evaporated using the above-described evaporation apparatus 4 is not particularly limited, and a known material can be used. Examples include, but are not limited to, magnesium oxide (MgO), indium tin oxide (ITO), silicon oxide compounds such as silicon monoxide (SiO) and silicon dioxide (SiO2), or a mixture thereof. Alternatively, a metal material such as aluminum (Al) or silicon (Si) may be used.
- the vapor deposition material M according to the present invention is a reactive vapor deposition of a silicon oxide compound, a silicon nitride compound, a silicon oxynitride compound, aluminum oxide, aluminum, and silicon, which are particularly excellent in transparency and oxygen and water vapor blocking properties. Can be used.
- the gas introducing device 6 supplies at least one of a process gas and a reactive gas into the film forming chamber 7 in the chamber 2.
- a process gas such as argon, neon, or helium that assists (promotes) the discharge is used.
- the reactive gas a gas that chemically reacts with the vapor deposition material M such as oxygen or nitrogen, or a gas that decomposes and forms a film with the vapor deposition material M such as HMDSO or TMS is used.
- These process gases and reaction gases may be used alone or in combination. Further, a process gas and a reaction gas may be mixed and used.
- Reactive vapor deposition can be performed by performing vapor deposition while supplying a reactive gas into the chamber 2 using the gas introduction device 6.
- a reactive gas for example, it is possible to form a film by oxidizing or nitriding the metal deposition material M.
- the transparency control when a ceramic material is used as the vapor deposition material M is also possible. It is also possible to adjust the film quality by adding Si to the film.
- the pair of film forming rollers 3, 3 deposits the vapor deposition material M evaporated by the evaporator 4 as a film while generating plasma on the surface holding the film substrate W.
- the film forming apparatus 1 includes means (plasma generating mechanism) for generating plasma P to deposit the vapor deposition material M on the film substrate W and activating the evaporated vapor deposition material M with the plasma P.
- the evaporated vapor deposition material M enters the film substrate W wound around the pair of film forming rollers 3 and 3 as evaporated particles (vapor), and the evaporated particles are incident on the film substrate. It is activated by passing through the plasma P before being incident on W. Vapor deposition of the activated evaporation particles on the film substrate W in this manner makes it possible to form a film with improved film quality such as barrier properties and transparency on the surface of the film substrate W.
- the pair of film forming rollers 3 and 3 are used as a plasma generation mechanism for activating the evaporated particles.
- Each film forming roller 3 is made of a stainless material or the like and has a cylindrical shape as shown in FIG. These rollers 3 are provided on the left and right and have the same diameter and the same axial length. These film forming rollers 3 are installed such that their rotation centers are located at substantially the same height from the floor surface. Further, these film forming rollers 3 are arranged such that their axial cores are parallel to each other and are horizontal.
- the pair of film forming rollers 3 and 3 are arranged such that a part of the outer peripheral surface thereof is located on the film forming chamber 7 side and the remaining outer peripheral surface is positioned on the winding chamber 8. That is, the film forming rollers 3 and 3 are disposed so as to straddle both the film forming chamber 7 and the winding chamber 8 with the partition portion 9 interposed therebetween.
- a film substrate W is wound around a portion of the outer peripheral surface of the film forming roller 3 located on the film forming chamber 7 side, and plasma P is generated on the surface of the film substrate W inside the film forming chamber 7.
- film formation can be performed.
- the pair of film forming rollers 3 and 3 are electrically insulated from the vacuum chamber 2 and are electrically insulated from each other, and are connected to both electrodes of the plasma generating power source 5 which is an AC power source.
- the plasma generating power source 5 can generate a high-frequency AC voltage or a pulsed voltage whose polarity of both poles can be reversed.
- the film substrate W on which the film is formed is an insulating material as described above, a current cannot be passed by applying a DC voltage, but an appropriate frequency (approximately 1 kHz to preferably 10 kHz). If so, a current can flow through the substrate. On the other hand, if the frequency is too high, it may be difficult to supply power to the rotating film forming roller 3. Therefore, the frequency of the AC voltage is preferably 1 MHz or less.
- the frequency of the AC voltage generated by the plasma generating power source 5 is preferably 100 kHz or less. Further, the discharge voltage supplied from the plasma generating power source 5 is preferably in the range of several hundred V to 2,000 V.
- the film forming apparatus 1 includes a pair of magnetic field generators 18. These magnetic field generators 18 are provided inside each of the pair of film forming rollers 3 and 3 described above, and on the surface of the outer peripheral surface of the film forming roller 3 around which the film base W is wound. A magnetic field for facilitating generation of the plasma P is generated.
- the magnetic field generator 18 uses a racetrack-shaped magnetron magnetic field generation mechanism typically used for magnetron sputtering or the like. More specifically, the racetrack-shaped magnetron magnetic field generation mechanism includes a central magnetic pole slightly shorter than the roller length of the film forming roller 3, a reverse magnetic pole surrounding the central magnetic pole, A magnetic yoke for connecting the magnetic poles of the magnetic material.
- the magnets are directed inside the film forming roller 3 in a certain direction regardless of the rotation of the film forming roller 3 (downwardly inclined slightly toward the direction of the evaporator 4 in the illustrated example).
- the plasma P can be selectively generated at a position facing the outer peripheral surface of the film forming roller 3 provided with the generator 18.
- the magnetic field generator 18 may be in the form of another magnetic field as long as it can selectively generate a uniform plasma P at a desired location on the surface of the film forming roller 3. Further, the installation location of the magnetic field generator 18 is not limited to the inside of the film forming roller 3.
- film formation is performed as follows.
- the conveying means 10 described above causes the film substrate W to travel along the film forming roller 3, while the evaporation device 4 generates vapor of the vapor deposition material M.
- the gas introducing device 6 introduces a process gas into the chamber 2, while the plasma generating power source 5 supplies power to the film forming roller 3, whereby the film substrate W wound around the outer peripheral surface of the film forming roller 3. On top of this, a plasma P by glow discharge is generated.
- the plasma P generated in this way has the following effects.
- vapor evaporated particles
- the vapor that has passed through the plasma becomes an ionic state or an excited state due to collision with electrons, ions, and active species in the plasma.
- the activated vapor brings about densification of the film and improvement of reactivity during film formation.
- the film forming roller 3 itself is alternately given positive and negative potentials by the plasma generating power source 5, and this potential is sufficient if the frequency of the AC voltage generated by the plasma generating power source 5 is 1 kHz or more. Propagates through the material W. In this manner, a potential is applied to the surface of the film substrate W during film formation, that is, the film being formed, and the ions and electrons are accelerated and attracted to the film surface. In particular, the impact of ions attracted to the surface of the film in this manner is effective in densifying the film, and improves film quality (in the case of a barrier film, improves barrier properties).
- the film forming roller 3 is electrically involved in the generation of the plasma P.
- the film base W is always wound around the surface of the film forming roller 3 facing the evaporator 4, the film adheres to the surface of the film forming roller 3 even if it is operated for a long time ( There is no film formation). Therefore, even if the operation is performed for a long time, the generation state of the plasma P does not change.
- the film evaporated from the evaporation device 4 may adhere to the inner surface of the film forming chamber 7 of the vacuum chamber 2 and this may become an electrical resistance. However, it is the film forming that is electrically involved in plasma generation. Since only the roller 3 is used, there is no influence.
- FIG. 2 shows a film forming apparatus 1 according to a first modification.
- plasma P is generated in a region between the film forming rollers 3.
- a magnetic field generator is provided inside each film-forming roller 3 so that a pair of magnetic field generators 18 face each other, and portions of the outer peripheral surfaces of both film-forming rollers 3 that face each other. Film formation is performed in the area between.
- FIG. 3 shows a film forming apparatus 1 according to a second modification.
- a plurality of magnetic field generators 18 are installed inside each of the pair of film forming rollers 3. Accordingly, plasma P straddling the plurality of magnetic field generators 18 is generated on the surface of the film forming roller 3. This makes it possible to expand the region of the plasma P.
- FIG. 4 shows a film forming apparatus 1 according to a third modification.
- the film forming apparatus 1 it is possible to perform film formation on both surfaces of the film substrate W by a single run of the film substrate W by devising the transport path of the film substrate W.
- the first film formation roller 3 performs the first film formation on the front side surface of the film substrate W unwound from the unwinding roll 11, and then the other film formation roller 3 forms the film base. Film formation is performed on the back side surface of the material W.
- FIG. 5 shows a film forming apparatus 1 according to a fourth modification.
- the pair of film forming rollers 3 and 3 is provided with an evaporation apparatus 4 independent of each other.
- Providing the evaporation device 4 for each of the film forming rollers 3 in this manner increases the ability to supply vapor (evaporated particles) of the vapor deposition material, and enables film forming processing to be performed at a higher speed.
- FIG. 5 by providing different vapor deposition materials M1 and M2 to the two evaporators 4 and 4, respectively, it becomes possible to form different films with the respective film forming rollers 3 and 3. It becomes possible to form a two-layer coating on the surface of the film substrate W.
- FIG. 6 shows a film forming apparatus 1 according to a fifth modification.
- the evaporator 4 is disposed only for one of the pair of film forming rollers 3 and 3.
- plasma P is generated, but film formation is hardly performed. Therefore, pre-treatment and post-treatment with plasma P can be performed on the surface of the other film forming roller 3.
- FIG. 7 shows a film forming apparatus 1 according to a sixth modification.
- the pair of film forming rollers 3 and 3 have different diameters.
- the pair of film forming rollers according to the present invention does not necessarily have the same diameter, and the pair of film forming rollers having different diameters for a specific purpose like the two film forming rollers 3 shown in FIG. May be given.
- high-strength plasma is generated on the small-diameter film forming roller 3, and diffused plasma P is formed on the large-diameter film forming roller 3.
- FIG. 8 shows a film forming apparatus 1 according to a seventh modification.
- the gas introduction device 6 is arranged so as to introduce gas between the pair of film forming rollers 3 and 3 and at a position above the film forming rollers 3.
- the gas introduced by the gas introducing device 6 flows in the vicinity of the film forming roller 3 and can reach the region of the plasma P in the shortest distance. Therefore, the gas is prevented from diffusing throughout the chamber 2, and the introduced process gas can be used for activation with high efficiency.
- FIG. 9 shows a film forming apparatus 1 according to an eighth modification.
- the film forming apparatus 1 includes a pair of conveying means 10 that are individually provided on each of the pair of film forming rollers 3 and 3.
- the film forming apparatus 1 according to the eighth modification is suitable for forming a conductive film or forming a film on the conductive film substrate W.
- the present invention is not limited to the above-described embodiment and its modifications, and the shape, structure, material, combination, and the like of each member can be appropriately changed without changing the essence of the invention. Further, in the embodiment disclosed this time, matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. However, matters that can be easily assumed by those skilled in the art are employed.
- the evaporation material used in the present invention is not limited to the evaporation device used for film formation by the evaporation method as described above, and may be one corresponding to, for example, a sputtering evaporation source or an arc evaporation source evaporation device.
- a high melting point evaporation material that is difficult to evaporate by a general vapor deposition method is preferably used as a sputtering evaporation source or an arc evaporation source.
- a film forming apparatus and a film forming method capable of performing film formation by vapor deposition stably over a long period of time.
- the present invention provides a film forming apparatus for depositing a deposition material on the film substrate while conveying the film substrate by roll-to-roll under reduced pressure.
- the film forming apparatus includes a chamber whose pressure is reduced, a pair of rollers disposed in the chamber and guided around the chamber by winding a film substrate around an outer peripheral surface, and an evaporation for evaporating the deposition material.
- this film forming apparatus it is possible to form a film by vapor deposition stably over a long period of time.
- plasma for assisting vapor deposition is formed in a region covered with a film substrate in a pair of film forming rollers.
- the surface of the film forming roller where plasma is generated is covered with a film substrate at a position facing the evaporation source, and no film is formed on the surface of the film forming roller. Therefore, the surface of the film forming roller is kept clean, and even if a film is formed in other parts of the vacuum chamber, plasma generation is not affected. Therefore, it becomes possible to perform deposition stably over a long period of time.
- a film is formed by vapor deposition on at least one of the pair of rollers in which plasma is generated.
- a magnetic field generator for generating a magnetic field is provided in the pair of rollers.
- the evaporation apparatus may include any one or more of an electron beam unit, an induction heating unit, and a resistance heating unit.
- the film forming method of the present invention performs film formation using a film forming apparatus for depositing a vapor deposition material on the film base material while conveying the film base material by roll-to-roll under reduced pressure, A chamber in which the inside is depressurized, a pair of rollers disposed in the chamber and guiding the inside of the chamber by winding a film base material on an outer peripheral surface, an evaporation device for evaporating the deposition material, and the pair of A plasma generation power source for applying an alternating voltage between the rollers and a means for introducing a gas into the chamber are provided, and while generating plasma on the surface holding the film substrate using the pair of rollers, The evaporation material is evaporated using the evaporation apparatus and is deposited as a film on the surface of the film substrate.
- a film is formed by vapor deposition on at least one of the pair of rollers, in which plasma is generated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
プラズマの補助を受けつつ蒸着により成膜を行う成膜装置において、長時間に亘って安定的に蒸着を行う。本発明の成膜装置(1)は、圧下でフィルム基材(W)をロール・ツー・ロールで搬送しながら、フィルム基材(W)へ蒸着材料(M)を蒸着させる成膜装置(1)であって、内部が減圧されるチャンバ(2)と、チャンバ(2)内に配備されると共に基材フィルムを外周面に巻き掛けてチャンバ(2)内を案内する一対のローラ(3、3)と、蒸着材料(M)を蒸発させる蒸発装置(4)と、一対のローラ(3、3)間に交流電圧を印加するプラズマ発生電源(5)と、チャンバ(2)内にガスを導入する手段(6)と、を有し、一対のローラ(3、3)は、フィルム基材(W)を保持した表面にプラズマを生成し、蒸発手段(4)は、蒸着材料(M)を蒸発させると共にフィルム基材(W)の表面に皮膜として蒸着することを特徴とする。
Description
本発明は、フィルム等の帯状の基材に連続的に皮膜を形成する成膜装置及び成膜方法に関する。
近年、次世代のFPDとして期待される電子ペーパー、有機ELに関して、また広範囲での普及が進んでいるLCDに関し、これらFPDのフレキシブル化を達成するため、もしくは軽量化、コストダウン、ガラス基板の割れ等といった製造時のスループット向上のため、ガラス基板をプラスチックフィルムに置き換えたいという要求が高まっている。
また、有機ELは蛍光灯に替わる代替照明方法としても注目されており、この用途に有機ELを用いる場合には、軽量化、安全確保などの理由からプラスチックフィルムを用いることが求められている。
さらに、FPDのフレキシブル化とは別に、太陽電池のバックシートなどの産業資材も軽量化や、薄型化、破損防止などの観点から、フィルムが採用されるケースが多くなっている。
ガラス基板をプラスチックフィルムと比較した場合、ガラス基板には環境由来の酸素や水蒸気による内部素子の劣化を抑制するために必要とされるガスバリア性が材料固来のものとして最初から備わっている。しかし、包装材料用のガスバリアフィルムは、そのままではガラス基板と同等なバリアレベルには達していない。それゆえ、プラスチックフィルムを用いる場合には更に高いバリア性が求められる。
例えば、プラスチックフィルムが適用され得る太陽電池バックシートなどの産業資材では、食品包材用バリアフィルムの数倍以上のバリア性が必要とされ、また電子ペーパー、有機ELなどディスプレイ用封止フィルムでは10-2g/m2/day以下の水蒸気バリア性が必要とも言われている。また、太陽電池も薄膜太陽電池の場合には1g/m2/day以下の水蒸気バリア性、薄膜の種類によっては更に高いバリア性が求められる場合もある。
このような高いガスバリア性をプラスチックフィルムに与える手段として、プラスチックフィルム上に皮膜を形成する手法があり、その手段として、誘導加熱法、抵抗加熱法、電子ビーム蒸着法、スパッタリング法などの物理蒸着法(PVD法)が検討されている。このPVD法は、大面積化やロール・ツー・ロールへの展開が容易であることから、ガスバリアフィルムの製造方法として有望である。
PVD法は、大きく分けて誘導加熱法、抵抗加熱法、電子ビーム蒸着法などの蒸着法と、スパッタリング法とに二分される。前者の蒸着法は、成膜速度は速いものの、緻密でガスバリア性の高い皮膜を得ることが困難である。一方、後者のスパッタリング法は、成膜速度は遅いが緻密でガスバリア性の高い膜を得ることが可能である。
このため、一般的には、それ程高いバリア性能が求められる訳ではない、食品用の包装材料用のガスバリアフィルムの製造方法には前者の蒸着法を用いる場合が多く、一方で、高いバリア性能が求められる産業用資材に用いられるガスバリアフィルムの製造にはスパッタリング法を用いると良い。しかしながら、スパッタリング法での成膜速度が遅いため、大面積で成膜しても、m2当たりの価格は蒸着法に比較すると高くなってしまうという問題が発生する。
そこで、生産性の高い蒸着法を用いながら、高いバリア性能を実現することを目的として、例えば、次の特許文献1や特許文献2に示すようなものが知られている。
特許文献1には、蒸着法により成膜される皮膜の膜質を向上させるために、一定の圧力条件下でガスを導入しながら、成膜ローラ(特許文献1では「クーリングキャン」と表現されている)に100kHz以上の高周波電圧を加えつつ成膜を行う手法が開示されている。この特許文献1の方法では、成膜中の成膜ローラ周辺にグロー放電を生成することによって、剥離強度の向上など膜質向上が実現できるとされている。また、成膜ローラ周辺に磁界を加えることや、高周波電圧に直流電圧を重畳することも好ましいとされている。
特許文献2には、蒸着手段と、これとは別に蒸着材料をプラズマにより活性化させる手段と、を備えた装置が提案されている。この特許文献2では、蒸着材料を電界により加速することが示されており、電界を形成するために成膜ローラに電圧を印加することも開示されている。特許文献2の記載によれば、材料の蒸発速度とプラズマ密度とをそれぞれ独立に制御することにより、蒸着法で成膜される際の成膜速度やガスバリア性を自由に且つ個別に調整でき、酸素バリア性および水蒸気バリア性に優れた、透明、もしくは半透明なガスバリア性の積層体を生産することが可能とされている。
ところで、蒸着法によりフィルム基材へ連続成膜を行う場合は、数千m以上、場合によっては1万m以上のフィルム基材に対して連続的に成膜を行うことがあり、成膜装置を長時間に渡って連続運転させることが必要となる。
このような連続運転を可能にする手段として、例えば前記特許文献1には、成膜ローラに100kHz以上の高周波電圧を印加してグロー放電を発生させ、蒸着を行うことが、開示されている。なお、特許文献1の図には高周波電圧を成膜ローラに加えることだけが示され、電源の対極が示されていないが、特許文献1の装置では接地された真空チャンバ等が当該対極であると考えるのが一般的である。
この特許文献1の成膜装置で例えばアルミナのような透明性のバリア膜を形成することを考える。これは、蒸着源からアルミを蒸発させ、皮膜領域の周辺に酸素ガスを供給し、反応性の蒸着を行なうことで達成される。このとき、成膜ローラに高周波電圧を印加することで、成膜領域にはグロー放電によるプラズマが形成されて、プラズマの支援により膜質の改善した皮膜が形成される。
しかしながら、成膜を長い時間に亘って継続すると、成膜領域の周辺には多くの蒸着物が堆積する。この蒸着物は、供給された酸素ガスと蒸発したアルミとが反応して生成する酸化物などの皮膜、つまりは絶縁性の皮膜(あるいは電気抵抗が大きな皮膜)となっている。このような絶縁性の皮膜がチャンバの内部に堆積すると、グロー放電の放電状態がこの皮膜の影響を受けて変動を来たす。結果として、成膜される膜質が時間の経過と共に変動したり、極端な場合は、グロー放電自体が不安定になって、操業を中断せざるを得ない場合が考えられる。
一方、特許文献2の成膜装置でも膜質の変動等の問題が生じるおそれがある。この成膜装置では、蒸発した蒸発材料がフィルム基材上に堆積する前に活性化を行なうべく、ホローカソードとアノードとの間の放電により、成膜ローラに保持された基材と蒸発源との間にプラズマが生成される。ホローカソードとアノードは、蒸発材料が蒸発する領域に対面しているため、フィルム基材に比べれば少ないものの、ホローカソードとアノードに蒸発材料の一部が堆積すると考えられる。そして、例えば蒸発材料としてアルミが用いられ、反応ガスとして酸素が導入される場合、ホローカソードやアノードの表面には徐々に絶縁性(あるいは抵抗成分)を有する皮膜が堆積する。当然、長時間にわたる運転を行なうと、このプラズマ発生機構への堆積物が徐々にプラズマの発生状況を変化させて、成膜される皮膜の膜質を変動させたり、極端な場合は、放電を不安定にして、操業を中断せざるを得ない事態を生むおそれがある。
以上説明した問題点は、形成される皮膜が絶縁性の皮膜ではなく導電性のものである場合であっても、同様に生じ得る。つまり、蒸着ゾーンにはフィルム基材から放出された水蒸気等が存在するので、真空チャンバなどに付着する皮膜には酸素の成分が不可避に含有され、真空チャンバなどに付着する皮膜は電気絶縁性となる。そして、このような絶縁性皮膜が厚く堆積した場合には、プラズマの発生状態の変動を引き起こす場合がある。
本発明は、長時間に亘って安定的に蒸着により成膜を行うことができる成膜装置及び成膜方法を提供することを目的とする。本発明は、減圧下でフィルム基材をロール・ツー・ロールで搬送しながら、前記フィルム基材へ蒸着材料を蒸着させる成膜装置を提供する。この成膜装置は、内部が減圧されるチャンバと、前記チャンバ内に配備されると共にフィルム基材を外周面に巻き掛けて前記チャンバ内を案内する一対のローラと、前記蒸着材料を蒸発させる蒸発装置と、前記一対のローラ間に交流電圧を印加するプラズマ発生電源と、前記チャンバ内にガスを導入する手段と、を有し、前記一対のローラは、フィルム基材を保持した表面にプラズマを生成しながら、前記蒸発装置は、蒸着材料を蒸発させると共にフィルム基材の表面に皮膜として蒸着することを特徴とする。
一方、本発明の成膜方法は、減圧下でフィルム基材をロール・ツー・ロールで搬送しながら、前記フィルム基材へ蒸着材料を蒸着させる成膜装置を用いて成膜を行うに際しては、内部が減圧されるチャンバと、前記チャンバ内に配備されると共にフィルム基材を外周面に巻き掛けて前記チャンバ内を案内する一対のローラと、前記蒸着材料を蒸発させる蒸発装置と、前記一対のローラ間に交流電圧を印加するプラズマ発生電源と、前記チャンバ内にガスを導入する手段と、を設けておき、前記一対のローラを用いてフィルム基材を保持した表面にプラズマを生成しながら、前記蒸発装置を用いて蒸着材料を蒸発させると共にフィルム基材の表面に皮膜として蒸着することを特徴とする。
以下、本発明の実施形態に係る成膜装置1について、図面を参照して説明する。
図1は、前記実施形態に係る成膜装置1を示した断面正面図である。この成膜装置1は、プラズマにより活性化させられた蒸着材料Mを、フィルム基材Wの表面に蒸着させるものである。具体的に、前記成膜装置1は、内部が減圧されるチャンバ2と、チャンバ2内に配備される一対の成膜ローラ3、3と、蒸着材料Mを蒸発させる蒸発装置4と、前記一対の成膜ローラ3、3間に交流電圧を印加するプラズマ発生電源5と、前記チャンバ2内にガスを導入するガス導入装置6と、搬送手段10と、を有している。前記各成膜ローラ3は、その上に前記フィルム基材Wが巻き掛けられる外周面を有し、当該フィルム基材Wを前記チャンバ2内において案内する。
まず、前記成膜装置1で成膜されるフィルム基材Wについて説明する。
前記フィルム基材Wは、ナイロンやPETといった合成樹脂でシート状に形成されている。その具体的な材質は限定されるものではなく、公知のものを使用することができる。このようなフィルム基材Wを構成する樹脂には、例えばポリオレフィン系(ポリエチレン、ポリプロピレン等)、ポリエステル系(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリアミド系(ナイロン-6、ナイロン-66等)、ポリスチレン、エチレンビニルアルコール、ポリ塩化ビニル、ポリイミド、ポリビニルアルコール、ポリカーボネイト、ポリエーテルスルホン、アクリル、セルロース系(トリアセチルセルロース、ジアセチルセルロース等)などが挙げられる。
上述した合成樹脂の種類は、実際的には、用途や要求物性により適宜選定されることが望ましい。例えば、医療用品、薬品、食品等の包装には、ポリエチレンテレフタレート、ポリプロピレン、ナイロンなどの使用がコストの面で好適である。電子部材、光学部材等の極端に水分を嫌う内容物を保護する包装には、ポリエチレンナフタレート、ポリイミド類、ポリエーテルスルホンなどのもつ高いガスバリア性が有益である。また、フィルム基材Wの厚みも限定されない。例えば上述した用途であれば6μmから200μm程度のものがよく使用される。
上述したチャンバ2は、筺状の部材であり、その内部が真空状態まで排気される。このチャンバ2の内部は、フィルム基材Wに対して蒸着により成膜を行うための成膜室7と、成膜室7で成膜されたフィルム基材Wを巻き取るための巻き取り室8と、に区画されている。具体的には、前記成膜室7と前記巻き取り室8との間にこれらを仕切る仕切り部9が設けられている。
前記成膜室7には、真空ポンプ13が設けられている。この真空ポンプ13は成膜室7内を真空状態又は低圧状態まで減圧することが可能である。前記搬送手段10は、前記チャンバ2内に設けられ、前記フィルム基材Wをロール・ツー・ロールで搬送する。前記真空ポンプは前記巻取室8にも設けられる場合がある。
前記搬送手段10は、未成膜のフィルム基材Wを巻いた巻き出しロール11と、成膜されたフィルム基材Wを巻き取るための巻き取りロール12と、一対の成膜ローラ3、3と、補助的なガイドローラ14とを備える。前記搬送手段10は、「巻き出しロール11→成膜ローラ3→補助的なガイドローラ14→成膜ローラ3→巻き取りロール12」の順でフィルム基材Wを搬送できる。このうち、前記巻き出しロール11、前記巻き取りロール12及び補助的なガイドローラ14は前記巻き取り室8に配備されており、前記一対の成膜ローラ3、3は仕切り部9に取り付けられていて、一対の成膜ローラ3、3は成膜室7と巻き取り室8との双方に跨るように配備されている。
この実施形態の成膜装置1では、巻き出しロール11から巻き出されたフィルム基材Wが一対の成膜ローラ3、3を通過する際に、当該フィルム基材Wの表面に蒸着材料Mが蒸着され、これにより蒸着膜が形成される。なお、一対の成膜ローラ3、3については、後ほど詳しく説明する。
前記蒸発装置4は、前記フィルム基材Wへ蒸着材料Mを蒸着させるために、当該蒸着材料Mを蒸発させる。この蒸発装置4は、チャンバ2の成膜室7の内部に、具体的には成膜ローラ3の外周面のうち成膜室7内に位置する部位に対向する位置に、設けられている。
本実施形態の蒸発装置4は、材料充填型抵抗加熱式坩堝15に蒸着材料Mを充填し加熱することで、蒸着材料Mを蒸発させる構成(抵抗加熱手段を採用した蒸発装置)を採用している。材料充填型抵抗加熱式坩堝15には、この材料充填型抵抗加熱式坩堝15を加熱するための抵抗加熱用電源16が接続されている。
なお、材料充填型抵抗加熱式坩堝15に蒸着材料Mを充填して加熱する手段に代えて、蒸着材料Mをワイヤーにしてフィードするワイヤーフィードタイプを採用しても良い。この場合、蒸着材料Mには、ワイヤー化が可能な種類の材料、例えば金属材料などが好適に用いられる。
また、本実施形態では蒸発装置4として材料充填型抵抗加熱式坩堝15(抵抗加熱手段)を採用したものを例示したが、高電圧の電子ビームなどの電子ビーム手段やプラズマを採用したもの、あるいはコイルなどの誘導加熱手段を採用したものを用いても良い。
上述した蒸発装置4を用いて蒸発させられる蒸着材料Mは、特に限定されるものではなく公知のものを使用することができる。例えば、酸化マグネシウム(MgO)、インジウムスズ酸化物(ITO)や酸化珪素化合物である一酸化珪素(SiO)や二酸化珪素(SiO2)、またはこれらの混合物が挙げられるが、これらに限定されない。また、アルミニウム(Al)、シリコン(Si)などの金属材料でも良い。特に、本発明に係る蒸着材料Mには、透明性と酸素と水蒸気の遮断性が特に優れている酸化珪素化合物、窒化珪素化合物、酸窒化珪素化合物、酸化アルミニウムや、アルミニウム、シリコンの反応性蒸着を用いることができる。
前記ガス導入装置6は、前記チャンバ2のうちの前記成膜室7内にプロセスガス、反応ガスの少なくとも一方を供給するものである。プロセスガスには、アルゴン、ネオン、ヘリウム等の放電を補助(促進)する放電ガスが用いられる。また、反応ガスには、酸素、窒素のように蒸着材料Mと化学的に反応するガスやHMDSO、TMSのように分解して蒸着材料Mと共に皮膜を形成するガスが用いられる。これらのプロセスガスや反応ガスは、単体で用いられても良いし、混合されて用いられても良い。また、プロセスガスと反応ガスとを混合して用いても良い。
ガス導入装置6を用いて反応性ガスをチャンバ2内に供給しつつ蒸着を行えば、反応性蒸着を行うことが可能である。例えば、金属の蒸着材料Mを酸化させたり、窒化させたりして成膜を行うことが可能である。また、セラミック材料を蒸着材料Mとして用いる場合の透明度制御も可能である。また、皮膜にSiを添加して膜質を調整することも可能である。
この成膜装置1においては、一対の成膜ローラ3、3がフィルム基材Wを保持した表面にプラズマを生成しながら、蒸発装置4で蒸発した蒸着材料Mを皮膜として蒸着させる。そして、この成膜装置1は、フィルム基材Wへ蒸着材料Mを蒸着させるためにプラズマPを発生させ、蒸発した蒸着材料MをプラズマPにより活性化させる手段(プラズマ発生機構)を具備する。具体的に、蒸発した蒸着材料Mは、蒸発粒子(蒸気)として、一対の成膜ローラ3、3に巻き掛けられたフィルム基材W上に入射されるが、当該蒸発粒子は前記フィルム基材W上へ入射される前にプラズマPを通過することにより活性化される。このように活性化された蒸発粒子のフィルム基材Wへの蒸着は、バリア性や透明性といった膜質が改善された皮膜をフィルム基材Wの表面に形成することを可能にする。
前記蒸発粒子を活性化させるプラズマ発生機構として、この実施形態では前記一対の成膜ローラ3、3が利用される。各成膜ローラ3はステンレス材料等で形成され、図1に示すような円筒状をなす。これらのローラ3は左右に設けられ、互いに同じ径及び同じ軸長を有する。これらの成膜ローラ3はそれらの回転中心が互いに床面から略同じ高さに位置するように設置されている。また、これらの成膜ローラ3は、これらの軸芯が互いに平行で且つ水平となるように、配備されている。
前記一対の成膜ローラ3、3は、それぞれの外周面の一部が成膜室7側に位置すると共に残りの外周面が巻き取り室8に位置するように、配備されている。つまり、両成膜ローラ3,3は前記仕切り部9を挟んで成膜室7と巻き取り室8との双方に跨るように配備されている。成膜ローラ3の外周面のうち、成膜室7側に位置する部分にフィルム基材Wが巻き掛けられており、成膜室7の内部でフィルム基材Wの表面にプラズマPを発生させて成膜を行うことが可能となっている。
前記一対の成膜ローラ3、3は、真空チャンバ2から電気的に絶縁されると共に互いが電気的に絶縁されており、交流電源である前記プラズマ発生電源5の両極に接続されている。このプラズマ発生電源5は、高周波の交流電圧、または、両極の極性が反転可能なパルス状の電圧を発生させることが可能である。
例えば、成膜を行うフィルム基材Wは、前述の如く絶縁性の材料であるため、直流の電圧の印加では電流を流すことができないが、適切な周波数(およそ1kHz~、好ましくは10kHz~)であれば基材を通して電流を流すことができる。一方で、周波数が高すぎると回転する成膜ローラ3への給電が難しくなる場合がある。従って、前記交流電圧の周波数は1MHz以下とすると良い。
また、プラズマ発生電源5の入手性等を考慮すると、プラズマ発生電源5で発生させる交流電圧の周波数は100kHz以下とされるのが好ましい。さらに、プラズマ発生電源5から供給する放電の電圧は数百V~2千Vの範囲とされるのが好ましい。
さらに、この成膜装置1は、一対の磁場発生器18を備える。これらの磁場発生器18は、上述した一対の成膜ローラ3、3のそれぞれの内部に設けられ、当該成膜ローラ3の外周面のうち前記フィルム基材Wが巻き掛けられた部位の表面にプラズマPを生成することを容易にするための磁場を生成する。この磁場発生器18には、代表的にはマグネトロンスパッタ等に用いられる、レーストラック状のマグネトロン磁場発生機構が使われる。より具体的には、このレーストラック状のマグネトロン磁場発生機構は、成膜ローラ3のローラ長よりやや短い中央磁極と、その逆の磁極であって当該中央磁極の周囲を取り囲む周囲磁極と、これらの磁極間を連結する磁性体のヨークと、を有する。
そして、これらの磁石が成膜ローラ3の内部で、成膜ローラ3の回転に関わらず一定の方向(図例では蒸発装置4の方向に向かって若干傾斜した下方向)を向くことで、磁場発生器18が設けられた成膜ローラ3の外周面に対向した位置に選択的にプラズマPを生成できるようになっている。
前記磁場発生器18は、前記成膜ローラ3の表面における所望の場所に選択的に均一なプラズマPを生成することを可能にするものであれば、他の磁場の形態であっても良い。また、磁場発生器18の設置場所は成膜ローラ3の内部にも限定されない。
上述した構成を有する本実施形態の成膜装置1では、次のようにして成膜が行われる。
上述した搬送手段10がフィルム基材Wを成膜ローラ3に沿って走行させる一方、蒸発装置4は蒸着材料Mの蒸気を発生させる。ガス導入装置6はチャンバ2内にプロセスガスを導入する一方、プラズマ発生電源5が成膜ローラ3に電力を供給することにより、成膜ローラ3の外周面上に巻き掛けられたフィルム基材Wの上に、グロー放電によるプラズマPが生成される。
このように生成したプラズマPは次の作用をもたらす。
第一には蒸気(蒸発粒子)の活性化である。プラズマ中を通過した蒸気は、プラズマ中の電子、イオン、活性種との衝突により、イオン状態となったり励起状態となったりする。このように活性化した蒸気は、皮膜形成時に皮膜の緻密化や反応性の向上をもたらす。
加えて、プラズマ中の電子、イオン、活性種自体も成膜中の皮膜に衝突し、皮膜の緻密化や反応性の向上をもたらす。さらに、成膜ローラ3自体はプラズマ発生電源5により正負の電位を交互に与えられており、この電位は、プラズマ発生電源5で発生する交流電圧の周波数が1kHz以上であれば、十分にフィルム基材Wを介して伝播する。このようにして、成膜中のフィルム基材Wの表面、すなわち成膜中の皮膜に電位が与えられ、皮膜表面にイオンと電子を加速して引き付ける作用を果たす。特に、このようにして皮膜表面に引きつけられたイオンの衝撃は皮膜の緻密化には効果があり、膜質の向上(バリア膜の場合はバリア性の向上)をもたらす。
この実施形態に係る成膜装置1を構成する部材のうち、プラズマPの発生に電気的に関与するのは成膜ローラ3だけである。そしてこの成膜ローラ3のうち蒸発装置4に面する側には常に表面にフィルム基材Wが巻き掛けられているため、長時間運転しても成膜ローラ3の表面に皮膜が付着する(成膜される)ことがない。このため、長時間の運転を行なっても、プラズマPの発生状態に変化は生じない。もちろん、真空チャンバ2の成膜室7の内面には、蒸発装置4から蒸発した皮膜が付着し、これが電気的な抵抗となる場合があるが、プラズマ生成に電気的に関与するのは成膜ローラ3だけであるため、影響は無い。
この実施形態に係る成膜装置1について、前記成膜ローラ3に対してどのようにフィルム基材Wを巻き掛けるか、また成膜ローラ3のどの位置にプラズマPを発生させるか、さらには蒸発装置4をどの位置に配備するかによって、以下に示すようなさまざまな変形例を考えることができる。
図2は、第1変形例に係る成膜装置1を示す。この成膜装置1では、成膜ローラ3の間の領域にプラズマPが生成される。具体的には、一対の磁場発生器18が互いに対面するように各成膜ローラ3の内部に磁場発生器設けられており、両成膜ローラ3の外周面のうち互いに対面し合う部位同士の間の領域で成膜が行われる。
図3は、第2変形例に係る成膜装置1を示す。この成膜装置1では、一対の成膜ローラ3のそれぞれの内部に、複数の磁場発生器18が設置される。従って、成膜ローラ3の表面には複数の磁場発生器18に跨るプラズマPが生成される。このことは、プラズマPの領域の拡大を可能にする。
図4は、第3変形例に係る成膜装置1を示す。この成膜装置1では、フィルム基材Wの搬送経路の工夫により、一回のフィルム基材Wの走行でその両面の成膜を行うことが可能とされている。具体的には、巻き出しロール11から巻き出されたフィルム基材Wの表側面に対して一方の成膜ローラ3で最初の成膜が行われ、次に他方の成膜ローラ3でフィルム基材Wの裏側面に対して成膜が行われる。
図5は第4変形例に係る成膜装置1を示す。この成膜装置1では、一対の成膜ローラ3、3のそれぞれに、互いに独立した蒸発装置4が与えられている。このように蒸発装置4を成膜ローラ3のそれぞれに対して設けることは、蒸着材料の蒸気(蒸発粒子)を供給する能力を高めて、より高速で成膜処理を行うことを可能にする。あるいは、図5に示すように2つの蒸発装置4、4のそれぞれに互いに異なる蒸着材料M1、M2を設けることで、それぞれの成膜ローラ3、3で異なる皮膜を成膜することが可能となり、フィルム基材Wの表面に2層の皮膜を形成することが可能になる。
図6は、第5変形例に係る成膜装置1を示す。この成膜装置1では、一対の成膜ローラ3、3のうちの一方についてのみ蒸発装置4が配置される。蒸発装置4を配置していない他方の成膜ローラ3では、プラズマPは発生するが、殆ど成膜は行われない。それゆえ、他方の成膜ローラ3の表面では、プラズマPによる前処理や後処理を行なうことができる。
図7は、第6変形例に係る成膜装置1を示す。この成膜装置1では、一対の成膜ローラ3、3が互いに異なる径を有する。このように、本発明に係る一対の成膜ローラは必ずしも互いに同じ径を有する必要はなく、図7に示す両成膜ローラ3のように特定の目的をもって互いに異なる径が前記一対の成膜ローラに与えられてもよい。例えば、図7の例では、小径の成膜ローラ3には強度の高いプラズマが生成され、大径の成膜ローラ3には拡散したプラズマPが形成される。これにより、プラズマ照射の程度の異なる2層の皮膜がフィルム基材Wの表面に成膜されることが可能である。
図8は、第7変形例に係る成膜装置1を示す。この成膜装置1では、ガス導入装置6が一対の成膜ローラ3、3の間でかつこれらの成膜ローラ3よりも上側の位置にガスを導入するように配置されている。このガス導入装置6により導入されるガスは、成膜ローラ3付近を流れ、最短距離でプラズマPの領域に到達することかできる。それゆえ、チャンバ2全域にガスが拡散することが抑えられ、導入されるプロセスガスは高い効率で活性化に利用されることが可能である。
図9は、第8変形例に係る成膜装置1を示す。この成膜装置1は、一対の搬送手段10を備えていてこれらが一対の成膜ローラ3、3のそれぞれに個別に設けられている。この第8変形例に係る成膜装置1は、導電性をもつ皮膜の形成や導電性をもつフィルム基材Wへの成膜に好適である。
本発明は上記実施形態及びその変形例に限定されるものではなく、発明の本質を変更しない範囲で各部材の形状、構造、材質、組み合わせなどを適宜変更可能である。また、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な事項を採用している。
また、本発明において用いられる蒸発材料は前記のように蒸着法による成膜に用いられるものに蒸発装置限らず、例えば、スパッタ蒸発源やアーク蒸発源蒸発装置に対応したものであっても良い。特に高融点の蒸発材料であって一般的な蒸着法による蒸発が困難なものは、スパッタ蒸発源やアーク蒸発源として用いられるのが良い。
以上のように、本発明によれば、長時間に亘って安定的に蒸着により成膜を行うことができる成膜装置及び成膜方法が提供される。
本発明は、減圧下でフィルム基材をロール・ツー・ロールで搬送しながら、前記フィルム基材へ蒸着材料を蒸着させる成膜装置を提供する。この成膜装置は、内部が減圧されるチャンバと、前記チャンバ内に配備されると共にフィルム基材を外周面に巻き掛けて前記チャンバ内を案内する一対のローラと、前記蒸着材料を蒸発させる蒸発装置と、前記一対のローラ間に交流電圧を印加するプラズマ発生電源と、前記チャンバ内にガスを導入する手段と、を有し、前記一対のローラは、フィルム基材を保持した表面にプラズマを生成しながら、前記蒸発装置は、蒸着材料を蒸発させると共にフィルム基材の表面に皮膜として蒸着することを特徴とする。
この成膜装置によれば、長時間に亘って安定的に蒸着により成膜を行うことができる。この装置では、蒸着を補助するプラズマが、一対の成膜ローラにおけるフィルム基材で覆われた領域に形成される。一方で、プラズマが発生する成膜ローラの表面は蒸発源に対向する位置ではフィルム基材で覆われており、成膜ローラの表面には皮膜は形成されない。従って、成膜ローラの表面は清浄な状態に保たれ、真空チャンバの他の部位に皮膜が形成されたとしてもプラズマ生成には影響しない。それゆえ、長時間に亘って安定的に蒸着を行うことが可能となるのである。
なお、好ましくは、前記一対のローラの少なくとも一方であってプラズマが生成されたローラにおいて、蒸着による皮膜形成が行われるように構成されているとよい。
なお、好ましくは、前記一対のローラ内には、磁場を発生させる磁場発生器が設けられているとよい。
なお、好ましくは、前記蒸発装置は、電子ビーム手段、誘導加熱手段、または抵抗加熱手段のいずれか1つ以上を有するとよい。
一方、本発明の成膜方法は、減圧下でフィルム基材をロール・ツー・ロールで搬送しながら、前記フィルム基材へ蒸着材料を蒸着させる成膜装置を用いて成膜を行うに際しては、内部が減圧されるチャンバと、前記チャンバ内に配備されると共にフィルム基材を外周面に巻き掛けて前記チャンバ内を案内する一対のローラと、前記蒸着材料を蒸発させる蒸発装置と、前記一対のローラ間に交流電圧を印加するプラズマ発生電源と、前記チャンバ内にガスを導入する手段と、を設けておき、前記一対のローラを用いてフィルム基材を保持した表面にプラズマを生成しながら、前記蒸発装置を用いて蒸着材料を蒸発させると共にフィルム基材の表面に皮膜として蒸着することを特徴とする。
なお、好ましくは、前記一対のローラの少なくとも一方であってプラズマが生成されたローラにおいて、蒸着による皮膜形成を行うとよい。
Claims (6)
- 減圧下でフィルム基材をロール・ツー・ロールで搬送しながら、前記フィルム基材へ蒸着材料を蒸着させる成膜装置であって、
内部が減圧されるチャンバと、前記チャンバ内に配備されると共にフィルム基材を外周面に巻き掛けて前記チャンバ内を案内する一対のローラと、前記蒸着材料を蒸発させる蒸発装置と、前記一対のローラ間に交流電圧を印加するプラズマ発生電源と、前記チャンバ内にガスを導入する手段と、を有し、
前記一対のローラは、フィルム基材を保持した表面にプラズマを生成しながら、前記蒸発装置は、蒸着材料を蒸発させると共にフィルム基材の表面に皮膜として蒸着することを特徴とする成膜装置。 - 前記一対のローラの少なくとも一方であってプラズマが生成されたローラにおいて、蒸着による皮膜形成が行われるように構成されていることを特徴とする請求項1に記載の成膜装置。
- 前記一対のローラ内には、磁場を発生させる磁場発生器が設けられていることを特徴とする請求項1に記載の成膜装置。
- 前記蒸発装置は、電子ビーム手段、誘導加熱手段、または抵抗加熱手段のいずれか1つ以上を有することを特徴とする請求項1に記載の成膜装置。
- 減圧下でフィルム基材をロール・ツー・ロールで搬送しながら、前記フィルム基材へ蒸着材料を蒸着させる成膜装置を用いて成膜を行うに際しては、
内部が減圧されるチャンバと、前記チャンバ内に配備されると共にフィルム基材を外周面に巻き掛けて前記チャンバ内を案内する一対のローラと、前記蒸着材料を蒸発させる蒸発装置と、前記一対のローラ間に交流電圧を印加するプラズマ発生電源と、前記チャンバ内にガスを導入する手段と、を設けておき、
前記一対のローラを用いてフィルム基材を保持した表面にプラズマを生成しながら、前記蒸発装置を用いて蒸着材料を蒸発させると共にフィルム基材の表面に皮膜として蒸着することを特徴とする成膜方法。 - 前記一対のローラの少なくとも一方であってプラズマが生成されたローラにおいて、蒸着による皮膜形成を行うことを特徴とする請求項5に記載の成膜方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013069189A JP2014189890A (ja) | 2013-03-28 | 2013-03-28 | 成膜装置及び成膜方法 |
JP2013-069189 | 2013-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014156129A1 true WO2014156129A1 (ja) | 2014-10-02 |
Family
ID=51623142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/001715 WO2014156129A1 (ja) | 2013-03-28 | 2014-03-25 | 成膜装置及び成膜方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2014189890A (ja) |
TW (1) | TWI526564B (ja) |
WO (1) | WO2014156129A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3419044A3 (en) * | 2017-06-22 | 2019-02-27 | Bobst Manchester Limited | Pepvd machine |
CN112095087A (zh) * | 2019-12-13 | 2020-12-18 | 深圳市中欧新材料有限公司 | 一种导电膜生产用具有空气隔离结构的镀膜设备 |
CN113874306A (zh) * | 2019-07-11 | 2021-12-31 | 日本电气硝子株式会社 | 玻璃卷的制造方法及制造装置 |
CN117721434A (zh) * | 2024-02-08 | 2024-03-19 | 成都国泰真空设备有限公司 | 一种蒸发卷绕机构及真空镀膜机 |
CN118028762A (zh) * | 2024-04-12 | 2024-05-14 | 山东省宝丰镀膜有限公司 | 一种悬浮式卷绕磁控阴极轰击蒸发成膜系统 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112703271A (zh) * | 2018-09-03 | 2021-04-23 | 应用材料公司 | 用于薄膜沉积的直接液体注射系统 |
GB2586635B (en) * | 2019-08-30 | 2024-01-24 | Dyson Technology Ltd | Deposition system |
WO2021074952A1 (ja) * | 2019-10-15 | 2021-04-22 | 学校法人東海大学 | 真空蒸着方法及び真空蒸着装置 |
CN118028761B (zh) * | 2024-04-12 | 2024-07-09 | 山东省宝丰镀膜有限公司 | 一种卷绕式磁控阴极主辊蒸发成膜系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010265527A (ja) * | 2009-05-18 | 2010-11-25 | Kobe Steel Ltd | 連続成膜装置 |
WO2011052764A1 (ja) * | 2009-10-30 | 2011-05-05 | 住友化学株式会社 | 積層フィルムの製造方法 |
WO2012046778A1 (ja) * | 2010-10-08 | 2012-04-12 | 住友化学株式会社 | プラズマcvd成膜による積層体の製造方法 |
WO2013047279A1 (ja) * | 2011-09-29 | 2013-04-04 | 積水化学工業株式会社 | フィルムの表面処理開始方法及び表面処理装置 |
JP2014001444A (ja) * | 2012-06-21 | 2014-01-09 | Sumitomo Chemical Co Ltd | 成膜方法 |
-
2013
- 2013-03-28 JP JP2013069189A patent/JP2014189890A/ja active Pending
-
2014
- 2014-03-25 WO PCT/JP2014/001715 patent/WO2014156129A1/ja active Application Filing
- 2014-03-28 TW TW103111720A patent/TWI526564B/zh not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010265527A (ja) * | 2009-05-18 | 2010-11-25 | Kobe Steel Ltd | 連続成膜装置 |
WO2011052764A1 (ja) * | 2009-10-30 | 2011-05-05 | 住友化学株式会社 | 積層フィルムの製造方法 |
WO2012046778A1 (ja) * | 2010-10-08 | 2012-04-12 | 住友化学株式会社 | プラズマcvd成膜による積層体の製造方法 |
WO2013047279A1 (ja) * | 2011-09-29 | 2013-04-04 | 積水化学工業株式会社 | フィルムの表面処理開始方法及び表面処理装置 |
JP2014001444A (ja) * | 2012-06-21 | 2014-01-09 | Sumitomo Chemical Co Ltd | 成膜方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3419044A3 (en) * | 2017-06-22 | 2019-02-27 | Bobst Manchester Limited | Pepvd machine |
CN113874306A (zh) * | 2019-07-11 | 2021-12-31 | 日本电气硝子株式会社 | 玻璃卷的制造方法及制造装置 |
CN112095087A (zh) * | 2019-12-13 | 2020-12-18 | 深圳市中欧新材料有限公司 | 一种导电膜生产用具有空气隔离结构的镀膜设备 |
CN112095087B (zh) * | 2019-12-13 | 2022-06-14 | 深圳市中欧新材料有限公司 | 一种导电膜生产用具有空气隔离结构的镀膜设备 |
CN117721434A (zh) * | 2024-02-08 | 2024-03-19 | 成都国泰真空设备有限公司 | 一种蒸发卷绕机构及真空镀膜机 |
CN117721434B (zh) * | 2024-02-08 | 2024-04-30 | 成都国泰真空设备有限公司 | 一种蒸发卷绕机构及真空镀膜机 |
CN118028762A (zh) * | 2024-04-12 | 2024-05-14 | 山东省宝丰镀膜有限公司 | 一种悬浮式卷绕磁控阴极轰击蒸发成膜系统 |
CN118028762B (zh) * | 2024-04-12 | 2024-07-09 | 山东省宝丰镀膜有限公司 | 一种悬浮式卷绕磁控阴极轰击蒸发成膜系统 |
Also Published As
Publication number | Publication date |
---|---|
TW201502307A (zh) | 2015-01-16 |
TWI526564B (zh) | 2016-03-21 |
JP2014189890A (ja) | 2014-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014156129A1 (ja) | 成膜装置及び成膜方法 | |
JP6724967B2 (ja) | プラズマを使った前処理装置を有した蒸着装置 | |
RU2417275C1 (ru) | Устройство непрерывного формирования пленки | |
JP5270505B2 (ja) | プラズマcvd装置 | |
JP5504720B2 (ja) | 成膜装置 | |
WO2009099325A1 (en) | Method for manufacturing a multi_layer stack structure with improved wvtr barrier property | |
JP2014523940A (ja) | フレキシブル基板を処理する方法 | |
US7897025B2 (en) | Method and apparatus for forming thin film | |
JP5423539B2 (ja) | 蒸着フィルム製造方法 | |
WO2013073280A1 (ja) | フィルム部材およびその製造方法 | |
JP2020117787A (ja) | マグネトロンスパッタ法による成膜装置および成膜方法 | |
JP7186234B2 (ja) | 堆積装置、フレキシブル基板をコーティングする方法、及びコーティングを有するフレキシブル基板 | |
JP2010185124A (ja) | 蒸着方法及び蒸着装置 | |
JP2013237897A (ja) | 真空成膜装置、ガスバリアフィルム、ガスバリア性積層体 | |
JP2017014618A (ja) | フレキシブル基板を処理する方法 | |
JP2011179084A (ja) | 大気圧プラズマ装置 | |
JP2006124781A (ja) | 圧力勾配型イオンプレーティング式成膜装置および成膜方法 | |
WO2017104357A1 (ja) | プラズマcvd成膜装置用電極、電極の製造方法、プラズマcvd成膜装置および機能性フィルムの製造方法 | |
JP2013072100A (ja) | 真空成膜装置ならびにガスバリア性積層体およびその製造方法 | |
JP2009228014A (ja) | 巻取式真空蒸着方法および装置 | |
TWI477626B (zh) | Film forming device | |
JP2006124731A (ja) | 圧力勾配型イオンプレーティング式成膜装置および成膜方法 | |
JP2014084487A (ja) | 薄膜積層シートの形成方法、及び、薄膜積層シートの形成装置 | |
JP4648935B2 (ja) | ガスバリアフィルムの製造方法、及びガスバリアフィルムの製造装置 | |
JP2020007618A (ja) | 積層成膜装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14773689 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14773689 Country of ref document: EP Kind code of ref document: A1 |