WO2012165050A1 - Anti-glare optical element - Google Patents

Anti-glare optical element Download PDF

Info

Publication number
WO2012165050A1
WO2012165050A1 PCT/JP2012/059623 JP2012059623W WO2012165050A1 WO 2012165050 A1 WO2012165050 A1 WO 2012165050A1 JP 2012059623 W JP2012059623 W JP 2012059623W WO 2012165050 A1 WO2012165050 A1 WO 2012165050A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmittance
valley
minimum
wavelength
difference
Prior art date
Application number
PCT/JP2012/059623
Other languages
French (fr)
Japanese (ja)
Inventor
正和 本多
小田 博文
佳苗 宮澤
加藤 裕久
武洋 清水
Original Assignee
伊藤光学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47258915&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012165050(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 伊藤光学工業株式会社 filed Critical 伊藤光学工業株式会社
Publication of WO2012165050A1 publication Critical patent/WO2012165050A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers

Definitions

  • the present invention relates to an antiglare optical element.
  • it relates to an invention suitable as a plastic lens for spectacles.
  • plastic lens will be described as an example, but the present invention is not limited to this.
  • the antiglare optical element according to the present invention is not limited to a plastic lens, but an inorganic glass lens, a sun visor, ski goggles, window glass for automobiles and houses, airplane and motorcycle windshield glass, display filter cover, lighting equipment It can be applied to a cover for an automobile.
  • Transmittance curve Waveform curve of transmittance corresponding to the wavelength measured with a spectrophotometer
  • Value A relatively large valley that is an element of the overall waveform of the transmission curve; from the short wavelength side to the first, second, and third valleys
  • Adjacent maximum wavelength the wavelength corresponding to the first maximum on the left side of the valley
  • Adjacent maximum transmittance Transmittance at the adjacent maximum wavelength.
  • the human eye perceives brightest light around 555 nm (center wavelength of the standard relative luminous sensitivity curve) (510-600 nm) in light-adapted vision (photopic vision), and dark-adapted vision (dark vision) ), The light around 507 nm (472 to 542 nm) is felt brightest. Therefore, the light in the above-mentioned wavelength range feels dazzling to human eyes.
  • a particularly strong wavelength range (570 to 600 nm) can be selectively absorbed in a wavelength range that is dazzling to human eyes.
  • a prescription for imparting a so-called anti-glare property to the spectacle lens is applied using this characteristic.
  • the main prescription is to selectively shield as much as possible the wavelength range that tends to give glare, and it is effective to contain a rare earth element compound such as a neodymium compound that can actually absorb visible light in the vicinity of 585 nm in a highly wavelength selective manner.
  • Anti-glare performance can be obtained (cited from Patent Document 1, paragraph 0002).
  • the method of blending a specific organic rare earth metal complex with the resin material has various disadvantageous problems.
  • a normal organic rare earth metal complex has problems such as solubility and dispersibility in a resin, undesirable reactivity with a lens resin, and storage stability in the environment.
  • the amount of the organic rare earth metal complex is usually required to be about 5% by weight.
  • it is often forced to balance with deterioration of mechanical properties of the lens. (Cited from Patent Document 1, paragraph 0005).
  • Patent Documents 1 and 2 propose a plastic spectacle lens containing an organic specific wavelength absorbing dye and having an antiglare property equivalent to that of a neodymium compound-containing plastic.
  • Patent Document 1 has a main absorption valley (minimum peak) in the wavelength region of 565 to 605 nm (preferably 580 to 590 nm) in the visible light absorption spectrum (spectral transmittance curve).
  • a desirable specific wavelength absorbing dye is a tetraazaporphine compound represented by the following formula (1) (Claim 4 etc.).
  • A1 to A8 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a carboxyl group, a sulfonic acid group, a straight chain or branched chain having 1 to 20 carbon atoms.
  • a cyclic alkyl group an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, a monoalkylamino group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 20 carbon atoms, or 7 to 7 carbon atoms
  • a ring other than an aromatic ring may be formed through M, and M represents two hydrogen atoms, a divalent metal atom, a divalent monosubstituted metal atom, a tetravalent disubstituted metal atom, or an oxymetal atom.
  • the transmittance curve has a minimum (valley) in the wavelength range of 550 to 585 nm, and the average transmittance in the wavelength range of 470 to 550 nm is 10% or more.
  • the specific wavelength-absorbing dye is a squarylium compound represented by the following formula (2) (claim 1 and the like).
  • JP 2008-134618 A Japanese Patent Laid-Open No. 2003-107412
  • FIG. 1 shows the relative intensity (%) measured by the applicant's employee under the following conditions and based on a standard where the maximum value on a sunny day is 1 with respect to the wavelength.
  • Measurement date September 22, 2010 (sunny), September 24, 2010 (cloudy) Measuring place: Toyohashi, Aichi Measuring instrument: Spectroradiometer FieldSpec3 (ASD, USA) Measurement method: Measure from the north window toward the sky The following problems have been reported in the media regarding the effect of blue light of 400 to 500 nm on the eyes (so-called blue hazard).
  • Example 4 of Patent Document 2 a visible light region (400 to 550 nm) shorter than 550 nm (hereinafter referred to as “the visible light region”) (hereinafter referred to as “blue light absorber”)
  • the average transmittance is 50% or more, which is high.
  • the average transmittance is 20% or less, but the transmittance is sharp at the approximate median value (480 nm) of the blue wavelength (450 to 495 nm). Has a maximum.
  • FIG. 8 according to the sixth embodiment is compared with FIG. 6 according to the fourth embodiment, the data itself is questionable.
  • the only difference between the two is the presence or absence of an infrared absorber.
  • the transmittance decreases at the upper limit of the visible light range (760 nm) due to the inclusion of the infrared absorber, such an extreme difference occurs in the short wavelength side of the visible light range (400 to 550 nm). Hard to think.
  • the transmittance in the vicinity of 500 nm exceeds an average value of 30% or more (the same applies to Example 4 having a polarizing element). Most of them have a sharp maximum (near 500 nm) in the short wavelength side visible light region (400 to 550 nm) (the same applies to Example 6 having a polarizing element).
  • the transmittance is 50% or more or 20% or more in the short wavelength side visible light region (400 to 550 nm).
  • the eyeglass lenses for Patent Documents 1 and 2 do not intend to actively cut (block) the short wavelength side visible light region (400 to 550 nm) including blue light together with ultraviolet rays. Absent.
  • the visible light region on the long wavelength side exceeding 550 nm corresponds to the valley long wavelength side (minimum) in the present invention.
  • the minimum value is approximately 25% or less in transmittance, and the valley is sharp.
  • the antiglare performance is improved by lowering the transmittance in the wavelength region where glare is likely to be imparted.
  • the valley transmittance is too low or the valley is sharp, the illuminance difference between the emission color of the valley minimum wavelength and the emission color of the nearby wavelength increases, making it difficult to recognize the emission color of the valley minimum wavelength.
  • the emission color is an illumination color, the field of view may be darkened.
  • the center wavelength of yellow light is 580 nm
  • the center wavelength of yellow-red (orange) light is 600 nm
  • the transmittance of yellow light is lowered in order to enhance the antiglare effect
  • the transmittance of orange decreases accordingly
  • the central wavelength (589 nm) of the sodium lamp illumination does not pass through the lens, and the field of view is reduced.
  • There is a risk of darkening see Patent Document 2, paragraph 0003).
  • an object of the present invention to provide an anti-glare optical element that is excellent in terms of eye protection when it is applied to a spectacle lens and the like, and is easy to secure visibility.
  • Another object of the present invention is to provide an anti-glare optical element that can cut the short wavelength side visible light region (400 to 550 nm) and is desirable from the viewpoint of eye health.
  • a single layer or multiple layer optical element comprising a transparent substrate and having a polarizing element, In the transparent substrate, a specific wavelength absorbing dye is contained together with an ultraviolet absorber,
  • a first valley minimum and a second valley minimum are provided in each wavelength region of 450 to 500 nm and 550 to 630 nm of the transmittance curve,
  • the overall average transmittance in the wavelength region of 400 to 700 nm is 35% or more
  • Each transmittance of the first and second valley minimums is 60% or less, and has a difference of 20% or more from each adjacent maximum transmittance
  • Each transmittance of the first and second valley minimums and a transmittance difference average at each minimum wavelength ⁇ 20 nm are in the range of 10 to 50%.
  • a single-layer or multi-layer optical element comprising a transparent substrate and having a polarizing element, In the transparent substrate, a specific wavelength absorbing dye is contained together with an ultraviolet absorber,
  • the overall average transmittance from 400 to 700 nm is 30% or more
  • the transmittance of the first valley minimum is 30% or less, and the difference from the adjacent maximum transmittance is 25% or more
  • Each transmittance of the second and third valley minimums is 55% or less, the difference from the adjacent maximum transmittance is 10% or more
  • the transmittances of the second and third valley minimums and the average difference in transmittance at each minimum wavelength ⁇ 20 nm are in the range of 10 to 40%.
  • a single-layer or multi-layer optical element comprising a transparent substrate and having a polarizing element,
  • the transparent substrate contains an ultraviolet absorber together with a specific wavelength absorbing dye
  • the overall average transmittance in the wavelength region of 400 to 700 nm is 30% or more
  • the transmittance of the first valley minimum is 30% or less, and the difference from the adjacent maximum transmittance is 25% or more
  • Each transmittance of the second and third valley minimums is 55% or less, the difference from the adjacent maximum transmittance is 5% or more
  • Each transmittance of the first and third valley minimums and the average transmittance difference at each minimum wavelength ⁇ 20 nm are in the range of 10 to 40%, and the transmittance of the second valley minimum and
  • FIG. 6 is a graph of transmittance of an antiglare lens prepared in Example 2.
  • FIG. 6 is a graph of the transmittance of an antiglare lens prepared in Example 3.
  • FIG. 6 is a graph of the transmittance of an antiglare lens prepared in Example 4.
  • FIG. 6 is a graph of the transmittance of an antiglare lens prepared in Example 5.
  • FIG. 6 is a graph of the transmittance of an antiglare lens prepared in Example 6.
  • FIG. 6 is a graph of the transmittance of an antiglare lens prepared in Example 7.
  • FIG. 6 is a graph of the transmittance of the ultraviolet cut lens prepared in Comparative Example 1.
  • FIG. 6 is a graph of the transmittance of the polarizing lens prepared in Comparative Example 2.
  • FIG. 6 is a graph of the transmittance of the polarizing lens prepared in Comparative Example 3.
  • FIG. It is a graph of the transmittance
  • permeability of the polarizing lens of Example 6 reference example
  • FIG. 10 is a graph of the transmittance of an antiglare lens prepared in Example 9.
  • FIG. 6 is a graph of transmittance of an antiglare lens prepared in Example 10.
  • FIG. 6 is a graph of the transmittance of an antiglare lens prepared in Example 11.
  • FIG. 6 is a graph of the transmittance of an antiglare lens prepared in Example 12.
  • FIG. 14 is a graph of transmittance of the antiglare lens prepared in Example 13.
  • FIG. It is a graph of the transmittance
  • the anti-glare lens as an optical element without a polarizing element is formed of a transparent synthetic resin material (organic glass: transparent plastic) which is a lens base material is taken as an example.
  • the present invention can also be applied to a polarizing lens 11 having a multilayer structure having a transparent base layer 15 on one or both sides of a thin plate-like polarizing element 13 as shown in FIG.
  • the anti-glare lens may use inorganic glass as a lens base material.
  • the anti-glare lens of this embodiment is molded by an injection molding method or a casting molding method as shown in FIG.
  • a transparent synthetic resin material as a transparent base material which is an antiglare lens forming material, for example, episulfide resin, thiourethane resin, urethane resin, thiourea resin, urea polymer composition, epoxy resin, It is appropriately selected from acrylic resin, nylon resin, polycarbonate resin, polyamide resin, sulfide resin, and the like.
  • a sulfur-containing resin such as the following thiourethane resin (polythiourethane) (a) or episulfide resin (b) is used as the polymerizable liquid material.
  • polythiourethane makes it easy to obtain a high refractive index in the lens, and a thin lens can be manufactured.
  • Polythiourethane is a polymer (resin) having a bond (—NHCOS—, —NHCSO—, —NHCSS—) in which at least one oxygen atom of a polyurethane bond (—NHCOO—) is replaced with a sulfur atom.
  • a known material composed of one or two or more polyisocyanate components selected from polyisocyanate, polyisothiocyanate, polyisocyanatothioisocyanate and a polythiol component can be suitably used (Japanese Patent Laid-Open 8-208792 etc.).
  • isocyanate components aliphatic, alicyclic, aromatic, and derivatives thereof, and sulfide, polysulfide, and thiocarbonyl (thioketone) derivatives in which sulfur is introduced into a part of their carbon chains are parent compounds.
  • sulfide, polysulfide, and thiocarbonyl (thioketone) derivatives in which sulfur is introduced into a part of their carbon chains are parent compounds.
  • polyol component aliphatic, alicyclic, aromatic, and derivatives thereof, and sulfides, polysulfides, and polythioethers in which sulfur is introduced into a part of their carbon chains are used as base compounds. Things can be mentioned. Among these, from the viewpoint of yellowing resistance, an aliphatic type or an alicyclic type is also desirable.
  • the polythioether represented by the following chemical formula (3) consists or is mainly composed of a base compound.
  • a fully substituted ester of a ⁇ -mercapto aliphatic carboxylic acid of a branched hydrocarbon polyhydric alcohol can be suitably used.
  • the episulfide resin means a polymer (resin) obtained by reacting a dithioepoxy compound, a curing agent, and another polymerizable compound, and is represented by the following chemical formula (4), for example.
  • a known curing agent for curing the linear alkyl sulfide type dithioepoxy compound can be used (Japanese Patent Application Laid-Open Nos. 9-1107979, 10-114764, etc.).
  • amines, organic acids, and inorganic acids which are ordinary epoxy resin curing agents, can be used.
  • acrylic resin a general-purpose commercially available polymer material for lenses can be used.
  • the anti-glare lens (plastic lens) of the present invention When producing the anti-glare lens (plastic lens) of the present invention by casting, various additives such as dyes, bluing agents, internal mold release agents, anti-molding agents are added to the polymerizable liquid material that is the material of the lens substrate. An odorant, an antioxidant, a stabilizer, a polymerization initiator and the like may be added as necessary.
  • the resin curing (polymerization) is performed by thermosetting polymerization, ultraviolet curing polymerization, or the like.
  • the surface of the plastic lens of the present invention is subjected to a modification process such as hardness by forming a hard coat which is generally performed.
  • the hard coat is formed with a general-purpose silicone paint. In general, it is desirable that the hard coat is provided with a primer layer.
  • the primer layer is preferably formed of a paint based on a urethane-based or ester-based thermoplastic elastomer, and is usually used by increasing the refractive index by adding metal oxide fine particles or the like.
  • the hard coat and primer layer are leveled with UV absorbers such as benzophenone, benzotriazole, and phenol, and silicone surfactants and fluorine surfactants to improve the smoothness of the coating film. Agents and other modifiers can also be added.
  • UV absorbers such as benzophenone, benzotriazole, and phenol
  • silicone surfactants and fluorine surfactants to improve the smoothness of the coating film.
  • Agents and other modifiers can also be added.
  • the coating method is selected from known methods such as dipping and spin coating.
  • surface treatment such as anti-fogging treatment, antireflection treatment, water repellent treatment, antistatic treatment, dyeing, etc. may be applied.
  • metal oxides such as silica, titania (IV), tantalum oxide (V), antimony (III) oxide, zirconia, and alumina, and metal fluorides such as magnesium fluoride are preferably used.
  • metal oxides such as silica, titania (IV), tantalum oxide (V), antimony (III) oxide, zirconia, and alumina
  • metal fluorides such as magnesium fluoride
  • the transparent substrate contains a specific wavelength absorbing dye together with an ultraviolet absorber.
  • One aspect of the present invention is characterized in that, in the above preconditions, the following characteristics are provided.
  • a first valley minimum and a second valley minimum are provided in each wavelength region of 450 to 500 nm (preferably 460 to 490 nm) and 550 to 630 nm (preferably 560 to 620), respectively.
  • the overall average transmittance in the wavelength region of 400 to 700 nm is 35% or more (preferably 40% or more).
  • Each transmittance of the first and second valley minimums is 60% or less (desirably 40% or less) and has a difference of 20% or more (desirably 25% or more) from each adjacent maximum transmittance.
  • the transmittance difference between the first and second valley minimums is usually 20% or less (preferably 15% or less). If the transmittance difference is large, the white balance of the transmitted light color is shifted, and the transmitted light color and the lens itself may be colored.
  • Each transmittance of the first and second valley minimums and the average difference in transmittance at each minimum wavelength ⁇ 20 nm is in the range of 10 to 50% (preferably 20 to 45%).
  • the intermediate waveform between the first and second valleys is a plateau shape with a gentle top surface (20 ° or less, preferably 10 ° or less) or a continuous peak with a transmittance difference of 15% or less (preferably 10% or less). It is desirable to have multiple micro maxima (see Tables 2-3-1 and 2-3-2).
  • the transmittance tends to decrease toward the wavelength range of 555 nm, which is the maximum wavelength of the specific visibility curve, and contributes to further improvement of the antiglare property.
  • wavelength absorbing dyes for example, one or more tetraazaporphyrin compounds, squarylium compounds, azomethyl-based, and indole-based ones can be selected and used.
  • examples of the tetraazaporphyrin compound include those represented by the above structural formula (1) described in Patent Document 1 and the following structural formula (5) described in Japanese Patent Application Laid-Open No. 2003-21847. Can be suitably used.
  • rings A, B, C, D, A ′, B ′, C ′, D ′ each independently represent a fused aromatic ring formed at two ⁇ -positions of the pyrrole ring
  • M represents a trivalent metal atom and one hydrogen atom or a tetravalent metal atom.
  • Each substituent of each ring of ring A, B, C, D is connected to each substituent of each ring of ring A, B, C, D and / or rings A ′, B ′, C ′, D via a linking group. It may be bonded to each substituent of each ring of '.
  • a squarylium compound what is shown by above-mentioned structural formula (2) of patent document 2 can be used conveniently.
  • the ultraviolet absorber a conventional one can be used. Examples thereof include benzophenone-based, phenyl acrylate-based, sterically hindered amine-based, salicylic acid ester-based, benzotriazole-based, hydroxybenzoate-based, cyanoacrylate-based, hydroxyphenyltriazine-based, and the like.
  • benzotriazole-based compounds represented by the following structural formula (6) and derivatives thereof are desirable.
  • the ultraviolet absorber represented by the structural formula (6) when mixed in a large amount, exhibited not only an ultraviolet absorption effect but also a blue cut function (relative decrease in transmittance) as shown in the examples described later. (Example 1 and Example 3).
  • Specific wavelength absorbing dye 0.5 ⁇ 10 ⁇ 4 to 5.0 ⁇ 10 ⁇ 3 parts (preferably 0.8 ⁇ 10 ⁇ 4 to 3.5 ⁇ 10 ⁇ 3 parts) with respect to 100 parts of resin raw material ).
  • the blending amount of the specific wavelength absorbing dye is too small, it is difficult to secure antiglare properties and it is difficult to secure visibility such as green and distant visibility.
  • the amount is excessive, the overall transmittance becomes low, and it becomes difficult to ensure visibility.
  • UV absorber 0.1 to 6 parts (preferably 1 to 4 parts) per 100 parts of resin raw material.
  • the blending amount of the UV absorber is too small, it is difficult to cut UV rays.
  • the amount is excessive, the overall transmittance becomes low, and it becomes difficult to ensure visibility.
  • the polarizing element-less is taken as an example.
  • a polarizing element it is desirable to use a polarizing element having a polarization degree of 80% or less (preferably 70% or less). It has been confirmed in an earlier application (Japanese Patent Application No. 2011-38468) by the applicant of the present application that a valley disappears when a polarizing element having a high degree of polarization is used.
  • FIG. 14 shows a transmittance curve using a polarizing element having a polarization degree of 99.6% in the same formulation (Example: Prior Application Example 5) as Example 2 of the present invention.
  • Another aspect of the present invention is substantially the same as the above invention, but the waveform characteristics of the transmittance curve are slightly different as follows.
  • Second valley minimum at 450 to 500 nm, and second and third valley minimums each having a minimum transmittance of 25% or more shallower than the first valley minimum in each wavelength region of 550 to 630 nm and 650 to 700 nm. ing.
  • the overall average transmittance at 400 to 700 nm is 30% or more (preferably 35% or more).
  • the transmittance of the first valley minimum is 30% or less (preferably 10% or less), and the difference from the adjacent maximum transmittance is 25% or more.
  • Each transmittance of the second and third valley minimums is 55% or less (preferably 50% or less), and the difference from the adjacent maximum transmittance is 10% or more.
  • the transmittance of each of the first, second and third valley minimums and the average transmittance difference at each minimum wavelength ⁇ 20 nm are in the range of 10 to 40% (preferably 15 to 30%).
  • Still another one of the present invention is substantially the same as the above invention, but the waveform characteristics of the transmittance curve are slightly different as follows.
  • Second valley minimum at 450 to 500 nm, and second and third valley minimums each having a minimum transmittance of 25% or more shallower than the first valley minimum in each wavelength region of 550 to 630 nm and 650 to 700 nm. ing.
  • the overall average transmittance at 400 to 700 nm is 30% or more (preferably 35% or more).
  • the transmittance of the first valley minimum is 30% or less (preferably 10% or less), and the difference from the adjacent maximum transmittance is 25% or more.
  • Each transmittance of the second and third valley minimums is 55% or less (preferably 50% or less), and the difference from the adjacent maximum transmittance is 5% or more.
  • Each transmittance of the first and third valley minimums and the average transmittance difference at each minimum wavelength ⁇ 20 nm are in the range of 10 to 40% (preferably 15 to 30%).
  • the transmittance and the average difference in transmittance at each minimum wavelength ⁇ 20 nm are in the range of 3 to 10% (preferably 5 to 8%).
  • the operational effect is the same as that of the above invention, but the second valley minimum valley in the wavelength range of 550 to 630 nm with high visibility is shallower than the above, so that the eyes can easily feel the brightness, and compared with the above. Visibility is improved.
  • parts indicating the number of blending parts means “parts by mass”.
  • UV-01 2- (4-Ethoxy-2-hydroxyphenyl) -2H-benzotriazole UV-02 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl ) Phenol UV-03 2- (2-Hydroxy-5-t-butylphenyl) -2H-benzotriazole ⁇ Specific wavelength absorbing dye> Commercial products of the following respective compounds having the following specific absorption peak wavelengths were used.
  • a cavity 25 is formed in the peripheral openings of the first and second molds 17 and 19 made of glass to form a mold 27, and the cavity 25 of the mold 27 is inserted into the cavity 25 via a liquid material inlet 23a. Then, a polymerizable liquid material is injected and polymerized or crosslinked and cured by means such as thermosetting polymerization or ultraviolet curing (photo) polymerization.
  • First mold (made of glass, outer shape 80 mm, used surface curvature 66.16 mm, center thickness 4.0 mm) 17
  • second mold (made of glass, outer shape 80 mm, used surface curvature 65.59 mm, center thickness 4.0 mm) 19
  • a molding die 27 was prepared by being held by a plastic gasket 23 so that the center distance was 2.0 mm (see FIG. 3).
  • the lens was molded by heating and polymerizing under the following temperature conditions. After the polymerization, the mold release step for removing from the mold was physically (mechanically) performed with a wedge-shaped tool.
  • a dye-based PVAL polarizing film “Brown-30” (polarization degree: 99.2%) is sandwiched between polythiourethane-based lens resins having a refractive index (ne) of 1.60 and formed on a lens base material. Then, a silicone-based impact-resistant coat, a silicone-based hard coat, and an inorganic antireflection film were formed in this order from the substrate side, and a fluorine-based water-repellent film was formed as the outermost surface layer.
  • a dye-based PVAL polarizing film “Gray-30” (polarization degree 99.5%) is sandwiched between polythiourethane-based lens resins having a refractive index (ne) of 1.60 and formed on a lens base material.
  • a silicone-based impact-resistant coating, a silicone-based hard coat, and an inorganic antireflection film were formed in this order from the substrate side, and a fluorine-based water-repellent film was formed as the outermost surface layer.
  • Measurement was performed using a spectrophotometer U-4100 (manufactured by Hitachi, Ltd.) under the conditions of a measurement wavelength of 380 to 780 nm, a scan speed of 600 nm / min, a sampling interval of 1 nm, and a slit of 5 nm.
  • Examples 1 to 4, 8 to 11 there is one clear short wavelength side valley and one long wavelength side valley (Examples 1 to 4, 8 to 11) or a plurality (two) (Examples 5 to 7, 12 to 14) Appears.
  • the intermediate waveform (1) of Examples 8 to 11 has no maximum / minimum transmittance, and Examples 12 to 14 have substantial maximum / minimum transmission in the intermediate waveforms (1) to (2). Has no rate.
  • the luminous transmittance is relatively higher in the former in Examples 1 to 4 and the corresponding Examples 8 to 11 in which the long wavelength side valley is one.
  • ⁇ Table 2-2-1A>, ⁇ Table 2-2-2A> and ⁇ Table 2-2-3A>, and ⁇ Table 2-2-1B>, ⁇ Table 2-2-2B> and ⁇ Table 2 -2-3B> shows the transmittance difference average value (intermediate value) between the transmittance at each minimum wavelength ⁇ 20 nm and the minimum transmittance in the first, second, and third valleys.
  • ⁇ Table 2-3-1> and ⁇ Table 2-3-2> show the maximum and minimum transmittances and transmittance differences of the intermediate waveforms (1) and (2) (Examples 5 to 7 only), respectively.
  • performance evaluation was performed according to the following evaluation criteria, with 10 people playing golf on a daily basis as panelists (monitors).

Abstract

Provided is an anti-glare optical element that has superior anti-glare performance, is superior from the viewpoint of protecting the eyes, and assures visibility when used in lenses for eyeglasses, etc. This optical element is formed from a transparent base material and is a single layer or multiple layers having a polarizing element. The transparent base material contains a pigment that absorbs specific wavelengths along with an ultraviolet ray absorbing agent. In a transmittance curve measured using a spectrophotometer ("transmittance curve" in the following), the transmittance curve provides a first valley minimum and a second valley minimum in the wavelength regions of 450 - 500 nm and 550 - 630 nm, respectively. Furthermore, the overall average transmittance in the wavelength region of 400 - 700 nm is 35% or greater. The transmittance for each of the first and second valley minimums is 60% or less, and the difference from the transmittance for each of the adjacent maximums is 20% or greater. Furthermore, the average difference in transmittance at each minimum wavelength ± 20 nm from the transmittance at each of the first and second valley minimums is in a range of 10 - 50%.

Description

防眩光学要素Anti-glare optical element
 本発明は、防眩光学要素に関する。特に、眼鏡用プラスチックレンズとして好適な発明に係る。 The present invention relates to an antiglare optical element. In particular, it relates to an invention suitable as a plastic lens for spectacles.
 ここでは、プラスチックレンズを例に採り説明するが、これに限られるものではない。 Here, a plastic lens will be described as an example, but the present invention is not limited to this.
 即ち、本発明に係る防眩光学要素は、プラスチックレンズに限らず無機ガラスレンズ、更に、サンバイザー、スキーゴーグル、自動車や住宅用の窓ガラス、飛行機やオートバイ風防ガラス、ディスプレー用フィルターカバー、照明機器用カバー等にも適用できる。 That is, the antiglare optical element according to the present invention is not limited to a plastic lens, but an inorganic glass lens, a sun visor, ski goggles, window glass for automobiles and houses, airplane and motorcycle windshield glass, display filter cover, lighting equipment It can be applied to a cover for an automobile.
 眼鏡として使用する場合は、防眩や有害光線の遮断を目的として、ゴルフ、サイクリング、釣り、ヒッチハイク、ウォーキング、ドライブ、買い物、洗濯物干し等の屋外使用や、パソコンや携帯画面の視認時や就寝前における屋内使用に好適である。 When used as spectacles, for outdoor use such as golf, cycling, fishing, hitchhiking, walking, driving, shopping, laundry washing, etc., for visual glare and blocking harmful rays, when viewing PCs and mobile screens, and before going to bed It is suitable for indoor use.
 なお、本願明細書・特許請求の範囲における各用語の意味は下記の如くである。 The meaning of each term in the present specification and claims is as follows.
 「透過率曲線」:分光光度計で測定した波長に対応する透過率の波形曲線、
 「バレー」:透過率曲線の全体波形の要素となる相対的に大きな谷部;短波長側から第一・第二・第三バレーという、
 「隣接極大波長」:バレーの左側における最初の極大に対応する波長、
 「隣接極大透過率」:隣接極大波長における透過率。
“Transmittance curve”: Waveform curve of transmittance corresponding to the wavelength measured with a spectrophotometer,
“Valley”: A relatively large valley that is an element of the overall waveform of the transmission curve; from the short wavelength side to the first, second, and third valleys,
“Adjacent maximum wavelength”: the wavelength corresponding to the first maximum on the left side of the valley,
“Adjacent maximum transmittance”: Transmittance at the adjacent maximum wavelength.
 人間の眼は、明順応状態の視覚(明所視)では、555nm付近(標準比視感度曲線の中心波長)(510~600nm)の光を最も明るく感じ、暗順応状態の視覚(暗所視)では、507nm付近(472~542nm)の光を最も明るく感じる。従って、上述した波長域の光が人間の眼には眩しく感じる。 The human eye perceives brightest light around 555 nm (center wavelength of the standard relative luminous sensitivity curve) (510-600 nm) in light-adapted vision (photopic vision), and dark-adapted vision (dark vision) ), The light around 507 nm (472 to 542 nm) is felt brightest. Therefore, the light in the above-mentioned wavelength range feels dazzling to human eyes.
 そこで、まぶしさを防ぐためには、上述した波長の光をカットすればよい。 Therefore, in order to prevent glare, light having the above-described wavelength may be cut.
 しかし、夏の海岸や冬のスキー場などでまぶしさを防ぐためには、一般にサングラス等の着色レンズを使用した眼鏡を着用する。かかる着色レンズでは、全波長域の光が一様にカットされてしまうので光量不足(視野が暗い)となるという問題がある。 However, in order to prevent glare on summer beaches and winter ski resorts, generally wear glasses with colored lenses such as sunglasses. In such a colored lens, there is a problem that light in all wavelength regions is cut uniformly, resulting in insufficient light amount (dark field of view).
 ところで、特定波長吸収色素を用いると、人間の眼にまぶしく感じる波長域で特に強い波長域(570~600nm)のみを選択的に吸収できる。 By the way, when a specific wavelength absorbing dye is used, only a particularly strong wavelength range (570 to 600 nm) can be selectively absorbed in a wavelength range that is dazzling to human eyes.
 したがって、この特性を利用して、眼鏡レンズにいわゆる防眩性能を付与する処方が施されている。主たる処方として眩しさを与え易い波長域をできるだけ選択的に遮光することであり、実際に585nm付近の可視光を高度に波長選択的に吸収できるネオジム化合物等の希土類元素化合物を含有させると効果的な防眩性能が得られる(特許文献1段落0002から引用)。 Therefore, a prescription for imparting a so-called anti-glare property to the spectacle lens is applied using this characteristic. The main prescription is to selectively shield as much as possible the wavelength range that tends to give glare, and it is effective to contain a rare earth element compound such as a neodymium compound that can actually absorb visible light in the vicinity of 585 nm in a highly wavelength selective manner. Anti-glare performance can be obtained (cited from Patent Document 1, paragraph 0002).
 しかし、これらの希土類金属化合物は、非常に高価な上に、透明樹脂に透明性を損なわずに混合や塗布膜にすることが上手くできない。 However, these rare earth metal compounds are very expensive and cannot be mixed and coated into a coating film without losing the transparency of the transparent resin.
 即ち、上記樹脂材料に特定の有機希土類金属錯体を配合させる方法には、各種の不都合な問題をかかえている。 That is, the method of blending a specific organic rare earth metal complex with the resin material has various disadvantageous problems.
 第一には、レンズ材料によっては有機希土類金属錯体の有機部分の選択が大幅に制限されるために高価な化合物に限定されることが多い。また、例えばチオウレタンレンズ系では、通常の有機希土類金属錯体は、樹脂への溶解性や分散性あるいはレンズ樹脂との好ましくない反応性、更には環境下保存安定性などの問題点がある。 Firstly, depending on the lens material, the selection of the organic portion of the organic rare earth metal complex is greatly limited, so it is often limited to expensive compounds. For example, in a thiourethane lens system, a normal organic rare earth metal complex has problems such as solubility and dispersibility in a resin, undesirable reactivity with a lens resin, and storage stability in the environment.
 第二には、前記する585nm付近の波長域で要求される低光透過度(高光遮光性)を達成させる為には、有機希土類金属錯体の配合量が、通常5重量%程度も必要であり、高価な有機希土類金属錯体を多量に使用する不都合さだけでなく、しばしばレンズの機械的物性の低下とのバランスを余儀なくされる。(以上、特許文献1段落0005から引用)。 Secondly, in order to achieve the low light transmittance (high light shielding property) required in the wavelength region near 585 nm, the amount of the organic rare earth metal complex is usually required to be about 5% by weight. In addition to the inconvenience of using a large amount of expensive organic rare earth metal complex, it is often forced to balance with deterioration of mechanical properties of the lens. (Cited from Patent Document 1, paragraph 0005).
 上記問題点を解決するために、有機系の特定波長吸収色素を含有させて、ネオジム化合物含有プラスチックと同等の防眩特性を有するプラスチック眼鏡レンズが特許文献1・2等で提案されている。 In order to solve the above problems, Patent Documents 1 and 2 propose a plastic spectacle lens containing an organic specific wavelength absorbing dye and having an antiglare property equivalent to that of a neodymium compound-containing plastic.
 即ち、特許文献1では、可視光吸収スペクトル(分光透過率曲線)において、565~605nm(望ましくは580~590nm)の波長域で主吸収のバレー(極小ピーク)を有し、(請求項1・2)、また、望ましい特定波長吸収色素が下記式(1)で示されるテトラアザポルフィン化合物である(請求項4等)。 That is, Patent Document 1 has a main absorption valley (minimum peak) in the wavelength region of 565 to 605 nm (preferably 580 to 590 nm) in the visible light absorption spectrum (spectral transmittance curve). 2) A desirable specific wavelength absorbing dye is a tetraazaporphine compound represented by the following formula (1) (Claim 4 etc.).
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
 [式(1)中、A1~A8は各々独立に、水素原子、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、カルボキシル基、スルホン酸基、炭素数1~20の直鎖、分岐又は環状のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数1~20のモノアルキルアミノ基、炭素数2~20のジアルキルアミノ基、炭素数7~20のジアルキルアミノ基、炭素数7~20のアラルキル基、炭素数6~20のアリール基、ヘテロアリール基、炭素数6~20のアルキルチオ基、炭素数6~20のアリールチオ基を表し、連結基を介して芳香族環を除く環を形成しても良く、Mは2個の水素原子、2価の金属原子、2価の1置換金属原子、4価の2置換金属原子、又はオキシ金属原子を表す。]
 また、特許文献2では、合成樹脂基材として、透過率曲線の550~585nmの波長範囲に透過率曲線の極小(バレー)を有し、470~550nmの波長範囲における平均透過率が10%以上を示すものとし、特定波長吸収色素が下記式(2)で表されるスクアリリウム化合物である(請求項1等)。
[In the formula (1), A1 to A8 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a carboxyl group, a sulfonic acid group, a straight chain or branched chain having 1 to 20 carbon atoms. Or a cyclic alkyl group, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, a monoalkylamino group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 20 carbon atoms, or 7 to 7 carbon atoms Represents a dialkylamino group having 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group, an alkylthio group having 6 to 20 carbon atoms, an arylthio group having 6 to 20 carbon atoms, and a linking group A ring other than an aromatic ring may be formed through M, and M represents two hydrogen atoms, a divalent metal atom, a divalent monosubstituted metal atom, a tetravalent disubstituted metal atom, or an oxymetal atom. Represents. ]
In Patent Document 2, as a synthetic resin base material, the transmittance curve has a minimum (valley) in the wavelength range of 550 to 585 nm, and the average transmittance in the wavelength range of 470 to 550 nm is 10% or more. The specific wavelength-absorbing dye is a squarylium compound represented by the following formula (2) (claim 1 and the like).
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
特開2008-134618号公報JP 2008-134618 A 特開2003-107412号公報Japanese Patent Laid-Open No. 2003-107412
 しかし、昨今、目の健康上の見地から、防眩性能の向上に加え、紫・青色の青色系波長域(400~500nm)のカットが要求されるようになってきた。 However, in recent years, from the viewpoint of eye health, in addition to improving anti-glare performance, cuts in the blue and blue wavelengths (400 to 500 nm) have been required.
 事実、晴れにおける400~500nmの青色系波長域における強度は、他の波長域に比して格段に高い(図1参照)。図1は、出願人の従業者が、下記条件で測定し、波長に対して、晴れの日の最大値を1とした基準において相対強度(%)を表示したものである。 In fact, the intensity in the blue wavelength range of 400 to 500 nm in clear weather is much higher than in other wavelength ranges (see Fig. 1). FIG. 1 shows the relative intensity (%) measured by the applicant's employee under the following conditions and based on a standard where the maximum value on a sunny day is 1 with respect to the wavelength.
   測定日:2010年9月22日(晴れ)、同年9月24日(曇り)
   測定場所:愛知県豊橋市
   測定機器:分光放射計FieldSpec3(米国ASD社製)
   測定方法:北側窓から天空に向けて計測 
 そして、400~500nmの青色光が目に与える影響(いわゆる青色ハザード)について、メディアで下記のような問題点が報じられている。
Measurement date: September 22, 2010 (sunny), September 24, 2010 (cloudy)
Measuring place: Toyohashi, Aichi Measuring instrument: Spectroradiometer FieldSpec3 (ASD, USA)
Measurement method: Measure from the north window toward the sky
The following problems have been reported in the media regarding the effect of blue light of 400 to 500 nm on the eyes (so-called blue hazard).
  1.まぶしさを感じる
  2.青色光網膜傷害 ⇒目にダメージ
  3.覚醒効果 ⇒朝あびると目が覚める
  4.睡眠物質の抑制 ⇒夜あびると眠れない
  5.体内時計が遅れる ⇒眠れないため時計がずれる
  6.像がぼけて見える ⇒色収差のため青色光は太陽光のほか、パソコン(PC), 携帯電話,TV, LED照明などから放射されており、とくに青色を強く放射しているディスプレーを見続けることの悪影響がある。
1. I feel glare. Blue light retina injury ⇒ Eye damage Awakening effect ⇒ Wake up in the morning. Inhibition of sleeping substances ⇒ Can't sleep at night The body clock is delayed ⇒The clock is out of sync because it cannot sleep. The image appears blurred ⇒ Because of chromatic aberration, blue light is emitted from sunlight, personal computers (PCs), mobile phones, TVs, LED lighting, etc. There is an adverse effect.
 出典一覧:照明学会誌2010年4月号「LED照明の課題(生体安全性)」
      週刊文春2010年7月1日号「青色光が心と体を蝕む」日米専門家が緊急警告」河崎貴一
 前記防眩性向上は、薄板状の偏光素子と透明基材を組み合わせれば達成できる。(特許文献2段落0021、実施例4・6:共に偏光眼鏡レンズ)。
List of Sources: Journal of the Illuminating Sciences of Japan, April 2010 "LED Lighting Issues (Biological Safety)"
Weekly Bunharu July 1, 2010 issue "Blue light erodes mind and body" Japanese and US experts urgently warrant "Kiichi Kawasaki Improvement of anti-glare can be achieved by combining a thin polarizing plate and a transparent substrate it can. (Patent Document 2, paragraph 0021, Examples 4 and 6: both polarizing spectacle lenses).
 しかし、当該特許文献2の実施例4では同文献図6に示される如く、青色光吸収剤が配合されているにもかかわらず、550nmより短波長側の可視光域(400~550nm)(以下「短波長側可視光域」)において、平均透過率が50%以上であり高い。他方の実施例6では同文献図8に示される如く、平均透過率は20%以下であるが、青色波長(450~495nm)の略中央値(480nm)に透過率のシャープ(明りょう)な極大を有する。 However, in Example 4 of Patent Document 2, as shown in FIG. 6 of the same document, a visible light region (400 to 550 nm) shorter than 550 nm (hereinafter referred to as “the visible light region”) (hereinafter referred to as “blue light absorber”) In the “short wavelength side visible light region”), the average transmittance is 50% or more, which is high. In Example 6, as shown in FIG. 8 of the same reference, the average transmittance is 20% or less, but the transmittance is sharp at the approximate median value (480 nm) of the blue wavelength (450 to 495 nm). Has a maximum.
 但し、この実施例6に係る図8は、実施例4に係る図6と対比すると、データ自体に疑問が発生する。両者の相違は、赤外線吸収剤含有の有無だけである。赤外線吸収剤の含有により、可視光域上限(760nm)側で透過率が低下するのは理解できるが、短波長側可視光域(400~550nm)で、そのような極端な差が発生するとは考え難い。 However, when FIG. 8 according to the sixth embodiment is compared with FIG. 6 according to the fourth embodiment, the data itself is questionable. The only difference between the two is the presence or absence of an infrared absorber. Although it can be understood that the transmittance decreases at the upper limit of the visible light range (760 nm) due to the inclusion of the infrared absorber, such an extreme difference occurs in the short wavelength side of the visible light range (400 to 550 nm). Hard to think.
 ちなみに、同文献における偏光素子を有しない他の実施例においては、500nm近傍の透過率が平均値30%以上を超えている(偏光素子を有する実施例4も同様)。そして、殆どが短波長側可視光域(400~550nm)において、シャープな極大(500nm近傍)を有する(偏光素子を有する実施例6も同様)。 Incidentally, in other examples having no polarizing element in the same document, the transmittance in the vicinity of 500 nm exceeds an average value of 30% or more (the same applies to Example 4 having a polarizing element). Most of them have a sharp maximum (near 500 nm) in the short wavelength side visible light region (400 to 550 nm) (the same applies to Example 6 having a polarizing element).
 また、特許文献1における透過率曲線においても、短波長側可視光域(400~550nm)においては、透過率が50%以上又は20%以上の極大透過率を有する。 Also, in the transmittance curve in Patent Document 1, the transmittance is 50% or more or 20% or more in the short wavelength side visible light region (400 to 550 nm).
 したがって、特許文献1・2における眼鏡(用)レンズは、何れも、積極的に青色光を含む短波長側可視光域(400~550nm)を紫外線とともにカット(遮断)することを予定するものではない。 Therefore, the eyeglass lenses for Patent Documents 1 and 2 do not intend to actively cut (block) the short wavelength side visible light region (400 to 550 nm) including blue light together with ultraviolet rays. Absent.
 更に、特許文献1・2では、550nm超の長波長側の可視光域(以下「長波長側可視光域」)に本発明におけるバレー長波長側(極小)に相当するものを有するが、該極小値は透過率略25%以下であるとともに、バレーがシャープである。 Further, in Patent Documents 1 and 2, the visible light region on the long wavelength side exceeding 550 nm (hereinafter, “long wavelength visible region”) corresponds to the valley long wavelength side (minimum) in the present invention. The minimum value is approximately 25% or less in transmittance, and the valley is sharp.
 こうして、眩しさを与え易い波長域の透過率を低くすることにより、防眩性能は向上する。しかし、バレー透過率が低すぎたり、該バレーがシャープであったりすると、バレー極小波長の発光色と近傍波長の発光色との照度差が大きくなって、バレー極小波長の発光色の認識が困難となったり、該発光色が照明色の場合、視野が暗くなったりするおそれがある。 Thus, the antiglare performance is improved by lowering the transmittance in the wavelength region where glare is likely to be imparted. However, if the valley transmittance is too low or the valley is sharp, the illuminance difference between the emission color of the valley minimum wavelength and the emission color of the nearby wavelength increases, making it difficult to recognize the emission color of the valley minimum wavelength. Or when the emission color is an illumination color, the field of view may be darkened.
 例えば、黄色光の中心波長が580nmであるのに対し黄赤(橙)色光の中心波長は600nmである(斉藤勝裕著「ブルーバックス 光と色彩の科学」2010年、講談社、p96図4-3)。このため、防眩効果を高めるため黄色光の透過率を低くすると、これに伴って橙色の透過率も低下して、ナトリウムランプの照明の中心波長(589nm)がレンズを透過せず、視野が暗くなるおそれがある(特許文献2段落0003参照)。 For example, the center wavelength of yellow light is 580 nm, whereas the center wavelength of yellow-red (orange) light is 600 nm (Katsuhiro Saito, “Bluebacks: Science of Light and Color” 2010, Kodansha, p96, Fig. 4-3. ). For this reason, if the transmittance of yellow light is lowered in order to enhance the antiglare effect, the transmittance of orange decreases accordingly, and the central wavelength (589 nm) of the sodium lamp illumination does not pass through the lens, and the field of view is reduced. There is a risk of darkening (see Patent Document 2, paragraph 0003).
 本発明は、上記にかんがみて、眼鏡レンズ等に適用した場合、優れた防眩性能とともに、目の保護の観点から優れ、且つ、視認性も確保し易い防眩光学要素を提供することを目的とする。 In view of the above, it is an object of the present invention to provide an anti-glare optical element that is excellent in terms of eye protection when it is applied to a spectacle lens and the like, and is easy to secure visibility. And
 本発明の他の目的は、更に、短波長側可視光域(400~550nm)をカットでき、目の健康の見地からも望ましい防眩光学要素を提供することを目的とする。 Another object of the present invention is to provide an anti-glare optical element that can cut the short wavelength side visible light region (400 to 550 nm) and is desirable from the viewpoint of eye health.
 本発明者らは、上記課題を解決するために、鋭意開発に努力をした結果、下記各構成の光学要素に想到した。 As a result of diligent development efforts to solve the above-mentioned problems, the present inventors have conceived optical elements having the following configurations.
 (1)透明基材からなる、単層の又は偏光素子を有する複層の光学要素であって、
 前記透明基材に、特定波長吸収色素を紫外線吸収剤とともに含有させて、
 透過率曲線において、
 透過率曲線の450~500nmおよび550~630nmの各波長域に第一バレー極小および第二バレー極小をそれぞれ備え、
 400~700nmの波長域における全体平均透過率が35%以上であり、また、
 前記第一・第二バレー極小の各透過率が、60%以下であるとともに、各隣接極大透過率と20%以上の差を有し、更に、
 前記第一・第二バレー極小の各透過率と、各極小波長±20nmにおける透過率差平均が10~50%の範囲にある、ことを特徴とする。
(1) A single layer or multiple layer optical element comprising a transparent substrate and having a polarizing element,
In the transparent substrate, a specific wavelength absorbing dye is contained together with an ultraviolet absorber,
In the transmission curve,
A first valley minimum and a second valley minimum are provided in each wavelength region of 450 to 500 nm and 550 to 630 nm of the transmittance curve,
The overall average transmittance in the wavelength region of 400 to 700 nm is 35% or more,
Each transmittance of the first and second valley minimums is 60% or less, and has a difference of 20% or more from each adjacent maximum transmittance,
Each transmittance of the first and second valley minimums and a transmittance difference average at each minimum wavelength ± 20 nm are in the range of 10 to 50%.
 (2)透明基材からなる、単層の又は偏光素子を有する複層の光学要素であって、
 前記透明基材に、特定波長吸収色素を紫外線吸収剤とともに含有させて、
 分光光度計にて測定された透過率曲線において、
 450~500nmに第一バレー極小を、550~630nmおよび650~700nmの各波長域にそれぞれ前記第一バレー極小より25%以上浅い透過率を有する第二・第三バレー極小をそれぞれ備え、
 400~700nmの全体平均透過率が30%以上であり、
 前記第一バレー極小の透過率が30%以下であるともに、隣接極大透過率との差が25%以上であり、
 前記第二・第三バレー極小の各透過率が55%以下であるとともに、隣接極大透過率との差が10%以上であり、更に、
 前記第二・第三バレー極小の各透過率と、各極小波長±20nmにおける透過率差平均が10~40%の範囲にある、ことを特徴とする。
(2) A single-layer or multi-layer optical element comprising a transparent substrate and having a polarizing element,
In the transparent substrate, a specific wavelength absorbing dye is contained together with an ultraviolet absorber,
In the transmittance curve measured with a spectrophotometer,
A first valley minimum at 450 to 500 nm, a second and a third valley minimum each having a transmittance of 25% or more shallower than the first valley minimum in each wavelength region of 550 to 630 nm and 650 to 700 nm,
The overall average transmittance from 400 to 700 nm is 30% or more,
The transmittance of the first valley minimum is 30% or less, and the difference from the adjacent maximum transmittance is 25% or more,
Each transmittance of the second and third valley minimums is 55% or less, the difference from the adjacent maximum transmittance is 10% or more,
The transmittances of the second and third valley minimums and the average difference in transmittance at each minimum wavelength ± 20 nm are in the range of 10 to 40%.
 (3)透明基材からなる、単層の又は偏光素子を有する複層の光学要素であって、
 前記透明基材に、特定波長吸収色素とともに紫外線吸収剤を含有させて、
 分光光度計にて測定された透過率曲線において、
 450~500nmに第一バレー極小を、550~630nmおよび650~700nmの各波長域にそれぞれ前記第一バレー極小より25%以上浅い透過率を有する第二・第三バレー極小をそれぞれ備え、
 400~700nmの波長域における全体平均透過率が30%以上であり、
 前記第一バレー極小の透過率が30%以下であるともに、隣接極大透過率との差が25%以上であり、
 前記第二・第三バレー極小の各透過率が55%以下であるとともに、隣接極大透過率との差が5%以上であり、更に、
 前記第一・第三バレー極小の各透過率と、各極小波長±20nmにおける透過率差平均が10~40%の範囲にあるとともに、前記第二バレー極小の透過率と各極小波長±20nmにおける透過率差平均が3~10%の範囲にある、ことを特徴とする。
(3) A single-layer or multi-layer optical element comprising a transparent substrate and having a polarizing element,
The transparent substrate contains an ultraviolet absorber together with a specific wavelength absorbing dye,
In the transmittance curve measured with a spectrophotometer,
A first valley minimum at 450 to 500 nm, a second and a third valley minimum each having a transmittance of 25% or more shallower than the first valley minimum in each wavelength region of 550 to 630 nm and 650 to 700 nm,
The overall average transmittance in the wavelength region of 400 to 700 nm is 30% or more,
The transmittance of the first valley minimum is 30% or less, and the difference from the adjacent maximum transmittance is 25% or more,
Each transmittance of the second and third valley minimums is 55% or less, the difference from the adjacent maximum transmittance is 5% or more,
Each transmittance of the first and third valley minimums and the average transmittance difference at each minimum wavelength ± 20 nm are in the range of 10 to 40%, and the transmittance of the second valley minimum and each minimum wavelength ± 20 nm The average transmittance difference is in the range of 3 to 10%.
秋口における晴れと曇の日の光強度スペクトル図である。It is a light-intensity spectrum figure of the day of fine weather and cloudy in the beginning of autumn. 本発明を適用可能な偏光レンズの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the polarizing lens which can apply this invention. 本発明を適用するレンズの注型成形法の説明用断面図である。It is sectional drawing for description of the casting molding method of the lens to which this invention is applied. 実施例1で調製した防眩レンズの透過率のグラフ図である。2 is a graph showing the transmittance of an antiglare lens prepared in Example 1. FIG. 実施例2で調製した防眩レンズの透過率のグラフ図である。6 is a graph of transmittance of an antiglare lens prepared in Example 2. FIG. 実施例3で調製した防眩レンズの透過率のグラフ図である。6 is a graph of the transmittance of an antiglare lens prepared in Example 3. FIG. 実施例4で調製した防眩レンズの透過率のグラフ図である。6 is a graph of the transmittance of an antiglare lens prepared in Example 4. FIG. 実施例5で調製した防眩レンズの透過率のグラフ図である。6 is a graph of the transmittance of an antiglare lens prepared in Example 5. FIG. 実施例6で調製した防眩レンズの透過率のグラフ図である。6 is a graph of the transmittance of an antiglare lens prepared in Example 6. FIG. 実施例7で調製した防眩レンズの透過率のグラフ図である。6 is a graph of the transmittance of an antiglare lens prepared in Example 7. FIG. 比較例1で調製した紫外線カットレンズの透過率のグラフ図である。6 is a graph of the transmittance of the ultraviolet cut lens prepared in Comparative Example 1. FIG. 比較例2で調製した偏光レンズの透過率のグラフ図である。6 is a graph of the transmittance of the polarizing lens prepared in Comparative Example 2. FIG. 比較例3で調製した偏光レンズの透過率のグラフ図である。6 is a graph of the transmittance of the polarizing lens prepared in Comparative Example 3. FIG. 本発明の先願に係る実施例6(参照例)の偏光レンズの透過率のグラフ図である。It is a graph of the transmittance | permeability of the polarizing lens of Example 6 (reference example) which concerns on the prior application of this invention. 実施例8で調製した防眩レンズの透過率のグラフ図である。6 is a graph of the transmittance of an antiglare lens prepared in Example 8. FIG. 実施例9で調製した防眩レンズの透過率のグラフ図である。10 is a graph of the transmittance of an antiglare lens prepared in Example 9. FIG. 実施例10で調製した防眩レンズの透過率のグラフ図である。6 is a graph of transmittance of an antiglare lens prepared in Example 10. FIG. 実施例11で調製した防眩レンズの透過率のグラフ図である。6 is a graph of the transmittance of an antiglare lens prepared in Example 11. FIG. 実施例12で調製した防眩レンズの透過率のグラフ図である。6 is a graph of the transmittance of an antiglare lens prepared in Example 12. FIG. 実施例13で調製した防眩レンズの透過率のグラフ図である。14 is a graph of transmittance of the antiglare lens prepared in Example 13. FIG. 実施例14で調製した防眩レンズの透過率のグラフ図である。It is a graph of the transmittance | permeability of the anti-glare lens prepared in Example 14.
 以下、本発明の実施形態について、図例に基づいて説明する。ここでは、偏光素子レスの光学要素としての防眩レンズを、レンズ基材である透明合成樹脂材料(有機ガラス:透明プラスチック)で形成する場合を、例に採る。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, the case where the anti-glare lens as an optical element without a polarizing element is formed of a transparent synthetic resin material (organic glass: transparent plastic) which is a lens base material is taken as an example.
 当然、図2に示すような薄板状の偏光素子13の片面又は両面に透明基材層15を有している複層構造の偏光レンズ11にも本発明は、適用可能である。なお、防眩レンズは、無機ガラスをレンズ基材としてもよい。 Naturally, the present invention can also be applied to a polarizing lens 11 having a multilayer structure having a transparent base layer 15 on one or both sides of a thin plate-like polarizing element 13 as shown in FIG. The anti-glare lens may use inorganic glass as a lens base material.
 本実施形態の防眩レンズは、射出成形法又は図3に示すような注型成形法で成形する。 The anti-glare lens of this embodiment is molded by an injection molding method or a casting molding method as shown in FIG.
 そして、防眩レンズ形成材である透明基材としての透明合成樹脂材料としては、例えば、エピスルフィド系樹脂、チオウレタン系樹脂、ウレタン系樹脂、チオウレア系樹脂、ウレア系重合組成物、エポキシ系樹脂、アクリル系樹脂、ナイロン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、サルファイド系樹脂、等から、適宜選択する。 And as a transparent synthetic resin material as a transparent base material which is an antiglare lens forming material, for example, episulfide resin, thiourethane resin, urethane resin, thiourea resin, urea polymer composition, epoxy resin, It is appropriately selected from acrylic resin, nylon resin, polycarbonate resin, polyamide resin, sulfide resin, and the like.
 防眩レンズに高屈折率が要求される場合は、重合性液状材料としては、下記チオウレタン系樹脂(ポリチオウレタン)(a)、エピスルフィド系樹脂(b)等の硫黄含有樹脂を使用する。特に、ポリチオウレタンがレンズに高屈折率を得やすく、薄いレンズが製造できる。 When a high refractive index is required for the antiglare lens, a sulfur-containing resin such as the following thiourethane resin (polythiourethane) (a) or episulfide resin (b) is used as the polymerizable liquid material. In particular, polythiourethane makes it easy to obtain a high refractive index in the lens, and a thin lens can be manufactured.
 (a)ポリチオウレタンとは、ポリウレタン結合(-NHCOO-)の酸素原子の少なくとも1個が硫黄原子に入れ替わった結合(-NHCOS-、-NHCSO-、-NHCSS-)を有するポリマー(樹脂)を意味し、ポリイソシアナト、ポリイソチオシアナト、ポリイソシアナトチオイソシアナトより選ばれる1種または2種以上のポリイソシアナト成分と、ポリチオール成分とからなる公知のものを好適に使用できる(特開平8-208792号公報等参照)。 (A) Polythiourethane is a polymer (resin) having a bond (—NHCOS—, —NHCSO—, —NHCSS—) in which at least one oxygen atom of a polyurethane bond (—NHCOO—) is replaced with a sulfur atom. In other words, a known material composed of one or two or more polyisocyanate components selected from polyisocyanate, polyisothiocyanate, polyisocyanatothioisocyanate and a polythiol component can be suitably used (Japanese Patent Laid-Open 8-208792 etc.).
 ここでイソシアナト成分としては、脂肪族系、脂環式系、芳香族系及びそれらの誘導体さらにはそれらの炭素鎖の一部に硫黄を導入したスルフィド・ポリスルフィド・チオカルボニル(チオケトン)誘導体を母体化合物とするものを挙げることができる。これらのうちで、耐黄変性の見地から、脂肪族系又は脂環式系のものが望ましい。 Here, as isocyanate components, aliphatic, alicyclic, aromatic, and derivatives thereof, and sulfide, polysulfide, and thiocarbonyl (thioketone) derivatives in which sulfur is introduced into a part of their carbon chains are parent compounds. Can be mentioned. Among these, from the viewpoint of yellowing resistance, an aliphatic or alicyclic one is desirable.
 また、ポリオール成分としては、同様に脂肪族系、脂環式系、芳香族系及びそれらの誘導体さらにはそれらの炭素鎖の一部に硫黄を導入したスルフィド・ポリスルフィド・ポリチオエーテルを母体化合物とするものを挙げることができる。これらのうちで、耐黄変性の見地から、同様に脂肪族系又は脂環式系のものが望ましい。 In addition, as the polyol component, aliphatic, alicyclic, aromatic, and derivatives thereof, and sulfides, polysulfides, and polythioethers in which sulfur is introduced into a part of their carbon chains are used as base compounds. Things can be mentioned. Among these, from the viewpoint of yellowing resistance, an aliphatic type or an alicyclic type is also desirable.
 具体的には、下記化学式(3)で示されるポリチオエーテルを母体化合物とするものからなる又は主体とするものであることが望ましい。 Specifically, it is desirable that the polythioether represented by the following chemical formula (3) consists or is mainly composed of a base compound.
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
 他のポリオール成分としては、分岐炭化水素多価アルコールのω-メルカプト脂肪族カルボン酸の全置換エステルを好適に使用できる。 As the other polyol component, a fully substituted ester of a ω-mercapto aliphatic carboxylic acid of a branched hydrocarbon polyhydric alcohol can be suitably used.
 具体的には、トリメチロールプロパントリス(2-メルカプトグリコレート)、ペンタエリトリトールテトラキス(2-メルカプトグリコレート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリトリトールテトラキス(3-メルカプトプロピオネート)等を挙げることができる。 Specifically, trimethylolpropane tris (2-mercaptoglycolate), pentaerythritol tetrakis (2-mercaptoglycolate), trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropioate) Nate) and the like.
 (b)エピスルフィド系樹脂とは、ジチオエポキシ化合物と硬化剤と、さらには、その他の重合性化合物とを反応させて得られるポリマー(樹脂)を意味し、例えば、下記化学式(4)で示される直鎖アルキルスルフィド型ジチオエポキシ化合物を硬化させる公知の硬化剤を使用できる(特開平9-110979号、特開平10-114764号公報等)。 (B) The episulfide resin means a polymer (resin) obtained by reacting a dithioepoxy compound, a curing agent, and another polymerizable compound, and is represented by the following chemical formula (4), for example. A known curing agent for curing the linear alkyl sulfide type dithioepoxy compound can be used (Japanese Patent Application Laid-Open Nos. 9-1107979, 10-114764, etc.).
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
 上記硬化剤としては、通常のエポキシ樹脂用硬化剤であるアミン類、有機酸類、無機酸類を使用可能である。 As the curing agent, amines, organic acids, and inorganic acids, which are ordinary epoxy resin curing agents, can be used.
 なお、アクリル系樹脂としては、レンズ用の汎用の市販のポリマー材料を使用可能である。 As the acrylic resin, a general-purpose commercially available polymer material for lenses can be used.
 本発明の防眩レンズ(プラスチックレンズ)の注型成形による製造に際して、レンズ基材の材料である重合性液状材料に、種々の添加剤、例えば、染料、青味付け剤、内部離型剤、消臭剤、酸化防止剤、安定剤、重合開始剤等を必要に応じて添加してもよい。なお、樹脂硬化(重合)は、熱硬化重合、紫外線硬化重合等で行う。 When producing the anti-glare lens (plastic lens) of the present invention by casting, various additives such as dyes, bluing agents, internal mold release agents, anti-molding agents are added to the polymerizable liquid material that is the material of the lens substrate. An odorant, an antioxidant, a stabilizer, a polymerization initiator and the like may be added as necessary. The resin curing (polymerization) is performed by thermosetting polymerization, ultraviolet curing polymerization, or the like.
 また、本発明のプラスチックレンズの表面を、一般的に行われているハードコートを形成して、硬度等の改質処理することが望ましい。 Also, it is desirable that the surface of the plastic lens of the present invention is subjected to a modification process such as hardness by forming a hard coat which is generally performed.
 ハードコートは、汎用のシリコーン系塗料で形成する。該ハードコートは、通常、プライマー層を介することが望ましい。 The hard coat is formed with a general-purpose silicone paint. In general, it is desirable that the hard coat is provided with a primer layer.
 プライマー層は、ウレタン系やエステル系の熱可塑性エラストマーをベースとする塗料で形成することが望ましく、通常、金属酸化微粒子等を添加して屈折率を上げて使用する。 The primer layer is preferably formed of a paint based on a urethane-based or ester-based thermoplastic elastomer, and is usually used by increasing the refractive index by adding metal oxide fine particles or the like.
 上記ハードコート、プライマー層には、ベンゾフェノン系、ベンゾトリアゾール系及びフェノール系等の紫外線吸収剤や、塗膜の平滑性を向上させるためにシリコーン系界面活性剤、フッ素系界面活性剤等を含むレベリング剤、その他改質剤の配合も可能である。 The hard coat and primer layer are leveled with UV absorbers such as benzophenone, benzotriazole, and phenol, and silicone surfactants and fluorine surfactants to improve the smoothness of the coating film. Agents and other modifiers can also be added.
 塗布方法としては、ディッピング法、スピンコート法の公知の方法から選ばれる。 The coating method is selected from known methods such as dipping and spin coating.
 さらに、防曇処理加工、反射防止加工、撥水処理加工、帯電防止処理加工、染色加工、等の表面処理をほどこしてもよい。 Further, surface treatment such as anti-fogging treatment, antireflection treatment, water repellent treatment, antistatic treatment, dyeing, etc. may be applied.
 反射防止膜を形成する無機物としては、シリカ、チタニア(IV)、酸化タンタル(V)、酸化アンチモン(III)、ジルコニア、アルミナ等の金属酸化物や、フッ化マグネシウム等の金属フッ化物を好適に使用できる。 As the inorganic material for forming the antireflection film, metal oxides such as silica, titania (IV), tantalum oxide (V), antimony (III) oxide, zirconia, and alumina, and metal fluorides such as magnesium fluoride are preferably used. Can be used.
 上記構成の防眩光学要素(防眩レンズ)において、前記透明基材に、特定波長吸収色素を紫外線吸収剤とともに含有させことを前提的要件とする。 In the antiglare optical element (antiglare lens) having the above-described configuration, it is a prerequisite that the transparent substrate contains a specific wavelength absorbing dye together with an ultraviolet absorber.
 本発明の一つは、上記前提的要件において、下記各特性を備えていることを特徴とする。 One aspect of the present invention is characterized in that, in the above preconditions, the following characteristics are provided.
 1)450~500nm(望ましくは460~490nm)および550~630nm(望ましくは560~620)の各波長域に第一バレー極小および第二バレー極小をそれぞれ備えている。 1) A first valley minimum and a second valley minimum are provided in each wavelength region of 450 to 500 nm (preferably 460 to 490 nm) and 550 to 630 nm (preferably 560 to 620), respectively.
 2)400~700nmの波長域における全体平均透過率が35%以上(望ましくは40%以上)である。 2) The overall average transmittance in the wavelength region of 400 to 700 nm is 35% or more (preferably 40% or more).
 3)第一・第二バレー極小の各透過率が、60%以下(望ましくは40%以下)であるとともに、各隣接極大透過率と20%以上(望ましくは25%以上)の差を有する。なお、第一・第二バレー極小の透過率差は、通常、20%以下(望ましくは15%以下)とする。透過率差が大きいと、透過光色の白色バランスがずれ、透過光色およびレンズ自体が着色するおそれがある。 3) Each transmittance of the first and second valley minimums is 60% or less (desirably 40% or less) and has a difference of 20% or more (desirably 25% or more) from each adjacent maximum transmittance. The transmittance difference between the first and second valley minimums is usually 20% or less (preferably 15% or less). If the transmittance difference is large, the white balance of the transmitted light color is shifted, and the transmitted light color and the lens itself may be colored.
 4)第一・第二バレー極小の各透過率と、各極小波長±20nmにおける透過率差平均が10~50%(望ましくは20~45%)の範囲にある。 4) Each transmittance of the first and second valley minimums and the average difference in transmittance at each minimum wavelength ± 20 nm is in the range of 10 to 50% (preferably 20 to 45%).
 これらの特性が相乗することにより、本発明の防眩性向上とともに、各種視認性(グリーン等視認性,曇天時視認性,遠方視認性)を確保し易くなる。 By synergizing these characteristics, it is easy to ensure various visibility (visibility such as green, visibility in cloudy weather, visibility in the distance) as well as improving the antiglare property of the present invention.
 すなわち、上記1)・3)により、ハザード色である青色系波長域(550nm)および眩しさを感じる標準比視感度中心波長(555nm)近傍のカットが可能となるとともに、上記4)でバレーの形状が適度な曲率及び面積(吸収帯幅が適度)を備えることにより、防眩性とともに視認性も確保しやすくなったものと推定される。さらに、2)の全体平均透過率を所定値以上とすることにより、曇天時・遠方視認性も確保し易くなったものと推定される。このことは、平均透過率が50%以下の低い実施例5・6・7は、何れも、曇天時視認性が余り良好でないことからも支持される。 That is, by the above 1) and 3), it is possible to cut near the blue wavelength range (550 nm) that is a hazard color and the standard relative luminous sensitivity central wavelength (555 nm) that feels glare, and in 4) above, It is presumed that it is easy to ensure the visibility as well as the antiglare property by providing the shape with an appropriate curvature and area (with an appropriate absorption band width). Furthermore, it is estimated that by setting the overall average transmittance of 2) to be equal to or higher than a predetermined value, it is easy to ensure the visibility at the time of cloudy weather and the distance. This is supported by Examples 5, 6 and 7 having a low average transmittance of 50% or less because the visibility in cloudy weather is not so good.
 更に、第一・第二バレー間の中間波形は、上面が緩やかな斜面(20°以下、望ましくは10°以下)の台地形状ないし透過率差15%以下(望ましくは10%以下)の連峰(複数の微小極大を有する)であることが望ましい(表2-3-1,2-3-2参照)。 Furthermore, the intermediate waveform between the first and second valleys is a plateau shape with a gentle top surface (20 ° or less, preferably 10 ° or less) or a continuous peak with a transmittance difference of 15% or less (preferably 10% or less). It is desirable to have multiple micro maxima (see Tables 2-3-1 and 2-3-2).
 当該構成とすることにより、比視感度曲線極大波長の555nmの波長域に向かって、透過率が低下する傾向にあり、防眩性の更なる向上に寄与するものと推定される。 By adopting such a configuration, it is estimated that the transmittance tends to decrease toward the wavelength range of 555 nm, which is the maximum wavelength of the specific visibility curve, and contributes to further improvement of the antiglare property.
 これらの特定波長吸収色素としては、公知のものから、例えば、テトラアザポルフィリン化合物、スクアリリウム化合物、アゾメチル系、インドール系のものを1種又は2種以上選択して使用することができる。 As these specific wavelength absorbing dyes, for example, one or more tetraazaporphyrin compounds, squarylium compounds, azomethyl-based, and indole-based ones can be selected and used.
 より具体的には、テトラアザポルフィリン化合物としては、特許文献1に記載の前述の構造式(1)や、特開2003-211847号等で記載されている下記構造式(5)で示されるものを、好適に使用可能である。 More specifically, examples of the tetraazaporphyrin compound include those represented by the above structural formula (1) described in Patent Document 1 and the following structural formula (5) described in Japanese Patent Application Laid-Open No. 2003-21847. Can be suitably used.
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
〔式中、環A、B、C、D、A'、B'、C'、D'はそれぞれ独立してピロール環の2つのβ位に形成された縮合芳香族環を表し、置換基を有していてもよい。Mは3価の金属原子と1個の水素原子、あるいは4価の金属原子を表す。環A、B、C、Dの各環の各置換基は連結基を介して環A、B、C、Dの各環の各置換基および/または環A'、B'、C'、D'の各環の各置換基とそれぞれ結合していてもよい。〕
 また、スクアリリウム化合物としては、特許文献2に記載の前述の構造式(2)で示されるものを、好適に使用可能である。
[Wherein, rings A, B, C, D, A ′, B ′, C ′, D ′ each independently represent a fused aromatic ring formed at two β-positions of the pyrrole ring, You may have. M represents a trivalent metal atom and one hydrogen atom or a tetravalent metal atom. Each substituent of each ring of ring A, B, C, D is connected to each substituent of each ring of ring A, B, C, D and / or rings A ′, B ′, C ′, D via a linking group. It may be bonded to each substituent of each ring of '. ]
Moreover, as a squarylium compound, what is shown by above-mentioned structural formula (2) of patent document 2 can be used conveniently.
 また、紫外線吸収剤としては、慣用のものを使用できる。例えば、ベンゾフェノン系、フェニルアクリレート系、立体障害アミン系、サリチル酸エステル系、ベンゾトリアゾール系、ヒドロキシベンゾエート系、シアノアクリレート系、ヒドロキシフェニルトリアジン系、等を挙げることができる。 Further, as the ultraviolet absorber, a conventional one can be used. Examples thereof include benzophenone-based, phenyl acrylate-based, sterically hindered amine-based, salicylic acid ester-based, benzotriazole-based, hydroxybenzoate-based, cyanoacrylate-based, hydroxyphenyltriazine-based, and the like.
 これらの内で、下記構造式(6)で示されるベンゾトリアゾール系のもの及びそれらの誘導体が望ましい。 Of these, benzotriazole-based compounds represented by the following structural formula (6) and derivatives thereof are desirable.
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
 構造式(6)で示される紫外線吸収剤は、多量配合することにより、後述の実施例で示す如く、紫外線吸収効果ばかりでなく青色カット機能(透過率の相対的低下)も奏することを確認している(実施例1と実施例3)。 It was confirmed that the ultraviolet absorber represented by the structural formula (6), when mixed in a large amount, exhibited not only an ultraviolet absorption effect but also a blue cut function (relative decrease in transmittance) as shown in the examples described later. (Example 1 and Example 3).
 そして、上記特定波長吸収色素および紫外線吸収剤の配合処方は、下記の如くである。 And the compounding prescription of the specific wavelength absorbing dye and the ultraviolet absorber is as follows.
 1)特定波長吸収色素:樹脂原料100部に対して、0.5×10-4~5.0×10-3部(望ましくは0.8×10-4~3.5×10-3部)とする。特定波長吸収色素の配合量が過少では、防眩性を確保し難くなるとともにグリーン等視認性・遠方視認性も確保し難くなる。他方、過多では、全体透過率が低くなり、視認性を確保し難くなる。 1) Specific wavelength absorbing dye: 0.5 × 10 −4 to 5.0 × 10 −3 parts (preferably 0.8 × 10 −4 to 3.5 × 10 −3 parts) with respect to 100 parts of resin raw material ). When the blending amount of the specific wavelength absorbing dye is too small, it is difficult to secure antiglare properties and it is difficult to secure visibility such as green and distant visibility. On the other hand, if the amount is excessive, the overall transmittance becomes low, and it becomes difficult to ensure visibility.
 2)紫外線吸収剤:樹脂原料100部に対して、0.1~6部(望ましくは1~4部)とする。紫外線吸収剤の配合量が過少では、紫外線カットが困難となる。他方、過多では、全体透過率が低くなり、視認性を確保し難くなる。 2) UV absorber: 0.1 to 6 parts (preferably 1 to 4 parts) per 100 parts of resin raw material. When the blending amount of the UV absorber is too small, it is difficult to cut UV rays. On the other hand, if the amount is excessive, the overall transmittance becomes low, and it becomes difficult to ensure visibility.
 上記では、偏光素子レスを例に採り、説明したが、偏光素子を利用する場合は、偏光度が80%以下(望ましくは70%以下)のものを使用することが望ましい。偏光度が高い偏光素子を使用すると、バレーが消失することが、本願出願人による先願(特願2011-38468号)で確認されている。 In the above description, the polarizing element-less is taken as an example. However, when a polarizing element is used, it is desirable to use a polarizing element having a polarization degree of 80% or less (preferably 70% or less). It has been confirmed in an earlier application (Japanese Patent Application No. 2011-38468) by the applicant of the present application that a valley disappears when a polarizing element having a high degree of polarization is used.
 本発明の実施例2と同様の配合処方(参照例:先願実施例5)において、偏光度99.6%の偏光素子を使用した透過率曲線を図14(先願添付図11)に示す。 FIG. 14 (FIG. 11 attached to the prior application) shows a transmittance curve using a polarizing element having a polarization degree of 99.6% in the same formulation (Example: Prior Application Example 5) as Example 2 of the present invention.
 本発明の他の一つは、前記発明と略同様であるが、透過率曲線の波形特性が、下記の如く若干異なる。 Another aspect of the present invention is substantially the same as the above invention, but the waveform characteristics of the transmittance curve are slightly different as follows.
 1)450~500nmに第一バレー極小を、550~630nmおよび650~700nmの各波長域にそれぞれ前記第一バレー極小より25%以上浅い極小透過率を有する第二・第三バレー極小をそれぞれ備えている。 1) First valley minimum at 450 to 500 nm, and second and third valley minimums each having a minimum transmittance of 25% or more shallower than the first valley minimum in each wavelength region of 550 to 630 nm and 650 to 700 nm. ing.
 2)400~700nmの全体平均透過率が30%以上(望ましくは35%以上)である。 2) The overall average transmittance at 400 to 700 nm is 30% or more (preferably 35% or more).
 3)第一バレー極小の透過率が30%以下(望ましくは10%以下)であるともに、隣接極大透過率との差が25%以上である。 3) The transmittance of the first valley minimum is 30% or less (preferably 10% or less), and the difference from the adjacent maximum transmittance is 25% or more.
 4)第二・第三バレー極小の各透過率が55%以下(望ましくは50%以下)であるとともに、隣接極大透過率との差が10%以上である。 4) Each transmittance of the second and third valley minimums is 55% or less (preferably 50% or less), and the difference from the adjacent maximum transmittance is 10% or more.
 5)第一・第二・第三バレー極小の各透過率と、各極小波長±20nmにおける透過率差平均が10~40%(望ましくは15~30%)の範囲にある。 5) The transmittance of each of the first, second and third valley minimums and the average transmittance difference at each minimum wavelength ± 20 nm are in the range of 10 to 40% (preferably 15 to 30%).
 上記発明と前記発明との差は、透過率曲線において、第一バレーより浅い第二・第三バレーが表われるようにしたものである。 The difference between the above invention and the above invention is that the second and third valleys shallower than the first valley appear in the transmittance curve.
 作用・効果は、前記発明と同様であるが、相対的に透過率が低いため、晴天時の防眩性にすぐれるが、曇天時や雨天時等において視認性に劣る。 The action and effect are the same as in the above invention, but since the transmittance is relatively low, the antiglare property is excellent in fine weather, but the visibility is poor in cloudy weather or rainy weather.
 本発明のさらに他の一つは、前記発明と略同様であるが、透過率曲線の波形特性が、下記の如く若干異なる。 Still another one of the present invention is substantially the same as the above invention, but the waveform characteristics of the transmittance curve are slightly different as follows.
 1)450~500nmに第一バレー極小を、550~630nmおよび650~700nmの各波長域にそれぞれ前記第一バレー極小より25%以上浅い極小透過率を有する第二・第三バレー極小をそれぞれ備えている。 1) First valley minimum at 450 to 500 nm, and second and third valley minimums each having a minimum transmittance of 25% or more shallower than the first valley minimum in each wavelength region of 550 to 630 nm and 650 to 700 nm. ing.
 2)400~700nmの全体平均透過率が30%以上(望ましくは35%以上)である。 2) The overall average transmittance at 400 to 700 nm is 30% or more (preferably 35% or more).
 3)第一バレー極小の透過率が30%以下(望ましくは10%以下)であるともに、隣接極大透過率との差が25%以上である。 3) The transmittance of the first valley minimum is 30% or less (preferably 10% or less), and the difference from the adjacent maximum transmittance is 25% or more.
 4)第二・第三バレー極小の各透過率が55%以下(望ましくは50%以下)であるとともに、隣接極大透過率との差が5%以上である。 4) Each transmittance of the second and third valley minimums is 55% or less (preferably 50% or less), and the difference from the adjacent maximum transmittance is 5% or more.
 5)第一・第三バレー極小の各透過率と、各極小波長±20nmにおける透過率差平均が10~40%(望ましくは15~30%)の範囲にあるとともに、前記第二バレー極小の透過率と各極小波長±20nmにおける透過率差平均が3~10%(望ましくは5~8%)の範囲にある。 5) Each transmittance of the first and third valley minimums and the average transmittance difference at each minimum wavelength ± 20 nm are in the range of 10 to 40% (preferably 15 to 30%). The transmittance and the average difference in transmittance at each minimum wavelength ± 20 nm are in the range of 3 to 10% (preferably 5 to 8%).
 作用効果は、上記発明と同様であるが、視感度の高い波長領域550~630nmのおける第二バレー極小のバレーが上記に比して浅いため、眼が明るさを感じ易く、上記に比して視認性が向上する。 The operational effect is the same as that of the above invention, but the second valley minimum valley in the wavelength range of 550 to 630 nm with high visibility is shallower than the above, so that the eyes can easily feel the brightness, and compared with the above. Visibility is improved.
 以下、本発明の効果を確認するために比較例とともに行なった実施例について説明する。以下の説明で配合部数を示す「部」は「質量部」を意味する。 Hereinafter, examples carried out together with comparative examples in order to confirm the effects of the present invention will be described. In the following description, “parts” indicating the number of blending parts means “parts by mass”.
 <紫外線吸収剤>
 下記化合物名の市販品を使用した。
<Ultraviolet absorber>
Commercial products having the following compound names were used.
 UV-01 2-(4-エトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール
 UV-02 2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル
)フェノール
 UV-03 2-(2-ヒドロキシ-5-t-ブチルフェニル)-2H-ベンゾトリアゾール
 <特定波長吸収色素>
 下記各特定吸収ピーク波長を有する下記各化合物の市販品を使用した。
UV-01 2- (4-Ethoxy-2-hydroxyphenyl) -2H-benzotriazole UV-02 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl ) Phenol UV-03 2- (2-Hydroxy-5-t-butylphenyl) -2H-benzotriazole <Specific wavelength absorbing dye>
Commercial products of the following respective compounds having the following specific absorption peak wavelengths were used.
 C-01 テトラアザポリフィリン系金属錯体化合物、吸収ピーク波長480nm
 C-02 テトラアザポリフィリン系金属錯体化合物、吸収ピーク波長595nm
 C-03 フェロシアニン系金属錯体化合物、吸収ピーク波長760nm
 C-04 テトラアザポリフィリン系金属錯体化合物、吸収ピーク波長590nm
 そして、実施例・比較例で使用した各材料(素材)および添加量を纏めたものを、表1-1・2に示す。
C-01 tetraazaporphyrin-based metal complex compound, absorption peak wavelength 480 nm
C-02 Tetraazaporphyrin-based metal complex compound, absorption peak wavelength 595 nm
C-03 Ferrocyanine metal complex compound, absorption peak wavelength 760 nm
C-04 Tetraazaporphyrin-based metal complex compound, absorption peak wavelength 590 nm
Tables 1-1 and 2 summarize the materials (materials) used in Examples and Comparative Examples and the amounts added.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 <実施例1~3・5~6・8~10・12~13>
 (1)重合性液状材料の調製
m-キシリレンジイソシアネート 100部に、硬化剤としてジブチルチンジクロライド 0.1部、内部剥離剤としてアルキル燐酸エステル(アルコールC8~C12)塩0.5部、香気性付与剤としてカプロン酸エチル 0.2部、と表1に示した紫外線吸収剤と特定波長吸収色素をそれぞれ添加し、液温15℃、窒素ガス雰囲気下で1時間十分に撹拌した。
<Examples 1 to 3, 5 to 6, 8 to 10, 12 to 13>
(1) Preparation of polymerizable liquid material 100 parts of m-xylylene diisocyanate, 0.1 part of dibutyltin dichloride as a curing agent, 0.5 part of an alkyl phosphate (alcohol C8 to C12) salt as an internal release agent, aromatic As an imparting agent, 0.2 parts of ethyl caproate, an ultraviolet absorber shown in Table 1 and a specific wavelength absorbing dye were added, respectively, and the mixture was sufficiently stirred for 1 hour at a liquid temperature of 15 ° C. in a nitrogen gas atmosphere.
 その後、4-メルカプトメチル-3,6-ジチア-1、8-オクタンジチオール 100部を添加し、液温15℃、窒素ガス雰囲気下で1時間十分に撹拌した。 Thereafter, 100 parts of 4-mercaptomethyl-3,6-dithia-1,8-octanedithiol was added, and the mixture was sufficiently stirred for 1 hour at a liquid temperature of 15 ° C. in a nitrogen gas atmosphere.
 そして、真空ポンプを用いて液温度15℃、133Paで撹拌しながら1時間脱気後、1μmフィルターで濾過し、屈折率(nd)1.67のポリチオウレタン系レンズ原料液(重合性液状材料)を調製した。 Then, after deaeration for 1 hour with stirring at a liquid temperature of 15 ° C. and 133 Pa using a vacuum pump, the mixture is filtered through a 1 μm filter, and a polythiourethane lens raw material liquid having a refractive index (nd) of 1.67 (polymerizable liquid material). ) Was prepared.
 (2)レンズの成形
 ガラス製の第一・第二モールド17、19の周囲開口をキャビティ25を形成して成形型27を調製し、該成形型27のキャビティ25に液状材料注入口23aを介して重合性液状材料を注入して、熱硬化重合や紫外線硬化(光)重合などの手段により重合硬化乃至架橋硬化させて形成する。
(2) Lens molding A cavity 25 is formed in the peripheral openings of the first and second molds 17 and 19 made of glass to form a mold 27, and the cavity 25 of the mold 27 is inserted into the cavity 25 via a liquid material inlet 23a. Then, a polymerizable liquid material is injected and polymerized or crosslinked and cured by means such as thermosetting polymerization or ultraviolet curing (photo) polymerization.
 第1モールド(ガラス製、外形80mm、使用面曲率66.16mm、中心厚4.0mm)17、第2モールド(ガラス製、外形80mm、使用面曲率65.59mm、中心厚4.0mm)19を中心間隔2.0mmとなるように、プラスチック製のガスケット23に保持して成形型27を調製した(図3参照)。 First mold (made of glass, outer shape 80 mm, used surface curvature 66.16 mm, center thickness 4.0 mm) 17, second mold (made of glass, outer shape 80 mm, used surface curvature 65.59 mm, center thickness 4.0 mm) 19 A molding die 27 was prepared by being held by a plastic gasket 23 so that the center distance was 2.0 mm (see FIG. 3).
 上記成形型に重合性液状材料を注入後、下記温度条件で加熱し重合させてレンズ成形を行った。重合後、型から取り出す離型工程は、クサビ状工具で物理的(機械的)に行った。 After injecting the polymerizable liquid material into the above mold, the lens was molded by heating and polymerizing under the following temperature conditions. After the polymerization, the mold release step for removing from the mold was physically (mechanically) performed with a wedge-shaped tool.
 「35℃×5時間→35℃から60℃まで5時間かけて昇温→60℃から100℃まで2時間かけて昇温→100℃から120℃まで1時間かけて昇温→120℃×3時間→120℃から40℃まで4時間かけて冷却する。」
(3)レンズ色調節
 実施例5については、上記重合製液状材料を使用して作製したレンズを、DystarDianix Red E-FB(ダイスタージャパン(株)製)を90℃に加熱した温水中に溶かした容器の中に30秒間浸漬し、外観上の色調節、及び、透過率の調節を行った。
“35 ° C. × 5 hours → 35 ° C. to 60 ° C. over 5 hours → 60 ° C. to 100 ° C. over 2 hours → 100 ° C. to 120 ° C. over 1 hour → 120 ° C. × 3 Time → cool from 120 ° C. to 40 ° C. over 4 hours. ”
(3) Lens Color Adjustment For Example 5, the lens produced using the above polymerized liquid material was dissolved in warm water heated to 90 ° C. by DystarDianix Red E-FB (manufactured by Dystar Japan Co., Ltd.). The sample was dipped in a container for 30 seconds to adjust the appearance color and the transmittance.
 <実施例4・7・11・14>
 (1)射出成形用色素練り込み樹脂ペレットの調製
表1に示した特定波長吸収色素と添加量をユーピロンCLS-3400(三菱エンジニアリングプラスチック(株);紫外線吸収剤含有のポリカーボネイトマスターバッチ)に混合して射出成形用樹脂ペレットを製造した。
<Examples 4, 7, 11, and 14>
(1) Preparation of dye-kneaded resin pellet for injection molding The specific wavelength-absorbing dye and addition amount shown in Table 1 were mixed in Iupilon CLS-3400 (Mitsubishi Engineering Plastics Co., Ltd .; polycarbonate masterbatch containing UV absorber). Thus, resin pellets for injection molding were produced.
 (2)レンズの射出成形
外形75mm、中心厚2.1mmのレンズを成形する金型を(株)ソディック製電動ハイブリッド縦型射出成形機TR100VRに取り付ける。
これに、上記特定波長吸収色素混合樹脂ペレットにて射出成形する。
(2) Injection molding of lens A mold for molding a lens having an outer shape of 75 mm and a center thickness of 2.1 mm is attached to an electric hybrid vertical injection molding machine TR100VR manufactured by Sodick Co., Ltd.
This is injection molded with the specific wavelength absorbing dye-mixed resin pellets.
 <比較例1>
 基材に屈折率(ne)1.60のポリチオウレタン系レンズ樹脂を使用して成形を行ったレンズ基材の基材上に、基材側から順にシリコーン系の耐衝撃性コート、シリコーン系ハードコート、無機反射防止膜を成膜して、最表面層としてフッ素系の撥水膜を成膜した。
<Comparative Example 1>
On the base material of the lens base material formed by using a polythiourethane lens resin having a refractive index (ne) of 1.60 as the base material, a silicone-based impact-resistant coat in order from the base material side, a silicone type A hard coat and an inorganic antireflection film were formed, and a fluorine-based water repellent film was formed as the outermost surface layer.
 <比較例2>
 染料系PVAL偏光フィルム「Brown-30」(偏光度99.2%)を、屈折率(ne)1.60のポリチオウレタン系レンズ樹脂で挟み込んで成形を行ったレンズ基材の基材上に、基材側から順にシリコーン系の耐衝撃性コート、シリコーン系ハードコート、無機反射防止膜を成膜して、最表面層としてフッ素系の撥水膜を成膜した。
<Comparative Example 2>
A dye-based PVAL polarizing film “Brown-30” (polarization degree: 99.2%) is sandwiched between polythiourethane-based lens resins having a refractive index (ne) of 1.60 and formed on a lens base material. Then, a silicone-based impact-resistant coat, a silicone-based hard coat, and an inorganic antireflection film were formed in this order from the substrate side, and a fluorine-based water-repellent film was formed as the outermost surface layer.
 <比較例3>
 染料系PVAL偏光フィルム「Gray-30」(偏光度99.5%)を、屈折率(ne)1.60のポリチオウレタン系レンズ樹脂で挟み込んで成形を行ったレンズ基材の基材上に、基材側から順にシリコーン系の耐衝撃性コート、シリコーン系ハードコート、無機反射防止膜を成膜し、最表面層としてフッ素系の撥水膜を成膜した。
<Comparative Example 3>
A dye-based PVAL polarizing film “Gray-30” (polarization degree 99.5%) is sandwiched between polythiourethane-based lens resins having a refractive index (ne) of 1.60 and formed on a lens base material. A silicone-based impact-resistant coating, a silicone-based hard coat, and an inorganic antireflection film were formed in this order from the substrate side, and a fluorine-based water-repellent film was formed as the outermost surface layer.
 <試験方法及び結果>
 上記で調製した各実施例・比較例の光学要素について、JIS-T7333に示されている透過率測定方法に準じて透過率を計測した。
<Test methods and results>
With respect to the optical elements of the examples and comparative examples prepared above, the transmittance was measured according to the transmittance measuring method shown in JIS-T7333.
 測定は分光光度計U-4100((株)日立製作所製)を用いて、測定波長380~780nm、スキャンスピード600nm/min、サンプリング間隔1nm、スリット5nmの条件にて行った。 Measurement was performed using a spectrophotometer U-4100 (manufactured by Hitachi, Ltd.) under the conditions of a measurement wavelength of 380 to 780 nm, a scan speed of 600 nm / min, a sampling interval of 1 nm, and a slit of 5 nm.
 それらの試験結果の透過率曲線を図4~13・図15~21に示す。 The transmittance curves of the test results are shown in FIGS. 4 to 13 and FIGS. 15 to 21.
 何れの実施例も、明りょうな短波長側バレーが一つ、長波長側バレーが一つ(実施例1~4・8~11)又は複数(2個)(実施例5~7・12~14)表われている。なお、実施例8~11の中間波形(1)は最大・最小透過率を有せず、また、実施例12~14は、中間波形(1)乃至(2)に実質的な最大・最小透過率を有しない。 In any of the examples, there is one clear short wavelength side valley and one long wavelength side valley (Examples 1 to 4, 8 to 11) or a plurality (two) (Examples 5 to 7, 12 to 14) Appears. Note that the intermediate waveform (1) of Examples 8 to 11 has no maximum / minimum transmittance, and Examples 12 to 14 have substantial maximum / minimum transmission in the intermediate waveforms (1) to (2). Has no rate.
 これに対して、各比較例は、何れも、そのようなバレーを有しない。 On the other hand, none of the comparative examples has such a valley.
 また、各実施例・比較例の透過率曲線における特性を示す下記各表から、各実施例は、本発明の構成要件(発明特定事項)を満たすものであることが分かる。 Also, from the following tables showing the characteristics in the transmittance curves of each example and comparative example, it can be seen that each example satisfies the constituent requirements (invention specific matter) of the present invention.
 なお、視感透過率は、長波長側バレーが一つの実施例1~4と対応実施例8~11では、前者の方が視感透過率が相対的に高い。 The luminous transmittance is relatively higher in the former in Examples 1 to 4 and the corresponding Examples 8 to 11 in which the long wavelength side valley is one.
 また、長波長側バレーが二つの実施例5~7と対応実施例12~14では、前者と後者では、前者が若干低いだけで視感透過率が略同じである。 Also, in Examples 5 to 7 and corresponding Examples 12 to 14 in which the long wavelength side valley is two, the former and the latter have substantially the same luminous transmittance with the former being slightly lower.
 ・<表2-1A>および<表2-1B>に、(1)平均透過率(400~700nm)、(2)第一・第二バレーの極小透過率およびそれらの透過率の差、(3)第一・第二バレーの隣接極大波長・透過率および極小透過率との差、及び(4)視感透過率を示す。 In <Table 2-1A> and <Table 2-1B>, (1) Average transmittance (400 to 700 nm), (2) Minimum transmittance of the first and second valleys, and the difference between these transmittances, ( 3) Difference between adjacent maximum wavelength and transmittance and minimum transmittance of the first and second valleys, and (4) luminous transmittance.
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000010
 
 ・<表2-2-1A>、<表2-2-2A>および<表2-2-3A>、並びに<表2-2-1B>、<表2-2-2B>および<表2-2-3B>に、第一・第二・第三バレーの各極小波長±20nmにおける透過率と各極小透過率との透過率差平均値(中間値)をそれぞれ示す。 <Table 2-2-1A>, <Table 2-2-2A> and <Table 2-2-3A>, and <Table 2-2-1B>, <Table 2-2-2B> and <Table 2 -2-3B> shows the transmittance difference average value (intermediate value) between the transmittance at each minimum wavelength ± 20 nm and the minimum transmittance in the first, second, and third valleys.
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000016
 
Figure JPOXMLDOC01-appb-T000016
 
 <表2-3-1>および<表2-3-2>に、中間波形(1)および(2)(実施例5~7のみ)の最大・最小透過率および透過率差をそれぞれ示す。 <Table 2-3-1> and <Table 2-3-2> show the maximum and minimum transmittances and transmittance differences of the intermediate waveforms (1) and (2) (Examples 5 to 7 only), respectively.
Figure JPOXMLDOC01-appb-T000017
 
Figure JPOXMLDOC01-appb-T000017
 
Figure JPOXMLDOC01-appb-T000018
 
Figure JPOXMLDOC01-appb-T000018
 
 更に、各実施例・比較例(実施例8~14を除く。)のレンズを使用して、以下の(a)~(d)の評価を行った。 Furthermore, the following evaluations (a) to (d) were performed using the lenses of the respective examples and comparative examples (excluding Examples 8 to 14).
 具体的には、日常的にゴルフをプレーする10人をパネラー(モニター)として、下記評価基準にて性能評価を行った。 Specifically, performance evaluation was performed according to the following evaluation criteria, with 10 people playing golf on a daily basis as panelists (monitors).
  肯定的評価8名以上:◎、同5~7名:○、同2~4名:△、同1名以下:×
 評価結果を表3に示す。
Positive evaluation 8 or more: ◎, 5-7: ○, 2-4: △, 1 or less: ×
The evaluation results are shown in Table 3.
 そして、◎:3点、○:2点、△:1点、×:0点として集計を行い、総合評価として、10点以上:◎、8点以上:○、6点以上:△:、5点以下:×とした。 Then, ◎: 3 points, ○: 2 points, Δ: 1 point, x: 0 points, and as a comprehensive evaluation, 10 points or more: ◎, 8 points or more: ○, 6 points or more: Δ: 5 Below the point: x.
 (a)レンズ装着無しの場合と比較し、ゴルフ場での芝目(グリーン)の見易さ、アンジュレーション(フェアウェーやグリーンなどコース上の起伏)の見易さが向上するか否かを評価
 (b)晴天時にゴルフをプレーする場合でのレンズの明るさについて、眩しさ低減効果が得られるか否かを評価
 (c)曇天時にゴルフをプレーする場合でのレンズの明るさについて、暗くなりすぎることなく視認性が良好であるか否かを評価
 (d)レンズ装着無しの場合と比較し、遠くの山を見た場合での木々等が見易くなるか否かを評価
 表3の結果より、各実施例共にゴルフ用として芝目等の視認性が向上する効果が得られていることが確認できた。
(a) Compared to the case without a lens, the visibility of turf (green) and undulation (undulations on the course such as fairways and greens) at golf courses will be improved. Evaluation (b) Evaluate whether or not the dazzle reduction effect can be obtained with respect to the brightness of the lens when playing golf in fine weather (c) The brightness of the lens when playing golf in cloudy weather is dark Evaluate whether visibility is good without becoming too much (d) Evaluate whether it is easy to see trees etc. when looking at a distant mountain compared to when no lens is attached From the results, it was confirmed that the effects of improving the visibility of turf and the like were obtained for each example in golf.
Figure JPOXMLDOC01-appb-T000019
 
Figure JPOXMLDOC01-appb-T000019
 

Claims (7)

  1.  透明基材からなる、単層の又は偏光素子を有する複層の光学要素であって、
     前記透明基材に、特定波長吸収色素を紫外線吸収剤とともに含有させて、
     分光光度計にて測定された透過率曲線(以下「透過率曲線」)において、
     透過率曲線の450~500nmおよび550~630nmの各波長域に第一バレー極小および第二バレー極小をそれぞれ備え、
     400~700nmの波長域における全体平均透過率が35%以上であり、また、
     前記第一・第二バレー極小の各透過率が、60%以下であるとともに、各隣接極大透過率と20%以上の差を有し、更に、
     前記第一・第二バレー極小の各透過率と、各極小波長±20nmにおける透過率差平均が10~50%の範囲にある、
     ことを特徴とする防眩光学要素。
    A single-layer or multilayer optical element comprising a transparent substrate and having a polarizing element,
    In the transparent substrate, a specific wavelength absorbing dye is contained together with an ultraviolet absorber,
    In the transmittance curve (hereinafter referred to as “transmittance curve”) measured with a spectrophotometer,
    A first valley minimum and a second valley minimum are provided in each wavelength region of 450 to 500 nm and 550 to 630 nm of the transmittance curve,
    The overall average transmittance in the wavelength region of 400 to 700 nm is 35% or more,
    Each transmittance of the first and second valley minimums is 60% or less, and has a difference of 20% or more from each adjacent maximum transmittance,
    Each transmittance of the first and second valley minimums and a transmittance difference average at each minimum wavelength ± 20 nm are in the range of 10 to 50%.
    An anti-glare optical element characterized by that.
  2.  前記第一バレー極小と前記第二バレー極小の透過率差が20%以下であることを特徴とする請求項1記載の防眩光学要素。 The anti-glare optical element according to claim 1, wherein a difference in transmittance between the first valley minimum and the second valley minimum is 20% or less.
  3.  透明基材からなる、単層の又は偏光素子を有する複層の光学要素であって、
     前記透明基材に、特定波長吸収色素とともに紫外線吸収剤を含有させて、
     分光光度計にて測定された透過率曲線(以下「透過率曲線」)において、
     450~500nmに第一バレー極小を、550~630nmおよび650~700nmの各波長域にそれぞれ前記第一バレー極小より25%以上浅い透過率を有する第二・第三バレー極小をそれぞれ備え、
     400~700nmの波長域における全体平均透過率が30%以上であり、
     前記第一バレー極小の透過率が30%以下であるともに、隣接極大透過率との差が25%以上であり、
     前記第二・第三バレー極小の各透過率が55%以下であるとともに、隣接極大透過率との差が10%以上であり、更に、
     前記第一・第二・第三バレー極小の各透過率と、各極小波長±20nmにおける透過率差平均が10~40%の範囲にある、
     ことを特徴とする防眩光学要素。
    A single-layer or multilayer optical element comprising a transparent substrate and having a polarizing element,
    The transparent substrate contains an ultraviolet absorber together with a specific wavelength absorbing dye,
    In the transmittance curve (hereinafter referred to as “transmittance curve”) measured with a spectrophotometer,
    A first valley minimum at 450 to 500 nm, a second and a third valley minimum each having a transmittance of 25% or more shallower than the first valley minimum in each wavelength region of 550 to 630 nm and 650 to 700 nm,
    The overall average transmittance in the wavelength region of 400 to 700 nm is 30% or more,
    The transmittance of the first valley minimum is 30% or less, and the difference from the adjacent maximum transmittance is 25% or more,
    Each transmittance of the second and third valley minimums is 55% or less, the difference from the adjacent maximum transmittance is 10% or more,
    Each transmittance of the first, second, and third valley minimums and the average transmittance difference at each minimum wavelength ± 20 nm are in the range of 10 to 40%.
    An anti-glare optical element characterized by that.
  4.  透明基材からなる、単層の又は偏光素子を有する複層の光学要素であって、
     前記透明基材に、特定波長吸収色素とともに紫外線吸収剤を含有させて、
     分光光度計にて測定された透過率曲線(以下「透過率曲線」)において、
     450~500nmに第一バレー極小を、550~630nmおよび650~700nmの各波長域にそれぞれ前記第一バレー極小より25%以上浅い透過率を有する第二・第三バレー極小をそれぞれ備え、
     400~700nmの波長域における全体平均透過率が30%以上であり、
     前記第一バレー極小の透過率が30%以下であるともに、隣接極大透過率との差が25%以上であり、
     前記第二・第三バレー極小の各透過率が55%以下であるとともに、隣接極大透過率との差が5%以上であり、更に、
     前記第一・第三バレー極小の各透過率と、各極小波長±20nmにおける透過率差平均が10~40%の範囲にあるとともに、前記第二バレー極小の透過率と各極小波長±20nmにおける透過率差平均が3~10%の範囲にある、
     ことを特徴とする防眩光学要素。
    A single-layer or multilayer optical element comprising a transparent substrate and having a polarizing element,
    The transparent substrate contains an ultraviolet absorber together with a specific wavelength absorbing dye,
    In the transmittance curve (hereinafter referred to as “transmittance curve”) measured with a spectrophotometer,
    A first valley minimum at 450 to 500 nm, a second and a third valley minimum each having a transmittance of 25% or more shallower than the first valley minimum in each wavelength region of 550 to 630 nm and 650 to 700 nm,
    The overall average transmittance in the wavelength region of 400 to 700 nm is 30% or more,
    The transmittance of the first valley minimum is 30% or less, and the difference from the adjacent maximum transmittance is 25% or more,
    Each transmittance of the second and third valley minimums is 55% or less, the difference from the adjacent maximum transmittance is 5% or more,
    Each transmittance of the first and third valley minimums and the average transmittance difference at each minimum wavelength ± 20 nm are in the range of 10 to 40%, and the transmittance of the second valley minimum and each minimum wavelength ± 20 nm The average transmittance difference is in the range of 3 to 10%.
    An anti-glare optical element characterized by that.
  5.  前記透明基材が、特定波長吸収色素を紫外線吸収剤とともに含む透明合成樹脂層で形成され、前記特定波長吸収色素の樹脂原料100部に対する配合量が、0.5×10-4~5.0×10-3部であるとともに、紫外線吸収剤の樹脂原料100部に対する配合量が、0.1~6部であることを特徴とする請求項1~4いずれか一記載の防眩光学要素。 The transparent substrate is formed of a transparent synthetic resin layer containing a specific wavelength absorbing dye together with an ultraviolet absorber, and the blending amount of the specific wavelength absorbing dye with respect to 100 parts of the resin raw material is 0.5 × 10 −4 to 5.0. with a × 10 -3 parts, amount relative to 100 parts of the resin material of the UV absorber, according to claim 1 to 4, antiglare optical element according to any one, wherein 0.1 to 6 parts.
  6.  前記特定波長吸収色素の樹脂原料100部に対する配合量が、0.8×10-4~3.5×10-3部であることを特徴とする請求項5記載の防眩光学要素。 6. The antiglare optical element according to claim 5, wherein the blending amount of the specific wavelength absorbing dye with respect to 100 parts of the resin raw material is 0.8 × 10 −4 to 3.5 × 10 −3 parts.
  7.  前記偏光素子の偏光度が80%以下であることを特徴とする請求項1~6いずれか一記載の防眩光学要素。 The antiglare optical element according to any one of claims 1 to 6, wherein the polarization degree of the polarizing element is 80% or less.
PCT/JP2012/059623 2011-06-02 2012-04-09 Anti-glare optical element WO2012165050A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011124335 2011-06-02
JP2011-124335 2011-06-02
JP2011211458A JP5985167B2 (en) 2011-06-02 2011-09-27 Anti-glare optical element
JP2011-211458 2011-09-27

Publications (1)

Publication Number Publication Date
WO2012165050A1 true WO2012165050A1 (en) 2012-12-06

Family

ID=47258915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059623 WO2012165050A1 (en) 2011-06-02 2012-04-09 Anti-glare optical element

Country Status (2)

Country Link
JP (1) JP5985167B2 (en)
WO (1) WO2012165050A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133110A1 (en) 2013-02-27 2014-09-04 三井化学株式会社 Optical material and use thereof
WO2014155787A1 (en) * 2013-03-29 2014-10-02 積水化成品工業株式会社 Optical film
WO2014196414A2 (en) * 2013-06-03 2014-12-11 日本化薬株式会社 Polarizing element and polarizing plate for display device having blue light emitting element
JP2017181942A (en) * 2016-03-31 2017-10-05 株式会社乾レンズ Les with light source toning property
JP2018515800A (en) * 2016-04-26 2018-06-14 マウイ ジム インコーポレイテッド Color-enhancing thin lens for eyewear
US20180345860A1 (en) * 2017-05-31 2018-12-06 Panasonic Intellectual Property Management Co., Ltd. Display system, electronic mirror system and movable-body apparatus equipped with the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9134547B2 (en) * 2011-10-20 2015-09-15 Oakley, Inc. Eyewear with chroma enhancement
JP5967795B2 (en) * 2011-10-12 2016-08-10 東海光学株式会社 Optical products and glasses
WO2013169987A1 (en) 2012-05-10 2013-11-14 Oakley, Inc. Eyewear with laminated functional layers
CN113045885B (en) 2013-09-30 2023-03-21 豪雅镜片泰国有限公司 Transparent plastic substrate and plastic lens
EP3218763A4 (en) 2014-11-13 2018-06-13 Oakley, Inc. Variable light attenuation eyewear with color enhancement
JP2019066501A (en) * 2016-02-23 2019-04-25 三井化学株式会社 Thermoplastic resin composition for optical material and application thereof
WO2018008179A1 (en) * 2016-07-06 2018-01-11 伊藤光学工業株式会社 Eyeglass material
JP2019525263A (en) * 2016-07-28 2019-09-05 エイシーイー、ロナルド・エス. Spectrally sculpted multiple narrowband filters for human vision enhancement
WO2018143329A1 (en) * 2017-02-03 2018-08-09 株式会社ニコン・エシロール Spectacle lens and method for producing spectacle lens
JP6886150B2 (en) * 2017-11-01 2021-06-16 伊藤光学工業株式会社 Optical element
US11112622B2 (en) 2018-02-01 2021-09-07 Luxottica S.R.L. Eyewear and lenses with multiple molded lens components
JP6599576B1 (en) * 2019-02-22 2019-10-30 住友ベークライト株式会社 Optical sheet and optical component
JP7318376B2 (en) 2019-07-03 2023-08-01 王子ホールディングス株式会社 Anti-glare/heat-shielding sheets for automobiles and anti-glare/heat-shielding laminated glass for automobiles
JPWO2022034739A1 (en) * 2020-08-14 2022-02-17
JP7205558B2 (en) * 2020-10-09 2023-01-17 王子ホールディングス株式会社 Anti-glare/heat-shielding sheet and anti-glare/heat-shielding laminated glass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333517A (en) * 2001-05-09 2002-11-22 Mitsubishi Chemicals Corp Filter for electronic display and electronic display device using the filter
JP2003149605A (en) * 2001-11-16 2003-05-21 Nippon Sheet Glass Co Ltd Glare-proof optical article
JP2005197240A (en) * 2004-12-10 2005-07-21 Mitsubishi Chemicals Corp Filter for electronic display and electronic display apparatus using this filter
JP2006031030A (en) * 2005-07-22 2006-02-02 Kyowa Hakko Kogyo Co Ltd Synthetic resin molding
WO2007029649A1 (en) * 2005-09-05 2007-03-15 Matsushita Electric Industrial Co., Ltd. Filter for display device
JP2008268757A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Optical filter for lighting apparatus and lighting apparatus provided with the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274403A (en) * 1987-08-28 1993-12-28 Gott George M Lens useful in inhibiting the production of melatonin and lens produced thereby
JP2002040233A (en) * 2000-07-21 2002-02-06 Mitsui Chemicals Inc Optical filter
JP4055379B2 (en) * 2001-07-25 2008-03-05 三菱化学株式会社 Display filter
JP2004323481A (en) * 2003-04-28 2004-11-18 Mitsubishi Chemicals Corp Tetraazaporphyrin compound, tetraazaporphyrin pigment and optical filter using the same
JP2008134618A (en) * 2006-10-26 2008-06-12 Hopunikku Kenkyusho:Kk Plastic eyeglass lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333517A (en) * 2001-05-09 2002-11-22 Mitsubishi Chemicals Corp Filter for electronic display and electronic display device using the filter
JP2003149605A (en) * 2001-11-16 2003-05-21 Nippon Sheet Glass Co Ltd Glare-proof optical article
JP2005197240A (en) * 2004-12-10 2005-07-21 Mitsubishi Chemicals Corp Filter for electronic display and electronic display apparatus using this filter
JP2006031030A (en) * 2005-07-22 2006-02-02 Kyowa Hakko Kogyo Co Ltd Synthetic resin molding
WO2007029649A1 (en) * 2005-09-05 2007-03-15 Matsushita Electric Industrial Co., Ltd. Filter for display device
JP2008268757A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Optical filter for lighting apparatus and lighting apparatus provided with the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133110A1 (en) 2013-02-27 2014-09-04 三井化学株式会社 Optical material and use thereof
WO2014155787A1 (en) * 2013-03-29 2014-10-02 積水化成品工業株式会社 Optical film
WO2014196414A2 (en) * 2013-06-03 2014-12-11 日本化薬株式会社 Polarizing element and polarizing plate for display device having blue light emitting element
WO2014196414A3 (en) * 2013-06-03 2015-01-15 日本化薬株式会社 Polarizing element and polarizing plate for display device having blue light emitting element
KR20160014574A (en) * 2013-06-03 2016-02-11 니폰 가야꾸 가부시끼가이샤 Polarizing element and polarizing plate for display device having blue light emitting element
JPWO2014196414A1 (en) * 2013-06-03 2017-02-23 日本化薬株式会社 Polarizing element or polarizing plate for display device having blue light emitting element
KR102118004B1 (en) 2013-06-03 2020-06-02 니폰 가야꾸 가부시끼가이샤 Polarizing element and polarizing plate for display device having blue light emitting element
JP2017181942A (en) * 2016-03-31 2017-10-05 株式会社乾レンズ Les with light source toning property
JP2018515800A (en) * 2016-04-26 2018-06-14 マウイ ジム インコーポレイテッド Color-enhancing thin lens for eyewear
US20180345860A1 (en) * 2017-05-31 2018-12-06 Panasonic Intellectual Property Management Co., Ltd. Display system, electronic mirror system and movable-body apparatus equipped with the same
US10525886B2 (en) * 2017-05-31 2020-01-07 Panasonic Intellectual Property Management Co., Ltd. Display system, electronic mirror system and movable-body apparatus equipped with the same
US10953799B2 (en) 2017-05-31 2021-03-23 Panasonic Intellectual Property Management Co., Ltd. Display system, electronic mirror system and movable-body apparatus equipped with the same

Also Published As

Publication number Publication date
JP5985167B2 (en) 2016-09-06
JP2013011840A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP5985167B2 (en) Anti-glare optical element
JP5824218B2 (en) Anti-glare optical element
US20220057654A1 (en) Eyewear with variable optical characteristics
JP5749683B2 (en) Anti-glare optical element
KR101761828B1 (en) Optical resin compositions and optical lens prepared therefrom
ES2238320T3 (en) PLASTIC BASED MATERIAL.
US20170261768A1 (en) Photochromic optical lens with selective blue light attenuation
AU2019214536B2 (en) Eyewear and lenses with multiple molded lens components
US10527869B2 (en) Ophthalmic lens, in particular for sunglasses
US11809026B2 (en) Ophthalmic lens in particular for a pair of sunglasses
TW201418821A (en) Selective blue light filtered optic
JP2007254734A (en) Photochromic molding composition and article manufactured from the same
AU2011303181A1 (en) Light-blocking lenses for safety glasses
JP2013109257A (en) Antiglare high-contrast resin lens
JP7033605B2 (en) Photochromic Eyewear Lens Manufacturing Methods and Photochromic Eyewear Products
CN110383150B (en) Eyewear lenses including activatable filters
JP6886150B2 (en) Optical element
JP2014038247A (en) Ophthalmic lens
US20230204982A1 (en) Eyewear with chroma enhancement
US20230033949A1 (en) Eyewear with selective wavelength filtering
WO2018037621A1 (en) Light-modulating optical element
CN107247344A (en) Change colour polarisation night-vision spectacle lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793935

Country of ref document: EP

Kind code of ref document: A1