WO2014155787A1 - Optical film - Google Patents

Optical film Download PDF

Info

Publication number
WO2014155787A1
WO2014155787A1 PCT/JP2013/076382 JP2013076382W WO2014155787A1 WO 2014155787 A1 WO2014155787 A1 WO 2014155787A1 JP 2013076382 W JP2013076382 W JP 2013076382W WO 2014155787 A1 WO2014155787 A1 WO 2014155787A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
dye
weight
film
parts
Prior art date
Application number
PCT/JP2013/076382
Other languages
French (fr)
Japanese (ja)
Inventor
真章 中村
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to JP2015507933A priority Critical patent/JP6069490B2/en
Publication of WO2014155787A1 publication Critical patent/WO2014155787A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles

Definitions

  • the present invention relates to an optical film that can be used as an antiglare film, a protective film or the like disposed on a display screen of a display.
  • liquid crystal displays particularly liquid crystal displays using LEDs (light emitting diodes) as light sources
  • LED lighting which are the mainstream of displays
  • blue light is light in the blue region (380 to 500 nm) of visible light (“blue light”).
  • blue light is said to have an adverse effect on the human eye. Therefore, a technique for reducing this blue light has attracted attention.
  • an optical component for cutting blue light an optical component including a dielectric multilayer film formed by vapor deposition is known.
  • Patent Document 1 describes an optical component in which a multilayer film having an average reflectance of 2 to 10% in a wavelength range of 400 to 500 nm is disposed on at least one surface of a plastic substrate. Has been.
  • the optical component of Patent Document 1 uses a dielectric multilayer film, basically, all light in the wavelength range of 400 to 500 nm cut by the optical component becomes reflected light. Therefore, in a situation where the reflected light of the optical component is incident on the eye, there is a concern that the light in the wavelength range of 400 to 500 nm cut by the optical component may enter the eye and adversely affect the eye.
  • the situation where the reflected light of the optical component is incident on the eye is, for example, that the light from the display is incident on the back surface of the surface facing the eye of the optical component and at the same time the surface of the optical component facing the eye.
  • a situation in which light (for example, light from LED illumination) enters, is reflected by an optical component, and enters the eye is conceivable.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an optical that can sufficiently reduce blue light while maintaining good transmitted image luminance when placed on a display screen of a display. To provide a film.
  • the optical film of the present invention includes a light-transmitting base film and a protective film including at least one of resin particles and silica particles formed on at least one surface of the base film.
  • An optical film comprising a glare layer, comprising a pigment, wherein the optical film has an average light absorption of 5% or more at a wavelength of 380 nm to 500 nm, and the total light transmittance of the optical film is equal to the wavelength of the optical film It is characterized by being higher than the average light transmittance of 380 nm to 500 nm.
  • the average optical absorptance of the optical film at a wavelength of 380 nm to 500 nm is 5% or more, blue light can be sufficiently reduced. Furthermore, according to the said structure, since it contains the pigment
  • the total light transmittance of the optical film is higher than the average light transmittance of the optical film at a wavelength of 380 nm to 500 nm, it is favorable when disposed on the display screen of the display.
  • the transmission image brightness can be maintained.
  • the glare-proof layer containing at least one of a resin particle and a silica particle is formed on the at least one surface of the said base film, sufficient anti-glare performance can be obtained.
  • optical film can be used as a protective film that is disposed on the display screen of the display and protects the display screen.
  • an optical film capable of sufficiently reducing blue light while maintaining good transmitted image brightness when disposed on a display screen of a display.
  • FIG. 2 is a graph showing the spectral transmittance of the optical film obtained in Example 1.
  • FIG. 6 is a graph showing the spectral transmittance of the optical film obtained in Example 4.
  • 10 is a graph showing the spectral transmittance of the optical film obtained in Example 5.
  • 7 is a graph showing the spectral transmittance of the optical film obtained in Example 6.
  • 10 is a graph showing the spectral transmittance of the optical film obtained in Example 7.
  • 10 is a graph showing the spectral transmittance of the optical film obtained in Example 8.
  • 6 is a graph showing the spectral transmittance of the optical film obtained in Comparative Example 1.
  • FIG. 11 is a cross-sectional view taken along line A-A ′ of the optical film shown in FIG. 10.
  • 10 is a graph showing the spectral transmittance of the optical film obtained in Example 9.
  • 10 is a graph showing the spectral transmittance of the optical film obtained in Example 10.
  • 10 is a graph showing the spectral transmittance of the optical film obtained in Example 11.
  • An optical film of the present invention is an optical film comprising a light-transmitting base film and an antiglare layer formed on at least one surface of the base film and including at least one of resin particles and silica particles.
  • the optical film has an average light absorptivity of 5% or more at a wavelength of 380 nm to 500 nm, and the total light transmittance of the optical film is an average light transmittance of the optical film at a wavelength of 380 nm to 500 nm. Higher than.
  • the average optical absorptance of the optical film at a wavelength of 380 nm to 500 nm is 5% or more.
  • the average optical absorptance of the optical film at a wavelength of 380 nm to 500 nm is preferably in the range of 5 to 45%, more preferably in the range of 5 to 40%, and in the range of 10 to 30%. More preferably it is.
  • the average optical absorptance of the optical film By setting the average optical absorptance of the optical film at a wavelength of 380 nm to 500 nm below the upper limit of the above range, the total light transmittance of the optical film can be improved, and when the optical film is disposed on the display screen of the display The color reproducibility of the display screen can be improved.
  • the average optical absorptance of the optical film By making the average optical absorptance of the optical film at a wavelength of 380 nm to 500 nm 10% or more, the blue light reduction effect by the optical film can be further enhanced.
  • the b * value of the optical film is preferably within a range of 5 to 35, more preferably within a range of 5 to 30, and further preferably within a range of 5 to 20. It is most preferable to be within the range.
  • the b * value of the optical film is less than 5, there is a possibility that the blue light reduction effect by the optical film is insufficient. If the b * value of the optical film exceeds 30, the yellow color of the optical film becomes too strong and the appearance deteriorates, or the color reproduction of the display screen when the optical film is disposed on the display screen of the display May be worse.
  • the total light transmittance of the optical film is higher than the average light transmittance at a wavelength of 380 nm to 500 nm. If the total light transmittance of the optical film is equal to or less than the average light transmittance at a wavelength of 380 nm to 500 nm, the transmitted image brightness is deteriorated when the optical film is disposed on the display screen of the display.
  • the difference between the total light transmittance of the optical film and the average light transmittance at a wavelength of 380 nm to 500 nm ((total light transmittance) ⁇ (average light transmittance at a wavelength of 380 nm to 500 nm)) is 2% or more. Preferably, it is 4% or more.
  • the difference between the total light transmittance of the optical film and the average light transmittance at a wavelength of 380 nm to 500 nm is 25% or less. Preferably, it is 15% or less. Thereby, the color reproducibility of the display screen when the optical film is disposed on the display screen of the display can be improved.
  • the total light transmittance of the optical film is preferably 80% or more, more preferably 85% or more, and further preferably 88% or more. If the total light transmittance of the optical film is less than 80%, the transmitted image luminance may be deteriorated when the optical film is disposed on the display screen of the display.
  • the haze of the optical film is preferably in the range of 1.5 to 40%, more preferably in the range of 2 to 30%.
  • the haze of the optical film is less than 1.5%, the antiglare performance of the optical film may be deteriorated. If the haze of the optical film exceeds 40%, the transmitted image clarity of the optical film may be deteriorated. For example, the visibility of the display screen when the optical film is disposed on the display screen of the display is poor. There is a risk.
  • Base film Although it does not specifically limit as a material which comprises the said base film, A general material can be used, For example, a cellulose acylate, the said acrylic resin ((meth) acrylate type polymer), polyester, polycarbonate, polyamide etc. Examples thereof include materials mainly composed of the above resins and inorganic materials such as glass.
  • (meth) acrylate means acrylate and / or methacrylate.
  • Examples of the cellulose acylate include cellulose triacetate, cellulose diacetate, and cellulose acetate butyrate.
  • Examples of the acrylic resin include methyl poly (meth) acrylate, poly (meth) ethyl acrylate, methyl (meth) acrylate-butyl (meth) acrylate, and the like.
  • (meth) acryl means acryl and / or methacryl.
  • Examples of the polyester include polyethylene terephthalate (hereinafter abbreviated as “PET”), polyethylene naphthalate, and the like.
  • the thickness of the base film is preferably in the range of 20 to 300 ⁇ m, and more preferably in the range of 20 to 200 ⁇ m.
  • the thickness of the antiglare layer is preferably 3 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, and even more preferably 5 to 20 ⁇ m. If the thickness of the antiglare layer is less than 3 ⁇ m, the surface hardness of the optical film may be insufficient. If the thickness of the antiglare layer exceeds 100 ⁇ m, the amount of raw material required to form the antiglare layer increases, which is uneconomical.
  • the antiglare layer is formed to constitute the surface of the optical film.
  • the antiglare layer may contain at least one of resin particles and silica particles, but preferably contains at least one of resin particles and silica particles and a binder resin.
  • the resin particles include resin particles made of at least one of a (meth) acrylic monomer and a styrene monomer, silicone resin particles, polycarbonate particles, polyethylene particles, polyvinyl chloride particles, and melamine resins. Particles and the like.
  • the resin particles are preferably resin particles made of at least one of a (meth) acrylic monomer and a styrene monomer. In this case, since the light transmittance of the resin particles itself is improved, an optical film having a good total light transmittance can be realized.
  • the refractive index of the resin particles is generally in the range of 1.41 to 1.60.
  • the refractive index of a polymer obtained by polymerizing a (meth) acrylic monomer having a fluorine group-containing alkyl (meth) acrylate as a main component is about 1.41
  • the refractive index of a homopolymer of a (meth) acrylic monomer having an alkyl acrylate as a main component is about 1.495, and a homopolymer of a styrene monomer having a main component of styrene (polystyrene).
  • the refractive index is about 1.595
  • the refractive index of a copolymer of a (meth) acrylic monomer mainly composed of alkyl (meth) acrylate and a styrene monomer mainly composed of styrene is It is about 1.495 to 1.595.
  • the polymer of at least one of the (meth) acrylic monomer and the styrene monomer contains a structural unit derived from at least one of the (meth) acrylic monomer and the styrene monomer.
  • the (meth) acrylic monomer is not particularly limited as long as it is a compound having at least one acryloyloxy group or methacryloyloxy group, and is monofunctional (meth) having one ethylenically unsaturated group. It may be an acrylic monomer or a polyfunctional (meth) acrylic monomer having two or more ethylenically unsaturated groups.
  • the monofunctional (meth) acrylic monomer is not particularly limited, and examples thereof include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl methacrylate, (Meth) acrylic such as n-butyl (meth) acrylate, isobutyl (meth) acrylate, n-octyl methacrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate Acid alkyl; fluorine-containing (meth) acrylic acid ester such as 2,2,2-trifluoroethyl methacrylate, 2,2,3,3-tetrafluoropropyl methacrylate, perfluorooctylethyl acrylate; tetrahydrofurfuryl acrylate, etc.
  • the polyfunctional (meth) acrylic monomer is not particularly limited as long as it is a compound having two or more acryloyloxy groups or methacryloyloxy groups.
  • Examples include allyl acid, trimethylolpropane trimethacrylate, pentaerythritol tetramethacrylate, and diethylene glycol dimethacrylate.
  • These polyfunctional (meth) acrylic monomers may be used alone or in a combination of two or more.
  • the styrene monomer is not particularly limited as long as it is a styrene (styrene or styrene derivative), and may be a monofunctional styrene monomer having one ethylenically unsaturated group, It may be a polyfunctional styrenic monomer having two or more ethylenically unsaturated groups.
  • the monofunctional styrene monomer is not particularly limited, and examples thereof include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, and the like. These monofunctional styrenic monomers may be used alone or in combination of two or more.
  • the polyfunctional styrene-based monomer is not particularly limited, and examples thereof include aromatic divinyl compounds such as divinylbenzene, divinylnaphthalene, and derivatives thereof. These polyfunctional styrene monomers may be used alone or in a combination of two or more.
  • the structural unit derived from the monofunctional (meth) acrylic monomer and / or the monofunctional styrene monomer is preferably in the range of 50 to 95% by weight with respect to 100% by weight of the polymer. . If the amount of the structural unit derived from the monofunctional (meth) acrylic monomer and / or monofunctional styrene monomer is less than 50% by weight, further improvement in solvent resistance cannot be expected, Cost will increase. When the amount of the structural unit derived from the monofunctional (meth) acrylic monomer and / or the monofunctional styrene monomer is more than the above range, the degree of cross-linking of the polymer is low, and thus resin particles are included.
  • the resin particles When applying a paint, the resin particles may swell and the viscosity of the paint may increase, and the workability of the application may be reduced.
  • the amount of the structural unit derived from the monomer with respect to 100% by weight of the polymer corresponds to the amount of the monomer with respect to 100% by weight of the total amount of all monomers.
  • the polymer may be a homopolymer of a (meth) acrylic monomer or a homopolymer of a styrene monomer, and a (meth) acrylic monomer and styrene. It may be a copolymer with a monomer based on at least one of a (meth) acrylic monomer and a styrene monomer and another vinyl monomer (at least one ethylenically unsaturated group). And a copolymer thereof.
  • Examples of the other vinyl monomers include saturated fatty acid vinyl such as vinyl acetate, vinyl propionate and vinyl versatate; ⁇ , ⁇ -unsaturated nitrile such as acrylonitrile and methacrylonitrile; (meth) acrylic acid, ⁇ , ⁇ -unsaturated carboxylic acids such as crotonic acid, citraconic acid, itaconic acid, maleic acid, fumaric acid, monoalkyl esters of ⁇ , ⁇ -unsaturated dicarboxylic acids (eg monobutyl maleate); ⁇ , ⁇ -unsaturated carboxylates such as ammonium salts or alkali metal salts of saturated carboxylic acids; ⁇ , ⁇ -unsaturated carboxylic anhydrides such as maleic anhydride; (meth) acrylamide, diacetone acrylamide, N-methylol (Meth) acrylamide, N-methylol methacrylamide, methylolated diacetone acrylamide, ⁇ ,
  • the amount of the structural unit derived from the polyfunctional vinyl monomer is 5 with respect to 100 parts by weight of the structural unit derived from the monofunctional (meth) acrylic monomer and / or the monofunctional styrene monomer. It is preferably in the range of ⁇ 100 parts by weight, and preferably in the range of 5 ⁇ 50% by weight with respect to 100% by weight of the polymer.
  • the amount of the structural unit derived from the polyfunctional vinyl monomer is less than the above range, the degree of crosslinking of the polymer is low. As a result, when a paint containing resin particles is applied, the resin particles may swell and increase the viscosity of the paint, which may reduce the workability of the coating.
  • the volume average particle diameter of the resin particles is preferably in the range of 0.3 to 10 ⁇ m, and more preferably in the range of 0.5 to 5 ⁇ m.
  • the volume average particle diameter of the resin particles is less than 0.3 ⁇ m, the light transmittance of the antiglare layer increases and the antiglare performance of the optical film decreases.
  • the volume average particle diameter of the resin particles exceeds 10 ⁇ m, the haze of the optical film is increased, which may cause glare when the optical film is disposed on a light output surface such as a display screen of a display. .
  • the coefficient of variation of the particle diameter of the resin particles (hereinafter, the coefficient of variation of the particle diameter is referred to as “CV value”) is preferably 30% or less, more preferably 20% or less, and 15% or less. More preferably it is.
  • the CV value of the resin particles exceeds 20%, particularly more than 30%, the unevenness of the surface of the antiglare layer becomes large, and bright spots appear when an optical film is disposed on the light output surface such as a display screen of a display. Many are likely to occur.
  • the CV value of the resin particles exceeds 20%, particularly more than 30%, the particle size distribution of the resin particles becomes wide. Therefore, when the antiglare layer is formed, Defects are likely to occur.
  • the content of the resin particles in the antiglare layer is preferably 1 to 10 parts by weight and more preferably 3 to 8 parts by weight with respect to 100 parts by weight of the binder resin. There exists a possibility that sufficient anti-glare property cannot be provided to an anti-glare layer as the content rate of the resin particle in the said anti-glare layer is less than 3 weight part.
  • the content of the resin particles in the antiglare layer exceeds 8 parts by weight, the haze of the optical film is increased, and glare occurs when the optical film is disposed on the light output surface such as a display screen of a display. There is a risk of becoming.
  • the volume average particle diameter of the silica particles is preferably in the range of 0.3 to 10 ⁇ m, and more preferably in the range of 0.5 to 5 ⁇ m.
  • the volume average particle diameter of the silica particles is less than 0.3 ⁇ m, the light transmittance of the antiglare layer increases and the antiglare performance of the optical film decreases.
  • the volume average particle diameter of the silica particles exceeds 10 ⁇ m, the haze of the optical film increases, which may cause glare when the optical film is disposed on a light exit surface such as a display screen of a display. is there.
  • the CV value of the silica particles (when the silica particles are a mixture of a plurality of types of silica particles having different volume average particle sizes, the CV value of the mixture) is preferably 30% or less, and 20% or less. It is more preferable that it is 15% or less.
  • the CV value of the silica particles exceeds 30%, unevenness on the surface of the antiglare layer becomes large, and many bright spots are likely to occur when an optical film is disposed on a light exit surface such as a display screen of a display.
  • the CV value of the silica particles exceeds 30%, the particle size distribution of the resin particles becomes wide, so that when the antiglare layer is formed, defects in the antiglare layer are likely to occur due to the coarse particles. .
  • the silica particles are a mixture of a plurality of types of silica particles having different volume average particle diameters, and each CV value of the plurality of types of silica particles is preferably 20% or less, and the silica particles have a volume average A mixture comprising first silica particles having a particle diameter of 5 to 10 ⁇ m and second silica particles having a volume average particle diameter of 1 to 3 ⁇ m, wherein the first silica particles and the second silica particles It is more preferable that the coefficient of variation of the particle diameter of each is 20% or less.
  • the CV value of the silica particles exceeds 20%, unevenness on the surface of the antiglare layer increases, and many bright spots are likely to occur when an optical film is disposed on a light exit surface such as a display screen of a display. . Further, when the CV value of the silica particles exceeds 20%, the particle size distribution of the resin particles becomes wide, so that when the antiglare layer is formed, defects in the antiglare layer are likely to occur due to the coarse particles. .
  • an optical film by using a combination of a plurality of types of silica particles, in particular, a combination of a first silica particle having a volume average particle diameter of 5 to 10 ⁇ m and a second silica particle having a volume average particle diameter of 1 to 3 ⁇ m, an optical film
  • the anti-glare property and the total light transmittance can be balanced.
  • the volume average particle diameter of the silica particles is increased, the haze is increased and the antiglare property is improved, while the total light transmittance is decreased.
  • the volume average particle diameter of the silica particles is reduced, the total light transmittance is increased while the haze is decreased.
  • silica particles having a larger volume average particle diameter particularly silica particles having a smaller volume average particle diameter, particularly 1 to 3 volume average particle diameter than the first silica particles having a volume average particle diameter of 5 to 10 ⁇ m.
  • silica particles having a smaller volume average particle diameter particularly 1 to 3 volume average particle diameter than the first silica particles having a volume average particle diameter of 5 to 10 ⁇ m.
  • the content of the resin particles and / or silica particles in the antiglare layer is preferably 1 to 12 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the binder resin. More preferably, it is ⁇ 8 parts by weight. If the content of the resin particles and / or silica particles in the antiglare layer is less than 1 part by weight, sufficient antiglare properties may not be imparted to the antiglare layer. When the content of the resin particles and / or silica particles in the antiglare layer exceeds 12 parts by weight, the haze of the optical film increases, and when the optical film is disposed on the light output surface such as the display screen of the display May cause glare.
  • the antiglare layer is a layer (so-called hard coat layer) having a pencil hardness of 2H or more as measured by a pencil hardness test specified in JIS K 5600-5-4: 1999 (load applied to the pencil is 4.9 N). ) Is preferable. Thereby, an optical film excellent in scratch resistance can be realized. Therefore, when the optical film is disposed on the surface of the display screen or the like of the display so that the surface on which the antiglare layer is formed faces the outside (the side opposite to the surface), The optical film functions as a protective film that can sufficiently protect the surface of the display screen and the like from scratches.
  • binder resin examples include a thermoplastic resin, a thermosetting resin, a mixture of an ionizing radiation curable resin and an ionizing radiation polymerization initiator.
  • thermoplastic resin examples include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; vinyl acetate homopolymers or copolymers, vinyl chloride homopolymers or copolymers, and chlorides. Vinylidene homopolymers or copolymers; acetal resins such as polyvinyl formal and polyvinyl butyral; acrylic resins (polyacrylate esters) and their copolymer resins, methacrylic resins (polymethacrylate esters) and their copolymer resins, etc. (Meth) acrylic resin; polystyrene resin; polyamide resin; linear polyester resin; polycarbonate resin.
  • cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose
  • vinyl acetate homopolymers or copolymers vinyl chloride homopolymers or copolymers, and
  • thermosetting resin examples include a thermosetting acrylic resin, a thermosetting urethane resin composed of an acrylic polyol and an isocyanate prepolymer, a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, and a silicone resin. Etc.
  • the ionizing radiation curable resin may be any resin that can be cured by irradiating with ionizing radiation (ultraviolet rays, electron beams, etc.), such as an ionizing radiation polymerizable monomer or an ionizing radiation polymerizable prepolymer (ionizing radiation). What mixed 1 type (s) or 2 types or more, such as a polymerizable oligomer), can be used.
  • ionizing radiation ultraviolet rays, electron beams, etc.
  • What mixed 1 type (s) or 2 types or more, such as a polymerizable oligomer can be used.
  • An ionizing radiation polymerizable polyfunctional prepolymer having two or more ionizing radiation polymerizable functional groups is preferred.
  • the ionizing radiation polymerizable functional group possessed by the ionizing radiation polymerizable polyfunctional prepolymer or the polyfunctional monomer is a photopolymerizable functional group, an electron beam polymerizable functional group, or a radiation polymerizable functional group.
  • photopolymerizable functional groups are particularly preferred.
  • Specific examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. ) An acryloyl group is preferred.
  • “(meth) acryloyl” represents acryloyl or methacryloyl.
  • the ionizing radiation polymerizable polyfunctional prepolymer is preferably a polyfunctional prepolymer having two or more photopolymerizable functional groups (hereinafter referred to as “photopolymerizable polyfunctional prepolymer”).
  • photopolymerizable polyfunctional prepolymer a (meth) acrylic prepolymer having two or more (meth) acryloyl groups in one molecule is particularly preferably used.
  • Such a (meth) acrylic prepolymer becomes a three-dimensional network structure by crosslinking and curing.
  • Examples of the (meth) acrylic prepolymer include urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, and melamine (meth) acrylate.
  • the above-mentioned polyfunctional vinyl monomers can be used, but a polyfunctional monomer having two or more photopolymerizable functional groups (hereinafter referred to as “photopolymerizable polyfunctional”). (Referred to as "monomer”).
  • the photopolymerizable polyfunctional monomer examples include alkylene glycol di (meth) acrylates such as neopentyl glycol acrylate, 1,6-hexanediol (meth) acrylate, and propylene glycol di (meth) acrylate; Polyoxyalkylene glycol di (meth) acrylates such as ethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate; pentaerythritol di (meta) ) Di (meth) acrylates of trihydric or higher polyhydric alcohols such as acrylates; 2,2-bis [4- (acryloxy-diethoxy) phenyl] propane, 2,2-bis [4- (acryloxy-polypropylene) Di (meth) acrylates of polyhydric alcohol ethylene oxide adducts or polyhydric alcohol prop
  • the photopolymerizable polyfunctional monomer is preferably an ester of a polyhydric alcohol and (meth) acrylic acid as in these specific examples, and has 3 or more (meth) acryloyl groups in one molecule.
  • the polyfunctional monomer having is more preferable.
  • polyfunctional monomer having three or more (meth) acryloyl groups in one molecule include trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, 1,2,4- Cyclohexanetetra (meth) acrylate, pentaglycerol triacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol triacrylate, dipentaerythritol pentaacrylate, dipentaerythritol tetra (meth) acrylate, di Examples include pentaerythritol hexa (meth) acrylate, tripentaerythritol triacrylate, and tripentaerythritol hexaacrylate. Two or more kinds of the photopolymerizable polyfunctional monomers may be used in combination.
  • a photopolymerization initiator is used as the ionizing radiation polymerization initiator. It is preferable to use as.
  • a photoradical polymerization initiator or a photocationic polymerization initiator is preferable, and a photoradical polymerization initiator is particularly preferable.
  • Polymerization of the photopolymerizable polyfunctional monomer or photopolymerizable polyfunctional prepolymer can be performed by irradiation with ionizing radiation in the presence of a photo radical initiator. Accordingly, a paint containing the photopolymerizable polyfunctional monomer or photopolymerizable polyfunctional prepolymer, a photo radical initiator, and at least one of resin particles and silica particles is prepared, and the paint is applied to the base film. After the coating, the antiglare layer can be formed on at least one surface of the substrate film by curing the paint by a polymerization reaction by ionizing radiation.
  • photo radical polymerization initiator examples include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, ⁇ -hydroxyalkylphenones, ⁇ -aminoalkylphenones, anthraquinones, thioxanthones, azo compounds, peroxides (Described in JP 2001-139663 A), 2,3-dialkyldione compounds, disulfide compounds, fluoroamine compounds, aromatic sulfoniums, onium salts, borate salts, active halogen compounds, ⁇ -acyloxy Muester and the like.
  • acetophenones examples include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropio.
  • examples include phenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone.
  • benzoins examples include benzoin, benzoin benzoate, benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
  • benzophenones examples include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone, p-chlorobenzophenone, and the like.
  • phosphine oxides examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
  • Examples of the ketals include benzylmethyl ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one.
  • Examples of the ⁇ -hydroxyalkylphenones include 1-hydroxycyclohexyl phenyl ketone.
  • Examples of the ⁇ -aminoalkylphenones include 2-methyl-1- [4- (methylthio) phenyl] -2- (4-morpholinyl) -1-propanone.
  • photocleavable photoradical polymerization initiators include trade names “Irgacure (registered trademark) 651” (2,2-dimethoxy-1,2-diphenylethane-1-one) manufactured by BASF Japan Ltd., BASF Trade name “Irgacure (registered trademark) 184” (1-hydroxycyclohexyl phenyl ketone) manufactured by Japan Co., Ltd., trade name “Irgacure (registered trademark) 907” (2-methyl-1- [4- (Methylthio) phenyl] -2- (4-morpholinyl) -1-propanone), trade name “Irgacure (registered trademark) 2959” (1- ⁇ 4- (2-hydroxyethoxy) -phenyl ⁇ ) manufactured by BASF Japan Ltd. -Hydroxy-2-methyl-1-propan-1-one) and the like are preferable examples.
  • Irgacure (registered trademark) 651 (2,2-dime
  • the photopolymerization initiator is preferably used within a range of 0.1 to 15 parts by weight with respect to 100 parts by weight of the photopolymerizable polyfunctional monomer or photopolymerizable polyfunctional prepolymer. More preferably, it is used within the range of 10 parts by weight.
  • a photosensitizer may be used in addition to the photopolymerization initiator.
  • the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, Michler's ketone, thioxanthones and the like.
  • a solvent (diluent) for diluting the binder resin may be used as necessary.
  • the solvent include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and butyl acetate; ether solvents such as dioxane and ethylene glycol diethyl ether Water, alcohol solvents and the like. These solvents may be used alone or in combination of two or more.
  • the antiglare layer is formed using a paint containing an ionizing radiation curable resin, by applying the paint and then irradiating the paint with ionizing radiation (ultraviolet rays, electron beams, etc.) to cure the paint
  • ionizing radiation ultraviolet rays, electron beams, etc.
  • a method of irradiating with ionizing radiation a method of irradiating ultraviolet rays in a wavelength region of 100 to 400 nm, preferably 200 to 400 nm, emitted from an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp or the like;
  • a method of irradiating an electron beam having a wavelength region of less than 100 nm emitted from a mold or curtain type electron beam accelerator can be used.
  • a reverse roll coating method As a method for applying the paint on the base film, a reverse roll coating method, a gravure coating method, a die coating method, a comma coating method, a spray coating method, or the like can be used.
  • the dye preferably contains a first dye having a maximum absorption wavelength in an ultraviolet-visible absorption spectrum (ultraviolet-visible absorption spectrum having a wavelength of 300 to 800 nm) in the range of 380 to 500 nm. Thereby, blue light can be reduced more effectively.
  • ultraviolet-visible absorption spectrum ultraviolet-visible absorption spectrum having a wavelength of 300 to 800 nm
  • the ultraviolet-visible absorption spectrum of the dye can be measured using the following measurement method. 0.001 part by weight of the dye is added to 100 parts by weight of the solvent in which the dye is soluble, and the dye is dissolved in the solvent to obtain a dye solution. The obtained dye solution is measured for an ultraviolet-visible absorption spectrum having a wavelength of 300 to 800 nm using a spectrophotometer (trade name “Hitachi spectrophotometer U-3900”, Hitachi High-Technologies Corporation). Before measuring the dye solution, a baseline is established by measuring an ultraviolet-visible absorption spectrum having a wavelength of 300 to 800 nm with the spectrophotometer for the solvent used for dissolving the dye.
  • the first dye is not particularly limited as long as it is a dye having a maximum absorption wavelength in the ultraviolet-visible absorption spectrum in the range of 380 to 500 nm, and is a dye that can be dissolved in an organic solvent (oil-soluble dye) or pigment. , Dyes and the like can be used. Among these, a dye that can be dissolved in an organic solvent is preferable as the first dye.
  • Preferred organic solvents include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and butyl acetate; ether solvents such as dioxane and ethylene glycol diethyl ether A solvent etc. are mentioned. More preferable organic solvents include aromatic hydrocarbon solvents such as toluene, methyl isobutyl ketone, and methyl ethyl ketone. Examples of the dye that can be dissolved in an organic solvent include “YELLOW 93” (CI Solvent Yellow 93), “OIL YELLOW 186”, C.I. I.
  • Solvent Yellow 16 C.I. I. Solvent Yellow 33, C.I. I. Solvent Yellow 79, C.I. I. Solvent Yellow 82 (for example, “VALIFAST (registered trademark) YELLOW 4120” manufactured by Orient Chemical Co., Ltd.), C.I. I. Solvent Orange 80, C.I. I. Solvent Orange 45 (for example, “VALIFAST (registered trademark) YELLOW 3108” manufactured by Orient Chemical Co., Ltd.), C.I. I. Solvent Orange 62, C.I. I. Solvent Orange 54 (for example, “VALIFAST (registered trademark) ORANGE 3210” manufactured by Orient Chemical Co., Ltd.), C.I. I.
  • Solvent Yellow 151 for example, “VALIFAST (registered trademark) YELLOW 3170” manufactured by Orient Chemical Co., Ltd.), C.I. I. Acid Yellow 42 (for example, “VALIFAST (registered trademark) YELLOW 1101” manufactured by Orient Chemical Co., Ltd.), “DAA51” (trade name) (manufactured by Yamada Chemical Co., Ltd.), C.I. I. Pigment yellow 74 (for example, “Fast Yellow 7416” manufactured by Sanyo Dyeing Co., Ltd.), “NAZ24” (trade name) (manufactured by Yamada Chemical Co., Ltd.), and the like.
  • the pigment include azo pigments such as benzidine yellow 14 and polycyclic pigments as organic pigments. These dyes may be used alone or in combination of two or more.
  • the dye preferably contains a blue second dye in addition to the first dye. That is, it is preferable to use a mixture of the first dye and the blue second dye as the dye.
  • the first pigment is used alone as the pigment, the optical film is colored yellow or a color close to it (for example, orange), and the optical film has a yellowish appearance.
  • dye is mixed with a said 1st pigment
  • the blue dye means a dye having an absorption maximum peak (maximum absorption wavelength) in the range of 570 to 620 nm.
  • blue second dye examples include “NEO SUPER BLUE C-558” manufactured by Chuo Synthetic Chemical Co., Ltd., and tetraazaporphyrin-based compounds (for example, “TAP-2” “TAP” manufactured by Yamada Chemical Co., Ltd.). -18 "" TAP-45 "), C.I. I. Pigment blue 15: 3, C.I. I. Pigment Blue 15, Bituminous Blue, Cobalt Blue, Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Metal-free Phthalocyanine Blue, Partially Chlorinated Phthalocyanine Blue, Fast Sky Blue, Indanthrene Blue BC, C.I. I. Solvent Blue 35, C.I. I. Solvent Blue 70 etc. are mentioned. These dyes may be used alone or in combination of two or more.
  • other pigments other than the first pigment and the second pigment can be added to the antiglare layer.
  • the other dye include C.I. I. Solvent Red 132, C.I. I. Solvent Black 27, “OIL GREEN 502” (manufactured by Orient Chemical Industry Co., Ltd.), “OIL GREEN BG” (manufactured by Orient Chemical Industry Co., Ltd.), “VALIFAST (registered trademark) RED 3306” (manufactured by Orient Chemical Industry Co., Ltd.), etc. Is mentioned. These other pigments may be used alone or in combination of two or more.
  • the dye may be contained in a dye-containing layer formed on at least one surface of the base film, or may be contained in the base film.
  • the dye-containing layer may be formed as a layer different from the antiglare layer, or may be formed as the antiglare layer. That is, the pigment may be contained in a pigment-containing layer formed as a layer separate from the antiglare layer, or may be contained in the antiglare layer. However, if pigments are contained in the antiglare layer that is exposed at the time of use, the scratch resistance of the optical film at the time of use may be reduced. It is preferred that the antiglare layer at the position to be a surface does not contain a pigment. Moreover, since the anti-glare property of an optical film may fall when the pigment
  • the optical film has an ultraviolet-visible absorption spectrum (ultraviolet-visible absorption spectrum having a wavelength of 300 to 800 nm) having a maximum absorption wavelength in the range of 320 nm or more and less than 380 nm, and also has an absorption in the visible region of a wavelength of 380 nm or more. It may further contain a light absorber. Thereby, blue light can be further reduced while maintaining the total light transmittance of the optical film at a good level.
  • ultraviolet-visible absorption spectrum ultraviolet-visible absorption spectrum having a wavelength of 300 to 800 nm
  • It may further contain a light absorber. Thereby, blue light can be further reduced while maintaining the total light transmittance of the optical film at a good level.
  • UV-visible light absorber examples include 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine, hydroxyphenylbenzotriazole, 2-hydroxy- Examples include 4-methoxybenzophenone, 2,4-benzoylresorcin, 2,2-dihydroxy-4-methoxybenzophenone, and the like. These ultraviolet and visible light absorbers may be used alone or in combination of two or more.
  • the ultraviolet-visible light absorber may be contained in a dye-containing layer formed on at least one surface of the base film, or may be contained in the base film. That is, the ultraviolet-visible light absorber may be contained in a dye-containing layer formed as a layer separate from the antiglare layer, or may be contained in the antiglare layer.
  • the optical film of the present invention preferably has a light-transmitting base film 1 and at least one of resin particles and silica particles formed on one surface of the base film 1.
  • dye formed on the other surface of the said base film 1 are included.
  • the dye is included in the dye-containing layer 3 formed on one surface of the base film 1.
  • the dye-containing layer 3 is formed as a layer different from the antiglare layer 2. That is, the pigment is contained in the pigment-containing layer 3 formed as a layer separate from the antiglare layer 2.
  • the yellowish color is basically colored by the pigment, but according to the above configuration, the yellowness is slightly suppressed when the optical film is viewed from the antiglare layer 2 side. That is, the light from the pigment is basically yellowish light, but the color of the light is diffused when passing through the anti-glare layer 2 so that the saturation is lowered (becomes white). To reach. Therefore, the apparent yellowness of the optical film is suppressed.
  • the external shape thereof is substantially the same as the external shape of the entire display.
  • the dye-containing layer 3 is formed on the entire surface of the optical film by printing or the like as shown in the plan view of FIG.
  • the color of the display frame is affected by the coloring of the dye-containing layer 3 because the dye-containing layer 3 is disposed not only at the position overlapping the display screen of the display but also at the position overlapping the display frame.
  • the display is a display having a dark frame such as black, coloring of the display frame does not become obvious, but the display has a light color frame such as white (for example, in the case of an Apple tablet personal computer “iPad (registered trademark)” or an Apple smartphone “iPhone (registered trademark)”, the frame of the display is colored yellowish May appear and the display may not look good.
  • iPad registered trademark
  • iPhone registered trademark
  • the optical film of the present invention when the optical film of the present invention is affixed to a display having a display screen and a frame surrounding the display screen, the optical film of the present invention is at least one of the base film.
  • a dye-containing layer containing the dye and a binder resin is formed on the surface, and the dye-containing layer is formed only on a portion corresponding to the display screen of the display on at least one surface of the base film. May be.
  • FIG. 10 is a plan view showing the optical film of this embodiment
  • FIG. 11 is a cross-sectional view of the optical film shown in FIG. 10 taken along the line A-A ′.
  • the optical film of this embodiment includes a light-transmissive base film 1 and at least one of resin particles and silica particles formed on one surface of the base film 1.
  • an agent layer 4 When the optical film of this embodiment is attached to a display, the surface on the antiglare layer 2 side becomes the front surface (exposed surface), and the surface on the adhesive layer 4 side becomes the back surface (surface in contact with the display).
  • dye containing layer 3 is one side of the said base film 1 among the whole area
  • the pigment is contained in the pigment-containing layer 3 formed on one surface of the base film 1.
  • the dye-containing layer 3 is formed as a layer different from the antiglare layer 2. That is, the pigment is contained in the pigment-containing layer 3 formed as a layer separate from the antiglare layer 2.
  • the pressure-sensitive adhesive layer will be described later.
  • a method of forming the dye-containing layer only on a portion corresponding to the display screen of the display on at least one surface of the base film a method of forming the dye-containing layer by printing such as an inkjet method or gravure printing Is mentioned.
  • the dye-containing layer formed as a layer different from the antiglare layer or as the antiglare layer will be described below.
  • the dye-containing layer may contain a dye, but preferably contains a dye and a binder resin. Thereby, the light transmittance of the said pigment
  • the amount of the first dye added to the dye-containing layer is preferably in the range of 0.01 to 2 parts by weight, and in the range of 0.05 to 1 part by weight with respect to 100 parts by weight of the binder resin. More preferably. There exists a possibility that the reduction effect of the blue light by the said optical film may become inadequate that the addition amount of a said 1st pigment
  • the amount of the blue second dye added to the dye-containing layer is 0.005 to 2 with respect to 100 parts by weight of the binder resin. It is preferably in the range of parts by weight, and more preferably in the range of 0.01 to 1 part by weight.
  • the amount of the blue second dye added to the dye-containing layer is preferably less than 100 parts by weight and more preferably less than 80 parts by weight with respect to 100 parts by weight of the first dye. If the amount of the blue second dye added is larger than the above range, the blue density of the dye-containing layer may be too high, and the optical transparency of the optical film may not be maintained at a sufficient level.
  • the amount of the UV-visible light absorber added to the dye-containing layer is 0.01 to 5 parts by weight with respect to 100 parts by weight of the binder resin. It is preferably within the range, and more preferably within the range of 0.2 to 2 parts by weight. There exists a possibility that the reduction effect of the blue light by the said ultraviolet visible light absorber may become inadequate that the addition amount of the said ultraviolet visible light absorber is less than 0.01 weight part.
  • the addition amount of the UV-visible light absorber exceeds 5 parts by weight, the yellow density of the dye-containing layer becomes too high due to absorption of light (visible light) of 380 nm or more by the UV-visible light absorber, and the optical film There is a possibility that the light transmittance of the glass cannot be maintained at a sufficient level.
  • the thickness of the dye-containing layer is preferably 3 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, and even more preferably 5 to 20 ⁇ m. If the thickness of the dye-containing layer is less than 3 ⁇ m, the surface hardness of the optical film may be insufficient. If the thickness of the dye-containing layer exceeds 100 ⁇ m, the amount of raw material necessary to constitute the dye-containing layer increases, which is uneconomical.
  • the dye-containing layer may be a layer having a pencil hardness of 2H or higher (so-called hard coat layer).
  • the binder resin contained in the dye-containing layer, the solvent that can be used in the paint used to form the dye-containing layer, the coating method of the paint, the curing method of the paint, and the like can be the same as those of the antiglare layer.
  • the optical film of the present invention is arranged in a form in which the dye-containing layer is not exposed, for example, when the dye-containing layer is arranged so as to be in contact with the display screen of the display, it is included in the dye-containing layer.
  • the binder resin to be used may be a thermosetting resin.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is preferably a pressure-sensitive adhesive suitable for optical applications, such as an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive.
  • the pressure-sensitive adhesive layer may be a self-adsorbing silicone layer.
  • the thickness of the pressure-sensitive adhesive layer is usually in the range of 5 to 100 ⁇ m, preferably in the range of 10 to 60 ⁇ m.
  • a release film may be provided on the pressure-sensitive adhesive layer as necessary.
  • the release film include those obtained by applying a release agent made of silicone resin or the like to various plastic films made of polyethylene terephthalate, polypropylene, or the like.
  • the thickness of the release film is not particularly limited, but is usually in the range of 20 to 150 ⁇ m.
  • the volume average particle diameter, the CV value, and the refractive index measurement method of the resin particles used in the following examples and comparative examples, and the haze and totality of the optical films obtained in the following examples and comparative examples A method for measuring light transmittance, pencil hardness, spectral transmittance, average light absorption at a wavelength of 380 nm to 500 nm, and b * value, and a method for evaluating glare, antiglare performance, and color reproducibility will be described.
  • volume average particle size of resin particles and silica particles was measured using a laser diffraction / scattering type particle size distribution analyzer (“LS 13 320” manufactured by Beckman Coulter, Inc.) and a universal liquid sample module.
  • measuring particles 0.1 g of resin particles or silica particles to be measured (hereinafter referred to as “measuring particles”) in 10 ml of a 0.1 wt% nonionic surfactant aqueous solution (manufactured by Yamato Scientific Co., Ltd., Disperse using a “TOUCMIXER MT-31”) and an ultrasonic cleaner (“ULTRASONIC CLEANER VS-150” manufactured by Velvo Crea Co., Ltd.) to obtain a dispersion.
  • a 0.1 wt% nonionic surfactant aqueous solution manufactured by Yamato Scientific Co., Ltd., Disperse using a “TOUCMIXER MT-31”
  • an ultrasonic cleaner ULTRASONIC CLEANER VS-150 manufactured by Velvo Crea Co., Ltd.
  • optical parameters required for evaluation based on the Mie theory are set in the software of the laser diffraction / scattering type particle size distribution measuring apparatus.
  • the measurement is performed at room temperature, and from the obtained data, the software of the laser diffraction / scattering type particle size distribution measuring apparatus is used to set the volume average particle size of the measurement target particle using the preset optical parameters.
  • the diameter (arithmetic mean diameter in the volume-based particle size distribution) is calculated.
  • the measurement target particle is a resin particle
  • the measurement was performed by inputting the refractive index of the polymer constituting the resin particle as the refractive index of the measurement target particle.
  • the polymer constituting the resin particles is polymethyl methacrylate or polyethyl methacrylate
  • the known refractive index 1.495 of polymethyl methacrylate and polyethyl methacrylate is input
  • the resin particles are In the case where the constituting polymer is polystyrene
  • a known polystyrene refractive index of 1.595 was input.
  • the particles to be measured are silica particles
  • measurement was performed by inputting a known refractive index of 1.45 of the silica particles as the refractive index of the particles to be measured.
  • the CV value of the resin particles and silica particles is obtained from the standard deviation ( ⁇ ) and the volume average particle size (D) of the volume-based particle size distribution measured by the volume average particle size measurement method of the resin particles and silica particles.
  • the following formula CV value (%) ( ⁇ / D) ⁇ 100 Calculated by
  • the observation with an optical microscope is not particularly problematic as long as it is an observation at a magnification at which the outline of the resin particles can be confirmed, but if the resin particles have a particle diameter of 5 ⁇ m, it is appropriate to observe at a magnification of about 500 times. .
  • the intermediate value of the refractive indexes of the two types of refractive liquid is set as the refractive index of the resin particles.
  • the intermediate value of the refractive indexes of these refractive liquids is 1.555. Was determined as the refractive index of the resin particles.
  • Glare is not visible: ⁇ (very good) Slight glare: ⁇ (Good) A lot of glare can be seen: x (defect) [Evaluation method of anti-glare performance of optical film] A bare straight tube fluorescent lamp (8000 cd / m 2 ) was placed so that the light was projected onto the optical film at an incident angle of 45 °, and the reflection of the fluorescent lamp when visually observed from the -45 ° direction. The degree was evaluated according to the following criteria, and this evaluation was regarded as the evaluation of antiglare performance.
  • the area of the entire wavelength region of 380 nm to 500 nm (the portion sandwiched between the 100% transmittance line and the horizontal axis in the wavelength region of 380 nm to 500 nm) is A, and 380 nm
  • B be the area of the transmittance of the optical film in the wavelength region of ⁇ 500 nm (the area of the portion sandwiched between the spectral transmittance curve of the optical film and the horizontal axis in the wavelength region of 380 nm to 500 nm).
  • Average light transmittance (%) (B / A) ⁇ 100
  • the b * value of the optical film was measured using a color difference meter “CR-400” (manufactured by Konica Minolta Optics) and a data processor “DP-400” (manufactured by Konica Minolta Optics). Specifically, first, a color difference meter “CR-400” and a data processor “DP-400” were connected. Next, after turning on the color difference meter “CR-400” and data processor “DP-400”, press the “color system” button on the data processor “DP-400” to set the display screen of the Yxy color system. did.
  • the calibration was performed by pressing the “calibration” button of the data processor “DP-400”.
  • place an optical film on the white calibration plate apply the measurement part of the color difference meter “CR-400” to the optical film, perform measurement, and click the “color system” button on the data processor “DP-400”. switch to the L * a * b * display screen of the color system press, read the b * value of the L * a * b * color system.
  • Example 1 (Manufacture of antiglare layer-forming coatings) Crosslinked polymethyl methacrylate particles having a volume average particle diameter of 0.5 ⁇ m as resin particles and a CV value of 12% (polymer of monomer mixture comprising 80% by weight of methyl methacrylate and 20% by weight of allyl methacrylate, refraction 1.495) 5 parts by weight (6 parts by weight with respect to 100 parts by weight of the binder resin), 85 parts by weight of pentaerythritol triacrylate (PETA) as the binder resin, and 1-hydroxycyclohexylphenyl as the photopolymerization initiator Mixing 0.5 parts by weight of a ketone (trade name “Irgacure (registered trademark) 184”, manufactured by BASF Japan Ltd.) and 68 parts by weight of toluene as a solvent, Obtained.
  • a ketone trade name “Irgacure (registered trademark) 184”, manufactured by BASF Japan Ltd.
  • Pigment-containing layer-forming paints 85 parts by weight of pentaerythritol triacrylate (PETA) as a binder resin and 0.17 parts by weight of an oil-soluble dye “DAA51” (manufactured by Yamada Chemical Co., Ltd.) as a first dye (based on 100 parts by weight of the binder resin) 0.2 part by weight), 0.5 part by weight of 1-hydroxy-cyclohexyl phenyl ketone (trade name “Irgacure (registered trademark) 184” manufactured by BASF Japan Ltd.) as a photopolymerization initiator, and toluene as a solvent 68 parts by weight of the mixture was mixed to obtain a pigment-containing layer-forming coating material that was a hard coat coating material.
  • PETA pentaerythritol triacrylate
  • DAA51 oil-soluble dye
  • 1-hydroxy-cyclohexyl phenyl ketone trade name “Irgacure (registered trademark)
  • the antiglare layer-forming paint On one side of a 125 ⁇ m thick PET film as a light-transmitting base film, the antiglare layer-forming paint was applied to a bar coater No.
  • the antiglare layer-forming coating material was dried by coating with 07 (manufactured by Daiichi Rika Co., Ltd.) and evaporating the solvent (toluene). Thereafter, the dried coating material for forming an anti-glare layer was cured by irradiating the dried coating material for forming an anti-glare layer with ultraviolet rays for 5 minutes using an ultraviolet irradiation device having an ultraviolet illuminance of 3 W / cm 2 . Thereby, the anti-glare layer which has the unevenness
  • the antiglare layer has a thickness of about 10 ⁇ m.
  • a pigment-containing layer-forming coating was applied to the other surface of the PET film with a bar coater No.
  • the pigment-containing layer-forming coating material was dried by coating with 07 (manufactured by Daiichi Rika Co., Ltd.) and evaporating the solvent (toluene). Thereafter, the dried pigment-containing layer-forming coating material was cured by irradiating the dried pigment-containing layer-forming coating material with ultraviolet rays for 5 minutes using an ultraviolet irradiation device having an ultraviolet illuminance of 3 W / cm 2 .
  • dye containing layer was formed as a hard-coat layer on the other surface of PET film, and the optical film of the 3 layer structure which consists of a glare-proof layer, a base film, and a pigment
  • the thickness of the dye-containing layer is about 10 ⁇ m.
  • the spectral transmittance of the obtained optical film is shown in FIG.
  • Example 2 As resin particles used in the antiglare layer-forming coating material, instead of the crosslinked polymethyl methacrylate particles having a volume average particle diameter of 0.5 ⁇ m and a CV value of 12%, the volume average particle diameter is 5 ⁇ m and the CV value is 10%.
  • cross-linked polymethyl methacrylate particles polymer of a monomer mixture consisting of 70% by weight of methyl methacrylate and 30% by weight of ethylene glycol methacrylate, refractive index 1.495
  • a film was obtained.
  • the spectral transmittance of the obtained optical film was almost the same as the spectral transmittance (FIG. 2) of the optical film obtained in Example 1.
  • Example 3 As resin particles used for the paint for forming the antiglare layer, instead of the crosslinked polymethyl methacrylate particles having a volume average particle diameter of 0.5 ⁇ m and a CV value of 12%, the volume average particle diameter is 1.0 ⁇ m and the CV value is 11 %
  • Crosslinked polystyrene particles monomer mixture polymer consisting of 95% by weight of styrene and 5% by weight of divinylbenzene, refractive index 1.595
  • the spectral transmittance of the obtained optical film was almost the same as the spectral transmittance (FIG. 2) of the optical film obtained in Example 1.
  • Example 4 As the first dye used in the paint for forming the dye-containing layer, instead of 0.17 part by weight of “DAA51”, 0.85 part by weight of oil-soluble dye “OIL YELLOW 186” (Chuo Synthetic Chemical Co., Ltd.) (binder resin 100) An optical film was obtained in the same manner as in Example 2 except that 1.0 part by weight) was used. The spectral transmittance of the obtained optical film is shown in FIG.
  • Example 5 In the same manner as in Example 4, except that the amount of “OIL YELLOW 186” used as the first dye was changed to 0.425 parts by weight (0.5 parts by weight with respect to 100 parts by weight of the binder resin), A film was obtained. The spectral transmittance of the obtained optical film is shown in FIG.
  • Example 6 Oil-soluble dye "TAP-18" as a blue second dye for the pigment-containing layer forming coating (tetraazaporphyrin compound having a maximum absorption wavelength at a wavelength of 593 nm, manufactured by Yamada Chemical Co., Ltd.) 0.17 weight
  • An optical film was obtained in the same manner as in Example 4, except that 0.2 part by weight (100 parts by weight of the binder resin and 20 parts by weight with respect to 100 parts by weight of the first dye) was added. The spectral transmittance of the obtained optical film is shown in FIG.
  • Example 7 Instead of 0.17 parts by weight of “DAA51” as the first dye, 0.85 parts by weight of “DAA51” as the first dye (1.0 part by weight with respect to 100 parts by weight of the binder resin) and the first As in Example 1, except that 0.43 parts by weight of “NAZ24” (manufactured by Yamada Chemical Co., Ltd., yellow dye) (0.5 parts by weight with respect to 100 parts by weight of the binder resin) is used. Thus, an optical film was obtained. The spectral transmittance of the obtained optical film is shown in FIG.
  • Example 8 Instead of 0.17 parts by weight of “DAA51” as the first dye, 1.7 parts by weight of “DAA51” as the first dye (2.0 parts by weight with respect to 100 parts by weight of the binder resin) and the first Optical film in the same manner as in Example 1 except that 0.85 parts by weight (1.0 part by weight with respect to 100 parts by weight of the binder resin) is used as the pigment of “NAZ24” (manufactured by Yamada Chemical Co., Ltd.). Got. The spectral transmittance of the obtained optical film is shown in FIG.
  • the optical film of Example 1 maintains a good total light transmittance close to the total light transmittance of the optical film of Comparative Example 1 containing no pigment, In addition, while maintaining good color reproducibility equivalent to that of the optical film of Comparative Example 1 containing no pigment, the average light absorptance at a wavelength of 380 nm to 500 nm can be remarkably improved, and an excellent blue light reduction effect can be obtained.
  • the average light absorptance at a wavelength of 380 nm to 500 nm can be remarkably improved, and an excellent blue light reduction effect can be obtained.
  • the optical film of Example 5 has a good total light beam that is close to the total light transmittance of the optical film of Comparative Example 2 that does not contain resin particles or silica particles. While maintaining the transmittance and maintaining good color reproducibility equivalent to that of the optical film of Comparative Example 2 containing neither resin particles nor silica particles, the antiglare performance could be remarkably improved.
  • the optical film of Example 6 containing the blue second dye is the same as the optical film of Example 4 containing no blue second dye.
  • the b * value is reduced while maintaining good total light transmittance close to the light transmittance and maintaining good color reproducibility equivalent to that of the optical film of Example 4 containing no blue second dye. And thus the yellowness could be suppressed.
  • the optical film of Example 7 having an average light absorption rate of 40% or less at a wavelength of 380 nm to 500 nm has an average light absorption rate of a wavelength of 380 nm to 500 nm.
  • the color reproducibility could be improved.
  • optical films of Examples 1 to 8 had good haze and pencil hardness, and could prevent the occurrence of glare.
  • Example 9 Instead of 5 parts by weight of crosslinked polymethyl methacrylate particles as resin particles, 1.6 parts by weight of silica particles having a volume average particle diameter of 8 ⁇ m and a CV value of 18% (1.9 parts by weight with respect to 100 parts by weight of binder resin) Part) and 7.0 parts by weight of silica particles having a volume average particle diameter of 2 ⁇ m and a CV value of 10% (8.2 parts by weight with respect to 100 parts by weight of the binder resin) (the CV value of the mixture is 30%) ), And instead of 0.85 parts by weight of “DAA51” and 0.43 parts by weight of “NAZ24”, 1.2 parts by weight of “YELLOW 93” (CI Solvent Yellow 93) (binder resin) 1.2 parts by weight) (1.5 parts by weight with respect to 100 parts by weight), 0.9 parts by weight of “NEO SUPER BLUE C-558” (manufactured by Chuo Synthetic Chemical Co., Ltd.) as the second blue dye (by 1.1 parts by weight to Zehn
  • Example 10 In addition to the first dye and the second dye, “ADEKA STAB (registered trademark) LA-F70” as an ultraviolet-visible light absorber (manufactured by ADEKA Corporation, 2,4,6-tris (2-hydroxy-4- An optical film was obtained in the same manner as in Example 9 except that 1 part by weight of hexyloxy-3-methylphenyl) -1,3,5-triazine) was used. The spectral transmittance of the obtained optical film is shown in FIG.
  • ADEKA STAB registered trademark
  • LA-F70 ultraviolet-visible light absorber
  • the optical films of Examples 9 and 10 maintain good color reproducibility equivalent to the optical film of Comparative Example 1 containing no pigment, and While ensuring a higher total light transmittance than the optical film of Comparative Example 1 that does not contain a dye, the average light absorptance at wavelengths of 380 nm to 500 nm can be remarkably improved and has an excellent blue light reduction effect. It was.
  • the optical films of Examples 9 and 10 are close to the total light transmittance of the optical film of Comparative Example 2 that does not contain resin particles or silica particles. While maintaining good total light transmittance and maintaining good color reproducibility equivalent to the optical film of Comparative Example 2 containing neither resin particles nor silica particles, the anti-glare performance could be remarkably improved. .
  • the optical films of Examples 9 and 10 containing silica particles have a wavelength as high as 380 nm, which is equivalent to the optical film of Example 2 containing resin particles. While maintaining an average light absorption rate of 500 nm, the b * value could be reduced and the yellowness of the optical film could be suppressed.
  • Example 9 [Correction 09.04.2014 based on Rule 91] Moreover, as can be seen from the comparison between Example 9 and Example 10, the optical film of Example 10 containing the ultraviolet-visible light absorber is compared with the optical film of Example 9 containing no ultraviolet-visible light absorber. The average light absorptance at a wavelength of 380 nm to 500 nm could be further improved, and the blue light reducing effect was further excellent.
  • Example 11 the optical film of the embodiment shown in FIG. 10 and FIG. 11 attached to a display having a display screen and a frame surrounding the display screen was produced.
  • a PET film with a thickness of 100 ⁇ m was used instead of a PET film with a thickness of 125 ⁇ m as a light-transmitting base film, and the antiglare layer described in Example 1 was obtained so that the resulting antiglare layer had a thickness of about 8 ⁇ m.
  • An antiglare layer was formed in the same manner as in Example 1 except that the coating for forming the glare layer was applied.
  • a reactive oligomer (trade name “CN985B88”, aliphatic urethane acrylate, bifunctional, manufactured by Sartomer, USA) as a binder resin and a reactive monomer (trade name “SR238F”, 1,6-hexane) 69 parts by weight of diol diacrylate, bifunctional, manufactured by Sartomer, USA) and 0.85 parts by weight of oil-soluble dye “OIL YELLOW 186” (manufactured by Chuo Synthetic Chemical Co., Ltd.) as the first dye (100 parts by weight of binder resin) 1.0 part by weight with respect to 100 parts by weight of oil-soluble dye “TAP-18” (manufactured by Yamada Chemical Co., Ltd.) as the second blue dye.
  • a reactive oligomer trade name “CN985B88”, aliphatic urethane acrylate, bifunctional, manufactured by Sartomer, USA
  • SR238F 1,6-hexane
  • the obtained pigment-containing layer-forming coating material was printed (coated) with an ink jet only on the portion corresponding to the display screen of the display on the other surface (back surface) of the PET film, and the ultraviolet illuminance was 3 W / cm.
  • the dried antiglare layer-forming coating material was cured by irradiating ultraviolet rays for 5 minutes with the ultraviolet irradiation device 2 .
  • a pigment-containing layer having a thickness of about 10 ⁇ m was formed on the other surface of the PET film.
  • a pressure-sensitive adhesive layer is formed by coating the other surface (back surface) of the pigment-containing layer and the portion of the PET film where the pigment-containing layer is not formed with a silicone pressure-sensitive adhesive to a thickness of 50 ⁇ m. did.
  • the target optical film provided with the 4 layer structure shown in FIG. 11 was obtained.
  • the spectral transmittance of the obtained optical film is shown in FIG.
  • the optical film of the present invention is disposed on a display screen of a display used as a display unit of a tablet personal computer, a display unit of a mobile phone (for example, a smart phone), a display unit of a notebook personal computer, a monitor for a personal computer, or the like. It is useful as an anti-glare film or a protective film that is disposed on a display screen of a display such as a liquid crystal display equipped with an LED as a light source.
  • the optical film of the present invention is also useful as an antiglare film or a protective film disposed on a lens of eyeglasses.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is an optical film which is capable of sufficiently reducing blue light, while maintaining good transmitted image brightness when arranged on the display screen of a display. This optical film is provided with a light-transmitting base film and an anti-glare layer which is formed on at least one surface of the base film and contains resin particles. This optical film contains a dye, and has an average optical absorptance of 5% or more for the wavelength range of 380-500 nm. The total light transmittance of the optical film is higher than the average light transmittance of the optical film for the wavelength range of 380-500 nm. This optical film preferably comprises a light-transmitting base film (1), an anti-glare layer (2) which is formed on one surface of the base film (1) and contains resin particles, and a dye-containing layer (3) which is formed on the other surface of the base film (1) and contains a dye.

Description

光学フィルムOptical film
 本発明は、ディスプレイの表示画面上に配設される防眩フィルムや保護フィルム等として利用できる光学フィルムに関する。 The present invention relates to an optical film that can be used as an antiglare film, a protective film or the like disposed on a display screen of a display.
 昨今、ディスプレイの主流となっている液晶ディスプレイ(特にLED(発光ダイオード)を光源として用いた液晶ディスプレイ)や、LED照明は、可視光線の青色領域(380~500nm)の光(「ブルーライト」と呼ばれる)、特に450nm付近のブルーライトを多く出している。このブルーライトは、人間の目に悪影響を与えると言われている。そのため、このブルーライトを低減する技術が注目されている。ブルーライトをカットする光学部品として、蒸着により形成された誘電体多層膜を含む光学部品が知られている。 Recently, liquid crystal displays (particularly liquid crystal displays using LEDs (light emitting diodes) as light sources) and LED lighting, which are the mainstream of displays, are light in the blue region (380 to 500 nm) of visible light ("blue light"). In particular, it produces a lot of blue light around 450 nm. This blue light is said to have an adverse effect on the human eye. Therefore, a technique for reducing this blue light has attracted attention. As an optical component for cutting blue light, an optical component including a dielectric multilayer film formed by vapor deposition is known.
 例えば、特許文献1の段落[0006]には、プラスチック基材の少なくとも片面上に、400~500nmの波長範囲における平均反射率が2~10%の多層膜を配設してなる光学部品が記載されている。 For example, paragraph [0006] of Patent Document 1 describes an optical component in which a multilayer film having an average reflectance of 2 to 10% in a wavelength range of 400 to 500 nm is disposed on at least one surface of a plastic substrate. Has been.
特開2012-93689号公報JP 2012-93689 A
 しかしながら、特許文献1の光学部品は誘電体多層膜を利用したものであるため、基本的に、光学部品でカットされた400~500nmの波長範囲の光は全て反射光となる。そのため、光学部品の反射光が目に入射するような状況では、光学部品でカットされた400~500nmの波長範囲の光が目に入射して目に悪影響を与えることが懸念される。なお、光学部品の反射光が目に入射するような状況としては、例えば、光学部品における目に対向する面の裏面にディスプレイからの光が入射すると同時に、光学部品における目に対向する面に外光(例えばLED照明からの光)が入射し光学部品で反射されて目に入射する状況が考えられる。 However, since the optical component of Patent Document 1 uses a dielectric multilayer film, basically, all light in the wavelength range of 400 to 500 nm cut by the optical component becomes reflected light. Therefore, in a situation where the reflected light of the optical component is incident on the eye, there is a concern that the light in the wavelength range of 400 to 500 nm cut by the optical component may enter the eye and adversely affect the eye. The situation where the reflected light of the optical component is incident on the eye is, for example, that the light from the display is incident on the back surface of the surface facing the eye of the optical component and at the same time the surface of the optical component facing the eye. A situation in which light (for example, light from LED illumination) enters, is reflected by an optical component, and enters the eye is conceivable.
 本発明は、前記課題に鑑みなされたものであり、その目的は、ディスプレイの表示画面上に配設されたときの良好な透過像輝度を維持したままブルーライトを十分に低減することができる光学フィルムを提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical that can sufficiently reduce blue light while maintaining good transmitted image luminance when placed on a display screen of a display. To provide a film.
 本発明の光学フィルムは、前記課題を解決するために、光透過性の基材フィルムと、前記基材フィルムの少なくとも一方の面上に形成された、樹脂粒子及びシリカ粒子の少なくとも一方を含む防眩層とを備える光学フィルムであって、色素を含み、前記光学フィルムの波長380nm~500nmの平均光吸収率が5%以上であり、前記光学フィルムの全光線透過率が、前記光学フィルムの波長380nm~500nmの平均光透過率よりも高いことを特徴としている。 In order to solve the above-described problems, the optical film of the present invention includes a light-transmitting base film and a protective film including at least one of resin particles and silica particles formed on at least one surface of the base film. An optical film comprising a glare layer, comprising a pigment, wherein the optical film has an average light absorption of 5% or more at a wavelength of 380 nm to 500 nm, and the total light transmittance of the optical film is equal to the wavelength of the optical film It is characterized by being higher than the average light transmittance of 380 nm to 500 nm.
 前記構成によれば、前記光学フィルムの波長380nm~500nmの平均光吸収率が5%以上であるので、ブルーライトを十分に低減することができる。さらに、前記構成によれば、色素を含んでいるので、この光学フィルムでカットされたブルーライトは、色素に吸収されて低減される。したがって、光学フィルムの反射光が目に入射するような状況、例えば、光学フィルムがディスプレイの表示画面上に配設され光学フィルムの前面に外光(例えばLED照明からの光)が入射する状況であっても、ブルーライトが目に入射することを十分に抑制できる。このようにしてブルーライトを十分に低減することで、目に対する刺激の強いブルーライトによる目への負担を和らげ、目の疲労や眼病を防止することができる。 According to the above configuration, since the average optical absorptance of the optical film at a wavelength of 380 nm to 500 nm is 5% or more, blue light can be sufficiently reduced. Furthermore, according to the said structure, since it contains the pigment | dye, the blue light cut with this optical film is absorbed by the pigment | dye and reduced. Therefore, in a situation where the reflected light of the optical film is incident on the eye, for example, in a situation where the optical film is disposed on the display screen of the display and external light (for example, light from LED illumination) is incident on the front surface of the optical film. Even if it exists, it can fully suppress that blue light injects into eyes. By sufficiently reducing blue light in this way, it is possible to relieve the burden on the eyes due to blue light that is highly irritating to the eyes, and to prevent eye fatigue and eye diseases.
 また、前記構成によれば、前記光学フィルムの全光線透過率が、前記光学フィルムの波長380nm~500nmの平均光透過率よりも高いので、ディスプレイの表示画面上に配設されたときの良好な透過像輝度を維持することができる。 Further, according to the above configuration, since the total light transmittance of the optical film is higher than the average light transmittance of the optical film at a wavelength of 380 nm to 500 nm, it is favorable when disposed on the display screen of the display. The transmission image brightness can be maintained.
 また、前記構成によれば、前記基材フィルムの少なくとも一方の面上に、樹脂粒子及びシリカ粒子の少なくとも一方を含む防眩層を形成しているので、充分な防眩性能を得ることができる。 Moreover, according to the said structure, since the glare-proof layer containing at least one of a resin particle and a silica particle is formed on the at least one surface of the said base film, sufficient anti-glare performance can be obtained. .
 また、前記光学フィルムは、ディスプレイの表示画面上に配設されて表示画面を保護する保護フィルムとして利用できる。 Further, the optical film can be used as a protective film that is disposed on the display screen of the display and protects the display screen.
 本発明によれば、ディスプレイの表示画面上に配設されたときの良好な透過像輝度を維持したままブルーライトを十分に低減することができる光学フィルムを提供することができる。 According to the present invention, it is possible to provide an optical film capable of sufficiently reducing blue light while maintaining good transmitted image brightness when disposed on a display screen of a display.
本発明の一実施形態に係る光学フィルムの構成を示す断面図である。It is sectional drawing which shows the structure of the optical film which concerns on one Embodiment of this invention. 実施例1で得られた光学フィルムの分光透過率を示すグラフである。2 is a graph showing the spectral transmittance of the optical film obtained in Example 1. FIG. 実施例4で得られた光学フィルムの分光透過率を示すグラフである。6 is a graph showing the spectral transmittance of the optical film obtained in Example 4. 実施例5で得られた光学フィルムの分光透過率を示すグラフである。10 is a graph showing the spectral transmittance of the optical film obtained in Example 5. 実施例6で得られた光学フィルムの分光透過率を示すグラフである。7 is a graph showing the spectral transmittance of the optical film obtained in Example 6. 実施例7で得られた光学フィルムの分光透過率を示すグラフである。10 is a graph showing the spectral transmittance of the optical film obtained in Example 7. 実施例8で得られた光学フィルムの分光透過率を示すグラフである。10 is a graph showing the spectral transmittance of the optical film obtained in Example 8. 比較例1で得られた光学フィルムの分光透過率を示すグラフである。6 is a graph showing the spectral transmittance of the optical film obtained in Comparative Example 1. 本発明の一実施形態に係る光学フィルムの構成を示す平面図である。It is a top view which shows the structure of the optical film which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る光学フィルムの構成を示す平面図である。It is a top view which shows the structure of the optical film which concerns on other embodiment of this invention. 図10に示す光学フィルムのA-A’線断面図である。FIG. 11 is a cross-sectional view taken along line A-A ′ of the optical film shown in FIG. 10. 実施例9で得られた光学フィルムの分光透過率を示すグラフである。10 is a graph showing the spectral transmittance of the optical film obtained in Example 9. 実施例10で得られた光学フィルムの分光透過率を示すグラフである。10 is a graph showing the spectral transmittance of the optical film obtained in Example 10. 実施例11で得られた光学フィルムの分光透過率を示すグラフである。10 is a graph showing the spectral transmittance of the optical film obtained in Example 11.
 本発明の光学フィルムは、光透過性の基材フィルムと、前記基材フィルムの少なくとも一方の面上に形成された、樹脂粒子及びシリカ粒子の少なくとも一方を含む防眩層とを備える光学フィルムであって、色素を含み、前記光学フィルムの波長380nm~500nmの平均光吸収率が5%以上であり、前記光学フィルムの全光線透過率が、前記光学フィルムの波長380nm~500nmの平均光透過率よりも高い。 An optical film of the present invention is an optical film comprising a light-transmitting base film and an antiglare layer formed on at least one surface of the base film and including at least one of resin particles and silica particles. The optical film has an average light absorptivity of 5% or more at a wavelength of 380 nm to 500 nm, and the total light transmittance of the optical film is an average light transmittance of the optical film at a wavelength of 380 nm to 500 nm. Higher than.
 前記光学フィルムの波長380nm~500nmの平均光吸収率は、5%以上である。前記光学フィルムの波長380nm~500nmの平均光吸収率が5%未満であると、前記光学フィルムによるブルーライトの低減効果が不十分となる。前記光学フィルムの波長380nm~500nmの平均光吸収率は、5~45%の範囲内であることが好ましく、5~40%の範囲内であることがより好ましく、10~30%の範囲内であることがさらに好ましい。前記光学フィルムの波長380nm~500nmの平均光吸収率を上記範囲の上限以下とすることで、前記光学フィルムの全光線透過率を向上でき、ディスプレイの表示画面上に前記光学フィルムを配設したときの表示画面の色再現性を向上できる。前記光学フィルムの波長380nm~500nmの平均光吸収率を10%以上とすることで、前記光学フィルムによるブルーライトの低減効果をさらに高めることができる。 The average optical absorptance of the optical film at a wavelength of 380 nm to 500 nm is 5% or more. When the average optical absorptance of the optical film at a wavelength of 380 nm to 500 nm is less than 5%, the effect of reducing blue light by the optical film becomes insufficient. The average optical absorptance of the optical film at a wavelength of 380 nm to 500 nm is preferably in the range of 5 to 45%, more preferably in the range of 5 to 40%, and in the range of 10 to 30%. More preferably it is. By setting the average optical absorptance of the optical film at a wavelength of 380 nm to 500 nm below the upper limit of the above range, the total light transmittance of the optical film can be improved, and when the optical film is disposed on the display screen of the display The color reproducibility of the display screen can be improved. By making the average optical absorptance of the optical film at a wavelength of 380 nm to 500 nm 10% or more, the blue light reduction effect by the optical film can be further enhanced.
 前記光学フィルムのb*値は、5~35の範囲内であることが好ましく、5~30の範囲内であることがより好ましく、5~20の範囲内であることがさらに好ましく、5~10の範囲内であることが最も好ましい。前記光学フィルムのb*値が5未満であると、前記光学フィルムによるブルーライトの低減効果が不十分となるおそれがある。前記光学フィルムのb*値が30を超えると、前記光学フィルムの黄色味が強くなり過ぎて外観が悪くなったり、ディスプレイの表示画面上に前記光学フィルムを配設したときの表示画面の色再現性が悪くなったりするおそれがある。 The b * value of the optical film is preferably within a range of 5 to 35, more preferably within a range of 5 to 30, and further preferably within a range of 5 to 20. It is most preferable to be within the range. When the b * value of the optical film is less than 5, there is a possibility that the blue light reduction effect by the optical film is insufficient. If the b * value of the optical film exceeds 30, the yellow color of the optical film becomes too strong and the appearance deteriorates, or the color reproduction of the display screen when the optical film is disposed on the display screen of the display May be worse.
 前記光学フィルムの全光線透過率は、波長380nm~500nmの平均光透過率より高い。前記光学フィルムの全光線透過率が波長380nm~500nmの平均光透過率以下であると、ディスプレイの表示画面上に前記光学フィルムを配設したときの透過像輝度が悪くなる。前記光学フィルムの全光線透過率と波長380nm~500nmの平均光透過率との差((全光線透過率)-(波長380nm~500nmの平均光透過率))は、2%以上であることが好ましく、4%以上であることがより好ましい。これにより、ディスプレイの表示画面上に前記光学フィルムを配設したときの透過像輝度をさらに向上させることができる。前記光学フィルムの全光線透過率と波長380nm~500nmの平均光透過率との差((全光線透過率)-(波長380nm~500nmの平均光透過率))は、25%以下であることが好ましく、15%以下であることがより好ましい。これにより、ディスプレイの表示画面上に前記光学フィルムを配設したときの表示画面の色再現性を向上できる。 The total light transmittance of the optical film is higher than the average light transmittance at a wavelength of 380 nm to 500 nm. If the total light transmittance of the optical film is equal to or less than the average light transmittance at a wavelength of 380 nm to 500 nm, the transmitted image brightness is deteriorated when the optical film is disposed on the display screen of the display. The difference between the total light transmittance of the optical film and the average light transmittance at a wavelength of 380 nm to 500 nm ((total light transmittance) − (average light transmittance at a wavelength of 380 nm to 500 nm)) is 2% or more. Preferably, it is 4% or more. Thereby, the transmission image brightness | luminance when the said optical film is arrange | positioned on the display screen of a display can further be improved. The difference between the total light transmittance of the optical film and the average light transmittance at a wavelength of 380 nm to 500 nm ((total light transmittance) − (average light transmittance at a wavelength of 380 nm to 500 nm)) is 25% or less. Preferably, it is 15% or less. Thereby, the color reproducibility of the display screen when the optical film is disposed on the display screen of the display can be improved.
 前記光学フィルムの全光線透過率は、80%以上であることが好ましく、85%以上であることがより好ましく、88%以上であることがさらに好ましい。前記光学フィルムの全光線透過率が80%未満であると、ディスプレイの表示画面上に前記光学フィルムを配設したときの透過像輝度が悪くなるおそれがある。 The total light transmittance of the optical film is preferably 80% or more, more preferably 85% or more, and further preferably 88% or more. If the total light transmittance of the optical film is less than 80%, the transmitted image luminance may be deteriorated when the optical film is disposed on the display screen of the display.
 前記光学フィルムのヘイズは、1.5~40%の範囲内であることが好ましく、2~30%の範囲内であることがより好ましい。前記光学フィルムのヘイズが1.5%未満であると、前記光学フィルムの防眩性能が悪くなるおそれがある。前記光学フィルムのヘイズが40%を超えると、前記光学フィルムの透過像鮮明度が悪くなるおそれがあり、例えばディスプレイの表示画面上に前記光学フィルムを配設したときの表示画面の視認性が悪くなるおそれがある。 The haze of the optical film is preferably in the range of 1.5 to 40%, more preferably in the range of 2 to 30%. When the haze of the optical film is less than 1.5%, the antiglare performance of the optical film may be deteriorated. If the haze of the optical film exceeds 40%, the transmitted image clarity of the optical film may be deteriorated. For example, the visibility of the display screen when the optical film is disposed on the display screen of the display is poor. There is a risk.
 〔基材フィルム〕
 前記基材フィルムを構成する材料としては、特に限定されないが、一般的な材料を用いることができ、例えば、セルロースアシレート、前記アクリル樹脂((メタ)アクリレート系ポリマー)、ポリエステル、ポリカーボネート、ポリアミド等の樹脂を主体とする材料、ガラス等の無機材料が挙げられる。本明細書において、「(メタ)アクリレート」はアクリレート及び/又はメタクリレートを意味するものとする。
[Base film]
Although it does not specifically limit as a material which comprises the said base film, A general material can be used, For example, a cellulose acylate, the said acrylic resin ((meth) acrylate type polymer), polyester, polycarbonate, polyamide etc. Examples thereof include materials mainly composed of the above resins and inorganic materials such as glass. In the present specification, “(meth) acrylate” means acrylate and / or methacrylate.
 前記セルロースアシレートとしては、例えば、セルローストリアセテート、セルロースジアセテート、セルロースアセテートブチレート等が挙げられる。前記アクリル樹脂としては、例えば、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、(メタ)アクリル酸メチル-(メタ)アクリル酸ブチル共重合体等が挙げられる。本明細書において、「(メタ)アクリル」はアクリル及び/又はメタクリルを意味するものとする。前記ポリエステルとしては、例えば、ポリエチレンテレフタレート(以下「PET」と略記する)、ポリエチレンナフタレート等が挙げられる。 Examples of the cellulose acylate include cellulose triacetate, cellulose diacetate, and cellulose acetate butyrate. Examples of the acrylic resin include methyl poly (meth) acrylate, poly (meth) ethyl acrylate, methyl (meth) acrylate-butyl (meth) acrylate, and the like. In this specification, “(meth) acryl” means acryl and / or methacryl. Examples of the polyester include polyethylene terephthalate (hereinafter abbreviated as “PET”), polyethylene naphthalate, and the like.
 前記基材フィルムの厚さは、20~300μmの範囲内であることが好ましく、20~200μmの範囲内であることがより好ましい。 The thickness of the base film is preferably in the range of 20 to 300 μm, and more preferably in the range of 20 to 200 μm.
 〔防眩層〕
 前記防眩層の厚さは、3~100μmであることが好ましく、5~50μmであることがより好ましく、5~20μmであることがさらに好ましい。前記防眩層の厚さが3μm未満であると、光学フィルムの表面硬度が不十分になる可能性がある。前記防眩層の厚さが100μmを超えると、前記防眩層を構成するのに必要な原料の量が多くなるので、不経済である。
[Anti-glare layer]
The thickness of the antiglare layer is preferably 3 to 100 μm, more preferably 5 to 50 μm, and even more preferably 5 to 20 μm. If the thickness of the antiglare layer is less than 3 μm, the surface hardness of the optical film may be insufficient. If the thickness of the antiglare layer exceeds 100 μm, the amount of raw material required to form the antiglare layer increases, which is uneconomical.
 前記防眩層は、光学フィルムの表面を構成するように形成されている。前記防眩層は、樹脂粒子及びシリカ粒子の少なくとも一方を含んでいればよいが、樹脂粒子及びシリカ粒子の少なくとも一方とバインダー樹脂とを含んでいることが好ましい。これにより、前記防眩層の光透過性を高くすることができ、十分な光透過性を有する光学フィルムを実現できる。 The antiglare layer is formed to constitute the surface of the optical film. The antiglare layer may contain at least one of resin particles and silica particles, but preferably contains at least one of resin particles and silica particles and a binder resin. Thereby, the light transmittance of the said glare-proof layer can be made high, and the optical film which has sufficient light transmittance is realizable.
 〔樹脂粒子〕
 前記樹脂粒子としては、例えば、(メタ)アクリル系単量体およびスチレン系単量体の少なくとも一方の重合体からなる樹脂粒子、シリコーン樹脂粒子、ポリカーボネート粒子、ポリエチレン粒子、ポリ塩化ビニル粒子、メラミン樹脂粒子等が挙げられる。前記樹脂粒子は、(メタ)アクリル系単量体およびスチレン系単量体の少なくとも一方の重合体からなる樹脂粒子であることが好ましい。この場合、樹脂粒子自体の光透過性が良好となるので、全光線透過率の良好な光学フィルムを実現できる。前記樹脂粒子は、(メタ)アクリル系単量体およびスチレン系単量体の少なくとも一方の重合体からなる場合、概ね樹脂粒子の屈折率は1.41~1.60の範囲となる。具体的には、例えば、フッ素基含有(メタ)アクリル酸アルキルを主成分とする(メタ)アクリル系単量体を重合させてなる重合体の屈折率は1.41程度であり、(メタ)アクリル酸アルキルを主成分とする(メタ)アクリル系単量体の単独重合体の屈折率は1.495程度であり、スチレンを主成分とするスチレン系単量体の単独重合体(ポリスチレン)の屈折率は1.595程度であり、(メタ)アクリル酸アルキルを主成分とする(メタ)アクリル系単量体とスチレンを主成分とするスチレン系単量体との共重合体の屈折率は1.495~1.595程度である。これにより、前記防眩層における樹脂粒子以外の成分(特にバインダー樹脂)と樹脂粒子との屈折率差が適度な差になり易く、したがって前記防眩層内部での光散乱が適度な程度となり易く、その結果としてヘイズ及び全光線透過率の両方が良好な光学フィルムが実現され易い。
[Resin particles]
Examples of the resin particles include resin particles made of at least one of a (meth) acrylic monomer and a styrene monomer, silicone resin particles, polycarbonate particles, polyethylene particles, polyvinyl chloride particles, and melamine resins. Particles and the like. The resin particles are preferably resin particles made of at least one of a (meth) acrylic monomer and a styrene monomer. In this case, since the light transmittance of the resin particles itself is improved, an optical film having a good total light transmittance can be realized. When the resin particles are made of at least one of a (meth) acrylic monomer and a styrene monomer, the refractive index of the resin particles is generally in the range of 1.41 to 1.60. Specifically, for example, the refractive index of a polymer obtained by polymerizing a (meth) acrylic monomer having a fluorine group-containing alkyl (meth) acrylate as a main component is about 1.41, and (meth) The refractive index of a homopolymer of a (meth) acrylic monomer having an alkyl acrylate as a main component is about 1.495, and a homopolymer of a styrene monomer having a main component of styrene (polystyrene). The refractive index is about 1.595, and the refractive index of a copolymer of a (meth) acrylic monomer mainly composed of alkyl (meth) acrylate and a styrene monomer mainly composed of styrene is It is about 1.495 to 1.595. As a result, the difference in refractive index between the resin particles and the components other than the resin particles (particularly the binder resin) in the antiglare layer tends to be an appropriate difference, and thus the light scattering inside the antiglare layer tends to be an appropriate level. As a result, an optical film having good both haze and total light transmittance is easily realized.
 前記(メタ)アクリル系単量体およびスチレン系単量体の少なくとも一方の重合体は、(メタ)アクリル系単量体およびスチレン系単量体の少なくとも一方に由来する構成単位を含んでいる。 The polymer of at least one of the (meth) acrylic monomer and the styrene monomer contains a structural unit derived from at least one of the (meth) acrylic monomer and the styrene monomer.
 前記(メタ)アクリル系単量体としては、少なくとも1つのアクリロイルオキシ基またはメタクリロイルオキシ基を有する化合物であれば特に限定されるものではなく、1つのエチレン性不飽和基を有する単官能(メタ)アクリル系単量体であってもよく、2つ以上のエチレン性不飽和基を有する多官能(メタ)アクリル系単量体であってもよい。 The (meth) acrylic monomer is not particularly limited as long as it is a compound having at least one acryloyloxy group or methacryloyloxy group, and is monofunctional (meth) having one ethylenically unsaturated group. It may be an acrylic monomer or a polyfunctional (meth) acrylic monomer having two or more ethylenically unsaturated groups.
 前記単官能(メタ)アクリル系単量体としては、特に限定されるものではなく、例えば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、メタクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、メタクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル等の(メタ)アクリル酸アルキル;2,2,2-トリフルオロエチルメタクリレート、2,2,3,3-テトラフルオロプロピルメタクリレート、パーフルオロオクチルエチルアクリレート等のフッ素含有(メタ)アクリル酸エステル;アクリル酸テトラヒドロフルフリル等の複素環基含有(メタ)アクリル酸エステル;(メタ)アクリル酸グリシジル等のグリシジル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル等の(メタ)アクリル酸ヒドロキシアルキル;ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート等のアミノ基含有(メタ)アクリル酸エステル等が挙げられる。これら単官能(メタ)アクリル系単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The monofunctional (meth) acrylic monomer is not particularly limited, and examples thereof include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl methacrylate, (Meth) acrylic such as n-butyl (meth) acrylate, isobutyl (meth) acrylate, n-octyl methacrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate Acid alkyl; fluorine-containing (meth) acrylic acid ester such as 2,2,2-trifluoroethyl methacrylate, 2,2,3,3-tetrafluoropropyl methacrylate, perfluorooctylethyl acrylate; tetrahydrofurfuryl acrylate, etc. Heterocyclic group-containing (meth) acrylic acid ester; (meth) acrylic acid Glycidyl group-containing (meth) acrylic acid esters such as ricidyl; (meth) acrylic acid hydroxyalkyl such as 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate; amino such as dimethylaminoethyl methacrylate and diethylaminoethyl methacrylate Examples thereof include group-containing (meth) acrylic acid esters. These monofunctional (meth) acrylic monomers may be used alone or in a combination of two or more.
 前記多官能(メタ)アクリル系単量体としては、2つ以上のアクリロイルオキシ基またはメタクリロイルオキシ基を有する化合物であれば特に限定されるものではなく、例えば、トリアクリル酸トリメチロールプロパン、ジメタクリル酸エチレングリコール、ジメタクリル酸ジエチレングリコール、ジメタクリル酸トリエチレングリコール、ジメタクリル酸デカエチレングリコール、ジメタクリル酸ペンタデカエチレングリコール、ジメタクリル酸ペンタコンタヘクタエチレングリコール、ジメタクリル酸1,3-ブチレン、メタクリル酸アリル、トリメタクリル酸トリメチロールプロパン、テトラメタクリル酸ペンタエリスリトール、ジメタクリル酸フタル酸ジエチレングリコール等が挙げられる。これら多官能(メタ)アクリル系単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The polyfunctional (meth) acrylic monomer is not particularly limited as long as it is a compound having two or more acryloyloxy groups or methacryloyloxy groups. For example, trimethylolpropane triacrylate, dimethacrylate Acid ethylene glycol, dimethacrylic acid diethylene glycol, dimethacrylic acid triethylene glycol, dimethacrylic acid decaethylene glycol, dimethacrylic acid pentadecaethylene glycol, dimethacrylic acid pentacontactor ethylene glycol, dimethacrylic acid 1,3-butylene, methacrylic acid Examples include allyl acid, trimethylolpropane trimethacrylate, pentaerythritol tetramethacrylate, and diethylene glycol dimethacrylate. These polyfunctional (meth) acrylic monomers may be used alone or in a combination of two or more.
 前記スチレン系単量体としては、スチレン類(スチレンまたはスチレン誘導体)であれば特に限定されるものではなく、1つのエチレン性不飽和基を有する単官能スチレン系単量体であってもよく、2つ以上のエチレン性不飽和基を有する多官能スチレン系単量体であってもよい。 The styrene monomer is not particularly limited as long as it is a styrene (styrene or styrene derivative), and may be a monofunctional styrene monomer having one ethylenically unsaturated group, It may be a polyfunctional styrenic monomer having two or more ethylenically unsaturated groups.
 前記単官能スチレン系単量体としては、特に限定されるものではなく、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン等が挙げられる。これら単官能スチレン系単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The monofunctional styrene monomer is not particularly limited, and examples thereof include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, and the like. These monofunctional styrenic monomers may be used alone or in combination of two or more.
 前記多官能スチレン系単量体としては、特に限定されるものではなく、例えば、ジビニルベンゼン、ジビニルナフタレン、およびこれらの誘導体等の芳香族ジビニル化合物等が挙げられる。これらの多官能スチレン系単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The polyfunctional styrene-based monomer is not particularly limited, and examples thereof include aromatic divinyl compounds such as divinylbenzene, divinylnaphthalene, and derivatives thereof. These polyfunctional styrene monomers may be used alone or in a combination of two or more.
 前記単官能(メタ)アクリル系単量体及び/又は単官能スチレン系単量体に由来する構成単位は、前記重合体100重量%に対して50~95重量%の範囲内であることが好ましい。前記単官能(メタ)アクリル系単量体及び/又は単官能スチレン系単量体に由来する構成単位の量が50重量%未満であれば、それ以上の耐溶剤性の向上が期待できず、コストが上がってしまう。前記単官能(メタ)アクリル系単量体及び/又は単官能スチレン系単量体に由来する構成単位の量が前記範囲より多い場合、前記重合体の架橋度が低くなるので、樹脂粒子を含む塗料を塗工する場合に、樹脂粒子が膨潤して塗料の粘度上昇が起こり塗工の作業性が低下する恐れがある。なお、前記重合体100重量%に対する、単量体に由来する構成単位の量は、全ての単量体の合計量100重量%に対する前記単量体の量に相当する。 The structural unit derived from the monofunctional (meth) acrylic monomer and / or the monofunctional styrene monomer is preferably in the range of 50 to 95% by weight with respect to 100% by weight of the polymer. . If the amount of the structural unit derived from the monofunctional (meth) acrylic monomer and / or monofunctional styrene monomer is less than 50% by weight, further improvement in solvent resistance cannot be expected, Cost will increase. When the amount of the structural unit derived from the monofunctional (meth) acrylic monomer and / or the monofunctional styrene monomer is more than the above range, the degree of cross-linking of the polymer is low, and thus resin particles are included. When applying a paint, the resin particles may swell and the viscosity of the paint may increase, and the workability of the application may be reduced. The amount of the structural unit derived from the monomer with respect to 100% by weight of the polymer corresponds to the amount of the monomer with respect to 100% by weight of the total amount of all monomers.
 なお、前記重合体は、(メタ)アクリル系単量体の単独重合体であってもよく、スチレン系単量体の単独重合体であってもよく、(メタ)アクリル系単量体とスチレン系単量体との共重合体であってもよく、(メタ)アクリル系単量体およびスチレン系単量体の少なくとも一方と他のビニル系単量体(少なくとも1つのエチレン性不飽和基を有する化合物)との共重合体であってもよい。 The polymer may be a homopolymer of a (meth) acrylic monomer or a homopolymer of a styrene monomer, and a (meth) acrylic monomer and styrene. It may be a copolymer with a monomer based on at least one of a (meth) acrylic monomer and a styrene monomer and another vinyl monomer (at least one ethylenically unsaturated group). And a copolymer thereof.
 前記他のビニル系単量体としては、例えば、酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニル等の飽和脂肪酸ビニル;アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル;(メタ)アクリル酸、クロトン酸、シトラコン酸、イタコン酸、マレイン酸、フマル酸、α,β-不飽和ジカルボン酸のモノアルキルエステル(例えばマレイン酸モノブチル)等のα,β-不飽和カルボン酸;これらα,β-不飽和カルボン酸のアンモニウム塩またはアルカリ金属塩等のα,β-不飽和カルボン酸塩;無水マレイン酸等のα,β-不飽和カルボン酸無水物;(メタ)アクリルアミド、ジアセトンアクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールメタクリルアミド、メチロール化ジアセトンアクリルアミド、アルコキシ基の炭素数が1~8であるN-アルコキシメチルアクリルアミド(例えばN-イソブトキシメチルアクリルアミド)等のα,β-不飽和アミド;ジアリルフタレート、トリアリルシアヌレート等のような、多官能(メタ)アクリル系単量体および多官能スチレン系単量体以外の多官能ビニル系単量体等が挙げられる。 Examples of the other vinyl monomers include saturated fatty acid vinyl such as vinyl acetate, vinyl propionate and vinyl versatate; α, β-unsaturated nitrile such as acrylonitrile and methacrylonitrile; (meth) acrylic acid, Α, β-unsaturated carboxylic acids such as crotonic acid, citraconic acid, itaconic acid, maleic acid, fumaric acid, monoalkyl esters of α, β-unsaturated dicarboxylic acids (eg monobutyl maleate); Α, β-unsaturated carboxylates such as ammonium salts or alkali metal salts of saturated carboxylic acids; α, β-unsaturated carboxylic anhydrides such as maleic anhydride; (meth) acrylamide, diacetone acrylamide, N-methylol (Meth) acrylamide, N-methylol methacrylamide, methylolated diacetone acrylamide, Α, β-unsaturated amides such as N-alkoxymethyl acrylamide (eg, N-isobutoxymethyl acrylamide) having 1 to 8 carbon atoms in the alkoxy group; polyfunctional (such as diallyl phthalate and triallyl cyanurate) Examples thereof include polyfunctional vinyl monomers other than (meth) acrylic monomers and polyfunctional styrene monomers.
 前記多官能ビニル系単量体に由来する構成単位の量は、前記単官能(メタ)アクリル系単量体及び/又は単官能スチレン系単量体に由来する構成単位100重量部に対して5~100重量部の範囲内であることが好ましく、また、前記重合体100重量%に対して5~50重量%の範囲内であることが好ましい。前記多官能ビニル系単量体に由来する構成単位の量が前記範囲より少ない場合、前記重合体の架橋度が低くなる。その結果、樹脂粒子を含む塗料を塗工する場合に、樹脂粒子が膨潤して塗料の粘度上昇が起こり塗工の作業性が低下する恐れがある。 The amount of the structural unit derived from the polyfunctional vinyl monomer is 5 with respect to 100 parts by weight of the structural unit derived from the monofunctional (meth) acrylic monomer and / or the monofunctional styrene monomer. It is preferably in the range of ˜100 parts by weight, and preferably in the range of 5˜50% by weight with respect to 100% by weight of the polymer. When the amount of the structural unit derived from the polyfunctional vinyl monomer is less than the above range, the degree of crosslinking of the polymer is low. As a result, when a paint containing resin particles is applied, the resin particles may swell and increase the viscosity of the paint, which may reduce the workability of the coating.
 前記樹脂粒子の体積平均粒子径は、0.3~10μmの範囲内であることが好ましく、0.5~5μmの範囲であることがより好ましい。前記樹脂粒子の体積平均粒子径が0.3μm未満であると、前記防眩層の光透過性が高くなり、光学フィルムの防眩性能が低くなる。樹脂粒子の体積平均粒子径が10μmを超えると、光学フィルムのヘイズが高くなり、ディスプレイの表示画面等の光出射面上に光学フィルムを配設したときにギラツキが発生する原因となるおそれがある。 The volume average particle diameter of the resin particles is preferably in the range of 0.3 to 10 μm, and more preferably in the range of 0.5 to 5 μm. When the volume average particle diameter of the resin particles is less than 0.3 μm, the light transmittance of the antiglare layer increases and the antiglare performance of the optical film decreases. When the volume average particle diameter of the resin particles exceeds 10 μm, the haze of the optical film is increased, which may cause glare when the optical film is disposed on a light output surface such as a display screen of a display. .
 前記樹脂粒子の粒子径の変動係数(以下、粒子径の変動係数を「CV値」と称する)は、30%以下であることが好ましく、20%以下であることがより好ましく、15%以下であることがさらに好ましい。樹脂粒子のCV値が20%を超える、特に30%を超えると、防眩層表面の凹凸が大きくなり、ディスプレイの表示画面等の光出射面上に光学フィルムを配設したときに輝点が多く発生しやすくなる。さらに、前記樹脂粒子のCV値が20%を超える、特に30%を超えると、樹脂粒子の粒子径分布が広くなるため、防眩層を形成したときに粗大粒子に起因して防眩層の欠陥が発生し易くなる。 The coefficient of variation of the particle diameter of the resin particles (hereinafter, the coefficient of variation of the particle diameter is referred to as “CV value”) is preferably 30% or less, more preferably 20% or less, and 15% or less. More preferably it is. When the CV value of the resin particles exceeds 20%, particularly more than 30%, the unevenness of the surface of the antiglare layer becomes large, and bright spots appear when an optical film is disposed on the light output surface such as a display screen of a display. Many are likely to occur. Furthermore, if the CV value of the resin particles exceeds 20%, particularly more than 30%, the particle size distribution of the resin particles becomes wide. Therefore, when the antiglare layer is formed, Defects are likely to occur.
 前記防眩層における樹脂粒子の含有率は、バインダー樹脂100重量部に対して、1~10重量部であることが好ましく、3~8重量部であることがより好ましい。前記防眩層における樹脂粒子の含有率が3重量部未満であると、十分な防眩性を防眩層に付与できないおそれがある。前記防眩層における樹脂粒子の含有率が8重量部を超えると、光学フィルムのヘイズが高くなり、ディスプレイの表示画面等の光出射面上に光学フィルムを配設したときにギラツキが発生する原因となるおそれがある。 The content of the resin particles in the antiglare layer is preferably 1 to 10 parts by weight and more preferably 3 to 8 parts by weight with respect to 100 parts by weight of the binder resin. There exists a possibility that sufficient anti-glare property cannot be provided to an anti-glare layer as the content rate of the resin particle in the said anti-glare layer is less than 3 weight part. When the content of the resin particles in the antiglare layer exceeds 8 parts by weight, the haze of the optical film is increased, and glare occurs when the optical film is disposed on the light output surface such as a display screen of a display. There is a risk of becoming.
 〔シリカ粒子〕
 前記シリカ粒子の体積平均粒子径は、0.3~10μmの範囲内であることが好ましく、0.5~5μmの範囲であることがより好ましい。前記シリカ粒子の体積平均粒子径が0.3μm未満であると、前記防眩層の光透過性が高くなり、光学フィルムの防眩性能が低くなる。前記シリカ粒子の体積平均粒子径が10μmを超えると、光学フィルムのヘイズが高くなり、ディスプレイの表示画面等の光出射面上に光学フィルムを配設したときにギラツキが発生する原因となるおそれがある。
[Silica particles]
The volume average particle diameter of the silica particles is preferably in the range of 0.3 to 10 μm, and more preferably in the range of 0.5 to 5 μm. When the volume average particle diameter of the silica particles is less than 0.3 μm, the light transmittance of the antiglare layer increases and the antiglare performance of the optical film decreases. When the volume average particle diameter of the silica particles exceeds 10 μm, the haze of the optical film increases, which may cause glare when the optical film is disposed on a light exit surface such as a display screen of a display. is there.
 前記シリカ粒子のCV値(前記シリカ粒子が異なる体積平均粒子径を有する複数種類のシリカ粒子の混合物である場合には、混合物のCV値)は、30%以下であることが好ましく、20%以下であることがより好ましく、15%以下であることがさらに好ましい。前記シリカ粒子のCV値が30%を超えると、防眩層表面の凹凸が大きくなり、ディスプレイの表示画面等の光出射面上に光学フィルムを配設したときに輝点が多く発生しやすくなる。さらに、前記シリカ粒子のCV値が30%を超えると、樹脂粒子の粒子径分布が広くなるため、防眩層を形成したときに粗大粒子に起因して防眩層の欠陥が発生し易くなる。 The CV value of the silica particles (when the silica particles are a mixture of a plurality of types of silica particles having different volume average particle sizes, the CV value of the mixture) is preferably 30% or less, and 20% or less. It is more preferable that it is 15% or less. When the CV value of the silica particles exceeds 30%, unevenness on the surface of the antiglare layer becomes large, and many bright spots are likely to occur when an optical film is disposed on a light exit surface such as a display screen of a display. . Further, when the CV value of the silica particles exceeds 30%, the particle size distribution of the resin particles becomes wide, so that when the antiglare layer is formed, defects in the antiglare layer are likely to occur due to the coarse particles. .
 前記シリカ粒子は、互いに異なる体積平均粒子径を有する複数種類のシリカ粒子の混合物であり、複数種類のシリカ粒子の各々のCV値が20%以下であることが好ましく、前記シリカ粒子は、体積平均粒子径が5~10μmである第1のシリカ粒子と、体積平均粒子径が1~3μmである第2のシリカ粒子とを含む混合物であり、前記第1のシリカ粒子及び前記第2のシリカ粒子の各々の粒子径の変動係数が20%以下であることがより好ましい。前記シリカ粒子のCV値が20%を超えると、防眩層表面の凹凸が大きくなり、ディスプレイの表示画面等の光出射面上に光学フィルムを配設したときに輝点が多く発生しやすくなる。さらに、前記シリカ粒子のCV値が20%を超えると、樹脂粒子の粒子径分布が広くなるため、防眩層を形成したときに粗大粒子に起因して防眩層の欠陥が発生し易くなる。また、複数種類のシリカ粒子の併用、特に、体積平均粒子径が5~10μmである第1のシリカ粒子と体積平均粒子径が1~3μmである第2のシリカ粒子との併用により、光学フィルムの防眩性と全光線透過率とのバランスをとることができる。シリカ粒子の体積平均粒子径が大きくなると、ヘイズが上がって防眩性が向上する一方、全光線透過率が下がる。シリカ粒子の体積平均粒子径が小さくなると、全光線透過率が上がる一方、ヘイズが下がる。そこで、体積平均粒子径がより大きいシリカ粒子、特に体積平均粒子径が5~10μmである第1のシリカ粒子に対して、体積平均粒子径がより小さいシリカ粒子、特に体積平均粒子径が1~3μmである第2のシリカ粒子を混合することで、光学フィルムの防眩性と全光線透過率とのバランスをとることができ、防眩性及び全光線透過率の両方が良好な光学フィルムを実現できる。 The silica particles are a mixture of a plurality of types of silica particles having different volume average particle diameters, and each CV value of the plurality of types of silica particles is preferably 20% or less, and the silica particles have a volume average A mixture comprising first silica particles having a particle diameter of 5 to 10 μm and second silica particles having a volume average particle diameter of 1 to 3 μm, wherein the first silica particles and the second silica particles It is more preferable that the coefficient of variation of the particle diameter of each is 20% or less. When the CV value of the silica particles exceeds 20%, unevenness on the surface of the antiglare layer increases, and many bright spots are likely to occur when an optical film is disposed on a light exit surface such as a display screen of a display. . Further, when the CV value of the silica particles exceeds 20%, the particle size distribution of the resin particles becomes wide, so that when the antiglare layer is formed, defects in the antiglare layer are likely to occur due to the coarse particles. . Further, by using a combination of a plurality of types of silica particles, in particular, a combination of a first silica particle having a volume average particle diameter of 5 to 10 μm and a second silica particle having a volume average particle diameter of 1 to 3 μm, an optical film The anti-glare property and the total light transmittance can be balanced. When the volume average particle diameter of the silica particles is increased, the haze is increased and the antiglare property is improved, while the total light transmittance is decreased. When the volume average particle diameter of the silica particles is reduced, the total light transmittance is increased while the haze is decreased. Therefore, silica particles having a larger volume average particle diameter, particularly silica particles having a smaller volume average particle diameter, particularly 1 to 3 volume average particle diameter than the first silica particles having a volume average particle diameter of 5 to 10 μm. By mixing the second silica particles of 3 μm, it is possible to balance the antiglare property and the total light transmittance of the optical film, and to provide an optical film with good antiglare property and total light transmittance. realizable.
 前記防眩層における樹脂粒子及び/又はシリカ粒子の含有率は、バインダー樹脂100重量部に対して、1~12重量部であることが好ましく、1~10重量部であることがより好ましく、3~8重量部であることがさらに好ましい。前記防眩層における樹脂粒子及び/又はシリカ粒子の含有率が1重量部未満であると、十分な防眩性を防眩層に付与できないおそれがある。前記防眩層における樹脂粒子及び/又はシリカ粒子の含有率が12重量部を超えると、光学フィルムのヘイズが高くなり、ディスプレイの表示画面等の光出射面上に光学フィルムを配設したときにギラツキが発生する原因となるおそれがある。 The content of the resin particles and / or silica particles in the antiglare layer is preferably 1 to 12 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the binder resin. More preferably, it is ˜8 parts by weight. If the content of the resin particles and / or silica particles in the antiglare layer is less than 1 part by weight, sufficient antiglare properties may not be imparted to the antiglare layer. When the content of the resin particles and / or silica particles in the antiglare layer exceeds 12 parts by weight, the haze of the optical film increases, and when the optical film is disposed on the light output surface such as the display screen of the display May cause glare.
 〔防眩層の特性〕
 前記防眩層は、JIS K 5600-5-4:1999で規定された鉛筆硬度試験(ただし鉛筆を押す荷重は4.9N)により測定された鉛筆硬度が2H以上である層(いわゆるハードコート層)であることが好ましい。これにより、耐傷付き性に優れた光学フィルムを実現できる。したがって、ディスプレイの表示画面等の表面上に、光学フィルムが、その防眩層が形成されている側の面が外側(前記表面の側と反対側)を向くように配設されたときに、ディスプレイの表示画面等の表面を傷から十分に保護可能な保護フィルムとして光学フィルムが機能する。
[Characteristics of antiglare layer]
The antiglare layer is a layer (so-called hard coat layer) having a pencil hardness of 2H or more as measured by a pencil hardness test specified in JIS K 5600-5-4: 1999 (load applied to the pencil is 4.9 N). ) Is preferable. Thereby, an optical film excellent in scratch resistance can be realized. Therefore, when the optical film is disposed on the surface of the display screen or the like of the display so that the surface on which the antiglare layer is formed faces the outside (the side opposite to the surface), The optical film functions as a protective film that can sufficiently protect the surface of the display screen and the like from scratches.
 〔バインダー樹脂〕
 前記バインダー樹脂としては、例えば、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂と電離放射線重合開始剤との混合物等が挙げられる。
[Binder resin]
Examples of the binder resin include a thermoplastic resin, a thermosetting resin, a mixture of an ionizing radiation curable resin and an ionizing radiation polymerization initiator.
 前記熱可塑性樹脂としては、例えば、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体;酢酸ビニルの単独重合体又は共重合体、塩化ビニルの単独重合体又は共重合体、塩化ビニリデンの単独重合体又は共重合体;ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂;アクリル樹脂(ポリアクリル酸エステル)及びその共重合樹脂、メタクリル樹脂(ポリメタクリル酸エステル)及びその共重合樹脂等の(メタ)アクリル系樹脂;ポリスチレン樹脂;ポリアミド樹脂;線状ポリエステル樹脂;ポリカーボネート樹脂等が挙げられる。 Examples of the thermoplastic resin include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; vinyl acetate homopolymers or copolymers, vinyl chloride homopolymers or copolymers, and chlorides. Vinylidene homopolymers or copolymers; acetal resins such as polyvinyl formal and polyvinyl butyral; acrylic resins (polyacrylate esters) and their copolymer resins, methacrylic resins (polymethacrylate esters) and their copolymer resins, etc. (Meth) acrylic resin; polystyrene resin; polyamide resin; linear polyester resin; polycarbonate resin.
 また、前記熱硬化性樹脂としては、例えば、熱硬化性アクリル樹脂、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。 Examples of the thermosetting resin include a thermosetting acrylic resin, a thermosetting urethane resin composed of an acrylic polyol and an isocyanate prepolymer, a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, and a silicone resin. Etc.
 また、前記電離放射線硬化性樹脂としては、電離放射線(紫外線、電子線等)を照射することで硬化する樹脂であればよく、電離放射線重合性単量体又は電離放射線重合性プレポリマー(電離放射線重合性オリゴマー)等の1種又は2種以上を混合したものを使用することができる。前記電離放射線重合性単量体又は電離放射線重合性プレポリマーとしては、1分子中に2個以上の電離放射線重合性の官能基を有する電離放射線重合性の多官能単量体、又は1分子中に2個以上の電離放射線重合性の官能基を有する電離放射線重合性の多官能プレポリマーが好ましい。 The ionizing radiation curable resin may be any resin that can be cured by irradiating with ionizing radiation (ultraviolet rays, electron beams, etc.), such as an ionizing radiation polymerizable monomer or an ionizing radiation polymerizable prepolymer (ionizing radiation). What mixed 1 type (s) or 2 types or more, such as a polymerizable oligomer), can be used. As the ionizing radiation polymerizable monomer or ionizing radiation polymerizable prepolymer, an ionizing radiation polymerizable polyfunctional monomer having two or more ionizing radiation polymerizable functional groups in one molecule, or in one molecule An ionizing radiation polymerizable polyfunctional prepolymer having two or more ionizing radiation polymerizable functional groups is preferred.
 前記電離放射線重合性の多官能プレポリマー又は多官能単量体が有する電離放射線重合性の官能基としては、光重合性の官能基、電子線重合性の官能基、又は放射線重合性の官能基が好ましく、光重合性の官能基が特に好ましい。前記光重合性の官能基としては、具体的には、例えば、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、これらの中でも(メタ)アクリロイル基が好ましい。本明細書において、「(メタ)アクリロイル」はアクリロイル又はメタクリロイルを表す。 The ionizing radiation polymerizable functional group possessed by the ionizing radiation polymerizable polyfunctional prepolymer or the polyfunctional monomer is a photopolymerizable functional group, an electron beam polymerizable functional group, or a radiation polymerizable functional group. Are preferred, and photopolymerizable functional groups are particularly preferred. Specific examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. ) An acryloyl group is preferred. In the present specification, “(meth) acryloyl” represents acryloyl or methacryloyl.
 前記電離放射線重合性の多官能プレポリマーとしては、光重合性の官能基を2つ以上有する多官能プレポリマー(以下「光重合性多官能プレポリマー」と称する)が好ましい。前記光重合性多官能プレポリマーとして、1分子中に2個以上の(メタ)アクリロイル基を有する(メタ)アクリル系プレポリマーが特に好ましく使用される。このような(メタ)アクリル系プレポリマーは、架橋硬化することにより3次元網目構造となる。前記(メタ)アクリル系プレポリマーとしては、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート等が使用できる。 The ionizing radiation polymerizable polyfunctional prepolymer is preferably a polyfunctional prepolymer having two or more photopolymerizable functional groups (hereinafter referred to as “photopolymerizable polyfunctional prepolymer”). As the photopolymerizable polyfunctional prepolymer, a (meth) acrylic prepolymer having two or more (meth) acryloyl groups in one molecule is particularly preferably used. Such a (meth) acrylic prepolymer becomes a three-dimensional network structure by crosslinking and curing. Examples of the (meth) acrylic prepolymer include urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, and melamine (meth) acrylate.
 前記電離放射線重合性単量体としては、前述した多官能ビニル系単量体等が使用できるが、光重合性の官能基を2つ以上有する多官能単量体(以下「光重合性多官能単量体」と称する)が好ましい。前記光重合性多官能単量体の具体例としては、ネオペンチルグリコールアクリレート、1,6-ヘキサンジオール(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート類;トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールジ(メタ)アクリレート類;ペンタエリスリトールジ(メタ)アクリレート等の3価以上の多価アルコールのジ(メタ)アクリレート類;2,2-ビス[4-(アクリロキシ・ジエトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシ・ポリプロポキシ)フェニル]プロパン等の多価アルコールエチレンオキシド付加物又は多価アルコールプロピレンオキシド付加物のジ(メタ)アクリレート類;1分子中に3個以上の(メタ)アクリロイル基を有する多官能モノマー等を挙げることができる。 As the ionizing radiation polymerizable monomer, the above-mentioned polyfunctional vinyl monomers can be used, but a polyfunctional monomer having two or more photopolymerizable functional groups (hereinafter referred to as “photopolymerizable polyfunctional”). (Referred to as "monomer"). Specific examples of the photopolymerizable polyfunctional monomer include alkylene glycol di (meth) acrylates such as neopentyl glycol acrylate, 1,6-hexanediol (meth) acrylate, and propylene glycol di (meth) acrylate; Polyoxyalkylene glycol di (meth) acrylates such as ethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate; pentaerythritol di (meta) ) Di (meth) acrylates of trihydric or higher polyhydric alcohols such as acrylates; 2,2-bis [4- (acryloxy-diethoxy) phenyl] propane, 2,2-bis [4- (acryloxy-polypropylene) Di (meth) acrylates of polyhydric alcohol ethylene oxide adducts or polyhydric alcohol propylene oxide adducts such as xyl) phenyl] propane; polyfunctional monomers having 3 or more (meth) acryloyl groups in one molecule be able to.
 前記光重合性多官能単量体としては、これらの具体例等のような多価アルコールと(メタ)アクリル酸とのエステル類が好ましく、1分子中に3個以上の(メタ)アクリロイル基を有する多官能モノマーがより好ましい。1分子中に3個以上の(メタ)アクリロイル基を有する多官能モノマーとしては、具体的には、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、1,2,4-シクロヘキサンテトラ(メタ)アクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリアクリレート、トリペンタエリスリトールヘキサアクリレート等が挙げられる。前記光重合性多官能単量体は、二種類以上を併用してもよい。 The photopolymerizable polyfunctional monomer is preferably an ester of a polyhydric alcohol and (meth) acrylic acid as in these specific examples, and has 3 or more (meth) acryloyl groups in one molecule. The polyfunctional monomer having is more preferable. Specific examples of the polyfunctional monomer having three or more (meth) acryloyl groups in one molecule include trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, 1,2,4- Cyclohexanetetra (meth) acrylate, pentaglycerol triacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol triacrylate, dipentaerythritol pentaacrylate, dipentaerythritol tetra (meth) acrylate, di Examples include pentaerythritol hexa (meth) acrylate, tripentaerythritol triacrylate, and tripentaerythritol hexaacrylate. Two or more kinds of the photopolymerizable polyfunctional monomers may be used in combination.
 前記電離放射線重合性単量体又は電離放射線重合性プレポリマーとして前記光重合性多官能単量体又は光重合性多官能プレポリマーを用いる場合には、光重合開始剤を前記電離放射線重合開始剤として用いることが好ましい。前記光重合開始剤としては、光ラジカル重合開始剤又は光カチオン重合開始剤が好ましく、光ラジカル重合開始剤が特に好ましい。 When the photopolymerizable polyfunctional monomer or photopolymerizable polyfunctional prepolymer is used as the ionizing radiation polymerizable monomer or ionizing radiation polymerizable prepolymer, a photopolymerization initiator is used as the ionizing radiation polymerization initiator. It is preferable to use as. As the photopolymerization initiator, a photoradical polymerization initiator or a photocationic polymerization initiator is preferable, and a photoradical polymerization initiator is particularly preferable.
 前記光重合性多官能単量体又は光重合性多官能プレポリマーの重合は、光ラジカル開始剤の存在下、電離放射線の照射により行うことができる。従って、前記光重合性多官能単量体又は光重合性多官能プレポリマー、光ラジカル開始剤、及び樹脂粒子及びシリカ粒子の少なくとも一方を含有する塗料を調製し、該塗料を前記基材フィルム上に塗工した後、電離放射線による重合反応により前記塗料を硬化することで、前記防眩層を前記基材フィルムの少なくとも一方の面上に形成することができる。 Polymerization of the photopolymerizable polyfunctional monomer or photopolymerizable polyfunctional prepolymer can be performed by irradiation with ionizing radiation in the presence of a photo radical initiator. Accordingly, a paint containing the photopolymerizable polyfunctional monomer or photopolymerizable polyfunctional prepolymer, a photo radical initiator, and at least one of resin particles and silica particles is prepared, and the paint is applied to the base film. After the coating, the antiglare layer can be formed on at least one surface of the substrate film by curing the paint by a polymerization reaction by ionizing radiation.
 前記光ラジカル重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、α-ヒドロキシアルキルフェノン類、α-アミノアルキルフェノン、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類(特開2001-139663号公報等に記載)、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、オニウム塩類、ボレート塩、活性ハロゲン化合物、α-アシルオキシムエステル等が挙げられる。 Examples of the photo radical polymerization initiator include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, α-hydroxyalkylphenones, α-aminoalkylphenones, anthraquinones, thioxanthones, azo compounds, peroxides (Described in JP 2001-139663 A), 2,3-dialkyldione compounds, disulfide compounds, fluoroamine compounds, aromatic sulfoniums, onium salts, borate salts, active halogen compounds, α-acyloxy Muester and the like.
 前記アセトフェノン類としては、例えば、アセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、1-ヒドロキシジメチルフェニルケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-4-メチルチオ-2-モルフォリノプロピオフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン等が挙げられる。前記ベンゾイン類としては、例えば、ベンゾイン、ベンゾインベンゾエート、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。前記ベンゾフェノン類としては、例えば、ベンゾフェノン、2,4-ジクロロベンゾフェノン、4,4-ジクロロベンゾフェノン、p-クロロベンゾフェノン等が挙げられる。前記ホスフィンオキシド類としては、例えば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシドが挙げられる。前記ケタール類としては、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のベンジルメチルケタール類が挙げられる。前記α-ヒドロキシアルキルフェノン類としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトンが挙げられる。前記α-アミノアルキルフェノン類としては、例えば、2-メチル-1-[4-(メチルチオ)フェニル]-2-(4-モルホリニル)-1-プロパノンが挙げられる。 Examples of the acetophenones include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropio. Examples include phenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone. Examples of the benzoins include benzoin, benzoin benzoate, benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether. Examples of the benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone, p-chlorobenzophenone, and the like. Examples of the phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide. Examples of the ketals include benzylmethyl ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one. Examples of the α-hydroxyalkylphenones include 1-hydroxycyclohexyl phenyl ketone. Examples of the α-aminoalkylphenones include 2-methyl-1- [4- (methylthio) phenyl] -2- (4-morpholinyl) -1-propanone.
 市販の光開裂型の光ラジカル重合開始剤としては、BASFジャパン株式会社製の商品名「イルガキュア(登録商標)651」(2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン)、BASFジャパン株式会社製の商品名「イルガキュア(登録商標)184」(1-ヒドロキシシクロヘキシルフェニルケトン)、BASFジャパン株式会社製の商品名「イルガキュア(登録商標)907」(2-メチル-1-[4-(メチルチオ)フェニル]-2-(4-モルホリニル)-1-プロパノン)、BASFジャパン株式会社製の商品名「イルガキュア(登録商標)2959」(1-{4-(2-ヒドロキシエトキシ)-フェニル}-2-ヒドロキシ-2-メチル-1-プロパン-1-オン)等が好ましい例として挙げられる。 Commercially available photocleavable photoradical polymerization initiators include trade names “Irgacure (registered trademark) 651” (2,2-dimethoxy-1,2-diphenylethane-1-one) manufactured by BASF Japan Ltd., BASF Trade name “Irgacure (registered trademark) 184” (1-hydroxycyclohexyl phenyl ketone) manufactured by Japan Co., Ltd., trade name “Irgacure (registered trademark) 907” (2-methyl-1- [4- (Methylthio) phenyl] -2- (4-morpholinyl) -1-propanone), trade name “Irgacure (registered trademark) 2959” (1- {4- (2-hydroxyethoxy) -phenyl}) manufactured by BASF Japan Ltd. -Hydroxy-2-methyl-1-propan-1-one) and the like are preferable examples.
 前記光重合開始剤は、前記光重合性多官能単量体又は光重合性多官能プレポリマー100重量部に対して、0.1~15重量部の範囲内で使用することが好ましく、1~10重量部の範囲内で使用することがより好ましい。 The photopolymerization initiator is preferably used within a range of 0.1 to 15 parts by weight with respect to 100 parts by weight of the photopolymerizable polyfunctional monomer or photopolymerizable polyfunctional prepolymer. More preferably, it is used within the range of 10 parts by weight.
 前記光重合性多官能単量体又は光重合性多官能プレポリマーの重合には、前記光重合開始剤に加えて光増感剤を用いてもよい。前記光増感剤の具体例として、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン、ミヒラーケトン、チオキサントン類等を挙げることができる。 In the polymerization of the photopolymerizable polyfunctional monomer or photopolymerizable polyfunctional prepolymer, a photosensitizer may be used in addition to the photopolymerization initiator. Specific examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, Michler's ketone, thioxanthones and the like.
 前記塗料には、必要に応じてバインダー樹脂を希釈するための溶剤(希釈剤)を用いてもよい。前記溶剤としては、トルエン、キシレン等の芳香族炭化水素系溶剤;メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;ジオキサン、エチレングリコールジエチルエーテル等のエーテル系溶剤;水;アルコール系溶剤等が挙げられる。これら溶剤は、1種を用いてもよく2種以上を併用してもよい。 In the paint, a solvent (diluent) for diluting the binder resin may be used as necessary. Examples of the solvent include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and butyl acetate; ether solvents such as dioxane and ethylene glycol diethyl ether Water, alcohol solvents and the like. These solvents may be used alone or in combination of two or more.
 電離放射線硬化性樹脂を含む塗料を用いて前記防眩層を形成する場合、前記塗料を塗工後に、前記塗料に電離放射線(紫外線、電子線等)を照射して前記塗料を硬化させることにより前記防眩層を形成することができる。なお、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等から発せられる100~400nm、好ましくは200~400nmの波長領域の紫外線を照射する方法;走査型又はカーテン型の電子線加速器から発せられる100nm未満の波長領域の電子線を照射する方法等を用いることができる。 When the antiglare layer is formed using a paint containing an ionizing radiation curable resin, by applying the paint and then irradiating the paint with ionizing radiation (ultraviolet rays, electron beams, etc.) to cure the paint The antiglare layer can be formed. As a method of irradiating with ionizing radiation, a method of irradiating ultraviolet rays in a wavelength region of 100 to 400 nm, preferably 200 to 400 nm, emitted from an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp or the like; For example, a method of irradiating an electron beam having a wavelength region of less than 100 nm emitted from a mold or curtain type electron beam accelerator can be used.
 前記塗料を前記基材フィルム上に塗工する方法としては、リバースロールコート法、グラビアコート法、ダイコート法、コンマコート法、スプレーコート法等を用いることができる。 As a method for applying the paint on the base film, a reverse roll coating method, a gravure coating method, a die coating method, a comma coating method, a spray coating method, or the like can be used.
 〔色素〕
 前記色素は、紫外可視吸収スペクトル(波長300~800nmの紫外可視吸収スペクトル)の最大吸収波長を380~500nmの範囲内に有する第1の色素を含んでいることが好ましい。これにより、ブルーライトをより効果的に低減することができる。
[Dye]
The dye preferably contains a first dye having a maximum absorption wavelength in an ultraviolet-visible absorption spectrum (ultraviolet-visible absorption spectrum having a wavelength of 300 to 800 nm) in the range of 380 to 500 nm. Thereby, blue light can be reduced more effectively.
 前記色素の紫外可視吸収スペクトルは、以下の測定方法を用いて測定できる。前記色素が可溶な溶媒100重量部に対して前記色素を0.001重量部添加して、前記色素を前記溶媒に溶解させ、色素の溶液を得る。得られた色素の溶液について、分光光度計(商品名「日立分光光度計U-3900」、株式会社日立ハイテクノロジーズ)にて波長300~800nmの紫外可視吸収スペクトルの測定を行う。なお、前記色素の溶液の測定を行う前に、色素の溶解に用いた溶媒について前記分光光度計にて波長300~800nmの紫外可視吸収スペクトルの測定を行うことによりベースラインを構築する。 The ultraviolet-visible absorption spectrum of the dye can be measured using the following measurement method. 0.001 part by weight of the dye is added to 100 parts by weight of the solvent in which the dye is soluble, and the dye is dissolved in the solvent to obtain a dye solution. The obtained dye solution is measured for an ultraviolet-visible absorption spectrum having a wavelength of 300 to 800 nm using a spectrophotometer (trade name “Hitachi spectrophotometer U-3900”, Hitachi High-Technologies Corporation). Before measuring the dye solution, a baseline is established by measuring an ultraviolet-visible absorption spectrum having a wavelength of 300 to 800 nm with the spectrophotometer for the solvent used for dissolving the dye.
 前記第1の色素としては、紫外可視吸収スペクトルの最大吸収波長を380~500nmの範囲内に有する色素であれば特に限定されることなく、有機溶剤に溶解可能な色素(油溶性色素)、顔料、染料等を用いることができる。それらの中でも、有機溶剤に溶解可能な色素が前記第1の色素として好ましい。好ましい有機溶剤としては、トルエン、キシレン等の芳香族炭化水素系溶剤;メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;ジオキサン、エチレングリコールジエチルエーテル等のエーテル系溶剤等が挙げられる。より好ましい有機溶剤としては、トルエン等の芳香族炭化水素系溶剤、メチルイソブチルケトン、及びメチルエチルケトンが挙げられる。有機溶剤に溶解可能な色素としては、例えば、「YELLOW 93」(C.I.ソルベントイエロー93)、「OIL YELLOW 186」、C.I.ソルベントイエロー16、C.I.ソルベントイエロー33、C.I.ソルベントイエロー79、C.I.ソルベントイエロー82(例えば、オリヱント化学工業株式会社製の「VALIFAST(登録商標) YELLOW 4120」)、C.I.ソルベントオレンジ80、C.I.ソルベントオレンジ45(例えば、オリヱント化学工業株式会社製の「VALIFAST(登録商標) YELLOW 3108」)、C.I.ソルベントオレンジ62、C.I.ソルベントオレンジ54(例えば、オリヱント化学工業株式会社製の「VALIFAST(登録商標) ORANGE 3210」)、C.I.ソルベントイエロー151(例えば、オリヱント化学工業株式会社製の「VALIFAST(登録商標) YELLOW 3170」)、C.I.アシッドイエロー42(例えば、オリヱント化学工業株式会社製の「VALIFAST(登録商標) YELLOW 1101」)、「DAA51」(商品名)(山田化学工業株式会社製)、C.I.ピグメントイエロー74(例えば、山陽色素株式会社製の「Fast Yellow 7416」)、「NAZ24」(商品名)(山田化学工業株式会社製)等が挙げられる。前記顔料としては、例えば、有機顔料としては、ベンジジン エロー(Pigment Yellow 14)等のアゾ顔料、多環顔料等が挙げられる。これら色素は、1種を用いてもよく2種以上を併用してもよい。 The first dye is not particularly limited as long as it is a dye having a maximum absorption wavelength in the ultraviolet-visible absorption spectrum in the range of 380 to 500 nm, and is a dye that can be dissolved in an organic solvent (oil-soluble dye) or pigment. , Dyes and the like can be used. Among these, a dye that can be dissolved in an organic solvent is preferable as the first dye. Preferred organic solvents include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and butyl acetate; ether solvents such as dioxane and ethylene glycol diethyl ether A solvent etc. are mentioned. More preferable organic solvents include aromatic hydrocarbon solvents such as toluene, methyl isobutyl ketone, and methyl ethyl ketone. Examples of the dye that can be dissolved in an organic solvent include “YELLOW 93” (CI Solvent Yellow 93), “OIL YELLOW 186”, C.I. I. Solvent Yellow 16, C.I. I. Solvent Yellow 33, C.I. I. Solvent Yellow 79, C.I. I. Solvent Yellow 82 (for example, “VALIFAST (registered trademark) YELLOW 4120” manufactured by Orient Chemical Co., Ltd.), C.I. I. Solvent Orange 80, C.I. I. Solvent Orange 45 (for example, “VALIFAST (registered trademark) YELLOW 3108” manufactured by Orient Chemical Co., Ltd.), C.I. I. Solvent Orange 62, C.I. I. Solvent Orange 54 (for example, “VALIFAST (registered trademark) ORANGE 3210” manufactured by Orient Chemical Co., Ltd.), C.I. I. Solvent Yellow 151 (for example, “VALIFAST (registered trademark) YELLOW 3170” manufactured by Orient Chemical Co., Ltd.), C.I. I. Acid Yellow 42 (for example, “VALIFAST (registered trademark) YELLOW 1101” manufactured by Orient Chemical Co., Ltd.), “DAA51” (trade name) (manufactured by Yamada Chemical Co., Ltd.), C.I. I. Pigment yellow 74 (for example, “Fast Yellow 7416” manufactured by Sanyo Dyeing Co., Ltd.), “NAZ24” (trade name) (manufactured by Yamada Chemical Co., Ltd.), and the like. Examples of the pigment include azo pigments such as benzidine yellow 14 and polycyclic pigments as organic pigments. These dyes may be used alone or in combination of two or more.
 前記色素は、前記第1の色素に加えて青色の第2の色素を含むことが好ましい。すなわち、前記色素として、前記第1の色素と青色の第2の色素との混合物を用いることが好ましい。前記色素として前記第1の色素を単独で用いると、光学フィルムが黄色又はそれに近い色(例えば橙色)に着色され、光学フィルムの外観が黄色味がかったものとなる。これに対し、前記第1の色素に青色の第2の色素を混合すると、前記光学フィルムの黄色味を抑制して前記光学フィルムの色調を目に優しい色にすることができる。なお、ここで、青色の色素とは、吸収極大ピーク(極大吸収波長)を570~620nmの範囲内に持つ色素を意味するものとする。 The dye preferably contains a blue second dye in addition to the first dye. That is, it is preferable to use a mixture of the first dye and the blue second dye as the dye. When the first pigment is used alone as the pigment, the optical film is colored yellow or a color close to it (for example, orange), and the optical film has a yellowish appearance. On the other hand, when a blue 2nd pigment | dye is mixed with a said 1st pigment | dye, the yellowishness of the said optical film can be suppressed and the color tone of the said optical film can be made into a color kind to eyes. Here, the blue dye means a dye having an absorption maximum peak (maximum absorption wavelength) in the range of 570 to 620 nm.
 前記青色の第2の色素としては、例えば、中央合成化学株式会社製の「NEO SUPER BLUE C-558」、テトラアザポルフィリン系化合物(例えば、山田化学工業株式会社製の「TAP-2」「TAP-18」「TAP-45」)、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15、紺青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニンブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩素化物、ファーストスカイブルー、インダンスレンブルーBC、C.I.ソルベントブルー35、C.I.ソルベントブルー70等が挙げられる。これら色素は、1種を用いてもよく2種以上を併用してもよい。 Examples of the blue second dye include “NEO SUPER BLUE C-558” manufactured by Chuo Synthetic Chemical Co., Ltd., and tetraazaporphyrin-based compounds (for example, “TAP-2” “TAP” manufactured by Yamada Chemical Co., Ltd.). -18 "" TAP-45 "), C.I. I. Pigment blue 15: 3, C.I. I. Pigment Blue 15, Bituminous Blue, Cobalt Blue, Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Metal-free Phthalocyanine Blue, Partially Chlorinated Phthalocyanine Blue, Fast Sky Blue, Indanthrene Blue BC, C.I. I. Solvent Blue 35, C.I. I. Solvent Blue 70 etc. are mentioned. These dyes may be used alone or in combination of two or more.
 また、光学フィルムの色を調整するために、前記第1の色素及び前記第2の色素以外の他の色素を前記防眩層に添加することもできる。前記他の色素としては、例えば、C.I.ソルベントレッド132、C.I.ソルベントブラック27、「OIL GREEN 502」(オリヱント化学工業株式会社製)、「OIL GREEN BG」(オリヱント化学工業株式会社製)、「VALIFAST(登録商標) RED 3306」(オリヱント化学工業株式会社製)等が挙げられる。これら他の色素は、1種を用いてもよく2種以上を併用してもよい。 Further, in order to adjust the color of the optical film, other pigments other than the first pigment and the second pigment can be added to the antiglare layer. Examples of the other dye include C.I. I. Solvent Red 132, C.I. I. Solvent Black 27, “OIL GREEN 502” (manufactured by Orient Chemical Industry Co., Ltd.), “OIL GREEN BG” (manufactured by Orient Chemical Industry Co., Ltd.), “VALIFAST (registered trademark) RED 3306” (manufactured by Orient Chemical Industry Co., Ltd.), etc. Is mentioned. These other pigments may be used alone or in combination of two or more.
 前記色素は、前記基材フィルムの少なくとも一方の面上に形成された色素含有層に含まれていてもよく、前記基材フィルムに含まれてもよい。前記色素含有層は、前記防眩層とは別の層として形成されていてもよく、前記防眩層として形成されていてもよい。すなわち、前記色素は、前記防眩層とは別の層として形成された色素含有層に含まれていてもよく、前記防眩層に含まれていていてもよい。ただし、使用時に露出する位置にある防眩層に色素が含まれていると、使用時の光学フィルムの耐傷付き性が低下する恐れがあるため、使用時に露出する位置(光学フィルムのおもて面となる位置)にある防眩層には色素が含まれていないことが好ましい。また、防眩層に色素が含まれていると、光学フィルムの防眩性が低下する恐れがあるため、防眩層には色素が含まれていないことが好ましい。 The dye may be contained in a dye-containing layer formed on at least one surface of the base film, or may be contained in the base film. The dye-containing layer may be formed as a layer different from the antiglare layer, or may be formed as the antiglare layer. That is, the pigment may be contained in a pigment-containing layer formed as a layer separate from the antiglare layer, or may be contained in the antiglare layer. However, if pigments are contained in the antiglare layer that is exposed at the time of use, the scratch resistance of the optical film at the time of use may be reduced. It is preferred that the antiglare layer at the position to be a surface does not contain a pigment. Moreover, since the anti-glare property of an optical film may fall when the pigment | dye is contained in the glare-proof layer, it is preferable that a pigment | dye is not contained in the glare-proof layer.
 〔紫外可視光吸収剤〕
 前記光学フィルムは、紫外可視吸収スペクトル(波長300~800nmの紫外可視吸収スペクトル)の最大吸収波長を320nm以上380nm未満の範囲内に有し、かつ波長380nm以上の可視領域にも吸収を有する紫外可視光吸収剤をさらに含んでいてもよい。これにより、光学フィルムの全光線透過率を良好なレベルに維持しながら、ブルーライトをさらに低減することができる。
(UV-visible light absorber)
The optical film has an ultraviolet-visible absorption spectrum (ultraviolet-visible absorption spectrum having a wavelength of 300 to 800 nm) having a maximum absorption wavelength in the range of 320 nm or more and less than 380 nm, and also has an absorption in the visible region of a wavelength of 380 nm or more. It may further contain a light absorber. Thereby, blue light can be further reduced while maintaining the total light transmittance of the optical film at a good level.
[規則91に基づく訂正 09.04.2014] 
 前記紫外可視光吸収剤としては、例えば、2,4,6-トリス(2-hydroxy-4-ヘキシロキシ-3-メチルフェニル)-1,3,5-トリアジン、ヒドロキシフェニルベンゾトリアゾール、2-ヒドロキシ-4-メトキシベンゾフェノン、2,4-ベンゾイルレゾルシン、2,2-ジヒドロキシ-4-メトキシベンゾフェノン等が挙げられる。これら紫外可視光吸収剤は、1種を用いてもよく2種以上を併用してもよい。
[Correction 09.04.2014 based on Rule 91]
Examples of the UV-visible light absorber include 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine, hydroxyphenylbenzotriazole, 2-hydroxy- Examples include 4-methoxybenzophenone, 2,4-benzoylresorcin, 2,2-dihydroxy-4-methoxybenzophenone, and the like. These ultraviolet and visible light absorbers may be used alone or in combination of two or more.
 前記紫外可視光吸収剤は、前記基材フィルムの少なくとも一方の面上に形成された色素含有層に含まれていてもよく、前記基材フィルムに含まれてもよい。すなわち、前記紫外可視光吸収剤は、前記防眩層とは別の層として形成された色素含有層に含まれていてもよく、前記防眩層に含まれていていてもよい。 The ultraviolet-visible light absorber may be contained in a dye-containing layer formed on at least one surface of the base film, or may be contained in the base film. That is, the ultraviolet-visible light absorber may be contained in a dye-containing layer formed as a layer separate from the antiglare layer, or may be contained in the antiglare layer.
 〔光学フィルムの構造〕
 本発明の光学フィルムは、好ましくは、図1に示すように、光透過性の基材フィルム1と、前記基材フィルム1の一方の面上に形成された、樹脂粒子及びシリカ粒子の少なくとも一方を含む防眩層2と、前記基材フィルム1の他方の面上に形成された、色素を含む色素含有層3とを含んでいる。
[Structure of optical film]
As shown in FIG. 1, the optical film of the present invention preferably has a light-transmitting base film 1 and at least one of resin particles and silica particles formed on one surface of the base film 1. The anti-glare layer 2 containing a pigment | dye and the pigment | dye containing layer 3 containing the pigment | dye formed on the other surface of the said base film 1 are included.
 図1に示す構成の光学フィルムでは、前記色素は、前記基材フィルム1の一方の面上に形成された色素含有層3に含まれている。前記色素含有層3は、前記防眩層2とは別の層として形成されている。すなわち、前記色素は、前記防眩層2とは別の層として形成された色素含有層3に含まれている。 In the optical film having the configuration shown in FIG. 1, the dye is included in the dye-containing layer 3 formed on one surface of the base film 1. The dye-containing layer 3 is formed as a layer different from the antiglare layer 2. That is, the pigment is contained in the pigment-containing layer 3 formed as a layer separate from the antiglare layer 2.
 図1に示す構成の光学フィルムでは、基本的には色素によって黄色味がかるが、前記構成によれば、光学フィルムを防眩層2側から見たときに黄色味が少し抑えられる。すなわち、色素からの光は、基本的には黄色味がかった光となるが、その光の色は防眩層2を通過する際に拡散されて彩度が低くなって(白っぽくなって)目に達する。そのため、光学フィルムの見た目の黄色味が抑制される。 In the optical film having the configuration shown in FIG. 1, the yellowish color is basically colored by the pigment, but according to the above configuration, the yellowness is slightly suppressed when the optical film is viewed from the antiglare layer 2 side. That is, the light from the pigment is basically yellowish light, but the color of the light is diffused when passing through the anti-glare layer 2 so that the saturation is lowered (becomes white). To reach. Therefore, the apparent yellowness of the optical film is suppressed.
 本発明の光学フィルムは、表示画面と該表示画面を囲む枠とを有するディスプレイに対して貼り付けられるものである場合、一般的に、その外形形状がディスプレイ全体の外形形状とほぼ同一となるように整形される。このとき、光学フィルムが図1に示す構成であれば、図9の平面図に示すように前記色素含有層3が印刷等により光学フィルムの全面に形成されているので、光学フィルムをディスプレイに貼り付けると、前記色素含有層3がディスプレイの表示画面に重なる位置だけでなくディスプレイの枠に重なる位置にも配置されるので、ディスプレイの枠の色が前記色素含有層3の着色の影響を受ける。ここで、前記ディスプレイが黒色等の濃い色の枠を有するディスプレイである場合には、ディスプレイの枠の着色が顕在化することはないが、前記ディスプレイが白色等の薄い色の枠を有するディスプレイ(例えばアップル社製のタブレット型パーソナルコンピュータ「iPad(登録商標)」やアップル社製のスマートフォン「iPhone(登録商標)」で枠が白色のものであるもの)である場合、ディスプレイの枠が黄色っぽく着色して見え、ディスプレイの見映えが悪くなることがある。 When the optical film of the present invention is affixed to a display having a display screen and a frame surrounding the display screen, generally, the external shape thereof is substantially the same as the external shape of the entire display. To be shaped. At this time, if the optical film has the configuration shown in FIG. 1, the dye-containing layer 3 is formed on the entire surface of the optical film by printing or the like as shown in the plan view of FIG. In other words, the color of the display frame is affected by the coloring of the dye-containing layer 3 because the dye-containing layer 3 is disposed not only at the position overlapping the display screen of the display but also at the position overlapping the display frame. Here, when the display is a display having a dark frame such as black, coloring of the display frame does not become obvious, but the display has a light color frame such as white ( For example, in the case of an Apple tablet personal computer “iPad (registered trademark)” or an Apple smartphone “iPhone (registered trademark)”, the frame of the display is colored yellowish May appear and the display may not look good.
 そこで、本発明の前記光学フィルムが、表示画面と該表示画面を囲む枠とを有するディスプレイに対して貼り付けられるものである場合、本発明の前記光学フィルムは、前記基材フィルムの少なくとも一方の面上に、前記色素とバインダー樹脂とを含む色素含有層が形成されており、前記色素含有層は、前記基材フィルムの少なくとも一方の面上における前記ディスプレイの表示画面に対応する部分にのみ形成されていてもよい。このように前記基材フィルムの少なくとも一方の面上における、ブルーライトを発している表示画面に対応する部分にのみ、ブルーライトをカットする色素含有層を配置することで、光学フィルムによるディスプレイの枠の着色を防止でき、ディスプレイの見映えを良好にすることができる。 Therefore, when the optical film of the present invention is affixed to a display having a display screen and a frame surrounding the display screen, the optical film of the present invention is at least one of the base film. A dye-containing layer containing the dye and a binder resin is formed on the surface, and the dye-containing layer is formed only on a portion corresponding to the display screen of the display on at least one surface of the base film. May be. Thus, by disposing a dye-containing layer that cuts blue light only on a portion corresponding to a display screen emitting blue light on at least one surface of the base film, a frame of a display using an optical film is provided. Can be prevented and the appearance of the display can be improved.
 そのような構成の光学フィルムの一実施形態を図10及び図11に示す。図10は、この実施形態の光学フィルムを示す平面図であり、図11は、図10に示す光学フィルムのA-A’線断面図である。図11に示すように、この実施形態の光学フィルムは、光透過性の基材フィルム1と、前記基材フィルム1の一方の面上に形成された、樹脂粒子及びシリカ粒子の少なくとも一方を含む防眩層2と、前記基材フィルム1の他方の面上に形成された、色素を含む色素含有層3と、色素含有層3における基材フィルム1側の面の裏面上に形成された粘着剤層4とを備えている。この実施形態の光学フィルムは、ディスプレイに貼り付けられたときに、防眩層2側の面が表面(露出面)となり、粘着剤層4側の面が裏面(ディスプレイと接する面)となる。 One embodiment of the optical film having such a configuration is shown in FIGS. FIG. 10 is a plan view showing the optical film of this embodiment, and FIG. 11 is a cross-sectional view of the optical film shown in FIG. 10 taken along the line A-A ′. As shown in FIG. 11, the optical film of this embodiment includes a light-transmissive base film 1 and at least one of resin particles and silica particles formed on one surface of the base film 1. The anti-glare layer 2, the dye-containing layer 3 containing the dye formed on the other surface of the base film 1, and the adhesive formed on the back surface of the base film 1 side of the dye-containing layer 3 And an agent layer 4. When the optical film of this embodiment is attached to a display, the surface on the antiglare layer 2 side becomes the front surface (exposed surface), and the surface on the adhesive layer 4 side becomes the back surface (surface in contact with the display).
 そして、前記色素含有層3は、図10に示すように、前記基材フィルム1の一方の面上の全領域(ディスプレイの全面にほぼ対応する)のうちで、前記基材フィルム1の一方の面上における前記ディスプレイの表示画面に対応する部分にのみ形成されており、前記基材フィルム1の一方の面上における前記ディスプレイの枠に対応する部分には形成されていない。 And as shown in FIG. 10, the said pigment | dye containing layer 3 is one side of the said base film 1 among the whole area | regions on the one side of the said base film 1 (it respond | corresponds to the whole surface of a display). It is formed only on the portion corresponding to the display screen of the display on the surface, and is not formed on the portion corresponding to the frame of the display on one surface of the base film 1.
 この実施形態の光学フィルムでは、前記色素は、前記基材フィルム1の一方の面上に形成された色素含有層3に含まれている。前記色素含有層3は、前記防眩層2とは別の層として形成されている。すなわち、前記色素は、前記防眩層2とは別の層として形成された色素含有層3に含まれている。粘着剤層については、後段で説明する。 In the optical film of this embodiment, the pigment is contained in the pigment-containing layer 3 formed on one surface of the base film 1. The dye-containing layer 3 is formed as a layer different from the antiglare layer 2. That is, the pigment is contained in the pigment-containing layer 3 formed as a layer separate from the antiglare layer 2. The pressure-sensitive adhesive layer will be described later.
 なお、前記基材フィルムの少なくとも一方の面上における前記ディスプレイの表示画面に対応する部分にのみ色素含有層を形成する方法としては、インクジェット法やグラビア印刷等の印刷により色素含有層を形成する方法が挙げられる。 In addition, as a method of forming the dye-containing layer only on a portion corresponding to the display screen of the display on at least one surface of the base film, a method of forming the dye-containing layer by printing such as an inkjet method or gravure printing Is mentioned.
 〔色素含有層〕
 前記防眩層とは別の層として、又は前記防眩層として形成された色素含有層について、以下に説明する。
(Dye-containing layer)
The dye-containing layer formed as a layer different from the antiglare layer or as the antiglare layer will be described below.
 前記色素含有層は、色素を含んでいればよいが、色素とバインダー樹脂とを含んでいることが好ましい。これにより、前記色素含有層の光透過性を高くすることができ、十分な光透過性を有する光学フィルムを実現できる。 The dye-containing layer may contain a dye, but preferably contains a dye and a binder resin. Thereby, the light transmittance of the said pigment | dye containing layer can be made high, and the optical film which has sufficient light transmittance is realizable.
 前記色素含有層に対する第1の色素の添加量は、バインダー樹脂100重量部に対して、0.01~2重量部の範囲内であることが好ましく、0.05~1重量部の範囲内であることがより好ましい。前記第1の色素の添加量が0.01重量部未満であると、前記光学フィルムによるブルーライトの低減効果が不十分となるおそれがある。前記第1の色素の添加量が2重量部を超えると、前記色素含有層の黄色の濃度が高すぎて、光学フィルムの光透過性を十分なレベルに維持できなくなるおそれがある。 The amount of the first dye added to the dye-containing layer is preferably in the range of 0.01 to 2 parts by weight, and in the range of 0.05 to 1 part by weight with respect to 100 parts by weight of the binder resin. More preferably. There exists a possibility that the reduction effect of the blue light by the said optical film may become inadequate that the addition amount of a said 1st pigment | dye is less than 0.01 weight part. When the added amount of the first dye exceeds 2 parts by weight, the yellow concentration of the dye-containing layer is too high, and the light transmittance of the optical film may not be maintained at a sufficient level.
 前記色素含有層に対して前記青色の第2の色素を添加する場合、前記色素含有層に対する前記青色の第2の色素の添加量は、バインダー樹脂100重量部に対して、0.005~2重量部の範囲内であることが好ましく、0.01~1重量部の範囲内であることがより好ましい。また、前記色素含有層に対する前記青色の第2の色素の添加量は、前記第1の色素100重量部に対して、100重量部未満であることが好ましく、80重量部未満がより好ましい。前記青色の第2の色素の添加量が上記範囲より多いと、前記色素含有層の青色の濃度が高すぎて、光学フィルムの光透過性を十分なレベルに維持できなくなるおそれがある。 When the blue second dye is added to the dye-containing layer, the amount of the blue second dye added to the dye-containing layer is 0.005 to 2 with respect to 100 parts by weight of the binder resin. It is preferably in the range of parts by weight, and more preferably in the range of 0.01 to 1 part by weight. The amount of the blue second dye added to the dye-containing layer is preferably less than 100 parts by weight and more preferably less than 80 parts by weight with respect to 100 parts by weight of the first dye. If the amount of the blue second dye added is larger than the above range, the blue density of the dye-containing layer may be too high, and the optical transparency of the optical film may not be maintained at a sufficient level.
 前記色素含有層に対して前記紫外可視光吸収剤を添加する場合、前記色素含有層に対する紫外可視光吸収剤の添加量は、バインダー樹脂100重量部に対して、0.01~5重量部の範囲内であることが好ましく、0.2~2重量部の範囲内であることがより好ましい。前記紫外可視光吸収剤の添加量が0.01重量部未満であると、前記紫外可視光吸収剤によるブルーライトの低減効果が不十分となるおそれがある。前記紫外可視光吸収剤の添加量が5重量部を超えると、前記紫外可視光吸収剤による380nm以上の光(可視光)の吸収によって前記色素含有層の黄色の濃度が高くなり過ぎ、光学フィルムの光透過性を十分なレベルに維持できなくなるおそれがある。 When the UV-visible light absorber is added to the dye-containing layer, the amount of the UV-visible light absorber added to the dye-containing layer is 0.01 to 5 parts by weight with respect to 100 parts by weight of the binder resin. It is preferably within the range, and more preferably within the range of 0.2 to 2 parts by weight. There exists a possibility that the reduction effect of the blue light by the said ultraviolet visible light absorber may become inadequate that the addition amount of the said ultraviolet visible light absorber is less than 0.01 weight part. When the addition amount of the UV-visible light absorber exceeds 5 parts by weight, the yellow density of the dye-containing layer becomes too high due to absorption of light (visible light) of 380 nm or more by the UV-visible light absorber, and the optical film There is a possibility that the light transmittance of the glass cannot be maintained at a sufficient level.
 前記色素含有層の厚さは、3~100μmであることが好ましく、5~50μmであることがより好ましく、5~20μmであることがさらに好ましい。前記色素含有層の厚さが3μm未満であると、光学フィルムの表面硬度が不十分になる可能性がある。前記色素含有層の厚さが100μmを超えると、前記色素含有層を構成するのに必要な原料の量が多くなるので、不経済である。 The thickness of the dye-containing layer is preferably 3 to 100 μm, more preferably 5 to 50 μm, and even more preferably 5 to 20 μm. If the thickness of the dye-containing layer is less than 3 μm, the surface hardness of the optical film may be insufficient. If the thickness of the dye-containing layer exceeds 100 μm, the amount of raw material necessary to constitute the dye-containing layer increases, which is uneconomical.
 前記色素含有層は、2H以上の鉛筆硬度を有する層(いわゆるハードコート層)であってもよい。 The dye-containing layer may be a layer having a pencil hardness of 2H or higher (so-called hard coat layer).
 前記色素含有層に含まれるバインダー樹脂、前記色素含有層の形成に用いる塗料に使用可能な溶剤、塗料の塗工方法、塗料の硬化方法等は、前記防眩層と同様とすることができる。また、本発明の光学フィルムを、前記色素含有層が露出しない形で配設する場合、例えば前記色素含有層がディスプレイの表示画面に接するように配設する場合には、前記色素含有層に含まれるバインダー樹脂は、熱硬化樹脂であってもよい。 The binder resin contained in the dye-containing layer, the solvent that can be used in the paint used to form the dye-containing layer, the coating method of the paint, the curing method of the paint, and the like can be the same as those of the antiglare layer. In addition, when the optical film of the present invention is arranged in a form in which the dye-containing layer is not exposed, for example, when the dye-containing layer is arranged so as to be in contact with the display screen of the display, it is included in the dye-containing layer. The binder resin to be used may be a thermosetting resin.
 〔粘着剤層及び剥離フィルム〕
 本発明の光学フィルムにおいては、防眩層が形成されている側の面とは反対側の面に、ディスプレイの表示画面等の表面に貼着させるための粘着剤層を形成してもよい。前記粘着剤層を構成する粘着剤としては、アクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤等のような、光学用途に適した粘着剤が好ましい。前記粘着剤層は、自己吸着性のシリコーン層であってもよい。前記粘着剤層の厚さは、通常、5~100μmの範囲内であり、好ましくは10~60μmの範囲内である。
[Adhesive layer and release film]
In the optical film of this invention, you may form the adhesive layer for making it adhere on surfaces, such as a display screen of a display, in the surface on the opposite side to the surface where the glare-proof layer is formed. The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is preferably a pressure-sensitive adhesive suitable for optical applications, such as an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive. The pressure-sensitive adhesive layer may be a self-adsorbing silicone layer. The thickness of the pressure-sensitive adhesive layer is usually in the range of 5 to 100 μm, preferably in the range of 10 to 60 μm.
 さらに、前記粘着剤層の上に、必要に応じて剥離フィルムを設けてもよい。前記剥離フィルムとしては、例えば、ポリエチレンテレフタレート、ポリプロピレン等からなる各種プラスチックフィルムに、シリコーン樹脂等からなる剥離剤を塗付したもの等が挙げられる。前記剥離フィルムの厚さは、特に制限はないが、通常、20~150μmの範囲内である。 Furthermore, a release film may be provided on the pressure-sensitive adhesive layer as necessary. Examples of the release film include those obtained by applying a release agent made of silicone resin or the like to various plastic films made of polyethylene terephthalate, polypropylene, or the like. The thickness of the release film is not particularly limited, but is usually in the range of 20 to 150 μm.
 以下、実施例及び比較例により本発明を説明するが、本発明はこれに限定されるものではない。 Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to this.
 まず、以下の実施例及び比較例で用いた樹脂粒子の体積平均粒子径、CV値、及び屈折率の測定方法と、以下の実施例及び比較例で得られた光学フィルムについての、ヘイズ、全光線透過率、鉛筆硬度、分光透過率、波長380nm~500nmの平均光吸収率、及びb*値の測定方法、並びに、ギラツキ、防眩性能、及び色再現性の評価方法を説明する。 First, the volume average particle diameter, the CV value, and the refractive index measurement method of the resin particles used in the following examples and comparative examples, and the haze and totality of the optical films obtained in the following examples and comparative examples. A method for measuring light transmittance, pencil hardness, spectral transmittance, average light absorption at a wavelength of 380 nm to 500 nm, and b * value, and a method for evaluating glare, antiglare performance, and color reproducibility will be described.
 〔樹脂粒子及びシリカ粒子の体積平均粒子径の測定方法〕
 樹脂粒子及びシリカ粒子の体積平均粒子径の測定は、レーザー回折・散乱方式粒度分布測定装置(ベックマン・コールター株式会社製「LS 13 320」)およびユニバーサルリキッドサンプルモジュールによって行った。
[Measurement method of volume average particle diameter of resin particles and silica particles]
The volume average particle size of the resin particles and silica particles was measured using a laser diffraction / scattering type particle size distribution analyzer (“LS 13 320” manufactured by Beckman Coulter, Inc.) and a universal liquid sample module.
 測定には、測定対象の樹脂粒子又はシリカ粒子(以下、「測定対象粒子」と呼ぶ)0.1gを0.1重量%ノニオン性界面活性剤水溶液10m1中にタッチミキサー(ヤマト科学株式会社製、「TOUCHMIXER MT-31」)および超音波洗浄器(株式会社ヴェルヴォクリーア社製、「ULTRASONIC CLEANER VS-150」)を用いて分散させ、分散液としたものを使用する。 For measurement, 0.1 g of resin particles or silica particles to be measured (hereinafter referred to as “measuring particles”) in 10 ml of a 0.1 wt% nonionic surfactant aqueous solution (manufactured by Yamato Scientific Co., Ltd., Disperse using a “TOUCMIXER MT-31”) and an ultrasonic cleaner (“ULTRASONIC CLEANER VS-150” manufactured by Velvo Crea Co., Ltd.) to obtain a dispersion.
 また、上記のレーザー回折・散乱方式粒度分布測定装置のソフトウェアにおいて、ミー理論に基づいた評価のために必要となる以下に示す光学的なパラメータを、設定する。 Also, the following optical parameters required for evaluation based on the Mie theory are set in the software of the laser diffraction / scattering type particle size distribution measuring apparatus.
 <パラメータ>
 液体(ノニオン性界面活性剤水溶液)の屈折率B.I.の実部=1.333(水の屈折率)
 固体(測定対象粒子)の屈折率の実部=測定対象粒子の屈折率
 固体の屈折率の虚部=0
 固体の形状因子=1
 また、測定条件及び測定手順は、以下の通りとする。
<Parameter>
Refractive index of liquid (nonionic surfactant aqueous solution) I. Real part = 1.333 (refractive index of water)
Real part of refractive index of solid (particle to be measured) = refractive index of particle to be measured Imaginary part of refractive index of solid = 0
Solid form factor = 1
Measurement conditions and measurement procedures are as follows.
 <測定条件>
 測定時間:60秒
 測定回数:1
 ポンプ速度:50~60%
 PIDS相対濃度:40~55%程度
 超音波出力:8
 <測定手順>
 オフセット測定、光軸調整、バックグラウンド測定を行った後、上記した分散液を、スポイトを用いて、上記のレーザー回折・散乱方式粒度分布測定装置のユニバーサルリキッドサンプルモジュール内へ注入する。上記のユニバーサルリキッドサンプルモジュール内の濃度が上記のPIDS相対濃度に達し、上記のレーザー回折・散乱方式粒度分布測定装置のソフトウェアが「OK」と表示したら、測定を開始する。なお、測定は、ユニバーサルリキッドサンプルモジュール中でポンプ循環を行うことによって上記測定対象粒子を分散させた状態、かつ、超音波ユニット(ULM ULTRASONIC MODULE)を起動させた状態で行う。
<Measurement conditions>
Measurement time: 60 seconds Number of measurements: 1
Pump speed: 50-60%
PIDS relative concentration: about 40-55% Ultrasonic output: 8
<Measurement procedure>
After performing offset measurement, optical axis adjustment, and background measurement, the above-described dispersion liquid is injected into the universal liquid sample module of the laser diffraction / scattering particle size distribution measuring apparatus using a dropper. When the concentration in the universal liquid sample module reaches the PIDS relative concentration and the software of the laser diffraction / scattering particle size distribution measuring apparatus displays “OK”, the measurement is started. The measurement is performed in a state where the particles to be measured are dispersed by performing pump circulation in the universal liquid sample module and an ultrasonic unit (ULM ULTRASONIC MODULE) is activated.
 また、測定は室温で行い、得られたデータから、上記のレーザー回折・散乱方式粒度分布測定装置のソフトウェアにより、上記の予め設定された光学的なパラメータを用いて、測定対象粒子の体積平均粒子径(体積基準の粒度分布における算術平均径)を算出する。 In addition, the measurement is performed at room temperature, and from the obtained data, the software of the laser diffraction / scattering type particle size distribution measuring apparatus is used to set the volume average particle size of the measurement target particle using the preset optical parameters. The diameter (arithmetic mean diameter in the volume-based particle size distribution) is calculated.
 なお、測定対象粒子が樹脂粒子である場合には、測定対象粒子の屈折率として、樹脂粒子を構成する重合体の屈折率を入力し測定を実施した。例えば、樹脂粒子を構成する重合体がポリメタクリル酸メチル又はポリメタクリル酸エチルである場合には、既知であるポリメタクリル酸メチル及びポリメタクリル酸エチルの屈折率1.495を入力し、樹脂粒子を構成する重合体がポリスチレンである場合には、既知であるポリスチレンの屈折率1.595を入力した。測定対象粒子がシリカ粒子である場合には、測定対象粒子の屈折率として、既知であるシリカ粒子の屈折率1.45を入力し測定を実施した。 When the measurement target particle is a resin particle, the measurement was performed by inputting the refractive index of the polymer constituting the resin particle as the refractive index of the measurement target particle. For example, when the polymer constituting the resin particles is polymethyl methacrylate or polyethyl methacrylate, the known refractive index 1.495 of polymethyl methacrylate and polyethyl methacrylate is input, and the resin particles are In the case where the constituting polymer is polystyrene, a known polystyrene refractive index of 1.595 was input. When the particles to be measured are silica particles, measurement was performed by inputting a known refractive index of 1.45 of the silica particles as the refractive index of the particles to be measured.
 〔樹脂粒子及びシリカ粒子のCV値の測定方法〕
 樹脂粒子及びシリカ粒子のCV値は、前述の樹脂粒子及びシリカ粒子の体積平均粒子径の測定方法によって測定された体積基準の粒度分布の標準偏差(σ)及び体積平均粒子径(D)から、以下の式
 CV値(%)=(σ/D)×100
により算出した。
[Measurement method of CV value of resin particles and silica particles]
The CV value of the resin particles and silica particles is obtained from the standard deviation (σ) and the volume average particle size (D) of the volume-based particle size distribution measured by the volume average particle size measurement method of the resin particles and silica particles. The following formula CV value (%) = (σ / D) × 100
Calculated by
 〔樹脂粒子の屈折率の測定方法〕
 樹脂粒子の屈折率測定はべッケ法により行った。このべッケ法による屈折率測定においては、スライドガラス上に樹脂粒子を載せ、屈折液(CARGILLE社製:カーギル標準屈折液、屈折率1.41~1.60の屈折液を、屈折率差0.002刻みで複数準備)を滴下する。そして、樹脂粒子と屈折液をよく混ぜた後、下から、岩崎電気株式会社製の高圧ナトリウムランプ(型番「NX35」、中心波長589nm)の光を照射しながら、上部から光学顕微鏡により樹脂粒子の輪郭を観察した。そして、輪郭が見えない場合を、屈折液と樹脂粒子の屈折率が等しいと判断した。
[Measurement method of refractive index of resin particles]
The refractive index of the resin particles was measured by the Becke method. In this refractive index measurement by the Becke method, resin particles are placed on a slide glass, and a refractive liquid (CARGILLE standard: Cargill standard refractive liquid, a refractive liquid having a refractive index of 1.41 to 1.60 is mixed with a refractive index difference. A plurality of preparations are added dropwise in increments of 0.002. Then, after thoroughly mixing the resin particles and the refractive liquid, from the bottom, while irradiating light from a high-pressure sodium lamp (model number “NX35”, center wavelength 589 nm) manufactured by Iwasaki Electric Co., Ltd. The contour was observed. And when the outline was not visible, it was judged that the refractive index of a refractive liquid and a resin particle is equal.
 なお、光学顕微鏡による観察は、樹脂粒子の輪郭が確認できる倍率での観察であれば特に問題ないが、粒子径5μmの樹脂粒子であれば、500倍程度の倍率で観察することが適当である。前記操作により、樹脂粒子と屈折液の屈折率が近いほど樹脂粒子の輪郭が見えにくくなることから、樹脂粒子の輪郭が最も判りにくい屈折液の屈折率をその樹脂粒子の屈折率と等しいと判断した。 The observation with an optical microscope is not particularly problematic as long as it is an observation at a magnification at which the outline of the resin particles can be confirmed, but if the resin particles have a particle diameter of 5 μm, it is appropriate to observe at a magnification of about 500 times. . By the above operation, the closer the refractive index of the resin particle and the refractive liquid is, the more difficult it is to see the outline of the resin particle. Therefore, the refractive index of the refractive liquid in which the outline of the resin particle is most difficult to understand is determined to be equal to the refractive index of the resin particle did.
 また、屈折率差が0.002の2種類の屈折液の間で樹脂粒子の見え方に違いがない場合は、これら2種類の屈折液の屈折率の中間値を当該樹脂粒子の屈折率と判定した。例えば、屈折率1.554と1.556の屈折液それぞれで試験をしたときに、両屈折液で樹脂粒子の見え方に違いがない場合は、これら屈折液の屈折率の中間値1.555を樹脂粒子の屈折率と判定した。 In addition, when there is no difference in the appearance of the resin particles between the two types of refractive liquid having a refractive index difference of 0.002, the intermediate value of the refractive indexes of the two types of refractive liquid is set as the refractive index of the resin particles. Judged. For example, when the test is performed with each of the refractive liquids having the refractive indexes of 1.554 and 1.556, if there is no difference in the appearance of the resin particles between the two refractive liquids, an intermediate value of the refractive index of these refractive liquids is 1.555. Was determined as the refractive index of the resin particles.
 〔光学フィルムのヘイズ及び全光線透過率の測定方法〕
 光学フィルムのヘイズおよび全光線透過率を、日本電色工業株式会社製のヘイズメーター「NDH 4000」を使用して測定した。全光線透過率の測定はJIS K 7361-1に、ヘイズの測定はJIS K 7136にそれぞれ従って実施した。なお、表1に示すヘイズおよび全光線透過率は、2個の測定サンプルの測定値の平均値である(測定サンプル数n=2)。ヘイズの値は、光学フィルムを透過した光(透過光)の拡散性が高い程、高くなる。
[Measurement method of haze and total light transmittance of optical film]
The haze and total light transmittance of the optical film were measured using a haze meter “NDH 4000” manufactured by Nippon Denshoku Industries Co., Ltd. The total light transmittance was measured according to JIS K 7361-1, and the haze was measured according to JIS K 7136. In addition, the haze and total light transmittance which are shown in Table 1 are the average values of the measured value of two measurement samples (measurement sample number n = 2). The haze value increases as the diffusibility of light (transmitted light) transmitted through the optical film increases.
 〔光学フィルムの鉛筆硬度の測定方法〕
 光学フィルムにおける防眩層の表面に対して、JIS K 5600-5-4:1999で規定された鉛筆硬度試験(ただし、表面に対して鉛筆を押す荷重は、JIS K 5600-5-4:1999に規定された荷重(750g)ではなく4.9Nとした)を行い、傷跡を生じなかった最も硬い鉛筆の硬度を測定し、測定された硬度を鉛筆硬度とした。
[Method for measuring pencil hardness of optical film]
The pencil hardness test specified in JIS K 5600-5-4: 1999 is applied to the surface of the antiglare layer in the optical film (however, the load applied to the surface against the pencil is JIS K 5600-5-4: 1999). The load of 4.9 N instead of 750 g) was measured, and the hardness of the hardest pencil that did not cause scars was measured, and the measured hardness was taken as the pencil hardness.
 〔光学フィルムのギラツキの評価方法〕
 表示画面全体に緑色を表示した状態のタブレット型コンピュータ(商品名「iPad(登録商標) 2」、アップル社製)の表示画面上に、光学フィルムを、その防眩層の表面が表示画面側とは反対の側(空気側)を向くように載せ、光学フィルムが浮かないように光学フィルムの縁を指で軽く押さえながら、光学フィルムが載せられた表示画面のギラツキの有無を暗室にて目視観察し、以下の基準にてギラツキを評価した。
[Evaluation method of glare of optical film]
An optical film is placed on the display screen of a tablet computer (trade name “iPad (registered trademark) 2”, manufactured by Apple Inc.) with green displayed on the entire display screen, and the surface of the antiglare layer is on the display screen side. Put the optical film on the opposite side (air side) and lightly press the edge of the optical film with your finger to prevent the optical film from floating, and visually observe the display screen with the optical film on the screen in a dark room. The glare was evaluated according to the following criteria.
 (ギラツキの評価基準)
 ギラツキが見えない  :◎(極めて良好)
 ギラツキが僅かに見える:○(良好)
 ギラツキが多く見える :×(不良)
 〔光学フィルムの防眩性能の評価方法〕
 むき出しの直管形蛍光灯(8000cd/m2)をその光が45°の入射角で光学フィルムに投射するように配置し、-45°の方向から目視観察した際の蛍光灯の映り込みの程度を以下の基準で評価し、この評価を防眩性能の評価とした。
(Evaluation criteria for glare)
Glare is not visible: ◎ (very good)
Slight glare: ○ (Good)
A lot of glare can be seen: x (defect)
[Evaluation method of anti-glare performance of optical film]
A bare straight tube fluorescent lamp (8000 cd / m 2 ) was placed so that the light was projected onto the optical film at an incident angle of 45 °, and the reflection of the fluorescent lamp when visually observed from the -45 ° direction. The degree was evaluated according to the following criteria, and this evaluation was regarded as the evaluation of antiglare performance.
 (蛍光灯の映り込みの評価基準)
 蛍光灯の輪郭が全くわからない程、映り込まない  :◎(極めて良好)
 蛍光灯の輪郭がわずかにわかるが、殆ど映り込まない:○(良好)
 蛍光灯はぼけているが、若干映り込む       :△(やや不良)
 蛍光灯が完全に映り込む             :×(不良)
 〔光学フィルムの色再現性の評価方法〕
 表示画面全体に緑色を表示した状態のタブレット型コンピュータ(商品名「iPad(登録商標) 2」、アップル社製)の表示画面上に、光学フィルムを、その防眩層の表面が表示画面側とは反対の側(空気側)を向くように載せた。そして、光学フィルムが浮かないように光学フィルムの縁を指で軽く押さえながら、タブレット型コンピュータによって表示されている映像の色再現性を暗室にて目視観察し、以下の基準にて映像の色再現性を評価した。
(Evaluation criteria for reflection of fluorescent light)
Not reflected so much that the outline of the fluorescent lamp is not understood: ◎ (very good)
The outline of the fluorescent lamp can be seen slightly, but it is hardly reflected: ○ (Good)
Fluorescent light is blurred but slightly reflected: △ (somewhat bad)
Fluorescent light is reflected completely: × (defect)
[Evaluation method of color reproducibility of optical film]
An optical film is placed on the display screen of a tablet computer (trade name “iPad (registered trademark) 2”, manufactured by Apple Inc.) with green displayed on the entire display screen, and the surface of the antiglare layer is on the display screen side. Was placed facing the opposite side (air side). The color reproducibility of the image displayed by the tablet computer is visually observed in a dark room while lightly pressing the edge of the optical film with a finger so that the optical film does not float. Sex was evaluated.
 (映像の色再現性の評価基準)
 色再現性が良好:◎
 色再現性が良好の場合と比較して色再現性がわずかに変化:○
 色再現性が不良:×
 〔光学フィルムの分光透過率、並びに、波長380nm~500nmの平均光透過率及び平均光吸収率の測定方法〕
 4cm×4cmの平面サイズにカットした光学フィルムをセルに挟み込み、紫外可視分光光度計(株式会社島津製作所製、商品名「UV-2450」)を用いて波長300~800nmの分光透過率を測定した。
(Evaluation criteria for video color reproducibility)
Good color reproducibility: ◎
Slight change in color reproducibility compared with good color reproducibility: ○
Poor color reproducibility: ×
[Measurement Method of Spectral Transmittance of Optical Film, and Average Light Transmittance and Average Light Absorbance of Wavelengths of 380 to 500 nm]
An optical film cut to a plane size of 4 cm × 4 cm was sandwiched between cells, and spectral transmittance at a wavelength of 300 to 800 nm was measured using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, trade name “UV-2450”). .
 測定により得られた分光透過率曲線における、380nm~500nmの波長領域全体(380nm~500nmの波長領域における、透過率100%の線と横軸とに挟まれた部分)の面積をAとし、380nm~500nmの波長領域における光学フィルムの透過率の面積(380nm~500nmの波長領域における、光学フィルムの分光透過率曲線と横軸とに挟まれた部分の面積)をBとする。これらA及びBから下記式
 平均光透過率(%)=(B/A)×100
 平均光吸収率(%)={(A-B)/A)}×100
により波長380nm~500nmの平均光透過率及び平均光吸収率を算出した。
In the spectral transmittance curve obtained by the measurement, the area of the entire wavelength region of 380 nm to 500 nm (the portion sandwiched between the 100% transmittance line and the horizontal axis in the wavelength region of 380 nm to 500 nm) is A, and 380 nm Let B be the area of the transmittance of the optical film in the wavelength region of ˜500 nm (the area of the portion sandwiched between the spectral transmittance curve of the optical film and the horizontal axis in the wavelength region of 380 nm to 500 nm). From these A and B, the following formula: Average light transmittance (%) = (B / A) × 100
Average light absorption rate (%) = {(AB) / A)} × 100
Was used to calculate the average light transmittance and the average light absorption at a wavelength of 380 nm to 500 nm.
 〔光学フィルムのb*値の測定方法〕
 光学フィルムのb*値は、色彩色差計「CR-400」(コニカミノルタオプティクス株式会社製)及びデータプロセッサ「DP-400」(コニカミノルタオプティクス株式会社製)を用いて測定した。具体的には、まず、色彩色差計「CR-400」とデータプロセッサ「DP-400」とを接続した。次いで、色彩色差計「CR-400」及びデータプロセッサ「DP-400」の電源を入れた後、データプロセッサ「DP-400」の「表色系」ボタンを押してYxy表色系の表示画面に設定した。次に、色彩色差計「CR-400」に付属の白色校正板(X=84.5、x=0.3159、y=0.3227)に色彩色差計「CR-400」の測定部位を当てて、データプロセッサ「DP-400」の「校正」ボタンを押して校正を行った。校正の後、白色校正板上に光学フィルムを置き、光学フィルムに色彩色差計「CR-400」の測定部位を当てて測定を行い、データプロセッサ「DP-400」の「表色系」ボタンを押してL***表色系の表示画面に切り替え、L***表色系のb*値を読み取った。
[Measurement method of b * value of optical film]
The b * value of the optical film was measured using a color difference meter “CR-400” (manufactured by Konica Minolta Optics) and a data processor “DP-400” (manufactured by Konica Minolta Optics). Specifically, first, a color difference meter “CR-400” and a data processor “DP-400” were connected. Next, after turning on the color difference meter “CR-400” and data processor “DP-400”, press the “color system” button on the data processor “DP-400” to set the display screen of the Yxy color system. did. Next, the measurement site of the color difference meter “CR-400” is applied to the white calibration plate (X = 84.5, x = 0.3159, y = 0.3227) attached to the color difference meter “CR-400”. The calibration was performed by pressing the “calibration” button of the data processor “DP-400”. After calibration, place an optical film on the white calibration plate, apply the measurement part of the color difference meter “CR-400” to the optical film, perform measurement, and click the “color system” button on the data processor “DP-400”. switch to the L * a * b * display screen of the color system press, read the b * value of the L * a * b * color system.
 〔実施例1〕
 (防眩層形成用塗料の製造)
 樹脂粒子としての体積平均粒子径が0.5μmでCV値が12%の架橋ポリメタクリル酸メチル粒子(メタクリル酸メチル80重量%及びメタクリル酸アリル20重量%からなる単量体混合物の重合体、屈折率1.495)5重量部(バインダー樹脂100重量部に対して6重量部)と、バインダー樹脂としてのペンタエリスリトールトリアクリレート(PETA)85重量部と、光重合開始剤としての1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア(登録商標)184」、BASFジャパン株式会社製)0.5重量部と、溶剤としてのトルエン68重量部とを混合し、ハードコート塗料である防眩層形成用塗料を得た。
[Example 1]
(Manufacture of antiglare layer-forming coatings)
Crosslinked polymethyl methacrylate particles having a volume average particle diameter of 0.5 μm as resin particles and a CV value of 12% (polymer of monomer mixture comprising 80% by weight of methyl methacrylate and 20% by weight of allyl methacrylate, refraction 1.495) 5 parts by weight (6 parts by weight with respect to 100 parts by weight of the binder resin), 85 parts by weight of pentaerythritol triacrylate (PETA) as the binder resin, and 1-hydroxycyclohexylphenyl as the photopolymerization initiator Mixing 0.5 parts by weight of a ketone (trade name “Irgacure (registered trademark) 184”, manufactured by BASF Japan Ltd.) and 68 parts by weight of toluene as a solvent, Obtained.
 (色素含有層形成用塗料の製造)
 バインダー樹脂としてのペンタエリスリトールトリアクリレート(PETA)85重量部と、第1の色素としての油溶性色素「DAA51」(山田化学工業株式会社製)0.17重量部(バインダー樹脂100重量部に対して0.2重量部)と、光重合開始剤としての1-ヒドロキシ-シクロヘキシルフェニルケトン(商品名「イルガキュア(登録商標)184」、BASFジャパン株式会社製)0.5重量部と、溶剤としてのトルエン68重量部とを混合し、ハードコート塗料である色素含有層形成用塗料を得た。
(Manufacture of pigment-containing layer-forming paints)
85 parts by weight of pentaerythritol triacrylate (PETA) as a binder resin and 0.17 parts by weight of an oil-soluble dye “DAA51” (manufactured by Yamada Chemical Co., Ltd.) as a first dye (based on 100 parts by weight of the binder resin) 0.2 part by weight), 0.5 part by weight of 1-hydroxy-cyclohexyl phenyl ketone (trade name “Irgacure (registered trademark) 184” manufactured by BASF Japan Ltd.) as a photopolymerization initiator, and toluene as a solvent 68 parts by weight of the mixture was mixed to obtain a pigment-containing layer-forming coating material that was a hard coat coating material.
 (光学フィルムの製造)
 光透過性の基材フィルムとしての厚さ125μmのPETフィルムの一方の面上に、前記防眩層形成用塗料をバーコーターNo.07(第一理化株式会社製)で塗工し、溶剤(トルエン)を蒸発させることにより前記防眩層形成用塗料を乾燥させた。その後、乾燥させた前記防眩層形成用塗料に対して紫外線照度3W/cm2の紫外線照射装置で紫外線を5分間照射することにより、乾燥させた前記防眩層形成用塗料を硬化させた。これにより、PETフィルムの一方の面上に、樹脂粒子に起因する凹凸を表面に有する防眩層がハードコート層として形成された。この防眩層の厚さは約10μmである。
(Manufacture of optical films)
On one side of a 125 μm thick PET film as a light-transmitting base film, the antiglare layer-forming paint was applied to a bar coater No. The antiglare layer-forming coating material was dried by coating with 07 (manufactured by Daiichi Rika Co., Ltd.) and evaporating the solvent (toluene). Thereafter, the dried coating material for forming an anti-glare layer was cured by irradiating the dried coating material for forming an anti-glare layer with ultraviolet rays for 5 minutes using an ultraviolet irradiation device having an ultraviolet illuminance of 3 W / cm 2 . Thereby, the anti-glare layer which has the unevenness | corrugation resulting from a resin particle on the surface on one surface of PET film was formed as a hard-coat layer. The antiglare layer has a thickness of about 10 μm.
 その後、PETフィルムの他方の面上に、色素含有層形成用塗料をバーコーターNo.07(第一理化株式会社製)で塗工し、溶剤(トルエン)を蒸発させることにより前記色素含有層形成用塗料を乾燥させた。その後、乾燥させた前記色素含有層形成用塗料に対して紫外線照度3W/cm2の紫外線照射装置で紫外線を5分間照射することにより、乾燥させた前記色素含有層形成用塗料を硬化させた。これにより、PETフィルムの他方の面上に色素含有層がハードコート層として形成され、防眩層と基材フィルムと色素含有層とからなる3層構造の光学フィルムが得られた。この色素含有層の厚さは約10μmである。得られた光学フィルムの分光透過率を図2に示す。 Thereafter, a pigment-containing layer-forming coating was applied to the other surface of the PET film with a bar coater No. The pigment-containing layer-forming coating material was dried by coating with 07 (manufactured by Daiichi Rika Co., Ltd.) and evaporating the solvent (toluene). Thereafter, the dried pigment-containing layer-forming coating material was cured by irradiating the dried pigment-containing layer-forming coating material with ultraviolet rays for 5 minutes using an ultraviolet irradiation device having an ultraviolet illuminance of 3 W / cm 2 . Thereby, the pigment | dye containing layer was formed as a hard-coat layer on the other surface of PET film, and the optical film of the 3 layer structure which consists of a glare-proof layer, a base film, and a pigment | dye containing layer was obtained. The thickness of the dye-containing layer is about 10 μm. The spectral transmittance of the obtained optical film is shown in FIG.
 〔実施例2〕
 防眩層形成用塗料に用いる樹脂粒子として、体積平均粒子径が0.5μmでCV値が12%の架橋ポリメタクリル酸メチル粒子に代えて、体積平均粒子径が5μmでCV値が10%の架橋ポリメタクリル酸メチル粒子(メタクリル酸メチル70重量%及びエチレングリコールメタクリレート30重量%からなる単量体混合物の重合体、屈折率1.495)を用いる以外は、実施例1と同様にして、光学フィルムを得た。得られた光学フィルムの分光透過率は、実施例1で得られた光学フィルムの分光透過率(図2)とほぼ同様であった。
[Example 2]
As resin particles used in the antiglare layer-forming coating material, instead of the crosslinked polymethyl methacrylate particles having a volume average particle diameter of 0.5 μm and a CV value of 12%, the volume average particle diameter is 5 μm and the CV value is 10%. In the same manner as in Example 1 except that cross-linked polymethyl methacrylate particles (polymer of a monomer mixture consisting of 70% by weight of methyl methacrylate and 30% by weight of ethylene glycol methacrylate, refractive index 1.495) were used. A film was obtained. The spectral transmittance of the obtained optical film was almost the same as the spectral transmittance (FIG. 2) of the optical film obtained in Example 1.
 〔実施例3〕
 防眩層形成用塗料に用いる樹脂粒子として、体積平均粒子径が0.5μmでCV値が12%の架橋ポリメタクリル酸メチル粒子に代えて、体積平均粒子径が1.0μmでCV値が11%の架橋ポリスチレン粒子(スチレン95重量%及びジビニルベンゼン5重量%からなる単量体混合物の重合体、屈折率1.595)を用いる以外は、実施例1と同様にして、光学フィルムを得た。得られた光学フィルムの分光透過率は、実施例1で得られた光学フィルムの分光透過率(図2)とほぼ同様であった。
Example 3
As resin particles used for the paint for forming the antiglare layer, instead of the crosslinked polymethyl methacrylate particles having a volume average particle diameter of 0.5 μm and a CV value of 12%, the volume average particle diameter is 1.0 μm and the CV value is 11 % Crosslinked polystyrene particles (monomer mixture polymer consisting of 95% by weight of styrene and 5% by weight of divinylbenzene, refractive index 1.595) were used in the same manner as in Example 1 to obtain an optical film. . The spectral transmittance of the obtained optical film was almost the same as the spectral transmittance (FIG. 2) of the optical film obtained in Example 1.
 〔実施例4〕
 色素含有層形成用塗料に用いる第1の色素として、「DAA51」0.17重量部に代えて油溶性色素「OIL YELLOW 186」(中央合成化学株式会社製)0.85重量部(バインダー樹脂100重量部に対して1.0重量部)を用いる以外は、実施例2と同様にして、光学フィルムを得た。得られた光学フィルムの分光透過率を図3に示す。
Example 4
As the first dye used in the paint for forming the dye-containing layer, instead of 0.17 part by weight of “DAA51”, 0.85 part by weight of oil-soluble dye “OIL YELLOW 186” (Chuo Synthetic Chemical Co., Ltd.) (binder resin 100) An optical film was obtained in the same manner as in Example 2 except that 1.0 part by weight) was used. The spectral transmittance of the obtained optical film is shown in FIG.
 〔実施例5〕
 第1の色素としての「OIL YELLOW 186」の使用量を0.425重量部(バインダー樹脂100重量部に対して0.5重量部)に変更する以外は、実施例4と同様にして、光学フィルムを得た。得られた光学フィルムの分光透過率を図4に示す。
Example 5
In the same manner as in Example 4, except that the amount of “OIL YELLOW 186” used as the first dye was changed to 0.425 parts by weight (0.5 parts by weight with respect to 100 parts by weight of the binder resin), A film was obtained. The spectral transmittance of the obtained optical film is shown in FIG.
 〔実施例6〕
 色素含有層形成用塗料に、青色の第2の色素としての油溶性色素「TAP-18」(波長593nmに極大吸収波長を有するテトラアザポルフィリン系化合物、山田化学工業株式会社製)0.17重量部(バインダー樹脂100重量部に対して0.2重量部、第1の色素100重量部に対して20重量部)を加える以外は、実施例4と同様にして、光学フィルムを得た。得られた光学フィルムの分光透過率を図5に示す。
Example 6
Oil-soluble dye "TAP-18" as a blue second dye for the pigment-containing layer forming coating (tetraazaporphyrin compound having a maximum absorption wavelength at a wavelength of 593 nm, manufactured by Yamada Chemical Co., Ltd.) 0.17 weight An optical film was obtained in the same manner as in Example 4, except that 0.2 part by weight (100 parts by weight of the binder resin and 20 parts by weight with respect to 100 parts by weight of the first dye) was added. The spectral transmittance of the obtained optical film is shown in FIG.
 〔実施例7〕
 第1の色素としての「DAA51」0.17重量部に代えて、第1の色素としての「DAA51」0.85重量部(バインダー樹脂100重量部に対して1.0重量部)及び第1の色素としての「NAZ24」(山田化学工業株式会社製、黄色の色素)0.43重量部(バインダー樹脂100重量部に対して0.5重量部)を用いる以外は、実施例1と同様にして、光学フィルムを得た。得られた光学フィルムの分光透過率を図6に示す。
Example 7
Instead of 0.17 parts by weight of “DAA51” as the first dye, 0.85 parts by weight of “DAA51” as the first dye (1.0 part by weight with respect to 100 parts by weight of the binder resin) and the first As in Example 1, except that 0.43 parts by weight of “NAZ24” (manufactured by Yamada Chemical Co., Ltd., yellow dye) (0.5 parts by weight with respect to 100 parts by weight of the binder resin) is used. Thus, an optical film was obtained. The spectral transmittance of the obtained optical film is shown in FIG.
 〔実施例8〕
 第1の色素としての「DAA51」0.17重量部に代えて、第1の色素としての「DAA51」1.7重量部(バインダー樹脂100重量部に対して2.0重量部)及び第1の色素としての「NAZ24」(山田化学工業株式会社製)0.85重量部(バインダー樹脂100重量部に対して1.0重量部)を用いる以外は、実施例1と同様にして、光学フィルムを得た。得られた光学フィルムの分光透過率を図7に示す。
Example 8
Instead of 0.17 parts by weight of “DAA51” as the first dye, 1.7 parts by weight of “DAA51” as the first dye (2.0 parts by weight with respect to 100 parts by weight of the binder resin) and the first Optical film in the same manner as in Example 1 except that 0.85 parts by weight (1.0 part by weight with respect to 100 parts by weight of the binder resin) is used as the pigment of “NAZ24” (manufactured by Yamada Chemical Co., Ltd.). Got. The spectral transmittance of the obtained optical film is shown in FIG.
 〔比較例1〕
 第1の色素としての「DAA51」を使用しないこと以外は、実施例1と同様にして、光学フィルムを得た。得られた光学フィルムの分光透過率を図8に示す。
[Comparative Example 1]
An optical film was obtained in the same manner as in Example 1 except that “DAA51” as the first dye was not used. The spectral transmittance of the obtained optical film is shown in FIG.
 〔比較例2〕
 樹脂粒子としての体積平均粒子径が5μmでCV値が10%の架橋ポリメタクリル酸メチル粒子を用いないこと以外は、実施例5と同様にして、光学フィルムを得た。得られた光学フィルムの分光透過率は、実施例5で得られた光学フィルムの分光透過率(図4)とほぼ同様であった。
[Comparative Example 2]
An optical film was obtained in the same manner as in Example 5 except that the crosslinked polymethyl methacrylate particles having a volume average particle diameter of 5 μm and a CV value of 10% as resin particles were not used. The spectral transmittance of the obtained optical film was almost the same as the spectral transmittance (FIG. 4) of the optical film obtained in Example 5.
 以上の実施例及び比較例で得られた光学フィルムについての、ヘイズ、全光線透過率、鉛筆硬度、波長380nm~500nmの平均光透過率、波長380nm~500nmの平均光吸収率、全光線透過率と波長380nm~500nmの平均光透過率との差((全光線透過率)-(波長380nm~500nmの平均光透過率))、及びb*値の測定結果、並びに、ギラツキ、防眩性能、及び色再現性の評価結果を、以上の実施例及び比較例における樹脂粒子の体積平均粒子径、CV値、屈折率、及び添加量、並びに、色素の種類及び添加量と共に、表1に示す。 About the optical films obtained in the above Examples and Comparative Examples, haze, total light transmittance, pencil hardness, average light transmittance at wavelengths of 380 nm to 500 nm, average light absorption at wavelengths of 380 nm to 500 nm, total light transmittance And the difference between the average light transmittance at a wavelength of 380 nm to 500 nm ((total light transmittance) − (average light transmittance at a wavelength of 380 nm to 500 nm)) and b * value, as well as glare and antiglare performance, The evaluation results of color reproducibility are shown in Table 1 together with the volume average particle diameter, CV value, refractive index, and addition amount of the resin particles in the above Examples and Comparative Examples, and the type and addition amount of the dye.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1と比較例1との比較から分かるように、実施例1の光学フィルムは、色素を含まない比較例1の光学フィルムの全光線透過率に近い良好な全光線透過率を維持し、かつ色素を含まない比較例1の光学フィルムと同等の良好な色再現性を維持しながら、波長380nm~500nmの平均光吸収率を顕著に向上させることができ、優れたブルーライト低減効果を有していた。 As can be seen from the comparison between Example 1 and Comparative Example 1, the optical film of Example 1 maintains a good total light transmittance close to the total light transmittance of the optical film of Comparative Example 1 containing no pigment, In addition, while maintaining good color reproducibility equivalent to that of the optical film of Comparative Example 1 containing no pigment, the average light absorptance at a wavelength of 380 nm to 500 nm can be remarkably improved, and an excellent blue light reduction effect can be obtained. Was.
 また、実施例5と比較例2との比較から分かるように、実施例5の光学フィルムは、樹脂粒子もシリカ粒子も含まない比較例2の光学フィルムの全光線透過率に近い良好な全光線透過率を維持し、かつ樹脂粒子もシリカ粒子も含まない比較例2の光学フィルムと同等の良好な色再現性を維持しながら、防眩性能を顕著に向上させることができた。 Further, as can be seen from the comparison between Example 5 and Comparative Example 2, the optical film of Example 5 has a good total light beam that is close to the total light transmittance of the optical film of Comparative Example 2 that does not contain resin particles or silica particles. While maintaining the transmittance and maintaining good color reproducibility equivalent to that of the optical film of Comparative Example 2 containing neither resin particles nor silica particles, the antiglare performance could be remarkably improved.
 また、実施例4と実施例6との比較から分かるように、青色の第2の色素を含む実施例6の光学フィルムは、青色の第2の色素を含まない実施例4の光学フィルムの全光線透過率に近い良好な全光線透過率を維持し、かつ青色の第2の色素を含まない実施例4の光学フィルムと同等の良好な色再現性を維持しながら、b*値を低減させることができ、したがって黄色味を抑制することができた。 Further, as can be seen from the comparison between Example 4 and Example 6, the optical film of Example 6 containing the blue second dye is the same as the optical film of Example 4 containing no blue second dye. The b * value is reduced while maintaining good total light transmittance close to the light transmittance and maintaining good color reproducibility equivalent to that of the optical film of Example 4 containing no blue second dye. And thus the yellowness could be suppressed.
 また、実施例7と実施例8との比較から分かるように、波長380nm~500nmの平均光吸収率が40%以下である実施例7の光学フィルムは、波長380nm~500nmの平均光吸収率が40%を超える実施例8の光学フィルムと比較して、色再現性を向上させることができた。 Further, as can be seen from the comparison between Example 7 and Example 8, the optical film of Example 7 having an average light absorption rate of 40% or less at a wavelength of 380 nm to 500 nm has an average light absorption rate of a wavelength of 380 nm to 500 nm. Compared with the optical film of Example 8 exceeding 40%, the color reproducibility could be improved.
 また、実施例1~8の光学フィルムは、良好なヘイズ及び鉛筆硬度を有し、ギラツキの発生を防止できた。 Further, the optical films of Examples 1 to 8 had good haze and pencil hardness, and could prevent the occurrence of glare.
 〔実施例9〕
 樹脂粒子としての架橋ポリメタクリル酸メチル粒子5重量部に代えて、体積平均粒子径が8μmでCV値が18%のシリカ粒子1.6重量部(バインダー樹脂100重量部に対して1.9重量部)と、体積平均粒子径が2μmでCV値が10%のシリカ粒子7.0重量部(バインダー樹脂100重量部に対して8.2重量部)との混合物(混合物のCV値は30%)を用い、第1の色素として「DAA51」0.85重量部及び「NAZ24」0.43重量部に代えて「YELLOW 93」(C.I.ソルベントイエロー93)1.2重量部(バインダー樹脂100重量部に対して1.5重量部)1.2重量部を使用し、青色の第2の色素としての「NEO SUPER BLUE C-558」(中央合成化学株式会社製)0.9重量部(バインダー樹脂100重量部に対して1.1重量部、第1の色素100重量部に対して73重量部)を追加する以外は、実施例7と同様にして、光学フィルムを得た。得られた光学フィルムの分光透過率を図12に示す。
Example 9
Instead of 5 parts by weight of crosslinked polymethyl methacrylate particles as resin particles, 1.6 parts by weight of silica particles having a volume average particle diameter of 8 μm and a CV value of 18% (1.9 parts by weight with respect to 100 parts by weight of binder resin) Part) and 7.0 parts by weight of silica particles having a volume average particle diameter of 2 μm and a CV value of 10% (8.2 parts by weight with respect to 100 parts by weight of the binder resin) (the CV value of the mixture is 30%) ), And instead of 0.85 parts by weight of “DAA51” and 0.43 parts by weight of “NAZ24”, 1.2 parts by weight of “YELLOW 93” (CI Solvent Yellow 93) (binder resin) 1.2 parts by weight) (1.5 parts by weight with respect to 100 parts by weight), 0.9 parts by weight of “NEO SUPER BLUE C-558” (manufactured by Chuo Synthetic Chemical Co., Ltd.) as the second blue dye (by 1.1 parts by weight to Zehnder resin 100 parts by weight, except for adding 73 parts by weight) relative to the first dye 100 parts by weight, in the same manner as in Example 7, to obtain an optical film. The spectral transmittance of the obtained optical film is shown in FIG.
 〔実施例10〕
 第1の色素及び第2の色素に加えて、紫外可視光吸収剤としての「アデカスタブ(登録商標)LA-F70」(株式会社ADEKA製、2,4,6-トリス(2-hydroxy-4-ヘキシロキシ-3-メチルフェニル)-1,3,5-トリアジン)1重量部を用いる以外は、実施例9と同様にして、光学フィルムを得た。得られた光学フィルムの分光透過率を図13に示す。
Example 10
In addition to the first dye and the second dye, “ADEKA STAB (registered trademark) LA-F70” as an ultraviolet-visible light absorber (manufactured by ADEKA Corporation, 2,4,6-tris (2-hydroxy-4- An optical film was obtained in the same manner as in Example 9 except that 1 part by weight of hexyloxy-3-methylphenyl) -1,3,5-triazine) was used. The spectral transmittance of the obtained optical film is shown in FIG.
 これら実施例で得られた光学フィルムについての、ヘイズ、全光線透過率、鉛筆硬度、波長380nm~500nmの平均光透過率、波長380nm~500nmの平均光吸収率、全光線透過率と波長380nm~500nmの平均光透過率との差((全光線透過率)-(波長380nm~500nmの平均光透過率))、及びb*値の測定結果、並びに、ギラツキ、防眩性能、及び色再現性の評価結果を、表2に示す。 About the optical films obtained in these examples, haze, total light transmittance, pencil hardness, average light transmittance at a wavelength of 380 nm to 500 nm, average light absorption at a wavelength of 380 nm to 500 nm, total light transmittance and a wavelength of 380 nm Difference from the average light transmittance of 500 nm ((total light transmittance) − (average light transmittance at a wavelength of 380 nm to 500 nm)) and b * value, as well as glare, anti-glare performance, and color reproducibility The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例9・10と比較例1との比較から分かるように、実施例9・10の光学フィルムは、色素を含まない比較例1の光学フィルムと同等の良好な色再現性を維持し、かつ色素を含まない比較例1の光学フィルムよりも高い全光線透過率を確保しながら、波長380nm~500nmの平均光吸収率を顕著に向上させることができ、優れたブルーライト低減効果を有していた。 As can be seen from the comparison between Examples 9 and 10 and Comparative Example 1, the optical films of Examples 9 and 10 maintain good color reproducibility equivalent to the optical film of Comparative Example 1 containing no pigment, and While ensuring a higher total light transmittance than the optical film of Comparative Example 1 that does not contain a dye, the average light absorptance at wavelengths of 380 nm to 500 nm can be remarkably improved and has an excellent blue light reduction effect. It was.
 また、実施例9・10と比較例2との比較から分かるように、実施例9・10の光学フィルムは、樹脂粒子もシリカ粒子も含まない比較例2の光学フィルムの全光線透過率に近い良好な全光線透過率を維持し、かつ樹脂粒子もシリカ粒子も含まない比較例2の光学フィルムと同等の良好な色再現性を維持しながら、防眩性能を顕著に向上させることができた。 Further, as can be seen from the comparison between Examples 9 and 10 and Comparative Example 2, the optical films of Examples 9 and 10 are close to the total light transmittance of the optical film of Comparative Example 2 that does not contain resin particles or silica particles. While maintaining good total light transmittance and maintaining good color reproducibility equivalent to the optical film of Comparative Example 2 containing neither resin particles nor silica particles, the anti-glare performance could be remarkably improved. .
 また、実施例2と実施例9・10との比較から分かるように、シリカ粒子を含む実施例9・10の光学フィルムは、樹脂粒子を含む実施例2の光学フィルムと同等の高い波長380nm~500nmの平均光吸収率を維持しながら、b*値を低減でき、光学フィルムの黄色味を抑制できた。 Further, as can be seen from the comparison between Example 2 and Examples 9 and 10, the optical films of Examples 9 and 10 containing silica particles have a wavelength as high as 380 nm, which is equivalent to the optical film of Example 2 containing resin particles. While maintaining an average light absorption rate of 500 nm, the b * value could be reduced and the yellowness of the optical film could be suppressed.
[規則91に基づく訂正 09.04.2014] 
 また、実施例9と実施例10との比較から分かるように、紫外可視光吸収剤を含む実施例10の光学フィルムは、紫外可視光吸収剤を含まない実施例9の光学フィルムと比較して波長380nm~500nmの平均光吸収率をさらに向上させることができ、さらに優れたブルーライト低減効果を有していた。
[Correction 09.04.2014 based on Rule 91]
Moreover, as can be seen from the comparison between Example 9 and Example 10, the optical film of Example 10 containing the ultraviolet-visible light absorber is compared with the optical film of Example 9 containing no ultraviolet-visible light absorber. The average light absorptance at a wavelength of 380 nm to 500 nm could be further improved, and the blue light reducing effect was further excellent.
 〔実施例11〕
 本実施例では、表示画面と該表示画面を囲む枠とを有するディスプレイに対して貼り付けられる図10及び図11に示す実施形態の光学フィルムを作製した。
Example 11
In this example, the optical film of the embodiment shown in FIG. 10 and FIG. 11 attached to a display having a display screen and a frame surrounding the display screen was produced.
 まず、光透過性の基材フィルムとして厚さ125μmのPETフィルムに代えて厚さ100μmのPETフィルムを用い、得られる防眩層の厚さが約8μmとなるように実施例1に記載の防眩層形成用塗料を塗工する以外は実施例1と同様にして、防眩層を形成した。 First, a PET film with a thickness of 100 μm was used instead of a PET film with a thickness of 125 μm as a light-transmitting base film, and the antiglare layer described in Example 1 was obtained so that the resulting antiglare layer had a thickness of about 8 μm. An antiglare layer was formed in the same manner as in Example 1 except that the coating for forming the glare layer was applied.
 次に、バインダー樹脂としての反応性オリゴマー(商品名「CN985B88」、脂肪族ウレタンアクリレート、2官能、米国サートマー社製)を20重量部及び反応性モノマー(商品名「SR238F」、1,6-ヘキサンジオールジアクリレート、2官能、米国サートマー社製)69重量部と、第1の色素としての油溶性色素「OIL YELLOW 186」(中央合成化学株式会社製)0.85重量部(バインダー樹脂100重量部に対して1.0重量部)と、青色の第2の色素としての油溶性色素「TAP-18」(山田化学工業株式会社製)0.17重量部(バインダー樹脂100重量部に対して0.2重量部、第1の色素100重量部に対して20重量部)と、光重合開始剤としての1-{4-(2-ヒドロキシエトキシ)-フェニル}-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(ヒドロキシケトン類、BASFジャパン株式会社製、商品名「イルガキュア(登録商標)2959」)5重量部と、溶剤としてのトルエン68重量部とを混合し、色素含有層形成用塗料を得た。 Next, 20 parts by weight of a reactive oligomer (trade name “CN985B88”, aliphatic urethane acrylate, bifunctional, manufactured by Sartomer, USA) as a binder resin and a reactive monomer (trade name “SR238F”, 1,6-hexane) 69 parts by weight of diol diacrylate, bifunctional, manufactured by Sartomer, USA) and 0.85 parts by weight of oil-soluble dye “OIL YELLOW 186” (manufactured by Chuo Synthetic Chemical Co., Ltd.) as the first dye (100 parts by weight of binder resin) 1.0 part by weight with respect to 100 parts by weight of oil-soluble dye “TAP-18” (manufactured by Yamada Chemical Co., Ltd.) as the second blue dye. 2 parts by weight, 20 parts by weight with respect to 100 parts by weight of the first dye) and 1- {4- (2-hydroxyethoxy) as a photopolymerization initiator Phenyl} -2-hydroxy-2-methyl-1-propan-1-one (hydroxy ketones, manufactured by BASF Japan Ltd., trade name “Irgacure (registered trademark) 2959”) and toluene 68 as a solvent By mixing with parts by weight, a paint for forming a dye-containing layer was obtained.
 得られた色素含有層形成用塗料を、PETフィルムの他方の面(裏面)上における前記ディスプレイの表示画面に対応する部分にのみ、インクジェットを用いて印刷(塗工)し、紫外線照度3W/cm2の紫外線照射装置で紫外線を5分間照射することにより、乾燥させた前記防眩層形成用塗料を硬化させた。これにより、PETフィルムの他方の面上に厚さ約10μmの色素含有層が形成された。 The obtained pigment-containing layer-forming coating material was printed (coated) with an ink jet only on the portion corresponding to the display screen of the display on the other surface (back surface) of the PET film, and the ultraviolet illuminance was 3 W / cm. The dried antiglare layer-forming coating material was cured by irradiating ultraviolet rays for 5 minutes with the ultraviolet irradiation device 2 . As a result, a pigment-containing layer having a thickness of about 10 μm was formed on the other surface of the PET film.
 その後、色素含有層、及び色素含有層が形成されなかった部分のPETフィルムの他方の面(裏面)上にシリコーン系粘着剤を厚さ50μmとなるようにコーティングすることで、粘着剤層を形成した。これにより、目的とする、図11に示す4層構造を備える光学フィルムが得られた。得られた光学フィルムの分光透過率を図14に示す。 Then, a pressure-sensitive adhesive layer is formed by coating the other surface (back surface) of the pigment-containing layer and the portion of the PET film where the pigment-containing layer is not formed with a silicone pressure-sensitive adhesive to a thickness of 50 μm. did. Thereby, the target optical film provided with the 4 layer structure shown in FIG. 11 was obtained. The spectral transmittance of the obtained optical film is shown in FIG.
 本発明の光学フィルムは、タブレット型パーソナルコンピュータの表示部、携帯電話機(例えばスマートフォン)の表示部、ノート型パーソナルコンピュータの表示部、パーソナルコンピュータ用モニター等として使用されるディスプレイの表示画面上に配設される防眩フィルムや保護フィルム等として利用でき、特にLEDを光源として備える液晶ディスプレイ等のディスプレイの表示画面上に配設される防眩フィルム又は保護フィルムとして有用である。また、本発明の光学フィルムは、メガネのレンズ上に配設される防眩フィルム又は保護フィルムとしても有用である。 The optical film of the present invention is disposed on a display screen of a display used as a display unit of a tablet personal computer, a display unit of a mobile phone (for example, a smart phone), a display unit of a notebook personal computer, a monitor for a personal computer, or the like. It is useful as an anti-glare film or a protective film that is disposed on a display screen of a display such as a liquid crystal display equipped with an LED as a light source. The optical film of the present invention is also useful as an antiglare film or a protective film disposed on a lens of eyeglasses.
 1 光透過性の基材フィルム
 2 防眩層
 3 色素含有層
 4 粘着剤層
DESCRIPTION OF SYMBOLS 1 Light-transmitting base film 2 Anti-glare layer 3 Dye containing layer 4 Adhesive layer

Claims (11)

  1.  光透過性の基材フィルムと、
     前記基材フィルムの少なくとも一方の面上に形成された、樹脂粒子及びシリカ粒子の少なくとも一方を含む防眩層とを備える光学フィルムであって、
     色素を含み、
     前記光学フィルムの波長380nm~500nmの平均光吸収率が5%以上であり、
     前記光学フィルムの全光線透過率が、前記光学フィルムの波長380nm~500nmの平均光透過率よりも高いことを特徴とする光学フィルム。
    A light transmissive substrate film;
    An optical film comprising an antiglare layer formed on at least one surface of the base film and including at least one of resin particles and silica particles,
    Contains pigments,
    The optical film has an average light absorptance of 5% or more at a wavelength of 380 nm to 500 nm,
    An optical film, wherein the optical film has a total light transmittance higher than an average light transmittance at a wavelength of 380 nm to 500 nm of the optical film.
  2.  前記光学フィルムの波長380nm~500nmの平均光吸収率が45%以下であることを特徴とする請求項1に記載の光学フィルム。 2. The optical film according to claim 1, wherein the optical film has an average light absorptance of 45% or less at a wavelength of 380 nm to 500 nm.
  3.  前記樹脂粒子が、(メタ)アクリル系単量体およびスチレン系単量体の少なくとも一方の重合体からなる樹脂粒子であることを特徴とする請求項1又は2に記載の光学フィルム。 3. The optical film according to claim 1, wherein the resin particles are resin particles made of at least one of a (meth) acrylic monomer and a styrene monomer.
  4.  前記樹脂粒子の体積平均粒子径が0.3~10μmであり、
     前記樹脂粒子の粒子径の変動係数が20%以下であることを特徴とする請求項1~3の何れか1項に記載の光学フィルム。
    The volume average particle diameter of the resin particles is 0.3 to 10 μm,
    The optical film according to any one of claims 1 to 3, wherein a coefficient of variation in particle diameter of the resin particles is 20% or less.
  5.  前記シリカ粒子が、体積平均粒子径が5~10μmである第1のシリカ粒子と、体積平均粒子径が1~3μmである第2のシリカ粒子とを含む混合物であり、
     前記第1のシリカ粒子及び前記第2のシリカ粒子の各々の粒子径の変動係数が20%以下であることを特徴とする請求項1又は2に記載の光学フィルム。
    The silica particles are a mixture containing first silica particles having a volume average particle diameter of 5 to 10 μm and second silica particles having a volume average particle diameter of 1 to 3 μm.
    3. The optical film according to claim 1, wherein a coefficient of variation of the particle diameter of each of the first silica particles and the second silica particles is 20% or less.
  6.  前記防眩層は、前記基材フィルムの一方の面上に形成されており、
     前記基材フィルムの他方の面上に、前記色素を含む色素含有層が形成されていることを特徴とする請求項1~5の何れか1項に記載の光学フィルム。
    The antiglare layer is formed on one surface of the base film,
    6. The optical film according to claim 1, wherein a dye-containing layer containing the dye is formed on the other surface of the base film.
  7.  前記光学フィルムは、表示画面と該表示画面を囲む枠とを有するディスプレイに対して貼り付けられるものであり、
     前記基材フィルムの少なくとも一方の面上に、前記色素とバインダー樹脂とを含む色素含有層が形成されており、
     前記色素含有層は、前記基材フィルムの少なくとも一方の面上における前記ディスプレイの表示画面に対応する部分にのみ形成されていることを特徴とする請求項1~6の何れか1項に記載の光学フィルム。
    The optical film is attached to a display having a display screen and a frame surrounding the display screen,
    A dye-containing layer containing the dye and a binder resin is formed on at least one surface of the base film,
    The dye-containing layer is formed only on a portion corresponding to a display screen of the display on at least one surface of the base film. Optical film.
  8.  前記光学フィルムのb*値が5~35の範囲内であることを特徴とする請求項1~7の何れか1項に記載の光学フィルム。 The optical film according to any one of claims 1 to 7, wherein the b * value of the optical film is in the range of 5 to 35.
  9.  前記基材フィルムの少なくとも一方の面上に、前記色素とバインダー樹脂とを含む色素含有層が形成されており、
     前記色素は、紫外可視吸収スペクトルの最大吸収波長を380~500nmの範囲内に有する第1の色素と、青色の第2の色素とを含み、
     前記青色の第2の色素の量が、第1の色素100重量部に対して100重量部未満であることを特徴とする請求項1~8の何れか1項に記載の光学フィルム。
    A dye-containing layer containing the dye and a binder resin is formed on at least one surface of the base film,
    The dye includes a first dye having a maximum absorption wavelength in the ultraviolet-visible absorption spectrum in the range of 380 to 500 nm, and a blue second dye,
    The optical film according to any one of claims 1 to 8, wherein the amount of the blue second dye is less than 100 parts by weight with respect to 100 parts by weight of the first dye.
  10.  紫外可視吸収スペクトルの最大吸収波長を320nm以上380nm未満の範囲内に有し、かつ波長380nm以上の可視領域にも吸収を有する紫外可視光吸収剤をさらに含むことを特徴とする請求項1~9の何れか1項に記載の光学フィルム。 An ultraviolet-visible light absorber having a maximum absorption wavelength of an ultraviolet-visible absorption spectrum in a range of 320 nm or more and less than 380 nm and having absorption also in a visible region having a wavelength of 380 nm or more is further included. The optical film according to any one of the above.
  11.  前記防眩層は、バインダー樹脂をさらに含み、
     前記樹脂粒子及び/又はシリカ粒子の量が、前記バインダー樹脂100重量部に対して1~12重量部の範囲内であることを特徴とする請求項1~10の何れか1項に記載の光学フィルム。
    The antiglare layer further includes a binder resin,
    11. The optical system according to claim 1, wherein the amount of the resin particles and / or silica particles is in the range of 1 to 12 parts by weight with respect to 100 parts by weight of the binder resin. the film.
PCT/JP2013/076382 2013-03-29 2013-09-27 Optical film WO2014155787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015507933A JP6069490B2 (en) 2013-03-29 2013-09-27 Optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013074657 2013-03-29
JP2013-074657 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014155787A1 true WO2014155787A1 (en) 2014-10-02

Family

ID=51622825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076382 WO2014155787A1 (en) 2013-03-29 2013-09-27 Optical film

Country Status (3)

Country Link
JP (1) JP6069490B2 (en)
TW (1) TW201437670A (en)
WO (1) WO2014155787A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017152A (en) * 2013-07-09 2015-01-29 住化ケムテックス株式会社 Resin composition for cutting blue light
JP2015079139A (en) * 2013-10-17 2015-04-23 Dic株式会社 Optical film and image display device
CN104553196A (en) * 2015-01-14 2015-04-29 广东小天才科技有限公司 Compound eye protection plate and display device
JP2015194553A (en) * 2014-03-31 2015-11-05 大日本印刷株式会社 Blue light cut film, display device, and blue light cut film resin composition
WO2016098713A1 (en) * 2014-12-16 2016-06-23 横浜ゴム株式会社 Ultraviolet radiation-curable resin composition, and laminate
JP2016114760A (en) * 2014-12-15 2016-06-23 積水化成品工業株式会社 Optical film and use thereof
JP2016142942A (en) * 2015-02-03 2016-08-08 住友化学株式会社 Polarizing plate, liquid crystal panel and liquid crystal display device
JP2017003884A (en) * 2015-06-12 2017-01-05 株式会社トッパンTomoegawaオプティカルフィルム Optical film, polarizing plate using the same, touch panel, display member, and display device
CN106886126A (en) * 2015-12-16 2017-06-23 张家港康得新光电材料有限公司 The blue film composition of non-solvent, uncured glue, blue basement membrane, its preparation method and its apply
JP2019045577A (en) * 2017-08-30 2019-03-22 大日本印刷株式会社 Optical film and image display device or touch panel
KR20200001265U (en) * 2017-11-14 2020-06-16 아이세이프, 엘엘씨 Light emission reduction compounds for electronic devices
WO2020129931A1 (en) * 2018-12-17 2020-06-25 株式会社トクヤマ Curable composition for optical materials, and optical material
CN112659679A (en) * 2020-12-15 2021-04-16 福耀玻璃工业集团股份有限公司 Ultraviolet-isolating and blue-light-preventing laminated glass capable of adjusting light or emitting light
US11126033B2 (en) 2018-11-28 2021-09-21 Eyesafe Inc. Backlight unit with emission modification
US11592701B2 (en) 2018-11-28 2023-02-28 Eyesafe Inc. Backlight unit with emission modification
US11810532B2 (en) 2018-11-28 2023-11-07 Eyesafe Inc. Systems for monitoring and regulating harmful blue light exposure from digital devices
US11947209B2 (en) 2014-05-23 2024-04-02 Eyesafe Inc. Light emission reducing compounds for electronic devices
EP4307019A4 (en) * 2021-03-12 2024-08-14 Toppan Inc Optical film and display device
EP4307021A4 (en) * 2021-03-12 2024-08-14 Toppan Inc Optical film, display device, and composition for forming colored layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097383A (en) * 2000-05-22 2002-04-02 Mitsubishi Chemicals Corp Squarylium-based coloring matter for display filter and filter for display containing the same
JP2002131530A (en) * 2000-08-18 2002-05-09 Mitsubishi Chemicals Corp Filter for fluorescent light emitting display panel, and filter for plasma display panel
JP2008250129A (en) * 2007-03-30 2008-10-16 Sekisui Plastics Co Ltd Light diffusion film
JP2008268331A (en) * 2007-04-17 2008-11-06 Yamada Chem Co Ltd Filter for display, manufacturing method thereof, filter for plasma display, plasma display, filter for liquid crystal display, and liquid crystal display
JP2010078886A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Anti-glare film, anti-reflection film, polarizing plate, and image display device
WO2012165050A1 (en) * 2011-06-02 2012-12-06 伊藤光学工業株式会社 Anti-glare optical element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030017326A1 (en) * 2001-06-01 2003-01-23 3M Innovative Properties Company Color stable pigmented polymeric films having dyes for color adjustment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097383A (en) * 2000-05-22 2002-04-02 Mitsubishi Chemicals Corp Squarylium-based coloring matter for display filter and filter for display containing the same
JP2002131530A (en) * 2000-08-18 2002-05-09 Mitsubishi Chemicals Corp Filter for fluorescent light emitting display panel, and filter for plasma display panel
JP2008250129A (en) * 2007-03-30 2008-10-16 Sekisui Plastics Co Ltd Light diffusion film
JP2008268331A (en) * 2007-04-17 2008-11-06 Yamada Chem Co Ltd Filter for display, manufacturing method thereof, filter for plasma display, plasma display, filter for liquid crystal display, and liquid crystal display
JP2010078886A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Anti-glare film, anti-reflection film, polarizing plate, and image display device
WO2012165050A1 (en) * 2011-06-02 2012-12-06 伊藤光学工業株式会社 Anti-glare optical element

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017152A (en) * 2013-07-09 2015-01-29 住化ケムテックス株式会社 Resin composition for cutting blue light
JP2015079139A (en) * 2013-10-17 2015-04-23 Dic株式会社 Optical film and image display device
JP2015194553A (en) * 2014-03-31 2015-11-05 大日本印刷株式会社 Blue light cut film, display device, and blue light cut film resin composition
US11947209B2 (en) 2014-05-23 2024-04-02 Eyesafe Inc. Light emission reducing compounds for electronic devices
JP2016114760A (en) * 2014-12-15 2016-06-23 積水化成品工業株式会社 Optical film and use thereof
WO2016098713A1 (en) * 2014-12-16 2016-06-23 横浜ゴム株式会社 Ultraviolet radiation-curable resin composition, and laminate
JPWO2016098713A1 (en) * 2014-12-16 2017-07-20 横浜ゴム株式会社 Ultraviolet curable resin composition and laminate
CN104553196A (en) * 2015-01-14 2015-04-29 广东小天才科技有限公司 Compound eye protection plate and display device
JP2016142942A (en) * 2015-02-03 2016-08-08 住友化学株式会社 Polarizing plate, liquid crystal panel and liquid crystal display device
JP2017003884A (en) * 2015-06-12 2017-01-05 株式会社トッパンTomoegawaオプティカルフィルム Optical film, polarizing plate using the same, touch panel, display member, and display device
CN106886126B (en) * 2015-12-16 2021-09-14 张家港康得新石墨烯应用科技有限公司 Non-solvent type blue film composition, uncured adhesive, blue base film, preparation method and application thereof
CN106886126A (en) * 2015-12-16 2017-06-23 张家港康得新光电材料有限公司 The blue film composition of non-solvent, uncured glue, blue basement membrane, its preparation method and its apply
JP2019045577A (en) * 2017-08-30 2019-03-22 大日本印刷株式会社 Optical film and image display device or touch panel
JP7035381B2 (en) 2017-08-30 2022-03-15 大日本印刷株式会社 Optical film, image display device or touch panel
JP7093528B2 (en) 2017-11-14 2022-06-30 アイセーフ インコーポレイテッド Screens and light absorbing films for electronic devices
JP2021503100A (en) * 2017-11-14 2021-02-04 アイセーフ,エルエルシー Light emission reduction compounds for electronic devices
KR20200001265U (en) * 2017-11-14 2020-06-16 아이세이프, 엘엘씨 Light emission reduction compounds for electronic devices
KR200495399Y1 (en) * 2017-11-14 2022-05-12 아이세이프 잉크. Light Emission Reducing Compounds for Electronic Devices
US11592701B2 (en) 2018-11-28 2023-02-28 Eyesafe Inc. Backlight unit with emission modification
US11810532B2 (en) 2018-11-28 2023-11-07 Eyesafe Inc. Systems for monitoring and regulating harmful blue light exposure from digital devices
US11126033B2 (en) 2018-11-28 2021-09-21 Eyesafe Inc. Backlight unit with emission modification
WO2020129931A1 (en) * 2018-12-17 2020-06-25 株式会社トクヤマ Curable composition for optical materials, and optical material
JP7223771B2 (en) 2018-12-17 2023-02-16 株式会社トクヤマ Curable composition for optical material and optical material
KR20210104706A (en) * 2018-12-17 2021-08-25 가부시끼가이샤 도꾸야마 Curable composition for optical material and optical material
JPWO2020129931A1 (en) * 2018-12-17 2021-11-04 株式会社トクヤマ Curable Compositions and Optical Materials for Optical Materials
US11976149B2 (en) 2018-12-17 2024-05-07 Tokuyama Corporation Curable composition for optical materials, and optical material
KR102683573B1 (en) 2018-12-17 2024-07-11 가부시끼가이샤 도꾸야마 Curable compositions and optical materials for optical materials
US12054568B2 (en) 2018-12-17 2024-08-06 Tokuyama Corporation Optical material composition and optical material
US12077623B2 (en) 2018-12-17 2024-09-03 Tokuyama Corporation Curable composition for optical materials, and optical material
CN112659679A (en) * 2020-12-15 2021-04-16 福耀玻璃工业集团股份有限公司 Ultraviolet-isolating and blue-light-preventing laminated glass capable of adjusting light or emitting light
EP4307019A4 (en) * 2021-03-12 2024-08-14 Toppan Inc Optical film and display device
EP4307021A4 (en) * 2021-03-12 2024-08-14 Toppan Inc Optical film, display device, and composition for forming colored layer

Also Published As

Publication number Publication date
JPWO2014155787A1 (en) 2017-02-16
TW201437670A (en) 2014-10-01
JP6069490B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6069490B2 (en) Optical film
JP6048412B2 (en) Anti-glare sheet for image display device
JP5991322B2 (en) Anti-glare sheet for image display device and method for producing the same, and method for improving blackness and image cutout of image display device suitable for sharing moving image and still image using the same
KR101792253B1 (en) An anti-reflection film and a polarizing plate using the same
KR20140138262A (en) Anti-reflection film
JP5725216B2 (en) Optical sheet
CN111712737B (en) Anti-glare film and display device
KR101771104B1 (en) Anti-Glare Film, Polarizing Plate and Display Device Including the Film
JP2006078710A (en) Antiglare film
JP2012063687A (en) Antireflection film, antireflective polarizing plate and transmissive liquid crystal display
WO2021187432A1 (en) Optical filter, method for manufacturing same, and optical module
KR101466520B1 (en) Curable resin composition for antistatic layer, optical film, polarizing plate, and display panel
JP2009222801A (en) Optical film
KR20150079052A (en) Anti-glare film having surface characteristics of organic particles
JP6276842B2 (en) Optical film and use thereof
JP2022069678A (en) Optical filter, method for manufacturing the same, and optical module
JP2013190561A (en) Antireflection film and manufacturing method thereof, polarizer, transmission type liquid crystal display
JP5515748B2 (en) Evaluation method for evaluating films
JP2010237623A (en) Antireflective film, polarizing plate and image display device
KR20110027283A (en) Anti-glare film, polarizing plate and display device including the anti-glare film
JP5531426B2 (en) Anti-glare film
JP2016114760A (en) Optical film and use thereof
JP6484925B2 (en) Antireflection film, polarizing plate with antireflection film, and transmissive liquid crystal display including the same
KR102209683B1 (en) Visibility improvement film for display panel and display device comprising the same
JP2022026335A (en) Optical laminate, polarizing plate, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880509

Country of ref document: EP

Kind code of ref document: A1