WO2018008179A1 - Eyeglass material - Google Patents

Eyeglass material Download PDF

Info

Publication number
WO2018008179A1
WO2018008179A1 PCT/JP2017/006187 JP2017006187W WO2018008179A1 WO 2018008179 A1 WO2018008179 A1 WO 2018008179A1 JP 2017006187 W JP2017006187 W JP 2017006187W WO 2018008179 A1 WO2018008179 A1 WO 2018008179A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
organic glass
functional resin
glass substrate
absorption peak
Prior art date
Application number
PCT/JP2017/006187
Other languages
French (fr)
Japanese (ja)
Inventor
忠史 鳥居
Original Assignee
伊藤光学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊藤光学工業株式会社 filed Critical 伊藤光学工業株式会社
Priority to JP2018525926A priority Critical patent/JPWO2018008179A1/en
Publication of WO2018008179A1 publication Critical patent/WO2018008179A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses

Definitions

  • the present invention relates to an eyeglass material containing an ultraviolet absorber.
  • the eyeglass material is preferably one that can reduce the transmission of ultraviolet rays entering the eye.
  • Conventional eyeglass materials can reduce the transmission of ultraviolet rays by blending an organic glass substrate (base lens) with an ultraviolet absorber.
  • ultraviolet light transmission can be reduced by blending an ultraviolet absorber having a specific chemical structure.
  • a cavity for molding a functional resin layer is formed on one side or both sides of a base lens, and a thermoplastic elastomer is formed on a molding side of the functional resin layer of the base lens.
  • a base lens and a functional resin layer are integrated.
  • the functional resin layer contains a specific wavelength absorber or the like, so that transmission of a specific wavelength or the like can be reduced.
  • the eyeglass material can cut blue light.
  • an ultraviolet absorber having a high blue light cut rate has an absorption peak wavelength on the long wavelength side, and therefore, when it is contained in a spectacle material, the spectacle material is yellowed (colored or discolored yellow). was there. Yellowed eyeglass materials are not preferred as eyeglass materials because they are reminded of UV-degraded resin. In many cases, the eyeglass material is a lens with a degree, and the difference in thickness between the inner and outer circumferences causes a difference in color tone, which may cause a problem in appearance.
  • the eyeglass material is a product obtained by molding a lens (semi-finished product) and then cutting and polishing to the prescription power of the customer, the eyeglass material described in Patent Documents 1 and 2 has a corresponding portion of the lens at the time of cutting. At the same time, expensive UV absorbers added at the same time were discarded, which was uneconomical.
  • the present invention has been made in view of the above points, and even if the spectacle material contains an ultraviolet absorber with a high cut rate of blue light, the yellowing of the spectacle material is suppressed and the thickness of the inner and outer circumferences of the spectacle material is reduced.
  • An object of the present invention is to provide a spectacle material capable of suppressing a difference in color tone caused by a difference.
  • the eyeglass material of the present invention is an eyeglass material in which a functional resin layer is integrated on one side or both sides of an organic glass substrate that is a resin molded body, and the functional resin layer has an absorption peak wavelength of 320 nm or more. It contains an ultraviolet absorber, and the eyeglass material has a yellowness (YI) of less than 10.
  • the spectacle material of the present invention since the ultraviolet absorber has an absorption peak wavelength of 320 nm or more, the spectacle material of the present invention can cut blue light (400 to 500 nm). Further, the eyeglass material of the present invention can have a yellowness (YI) of less than 10 by containing an ultraviolet absorber in a functional resin layer that is thinner than an organic glass substrate, Compared with the case where the ultraviolet absorbent is contained in the entire organic glass substrate, yellowing of the spectacle material can be suppressed, and a difference in color tone resulting from a difference in thickness between the inner and outer periphery of the spectacle material can be suppressed.
  • YI yellowness
  • the ultraviolet absorber having an absorption peak wavelength of 320 nm or more is a benzotriazole ultraviolet absorber, and the content of the ultraviolet absorber in the functional resin layer is 0.1 to 3.0% by mass. There can be. According to this, it is possible to reduce the average transmittance of light in the ultraviolet region (280 to 400 nm) while cutting blue light.
  • the functional resin layer may contain a specific wavelength absorber having an absorption peak wavelength in a wavelength range of 400 to 500 nm. According to this, since the specific wavelength absorber can cut blue light, the spectacle material can cut blue light more.
  • the cut rate of light with a wavelength of 420 nm can be 20% or more. According to this, the influence of the eyeglass material of the present invention on the user's eyes and biological rhythm can be reduced.
  • the organic glass substrate is molded from a thiourethane, episulfide or (meth) acrylate thermosetting resin material
  • the functional resin layer is a thiourethane, episulfide or (meth) acrylate. It can be formed of a thermosetting resin raw material.
  • the thiourethane-based, episulfide-based or (meth) acrylate-based thermosetting resin raw material is a resin excellent in adhesiveness with the thiourethane-based, episulfide-based or (meth) acrylate-based thermosetting resin material. Since it is a raw material, the functional resin layer can be adhered to the organic glass substrate without requiring a primer or an adhesive.
  • the functional resin layer may have a thickness of 0.2 to 3.0 mm. According to this, since the thickness of the cavity for molding the functional resin layer is secured, cast molding can be performed instantaneously, and the injected functional resin layer is cured without uneven curing. Therefore, the spectacle material can suppress the occurrence of striae (parts having different refractive indexes).
  • the spectacle material of the present invention since the ultraviolet absorber has an absorption peak wavelength of 320 nm or more, the spectacle material of the present invention can cut blue light (400 to 500 nm). Further, the eyeglass material of the present invention can have a yellowness (YI) of less than 10 by containing an ultraviolet absorber in a functional resin layer that is thinner than an organic glass substrate, Compared with the case where the ultraviolet absorbent is contained in the entire organic glass substrate, yellowing of the spectacle material can be suppressed, and a difference in color tone resulting from a difference in thickness between the inner and outer periphery of the spectacle material can be suppressed.
  • YI yellowness
  • the functional resin layer 15 in the eyeglass material in which the functional resin layer 15 is integrated on one side or both sides of the organic glass base material 11 (base lens) that is a resin molded body, the functional resin layer 15 includes: It contains an ultraviolet absorber having an absorption peak wavelength of 320 nm or more, and the eyeglass material has a yellowness (YI) of less than 10.
  • the functional resin layer 15 is integrated with the surface (convex surface) of the organic glass substrate 11 as a spectacle lens by casting.
  • the present invention is not limited to the use of spectacle lenses, but can be applied to any optical element such as telescope lenses, window glass for architectural or vehicle use.
  • the functional resin layer 15 of this invention is not limited to the use to the surface (convex surface) of the organic glass base material 11, The back surface (concave surface) or both surfaces (convex surface and concave surface) of the organic glass base material 11 It is possible to apply to.
  • the organic glass base material 11 is used as a base material for optical elements such as lenses and window glasses.
  • the eyeglass material of the embodiment is made of organic glass (plastic) because it is lighter than inorganic glass. Shall.
  • polycarbonate (PC), polyurethane, polyurea, aliphatic allyl carbonate, aromatic allyl carbonate, polythiourethane, episulfide, (meth) acrylate, transparent polyamide (transparent Nylon), norbornene, polyimide, polyolefin, and other synthetic resins can be used.
  • the thiourethane resin is a polymer (resin) having a bond (-NHCOS-, -NHCSO-, -NHCSS-) in which at least one oxygen atom of a polyurethane bond (-NHCOO-) is replaced with a sulfur atom.
  • resin material one or more selected from polyisocyanate, polyisothiocyanate, polyisothiocyanatothioisocyanate, isocyanato component, polythiol and optionally one or more known polyols are known.
  • a polymerizable component in combination with the active hydrogen compound component can be suitably used.
  • polyisocyanates include aliphatic, alicyclic, aromatic, and derivatives thereof, and sulfide, polysulfide, and thiocarbonyl (thioketone) derivatives in which sulfur is introduced into part of their carbon chains.
  • the compound can be mentioned.
  • aliphatic or alicyclic polyisocyanates are desirable from the viewpoint of UV resistance.
  • polythiols include aliphatic, alicyclic, aromatic, and derivatives thereof, as well as sulfide, polysulfide, and thiocarbonyl (thioketone) derivatives in which sulfur is introduced into a part of their carbon chains.
  • the compound can be mentioned.
  • aliphatic or alicyclic polyisocyanates are desirable from the viewpoint of UV resistance.
  • the episulfide-based resin means a polymer (resin) obtained by reacting a dithioepoxy compound, a curing agent, and another polysynthetic compound.
  • a known product obtained by curing a linear alkyl sulfide type dithioepoxy compound can be used.
  • the curing agent amines, organic acids, or inorganic acids that are ordinary epoxy resin curing agents can be used.
  • organic glass substrate 11 examples include MR-6, MR-8, MR-20, MR-60, MR-95 (Mitsui Chemicals, thiourethane resin, refractive index: 1.60), MR -7, MR-10 (Mitsui Chemicals Co., Ltd. thiourethane resin, refractive index: 1.67), MR-174 (Mitsui Chemicals, Inc. episulfide resin, refractive index: 1.74), NK-11P, LS106S, LS420 (Nippon Shimizu Sangyo Co., Ltd.
  • the organic glass substrate 11 includes an organic anti-degradation agent that prevents resin deterioration of the organic glass, an internal mold release agent that improves mold release from the mold for molding the lens shape, and a curing agent that cures the organic glass.
  • a suitable material can be added according to the kind of glass.
  • the deterioration preventing agent is an alkyl radical (R ⁇ : R is generated when the organic glass resin is decomposed or deteriorated by light or heat while absorbing light of 280 to 320 nm, which is easily decomposed or deteriorated by the organic glass resin.
  • R alkyl radical
  • ROO. peroxy radicals
  • ROOH peroxides
  • deterioration inhibitor examples include benzophenone, diphenyl acrylate, sterically hindered amine, salicylic acid ester, benzotriazole, hydroxybenzoate, cyanoacrylate, hydroxyphenyl triazine, and the like.
  • a suitable deterioration inhibitor can be added depending on the type of organic glass.
  • the internal mold release agent is an additive that is added to improve the release from the mold during mold removal after the organic glass substrate 11 is molded from the organic glass using the mold.
  • a general-purpose product can be used as the mold agent.
  • the curing agent is an additive that cures (polymerizes) the organic glass that forms the organic glass substrate 11, and a material suitable for curing organic glass, such as a peroxide-based polymerization initiator, can be used. .
  • the organic glass substrate 11 can be formed using a general forming method such as a polishing method or a casting method.
  • the polishing method is a method in which a synthetic resin for forming an organic glass base material is molded into a block-shaped resin under suitable conditions, and then polished according to a lens design that requires the block-shaped resin.
  • a cavity is formed by sealing the peripheral surface of the mold with taping or a gasket at an interval that requires a concave mold and a convex mold.
  • a synthetic resin for molding the organic glass substrate 11 is injected and cured, and the organic glass substrate 11 is polished as necessary.
  • the functional resin layer 15 is a layer that is integrated on one side of the organic glass substrate 11, and is a layer that is thinner than the organic glass substrate 11.
  • the functional resin layer 15 contains an ultraviolet absorber having an absorption peak wavelength of 320 nm or more, and may contain a specific wavelength absorber having an absorption peak wavelength in a wavelength range of 400 to 500 nm, if necessary.
  • a synthetic resin such as a thiourethane resin, an episulfide resin, or a (meth) acrylate resin can be used.
  • resin materials excellent in adhesion to thiourethane, episulfide, (meth) acrylate, polycarbonate, polyamide (nylon) and polyurea resin materials Among these, a thiourethane resin excellent in adhesion to the organic glass substrate 11 can be used more preferably.
  • the resin for forming the functional resin layer 15 is MR-6, MR-8, MR-20, MR-60, MR-95 (Mitsui Chemicals thiourethane resin, refractive index: 1).
  • the resin that forms the functional resin layer 15 includes a deterioration preventing agent that prevents resin deterioration of the organic glass, an internal release agent that improves releasability from the mold for forming the lens shape, and a curing that cures the organic glass.
  • An agent suitable for the type of resin can be added.
  • the ultraviolet absorber having an absorption peak wavelength of 320 nm or more is an ultraviolet absorber having an absorption peak wavelength on the long wavelength side, and has a high blue light cut rate.
  • the upper limit of the absorption peak wavelength of the ultraviolet absorber is 500 nm, which is the upper limit of the wavelength of blue light.
  • UV absorbers with a high blue light cut rate have an absorption peak wavelength on the long wavelength side, so when they are contained in a spectacle material (base lens), the spectacle material is yellowed (colored yellow or discolored). )). Yellowed eyeglass materials are not preferred as eyeglass materials because they are reminded of UV-degraded resin.
  • the eyeglass material is a lens with a degree, and the difference in thickness between the inner and outer circumferences causes a difference in color tone, which may cause a problem in appearance.
  • the eyeglass material is yellow by adding an ultraviolet absorber having an absorption peak wavelength of 320 nm or more to the functional resin layer 15 having a thickness smaller than that of the base lens (organic glass base material 11).
  • the yellowness (YI) as the eyeglass material is less than 10.
  • the yellowness (YI) indicates that the larger the value, the stronger the yellowness.
  • the yellowness (YI) as a spectacle material is more preferably less than 8.
  • Examples of ultraviolet absorbers having an absorption peak wavelength of 320 nm or more include benzophenone series, diphenyl acrylate series, sterically hindered amine series, salicylic acid ester series, benzotriazole series, hydroxybenzoate series, cyanoacrylate series, and hydroxyphenyl triazine series. Can do. Among these, a benzotriazole-based resin deterioration preventing agent having an absorption peak wavelength of 320 nm or more is preferable, and a benzotriazole-based resin deterioration preventing agent having an absorption peak wavelength of 340 nm or more (particularly preferably 350 nm or more) is more preferable. .
  • SEESORB701 (342 nm (absorption peak wavelength)
  • SEESORB709 (343 nm)
  • SEESORB706 (344 nm)
  • SEESORB704 (345 nm)
  • SEESORB707 (manufactured by Sipro Kasei Co., Ltd.) 346 nm)
  • SEESORB 702 (351 nm)
  • SEESORB 702L 352 nm
  • SEESORB 703 354 nm
  • the absorption peak wavelength may have an error of about ⁇ 5 nm depending on the conditions of the measuring apparatus and the organic glass molding method.
  • the content of the ultraviolet absorber having an absorption peak wavelength of 320 nm or more with respect to the functional resin layer 15 is preferably 0.1 to 3.0% by mass. This is because ultraviolet rays can be cut and yellowing of the eyeglass material can be suppressed. When the content of the ultraviolet absorber is less than 0.1% by mass, the ultraviolet rays may not be sufficiently cut. On the other hand, if it exceeds 3.0% by mass, the spectacle material may be yellowed. More preferably, it is 0.2 to 2.5% by mass, and still more preferably 0.5 to 1.5% by mass.
  • the specific wavelength absorber is a dye (absorbent) having an absorption peak wavelength at a specific wavelength.
  • the specific wavelength absorber is selected depending on the wavelength of the absorption peak wavelength. For example, squarylium, azomethine, cyanine, xanthene, tetraazaporphyrin, pyromethene, isoindolinone, quinacridone, diacyl. Ketopyrrolopyrrole, anthraquinone, dioxazine, and the like can be used.
  • the eyeglass material of the embodiment can further cut blue light by containing a specific wavelength absorber having an absorption peak wavelength in a wavelength range of 400 to 500 nm.
  • a specific wavelength absorber having an absorption peak wavelength in the wavelength range of 400 to 500 nm FDB-001 (420 nm), FDB-002 (431 nm), FDB-003 (437 nm), FDB-004 (445 nm) manufactured by Yamada Chemical Co., Ltd. ), FDB-005 (452 nm), FDB-006 (473 nm), FDB-007 (496 nm), and the like can be used.
  • the eyeglass material of the embodiment includes a specific wavelength absorber having an absorption peak wavelength in the wavelength range of 565 to 605 nm, thereby having a function of selectively cutting dazzling light and improving the appearance. It will be a thing.
  • a specific wavelength absorber having an absorption peak wavelength in the wavelength range of 565 to 605 nm NeoContrast (manufactured by Mitsui Chemicals, Inc., absorption peak wavelength: 580 nm) can be used. Details of NeoContrast are described in Japanese Patent No. 5778109 and US Pat. No. 7,506,777.
  • the absorption peak wavelength may have an error of about ⁇ 5 nm depending on the conditions of the measuring apparatus and the organic glass molding method.
  • the content of the specific wavelength absorber with respect to the functional resin layer 15 is preferably 0.05 to 1.0% by mass. This is because it is possible to cut light of a specific wavelength including blue light and it is easy to dissolve in a functional resin.
  • content of a specific wavelength absorber is less than 0.05 mass%, there exists a possibility that the specific wavelength light containing blue light cannot fully be cut.
  • it exceeds 1.0 mass% there exists a possibility that the melt
  • the integration of the functional resin layer 15 into the organic glass substrate 11 was performed by a casting method, but can also be performed by a general method such as a dipping method or a spray method.
  • the casting molding method is a method in which a mold cavity 21 is formed in the organic glass substrate 11 and molding is performed by injecting a functional resin.
  • the cavity 21 uses the organic glass base material as the first mold 11, and arranges the second mold 17 so that a certain gap is formed outside the first mold 11, while the first mold 11 and the second mold 17
  • the circumferential clearance is formed by sealing with a taping 19 or the like.
  • the gap between the cavities 21 is set according to the flow characteristics of the functional resin and the functionality required for the functional resin layer 15, but is preferably 0.2 to 3.0 mm. Since the gap between the cavities 21 is secured to such an extent that injection is easy, casting can be performed instantaneously, and the injected functional resin can be cured without flowing. This is because it is possible to suppress the occurrence of reason (parts having different refractive indexes). If it is less than 0.2 mm, injection may be difficult even for a resin having excellent fluidity. On the other hand, if it exceeds 3.0 mm, striae may occur due to uneven curing due to the flow of the functional resin. More preferably, it is 0.3 to 1.5 mm, and still more preferably 0.4 to 1.0 mm.
  • the functional resin layer 15 can have a certain thickness by using the same mold as that used for forming the organic glass substrate 11 for the second mold 17.
  • composition of the organic glass substrate 11 is described in Table 1
  • composition of the functional resin layer 15 is described in Table 2.
  • MR-10 Mitsubishi Chemicals, thiourethane resin, refractive index: 1.67
  • MR-20 Mitsubishi Chemicals, thiourethane resin, refractive index: 1.60
  • MR -95 (Mitsui Chemicals, Inc., thiourethane resin, refractive index: 1.60)
  • MR-174 (Mitsui Chemicals, Inc., episulfide resin, refractive index: 1.74)
  • NK-11P (Nippon Shimizu Sangyo Co., Ltd.
  • UV absorber used for the functional resin layer 15 Commercially available products are used as the UV absorber used for the functional resin layer 15, and the absorption peak wavelengths of the UV absorbers used in Tables 1 and 2 are described below.
  • SEESORB 701 Cipro Kasei Co., Ltd., absorption peak wavelength: 342 nm
  • SEESORB 704 Chemical Kasei Co., Ltd., absorption peak wavelength: 345 nm
  • SEESORB 702 (Cipro Kasei Co., Ltd., absorption peak wavelength: 351 nm)
  • SEESORB 703 (Cipro Kasei Co., Ltd.) (Manufactured by company, absorption peak wavelength: 354 nm).
  • the organic glass substrate 11 is molded by a cast molding method, and the mold is taped with an adhesive tape so that the distance between the center of the lens is 1.0 mm between the convex mold and the concave mold.
  • a mold having a cavity for forming an organic glass substrate was prepared.
  • the organic glass substrate 11 is mixed with the composition shown in Table 1 and injected into a mold, and the thiourethane and episulfide systems are heated and cured at 120 ° C. for 2 hours, and the (meth) acrylate system is heated and cured at 80 ° C. for 1 hour. Molded.
  • the polycarbonate resin, polyamide resin, and polyurea resin, cast molded products were used.
  • the casting molding of the functional resin layer 15 onto the organic glass substrate 11 is performed by forming a mold cavity 21 in the organic glass substrate 11 and injecting and curing the functional resin for molding the functional resin layer 15.
  • the cavity 21 uses the organic glass substrate as the first mold 11 and the convex mold used as the second mold 17 when forming the organic glass substrate 11 so that a certain gap is formed outside the first mold 11. And the peripheral surface gap between the first mold 11 and the second mold 17 is sealed with a taping 19.
  • the organic glass substrate 11 (resin lens) on which the functional resin layer 15 is molded has a concave surface and an outer periphery cut and polished, and an SPH (spherical surface (D)) having a diameter of 70 mm is ⁇ 8.00.
  • SPH sinherical surface (spherical surface (D)
  • the eyeglass material of the test example is created by a combination of the organic glass substrate 11 and the functional resin layer 15 described below, and for these, as an optical property evaluation performance, an ultraviolet cut rate, a 420 nm cut rate, and a visible light transmittance are set.
  • the yellowness (YI) was measured as an evaluation of appearance, and the adhesion was measured as an evaluation of strength.
  • Spectral transmittance curve (transmittance of light for each wavelength of spectacle material) is calculated according to the following equipment and standards, UV cut rate is average cut rate (light not transmitted) for light of 280-400 nm, 420 nm cut The rate was the cut rate for light of 420 nm, and the visible light transmittance was the average transmittance for light of 380 to 780 nm.
  • the measurement position was the geometric center of the spectacle material because it was a measurement of optical characteristics.
  • ⁇ Device Spectrophotometer U-4100 (manufactured by Hitachi High-Tech Science Co., Ltd.) Standard: Specification and test method of transmittance of refraction correcting spectacle lens (JIS T 7333: 2005 (ISO / DIS 8980-3: 2002))
  • the ultraviolet cut rate was evaluated as follows. A: 95% or more, O: 90% or more and less than 95%, ⁇ : 70% or more and less than 90%, ⁇ : less than 70%. Since ultraviolet rays may cause cataracts and macular degeneration when in the eyes, the higher the numerical value, the better the ultraviolet cut rate.
  • the 420 nm cut rate was evaluated as follows. A: 40% or more, B: 30% or more and less than 40%, ⁇ : 20% or more and less than 30%, X: less than 20%. If the eyes are exposed to blue light (420 nm) for a long time, the eyes and biological rhythm may be affected. Therefore, the higher the numerical value of the 420 nm cut rate, the better the evaluation.
  • the visible light transmittance was evaluated as follows. A: 85% or more, O: 80% or more and less than 85%, ⁇ : 70% or more and less than 80%, x: less than 70%. If the visible light transmittance is low, the field of view becomes dark. Therefore, the higher the numerical value, the better the visible light transmittance. ⁇ Yellowness (YI)> The color tristimulus values (XYZ) were measured with the following apparatus, and the yellowness (YI) was calculated from the following standards. The measurement positions were the geometric center (center) of the thinnest eyeglass material and the inner side (outer periphery) 5 mm from the thickest outer periphery.
  • ⁇ Device Spectrophotometer U-4100 (manufactured by Hitachi High-Tech Science Co., Ltd.) ⁇ Standard: Plastic-Determination of yellowness and yellowing (JIS K 7373: 2006) And yellowness (YI) was evaluated as follows. A: Less than 6, O: 6 or more and less than 8, ⁇ : 8 or more and less than 10, x: 10 or more. When yellowness (YI) is high, yellowness increases. Therefore, yellowness (YI) is better evaluated when its numerical value is low.
  • Test examples 1 to 4, 13 to 45 are examples, and test examples 5 to 12 are comparative examples.
  • Test Examples 1 to 4 are examples in which the best mode is set. Table 3 shows the combination of the organic glass substrate and the functional resin layer, and the evaluation performance results.
  • a functional resin layer containing an ultraviolet absorber having an absorption peak wavelength of 351 nm and a specific wavelength absorber having an absorption peak wavelength of 420 nm was molded on various organic glass substrates. It is. The UV ray is sufficiently cut by the UV absorber, and the blue light (420 nm) is also sufficiently cut by the UV absorber and the specific wavelength absorber, but the visible light visibility (visible light transmittance) is ensured. It had been. Moreover, since the functional resin layer containing the ultraviolet absorber was thin, yellowing (yellowness) could be suppressed in both the thin center portion and the thick outer periphery of the spectacle material. Also, the adhesion was good.
  • Test Examples 5 to 8 are comparative examples in which the functional resin layer was not provided.
  • the evaluation performance results for the organic glass substrate are shown in Table 4.
  • Test Examples 5 to 8 were not provided with a functional resin layer containing an ultraviolet absorber as compared with Test Examples 1 to 4, and therefore UV rays and blue light could not be sufficiently cut. In addition, since the functional resin layer was not provided, adhesiveness was not evaluated.
  • Test Examples 9 to 12 are comparative examples in which a functional resin layer was not provided and an ultraviolet absorber was added to the organic glass substrate. The results of evaluation performance for the organic glass substrate are shown in Table 5.
  • Test Examples 9 to 12 compared with Test Examples 1 to 4, the ultraviolet absorber was added to the organic glass substrate, so that the ultraviolet rays could be cut. However, the ultraviolet absorber was added to the thick organic glass substrate. As a result, the base lens was yellowed over the outer periphery. In addition, since the functional resin layer was not provided, adhesiveness was not evaluated.
  • Test Examples 13 to 28 are test examples in which various functional resin layers and various organic glass substrates are combined. Compared with Test Examples 1 to 4, a specific wavelength absorber is added to the functional resin layer. Not different in that. Table 6 shows the combination of the organic glass substrate and the functional resin layer, and the evaluation performance results.
  • Test Examples 13 to 28 a specific wavelength absorber is not added to the functional resin layer as compared with Test Examples 1 to 4, but an ultraviolet absorber having an absorption peak wavelength on the long wavelength side is added. As a result, blue light could be cut to some extent.
  • the test example which used the episulfide type resin and the (meth) acrylate type resin for the functional resin layer was slightly inferior in adhesion.
  • Test Examples 29 to 31 are test examples in which the type of the specific wavelength absorber is changed. Compared to Test Example 3, the absorption peak wavelength of the specific wavelength absorber is different. Table 7 shows the combination of the organic glass substrate and the functional resin layer, and the evaluation performance results.
  • Test Examples 29 to 31 were able to sufficiently cut blue light, although the absorption peak wavelength of the specific wavelength absorber was different from that of Test Example 3.
  • Test Examples 32-36 are test examples in which the addition amount of the ultraviolet absorber was changed. Compared to Test Example 3, the specific wavelength absorber is not added and the amount of the ultraviolet absorber added is different. Table 8 shows the combination of the organic glass substrate and the functional resin layer, and the results of the evaluation performance.
  • Test Example 32 with a small amount of added UV absorber is inferior in UV and blue light cutting performance
  • Test Example 36 with a large amount of UV absorber added has a functional resin layer on the outer periphery. Slightly yellowish over time.
  • Test Examples 37 to 41 are test examples in which the thickness of the functional resin layer was changed. Compared to Test Example 3, the thickness of the functional resin layer is different. Table 9 shows the combination of the organic glass substrate and the functional resin layer, and the evaluation performance results.
  • Test Example 37 Compared with Test Example 3, in Test Example 37 where the thickness of the functional resin layer is small, the UV and blue light cutting performance is inferior, and although not shown in the table, cast molding can be performed instantaneously. The workability was somewhat inferior. In Test Example 41 where the thickness of the functional resin layer is large, a slight yellowing was seen on the outer periphery of the functional resin layer, which was not shown in the table, but there was slight striae due to uneven curing due to the thickness. Occurred.
  • Test Examples 42 to 45 use functional resin layers X in which FDB-001 having an absorption peak wavelength of 420 nm and NeoContrast having an absorption peak wavelength of 580 nm are contained in a specific wavelength absorber. Table 10 shows the combination of the organic glass substrate and the functional resin layer, and the results of the evaluation performance.
  • the ultraviolet rays were sufficiently cut by the ultraviolet absorber, and the blue light (420 nm) was also sufficiently cut by the ultraviolet absorber and the specific wavelength absorber FDB-001, but visible.
  • the light visibility (visible light transmittance) was secured.
  • the functional resin layer containing the ultraviolet absorber was thin, yellowness (yellowness) could be suppressed in both the thin center portion and the thick outer periphery of the spectacle material.
  • the organic glass substrate was a polycarbonate resin (CLS3400), a polyamide resin (XE3805), or a polyurea resin (NXT)
  • the adhesion was good.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)
  • Optical Filters (AREA)

Abstract

The present invention addresses the problem of providing an eyeglass material which can suppress yellowing thereof and graylevel differences in gradation of color caused by the difference in thicknesses of the inner and outer peripheries thereof even when an eyeglass material contains an ultraviolet absorbent having a high cut rate against blue light. In this eyeglass material in which a functional resin layer 15 is integrated with one surface or both surfaces of an organic glass substrate 11 which is a resin molded body, the functional resin layer 15 contains an ultraviolet absorbent having an absorbing peak wavelength of 320 nm or longer and a thickness smaller than the organic glass substrate 11. Therefore, the eyeglass material can have a yellowness (Y1) of less than 10.

Description

眼鏡素材Glasses material
 本発明は、紫外線吸収剤を含有する眼鏡素材に係る発明である。 The present invention relates to an eyeglass material containing an ultraviolet absorber.
 紫外線は、眼に入ると白内障や黄斑変性症を引き起こすおそれがある。このため、眼鏡素材は、眼に入る紫外線の透過を低減することのできるものが好ましい。 UV rays may cause cataracts and macular degeneration when in the eyes. For this reason, the eyeglass material is preferably one that can reduce the transmission of ultraviolet rays entering the eye.
 従来の眼鏡素材は、有機ガラス基材(基材レンズ)に紫外線吸収剤を配合することによって、紫外線の透過を低減可能なものとしている。 Conventional eyeglass materials can reduce the transmission of ultraviolet rays by blending an organic glass substrate (base lens) with an ultraviolet absorber.
 特許文献1及び2に記載の眼鏡素材では、特定の化学構造を有する紫外線吸収剤などを配合することによって、紫外線の透過を低減可能なものとしている。 In the eyeglass materials described in Patent Documents 1 and 2, ultraviolet light transmission can be reduced by blending an ultraviolet absorber having a specific chemical structure.
 また、特許文献3に記載の樹脂レンズの製造方法では、基材レンズの片面又は両面に機能性樹脂層を成形するキャビティを構成し、基材レンズの機能性樹脂層の成形側面に熱可塑性エラストマーの接着剤層を備えて、基材レンズと機能性樹脂層とを一体化する製造方法である。この製造方法で製造された樹脂レンズは、機能性樹脂層が特定波長吸収剤などを含有することによって、特定波長などの透過を低減可能なものとしている。 Further, in the resin lens manufacturing method described in Patent Document 3, a cavity for molding a functional resin layer is formed on one side or both sides of a base lens, and a thermoplastic elastomer is formed on a molding side of the functional resin layer of the base lens. This is a manufacturing method in which a base lens and a functional resin layer are integrated. In the resin lens manufactured by this manufacturing method, the functional resin layer contains a specific wavelength absorber or the like, so that transmission of a specific wavelength or the like can be reduced.
特許第3868683号公報Japanese Patent No. 3868683 特許第4149068号公報Japanese Patent No. 4149068 特開2014-156067号公報Japanese Patent Laid-Open No. 2014-156067
 近年、可視光線の中でも400~500nmの波長の光(ブルー光)は、眼球の網膜まで届くエネルギーの強い光であり、目が長時間ブルー光に晒されると、目や生体リズムに影響を及ぼすことが知られてきた。 In recent years, light with a wavelength of 400 to 500 nm (blue light) in visible light is intense light that reaches the retina of the eyeball. If the eye is exposed to blue light for a long time, it affects the eyes and biological rhythm. It has been known.
 紫外線吸収剤は、吸収ピーク波長が異なる種々のものがあり、吸収ピーク波長が長波長側にある紫外線吸収剤ではブルー光のカット率の高いものがある。このような紫外線吸収剤を使用することによって、眼鏡素材はブルー光をカットすることができるものとすることができる。 There are various ultraviolet absorbers having different absorption peak wavelengths, and some ultraviolet absorbers having an absorption peak wavelength on the long wavelength side have a high blue light cut rate. By using such an ultraviolet absorber, the eyeglass material can cut blue light.
 しかしながら、ブルー光のカット率が高い紫外線吸収剤は、吸収ピーク波長が長波長側にあるため、眼鏡素材に含有させたときに眼鏡素材が黄色化(黄色く着色又は変色すること。)するという問題があった。黄色化した眼鏡素材は、紫外線劣化した樹脂を想起させられるため、眼鏡素材として好ましくない。また、眼鏡素材は、度付きレンズである場合が多く、内外周の厚みの差から色調に濃淡差が生じてしまい、外観上の問題が生じることもある。 However, an ultraviolet absorber having a high blue light cut rate has an absorption peak wavelength on the long wavelength side, and therefore, when it is contained in a spectacle material, the spectacle material is yellowed (colored or discolored yellow). was there. Yellowed eyeglass materials are not preferred as eyeglass materials because they are reminded of UV-degraded resin. In many cases, the eyeglass material is a lens with a degree, and the difference in thickness between the inner and outer circumferences causes a difference in color tone, which may cause a problem in appearance.
 特許文献1及び2に記載の眼鏡素材では、従来の特定の化学構造を有する紫外線吸収剤を配合することによって、紫外線の透過を低減可能なものとしているが、紫外線吸収剤の吸収ピーク波長が長波長側にないため、眼鏡素材が黄色化するという問題は生じ難い。しかし、特許文献1及び2に記載の眼鏡素材に、ブルー光のカット率が高い吸収ピーク波長が長波長側にある紫外線吸収剤を配合すると、眼鏡素材が黄色化するという問題が生じる。さらに、眼鏡素材は、レンズ(半製品)を成形した後、顧客の処方度数に切削・研磨して製品としているため、特許文献1及び2に記載の眼鏡素材では、切削時にレンズの相当部分を廃棄することになり、同時に添加された高価な紫外線吸収剤も廃棄されてしまい不経済でもあった。 In the eyeglass materials described in Patent Documents 1 and 2, it is possible to reduce the transmission of ultraviolet rays by blending a conventional ultraviolet absorber having a specific chemical structure, but the absorption peak wavelength of the ultraviolet absorber is long. Since it is not on the wavelength side, the problem that the eyeglass material is yellowed hardly occurs. However, when an ultraviolet absorber having an absorption peak wavelength having a high blue light cut rate and a long wavelength side is blended with the eyeglass materials described in Patent Documents 1 and 2, there is a problem that the eyeglass material is yellowed. Further, since the eyeglass material is a product obtained by molding a lens (semi-finished product) and then cutting and polishing to the prescription power of the customer, the eyeglass material described in Patent Documents 1 and 2 has a corresponding portion of the lens at the time of cutting. At the same time, expensive UV absorbers added at the same time were discarded, which was uneconomical.
 また、特許文献3に記載のような、基材レンズと機能性樹脂層との間に接着剤層が介在する場合は、有機ガラス基材に接着剤を塗布する必要があり、製造工数が嵩みやすい。また、接着剤層の材料や厚みによっては、屈折異常や色むらが発生するおそれがある。更には、機能性樹脂層にブルー光のカット率が高い吸収ピーク波長が長波長側にある紫外線吸収剤を配合されることを積極的に検討されたものではなかった。 In addition, when an adhesive layer is interposed between the base lens and the functional resin layer as described in Patent Document 3, it is necessary to apply an adhesive to the organic glass base, which increases the number of manufacturing steps. Easy to see. Further, depending on the material and thickness of the adhesive layer, there is a possibility that refraction abnormality or color unevenness may occur. Furthermore, it has not been actively studied that a functional resin layer is blended with an ultraviolet absorber having an absorption peak wavelength with a high blue light cut rate on the long wavelength side.
 本発明は、上記の点に鑑みてなされたもので、眼鏡素材がブルー光のカット率の高い紫外線吸収剤を含有しても、眼鏡素材の黄色化を抑え、眼鏡素材の内外周の厚みの差から生じる色調の濃淡差を抑えることができる眼鏡素材を提供することを目的とする。 The present invention has been made in view of the above points, and even if the spectacle material contains an ultraviolet absorber with a high cut rate of blue light, the yellowing of the spectacle material is suppressed and the thickness of the inner and outer circumferences of the spectacle material is reduced. An object of the present invention is to provide a spectacle material capable of suppressing a difference in color tone caused by a difference.
 本発明の眼鏡素材は、樹脂成形体である有機ガラス基材の片面又は両面に、機能性樹脂層が一体化された眼鏡素材において、該機能性樹脂層は、吸収ピーク波長が320nm以上である紫外線吸収剤を含有し、該眼鏡素材は、黄色度(YI)が10未満であることを特徴とするものである。 The eyeglass material of the present invention is an eyeglass material in which a functional resin layer is integrated on one side or both sides of an organic glass substrate that is a resin molded body, and the functional resin layer has an absorption peak wavelength of 320 nm or more. It contains an ultraviolet absorber, and the eyeglass material has a yellowness (YI) of less than 10.
 本発明の眼鏡素材によれば、紫外線吸収剤が320nm以上の吸収ピーク波長を有しているため、本発明の眼鏡素材は、ブルー光(400~500nm)をカットすることができる。また、本発明の眼鏡素材は、有機ガラス基材と比して厚みの薄い機能性樹脂層に紫外線吸収剤が含有されていることにより、黄色度(YI)が10未満とすることができ、有機ガラス基材全体にこの紫外線吸収剤が含有されている場合に比して、眼鏡素材の黄色化を抑え、眼鏡素材の内外周の厚みの差から生じる色調の濃淡差を抑えることができる。 According to the spectacle material of the present invention, since the ultraviolet absorber has an absorption peak wavelength of 320 nm or more, the spectacle material of the present invention can cut blue light (400 to 500 nm). Further, the eyeglass material of the present invention can have a yellowness (YI) of less than 10 by containing an ultraviolet absorber in a functional resin layer that is thinner than an organic glass substrate, Compared with the case where the ultraviolet absorbent is contained in the entire organic glass substrate, yellowing of the spectacle material can be suppressed, and a difference in color tone resulting from a difference in thickness between the inner and outer periphery of the spectacle material can be suppressed.
 ここで、前記吸収ピーク波長が320nm以上である紫外線吸収剤がベンゾトリアゾール系紫外線吸収剤であって、前記機能性樹脂層の該紫外線吸収剤の含有量が0.1~3.0質量%であるとすることができる。これによれば、ブルー光をカットしつつ、紫外線域(280~400nm)の光の平均透過率を小さくすることができる。 Here, the ultraviolet absorber having an absorption peak wavelength of 320 nm or more is a benzotriazole ultraviolet absorber, and the content of the ultraviolet absorber in the functional resin layer is 0.1 to 3.0% by mass. There can be. According to this, it is possible to reduce the average transmittance of light in the ultraviolet region (280 to 400 nm) while cutting blue light.
 また、本発明の眼鏡素材は、前記機能性樹脂層が波長域400~500nmに吸収ピーク波長を有する特定波長吸収剤を含有するものとすることができる。これによれば、特定波長吸収剤がブルー光をカットすることができるため、眼鏡素材はよりブルー光をカットすることができる。 In the eyeglass material of the present invention, the functional resin layer may contain a specific wavelength absorber having an absorption peak wavelength in a wavelength range of 400 to 500 nm. According to this, since the specific wavelength absorber can cut blue light, the spectacle material can cut blue light more.
 また、波長420nmの光のカット率が20%以上であるものとすることができる。これによれば、本発明の眼鏡素材の使用者の目や生体リズムへの影響を小さくすることができる。 Also, the cut rate of light with a wavelength of 420 nm can be 20% or more. According to this, the influence of the eyeglass material of the present invention on the user's eyes and biological rhythm can be reduced.
 また、前記有機ガラス基材が、チオウレタン系、エピスルフィド系又は(メタ)アクリレート系の熱硬化性樹脂原料で成形され、前記機能性樹脂層が、チオウレタン系、エピスルフィド系又は(メタ)アクリレート系の熱硬化性樹脂原料で成形されているものとすることができる。これによれば、チオウレタン系、エピスルフィド系又は(メタ)アクリレート系の熱硬化性樹脂原料は、チオウレタン系、エピスルフィド系又は(メタ)アクリレート系の熱硬化性樹脂原料との密着性に優れる樹脂原料であるため、有機ガラス基材に機能性樹脂層がプライマーや接着剤等を必要とすることなく密着することができる。 The organic glass substrate is molded from a thiourethane, episulfide or (meth) acrylate thermosetting resin material, and the functional resin layer is a thiourethane, episulfide or (meth) acrylate. It can be formed of a thermosetting resin raw material. According to this, the thiourethane-based, episulfide-based or (meth) acrylate-based thermosetting resin raw material is a resin excellent in adhesiveness with the thiourethane-based, episulfide-based or (meth) acrylate-based thermosetting resin material. Since it is a raw material, the functional resin layer can be adhered to the organic glass substrate without requiring a primer or an adhesive.
 また、前記機能性樹脂層の厚みが0.2~3.0mmであるものとすることができる。これによれば、機能性樹脂層を成形するキャビティの厚みが確保されているため注型成形を瞬時に行うことができ、かつ、注入された機能性樹脂層に硬化ムラが発生することなく硬化することができるため、眼鏡素材は脈理(屈折率を異にした部分が生じること。)の発生を抑制することができる。 Also, the functional resin layer may have a thickness of 0.2 to 3.0 mm. According to this, since the thickness of the cavity for molding the functional resin layer is secured, cast molding can be performed instantaneously, and the injected functional resin layer is cured without uneven curing. Therefore, the spectacle material can suppress the occurrence of striae (parts having different refractive indexes).
 本発明の眼鏡素材によれば、紫外線吸収剤が320nm以上の吸収ピーク波長を有しているため、本発明の眼鏡素材は、ブルー光(400~500nm)をカットすることができる。また、本発明の眼鏡素材は、有機ガラス基材と比して厚みの薄い機能性樹脂層に紫外線吸収剤が含有されていることにより、黄色度(YI)が10未満とすることができ、有機ガラス基材全体にこの紫外線吸収剤が含有されている場合に比して、眼鏡素材の黄色化を抑え、眼鏡素材の内外周の厚みの差から生じる色調の濃淡差を抑えることができる。 According to the spectacle material of the present invention, since the ultraviolet absorber has an absorption peak wavelength of 320 nm or more, the spectacle material of the present invention can cut blue light (400 to 500 nm). Further, the eyeglass material of the present invention can have a yellowness (YI) of less than 10 by containing an ultraviolet absorber in a functional resin layer that is thinner than an organic glass substrate, Compared with the case where the ultraviolet absorbent is contained in the entire organic glass substrate, yellowing of the spectacle material can be suppressed, and a difference in color tone resulting from a difference in thickness between the inner and outer periphery of the spectacle material can be suppressed.
本発明の眼鏡素材の製造工程を示す図である。It is a figure which shows the manufacturing process of the spectacles material of this invention.
 以下、本発明の一実施形態について説明する。実施形態の眼鏡素材は、樹脂成形体である有機ガラス基材11(基材レンズ)の片面又は両面に、機能性樹脂層15が一体化された眼鏡素材において、該機能性樹脂層15は、吸収ピーク波長が320nm以上である紫外線吸収剤を含有し、該眼鏡素材は、黄色度(YI)が10未満であることを特徴とするものである。 Hereinafter, an embodiment of the present invention will be described. In the eyeglass material of the embodiment, in the eyeglass material in which the functional resin layer 15 is integrated on one side or both sides of the organic glass base material 11 (base lens) that is a resin molded body, the functional resin layer 15 includes: It contains an ultraviolet absorber having an absorption peak wavelength of 320 nm or more, and the eyeglass material has a yellowness (YI) of less than 10.
 実施形態の眼鏡素材では、図1に示すように、眼鏡レンズとしての有機ガラス基材11の表面(凸面)に機能性樹脂層15が注型成形により一体化されたものを例に採り説明する。もちろん、本発明は、眼鏡レンズの用途に限定されるものではなく、望遠鏡レンズ、建築又は車両用途の窓ガラスなどのあらゆる光学要素に対して適用することが可能なものである。また、本発明の機能性樹脂層15は、有機ガラス基材11の表面(凸面)への用途に限定されるものではなく、有機ガラス基材11の裏面(凹面)又は両面(凸面及び凹面)に対しても適用することが可能なものである。 In the spectacle material of the embodiment, as shown in FIG. 1, an example in which the functional resin layer 15 is integrated with the surface (convex surface) of the organic glass substrate 11 as a spectacle lens by casting is described. . Of course, the present invention is not limited to the use of spectacle lenses, but can be applied to any optical element such as telescope lenses, window glass for architectural or vehicle use. Moreover, the functional resin layer 15 of this invention is not limited to the use to the surface (convex surface) of the organic glass base material 11, The back surface (concave surface) or both surfaces (convex surface and concave surface) of the organic glass base material 11 It is possible to apply to.
 有機ガラス基材11とは、レンズや窓ガラスなどの光学要素の基材として使用されるものであり、実施形態の眼鏡素材では、無機ガラスより軽量であることから有機ガラス(プラスチック)製であるものとする。 The organic glass base material 11 is used as a base material for optical elements such as lenses and window glasses. The eyeglass material of the embodiment is made of organic glass (plastic) because it is lighter than inorganic glass. Shall.
 有機ガラス基材11としては、ポリカーボネート(PC)系、ポリウレタン系、ポリウレア系、脂肪族アリルカーボネート系、芳香族アリルカーボネート系、ポリチオウレタン系、エピスルフィド系、(メタ)アクリレート系、透明ポリアミド(透明ナイロン)系、ノルボルネン系、ポリイミド系、ポリオレフィン系などの合成樹脂を使用することができる。 As the organic glass substrate 11, polycarbonate (PC), polyurethane, polyurea, aliphatic allyl carbonate, aromatic allyl carbonate, polythiourethane, episulfide, (meth) acrylate, transparent polyamide (transparent Nylon), norbornene, polyimide, polyolefin, and other synthetic resins can be used.
 なお、チオウレタン系樹脂とは、ポリウレタン結合(-NHCOO-)の酸素原子の少なくとも1個が硫黄原子に入れ替わった結合(-NHCOS-、-NHCSO-、-NHCSS-)を有するポリマー(樹脂)を意味する。該樹脂材料としては、ポリイソシアナト、ポリイソチオシアナト、ポリイソチオシアナトチオイソシアナトより選ばれる1種または2種以上とイソシアナト成分と、ポリチオールおよび適宜ポリオールより選ばれる1種または2種以上の公知の活性水素化合物成分とを組み合わせた重合性成分を好適に使用できる。ここでポリイソシアナトとしては、脂肪族系、脂環式系、芳香族系及びそれらの誘導体さらにはそれらの炭素鎖の一部に硫黄を導入したスルフィド・ポリスルフィド・チオカルボニル(チオケトン)誘導体を母体化合物とするものを挙げることができる。これらのうちで、耐紫外線劣化の見地から、脂肪族系又は脂環式系のポリイソシアナトが望ましい。また、ポリチオールとしては、同様に脂肪族系、脂環式系、芳香族系及びそれらの誘導体さらにはそれらの炭素鎖の一部に硫黄を導入したスルフィド・ポリスルフィド・チオカルボニル(チオケトン)誘導体を母体化合物とするものを挙げることができる。これらのうちで、耐紫外線劣化の見地から、脂肪族系又は脂環式系のポリイソシアナトが望ましい。 The thiourethane resin is a polymer (resin) having a bond (-NHCOS-, -NHCSO-, -NHCSS-) in which at least one oxygen atom of a polyurethane bond (-NHCOO-) is replaced with a sulfur atom. means. As the resin material, one or more selected from polyisocyanate, polyisothiocyanate, polyisothiocyanatothioisocyanate, isocyanato component, polythiol and optionally one or more known polyols are known. A polymerizable component in combination with the active hydrogen compound component can be suitably used. Here, polyisocyanates include aliphatic, alicyclic, aromatic, and derivatives thereof, and sulfide, polysulfide, and thiocarbonyl (thioketone) derivatives in which sulfur is introduced into part of their carbon chains. The compound can be mentioned. Of these, aliphatic or alicyclic polyisocyanates are desirable from the viewpoint of UV resistance. Similarly, polythiols include aliphatic, alicyclic, aromatic, and derivatives thereof, as well as sulfide, polysulfide, and thiocarbonyl (thioketone) derivatives in which sulfur is introduced into a part of their carbon chains. The compound can be mentioned. Of these, aliphatic or alicyclic polyisocyanates are desirable from the viewpoint of UV resistance.
 エピスルフィド系樹脂とは、ジチオエポキシ化合物と硬化剤と、さらには、その他の重合成化合物とを反応させて得られるポリマー(樹脂)を意味し。直鎖アルキルスルフィド型ジチオエポキシ化合物を硬化させて得られる公知のものを使用できる。硬化剤としては、通常のエポキシ樹脂用硬化剤であるアミン類、有機酸類、又は無機酸類を使用することができる。 The episulfide-based resin means a polymer (resin) obtained by reacting a dithioepoxy compound, a curing agent, and another polysynthetic compound. A known product obtained by curing a linear alkyl sulfide type dithioepoxy compound can be used. As the curing agent, amines, organic acids, or inorganic acids that are ordinary epoxy resin curing agents can be used.
 具体的な有機ガラス基材11としては、MR-6,MR-8,MR-20,MR-60,MR-95(三井化学株式会社製チオウレタン系樹脂、屈折率:1.60)、MR-7,MR-10(三井化学株式会社製チオウレタン系樹脂、屈折率:1.67)、MR-174(三井化学株式会社製エピスルフィド系樹脂、屈折率:1.74)、NK-11P,LS106S,LS420(日本清水産業株式会社製(メタ)アクリレート系樹脂、屈折率:1.56)、ユーピロンCLS3400(三菱エンジニアリングプラスチックス株式会社製ポリカーボネート系樹脂、屈折率:1.59)、グリルアミドTR XE3805(エムスケミー・ジャパン株式会社製ナイロン(ポリアミド)系樹脂、屈折率:1.53)、NXT(トライベックス社(ICRX NXT社)製ポリウレア系樹脂、屈折率:1.53)などを好適に使用することができる。 Specific examples of the organic glass substrate 11 include MR-6, MR-8, MR-20, MR-60, MR-95 (Mitsui Chemicals, thiourethane resin, refractive index: 1.60), MR -7, MR-10 (Mitsui Chemicals Co., Ltd. thiourethane resin, refractive index: 1.67), MR-174 (Mitsui Chemicals, Inc. episulfide resin, refractive index: 1.74), NK-11P, LS106S, LS420 (Nippon Shimizu Sangyo Co., Ltd. (meth) acrylate resin, refractive index: 1.56), Iupilon CLS3400 (Mitsubishi Engineering Plastics polycarbonate resin, refractive index: 1.59), Grillamide TR XE3805 (Nylon (polyamide) based resin, refractive index: 1.53) manufactured by EMS Chemie Japan, NXT (Tribex) (ICRX NXT Co.) made by polyurea resin, refractive index: 1.53) can be suitably used and the like.
 有機ガラス基材11には、有機ガラスの樹脂劣化を防止する劣化防止剤、レンズ形状を成形する型枠からの離型性を向上させる内部離型剤、有機ガラスを硬化させる硬化剤を、有機ガラスの種類に応じて適したものを添加することができる。 The organic glass substrate 11 includes an organic anti-degradation agent that prevents resin deterioration of the organic glass, an internal mold release agent that improves mold release from the mold for molding the lens shape, and a curing agent that cures the organic glass. A suitable material can be added according to the kind of glass.
 劣化防止剤とは、有機ガラスの樹脂が分解・劣化し易い280~320nmの光を吸収しつつ、有機ガラスの樹脂が光や熱によって分解・劣化する際に生じるアルキルラジカル(R・:Rはアルキル鎖)やパーオキシラジカル(ROO・)、過酸化物(ROOH)を捕捉または分解することで、樹脂の劣化が加速度的に進行するのを抑制するものである。劣化防止剤は、吸収ピーク波長が短波長側にあるため、有機ガラス基材11に含有させたときに有機ガラス基材11が黄色化することがない。劣化防止剤としては、ベンゾフェノン系、ジフェニルアクリレート系、立体障害アミン系、サリチル酸エステル系、ベンゾトリアゾール系、ヒドロキシベンゾエート系、シアノアクリレート系、ヒドロキシフェニルトリアジン系等を挙げることができる。劣化防止剤は、有機ガラスの種類に応じて適したものを添加することができる。 The deterioration preventing agent is an alkyl radical (R ·: R is generated when the organic glass resin is decomposed or deteriorated by light or heat while absorbing light of 280 to 320 nm, which is easily decomposed or deteriorated by the organic glass resin. By capturing or decomposing alkyl chains), peroxy radicals (ROO.), And peroxides (ROOH), the deterioration of the resin is prevented from proceeding at an accelerated rate. Since the degradation inhibitor has an absorption peak wavelength on the short wavelength side, the organic glass substrate 11 does not yellow when it is contained in the organic glass substrate 11. Examples of the deterioration inhibitor include benzophenone, diphenyl acrylate, sterically hindered amine, salicylic acid ester, benzotriazole, hydroxybenzoate, cyanoacrylate, hydroxyphenyl triazine, and the like. A suitable deterioration inhibitor can be added depending on the type of organic glass.
 内部離型剤とは、成形型を用いて、有機ガラスから有機ガラス基材11を成形した後の脱型の際に、成形型からの抜けを良くするために加える添加剤であり、内部離型剤として汎用品を使用することができる。 The internal mold release agent is an additive that is added to improve the release from the mold during mold removal after the organic glass substrate 11 is molded from the organic glass using the mold. A general-purpose product can be used as the mold agent.
 硬化剤とは、有機ガラス基材11を成形する有機ガラスを硬化(重合)させる添加剤であり、過酸化物系の重合開始剤など、有機ガラスの硬化に適したものを使用することができる。 The curing agent is an additive that cures (polymerizes) the organic glass that forms the organic glass substrate 11, and a material suitable for curing organic glass, such as a peroxide-based polymerization initiator, can be used. .
 有機ガラス基材11の成形は、研磨法、注型成形法などの一般的な成形方法を使用することができる。研磨法は、有機ガラス基材を成形する合成樹脂を適した条件によりブロック状の樹脂に成形させた後に、ブロック状の樹脂を求めるレンズ設計に合わせて研磨する方法である。注型成形法は、凹凸レンズを例に採ると、凹面側モールドと凸面側モールドとを必要とする間隔をおいて、モールドの周面をテーピングやガスケットを用いてシールしキャビティを形成し、キャビティに有機ガラス基材11を成形する合成樹脂を注入・硬化させ、必要に応じて、有機ガラス基材11を研磨する方法である。 The organic glass substrate 11 can be formed using a general forming method such as a polishing method or a casting method. The polishing method is a method in which a synthetic resin for forming an organic glass base material is molded into a block-shaped resin under suitable conditions, and then polished according to a lens design that requires the block-shaped resin. In the casting molding method, taking an uneven lens as an example, a cavity is formed by sealing the peripheral surface of the mold with taping or a gasket at an interval that requires a concave mold and a convex mold. In this method, a synthetic resin for molding the organic glass substrate 11 is injected and cured, and the organic glass substrate 11 is polished as necessary.
 機能性樹脂層15は、有機ガラス基材11の片面に一体化される層であり、有機ガラス基材11と比して厚みが薄い層である。機能性樹脂層15は、吸収ピーク波長が320nm以上である紫外線吸収剤を含有し、必要により、波長域400~500nmに吸収ピーク波長を有する特定波長吸収剤を含有することができる。 The functional resin layer 15 is a layer that is integrated on one side of the organic glass substrate 11, and is a layer that is thinner than the organic glass substrate 11. The functional resin layer 15 contains an ultraviolet absorber having an absorption peak wavelength of 320 nm or more, and may contain a specific wavelength absorber having an absorption peak wavelength in a wavelength range of 400 to 500 nm, if necessary.
 機能性樹脂層15を成形する樹脂としては、チオウレタン系樹脂、エピスルフィド系樹脂、(メタ)アクリレート系樹脂などの合成樹脂を使用することができる。これらは、チオウレタン系、エピスルフィド系、(メタ)アクリレート系、ポリカーボネート系、ポリアミド系(ナイロン系)及びポリウレア系の樹脂原料との密着性に優れる樹脂原料である。これらの中でも、有機ガラス基材11への密着性に優れるチオウレタン系樹脂がより好んで使用することができる。より具体的な機能性樹脂層15を成形する樹脂としては、MR-6,MR-8,MR-20,MR-60,MR-95(三井化学株式会社製チオウレタン系樹脂、屈折率:1.60)、MR-7,MR-10(三井化学株式会社製チオウレタン系樹脂、屈折率:1.67)などを好適に使用することができる。なお、密着性がやや劣るが、MR-174(三井化学株式会社製エピスルフィド系樹脂、屈折率:1.74)、NK-11P(日本清水産業株式会社製(メタ)アクリレート系樹脂、屈折率:1.56)、なども使用することができる。機能性樹脂層15を成形する樹脂には、有機ガラスの樹脂劣化を防止する劣化防止剤、レンズ形状を成形する型枠からの離型性を向上させる内部離型剤、有機ガラスを硬化させる硬化剤を、樹脂の種類に応じて適したものを添加することができる。 As the resin for forming the functional resin layer 15, a synthetic resin such as a thiourethane resin, an episulfide resin, or a (meth) acrylate resin can be used. These are resin materials excellent in adhesion to thiourethane, episulfide, (meth) acrylate, polycarbonate, polyamide (nylon) and polyurea resin materials. Among these, a thiourethane resin excellent in adhesion to the organic glass substrate 11 can be used more preferably. More specifically, the resin for forming the functional resin layer 15 is MR-6, MR-8, MR-20, MR-60, MR-95 (Mitsui Chemicals thiourethane resin, refractive index: 1). .60), MR-7, MR-10 (Mitsui Chemicals Co., Ltd. thiourethane resin, refractive index: 1.67) and the like can be suitably used. Although the adhesion is slightly inferior, MR-174 (Mitsui Chemicals episulfide resin, refractive index: 1.74), NK-11P (Nippon Shimizu Sangyo Co., Ltd. (meth) acrylate resin, refractive index: 1.56), etc. can also be used. The resin that forms the functional resin layer 15 includes a deterioration preventing agent that prevents resin deterioration of the organic glass, an internal release agent that improves releasability from the mold for forming the lens shape, and a curing that cures the organic glass. An agent suitable for the type of resin can be added.
 吸収ピーク波長が320nm以上である紫外線吸収剤とは、吸収ピーク波長が長波長側にある紫外線吸収剤であり、ブルー光のカット率の高いものである。なお、紫外線吸収剤の吸収ピーク波長の上限は、ブルー光の波長の上限の500nmである。吸収ピーク波長が320nm以上である紫外線吸収剤を眼鏡素材に添加することによって、眼鏡素材はブルー光をカットすることができるものとすることができる。しかしながら、ブルー光のカット率が高い紫外線吸収剤は、吸収ピーク波長が長波長側にあるため、眼鏡素材(基材レンズ)に含有させたときに眼鏡素材が黄色化(黄色く着色又は変色すること。)するという問題がある。黄色化した眼鏡素材は、紫外線劣化した樹脂を想起させられるため、眼鏡素材として好ましくない。また、眼鏡素材は、度付きレンズである場合が多く、内外周の厚みの差から色調に濃淡差が生じてしまい、外観上の問題が生じることもある。このため、実施形態の眼鏡素材では、基材レンズ(有機ガラス基材11)より厚みの薄い機能性樹脂層15に吸収ピーク波長320nm以上である紫外線吸収剤を添加することによって、眼鏡素材が黄色化することを防ぎ、眼鏡素材としての黄色度(YI)が10未満であるものにしている。黄色度(YI)は、数値が大きいほど黄色みが強いものであることを示し、眼鏡素材としての黄色度(YI)は、より好ましくは、8未満である。 The ultraviolet absorber having an absorption peak wavelength of 320 nm or more is an ultraviolet absorber having an absorption peak wavelength on the long wavelength side, and has a high blue light cut rate. The upper limit of the absorption peak wavelength of the ultraviolet absorber is 500 nm, which is the upper limit of the wavelength of blue light. By adding an ultraviolet absorber having an absorption peak wavelength of 320 nm or more to the spectacle material, the spectacle material can cut blue light. However, UV absorbers with a high blue light cut rate have an absorption peak wavelength on the long wavelength side, so when they are contained in a spectacle material (base lens), the spectacle material is yellowed (colored yellow or discolored). )). Yellowed eyeglass materials are not preferred as eyeglass materials because they are reminded of UV-degraded resin. In many cases, the eyeglass material is a lens with a degree, and the difference in thickness between the inner and outer circumferences causes a difference in color tone, which may cause a problem in appearance. For this reason, in the eyeglass material of the embodiment, the eyeglass material is yellow by adding an ultraviolet absorber having an absorption peak wavelength of 320 nm or more to the functional resin layer 15 having a thickness smaller than that of the base lens (organic glass base material 11). The yellowness (YI) as the eyeglass material is less than 10. The yellowness (YI) indicates that the larger the value, the stronger the yellowness. The yellowness (YI) as a spectacle material is more preferably less than 8.
 吸収ピーク波長が320nm以上である紫外線吸収剤としては、ベンゾフェノン系、ジフェニルアクリレート系、立体障害アミン系、サリチル酸エステル系、ベンゾトリアゾール系、ヒドロキシベンゾエート系、シアノアクリレート系、ヒドロキシフェニルトリアジン系等を挙げることができる。これらの中でも、吸収ピーク波長が320nm以上にあるベンゾトリアゾール系樹脂劣化防止剤が好ましく、より好ましくは、吸収ピーク波長が340nm以上(特に好ましくは350nm以上)にあるベンゾトリアゾール系樹脂劣化防止剤である。吸収ピーク波長が320nm以上にあるベンゾトリアゾール系樹脂劣化防止剤として、シプロ化成株式会社製のSEESORB701(342nm(吸収ピーク波長))、SEESORB709(343nm)、SEESORB706(344nm)、SEESORB704(345nm)、SEESORB707(346nm)、SEESORB702(351nm)、SEESORB702L(352nm)、SEESORB703(354nm)などを好適に使用することができる。なお、吸収ピーク波長は、測定する装置などの条件、及び有機ガラスの成形方法によって±5nm程度の誤差が生じることがある。 Examples of ultraviolet absorbers having an absorption peak wavelength of 320 nm or more include benzophenone series, diphenyl acrylate series, sterically hindered amine series, salicylic acid ester series, benzotriazole series, hydroxybenzoate series, cyanoacrylate series, and hydroxyphenyl triazine series. Can do. Among these, a benzotriazole-based resin deterioration preventing agent having an absorption peak wavelength of 320 nm or more is preferable, and a benzotriazole-based resin deterioration preventing agent having an absorption peak wavelength of 340 nm or more (particularly preferably 350 nm or more) is more preferable. . SEESORB701 (342 nm (absorption peak wavelength)), SEESORB709 (343 nm), SEESORB706 (344 nm), SEESORB704 (345 nm), SEESORB707 (manufactured by Sipro Kasei Co., Ltd.) 346 nm), SEESORB 702 (351 nm), SEESORB 702L (352 nm), SEESORB 703 (354 nm), and the like can be preferably used. The absorption peak wavelength may have an error of about ± 5 nm depending on the conditions of the measuring apparatus and the organic glass molding method.
 吸収ピーク波長が320nm以上である紫外線吸収剤の機能性樹脂層15に対する含有量は、0.1~3.0質量%であることが好ましい。紫外線をカットすることができ、かつ、眼鏡素材の黄色化を抑制することができるためである。紫外線吸収剤の含有量が0.1質量%未満の場合には、紫外線を十分にカットすることができないおそれがある。一方、3.0質量%を超えると、眼鏡素材が黄色化するおそれがある。より好ましくは、0.2~2.5質量%であり、さらに好ましくは、0.5~1.5質量%である。 The content of the ultraviolet absorber having an absorption peak wavelength of 320 nm or more with respect to the functional resin layer 15 is preferably 0.1 to 3.0% by mass. This is because ultraviolet rays can be cut and yellowing of the eyeglass material can be suppressed. When the content of the ultraviolet absorber is less than 0.1% by mass, the ultraviolet rays may not be sufficiently cut. On the other hand, if it exceeds 3.0% by mass, the spectacle material may be yellowed. More preferably, it is 0.2 to 2.5% by mass, and still more preferably 0.5 to 1.5% by mass.
 特定波長吸収剤とは、特定の波長に吸収ピーク波長を有する色素(吸収剤)である。特定波長吸収剤は、吸収ピーク波長の波長によって使用するものが選択され、例えば、スクアリリウム系、アゾメチン系、シアニン系、キサンテン系、テトラアザポルフィリン系、ピロメテン系、イソインドリノン系、キナクリドン系、ジケトピロロピロール系、アンスラキノン系、ジオキサジン系などを使用することができる。これらは吸収ピーク波長の波長に応じて一般に市販されているものを使用することができ、東京化成工業株式会社、山本化成株式会社、山田化学工業株式会社などが市販する特定波長吸収剤を使用することができる。 The specific wavelength absorber is a dye (absorbent) having an absorption peak wavelength at a specific wavelength. The specific wavelength absorber is selected depending on the wavelength of the absorption peak wavelength. For example, squarylium, azomethine, cyanine, xanthene, tetraazaporphyrin, pyromethene, isoindolinone, quinacridone, diacyl. Ketopyrrolopyrrole, anthraquinone, dioxazine, and the like can be used. These can use what is generally marketed according to the wavelength of an absorption peak wavelength, and use the specific wavelength absorber marketed by Tokyo Chemical Industry Co., Ltd., Yamamoto Kasei Co., Ltd., Yamada Chemical Co., Ltd., etc. be able to.
 実施形態の眼鏡素材は、波長域400~500nmに吸収ピーク波長を有する特定波長吸収剤を含有することによって、ブルー光をよりカットすることが可能となる。波長域400~500nmに吸収ピーク波長を有する特定波長吸収剤として、山田化学工業株式会社製のFDB-001(420nm)、FDB-002(431nm)、FDB-003(437nm)、FDB-004(445nm)、FDB-005(452nm)、FDB-006(473nm)、FDB-007(496nm)などを使用することができる。 The eyeglass material of the embodiment can further cut blue light by containing a specific wavelength absorber having an absorption peak wavelength in a wavelength range of 400 to 500 nm. As specific wavelength absorbers having an absorption peak wavelength in the wavelength range of 400 to 500 nm, FDB-001 (420 nm), FDB-002 (431 nm), FDB-003 (437 nm), FDB-004 (445 nm) manufactured by Yamada Chemical Co., Ltd. ), FDB-005 (452 nm), FDB-006 (473 nm), FDB-007 (496 nm), and the like can be used.
 また、実施形態の眼鏡素材は、波長域565~605nmに吸収ピーク波長を有する特定波長吸収剤を含有することによって、選択的にまぶしい光をカットする機能を持ち、見え方を改善することができるものとなる。波長域565~605nmに吸収ピーク波長を有する特定波長吸収剤として、NeoContrast(三井化学株式会社製、吸収ピーク波長:580nm)を使用することができる。NeoContrastの詳細は、日本国特許第5778109号及び米国特許第7506977号に記載されている。なお、吸収ピーク波長は、測定する装置などの条件、及び有機ガラスの成形方法によって±5nm程度の誤差が生じることがある。 Further, the eyeglass material of the embodiment includes a specific wavelength absorber having an absorption peak wavelength in the wavelength range of 565 to 605 nm, thereby having a function of selectively cutting dazzling light and improving the appearance. It will be a thing. As a specific wavelength absorber having an absorption peak wavelength in the wavelength range of 565 to 605 nm, NeoContrast (manufactured by Mitsui Chemicals, Inc., absorption peak wavelength: 580 nm) can be used. Details of NeoContrast are described in Japanese Patent No. 5778109 and US Pat. No. 7,506,777. The absorption peak wavelength may have an error of about ± 5 nm depending on the conditions of the measuring apparatus and the organic glass molding method.
 機能性樹脂層15に対する特定波長吸収剤の含有量は、0.05~1.0質量%であることが好ましい。ブルー光を含む特定波長光をカットすることが可能であり、かつ、機能性樹脂への溶解が容易であるからである。特定波長吸収剤の含有量が0.05質量%未満の場合には、ブルー光を含む特定波長光を十分にカットすることができないおそれがある。一方、1.0質量%を超えると、機能性樹脂への溶解が困難となるおそれがある。より好ましくは、0.1~0.5質量%である。 The content of the specific wavelength absorber with respect to the functional resin layer 15 is preferably 0.05 to 1.0% by mass. This is because it is possible to cut light of a specific wavelength including blue light and it is easy to dissolve in a functional resin. When content of a specific wavelength absorber is less than 0.05 mass%, there exists a possibility that the specific wavelength light containing blue light cannot fully be cut. On the other hand, when it exceeds 1.0 mass%, there exists a possibility that the melt | dissolution to a functional resin may become difficult. More preferably, the content is 0.1 to 0.5% by mass.
 機能性樹脂層15の有機ガラス基材11への一体化は、注型成形法によって行ったが、ディッピング法やスプレー法などの一般的な方法によっても行うことができる。注型成形法は、有機ガラス基材11に成形型のキャビティ21を形成し、機能性樹脂を注入することによって成形する方法である。 The integration of the functional resin layer 15 into the organic glass substrate 11 was performed by a casting method, but can also be performed by a general method such as a dipping method or a spray method. The casting molding method is a method in which a mold cavity 21 is formed in the organic glass substrate 11 and molding is performed by injecting a functional resin.
 キャビティ21は、有機ガラス基材を第1モールド11とし、第1モールド11の外側に一定の隙間が形成されるように第2モールド17を配するとともに、第1モールド11と第2モールド17の周面隙間をテーピング19等でシールして形成する。 The cavity 21 uses the organic glass base material as the first mold 11, and arranges the second mold 17 so that a certain gap is formed outside the first mold 11, while the first mold 11 and the second mold 17 The circumferential clearance is formed by sealing with a taping 19 or the like.
 キャビティ21の隙間は、機能性樹脂の流動特性や機能性樹脂層15に要求される機能性によって設定されるが、0.2~3.0mmであることが好ましい。キャビティ21の隙間が注入容易な程度に確保されているため注型成形を瞬時に行うことができ、かつ、注入された機能性樹脂が流動することなく硬化することができるため、眼鏡素材は脈理(屈折率を異にした部分が生じること。)の発生を抑制することができるためである。0.2mm未満であると、流動性に優れた樹脂であっても、注入が困難となるおそれがある。一方、3.0mmを超えると、機能性樹脂の流動による硬化ムラから脈理が発生するおそれがある。より好ましくは、0.3~1.5mmであり、さらに好ましくは、0.4~1.0mmである。 The gap between the cavities 21 is set according to the flow characteristics of the functional resin and the functionality required for the functional resin layer 15, but is preferably 0.2 to 3.0 mm. Since the gap between the cavities 21 is secured to such an extent that injection is easy, casting can be performed instantaneously, and the injected functional resin can be cured without flowing. This is because it is possible to suppress the occurrence of reason (parts having different refractive indexes). If it is less than 0.2 mm, injection may be difficult even for a resin having excellent fluidity. On the other hand, if it exceeds 3.0 mm, striae may occur due to uneven curing due to the flow of the functional resin. More preferably, it is 0.3 to 1.5 mm, and still more preferably 0.4 to 1.0 mm.
 なお、第2モールド17に有機ガラス基材11の成形に使用したものと同一のモールドを使用することによって、機能性樹脂層15は一定の厚みを有することができる。 In addition, the functional resin layer 15 can have a certain thickness by using the same mold as that used for forming the organic glass substrate 11 for the second mold 17.
 以下、実施例により本発明をさらに詳細に説明する。有機ガラス基材11の組成を表1に記載し、機能性樹脂層15の組成を表2に記載する。 Hereinafter, the present invention will be described in more detail with reference to examples. The composition of the organic glass substrate 11 is described in Table 1, and the composition of the functional resin layer 15 is described in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 有機ガラス基材11及び機能性樹脂層15に使用される樹脂素材には市販品を使用し、表1,2において、樹脂素材の種類の記載には略称を用いた。略称に対する樹脂素材の種類と屈折率を以下に記載する。「MR-10」(三井化学株式会社製チオウレタン系樹脂、屈折率:1.67)、「MR-20」(三井化学株式会社製チオウレタン系樹脂、屈折率:1.60)、「MR-95」(三井化学株式会社製チオウレタン系樹脂、屈折率:1.60)、「MR-174」(三井化学株式会社製エピスルフィド系樹脂、屈折率:1.74)、「NK-11P」(日本清水産業株式会社製(メタ)アクリレート系樹脂、屈折率:1.56)、「CLS3400」(三菱エンジニアリングプラスチックス株式会社製ポリカーボネート系樹脂、屈折率:1.59)、「XE3805」(エムスケミー・ジャパン株式会社製ナイロン系樹脂、屈折率:1.53)、「NXT」(トライベックス社(ICRX NXT社)製ポリウレア系樹脂、屈折率:1.53)なお、樹脂素材には、それぞれに適した、劣化防止剤、内部離型剤及び硬化剤を添加した。 Commercially available products were used for the resin materials used for the organic glass substrate 11 and the functional resin layer 15, and in Tables 1 and 2, abbreviations were used for the description of the types of resin materials. The types and refractive indexes of resin materials for the abbreviations are described below. “MR-10” (Mitsui Chemicals, thiourethane resin, refractive index: 1.67), “MR-20” (Mitsui Chemicals, thiourethane resin, refractive index: 1.60), “MR -95 "(Mitsui Chemicals, Inc., thiourethane resin, refractive index: 1.60)," MR-174 "(Mitsui Chemicals, Inc., episulfide resin, refractive index: 1.74)," NK-11P " (Nippon Shimizu Sangyo Co., Ltd. (meth) acrylate resin, refractive index: 1.56), “CLS3400” (Mitsubishi Engineering Plastics polycarbonate resin, refractive index: 1.59), “XE3805” (Ms Chemie・ Japan Corporation nylon resin, refractive index: 1.53), “NXT” (Trix Corporation (ICRX NXT)) polyurea resin, refractive index: 1.5 ) Note that the resin material is suitable for each, antidegradant were added the internal mold release agent and curing agent.
 機能性樹脂層15に使用される紫外線吸収剤には市販品を使用し、表1,2において使用した紫外線吸収剤の吸収ピーク波長を以下に記載する。SEESORB701(シプロ化成株式会社製、吸収ピーク波長:342nm)、SEESORB704(シプロ化成株式会社製、吸収ピーク波長:345nm)、SEESORB702(シプロ化成株式会社製、吸収ピーク波長:351nm)、SEESORB703(シプロ化成株式会社製、吸収ピーク波長:354nm)。 Commercially available products are used as the UV absorber used for the functional resin layer 15, and the absorption peak wavelengths of the UV absorbers used in Tables 1 and 2 are described below. SEESORB 701 (Cipro Kasei Co., Ltd., absorption peak wavelength: 342 nm), SEESORB 704 (Cipro Kasei Co., Ltd., absorption peak wavelength: 345 nm), SEESORB 702 (Cipro Kasei Co., Ltd., absorption peak wavelength: 351 nm), SEESORB 703 (Cipro Kasei Co., Ltd.) (Manufactured by company, absorption peak wavelength: 354 nm).
 機能性樹脂層15に使用される特定波長吸収剤には市販品を使用し、表2において使用した特定波長吸収剤の吸収ピーク波長を以下に記載する。FDB-001(山田化学工業株式会社製、吸収ピーク波長:420nm)、FDB-002(山田化学工業株式会社製、吸収ピーク波長:431nm)、FDB-003(山田化学工業株式会社製、吸収ピーク波長:437nm)、NeoContrast(三井化学株式会社製、吸収ピーク波長:580nm)。 Commercially available products are used as the specific wavelength absorbers used for the functional resin layer 15, and the absorption peak wavelengths of the specific wavelength absorbers used in Table 2 are described below. FDB-001 (Yamada Chemical Industries, Ltd., absorption peak wavelength: 420 nm), FDB-002 (Yamada Chemical Industries, Ltd., absorption peak wavelength: 431 nm), FDB-003 (Yamada Chemical Industries, Ltd., absorption peak wavelength) : 437 nm), NeoContrast (Mitsui Chemicals, absorption peak wavelength: 580 nm).
 有機ガラス基材11の成形は、注型成形法で行い、成形型は、凸面側モールドと凹面側モールドとをレンズの中心の間隔が1.0mmとなるように粘着テープでテーピングをして、有機ガラス基材成形用のキャビティを有する成形型を作成した。 The organic glass substrate 11 is molded by a cast molding method, and the mold is taped with an adhesive tape so that the distance between the center of the lens is 1.0 mm between the convex mold and the concave mold. A mold having a cavity for forming an organic glass substrate was prepared.
 有機ガラス基材11は、表1の組成で混合され、成形型に注入され、チオウレタン系とエピスルフィド系は120℃で2時間、(メタ)アクリレート系は80℃で1時間加熱硬化させることによって成形した。ポリカーボネート系樹脂、ポリアミド系樹脂及びポリウレア系樹脂は、注型成型品を使用した。 The organic glass substrate 11 is mixed with the composition shown in Table 1 and injected into a mold, and the thiourethane and episulfide systems are heated and cured at 120 ° C. for 2 hours, and the (meth) acrylate system is heated and cured at 80 ° C. for 1 hour. Molded. As the polycarbonate resin, polyamide resin, and polyurea resin, cast molded products were used.
 機能性樹脂層15の有機ガラス基材11への注型成形は、有機ガラス基材11に成形型のキャビティ21を形成し、機能性樹脂層15を成形する機能性樹脂を注入し、硬化させることによって成形した。キャビティ21は、有機ガラス基材を第1モールド11とし、第1モールド11の外側に一定の隙間が形成されるように第2モールド17として有機ガラス基材11成形の際に使用した凸面側モールドを配するとともに、第1モールド11と第2モールド17の周面隙間をテーピング19でシールして形成した。 The casting molding of the functional resin layer 15 onto the organic glass substrate 11 is performed by forming a mold cavity 21 in the organic glass substrate 11 and injecting and curing the functional resin for molding the functional resin layer 15. Was molded by. The cavity 21 uses the organic glass substrate as the first mold 11 and the convex mold used as the second mold 17 when forming the organic glass substrate 11 so that a certain gap is formed outside the first mold 11. And the peripheral surface gap between the first mold 11 and the second mold 17 is sealed with a taping 19.
 機能性樹脂層15が成形された有機ガラス基材11(樹脂レンズ)は、凹面と外周とが切削・研磨され、直径70mmのSPH(球面(D))が-8.00の眼鏡用素材(眼鏡レンズ)とした。 The organic glass substrate 11 (resin lens) on which the functional resin layer 15 is molded has a concave surface and an outer periphery cut and polished, and an SPH (spherical surface (D)) having a diameter of 70 mm is −8.00. Spectacle lens).
 以下に記載する有機ガラス基材11と機能性樹脂層15との組合せにより試験例の眼鏡素材を作成し、これらについて、光学特性評価性能として、紫外線カット率、420nmカット率及び可視光透過率を求め、外観の評価として黄色度(YI)を測定し、強度の評価として密着性を測定した。
<紫外線カット率,420nmカット率,可視光透過率>
 分光透過率曲線(眼鏡素材の波長ごとの光に対する透過率)を以下の装置及び規格に準拠して求め、紫外線カット率は280~400nmの光についての平均カット率(透過させない率)、420nmカット率は420nmの光についてのカット率、可視光透過率は380~780nmの光についての平均透過率を求めた。なお、測定位置は、光学特性の測定であることから、眼鏡素材の幾何中心とした。
The eyeglass material of the test example is created by a combination of the organic glass substrate 11 and the functional resin layer 15 described below, and for these, as an optical property evaluation performance, an ultraviolet cut rate, a 420 nm cut rate, and a visible light transmittance are set. The yellowness (YI) was measured as an evaluation of appearance, and the adhesion was measured as an evaluation of strength.
<Ultraviolet cut rate, 420 nm cut rate, visible light transmittance>
Spectral transmittance curve (transmittance of light for each wavelength of spectacle material) is calculated according to the following equipment and standards, UV cut rate is average cut rate (light not transmitted) for light of 280-400 nm, 420 nm cut The rate was the cut rate for light of 420 nm, and the visible light transmittance was the average transmittance for light of 380 to 780 nm. The measurement position was the geometric center of the spectacle material because it was a measurement of optical characteristics.
 ・装置:分光光度計U-4100(株式会社日立ハイテクサイエンス製)
 ・規格:屈折補正用眼鏡レンズの透過率の仕様及び試験方法(JIS T 7333:2005(ISO/DIS 8980-3:2002))
 そして、紫外線カット率は、以下のように評価した。◎:95%以上、○:90%以上95%未満、△:70%以上90%未満、×:70%未満。紫外線は、目に入ると白内障や黄斑変性症を引き起こすおそれがあるため、紫外線カット率は、その数値が高い方が良い評価となる。
・ Device: Spectrophotometer U-4100 (manufactured by Hitachi High-Tech Science Co., Ltd.)
Standard: Specification and test method of transmittance of refraction correcting spectacle lens (JIS T 7333: 2005 (ISO / DIS 8980-3: 2002))
And the ultraviolet cut rate was evaluated as follows. A: 95% or more, O: 90% or more and less than 95%, Δ: 70% or more and less than 90%, ×: less than 70%. Since ultraviolet rays may cause cataracts and macular degeneration when in the eyes, the higher the numerical value, the better the ultraviolet cut rate.
 420nmカット率は、以下のように評価した。◎:40%以上、○:30%以上40%未満、△:20%以上30%未満、×:20%未満。目が長時間ブルー光(420nm)に晒されると、目や生体リズムに影響を及ぼすおそれがあるため、420nmカット率は、その数値が高い方が良い評価となる。 The 420 nm cut rate was evaluated as follows. A: 40% or more, B: 30% or more and less than 40%, Δ: 20% or more and less than 30%, X: less than 20%. If the eyes are exposed to blue light (420 nm) for a long time, the eyes and biological rhythm may be affected. Therefore, the higher the numerical value of the 420 nm cut rate, the better the evaluation.
 可視光透過率は、以下のように評価した。◎:85%以上、○:80%以上85%未満、△:70%以上80%未満、×:70%未満。可視光透過率は、低いと視界が暗くなるため、可視光透過率は、その数値が高い方が良い評価となる。
<黄色度(YI)>
 色の三刺激値(XYZ)を以下の装置で測定し、以下の規格から黄色度(YI)を計算して求めた。測定位置は、眼鏡素材の厚みが、最も薄い眼鏡素材の幾何中心(中心)と、最も厚い外周から5mm内側(外周)とした。
The visible light transmittance was evaluated as follows. A: 85% or more, O: 80% or more and less than 85%, Δ: 70% or more and less than 80%, x: less than 70%. If the visible light transmittance is low, the field of view becomes dark. Therefore, the higher the numerical value, the better the visible light transmittance.
<Yellowness (YI)>
The color tristimulus values (XYZ) were measured with the following apparatus, and the yellowness (YI) was calculated from the following standards. The measurement positions were the geometric center (center) of the thinnest eyeglass material and the inner side (outer periphery) 5 mm from the thickest outer periphery.
 ・装置:分光光度計U-4100(株式会社日立ハイテクサイエンス製)
 ・規格:プラスチック-黄色度及び黄変度の求め方(JIS K 7373:2006)
 そして、黄色度(YI)は、以下のように評価した。◎:6未満、○:6以上8未満、△:8以上10未満、×:10以上。黄色度(YI)は、高いと黄色味が増すため、黄色度(YI)は、その数値が低い方が良い評価となる。
<密着性>
 密着性は、眼鏡素材の機能性樹脂層15側に衝撃を与え、機能性樹脂層15の剥離状態などで評価した。衝撃は、眼鏡素材を床等に静置し高さ1mから500gの鉄球を落下させることによって与えた。
・ Device: Spectrophotometer U-4100 (manufactured by Hitachi High-Tech Science Co., Ltd.)
・ Standard: Plastic-Determination of yellowness and yellowing (JIS K 7373: 2006)
And yellowness (YI) was evaluated as follows. A: Less than 6, O: 6 or more and less than 8, Δ: 8 or more and less than 10, x: 10 or more. When yellowness (YI) is high, yellowness increases. Therefore, yellowness (YI) is better evaluated when its numerical value is low.
<Adhesion>
The adhesion was evaluated by applying a shock to the functional resin layer 15 side of the eyeglass material and peeling the functional resin layer 15. The impact was given by placing the eyeglass material on the floor and dropping an iron ball having a height of 1 m to 500 g.
 そして、密着性は、以下のように評価した。◎:異常なし、○:機能性樹脂層15に傷が見られる、△:機能性樹脂層15に欠落が見られその面積が全体の5%未満、×:機能性樹脂層15に欠落が見られその面積が全体の5%以上。 And the adhesiveness was evaluated as follows. ◎: No abnormality, ○: Scratches are observed in the functional resin layer 15, Δ: Defects are found in the functional resin layer 15 and the area is less than 5%, X: Defects in the functional resin layer 15 are observed The area is 5% or more of the whole.
 以下に、試験例を記載する。なお、試験例1~4,13~45が実施例であり、試験例5~12が比較例である。 The test example is described below. Test examples 1 to 4, 13 to 45 are examples, and test examples 5 to 12 are comparative examples.
 (試験例1~4)
 試験例1~4は、ベストモードとなる実施例である。有機ガラス基材及び機能性樹脂層の組合せ、並びに、評価性能の結果を表3に記載する。
(Test Examples 1 to 4)
Test Examples 1 to 4 are examples in which the best mode is set. Table 3 shows the combination of the organic glass substrate and the functional resin layer, and the evaluation performance results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試験例1~4は、351nmの吸収ピーク波長を有する紫外線吸収剤と420nmの吸収ピーク波長を有する特定波長吸収剤とが含有された機能性樹脂層を、各種の有機ガラス基材に成形したものである。紫外線吸収剤によって紫外線は十分にカットされ、紫外線吸収剤と特定波長吸収剤とによってブルー光(420nm)も十分にカットされているにも拘らず、可視光の視界(可視光透過率)は確保されていた。また、紫外線吸収剤が含有された機能性樹脂層の厚みが薄いため、眼鏡素材の薄い部分である中心、厚い部分である外周ともに、黄色化(黄色度)を抑えることができた。また、密着性も良好であった。 In Test Examples 1 to 4, a functional resin layer containing an ultraviolet absorber having an absorption peak wavelength of 351 nm and a specific wavelength absorber having an absorption peak wavelength of 420 nm was molded on various organic glass substrates. It is. The UV ray is sufficiently cut by the UV absorber, and the blue light (420 nm) is also sufficiently cut by the UV absorber and the specific wavelength absorber, but the visible light visibility (visible light transmittance) is ensured. It had been. Moreover, since the functional resin layer containing the ultraviolet absorber was thin, yellowing (yellowness) could be suppressed in both the thin center portion and the thick outer periphery of the spectacle material. Also, the adhesion was good.
 (試験例5~8)
 試験例5~8は、機能性樹脂層を設けなかった比較例である。有機ガラス基材に対する評価性能の結果を表4に記載する。
(Test Examples 5 to 8)
Test Examples 5 to 8 are comparative examples in which the functional resin layer was not provided. The evaluation performance results for the organic glass substrate are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 試験例5~8は、試験例1~4と比較して、紫外線吸収剤が含有された機能性樹脂層を設けていないため、紫外線とブルー光を十分にカットすることができなかった。なお、機能性樹脂層を設けていないため、密着性は評価しなかった。 Test Examples 5 to 8 were not provided with a functional resin layer containing an ultraviolet absorber as compared with Test Examples 1 to 4, and therefore UV rays and blue light could not be sufficiently cut. In addition, since the functional resin layer was not provided, adhesiveness was not evaluated.
 (試験例9~12)
 試験例9~12は、機能性樹脂層を設けず、紫外線吸収剤を有機ガラス基材に添加した比較例である。有機ガラス基材に対する評価性能の結果を表5に記載する。
(Test Examples 9 to 12)
Test Examples 9 to 12 are comparative examples in which a functional resin layer was not provided and an ultraviolet absorber was added to the organic glass substrate. The results of evaluation performance for the organic glass substrate are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 試験例9~12は、試験例1~4と比較して、紫外線吸収剤を有機ガラス基材に添加したため、紫外線をカットすることはできたが、厚みのある有機ガラス基材に紫外線吸収剤を添加したため、基材レンズが外周にかけて黄色化してしまった。なお、機能性樹脂層を設けていないため、密着性は評価しなかった。 In Test Examples 9 to 12, compared with Test Examples 1 to 4, the ultraviolet absorber was added to the organic glass substrate, so that the ultraviolet rays could be cut. However, the ultraviolet absorber was added to the thick organic glass substrate. As a result, the base lens was yellowed over the outer periphery. In addition, since the functional resin layer was not provided, adhesiveness was not evaluated.
 (試験例13~28)
 試験例13~28は、種々の機能性樹脂層と種々の有機ガラス基材とを組み合わせた試験例で、試験例1~4と比較して、特定波長吸収剤を機能性樹脂層に添加していない点で異なる。有機ガラス基材及び機能性樹脂層の組合せ、並びに、評価性能の結果を表6に記載する。
(Test Examples 13 to 28)
Test Examples 13 to 28 are test examples in which various functional resin layers and various organic glass substrates are combined. Compared with Test Examples 1 to 4, a specific wavelength absorber is added to the functional resin layer. Not different in that. Table 6 shows the combination of the organic glass substrate and the functional resin layer, and the evaluation performance results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 試験例13~28は、試験例1~4と比較して、特定波長吸収剤を機能性樹脂層に添加していないものの、吸収ピーク波長が長波長側にある紫外線吸収剤が添加されていることによって、ブルー光もある程度カットすることができた。なお、機能性樹脂層にエピスルフィド系樹脂と(メタ)アクリレート系樹脂を使用した試験例は、やや密着性が劣るものとなった。 In Test Examples 13 to 28, a specific wavelength absorber is not added to the functional resin layer as compared with Test Examples 1 to 4, but an ultraviolet absorber having an absorption peak wavelength on the long wavelength side is added. As a result, blue light could be cut to some extent. In addition, the test example which used the episulfide type resin and the (meth) acrylate type resin for the functional resin layer was slightly inferior in adhesion.
 (試験例29~31)
 試験例29~31は、特定波長吸収剤の種類を変更した試験例である。試験例3と比較して、特定波長吸収剤の吸収ピーク波長が異なる。有機ガラス基材及び機能性樹脂層の組合せ、並びに、評価性能の結果を表7に記載する。
(Test Examples 29 to 31)
Test Examples 29 to 31 are test examples in which the type of the specific wavelength absorber is changed. Compared to Test Example 3, the absorption peak wavelength of the specific wavelength absorber is different. Table 7 shows the combination of the organic glass substrate and the functional resin layer, and the evaluation performance results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 試験例29~31は、試験例3と比較して、特定波長吸収剤の吸収ピーク波長が異なるものの、ブルー光を十分にカットすることができた。 Test Examples 29 to 31 were able to sufficiently cut blue light, although the absorption peak wavelength of the specific wavelength absorber was different from that of Test Example 3.
 (試験例32~36)
 試験例32~36は、紫外線吸収剤の添加量を変更した試験例である。試験例3と比較して、特定波長吸収剤が添加されていないことと、紫外線吸収剤の添加量が異なる。有機ガラス基材及び機能性樹脂層の組合せ、並びに、評価性能の結果を表8に記載する。
(Test Examples 32-36)
Test Examples 32-36 are test examples in which the addition amount of the ultraviolet absorber was changed. Compared to Test Example 3, the specific wavelength absorber is not added and the amount of the ultraviolet absorber added is different. Table 8 shows the combination of the organic glass substrate and the functional resin layer, and the results of the evaluation performance.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 試験例3と比較して、紫外線吸収剤の添加量の少ない試験例32では、紫外線とブルー光のカット性能が劣り、紫外線吸収剤の添加量の多い試験例36では、機能性樹脂層が外周にかけてやや黄色化してしまった。 Compared with Test Example 3, Test Example 32 with a small amount of added UV absorber is inferior in UV and blue light cutting performance, and Test Example 36 with a large amount of UV absorber added has a functional resin layer on the outer periphery. Slightly yellowish over time.
 (試験例37~41)
 試験例37~41は、機能性樹脂層の厚みを変更した試験例である。試験例3と比較して、機能性樹脂層の厚みが異なる。有機ガラス基材及び機能性樹脂層の組合せ、並びに、評価性能の結果を表9に記載する。
(Test Examples 37 to 41)
Test Examples 37 to 41 are test examples in which the thickness of the functional resin layer was changed. Compared to Test Example 3, the thickness of the functional resin layer is different. Table 9 shows the combination of the organic glass substrate and the functional resin layer, and the evaluation performance results.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 試験例3と比較して、機能性樹脂層の厚みが少ない試験例37では、紫外線とブルー光のカット性能が劣り、表中には記載しなかったが、注型成形を瞬時に行うことができず作業性がやや劣るものとなった。機能性樹脂層の厚みが多い試験例41では、機能性樹脂層の外周にかけてやや黄色化がみられ、表中には記載しなかったが、厚みによる硬化ムラが生じたためか僅かながら脈理が発生した。 Compared with Test Example 3, in Test Example 37 where the thickness of the functional resin layer is small, the UV and blue light cutting performance is inferior, and although not shown in the table, cast molding can be performed instantaneously. The workability was somewhat inferior. In Test Example 41 where the thickness of the functional resin layer is large, a slight yellowing was seen on the outer periphery of the functional resin layer, which was not shown in the table, but there was slight striae due to uneven curing due to the thickness. Occurred.
 (試験例42~45)
 試験例42~45は、特定波長吸収剤に吸収ピーク波長が420nmであるFDB-001と吸収ピーク波長が580nmであるNeoContrastとが含有された機能性樹脂層Xを用いたものである。有機ガラス基材及び機能性樹脂層の組合せ、並びに、評価性能の結果を表10に記載する。
(Test Examples 42 to 45)
Test Examples 42 to 45 use functional resin layers X in which FDB-001 having an absorption peak wavelength of 420 nm and NeoContrast having an absorption peak wavelength of 580 nm are contained in a specific wavelength absorber. Table 10 shows the combination of the organic glass substrate and the functional resin layer, and the results of the evaluation performance.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 試験例42~45は、紫外線吸収剤によって紫外線は十分にカットされ、紫外線吸収剤と特定波長吸収剤のFDB-001とによってブルー光(420nm)も十分にカットされているにも拘らず、可視光の視界(可視光透過率)は確保されていた。これらは、特定波長吸収剤のNeoContrastが含有されているものであり、眼鏡素材の見え方が改善されたものであった。また、紫外線吸収剤が含有された機能性樹脂層の厚みが薄いため、眼鏡素材の薄い部分である中心、厚い部分である外周ともに、黄色み(黄色度)を抑えることができた。さらに、有機ガラス基材が、ポリカーボネート系樹脂(CLS3400)、ポリアミド系樹脂(XE3805)、ポリウレア系樹脂(NXT)であっても、密着性は良好であった。 In Test Examples 42 to 45, the ultraviolet rays were sufficiently cut by the ultraviolet absorber, and the blue light (420 nm) was also sufficiently cut by the ultraviolet absorber and the specific wavelength absorber FDB-001, but visible. The light visibility (visible light transmittance) was secured. These contained NeoContrast, a specific wavelength absorber, and the appearance of the eyeglass material was improved. Moreover, since the functional resin layer containing the ultraviolet absorber was thin, yellowness (yellowness) could be suppressed in both the thin center portion and the thick outer periphery of the spectacle material. Furthermore, even when the organic glass substrate was a polycarbonate resin (CLS3400), a polyamide resin (XE3805), or a polyurea resin (NXT), the adhesion was good.
 11…有機ガラス基材(第1モールド)、15…機能性樹脂層、17…第2モールド、19…テーピング、21…キャビティ。 DESCRIPTION OF SYMBOLS 11 ... Organic glass base material (1st mold), 15 ... Functional resin layer, 17 ... 2nd mold, 19 ... Taping, 21 ... Cavity.

Claims (6)

  1.  樹脂成形体である有機ガラス基材の片面又は両面に、機能性樹脂層が一体化された眼鏡素材において、
     該機能性樹脂層は、吸収ピーク波長が320nm以上である紫外線吸収剤を含有し、
     該眼鏡素材は、黄色度(YI)が10未満であることを特徴とする眼鏡素材。
    In a spectacle material in which a functional resin layer is integrated on one side or both sides of an organic glass substrate that is a resin molded body,
    The functional resin layer contains an ultraviolet absorber having an absorption peak wavelength of 320 nm or more,
    The eyeglass material has a yellowness index (YI) of less than 10.
  2.  前記吸収ピーク波長が320nm以上である紫外線吸収剤がベンゾトリアゾール系紫外線吸収剤であって、前記機能性樹脂層の該紫外線吸収剤の含有量が0.1~3.0質量%であることを特徴とする請求項1に記載の眼鏡素材。 The ultraviolet absorber having an absorption peak wavelength of 320 nm or more is a benzotriazole ultraviolet absorber, and the content of the ultraviolet absorber in the functional resin layer is 0.1 to 3.0% by mass. The eyeglass material according to claim 1, wherein
  3.  前記機能性樹脂層が波長域400~500nmに吸収ピーク波長を有する特定波長吸収剤を含有することを特徴とする請求項1に記載の眼鏡素材。 2. The eyeglass material according to claim 1, wherein the functional resin layer contains a specific wavelength absorber having an absorption peak wavelength in a wavelength range of 400 to 500 nm.
  4.  波長420nmの光のカット率が20%以上であることを特徴とする請求項3に記載の眼鏡素材。 4. The eyeglass material according to claim 3, wherein a cut rate of light having a wavelength of 420 nm is 20% or more.
  5.  前記有機ガラス基材が、チオウレタン系、エピスルフィド系又は(メタ)アクリレート系の熱硬化性樹脂原料で成形され、
     前記機能性樹脂層が、チオウレタン系、エピスルフィド系又は(メタ)アクリレート系の熱硬化性樹脂原料で成形されていることを特徴とする請求項1に記載の眼鏡素材。
    The organic glass substrate is molded from a thiourethane-based, episulfide-based or (meth) acrylate-based thermosetting resin raw material,
    2. The eyeglass material according to claim 1, wherein the functional resin layer is formed of a thiourethane-based, episulfide-based, or (meth) acrylate-based thermosetting resin material.
  6.  前記機能性樹脂層の厚みが0.2~3.0mmであることを特徴とする請求項1に記載の眼鏡素材。 2. The eyeglass material according to claim 1, wherein the functional resin layer has a thickness of 0.2 to 3.0 mm.
PCT/JP2017/006187 2016-07-06 2017-02-20 Eyeglass material WO2018008179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018525926A JPWO2018008179A1 (en) 2016-07-06 2017-02-20 Glasses material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-134505 2016-07-06
JP2016134505 2016-07-06

Publications (1)

Publication Number Publication Date
WO2018008179A1 true WO2018008179A1 (en) 2018-01-11

Family

ID=60901680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006187 WO2018008179A1 (en) 2016-07-06 2017-02-20 Eyeglass material

Country Status (2)

Country Link
JP (1) JPWO2018008179A1 (en)
WO (1) WO2018008179A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112812667A (en) * 2019-10-31 2021-05-18 天元清水光学(上海)有限公司 Functional resin layer and preparation process of functional resin layer applied to blue-light-proof lens
CN113573900A (en) * 2019-03-20 2021-10-29 积水化学工业株式会社 Thermoplastic film and laminated glass

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295502A (en) * 1998-02-10 1999-10-29 Asahi Optical Co Ltd Plastic lens
JP2001091906A (en) * 1999-09-20 2001-04-06 Hoya Corp Plastic spectacle lens having excellent ultraviolet ray absorptivity and method for manufacturing the same
JP2008132783A (en) * 2001-07-16 2008-06-12 Asahi Lite Optical Co Ltd Production process of resin lens and resin lens
JP2012173704A (en) * 2011-02-24 2012-09-10 Ito Kogaku Kogyo Kk Antiglare optical element
JP2013011840A (en) * 2011-06-02 2013-01-17 Ito Kogaku Kogyo Kk Antiglare optical element
JP2014156067A (en) * 2013-02-15 2014-08-28 Ito Kogaku Kogyo Kk Method of producing resin lens
WO2015046540A1 (en) * 2013-09-30 2015-04-02 ホヤ レンズ タイランド リミテッド Transparent plastic substrate and plastic lens
WO2015088015A1 (en) * 2013-12-13 2015-06-18 三井化学株式会社 Polymerizable composition for optical materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963457B1 (en) * 2013-02-27 2018-07-11 Mitsui Chemicals, Inc. Optical material, composition for use therein, and use thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295502A (en) * 1998-02-10 1999-10-29 Asahi Optical Co Ltd Plastic lens
JP2001091906A (en) * 1999-09-20 2001-04-06 Hoya Corp Plastic spectacle lens having excellent ultraviolet ray absorptivity and method for manufacturing the same
JP2008132783A (en) * 2001-07-16 2008-06-12 Asahi Lite Optical Co Ltd Production process of resin lens and resin lens
JP2012173704A (en) * 2011-02-24 2012-09-10 Ito Kogaku Kogyo Kk Antiglare optical element
JP2013011840A (en) * 2011-06-02 2013-01-17 Ito Kogaku Kogyo Kk Antiglare optical element
JP2014156067A (en) * 2013-02-15 2014-08-28 Ito Kogaku Kogyo Kk Method of producing resin lens
WO2015046540A1 (en) * 2013-09-30 2015-04-02 ホヤ レンズ タイランド リミテッド Transparent plastic substrate and plastic lens
WO2015088015A1 (en) * 2013-12-13 2015-06-18 三井化学株式会社 Polymerizable composition for optical materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113573900A (en) * 2019-03-20 2021-10-29 积水化学工业株式会社 Thermoplastic film and laminated glass
CN113573900B (en) * 2019-03-20 2023-09-15 积水化学工业株式会社 Thermoplastic film and laminated glass
US11833784B2 (en) 2019-03-20 2023-12-05 Sekisui Chemical Co., Ltd. Thermoplastic film and laminated glass
CN112812667A (en) * 2019-10-31 2021-05-18 天元清水光学(上海)有限公司 Functional resin layer and preparation process of functional resin layer applied to blue-light-proof lens

Also Published As

Publication number Publication date
JPWO2018008179A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
US6770692B1 (en) Plastic base material
AU2008245205B9 (en) Infrared ray-absorbable eyeglass lens, and method for production thereof
KR101761828B1 (en) Optical resin compositions and optical lens prepared therefrom
US7035010B2 (en) Polarized lenses with variable transmission
JP5075080B2 (en) Infrared absorptive lens substrate
US11067834B2 (en) High refractive index polarized spectacle lens
US8474973B2 (en) Infrared absorbing polarized eyeglass lens
JP6585850B2 (en) Optical element and manufacturing method thereof
WO2018008179A1 (en) Eyeglass material
JP7033605B2 (en) Photochromic Eyewear Lens Manufacturing Methods and Photochromic Eyewear Products
US20120188503A1 (en) Eyeglass lens made of allyl diglycol carbonate resin
JP7123082B2 (en) LENS AND LENS MANUFACTURING METHOD
JP6692249B2 (en) Eyeglass material
US20220214475A1 (en) Optical material
WO2018037621A1 (en) Light-modulating optical element
CN112812667A (en) Functional resin layer and preparation process of functional resin layer applied to blue-light-proof lens
CN112219157A (en) Color enhanced lens

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018525926

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823788

Country of ref document: EP

Kind code of ref document: A1