WO2014155818A1 - アルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体の製造方法 - Google Patents

アルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体の製造方法 Download PDF

Info

Publication number
WO2014155818A1
WO2014155818A1 PCT/JP2013/080956 JP2013080956W WO2014155818A1 WO 2014155818 A1 WO2014155818 A1 WO 2014155818A1 JP 2013080956 W JP2013080956 W JP 2013080956W WO 2014155818 A1 WO2014155818 A1 WO 2014155818A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
aluminum alloy
wire
heat treatment
predetermined temperature
Prior art date
Application number
PCT/JP2013/080956
Other languages
English (en)
French (fr)
Inventor
茂樹 関谷
祥 吉田
京太 須齋
賢悟 水戸瀬
Original Assignee
古河電気工業株式会社
古河As株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河As株式会社 filed Critical 古河電気工業株式会社
Priority to CN201380053472.7A priority Critical patent/CN104797724B/zh
Priority to JP2014508616A priority patent/JP5607856B1/ja
Priority to EP13880474.5A priority patent/EP2896707B1/en
Priority to KR1020157031074A priority patent/KR101910702B1/ko
Publication of WO2014155818A1 publication Critical patent/WO2014155818A1/ja
Priority to US14/681,767 priority patent/US9263168B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0045Cable-harnesses

Definitions

  • the present invention relates to an aluminum alloy conductor, an aluminum alloy twisted wire, a covered electric wire, a wire harness, and an aluminum alloy wire manufacturing method used as a conductor of an electric wiring body, and particularly used as an ultrafine wire having a wire diameter of 0.5 mm or less. Even in such a case, the present invention relates to an aluminum alloy conductor having improved impact resistance and flexural fatigue resistance while securing the same level of strength, elongation and conductivity as those of conventional products.
  • an electric wiring body of a moving body such as an automobile, a train, an aircraft, or an electric wiring body of an industrial robot
  • a terminal made of copper or a copper alloy for example, brass
  • a so-called wire harness member equipped with a connector has been used.
  • the performance and functionality of automobiles have been rapidly advanced, and as a result, the number of various electric devices and control devices mounted on the vehicle has increased, and they are used in these devices.
  • the means for achieving such weight reduction of the moving body for example, it is considered to replace the conductor of the electric wiring body with a lighter aluminum or aluminum alloy instead of the conventionally used copper or copper alloy. It is being advanced.
  • the specific gravity of aluminum is about 1/3 of the specific gravity of copper
  • the electrical conductivity of aluminum is about 2/3 of the electrical conductivity of copper (pure aluminum is about 66% IACS when pure copper is used as a standard of 100% IACS).
  • the cross-sectional area of the aluminum conductor wire needs to be about 1.5 times the cross-sectional area of the copper conductor wire.
  • the above% IACS represents the electrical conductivity when the resistivity 1.7241 ⁇ 10 ⁇ 8 ⁇ m of universal standard annealed copper (International Annealed Copper Standard) is 100% IACS.
  • pure aluminum wires represented by aluminum alloy wires for power transmission lines are generally inferior in tensile durability, impact resistance, bending characteristics, and the like. For this reason, for example, a load that is unexpectedly applied by an operator or industrial equipment during installation to the vehicle body, a tension at a crimping portion at a connection portion between an electric wire and a terminal, or a load at a bending portion such as a door portion. It cannot withstand stress.
  • materials alloyed by adding various additive elements can increase the tensile strength, it causes a decrease in conductivity due to the solid solution phenomenon of the additive elements in aluminum, and excessive metal in the aluminum.
  • intermetallic compound By forming the intermetallic compound, disconnection due to the intermetallic compound may occur during wire drawing. Therefore, by limiting or selecting the additive elements, it is essential to have a sufficient elongation characteristic so as not to break, and to improve impact resistance and bending characteristics while maintaining the conventional level of electrical conductivity and tensile strength. It was necessary to let them.
  • a high-strength aluminum alloy wire for example, an aluminum alloy wire containing Mg and Si is known, and a typical example of this aluminum alloy wire is a 6000 series aluminum alloy (Al-Mg-Si based alloy) wire.
  • the 6000 series aluminum alloy wire can be strengthened by subjecting it to a solution treatment and an aging treatment.
  • high strength can be achieved by solution treatment and aging treatment, but elongation tends to be insufficient. .
  • Patent Document 1 A conventional 6000 series aluminum alloy wire used for an electric wiring body of a moving body is described in Patent Document 1, for example.
  • the aluminum alloy wire described in Patent Document 1 is an ultrathin wire, and realizes an aluminum alloy wire that has high strength and high electrical conductivity and is excellent in elongation.
  • Patent Document 1 describes that it has excellent bending characteristics because it has sufficient elongation.
  • an aluminum alloy wire is used as a wire harness attached to a door or the like, and the door is opened and closed. There is no disclosure or suggestion about impact resistance or bending fatigue resistance under severe use environment in which repeated bending stress acts and fatigue failure is likely to occur.
  • the object of the present invention is based on the premise that an aluminum alloy containing Mg and Si is used, and by optimizing the microstructure, particularly when used as an ultrafine wire having a strand diameter of 0.5 mm or less. Even as it is, as a conductor of an electric wiring body that has improved impact resistance and flexural fatigue resistance while ensuring the same level of strength, elongation and conductivity as the conventional product (aluminum alloy wire described in Patent Document 1)
  • An object of the present invention is to provide an aluminum alloy conductor, an aluminum alloy twisted wire, a covered electric wire and a wire harness to be used, and to provide a method for producing an aluminum alloy conductor.
  • the inventors of the present invention have observed the microstructure of a conventional aluminum alloy wire containing Mg and Si, and found that an alloy element added to aluminum, for example, an inner portion of the crystal grain located close to the grain boundary, for example, A region where there is no precipitate composed of a compound such as Mg, Si, Fe, Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co, Ni, a so-called no precipitation zone (PFZ: It was found that Precipitate Free Zone was formed. And since this PFZ has almost the same composition as pure aluminum, it has the same characteristics as pure aluminum, and it has been studied earnestly under the assumption that tensile strength, elongation, impact resistance and bending fatigue resistance deteriorate. It was.
  • the present inventors have made various aluminum alloys in which the width of the precipitate-free zone (PFZ) formed in the inner part of the crystal grain located close to the crystal grain boundary is changed by controlling the component composition and the manufacturing process.
  • the width of the precipitation-free zone (PFZ) is narrowed to some extent, the strength, elongation and conductivity equivalent to the conventional products (aluminum alloy wires described in Patent Document 1) are secured.
  • the impact resistance and the bending fatigue resistance are improved.
  • the present inventors have a structure in which the non-precipitation zone (PFZ) is soft and easily deformed, while the portion where the precipitate is present (precipitation zone) has a relatively hard and difficult to deform structure.
  • PFZ non-precipitation zone
  • the grain boundary strength and elongation are reduced, so that the width of the precipitation-free zone (PFZ) can be reduced. It was also found desirable in improving the tensile strength and elongation (uniform elongation), and the present invention was completed.
  • Patent Document 2 the present applicant has already proposed an aluminum alloy plate excellent in bending workability and drawability by narrowing the width of the PFZ in Patent Document 2 filed and published by the applicant.
  • the technique described in Patent Document 2 is based on the point of suppressing the above-described non-uniform deformation that tends to occur when an aluminum alloy wire is produced from an aluminum alloy wire by wire drawing, and by opening and closing the door. No consideration is given to improving impact resistance and bending fatigue resistance, which are characteristics required for an aluminum alloy wire used in a harsh usage environment in which repeated bending stress is likely to cause fatigue failure.
  • the gist of the present invention is as follows. (1) Mg: 0.10 to 1.00 mass%, Si: 0.10 to 1.00 mass%, Fe: 0.01 to 1.40 mass%, Ti: 0.000 to 0.100 mass% , B: 0.000 to 0.030 mass%, Cu: 0.00 to 1.00 mass%, Ag: 0.00 to 0.50 mass%, Au: 0.00 to 0.50 mass%, Mn : 0.00 to 1.00% by mass, Cr: 0.00 to 1.00% by mass, Zr: 0.00 to 0.50% by mass, Hf: 0.00 to 0.50% by mass, V: 0 0.00 to 0.50 mass%, Sc: 0.00 to 0.50 mass%, Co: 0.00 to 0.50 mass%, Ni: 0.00 to 0.50 mass%, the balance: Al and inevitable Aluminum having a chemical composition that is an impurity, having a precipitate-free zone inside the crystal grains, and the width of the precipitate-free zone being 100 nm or less Alloy conductor.
  • the chemical composition is Cu: 0.01 to 1.00% by mass, Ag: 0.01 to 0.50% by mass, Au: 0.01 to 0.50% by mass, Mn: 0.01 to 1.00% by mass, Cr: 0.01-1.00% by mass, Zr: 0.01-0.50% by mass, Hf: 0.01-0.50% by mass, V: 0.01-0.
  • the total content of Fe, Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co, and Ni is 0.01 to 2.00% by mass (1)
  • a wire harness comprising the covered electric wire according to (9) and a terminal attached to an end of the covered electric wire from which the covering layer is removed.
  • a method of manufacturing an aluminum alloy wire including sequentially performing the second heat treatment, wherein the second heat treatment is performed by heating to a first predetermined temperature within a range of 480 to 620 ° C. and then cooling at an average cooling rate of 10 ° C./s or more.
  • a solution heat treatment wherein the aging heat treatment is heated to a second predetermined temperature within a range of 80 ° C. or higher and lower than 150 ° C., and then maintained at the second predetermined temperature; and a range of 140 to 250 ° C.
  • the second aging step of heating to the third predetermined temperature and holding the third predetermined temperature, and the third predetermined temperature is higher than the second predetermined temperature (1) )
  • the aluminum alloy conductor of the present invention is based on the premise that an aluminum alloy containing Mg and Si is used, and optimizes the precipitation-free zone (PFZ) formed in the crystal grain inner portion located close to the crystal grain boundary.
  • PFZ precipitation-free zone
  • the strength, elongation, and conductivity of the same level as the conventional product (aluminum alloy wire described in Patent Document 1) even when used as an extra fine wire having a wire diameter of 0.5 mm or less.
  • an aluminum alloy conductor an aluminum alloy stranded wire, a covered electric wire, a wire harness used as a conductor of an electric wiring body, which has improved impact resistance and bending fatigue resistance, and It is possible to provide a manufacturing method, and a battery cable, harness or motor lead wire mounted on a moving body, and a wiring body for an industrial robot Useful as. Furthermore, since the aluminum alloy wire of the present invention has high tensile strength, it is also possible to make the wire diameter thinner than conventional wires, and doors and trunks that require high impact resistance and bending fatigue resistance, It can be suitably used for a bonnet or an engine room.
  • the microstructure of the aluminum alloy wire of the present invention was observed, and only two crystal grains were extracted to conceptually show the width of PFZ and the distribution state of Si and Mg precipitates (for example, Mg 2 Si precipitates).
  • FIG. The figure which observed the microstructure of the conventional aluminum alloy wire, extracted only two crystal grains, and showed notionally the width of PFZ, and the distribution state of the precipitate of Si and Mg (for example, Mg 2 Si precipitate) It is.
  • the aluminum alloy wire conductor of the present invention has Mg: 0.10 to 1.00% by mass, Si: 0.10 to 1.00% by mass, Fe: 0.01 to 1.40% by mass, Ti: 0.000. ⁇ 0.100 mass%, B: 0.000 to 0.030 mass%, Cu: 0.00 to 1.00 mass%, Ag: 0.00 to 0.50 mass%, Au: 0.00 to 0 50% by mass, Mn: 0.00 to 1.00% by mass, Cr: 0.00 to 1.00% by mass, Zr: 0.00 to 0.50% by mass, Hf: 0.00 to 0.50 %
  • V 0.00 to 0.50% by mass
  • Sc 0.00 to 0.50% by mass
  • Co 0.00 to 0.50% by mass
  • Balance Al and a chemical composition that is an inevitable impurity, and there is a precipitation-free zone (PFZ) inside the crystal grains, and the width of this precipitation-free zone is 100
  • Chemical composition ⁇ Mg: 0.10 to 1.00% by mass> Mg (magnesium) has the effect of strengthening by dissolving in an aluminum base material, and part of it combines with Si to form precipitates to form tensile strength, impact resistance, bending fatigue resistance and heat resistance. It is an element having the effect of improving the properties.
  • Mg content is less than 0.10% by mass, the above-described effects are insufficient, and when the Mg content exceeds 1.00% by mass, there is a possibility that Mg precipitates at the grain boundaries.
  • the Mg content is 0.10 to 1.00% by mass.
  • the Mg content is preferably 0.50 to 1.00% by mass when high strength is important, and 0.10 to 0.50% by mass when conductivity is important. From such a viewpoint, the total content is preferably 0.30 to 0.70% by mass.
  • Si is an element that has the effect of improving the tensile strength, impact resistance, bending fatigue resistance, and heat resistance by combining with Mg to form precipitates.
  • Si content is less than 0.10% by mass, the above-described effects are insufficient, and when the Si content exceeds 1.00% by mass, a Si-concentrated portion may be precipitated at the crystal grain boundary.
  • the PFZ width is increased and the tensile strength, elongation, impact resistance and bending fatigue resistance are reduced, and the solid solution amount of Si element is increased, so that the conductivity is also lowered. Therefore, the Si content is 0.10 to 1.00% by mass.
  • the Si content is preferably 0.50 to 1.00% by mass when high strength is important, and 0.10 to 0.50% by mass when conductivity is important. From such a viewpoint, the total content is preferably 0.30 to 0.70% by mass.
  • Fe is an element that contributes to refinement of crystal grains mainly by forming an Al—Fe-based intermetallic compound and improves tensile strength, impact resistance, and bending fatigue resistance. Fe can only dissolve at 0.05% by mass in Al at 655 ° C. and is even less at room temperature. Therefore, the remaining Fe that cannot be dissolved in Al is Al—Fe, Al—Fe—Si, Al—Fe. -Crystallizes or precipitates as an intermetallic compound such as Si-Mg. This intermetallic compound contributes to refinement of crystal grains and improves tensile strength, impact resistance, and bending fatigue resistance.
  • Fe has the effect
  • the aluminum alloy conductor of the present invention contains Mg, Si and Fe as essential components, but if necessary, one or two selected from the group consisting of Ti and B, Cu, Ag, One or more of Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni can be contained.
  • Ti is an element having an effect of refining the structure of the ingot at the time of melt casting. If the structure of the ingot is coarse, the ingot cracking in the casting or disconnection occurs in the wire processing step, which is not industrially desirable. If the Ti content is less than 0.001% by mass, the above-mentioned effects cannot be fully exhibited, and if the Ti content exceeds 0.100% by mass, the conductivity tends to decrease. It is. Accordingly, the Ti content is set to 0.001 to 0.100 mass%, preferably 0.005 to 0.050 mass%, more preferably 0.005 to 0.030 mass%.
  • B like Ti, is an element that has the effect of refining the structure of the ingot during melt casting. If the structure of the ingot is coarse, the ingot cracking in the casting or disconnection occurs in the wire processing step, which is not industrially desirable. If the B content is less than 0.001% by mass, the above-mentioned effects cannot be fully exhibited, and if the B content exceeds 0.030% by mass, the conductivity tends to decrease. It is. Therefore, the B content is 0.001 to 0.030 mass%, preferably 0.001 to 0.020 mass%, more preferably 0.001 to 0.010 mass%.
  • ⁇ Cu 0.01 to 1.00% by mass>, ⁇ Ag: 0.01 to 0.50% by mass>, ⁇ Au: 0.01 to 0.50% by mass>, ⁇ Mn: 0.01 to 1 0.00 mass%, ⁇ Cr: 0.01 to 1.00 mass%>, ⁇ Zr: 0.01 to 0.50 mass%>, ⁇ Hf: 0.01 to 0.50 mass%>, ⁇ V : 0.01 to 0.50% by mass>, ⁇ Sc: 0.01 to 0.50% by mass>, ⁇ Co: 0.01 to 0.50% by mass>, ⁇ Ni: 0.01 to 0.50 Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co, and Ni are all elements that have the effect of refining crystal grains.
  • Cu, Ag, and Au are elements that also have the effect of increasing the grain boundary strength by precipitating at the grain boundaries, and at least of these elements
  • the above-described effects can be obtained, and the tensile strength, elongation, impact resistance, and bending fatigue resistance can be improved.
  • the compound containing the element becomes coarse. In order to deteriorate wire drawing workability, disconnection is likely to occur, and the conductivity tends to decrease. Therefore, the ranges of the contents of Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co, and Ni are set to the above ranges, respectively.
  • the total content of these elements is preferably 2.00% by mass or less. Since Fe is an essential element in the aluminum alloy conductor of the present invention, the total content of Fe, Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni is 0.01 to 2.00% by mass. The content of these elements is more preferably 0.10 to 2.00% by mass. However, when these elements are added alone, the larger the content, the more the compound containing the elements tends to become coarser, which deteriorates the wire drawing workability and easily causes disconnection. In the element, the content range is as defined above.
  • the total content of Sc, Co and Ni is particularly preferably 0.10 to 0.80% by mass, and further preferably 0.20 to 0.60% by mass.
  • the conductivity is slightly lowered, in order to further improve the tensile strength, elongation, impact resistance, and bending fatigue resistance, it is particularly preferably more than 0.80 to 2.00% by mass, preferably 1.00 to 2%. 0.000 mass% is more preferable.
  • Al and inevitable impurities The balance other than the components described above is Al (aluminum) and inevitable impurities.
  • the inevitable impurities referred to here mean impurities in a content level that can be unavoidably included in the manufacturing process. Depending on the content of the inevitable impurities, it may be a factor for reducing the electrical conductivity. Therefore, it is preferable to suppress the content of the inevitable impurities to some extent in consideration of the decrease in electrical conductivity. Examples of components listed as inevitable impurities include Ga, Zn, Bi, Pb, and the like.
  • the width of the precipitate-free zone (PFZ) formed inside the crystal grain is 100 nm or less.
  • the aluminum alloy conductor of the present invention is close to the grain boundary on the premise that it has the chemical composition described above.
  • FIG. 1 shows the microstructure 1 of the aluminum alloy wire of the present invention, where only two crystal grains 2 and 3 of the aluminum matrix are extracted, the width W of PFZ4, and precipitates of Si and Mg (for example, Mg 2 Fig. 2 conceptually shows the distribution state of Si precipitates 5).
  • FIG. 1 shows the microstructure 1 of the aluminum alloy wire of the present invention, where only two crystal grains 2 and 3 of the aluminum matrix are extracted, the width W of PFZ4, and precipitates of Si and Mg (for example, Mg 2 Fig. 2 conceptually shows the distribution state of Si precipitates 5).
  • FIG. 1 shows the microstructure 1 of the aluminum alloy wire of the present invention, where only two crystal grains 2 and 3 of the aluminum matrix are extracted, the width W of PFZ4, and precipitates of Si and Mg (for example, Mg 2 Fig. 2 conceptually shows the distribution state of Si precipitates 5).
  • FIG. 1 shows the microstructure 1 of the aluminum alloy wire of the present invention, where only two crystal grains 2 and 3 of the aluminum matrix are extracted
  • FIG. 2 shows a microstructure 101 of a conventional aluminum alloy wire, where only two crystal grains 102 and 103 of the aluminum matrix are extracted, the width W of the PFZ 104, and precipitates of Si and Mg (for example, Mg 2 Si The distribution state of the precipitate 105) is conceptually shown.
  • the aluminum alloy conductor of the present invention a compound containing Fe, Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co, and Ni is precipitated at the grain boundary.
  • a concentrated portion of Si element and a concentrated portion of Mg element are hardly formed in the grain boundary, and as a result, as shown in FIG. 1, the non-precipitated zone (PFZ)
  • the width W can be reduced to 100 nm or less, and the impact resistance and the bending fatigue resistance are improved while ensuring the same level of strength, elongation and conductivity as the conventional product (aluminum alloy wire described in Patent Document 1). be able to.
  • the width W of the precipitation-free zone (PFZ) 104 is wider than 100 nm, the tensile strength, the elongation, the impact resistance, and the bending fatigue resistance are deteriorated. Therefore, in the present invention, the width W of the precipitation-free zone (PFZ) 4 is limited to a range of 100 nm or less.
  • the width W of the non-precipitated zone (PFZ) 4 tends to improve the tensile strength, elongation, impact resistance, and bending fatigue resistance, and is preferably 80 nm or less, more preferably 60 nm. It is as follows.
  • the non-precipitation zone (PFZ) is a range from the grain boundary position to the boundary position between the region where the precipitate exists (precipitation zone) and the region where no precipitate exists (no precipitation zone). Therefore, the absence of PFZ means the absence of precipitates. Since the acicular Mg 2 Si compound as a precipitate has the effect of improving the tensile strength, impact resistance, and bending fatigue resistance, it is better that the width of the precipitation-free zone (PFZ) is at least 1 nm or more.
  • the width W of PFZ4 was calculated as follows. That is, using a transmission electron microscope, the sample is tilted and observed so that the grain boundary stands vertically with respect to the observation direction, and the transmission electron microscope photograph is taken at 2 to 600,000 times, The width W of PFZ4 at 5 locations per field of view was measured, and the average value of 10 locations in total was taken as the width of PFZ. At this time, PFZ4 was observed on both sides of the grain boundary, but the width W was measured and averaged by selecting an arbitrary portion of PFZ4 from both sides of the grain boundary without being limited to the measurement on one side of the grain boundary.
  • the width W of PFZ4 here is a range from a grain boundary position to a boundary position between a region where a precipitate exists (precipitation zone) and a region where no precipitate exists (no precipitation zone). .
  • Such an aluminum alloy conductor in which the width W of the PFZ4 is limited can be realized by controlling the alloy composition and the manufacturing process in combination.
  • the suitable manufacturing method of the aluminum alloy conductor of this invention is demonstrated.
  • the aluminum alloy conductor of the present invention includes [1] melting, [2] casting, [3] hot working (groove roll machining, etc.), [4] first wire drawing, [5] first heat treatment, [6] It can be manufactured by a manufacturing method including sequentially performing the steps of second wire drawing, [7] second heat treatment, and [8] aging heat treatment. Note that a step of forming a stranded wire may be provided before and after the second heat treatment or after the aging heat treatment, and a step of performing resin coating on the electric wire may be provided before and after the aging heat treatment. The steps [1] to [8] will be described below.
  • the degree of work ⁇ is preferably in the range of 1-6.
  • the surface is cleaned by performing surface peeling, it may not be performed.
  • First heat treatment (intermediate heat treatment) A first heat treatment is applied to the cold-drawn workpiece.
  • This first heat treatment is an intermediate heat treatment performed in the middle of the wire drawing process, and the main purpose is to remove the distortion introduced in the first wire drawing process.
  • the wire drawing workability of the wire in the wire drawing can be improved.
  • the first heat treatment condition is not particularly limited.
  • the heating temperature is 300 to 500 ° C.
  • the heating time is 0.5 to 10 hours.
  • a method of performing the first heat treatment for example, a batch heat treatment or a continuous heat treatment such as high-frequency heating, energization heating, or running heat may be used.
  • the working degree ⁇ is preferably in the range of 1 to 6.
  • the degree of work ⁇ greatly affects the formation and growth of recrystallized grains. If the degree of work ⁇ is less than 1, the recrystallized grains tend to be coarsened during the heat treatment in the next step, and the tensile strength and elongation tend to be significantly reduced. This is because it tends to cause problems in terms of quality, such as disconnection during wire drawing.
  • Second heat treatment (solution heat treatment) A second heat treatment is performed on the cold-drawn workpiece.
  • the method for producing an aluminum alloy wire of the present invention is particularly to optimize the second heat treatment and the subsequent aging heat treatment.
  • the second heat treatment is a solution heat treatment performed to dissolve the randomly contained Mg and Si compound in the aluminum matrix, and specifically, a first predetermined temperature within a range of 480 to 620 ° C. After heating to temperature, it is cooled at an average cooling rate of 10 ° C./s or higher. If the first predetermined temperature during heating in the second heat treatment is higher than 620 ° C., tensile strength, elongation, impact resistance, and bending fatigue resistance are deteriorated due to eutectic melting.
  • the average cooling rate is preferably 50 ° C./s or more, and more preferably 100 ° C./s or more.
  • the predetermined temperature is in the range of 480 to 620 ° C., preferably in the range of 500 to 600 ° C., more preferably in the range of 520 to 580 ° C.
  • the method of the second heat treatment may be performed by batch annealing as in the case of the first heat treatment, or may be performed by continuous annealing such as high-frequency heating, energization heating, or running heat.
  • the wire temperature When high-frequency heating or current heating is used, the wire temperature usually rises with the passage of time because it has a structure that keeps current flowing through the wire. For this reason, if the current is kept flowing, the wire may be melted. Therefore, it is necessary to perform heat treatment in an appropriate time range. Even when running heating is used, since the annealing is performed for a short time, the temperature of the running annealing furnace is usually set higher than the wire temperature. Since heat treatment for a long time may cause the wire to melt, it is necessary to perform the heat treatment in an appropriate time range. Further, in all heat treatments, a predetermined time or more for dissolving Mg and Si compounds randomly contained in the workpiece into the aluminum matrix is required. Hereinafter, heat treatment by each method will be described.
  • the continuous heat treatment by high frequency heating is a heat treatment by Joule heat generated from the wire itself by an induced current as the wire continuously passes through a magnetic field by high frequency. It includes a rapid heating and rapid cooling process, and the wire can be heat-treated under control of the wire temperature and heat treatment time. Cooling is performed by passing the wire continuously in water or in a nitrogen gas atmosphere after rapid heating.
  • This heat treatment time is 0.01 to 2 s, preferably 0.05 to 1 s, more preferably 0.05 to 0.5 s.
  • the continuous energization heat treatment is a heat treatment by Joule heat generated from the wire itself by passing an electric current through the wire passing continuously through the two electrode wheels. It includes a rapid heating and rapid cooling process, and the wire can be heat-treated under control of the wire temperature and heat treatment time. Cooling is performed by passing the wire continuously through water, air, or a nitrogen gas atmosphere after rapid heating. This heat treatment time is 0.01 to 2 s, preferably 0.05 to 1 s, more preferably 0.05 to 0.5 s.
  • the continuous running heat treatment is a heat treatment in which a wire continuously passes through a heat treatment furnace maintained at a high temperature.
  • Heat treatment can be performed by controlling the temperature in the heat treatment furnace and the heat treatment time, including rapid heating and rapid cooling processes. Cooling is performed by passing the wire continuously through water, air, or a nitrogen gas atmosphere after rapid heating.
  • This heat treatment time is 0.5 to 120 s, preferably 0.5 to 60 s, more preferably 0.5 to 20 s.
  • Batch type heat treatment is a method in which a wire is put into an annealing furnace and heat treated at a predetermined set temperature and set time.
  • the wire itself may be heated for several tens of seconds at a predetermined temperature.
  • the upper limit of the heat treatment time is not particularly limited as long as the number of crystal grains is 5 or more in the radial direction of the wire, but if the time is short, the number of crystal grains tends to be 5 or more in the radial direction of the wire. Since the productivity is good for industrial use, the heat treatment is performed within 10 hours, preferably within 6 hours.
  • the solution formation becomes incomplete and the Mg 2 Si precipitates precipitated during the aging heat treatment in the subsequent process, and the tensile strength and impact resistance are reduced.
  • the range of improvement in properties, bending fatigue resistance, and conductivity is reduced.
  • the wire temperature and the annealing time are higher than the conditions defined above, the crystal grains become coarse, and the partial melting (eutectic melting) of the compound phase in the aluminum alloy conductor occurs. Strength and elongation are reduced, and disconnection is likely to occur when handling conductors.
  • the cooling in the second heat treatment of the present invention is preferably performed in any of the heat treatment methods described above by heating the aluminum wire after the second wire drawing to a predetermined temperature and then passing it in water.
  • the cooling rate cannot be measured accurately. Therefore, in such a case, in any heat treatment method, the average cooling rate by water cooling after heating is estimated after the aluminum alloy wire is cooled to the water temperature (about 20 ° C.) immediately after the water cooling, and then each heat treatment is performed.
  • the cooling rate calculated as follows was used as the average cooling rate. That is, in batch-type heat treatment, the cooling rate is (500) when heat treated at 500 ° C. from the viewpoint that it is important to keep the time maintained at 150 ° C. or higher from the start of cooling within 40 seconds.
  • the temperature is 100 ° C./s or higher because the mechanism is such that after heating, the aluminum alloy wire is cooled by water after passing several meters at a linear speed of 100 to 1500 m / min. Since it is a mechanism for water-cooling the aluminum alloy wire immediately after heating, the temperature is 100 ° C./s or more, and in the continuous heat treatment by running heat, the wire speed of the aluminum alloy wire is 10 to 500 m / min immediately after heating.
  • the room temperature (about approx. If it is calculated as being cooled to 20 ° C., cooling of about 10 ° C./s or more is possible although it depends on the section length during air cooling. Any of the heat treatment methods may be rapidly cooled to at least 150 ° C. from the viewpoint of achieving the purpose of the solution heat treatment.
  • the aging heat treatment in the present invention includes a first aging step of heating to a second predetermined temperature within a range of 80 ° C. or more and less than 150 ° C., and then maintaining the second predetermined temperature, and a third aging step within a range of 140 to 250 ° C. It comprises a second aging stage in which the third predetermined temperature is maintained after being heated to a predetermined temperature, and the third predetermined temperature is made higher than the second predetermined temperature. That is, the aging heat treatment is a group consisting of Fe, Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co, and Ni that are selectively added in the first aging stage.
  • the precipitation driving force of Si element and Mg element at the crystal grain boundary is reduced by precipitating the compound containing one or more components selected from the above at the crystal grain boundary, and in the subsequent second aging stage
  • the Mg element and Si element in the vicinity of the grain boundary are not easily used for grain boundary precipitation, and the depletion of the Mg element and Si element is suppressed in the vicinity of the grain boundary. It can be: As a result, the impact resistance and the bending fatigue resistance are improved while ensuring the same level of strength, elongation and conductivity as the conventional product (the aluminum alloy wire described in Patent Document 1).
  • the second predetermined temperature is less than 80 ° C.
  • the aging precipitation of the compound containing one or more components selected from the group consisting of Ni becomes insufficient, and Mg 2 Si tends to precipitate at the grain boundaries in the subsequent second aging stage.
  • the width of PFZ becomes larger than 100 nm, and if the second predetermined temperature is 150 ° C. or higher, Mg 2 Si is deposited in the precipitation temperature region, so that Mg 2 Si is also precipitated at the grain boundaries.
  • the holding time at the second predetermined temperature is not particularly limited because it varies depending on the temperature. However, considering productivity, a short time (for example, 1 minute or more) is good, preferably 15 hours or less, more preferably 10 hours or less. is there. Furthermore, in the second aging stage, if the third predetermined temperature is less than 140 ° C., the needle-like Mg 2 Si precipitate cannot be sufficiently precipitated, and the strength, impact resistance, bending fatigue resistance and electrical conductivity are reduced.
  • the holding time at the third predetermined temperature is not particularly limited because it varies depending on the temperature. However, in consideration of productivity, a short time (for example, 1 minute or more) is good, preferably 15 hours or less, and more preferably 10 hours. It is as follows. Therefore, in the present invention, the aging heat treatment is carried out by heating to a second predetermined temperature within the range of 80 ° C.
  • first aging stage and the second aging stage may be performed continuously, or the second aging stage may be performed after the first stage has been returned to room temperature. This is because, in each aging stage, the purpose is to precipitate a compound that can be precipitated while being held for a certain time in a predetermined temperature range.
  • cooling in the 1st and 2nd aging stage which comprises aging heat processing
  • cooling in the heat treatment furnace slow cooling
  • cooling in the atmosphere air cooling
  • the wire diameter of the aluminum alloy wire of the present invention is not particularly limited and can be appropriately determined according to the application, but it is ⁇ 0.1 to 0.5 mm for a thin wire, and ⁇ 0 for a medium thin wire. .8 to 1.5 mm is preferable.
  • One of the advantages of the aluminum alloy wire of the present invention is that the aluminum alloy wire can be used as a thin single aluminum wire, but it can also be used as an aluminum alloy stranded wire obtained by bundling a plurality of wires.
  • An aging heat treatment step may be performed.
  • the present invention as an additional process, it is possible to perform a homogenization heat treatment as performed by a conventional method after continuous casting and rolling.
  • the homogenization heat treatment precipitates of the additive elements (mainly Mg—Si compounds) can be uniformly dispersed, so that a uniform crystal structure can be easily obtained in the subsequent first heat treatment. Improvements in elongation, impact resistance and bending fatigue resistance can be obtained more stably.
  • the homogenization heat treatment is preferably performed at a heating temperature of 450 to 600 ° C. and a heating time of 1 to 10 hours, more preferably 500 to 600 ° C.
  • the cooling in the homogenization heat treatment is preferably slow at an average cooling rate of 0.1 to 1.0 ° C./min from the viewpoint that a uniform compound can be easily obtained.
  • the aluminum alloy wire of the present invention has an impact absorption energy of 5 J / mm 2 or more, and can achieve excellent impact resistance. Further, the number of repetitions until breakage measured by a bending fatigue test is 200,000 times or more, and excellent bending fatigue resistance characteristics can be achieved.
  • the aluminum alloy wire of the present invention can be used as an aluminum alloy wire or an aluminum alloy twisted wire obtained by twisting a plurality of aluminum alloy wires, and further, an aluminum alloy wire or an aluminum alloy twisted wire Can also be used as a coated electric wire having a coating layer on the outer periphery of the wire harness, and in addition, a wire harness (assembled electric wire) comprising a coated electric wire and a terminal attached to the end of the coated electric wire from which the coating layer has been removed It is also possible to use as
  • Examples, Comparative Examples Mg, Si, Fe and Al, and selectively added Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni are shown in Table 1 and Table.
  • rolling was performed while continuously casting the molten metal in a water-cooled mold to obtain a bar having a diameter of ⁇ 9.5 mm.
  • the casting cooling rate at this time was about 15 ° C./second. Then, this was subjected to first wire drawing so that a predetermined degree of processing was obtained.
  • a first heat treatment is performed on the processed material subjected to the first wire drawing under the conditions shown in Tables 3 and 4, and further, a predetermined degree of processing is obtained up to a wire diameter of ⁇ 0.31 mm. 2 wire drawing was performed.
  • the second heat treatment was performed under the conditions shown in Tables 3 and 4.
  • the wire temperature was measured by winding a thermocouple around the wire.
  • the fiber type radiation thermometer manufactured by Japan Sensor Co., Ltd.
  • the width W of PFZ4 was calculated as follows. That is, using a transmission electron microscope, the sample is tilted and observed so that the grain boundary stands vertically with respect to the observation direction, and the transmission electron microscope photograph is taken at 2 to 600,000 times, The width W of PFZ4 at five locations per field of view was measured, and the average value at a total of 10 locations was defined as the width of PFZ. At this time, PFZ4 was observed on both sides of the grain boundary, but the width W was measured and averaged by selecting an arbitrary portion of PFZ4 from both sides of the grain boundary without being limited to the measurement on one side of the grain boundary.
  • (D) Impact absorption energy This is an index of how much impact the aluminum alloy conductor can withstand, and was calculated by (position energy of weight) / (cross-sectional area of the aluminum alloy conductor) immediately before the aluminum alloy conductor is disconnected. Specifically, a weight was attached to one end of the aluminum alloy conductor wire, and the weight was freely dropped from a height of 300 mm. The weight was gradually changed to a heavy one, and the shock absorption energy was calculated from the weight of the weight just before the disconnection. It can be said that the greater the shock absorption energy, the higher the shock absorption. The impact absorption energy was set to 5 J / mm 2 or more as an acceptable level.
  • strength was made into the terminal crimping part intensity
  • the aluminum alloy wires of Invention Examples 1 to 52 all have the same level of tensile strength, elongation and electrical conductivity as conventional products (the aluminum alloy wire described in Patent Document 1), and are excellent in impact resistance and bending fatigue resistance. It was. Moreover, it was excellent also in the terminal crimping part intensity
  • the aluminum alloy wires of Comparative Examples 1 to 10 have chemical compositions outside the scope of the present invention, and the aluminum alloy wires of Comparative Examples 1 to 18 all have 180,000 repetitions until breakage. The bending fatigue resistance properties were inferior as shown below. Except for Comparative Examples 16 and 18, the impact resistance was also inferior. Except for Comparative Example 18, the terminal crimping part strength was also poor.
  • Comparative Examples 5 to 9 were disconnected during the wire drawing process.
  • the aluminum alloy wires of Comparative Examples 11 to 15 and 17 having a chemical composition included in the scope of the present invention and having a PFZ width outside the proper range of the present invention are both inferior in impact resistance and bending fatigue resistance. It was.
  • the aluminum alloy wire of the present invention is based on the premise that an aluminum alloy containing Mg and Si in Al is used, and has a precipitation-free zone (PFZ) formed in a crystal grain inner portion located close to a grain boundary.
  • PFZ precipitation-free zone
  • a method for producing an aluminum alloy conductor, an aluminum alloy stranded wire, a covered electric wire, a wire harness, and an aluminum alloy conductor used as a conductor of an electric wiring body which has improved impact resistance and bending fatigue resistance while ensuring conductivity It can be provided and is useful as a battery cable mounted on a moving body, a harness or a conductor for a motor, and a wiring body for an industrial robot.
  • the aluminum alloy wire of the present invention has high tensile strength, it is also possible to make the wire diameter thinner than conventional wires, and doors and trunks that require high impact resistance and bending fatigue resistance, It can be suitably used for a bonnet or an engine room.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Metal Extraction Processes (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Abstract

 特に、素線径が0.5mm以下である極細線として使用した場合であっても、従来品と同等レベルの強度、伸びおよび導電率を確保しつつ、耐衝撃性と耐屈曲疲労特性を向上させた、電気配線体の導体として用いられるアルミニウム合金導体等を提供する。 本発明のアルミニウム合金導体は、Mg:0.10~1.00質量%、Si:0.10~1.00質量%、Fe:0.01~1.40質量%、Ti:0.000~0.100質量%、B:0.000~0.030質量%、Cu:0.00~1.00質量%、Ag:0.00~0.50質量%、Au:0.00~0.50質量%、Mn:0.00~1.00質量%、Cr:0.00~1.00質量%、Zr:0.00~0.50質量%、Hf:0.00~0.50質量%、V:0.00~0.50質量%、Sc:0.00~0.50質量%、Co:0.00~0.50質量%、Ni:0.00~0.50質量%、残部:Alおよび不可避不純物である化学組成を有し、結晶粒内部に無析出帯が存在し、前記無析出帯の幅が100nm以下であることを特徴とするアルミニウム合金導体。

Description

アルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体の製造方法
 本発明は、電気配線体の導体として用いられるアルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線の製造方法に関し、特に、線径が0.5mm以下である極細線として使用した場合であっても、従来品と同等レベルの強度、伸びおよび導電率を確保しつつ、耐衝撃性と耐屈曲疲労特性を向上させたアルミニウム合金導体に関するものである。
 従来、自動車、電車、航空機等の移動体の電気配線体、または産業用ロボットの電気配線体として、銅又は銅合金の導体を含む電線に、銅又は銅合金(例えば、黄銅)製の端子(コネクタ)を装着した、いわゆるワイヤーハーネスと呼ばれる部材が用いられてきた。昨今では、自動車の高性能化や高機能化が急速に進められており、これに伴い、車載される各種の電気機器、制御機器などの配設数が増加するともに、これら機器に使用される電気配線体の配設数も増加する傾向にある。また、その一方で、環境対応のために自動車等の移動体の燃費を向上させるため、移動体の軽量化が強く望まれている。
 こうした移動体の軽量化を達成するための手段の一つとして、例えば電気配線体の導体を、従来から用いられている銅又は銅合金に代えて、より軽量なアルミニウム又はアルミニウム合金にする検討が進められている。アルミニウムの比重は銅の比重の約1/3、アルミニウムの導電率は銅の導電率の約2/3(純銅を100%IACSの基準とした場合、純アルミニウムは約66%IACS)であり、アルミニウムの導体線材に、銅の導体線材と同じ電流を流すためには、アルミニウムの導体線材の断面積を、銅の導体線材の断面積の約1.5倍と大きくする必要があるが、そのように断面積を大きくしたアルミニウムの導体線材を用いたとしても、アルミニウムの導体線材の質量は、純銅の導体線材の質量の半分程度であることから、アルミニウムの導体線材を使用することは、軽量化の観点から有利である。なお、上記の%IACSとは、万国標準軟銅(International Annealed Copper Standard)の抵抗率1.7241×10-8Ωmを100%IACSとした場合の導電率を表したものである。
 しかし、送電線用アルミニウム合金線材(JIS規格によるA1060やA1070)を代表とする純アルミニウム線材では、一般に引張耐久性、耐衝撃性、屈曲特性などが劣ることが知られている。そのため、例えば、車体への取付け作業時に作業者や産業機器などによって不意に負荷される荷重や、電線と端子の接続部における圧着部での引張や、ドア部などの屈曲部で負荷される繰り返し応力などに耐えることができない。また、種々の添加元素を加えて合金化した材料は引張強度を高めることは可能であるものの、アルミニウム中への添加元素の固溶現象により導電率の低下を招くこと、アルミニウム中に過剰な金属間化合物を形成することで伸線加工中に金属間化合物に起因する断線が生じることがあった。そのため、添加元素を限定ないし選択することにより、十分な伸び特性を有することで断線しないことを必須とし、さらに、従来レベルの導電率と引張強度を確保しつつ、耐衝撃性と屈曲特性を向上させる必要があった。
 また、高強度アルミニウム合金線材としては、例えばMgとSiを含有するアルミニウム合金線材が知られており、このアルミニウム合金線材の代表例としては、6000系アルミニウム合金(Al-Mg-Si系合金)線材が挙げられる。6000系アルミニウム合金線材は、一般に、溶体化処理及び時効処理を施すことにより高強度化を図ることができる。しかしながら、6000系アルミニウム合金線材を用いて線径0.5mm以下といった極細線を製造する場合、溶体化処理及び時効処理を施すことで高強度化は達成できるものの、伸びが不足する傾向にあった。
 移動体の電気配線体に用いられる従来の6000系アルミニウム合金線としては、例えば特許文献1に記載されている。特許文献1に記載のアルミニウム合金線は、極細線であって、高強度・高導電率を有しながら、伸びにも優れるアルミニウム合金線を実現するものである。また、特許文献1には、十分な伸びを有することから、優れた屈曲特性を有する旨が記載されているが、例えばドア部などに取り付けられるワイヤーハーネスとしてアルミニウム合金線を用い、ドアの開閉により繰り返し曲げ応力が作用して疲労破壊が発生しやすい過酷な使用環境下での耐衝撃性や耐屈曲疲労特性については何ら開示も示唆もしていない。
特開2012-229485号公報 特開2003-105473号公報
 本発明の目的は、MgとSiを含有するアルミニウム合金を用いることを前提とし、ミクロ組織の適正化を図ることによって、特に、素線径が0.5mm以下である極細線として使用した場合であっても、従来品(特許文献1記載のアルミニウム合金線)と同等レベルの強度、伸びおよび導電率を確保しつつ、耐衝撃性、耐屈曲疲労特性を向上させた、電気配線体の導体として用いられるアルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスを提供すること、およびアルミニウム合金導体の製造方法を提供することにある。
 本発明者らは、MgとSiを含有する従来のアルミニウム合金線のミクロ組織を観察したところ、結晶粒界に近接して位置する結晶粒内部分に、アルミニウム中に添加する合金元素、例えば、Mg、Si、Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、Co、Niなどの化合物からなる析出物が存在しない領域、いわゆる無析出帯(PFZ:Precipitate Free Zone)が形成されることを知見した。そして、このPFZにおいては純アルミニウムとほぼ同等の組成であるため、純アルミニウムと同等の特性となり、引張強度、伸び、耐衝撃性および耐屈曲疲労特性が劣化するとの仮定の下に鋭意検討を行った。
 そして、本発明者らは、成分組成と製造プロセスの制御により、結晶粒界に近接して位置する結晶粒内部分に形成される無析出帯(PFZ)の幅を変化させた種々のアルミニウム合金線を作製して比較検討を行った結果、無析出帯(PFZ)の幅をある程度狭くすると、従来品(特許文献1記載のアルミニウム合金線)と同等レベルの強度、伸びおよび導電率を確保しつつ、耐衝撃性と耐屈曲疲労特性が向上することを見出した。
 さらに、本発明者らは、無析出帯(PFZ)の部分が軟らかく変形しやすい組織を有し、一方、析出物が存在する部分(析出帯)が比較的硬質で変形しにくい組織を有することに起因して、不均一変形(結晶粒のPFZの部分のみが変形)が生じやすくなる結果、粒界強度と伸びが低下することから、無析出帯(PFZ)の幅を狭くすることが、引張強度と伸び(均一伸び)を向上させる上で望ましいことも見出し、本発明を完成させるに至った。
 なお、アルミニウム合金線材において、不均一変形すると、局部伸びの発生によって、アルミニウム合金線の断面積が局部的に小さくなり、この結果、導体抵抗が上昇し、アルミニウム合金線自体が発するジュール熱により電線発煙の危険がある。この傾向は、特に、このアルミニウム合金線を、素線径が0.5mm以下である極細線として使用した場合、断面積に対するPFZ幅の寄与率が高くなるため顕著になる。
 また、本出願人は、自らが出願し、出願公開された特許文献2において、PFZの幅を狭くすることによって、曲げ加工性および絞り成形性に優れたアルミニウム合金板については既に提案しているが、特許文献2に記載された技術は、アルミニウム合金線材から、伸線加工によってアルミニウム合金線を製造する際に生じる傾向のある上述したような不均一変形を抑制する点や、ドアの開閉により繰り返し曲げ応力が作用して疲労破壊が発生しやすい過酷な使用環境下で使用されるアルミニウム合金線に必要な特性である耐衝撃性や耐屈曲疲労特性を向上させる点については考慮していない。
 上記課題を解決するため、本発明の要旨構成は以下のとおりである。
 (1)Mg:0.10~1.00質量%、Si:0.10~1.00質量%、Fe:0.01~1.40質量%、Ti:0.000~0.100質量%、B:0.000~0.030質量%、Cu:0.00~1.00質量%、Ag:0.00~0.50質量%、Au:0.00~0.50質量%、Mn:0.00~1.00質量%、Cr:0.00~1.00質量%、Zr:0.00~0.50質量%、Hf:0.00~0.50質量%、V:0.00~0.50質量%、Sc:0.00~0.50質量%、Co:0.00~0.50質量%、Ni:0.00~0.50質量%、残部:Alおよび不可避不純物である化学組成を有し、結晶粒内部に無析出帯が存在し、前記無析出帯の幅が100nm以下であることを特徴とするアルミニウム合金導体。
 (2)前記化学組成が、Ti:0.001~0.100質量%およびB:0.001~0.030質量%からなる群から選択された1種または2種を含有する上記(1)に記載のアルミニウム合金導体。
 (3)前記化学組成が、Cu:0.01~1.00質量%、Ag:0.01~0.50質量%、Au:0.01~0.50質量%、Mn:0.01~1.00質量%、Cr:0.01~1.00質量%、Zr:0.01~0.50質量%、Hf:0.01~0.50質量%、V:0.01~0.50質量%、Sc:0.01~0.50質量%、Co:0.01~0.50質量%、Ni:0.01~0.50質量%からなる群から選択された1種または2種以上を含有する上記(1)または(2)に記載のアルミニウム合金導体。
 (4)Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、Co、Niの含有量の合計が0.01~2.00質量%である(1)~(3)のいずれか1項に記載のアルミニウム合金導体。
 (5)衝撃吸収エネルギーが5J/mm以上である(1)~(4)のいずれか1項に記載のアルミニウム合金導体。
 (6)屈曲疲労試験によって測定した破断までの繰返回数が20万回以上である上記(1)~(5)のいずれか1項に記載のアルミニウム合金導体。
 (7)素線の直径が0.1~0.5mmであるアルミニウム合金線である上記(1)~(6)のいずれか1項に記載のアルミニウム合金導体。
 (8)上記(7)に記載のアルミニウム合金線を複数本撚り合わせて得られるアルミニウム合金撚線。
 (9)上記(7)に記載のアルミニウム合金線または上記(8)に記載のアルミニウム合金撚線の外周に被覆層を有する被覆電線。
 (10)上記(9)に記載の被覆電線と、該被覆電線の、前記被覆層を除去した端部に装着された端子とを具えるワイヤーハーネス。
 (11)溶解、鋳造後に、熱間又は冷間加工を経て荒引線を形成し、その後、第1伸線加工、第1熱処理、第2伸線加工、第2熱処理および時効熱処理の各工程を順次行うことを含むアルミニウム合金線の製造方法であって、前記第2熱処理は、480~620℃の範囲内の第1所定温度まで加熱した後、10℃/s以上の平均冷却速度で冷却する溶体化熱処理であり、前記時効熱処理は、80℃以上150℃未満の範囲内の第2所定温度まで加熱した後、該第2所定温度で保持する第1時効段階と、140~250℃の範囲内の第3所定温度まで加熱した後、該第3所定温度で保持する第2時効段階とで構成され、かつ、第3所定温度が第2所定温度よりも高いことを特徴とする上記(1)~(7)のいずれか1項に記載のアルミニウム合金導体の製造方法。
 本発明のアルミニウム合金導体は、MgとSiを含有するアルミニウム合金を用いることを前提とし、結晶粒界に近接して位置する結晶粒内部分に形成される無析出帯(PFZ)の適正化を図ることによって、特に、素線の直径が0.5mm以下である極細線として使用した場合であっても、従来品(特許文献1記載のアルミニウム合金線)と同等レベルの強度、伸びおよび導電率を確保しつつ、耐衝撃性と耐屈曲疲労特性を向上させた、電気配線体の導体として用いられるアルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスを提供すること、およびアルミニウム合金導体の製造方法を提供することが可能になり、移動体に搭載されるバッテリーケーブル、ハーネスあるいはモータ用導線、産業用ロボットの配線体として有用である。さらに、本発明のアルミニウム合金線は、引張強度が高いことから従来の電線よりも電線径を細くすることも可能であり、また、高い耐衝撃性や耐屈曲疲労特性が求められるドアやトランク、ボンネットやエンジンルームなどにも好適に用いることができる。
本発明のアルミニウム合金線のミクロ組織を観察し、2個の結晶粒だけを抜き出し、PFZの幅、およびSiおよびMgの析出物(例えばMgSi析出物)の分布状態を概念的に示した図である。 従来のアルミニウム合金線のミクロ組織を観察し、2個の結晶粒だけを抜き出し、PFZの幅、およびSiおよびMgの析出物(例えばMgSi析出物)の分布状態を概念的に示した図である。
 本発明のアルミニウム合金線導体は、Mg:0.10~1.00質量%、Si:0.10~1.00質量%、Fe:0.01~1.40質量%、Ti:0.000~0.100質量%、B:0.000~0.030質量%、Cu:0.00~1.00質量%、Ag:0.00~0.50質量%、Au:0.00~0.50質量%、Mn:0.00~1.00質量%、Cr:0.00~1.00質量%、Zr:0.00~0.50質量%、Hf:0.00~0.50質量%、V:0.00~0.50質量%、Sc:0.00~0.50質量%、Co:0.00~0.50質量%、Ni:0.00~0.50質量%、残部:Alおよび不可避不純物である化学組成を有し、結晶粒内部に無析出帯(PFZ)が存在し、この無析出帯の幅が100nm以下の範囲であることを特徴とするアルミニウム合金導体である。
 以下に、本発明のアルミニウム合金線の化学組成等の限定理由を示す。
(1)化学組成
<Mg:0.10~1.00質量%>
 Mg(マグネシウム)は、アルミニウム母材中に固溶して強化する作用を有すると共に、その一部はSiと化合して析出物を形成して引張強度、耐衝撃性や耐屈曲疲労特性および耐熱性を向上させる作用を有する元素である。しかしながら、Mg含有量が0.10質量%未満だと、上記作用効果が不十分であり、また、Mg含有量が1.00質量%を超えると、結晶粒界にMgが析出する可能性が高まり、PFZ幅を広くする要因となり、引張強度、伸び、耐衝撃性や耐屈曲疲労特性が低下するとともに、Mg元素の固溶量が多くなることによって導電率も低下する。したがって、Mg含有量は0.10~1.00質量%とする。なお、Mg含有量は、高強度を重視する場合には0.50~1.00質量%にすることが好ましく、また、導電率を重視する場合には0.10~0.50質量%とすることが好ましく、このような観点から総合的に0.30~0.70質量%が好ましい。
<Si:0.10~1.00質量%>
 Si(ケイ素)は、Mgと化合して析出物を形成して引張強度、耐衝撃性や耐屈曲疲労特性、及び耐熱性を向上させる作用を有する元素である。Si含有量が0.10質量%未満だと、上記作用効果が不十分であり、また、Si含有量が1.00質量%を超えると、結晶粒界にSi濃化部分が析出する可能性が高まり、PFZ幅を広くする要因となり、引張強度、伸び、耐衝撃性や耐屈曲疲労特性が低下するとともに、Si元素の固溶量が多くなることによって導電率も低下する。したがって、Si含有量は0.10~1.00質量%とする。なお、Si含有量は、高強度を重視する場合には0.50~1.00質量%にすることが好ましく、また、導電率を重視する場合には0.10~0.50質量%とすることが好ましく、このような観点から総合的に0.30~0.70質量%が好ましい。
<Fe:0.01~1.40質量%>
 Fe(鉄)は、主にAl-Fe系の金属間化合物を形成することによって結晶粒の微細化に寄与すると共に、引張強度、耐衝撃性および耐屈曲疲労特性を向上させる元素である。Feは、Al中に655℃で0.05質量%しか固溶できず、室温では更に少ないため、Al中に固溶できない残りのFeは、Al-Fe、Al-Fe-Si、Al-Fe-Si-Mgなどの金属間化合物として晶出又は析出する。この金属間化合物は、結晶粒の微細化に寄与すると共に、引張強度、耐衝撃性および耐屈曲疲労特性を向上させる。また、Feは、Al中に固溶したFeによっても引張強度を向上させる作用を有する。Fe含有量が0.01質量%未満だと、これらの作用効果が不十分であり、また、Fe含有量が1.40質量%超えだと、晶出物または析出物の粗大化により伸線加工性が悪くなり、その結果、目的とする耐衝撃性および耐屈曲疲労特性が得られなくなる他、導電率も低下する。したがって、Fe含有量は0.01~1.40質量%とし、好ましくは0.15~0.90質量%、更に好ましくは0.15~0.45質量%とする。
 本発明のアルミニウム合金導体は、Mg、SiおよびFeを必須の含有成分とするが、必要に応じて、さらに、TiおよびBからなる群から選択された1種または2種や、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiの1種または2種以上を含有させることができる。
<Ti:0.001~0.100質量%>
 Tiは、溶解鋳造時の鋳塊の組織を微細化する作用を有する元素である。鋳塊の組織が粗大であると、鋳造において鋳塊割れや線材加工工程において断線が発生して工業的に望ましくない。Ti含有量が0.001質量%未満であると、上記作用効果を十分に発揮することができず、また、Ti含有量が0.100質量%超えだと導電率が低下する傾向があるからである。したがって、Ti含有量は0.001~0.100質量%とし、好ましくは0.005~0.050質量%、より好ましくは0.005~0.030質量%とする。
<B:0.001~0.030質量%>
 Bは、Tiと同様、溶解鋳造時の鋳塊の組織を微細化する作用を有する元素である。鋳塊の組織が粗大であると、鋳造において鋳塊割れや線材加工工程において断線が発生して工業的に望ましくない。B含有量が0.001質量%未満であると、上記作用効果を十分に発揮することができず、また、B含有量が0.030質量%超えだと導電率が低下する傾向があるからである。したがって、B含有量は0.001~0.030質量%とし、好ましくは0.001~0.020質量%、より好ましくは0.001~0.010質量%とする。
<Cu:0.01~1.00質量%>、<Ag:0.01~0.50質量%>、<Au:0.01~0.50質量%>、<Mn:0.01~1.00質量%>、<Cr:0.01~1.00質量%>、<Zr:0.01~0.50質量%>、<Hf:0.01~0.50質量%>、<V:0.01~0.50質量%>、<Sc:0.01~0.50質量%>、<Co:0.01~0.50質量%>、<Ni:0.01~0.50質量%>の1種または2種以上を含有させること
 Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiは、いずれも結晶粒を微細化する作用を有する元素であり、さらに、Cu、AgおよびAuは、粒界に析出することで粒界強度を高める作用も有する元素であって、これらの元素の少なくとも1種を0.01質量%以上含有していれば、上述した作用効果が得られ、引張強度、伸び、耐衝撃性および耐屈曲疲労特性を向上させることができる。一方、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiの含有量のいずれかが、それぞれ上記の上限値を超えると、該元素を含有する化合物が粗大になり、伸線加工性を劣化させるため、断線が生じやすく、また、導電率が低下する傾向がある。したがって、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiの含有量の範囲は、それぞれ上記の範囲とした。
 また、Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiは、多く含有するほど導電率が低下する傾向と伸線加工性が劣化する傾向がある。従って、これらの元素の含有量の合計は、2.00質量%以下とするのが好ましい。本発明のアルミニウム合金導体ではFeは必須元素なので、Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiの含有量の合計は0.01~2.00質量%とする。これらの元素の含有量は、0.10~2.00質量%とするのが更に好ましい。ただし、これらの元素を単独で添加する場合は、含有量が多いほど該元素を含有する化合物が粗大になる傾向にあり、伸線加工性を劣化させ、断線が生じやすくなることから、それぞれの元素において上記の規定の含有範囲とした。
 なお、高導電率を保ちつつ、引張強度や伸び、耐衝撃性、耐屈曲疲労特性を向上させるには、Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiの含有量の合計は、0.10~0.80質量%が特に好ましく、0.20~0.60質量%が更に好ましい。一方で、導電率はやや低下するが更に引張強度、伸び、耐衝撃性、耐屈曲疲労特性を向上させるためには、0.80超~2.00質量%が特に好ましく、1.00~2.00質量%が更に好ましい。
<残部:Alおよび不可避不純物>
 上述した成分以外の残部はAl(アルミニウム)および不可避不純物である。ここでいう不可避不純物は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。不可避不純物は、含有量によっては導電率を低下させる要因にもなりうるため、導電率の低下を加味して不可避不純物の含有量をある程度抑制することが好ましい。不可避不純物として挙げられる成分としては、例えば、Ga、Zn、Bi、Pbなどが挙げられる。
(2)結晶粒内部に形成される無析出帯(PFZ)の幅が100nm以下であること
 本発明のアルミニウム合金導体は、上述した化学組成を具備することを前提として、結晶粒界に近接して位置する結晶粒内部分に形成される無析出帯(PFZ)の幅を以下のように規制することにより、従来品(特許文献1記載のアルミニウム合金線)と同等レベルの強度、伸びおよび導電率を確保しつつ、耐衝撃性および耐屈曲疲労特性を向上させることができる。
 本発明は、結晶粒界に近接して位置する結晶粒内部に無析出帯(PFZ)が存在し、無析出帯(PFZ)の幅が100nm以下の範囲であることを必須の発明特定事項とする。図1は、本発明のアルミニウム合金線のミクロ組織1を観察し、アルミニウム母相の2個の結晶粒2、3だけを抜き出し、PFZ4の幅W、およびSiおよびMgの析出物(例えばMgSi析出物5)の分布状態を概念的に示したものである。図2は、従来のアルミニウム合金線のミクロ組織101を観察し、アルミニウム母相の2個の結晶粒102、103だけを抜き出し、PFZ104の幅W、およびSiおよびMgの析出物(例えばMgSi析出物105)の分布状態を概念的に示したものである。
 本発明のアルミニウム合金導体は、Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、Co、Niを含む化合物が結晶粒界に析出し、これに伴って、結晶粒界にSi元素の濃化部分及びMg元素の濃化部分(例えばMgSi析出物5)が形成されにくくなり、その結果、図1に示すように、前記無析出帯(PFZ)の幅Wを100nm以下にすることができ、従来品(特許文献1記載のアルミニウム合金線)と同等レベルの強度、伸びおよび導電率を確保しつつ、耐衝撃性と耐屈曲疲労特性を向上させることができる。
 一方、図2に示すように、前記無析出帯(PFZ)104の幅Wが100nmよりも広い場合には、引張強度、伸び、耐衝撃性および耐屈曲疲労特性が低下する。したがって、本発明では、前記無析出帯(PFZ)4の幅Wを100nm以下の範囲に限定した。なお、前記無析出帯(PFZ)4の幅Wは狭い方が引張強度、伸び、耐衝撃性および耐屈曲疲労特性が向上する傾向にあるため、80nm以下であることが好ましく、より好ましくは60nm以下である。また、無析出帯(PFZ)は、粒界位置から、析出物が存在する領域(析出帯)と析出物が存在しない領域(無析出帯)との境界位置までの範囲である。従って、PFZが存在しないということは析出物が存在しないことを意味する。析出物である針状のMgSi化合物は引張強度、耐衝撃性、耐屈曲疲労特性を向上させる効果を有するため、無析出帯(PFZ)の幅は少なくとも1nm以上は存在する方が良い。
 なお、本発明において、PFZ4の幅Wは以下のようにして算出した。すなわち、透過型電子顕微鏡を用い、粒界が観察方向に対して鉛直に切り立つように、サンプルを傾斜させて観察を行い、透過型電子顕微鏡写真を5~60万倍にて2視野撮影し、1視野あたり5箇所のPFZ4の幅Wを測定し、合計10箇所の平均値をPFZの幅とした。このとき、粒界の両側にPFZ4が観察されたが、粒界の片側での測定に限ることなく粒界の両側から任意の部分のPFZ4を選択して幅Wを測定し平均化した。なお、ここでいうPFZ4の幅Wとは、粒界位置から、析出物が存在する領域(析出帯)と析出物が存在しない領域(無析出帯)との境界位置までの範囲のことである。
 このようなPFZ4の幅Wを制限したアルミニウム合金導体は、合金組成や製造プロセスを組み合わせて制御することにより実現できる。以下、本発明のアルミニウム合金導体の好適な製造方法について説明する。
(本発明のアルミニウム合金導体の製造方法)
 本発明のアルミニウム合金導体は、[1]溶解、[2]鋳造、[3]熱間加工(溝ロール加工など)、[4]第1伸線加工、[5]第1熱処理、[6]第2伸線加工、[7]第2熱処理、および[8]時効熱処理の各工程を順次行うことを含む製造方法によって製造することができる。なお、第2熱処理前後、または時効熱処理の後に、撚り線とする工程を設けても良く、時効熱処理前後には電線に樹脂被覆を行う工程を設けてもよい。以下、[1]~[8]の工程について説明する。
[1]溶解
 溶解は、上述したアルミニウム合金組成になるように各成分の分量を調整して溶製する。
[2]鋳造および[3]熱間加工(溝ロール加工など)
 次いで、鋳造輪とベルトを組み合わせたプロペルチ式の連続鋳造圧延機を用いて、溶湯を水冷した鋳型で鋳造し、連続して圧延を行い、例えばφ5.0~13.0mmの適宜の太さの棒材とする。このときの鋳造時の冷却速度は、Fe系晶出物の粗大化の防止とFeの強制固溶による導電率低下の防止の観点から、好ましくは1~20℃/秒であるが、これに制限されるものではない。鋳造及び熱間圧延は、ビレット鋳造及び押出法などにより行ってもよい。
[4]第1伸線加工
 次いで、表面の皮むきを実施して、例えばφ5.0~12.5mmの適宜の太さの棒材とし、これを冷間で伸線加工する。加工度ηは、1~6の範囲であることが好ましい。ここで加工度ηは、伸線加工前の線材断面積をA、伸線加工後の線材断面積をAとすると、η=ln(A/A)で表される。加工度ηが1未満だと、次工程の熱処理時、再結晶粒が粗大化し、引張強度及び伸びが著しく低下し、断線の原因になるおそれがあり、また、加工度ηが6よりも大きいと、伸線加工が困難となり、伸線加工中に断線するなど品質の面で問題を生ずるおそれがあるからである。表面の皮むきは、行うことによって表面の清浄化がなされるが、行わなくてもよい。
[5]第1熱処理(中間熱処理)
 冷間伸線した加工材に第1熱処理を施す。この第1熱処理は、伸線加工途中で行う中間熱処理であって、第1伸線加工において導入された歪みを除去することを主な目的とし、これによって、第1熱処理後に引き続き行われる第2伸線加工での線材の伸線加工性を高めることができる。第1熱処理条件は、特に限定はしないが、例えばバッチ式熱処理では、加熱温度:300~500℃、加熱時間:0.5~10時間である。また、第1熱処理を行う方法としては、例えばバッチ式熱処理でも、高周波加熱、通電加熱、走間加熱などの連続熱処理でもよい。
[6]第2伸線加工
 上記第1熱処理の後、さらに冷間で伸線加工を施す。この際の加工度ηは1~6の範囲が好ましい。加工度ηは、再結晶粒の形成及び成長に多大に影響を及ぼす。加工度ηが1よりも小さいと、次工程の熱処理時、再結晶粒が粗大化し、引張強度及び伸びが著しく低下する傾向があり、また、加工度ηが6よりも大きいと、伸線加工が困難となり、伸線加工中に断線するなど品質の面で問題を生ずる傾向があるからである。
[7]第2熱処理(溶体化熱処理)
 冷間伸線した加工材に第2熱処理を行う。本発明のアルミニウム合金線の製造方法は、特に、第2熱処理と、その後に行う時効熱処理の適正化を図ることにある。第2熱処理は、ランダムに含有されているMgとSiの化合物をアルミ母相中に溶け込ませるために行う溶体化熱処理であって、具体的には、480~620℃の範囲内の第1所定温度まで加熱した後、10℃/s以上の平均冷却速度で冷却する。第2熱処理の加熱時の第1所定温度が620℃よりも高いと、共晶溶融により引張強度、伸び、耐衝撃性および耐屈曲疲労特性が低下する。第1所定温度が480℃よりも低いと、溶体化が十分に達成できずに、その後の時効熱処理工程での引張強度の向上効果が十分に得られず、引張強度が低下する。前記平均冷却速度が10℃/s未満であると、冷却中にMg、Siなどの析出物が生じてしまい、その後の時効熱処理工程での引張強度の向上効果が制限され、十分な引張強度が得られない傾向がある。前記平均冷却速度は、好ましくは50℃/s以上であり、更に好ましくは100℃/s以上である。所定温度は480~620℃の範囲とし、好ましくは500~600℃の範囲、更に好ましくは520~580℃の範囲とする。
 第2熱処理の方法としては、第1熱処理と同様、バッチ式焼鈍で行っても、また、高周波加熱、通電加熱、走間加熱などの連続焼鈍で行ってもよい。
 高周波加熱や通電加熱を用いた場合、通常は線材に電流を流し続ける構造になっているため、時間の経過と共に線材温度が上昇する。そのため、電流を流し続けると線材が溶融してしまう可能性があるので、適正な時間範囲にて熱処理を行う必要がある。走間加熱を用いた場合においても、短時間の焼鈍であるため、通常、走間焼鈍炉の温度は線材温度より高く設定される。長時間の熱処理では線材が溶融してしまう可能性があるため、適正な時間範囲にて熱処理を行う必要がある。また、すべての熱処理において被加工材にランダムに含有されているMg、Si化合物をアルミ母相中に溶け込ませる所定の時間以上が必要である。以下、各方法による熱処理を説明する。
 高周波加熱による連続熱処理は、高周波による磁場中を線材が連続的に通過することで、誘導電流によって線材自体から発生するジュール熱により熱処理するものである。急熱、急冷の工程を含み、線材温度と熱処理時間で制御し線材を熱処理することができる。冷却は、急熱後、水中又は窒素ガス雰囲気中に線材を連続的に通過させることによって行う。この熱処理時間は0.01~2s、好ましくは0.05~1s、より好ましくは0.05~0.5sで行う。
 連続通電熱処理は、2つの電極輪を連続的に通過する線材に電流を流すことによって線材自体から発生するジュール熱により熱処理するものである。急熱、急冷の工程を含み、線材温度と熱処理時間で制御し線材を熱処理することができる。冷却は、急熱後、水中、大気中又は窒素ガス雰囲気中に線材を連続的に通過させることによって行う。この熱処理時間は0.01~2s、好ましくは0.05~1s、より好ましくは0.05~0.5sで行う。
 連続走間熱処理は、高温に保持した熱処理炉中を線材が連続的に通過して熱処理させるものである。急熱、急冷の工程を含み、熱処理炉内温度と熱処理時間で制御し線材を熱処理することができる。冷却は、急熱後、水中、大気中又は窒素ガス雰囲気中に線材を連続的に通過させることによって行う。この熱処理時間は0.5~120s、好ましくは0.5~60s、より好ましくは0.5~20sで行う。
 バッチ式熱処理は、焼鈍炉の中に線材を投入し、所定の設定温度、設定時間にて熱処理される方法である。線材自体が所定の温度にて数10秒程度加熱されればよいが、工業使用上、大量の線材を投入することになるため、線材の熱処理ムラを抑制するために30分以上は行った方が好ましい。熱処理時間の上限は、結晶粒が線材の半径方向に数えて5個以上あれば特に制限は無いが、短時間で行った方が結晶粒が線材の半径方向に数えて5個以上になりやすく、工業使用上、生産性も良いため、10時間以内、好ましくは6時間以内にて熱処理される。
 線材温度又は熱処理時間の一方又は両方が上記で定義される条件より低い場合は、溶体化が不完全になり後工程の時効熱処理時に析出するMgSi析出物が少なくなり、引張強度、耐衝撃性および耐屈曲疲労特性、導電率の向上幅が小さくなる。しかし、線材温度又は焼鈍時間の一方又は両方が上記で定義される条件より高い場合は、結晶粒が粗大化すると共に、アルミニウム合金導体中の化合物相の部分溶融(共晶融解)が起こり、引張強度、伸びが低下し、導体の取り扱い時に断線が起こりやすくなる。
 なお、本発明の第2熱処理における冷却は、上述したいずれの熱処理方法においても、第2伸線加工後のアルミニウム合金線材を、所定温度に加熱後、水中に通して行うことが好ましいが、かかる場合、冷却速度の正確な測定ができない。そこで、かかる場合には、いずれの熱処理方法においても、加熱後の水冷による平均冷却速度を、水冷直後にアルミニウム合金線材が水温(約20℃)に冷却されていると推定した上で、各熱処理方法において、以下のようにして算出した冷却速度を上記平均冷却速度とした。すなわち、バッチ式熱処理では、冷却速度は、冷却開始から150℃以上に保持されている時間を40秒以内に抑えることが重要であるという観点から、500℃に熱処理された場合には、(500-150)/40にて8.75℃/s以上であり、600℃に熱処理された場合には(600-150)/40にて11.25℃/s以上とする。高周波加熱による連続熱処理では、加熱後、アルミニウム合金線材を、線速:100~1500m/minで数メートル通線した後に水冷する機構であるため100℃/s以上であり、通電加熱による連続熱処理では、加熱直後にアルミニウム合金線材を水冷する機構であるため、100℃/s以上であり、そして、走間加熱による連続熱処理では、加熱直後に、アルミニウム合金線材を、線速:10~500m/minで水冷する機構の場合には100℃/s以上であり、加熱後、数m~数10m通線中に空冷する機構の場合には、アルミニウム合金線材をドラムに巻き取った直後に室温(約20℃)に冷却されているとして算出すれば、空冷中の区間長さにもよるが、約10℃/s以上の冷却は可能である。いずれの熱処理方法であっても、溶体化熱処理の目的を達成させるという観点からは、少なくとも150℃まで急冷されればよい。
[8]時効熱処理
 次いで、時効熱処理を施す。本発明における時効熱処理は、80℃以上150℃未満の範囲内の第2所定温度まで加熱した後、該第2所定温度で保持する第1時効段階と、140~250℃の範囲内の第3所定温度まで加熱した後、該第3所定温度で保持する第2時効段階とで構成され、かつ、第3所定温度を第2所定温度よりも高くすることにある。すなわち、時効熱処理は、第1時効段階で、Feや、さらに選択的に添加されるTi、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、Co、Niからなる群から選択される1種又は2種以上の成分を含む化合物を結晶粒界に析出させることで、結晶粒界におけるSi元素及びMg元素の析出駆動力が低下し、その後の第2時効段階にて粒界近傍でのMg元素およびSi元素が粒界析出のために利用されにくくなり、粒界近傍にてMg元素およびSi元素の枯渇が抑制されるため、無析出帯(PFZ)の幅を100nm以下にすることができる。その結果、従来品(特許文献1記載のアルミニウム合金線)と同等レベルの強度、伸びおよび導電率を確保しつつ、耐衝撃性と耐屈曲疲労特性が向上する。
 第1時効段階において、第2所定温度が80℃未満だと、Feや、さらに選択的に添加されるTi、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、Co、Niからなる群から選択される1種又は2種以上の成分を含む化合物の時効析出が不十分となり、その後の第2時効段階でMgSiが粒界にも析出しやすくなり、結果としてPFZの幅が100nmよりも大きくなってしまうという問題があり、第2所定温度が150℃以上だと、MgSiの析出温度域となってしまうことからMgSiが粒界にも析出しやすくなり、結果としてPFZの幅が100nmよりも大きくなってしまう問題がある。なお、第2所定温度での保持時間は温度によって変化するため特に限定しないが、生産性を考慮すると短時間(例えば1分以上)が良く、15時間以下が好ましく、更に好ましくは10時間以下である。さらに、第2時効段階において、第3所定温度が140℃未満だと針状のMgSi析出物を十分に析出させることができず、強度、耐衝撃性、耐屈曲疲労特性および導電率が不足しがちとなる問題があり、第3所定温度が250℃超えだと、MgSi析出物のサイズが大きくなるため、導電率は上昇するが、強度耐衝撃性および耐屈曲疲労特性が不足しがちとなる問題がある。なお、第3所定温度での保持時間については、温度によって変化するため特に限定しないが、生産性を考慮すると短時間(例えば1分以上)が良く、15時間以下が好ましく、更に好ましくは10時間以下である。したがって、本発明では、時効熱処理は、80℃以上150℃未満の範囲内の第2所定温度まで加熱した後、該第2所定温度で保持する第1時効段階と、140~250℃の範囲内の第3所定温度まで加熱した後、該第3所定温度で保持する第2時効段階とで構成され、かつ、第3所定温度を第2所定温度よりも高くすることとした。また、第1時効段階と第2時効段階は連続的に行なっても良いし、第1段階終了後一度室温に戻した状態から第2時効段階を行なっても良い。これはそれぞれの時効段階において所定の温度域にある一定時間保持して析出されうる化合物を析出させることが目的であるためである。なお、時効熱処理を構成する第1及び第2時効段階における冷却については、特性のバラつきを防止するために、可能な限り冷却速度を速くすることが好ましい。ただし、製造工程上、速く冷却できない場合は、熱処理炉内で冷却(徐冷)や、大気中での冷却(空冷)などでもよい。
 本発明のアルミニウム合金線は、素線径が、特に制限はなく用途に応じて適宜定めることができるが、細物線の場合はφ0.1~0.5mm、中細物線の場合はφ0.8~1.5mmが好ましい。本発明のアルミニウム合金線は、アルミニウム合金線として、単線で細くして使用できることが利点の一つであるが、複数本束ねて撚り合わせて得られるアルミニウム合金撚線として使用することもでき、本発明の製造方法を構成する上記[1]~[8]の工程のうち、[1]~[7]の各工程を順次行ったアルミニウム合金線を複数本に束ねて撚り合わせた後に、[8]時効熱処理の工程を行ってもよい。
 また、本発明では、さらに追加の工程として、連続鋳造圧延後に、従来法で行われているような均質化熱処理を行なうことも可能である。均質化熱処理は、添加元素の析出物(主にMg-Si系化合物)を均一に分散させることができるため、その後の第1熱処理にて均一な結晶組織が得られやすくなる結果、引張強度、伸び、耐衝撃性および耐屈曲疲労特性の向上がより安定して得られる。均質化熱処理は、加熱温度を450~600℃、加熱時間を1~10時間にて行なうことが好ましく、より好ましくは500~600℃である。また、均質化加熱処理における冷却は、0.1~1.0℃/分の平均冷却速度で徐冷することが、均一な化合物が得られやすくなる点で好ましい。
 なお、上述したところは、この発明の実施形態の例を示したにすぎず、特許請求の範囲において種々の変更を加えることができる。例えば、本発明のアルミニウム合金線は、衝撃吸収エネルギーが5J/mm以上であり、優れた耐衝撃性を達成することができる。また、屈曲疲労試験によって測定した破断までの繰返回数が20万回以上であって、優れた耐屈曲疲労特性を達成することができる。また、本発明のアルミニウム合金線は、アルミニウム合金線として、または複数本のアルミニウム合金線を撚り合わせて得られるアルミニウム合金撚線として使用することができるとともに、さらに、アルミニウム合金線またはアルミニウム合金撚線の外周に被覆層を有する被覆電線として使用することもでき、加えて、被覆電線と、この被覆電線の、被覆層を除去した端部に装着された端子とを具えるワイヤーハーネス(組電線)として使用することもまた可能である。
 本発明を以下の実施例に基づき詳細に説明する。なお本発明は、以下に示す実施例に限定されるものではない。
実施例、比較例
 Mg、Si、Fe及びAlと、選択的に添加するTi、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiを、表1および表2に示す含有量(質量%)になるようにプロペルチ式の連続鋳造圧延機を用いて、溶湯を水冷した鋳型で連続的に鋳造しながら圧延を行い、φ9.5mmの棒材とした。このときの鋳造冷却速度は約15℃/秒とした。次いで、これを所定の加工度が得られるように第1伸線加工を施した。次に、この第1伸線加工を施した加工材に、表3および表4に示す条件で第1熱処理を施し、さらに、φ0.31mmの線径まで所定の加工度が得られるように第2伸線加工を行った。次に、表3および表4に示す条件で第2熱処理を施した。第1及び第2熱処理とも、バッチ式熱処理では、線材に熱電対を巻きつけて線材温度を測定した。連続通電熱処理では、線材の温度が最も高くなる部分での測定が設備上困難であるため、ファイバ型放射温度計(ジャパンセンサ社製)で線材の温度が最も高くなる部分よりも手前の位置にて温度を測定し、ジュール熱と放熱を考慮して最高到達温度を算出した。高周波加熱および連続走間熱処理では、熱処理区間出口付近の線材温度を測定した。第2熱処理後に、表3および表4に示す条件で時効熱処理を施し、アルミニウム合金線を製造した。なお、比較例11および13は、それぞれ特許文献1記載の表1の試料No.2およびNo.10の組成を有し、同文献で開示するのと同等の製法に倣ってアルミニウム合金線を製造したので、併せて評価した。
 作製した各々の実施例及び比較例のアルミニウム合金線について以下に示す方法により各特性を測定した。その結果を表3および表4に示す。
(a)結晶粒界に近接して位置する結晶粒内部分に形成される無析出帯(PFZ)の測定
 本発明において、PFZ4の幅Wは以下のようにして算出した。すなわち、透過型電子顕微鏡を用い、粒界が観察方向に対して鉛直に切り立つように、サンプルを傾斜させて観察を行い、透過型電子顕微鏡写真を5~60万倍にて2視野撮影し、1視野あたり5箇所のPFZ4の幅Wを測定し、合計10箇所の平均値をPFZの幅とした。このとき、粒界の両側にPFZ4が観察されたが、粒界の片側での測定に限ることなく粒界の両側から任意の部分のPFZ4を選択して幅Wを測定し平均化した。
(b)引張強度(TS)及び柔軟性(引張破断伸び)の測定
 JIS Z 2241に準じて各3本ずつの供試材(アルミニウム合金線)について引張試験を行い、その平均値を求めた。引張強度は電線と端子の接続部における圧着部の引張強度を保つため、また、車体への取付け作業時に不意に負荷される荷重に耐えられるためにも135MPa以上を合格レベルとした。伸びは5%以上を合格レベルとした。
(c)導電率(EC)
 長さ300mmの試験片を20℃(±0.5℃)に保持した恒温漕中で、四端子法を用いて比抵抗を各3本ずつの供試材(アルミニウム合金線)について測定し、その平均導電率を算出した。端子間距離は200mmとした。導電率は特に限定しないが、40%IACS以上を合格レベルとした。
(d)衝撃吸収エネルギー
 アルミニウム合金導体がどれほどの衝撃に耐えられるかの指標であり、アルミニウム合金導体が断線する直前の(錘の位置エネルギー)/(アルミニウム合金導体の断面積)で算出した。具体的には、アルミニウム合金導体線の一方の端に錘を付け、錘を300mmの高さから自由落下させた。錘を重いものに順次変えていき、断線する直前の錘の重さから衝撃吸収エネルギーを計算した。衝撃吸収エネルギーが大きい程、高い衝撃吸収性を有しているといえる。衝撃吸収エネルギーは、5J/mm以上を合格レベルとした。
(e)破断までの繰返回数
 耐屈曲疲労特性の基準として、常温におけるひずみ振幅は±0.17%とした。耐屈曲疲労特性はひずみ振幅によって変化する。ひずみ振幅が大きい場合、疲労寿命は短くなり、ひずみ振幅が小さい場合、疲労寿命は長くなる。ひずみ振幅は、線材の線径と曲げ冶具の曲率半径により決定することができるため、線材の線径と曲げ冶具の曲率半径は任意に設定して屈曲疲労試験を実施することが可能である。藤井精機株式会社(現株式会社フジイ)製の両振屈曲疲労試験機を用い、0.17%の曲げ歪みが与えられる治具を使用して、繰り返し曲げを実施することにより、破断までの繰返回数を測定した。本発明では、破断までの繰返回数は、20万回以上を合格とした。
(f)端子圧着部強度
 第2熱処理の直前に、φ0.31mmのアルミニウム合金導体の線11本を撚り合わせた。その後、表3、表4に記した第2熱処理および時効熱処理を施して、アルミニウム合金撚線を作製した。さらに、このアルミニウム合金撚線の外周に被覆層を付けて被覆電線とした。被覆電線の両端の被覆層を除去してその一端に端子を装着し、別の一端をチャックし、室温にて引張試験を行った。端子を装着した場合における電線の引張破断強度が結果として求められた。これを端子圧着部強度とした。試験は各3本ずつ測定を行い、平均値を算出した。なお、端子はかしめにより圧着して装着したが、圧着の形態は問わない。また、端子圧縮率を0.65とした。端子圧着部強度は80N以上を合格レベルとした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および表4の結果より、次のことが明らかである。発明例1~52のアルミニウム合金線は、いずれも従来品(特許文献1記載のアルミニウム合金線)と同等レベルの引張強度、伸びおよび導電率を有するとともに、耐衝撃性と耐屈曲疲労特性が優れていた。また、端子圧着部強度にも優れていた。これに対し、比較例1~10のアルミニウム合金線は、本発明の範囲外の化学組成を有し、比較例1~18のアルミニウム合金線は、いずれも破断までの繰返回数が18万回以下と少なく、耐屈曲疲労特性が劣っていた。比較例16および18以外は耐衝撃性も劣っていた。比較例18以外は、端子圧着部強度も劣っていた。また、比較例5~9は、いずれも伸線工程中に断線した。本発明の範囲に含まれる化学組成を有するものの、PFZの幅が本発明の適正範囲外である比較例11~15および17のアルミニウム合金線は、いずれも耐衝撃性と耐屈曲疲労特性が劣っていた。
 本発明のアルミニウム合金線は、Al中にMgとSiを含有するアルミニウム合金を用いることを前提とし、結晶粒界に近接して位置する結晶粒内部分に形成される無析出帯(PFZ)の適正化を図ることによって、特に、素線径が0.5mm以下である極細線として使用した場合であっても、従来品(特許文献1記載のアルミニウム合金線)と同等レベルの強度、伸びおよび導電率を確保しつつ、耐衝撃性と耐屈曲疲労特性を向上させた、電気配線体の導体として用いられるアルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体の製造方法を提供することが可能になり、移動体に搭載されるバッテリーケーブル、ハーネスあるいはモータ用導線、産業用ロボットの配線体として有用である。さらに、本発明のアルミニウム合金線は、引張強度が高いことから従来の電線よりも電線径を細くすることも可能であり、また、高い耐衝撃性および耐屈曲疲労特性が求められるドアやトランク、ボンネットやエンジンルームなどにも好適に用いることができる。
 1 ミクロ組織
 2、3 結晶粒
 4 PFZ
 5 MgSi析出物
 101 ミクロ組織
 102、103 結晶粒
 104 PFZ
 105 MgSi析出物
 W PFZの幅

Claims (11)

  1.  Mg:0.10~1.00質量%、Si:0.10~1.00質量%、Fe:0.01~1.40質量%、Ti:0.000~0.100質量%、B:0.000~0.030質量%、Cu:0.00~1.00質量%、Ag:0.00~0.50質量%、Au:0.00~0.50質量%、Mn:0.00~1.00質量%、Cr:0.00~1.00質量%、Zr:0.00~0.50質量%、Hf:0.00~0.50質量%、V:0.00~0.50質量%、Sc:0.00~0.50質量%、Co:0.00~0.50質量%、Ni:0.00~0.50質量%、残部:Alおよび不可避不純物である化学組成を有し、
     結晶粒内部に無析出帯が存在し、前記無析出帯の幅が100nm以下であることを特徴とするアルミニウム合金導体。
  2.  前記化学組成が、Ti:0.001~0.100質量%およびB:0.001~0.030質量%からなる群から選択された1種または2種を含有する請求項1に記載のアルミニウム合金導体。
  3.  前記化学組成が、Cu:0.01~1.00質量%、Ag:0.01~0.50質量%、Au:0.01~0.50質量%、Mn:0.01~1.00質量%、Cr:0.01~1.00質量%、Zr:0.01~0.50質量%、Hf:0.01~0.50質量%、V:0.01~0.50質量%、Sc:0.01~0.50質量%、Co:0.01~0.50質量%、Ni:0.01~0.50質量%からなる群から選択された1種または2種以上を含有する請求項1または2に記載のアルミニウム合金導体。
  4.  Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、Co、Niの含有量の合計が0.01~2.00質量%である、請求項1~3のいずれか1項に記載のアルミニウム合金導体。
  5.  衝撃吸収エネルギーが5J/mm以上である請求項1~4のいずれか1項に記載のアルミニウム合金導体。
  6.  屈曲疲労試験によって測定した破断までの繰返回数が20万回以上である請求項1~5のいずれか1項に記載のアルミニウム合金導体。
  7.  素線の直径が0.1~0.5mmであるアルミニウム合金線である請求項1~6のいずれか1項に記載のアルミニウム合金導体。
  8.  請求項7に記載のアルミニウム合金線を複数本撚り合わせて得られるアルミニウム合金撚線。
  9.  請求項7に記載のアルミニウム合金線または請求項8に記載のアルミニウム合金撚線の外周に被覆層を有する被覆電線。
  10.  請求項9に記載の被覆電線と、該被覆電線の、前記被覆層を除去した端部に装着された端子とを具えるワイヤーハーネス。
  11.  溶解、鋳造後に、熱間又は冷間加工を経て荒引線を形成し、その後、第1伸線加工、第1熱処理、第2伸線加工、第2熱処理および時効熱処理の各工程を順次行うことを含むアルミニウム合金線の製造方法であって、
     前記第2熱処理は、480~620℃の範囲内の第1所定温度まで加熱した後、10℃/s以上の平均冷却速度で冷却する溶体化熱処理であり、
     前記時効熱処理は、80℃以上150℃未満の範囲内の第2所定温度まで加熱した後、該第2所定温度で保持する第1時効段階と、140~250℃の範囲内の第3所定温度まで加熱した後、該第3所定温度で保持する第2時効段階とで構成され、かつ、第3所定温度が第2所定温度よりも高いことを特徴とする請求項1~7のいずれか1項に記載のアルミニウム合金導体の製造方法。
PCT/JP2013/080956 2013-03-29 2013-11-15 アルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体の製造方法 WO2014155818A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380053472.7A CN104797724B (zh) 2013-03-29 2013-11-15 铝合金导体、铝合金绞线、被覆电线、线束以及铝合金导体的制造方法
JP2014508616A JP5607856B1 (ja) 2013-03-29 2013-11-15 アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
EP13880474.5A EP2896707B1 (en) 2013-03-29 2013-11-15 Aluminum alloy conductor, aluminum alloy twisted wire, coated electric wire, wire harness, and production method for aluminum alloy conductor
KR1020157031074A KR101910702B1 (ko) 2013-03-29 2013-11-15 알루미늄 합금 선재, 알루미늄 합금 연선, 피복 전선, 와이어 하네스 및 알루미늄 합금 선재의 제조방법
US14/681,767 US9263168B2 (en) 2013-03-29 2015-04-08 Aluminum alloy wire rod, aluminum alloy stranded wire, coated wire, wire harness and manufacturing method of aluminum alloy wire rod

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013075404 2013-03-29
JP2013-075404 2013-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/681,767 Continuation US9263168B2 (en) 2013-03-29 2015-04-08 Aluminum alloy wire rod, aluminum alloy stranded wire, coated wire, wire harness and manufacturing method of aluminum alloy wire rod

Publications (1)

Publication Number Publication Date
WO2014155818A1 true WO2014155818A1 (ja) 2014-10-02

Family

ID=51622854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080956 WO2014155818A1 (ja) 2013-03-29 2013-11-15 アルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体の製造方法

Country Status (6)

Country Link
US (1) US9263168B2 (ja)
EP (1) EP2896707B1 (ja)
JP (1) JP5607856B1 (ja)
KR (1) KR101910702B1 (ja)
CN (1) CN104797724B (ja)
WO (1) WO2014155818A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072304A1 (ja) * 2014-11-04 2016-05-12 住友電気工業株式会社 電線の製造方法、電線、及びワイヤーハーネス
WO2016088825A1 (ja) * 2014-12-05 2016-06-09 矢崎総業株式会社 アルミニウム合金電線及びそれを用いたワイヤーハーネス
CN107002183A (zh) * 2014-12-05 2017-08-01 古河电气工业株式会社 铝合金线材、铝合金绞线、包覆电线、线束以及铝合金线材的制造方法
CN107109544A (zh) * 2014-12-05 2017-08-29 古河电气工业株式会社 铝合金线材、铝合金绞线、包覆电线、线束及铝合金线材的制造方法
JP2018535317A (ja) * 2015-10-15 2018-11-29 ノベリス・インコーポレイテッドNovelis Inc. 高形成複層アルミニウム合金パッケージ
US11788178B2 (en) 2018-07-23 2023-10-17 Novelis Inc. Methods of making highly-formable aluminum alloys and aluminum alloy products thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5607856B1 (ja) * 2013-03-29 2014-10-15 古河電気工業株式会社 アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
JP6292308B2 (ja) * 2014-08-19 2018-03-14 株式会社オートネットワーク技術研究所 アルミニウム電線の製造方法
JP6499190B2 (ja) * 2014-09-22 2019-04-10 古河電気工業株式会社 アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
WO2016047627A1 (ja) * 2014-09-22 2016-03-31 古河電気工業株式会社 端子付き電線
JP6810508B2 (ja) * 2015-05-28 2021-01-06 株式会社神戸製鋼所 高強度アルミニウム合金板
CN105349847A (zh) * 2015-11-03 2016-02-24 任静儿 一种高强度铝合金
CN106048337B (zh) * 2016-06-29 2017-11-10 焦作市圣昊铝业有限公司 一种铝合金丝的制作方法
MA44561A1 (fr) * 2016-07-21 2019-12-31 Univ Du Quebec A Chicoutimi Alliages conducteurs d'aluminium ayant une résistance au fluage améliorée
JP6927685B2 (ja) * 2016-10-25 2021-09-01 矢崎総業株式会社 アルミニウム素線、並びにそれを用いたアルミニウム電線及びワイヤーハーネス
KR102362938B1 (ko) * 2016-10-31 2022-02-14 스미토모 덴키 고교 가부시키가이샤 알루미늄 합금선, 알루미늄 합금 연선, 피복 전선, 및 단자 부착 전선
JP2018100435A (ja) * 2016-12-20 2018-06-28 株式会社神戸製鋼所 アルミニウム合金板
US10465270B1 (en) * 2017-01-30 2019-11-05 General Cable Technologies Corporation Cables having conductive elements formed from aluminum alloys processed with high shear deformation processes
WO2019111468A1 (ja) * 2017-12-06 2019-06-13 株式会社フジクラ アルミニウム合金線の製造方法、これを用いた電線の製造方法及びワイヤハーネスの製造方法
US10920306B2 (en) * 2018-05-09 2021-02-16 Hitachi Metals, Ltd. Aluminum alloy wire rod and producing method thereof
CN108831583A (zh) * 2018-06-15 2018-11-16 南通富尔特金属制品有限公司 一种铝合金导体的制造方法
CN109234579A (zh) * 2018-11-12 2019-01-18 国网福建省电力有限公司 一种高导电率耐热中强度铝合金线及其生产工艺
US20200357535A1 (en) * 2019-05-10 2020-11-12 General Cable Technologies Corporation Aluminum alloy wires with high strength and high electrical conductivity
CN110218918B (zh) * 2019-07-30 2021-02-12 国网河南省电力公司电力科学研究院 高导电率、耐热铝合金及其制备方法
CN111424200B (zh) * 2020-04-23 2021-10-08 西安交通大学 一种高强高耐热低钪银添加的Al-Cu-Mg系合金及其热处理工艺
CN113182380A (zh) * 2021-07-02 2021-07-30 中国航发北京航空材料研究院 一种铝合金导线的制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947365A (ja) * 1983-08-08 1984-03-17 Furukawa Electric Co Ltd:The 高力耐熱アルミニウム合金導体の製造法
JP2003105473A (ja) 2001-09-28 2003-04-09 Furukawa Electric Co Ltd:The 曲げ加工性と絞り成形性に優れたアルミニウム合金板およびその製造方法
JP2012229485A (ja) 2011-04-11 2012-11-22 Sumitomo Electric Ind Ltd アルミニウム合金線
JP2013044040A (ja) * 2011-08-25 2013-03-04 Furukawa Electric Co Ltd:The アルミニウム合金導体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2312839A1 (fr) * 1975-05-28 1976-12-24 Pechiney Aluminium Conducteurs electriques ameliores en alliages al-mg-si, en particulier pour cables aeriens de transport d'energie, et procede d'obtention
JP3757831B2 (ja) * 2001-07-26 2006-03-22 日本軽金属株式会社 衝撃エネルギー吸収性能に優れたAl−Mg−Si系アルミニウム合金押出材
WO2005112046A1 (ja) * 2004-05-19 2005-11-24 Sumitomo (Sei) Steel Wire Corp. ワイヤーハーネス用複合線及びその製造方法
DE102005032544B4 (de) * 2004-07-14 2011-01-20 Hitachi Powdered Metals Co., Ltd., Matsudo Abriebsresistente gesinterte Aluminiumlegierung mit hoher Festigkeit und Herstellugsverfahren hierfür
JP5128109B2 (ja) * 2006-10-30 2013-01-23 株式会社オートネットワーク技術研究所 電線導体およびその製造方法
WO2008072776A1 (ja) * 2006-12-13 2008-06-19 Sumitomo Light Metal Industries, Ltd. 高強度アルミニウム合金材およびその製造方法
JPWO2009104615A1 (ja) * 2008-02-18 2011-06-23 古河電気工業株式会社 銅合金材
JP2009235477A (ja) * 2008-03-27 2009-10-15 Furukawa-Sky Aluminum Corp 飲料缶胴用アルミニウム合金板およびその製造方法
EP2597169A4 (en) * 2010-07-20 2015-02-25 Furukawa Electric Co Ltd ALUMINUM ALLOY AND MANUFACTURING METHOD THEREFOR
JP5607856B1 (ja) * 2013-03-29 2014-10-15 古河電気工業株式会社 アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947365A (ja) * 1983-08-08 1984-03-17 Furukawa Electric Co Ltd:The 高力耐熱アルミニウム合金導体の製造法
JP2003105473A (ja) 2001-09-28 2003-04-09 Furukawa Electric Co Ltd:The 曲げ加工性と絞り成形性に優れたアルミニウム合金板およびその製造方法
JP2012229485A (ja) 2011-04-11 2012-11-22 Sumitomo Electric Ind Ltd アルミニウム合金線
JP2013044040A (ja) * 2011-08-25 2013-03-04 Furukawa Electric Co Ltd:The アルミニウム合金導体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2896707A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072304A1 (ja) * 2014-11-04 2016-05-12 住友電気工業株式会社 電線の製造方法、電線、及びワイヤーハーネス
JP2016091786A (ja) * 2014-11-04 2016-05-23 住友電気工業株式会社 電線の製造方法、電線、及びワイヤーハーネス
WO2016088825A1 (ja) * 2014-12-05 2016-06-09 矢崎総業株式会社 アルミニウム合金電線及びそれを用いたワイヤーハーネス
JP2016108603A (ja) * 2014-12-05 2016-06-20 矢崎総業株式会社 アルミニウム合金電線及びそれを用いたワイヤーハーネス
CN107002183A (zh) * 2014-12-05 2017-08-01 古河电气工业株式会社 铝合金线材、铝合金绞线、包覆电线、线束以及铝合金线材的制造方法
CN107109544A (zh) * 2014-12-05 2017-08-29 古河电气工业株式会社 铝合金线材、铝合金绞线、包覆电线、线束及铝合金线材的制造方法
US9997276B2 (en) 2014-12-05 2018-06-12 Furukawa Electric Co., Ltd. Aluminum alloy wire rod, aluminum alloy stranded wire, covered wire, and wire harness, and method of manufacturing aluminum alloy wire rod
EP3228718A4 (en) * 2014-12-05 2018-07-04 Furukawa Electric Co. Ltd. Aluminum alloy wire material, aluminum alloy stranded wire, covered electrical wire, wire harness, and method for producing aluminum alloy wire material
JP2018535317A (ja) * 2015-10-15 2018-11-29 ノベリス・インコーポレイテッドNovelis Inc. 高形成複層アルミニウム合金パッケージ
US10689041B2 (en) 2015-10-15 2020-06-23 Novelis Inc. High-forming multi-layer aluminum alloy package
US11788178B2 (en) 2018-07-23 2023-10-17 Novelis Inc. Methods of making highly-formable aluminum alloys and aluminum alloy products thereof

Also Published As

Publication number Publication date
CN104797724A (zh) 2015-07-22
US9263168B2 (en) 2016-02-16
EP2896707B1 (en) 2018-11-14
EP2896707A1 (en) 2015-07-22
CN104797724B (zh) 2017-12-05
US20150213914A1 (en) 2015-07-30
JP5607856B1 (ja) 2014-10-15
EP2896707A4 (en) 2016-08-03
JPWO2014155818A1 (ja) 2017-02-16
KR20150136129A (ko) 2015-12-04
KR101910702B1 (ko) 2018-10-22

Similar Documents

Publication Publication Date Title
JP5607856B1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
JP5607855B1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
KR101813772B1 (ko) 알루미늄 합금 도체, 알루미늄 합금 연선, 피복 전선, 와이어하네스 및 알루미늄 합금 도체의 제조 방법
JP6462662B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、およびアルミニウム合金線材の製造方法
JP5607854B1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
JP6499190B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
JP6678579B2 (ja) アルミニウム合金線及びアルミニウム合金線の製造方法
JP5193375B2 (ja) アルミニウム合金導体の製造方法
WO2016088889A1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、並びにアルミニウム合金線材の製造方法
JP6534809B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、並びにアルミニウム合金線材およびアルミニウム合金撚線の製造方法
WO2016088887A1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線およびワイヤーハーネスならびにアルミニウム合金線材の製造方法
JP6440476B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線およびワイヤーハーネス、ならびにアルミニウム合金線材の製造方法
JP2013044038A (ja) アルミニウム合金導体
JP5228118B2 (ja) アルミニウム合金導体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014508616

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880474

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013880474

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157031074

Country of ref document: KR

Kind code of ref document: A