WO2018037621A1 - Light-modulating optical element - Google Patents

Light-modulating optical element Download PDF

Info

Publication number
WO2018037621A1
WO2018037621A1 PCT/JP2017/016157 JP2017016157W WO2018037621A1 WO 2018037621 A1 WO2018037621 A1 WO 2018037621A1 JP 2017016157 W JP2017016157 W JP 2017016157W WO 2018037621 A1 WO2018037621 A1 WO 2018037621A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
general formula
meth
organic glass
optical element
Prior art date
Application number
PCT/JP2017/016157
Other languages
French (fr)
Japanese (ja)
Inventor
忠史 鳥居
敬介 荻野
Original Assignee
伊藤光学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊藤光学工業株式会社 filed Critical 伊藤光学工業株式会社
Publication of WO2018037621A1 publication Critical patent/WO2018037621A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C1/00Assemblies of lenses with bridges or browbars
    • G02C1/04Bridge or browbar secured to or integral with partial rims, e.g. with partially-flexible rim for holding lens

Definitions

  • the present invention relates to a light control optical element containing a photochromic agent.
  • the photochromic agent is an additive that undergoes a reversible color change in which the color of the photochromic agent changes by absorbing light (ultraviolet light) and returns to the original color when the light absorption stops.
  • Patent Document 1 describes a method for producing a synthetic resin photochromic lens using a photochromic agent, and describes a synthetic resin photochromic lens that is excellent in weather resistance and has a uniform dimming effect over the entire lens. .
  • a photochromic agent for example, in the case of eyeglass materials, it changes to a dark color when outdoors with strong ultraviolet rays, etc., resulting in an anti-glare effect for the user, and close to transparent in indoors where UV rays are weak. By changing, a clear view is given to the user and the light control function is exhibited.
  • An optical element having a dimming function undergoes a reversible color change in which the color returns to its original state when light absorption stops, but the color is almost the original color after the light absorption stops. It took about 15 minutes to return to the time (decoloration time).
  • a photochromic agent is dissolved in tetrahydrofuran to be uniformly dispersed in a synthetic resin so that the decoloring time can be reduced.
  • a cavity for molding a functional resin layer is formed on one side or both sides of a base lens, and a thermoplastic elastomer is formed on the molding surface of the functional resin layer of the base lens.
  • JP-A-8-216271 JP 2014-32273 A Japanese Patent Laid-Open No. 2014-156067
  • the decoloring time of the dimming optical element is long, for example, in the case of eyeglass materials, when the user moves from the outside to the indoor, the dimming optical element exhibits a dark color until the decoloring time. And the appearance is uncomfortable with wearing colored glasses indoors. For this reason, it is preferable that the light control optical element has a short decoloring time.
  • the photochromic lens described in Patent Document 2 can reduce the decoloring time by uniformly dispersing the photochromic agent in the synthetic resin. However, by improving the dispersion state, the original performance of the photochromic agent is extracted. However, the interaction with the synthetic resin was not studied.
  • the present invention has been made in view of the above points, and an object thereof is to provide a light control optical element capable of shortening the decoloring time by interaction with a synthetic resin.
  • the light control optical element of the present invention is a light control optical element in which a functional resin layer is integrated on one side or both sides of an organic glass base material that is a resin molded body, the functional resin layer includes a photochromic agent, It contains polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the following general formula (1).
  • the inventors of the present application disperse the photochromic agent in the resin containing the polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the general formula (1), thereby eliminating the light absorption of the photochromic agent. It has been found that the time until the color almost returns to the original time (decoloration time) is shortened. According to the light control optical element of the present invention, it is possible to provide a light control optical element capable of shortening the decoloring time by interaction with the synthetic resin.
  • the functional resin layer may contain (poly) alkylene glycol di (meth) acrylate represented by the following general formula (2).
  • the light control optical element can obtain a uniform light control function. it can.
  • the organic glass substrate is formed of a thiourethane-based, episulfide-based, or (meth) acrylate-based thermosetting resin material, and the functional resin layer has the following general formula (3 ) Represented by the formula (1).
  • the thiourethane-based, episulfide-based or (meth) acrylate-based thermosetting resin material is a high refractive index material, the thickness of the light control optical element can be reduced.
  • the alkylene diol diglycidyl ether acrylate represented by the general formula (3) is excellent in adhesion to thiourethane, episulfide, or (meth) acrylate thermosetting resin raw materials, and therefore a functional resin layer. Can be excellent in adhesion to the organic glass substrate.
  • the functional resin layer may have a thickness of 0.2 to 3.0 mm. According to this, since the thickness of the cavity for molding the functional resin layer is secured, cast molding can be performed instantaneously, and the injected functional resin layer is cured without uneven curing. Therefore, the dimming optical element can suppress the occurrence of striae (parts having different refractive indexes are generated).
  • the photochromic agent is dispersed in the resin containing the polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the general formula (1), thereby reducing the decoloring time.
  • a dimming optical element that can be shortened can be provided.
  • FIG. It is a figure which shows the manufacturing process of the light control optical element of this invention. It is a figure which shows the manufacturing process which provides a protective resin layer.
  • (A) is a figure which shows the up-and-down movement with a small blur width of the vibration immersion pattern which provides an ultraviolet absorber taper part
  • (b) shows the up-and-down movement with a large blur width of the vibration soak pattern which provides an ultraviolet absorber taper part.
  • FIG. It is the figure which contrasted the performance of the Example and the comparative example.
  • the light control optical element of the embodiment is a light control optical element in which a functional resin layer 15 is integrated on one or both sides of an organic glass substrate 11 that is a resin molded body.
  • the functional resin layer 15 is a photochromic agent.
  • (meth) acrylate is a general term for acrylate and methacrylate.
  • a functional resin layer 15 is integrated by cast molding on the surface (convex surface) of an organic glass substrate 11 as a spectacle lens.
  • the present invention is not limited to the use of spectacle lenses, but can be applied to any optical element such as telescope lenses, window glass for architectural or vehicle use.
  • the functional resin layer 15 of this invention is not limited to the use to the surface (convex surface) of the organic glass base material 11, The back surface (concave surface) or both surfaces (convex surface and concave surface) of the organic glass base material 11 It is possible to apply to.
  • the organic glass base material 11 is used as a base material for optical elements such as lenses and window glasses.
  • the eyeglass material of the embodiment is made of organic glass (plastic) because it is lighter than inorganic glass. Shall.
  • polycarbonate (PC), polyurethane, polyurea, aliphatic allyl carbonate, aromatic allyl carbonate, polythiourethane, episulfide, (meth) acrylate, transparent polyamide (transparent Nylon), norbornene, polyimide, polyolefin, and other synthetic resins can be used.
  • a thiourethane, episulfide, or (meth) acrylate synthetic resin has a high refractive index and can be used more favorably.
  • the thiourethane resin is a polymer (resin) having a bond (-NHCOS-, -NHCSO-, -NHCSS-) in which at least one oxygen atom of a polyurethane bond (-NHCOO-) is replaced with a sulfur atom.
  • the resin material include one or more isocyanate components selected from polyisocyanate, polyisothiocyanate, polyisothiocyanate thioisocyanate, and one or more known active hydrogens selected from polythiol and a suitable polyol.
  • a polymerizable component in combination with a compound component can be preferably used.
  • polyisocyanate aliphatic, alicyclic, aromatic, and derivatives thereof, as well as sulfide, polysulfide, and thiocarbonyl (thioketone) derivatives in which sulfur is introduced into a part of their carbon chains are parent compounds.
  • aliphatic or alicyclic polyisocyanates are desirable from the standpoint of yellowing resistance.
  • polythiols include aliphatic, alicyclic, aromatic, and derivatives thereof, and sulfides, polysulfides, and polythioethers in which sulfur is introduced into a part of their carbon chains as a base compound.
  • aliphatic or alicyclic polythiols are desirable from the standpoint of yellowing resistance.
  • the episulfide resin means a polymer (resin) obtained by reacting a dithioepoxy compound, a curing agent, and another polymerizable compound, and is obtained by curing a linear alkyl sulfide type dithioepoxy compound.
  • the well-known thing used can be used.
  • As the curing agent amines, organic acids, or inorganic acids that are ordinary epoxy resin curing agents can be used.
  • organic glass substrate 11 examples include MR-6, MR-8, MR-20, MR-60, MR-95 (Mitsui Chemicals, thiourethane resin, refractive index: 1.60), MR -7, MR-10 (Mitsui Chemicals Co., Ltd. thiourethane resin, refractive index: 1.67), MR-174 (Mitsui Chemicals, Inc. episulfide resin, refractive index: 1.74), NK-11P, LS106S, LS420 (Nippon Shimizu Sangyo Co., Ltd. (meth) acrylate resin, refractive index: 1.56), NXT (Tribex Corporation (ICRX NXT Corporation) polyurea resin, refractive index: 1.53) and the like are suitable. Can be used for
  • the organic glass substrate 11 has a deterioration preventing agent for preventing resin deterioration of the organic glass, an ultraviolet absorber that absorbs ultraviolet rays, and an interior that improves releasability from the mold for molding the lens shape, which will be described in detail later.
  • a mold release agent or a curing agent for curing the organic glass can be added according to the type of the organic glass.
  • the organic glass substrate 11 can be formed using a general forming method such as a polishing method or a casting method.
  • the polishing method is a method in which a synthetic resin for forming the organic glass substrate 11 is molded into a block-like resin under suitable conditions, and then polished according to the lens design for obtaining the block-like resin.
  • a cavity is formed by sealing the peripheral surface of the mold with taping or a gasket at an interval that requires a concave mold and a convex mold.
  • a synthetic resin for molding the organic glass substrate 11 is injected and cured, and the organic glass substrate 11 is polished as necessary.
  • the functional resin layer 15 is a layer that is integrated on one or both sides of the organic glass substrate 11, and is a layer that is thinner than the organic glass substrate 11.
  • the functional resin layer 15 contains a photochromic agent and a polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the general formula (1) and, if necessary, represented by the general formula (2) (poly ) Alkylene glycol di (meth) acrylate, alkylene diol diglycidyl ether acrylate represented by the general formula (3).
  • a deterioration preventing agent, an ultraviolet absorber, a specific wavelength absorber, an internal mold release agent, a curing agent, a molecular weight adjusting agent, and the like are added depending on the type of resin. can do.
  • Photochromic agents, ultraviolet absorbers and specific wavelength absorbers are expensive. For this reason, by containing a photochromic agent or the like in the functional resin layer 15 having a thickness smaller than that of the organic glass substrate 11, the content of the photochromic agent or the like can be reduced. Manufacturing cost can be reduced.
  • a photochromic agent is a compound that exhibits photochromism. By absorbing light (ultraviolet rays), it undergoes a structural change (isomerization) and a color change (shows a different absorption spectrum) without changing the molecular weight. It is an additive.
  • a preferred photochromic agent is a color that changes its color from colorless (or light) to blue, purple, magenta, black, etc. by absorbing light, and changes its color when light absorption stops. It has a reversible color change (T-type photochromic agent) that returns to its original colorless (or light color).
  • an azobenzene photochromic agent As such a photochromic agent, an azobenzene photochromic agent, a spiropyran photochromic agent, a naphthopyran photochromic agent, a spirooxazine photochromic agent, a chromene photochromic agent, a hexaarylbisimidazole photochromic agent, or the like can be used.
  • spiropyran-based photochromic agents, naphthopyran-based photochromic agents, spirooxazine-based photochromic agents, and chromene-based photochromic agents are more preferred because they become darker when they change color by absorbing light. can do.
  • a photochromic agent has two or more. It is preferable to use a mixture of seed photochromic agents.
  • the deterioration preventing agent is an alkyl radical (R ⁇ : R is generated when the organic glass resin is decomposed or deteriorated by light or heat while absorbing light of 280 to 320 nm, which is easily decomposed or deteriorated by the organic glass resin.
  • R ⁇ alkyl radical
  • ROO. peroxy radicals
  • ROOH peroxides
  • the deterioration inhibitor include benzophenone, diphenyl acrylate, sterically hindered amine, salicylic acid ester, benzotriazole, hydroxybenzoate, cyanoacrylate, hydroxyphenyl triazine, and the like.
  • a suitable deterioration inhibitor can be added depending on the type of organic glass.
  • the ultraviolet absorber is an additive that absorbs ultraviolet rays and is added to the light control optical element for protecting the eyeball. This is because ultraviolet rays may cause cataracts and macular degeneration when entering the eyes. Depending on the absorption wavelength range of the ultraviolet absorber, it also functions as a deterioration preventing agent.
  • the ultraviolet absorber include benzophenone series, diphenyl acrylate series, sterically hindered amine series, salicylic acid ester series, benzotriazole series, hydroxybenzoate series, cyanoacrylate series, and hydroxyphenyl triazine series.
  • a suitable ultraviolet absorber can be added according to the type of organic glass.
  • the specific wavelength absorber is an additive that absorbs light of a specific wavelength.
  • a specific wavelength absorber having a main absorption peak between 565 and 605 nm (especially 580 nm) NeoContrast (manufactured by Mitsui Chemicals, Inc.). Absorption peak wavelength: 580 nm).
  • the optical element has a function of selectively cutting dazzling light and can improve the appearance. Details of NeoContrast are described in Japanese Patent No. 5778109 and US Pat. No. 7,506,777.
  • Specific wavelength absorbers include benzophenone, diphenyl acrylate, sterically hindered amine, salicylic acid ester, benzotriazole, hydroxybenzoate, cyanoacrylate, hydroxyphenyl triazine, porphyrin, and the like.
  • the internal mold release agent is an additive that is added to improve the release from the mold during mold removal after the organic glass substrate 11 is molded from the organic glass using the mold.
  • a mold suitable for the organic glass material can be used.
  • the curing agent is an additive that cures (polymerizes) the organic glass that forms the organic glass substrate 11, and includes organic glass materials such as a tin-based catalyst, an amine-based catalyst, and a peroxide-based polymerization initiator.
  • organic glass materials such as a tin-based catalyst, an amine-based catalyst, and a peroxide-based polymerization initiator.
  • the one suitable for can be used.
  • the polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the following general formula (1) is a synthetic resin that can shorten the decoloring time of the photochromic agent.
  • m + n (m is the degree of polymerization of alkylene glycol and n is the degree of polymerization of alkylene glycol) is preferably 1 or more and less than 50.
  • the polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the general formula (1) within this range can shorten the decoloring time of the photochromic agent, and the strength of the functional resin layer 15 is maintained. is there. If m + n in the formula is less than 1, the effect of shortening the decoloring time of the photochromic agent may be insufficient.
  • the polyalkylene glycol represented by the general formula (1) Since the polyalkylene glycol which is a hydrophilic part of the modified bisphenol A di (meth) acrylate is long and easily contains water, the strength of the functional resin layer 15 may not be maintained. More preferably, m + n in the formula is 10 or more and less than 40, and even more preferably, m + n in the formula is 20 or more and less than 35.
  • R ⁇ 1 > in General formula (1) is a hydrogen group or a methyl group.
  • R 1 in the general formula (1) is a hydrogen group (acrylic)
  • the photochromic decoloring time is slightly faster, but the hardness of the functional resin layer 15 tends to be slightly inferior.
  • R 1 in the general formula (1) is a methyl group (methacrylic)
  • the photochromic decoloring time is slightly longer, but the hardness of the functional resin layer 15 tends to be slightly harder. .
  • R ⁇ 3 > O in General formula (1) is ethylene glycol and / or propylene glycol.
  • the viscosity of the polyalkylene glycol-modified bisphenol A di (meth) acrylate monomer represented by the general formula (1) can be lowered, and the handling property of the resin for molding the functional resin layer 15 should be excellent. It is because it can do.
  • R 3 O in the general formula (1) is ethylene glycol.
  • the (poly) alkylene glycol di (meth) acrylate represented by the following general formula (2) (hereinafter sometimes abbreviated as general formula (2) ROAc) is a synthetic resin excellent in dispersibility of the photochromic agent. .
  • the viscosity of the (poly) alkylene glycol di (meth) acrylate monomer represented by the general formula (2) is preferably 15 mPa ⁇ s (25 ° C.) or less. This is because the compatibility with the photochromic agent is excellent. More preferably, it is 12 mPa * s (25 degreeC) or less, More preferably, it is 8 mPa * s (25 degreeC) or less. Further, n (the degree of polymerization of alkylene glycol) in the general formula (2) is preferably 4 or less. This is because when the viscosity is lowered, the compatibility with the photochromic agent is excellent. More preferably, n is 3 or less, and more preferably n is 2 or less.
  • R ⁇ 2 > in General formula (2) is a hydrogen group or a methyl group.
  • R 2 in the general formula (2) is a hydrogen group (acrylic)
  • the strength of the functional resin layer 15 tends to be slightly inferior.
  • R 2 in the general formula (2) is a methyl group (methacrylic)
  • the hardness of the functional resin layer 15 tends to be slightly hard.
  • R 4 O in the general formula (2) in is preferably ethylene glycol and / or propylene glycol. This is because the viscosity of the (poly) alkylene glycol di (meth) acrylate monomer represented by the general formula (2) can be reduced and the compatibility with the photochromic agent can be further improved. More preferably, R 4 O in the general formula (2) is ethylene glycol.
  • the alkylene diol diglycidyl ether acrylate represented by the following general formula (3) (hereinafter sometimes abbreviated as general formula (3) ROGAc) is a thiourethane, episulfide, or (meth) acrylate-based thermosetting. It is a synthetic resin that is excellent in adhesion to an adhesive resin raw material.
  • alkylene diol diglycidyl ether acrylate represented by the general formula (3) is excellent in adhesion to a thiourethane-based, episulfide-based or (meth) acrylate-based thermosetting resin material cannot be determined, but the general formula (3) It is presumed that the OH group polarity of ROGAc is in close contact with the thiol group, episulfide group, and (meth) acrylate.
  • Integration of the functional resin layer 15 into the organic glass substrate 11 can be performed by a cast molding method as shown in FIG.
  • the casting molding method is a method in which a mold cavity 21 is formed in the organic glass substrate 11 and molding is performed by injecting a functional resin.
  • the integration of the functional resin layer 15 into the organic glass substrate 11 can also be performed by a general method such as a dipping method or a spray method.
  • a cast molding method is preferable. Since the mold cavity 21 is a closed system closed by the first mold 13, the second mold 17, and the taping 19 made of the organic glass substrate 11, the oxygen in the air can be blocked to prevent inhibition of curing. Because it can.
  • the cavity 21 in which the functional resin layer 15 is provided has the organic mold substrate 11 as the first mold 13 and the second mold 17 so that a certain gap is formed outside the first mold 13.
  • the peripheral gap between the first mold 13 and the second mold 17 is sealed with a taping 19 or the like.
  • the gap between the cavities 21 where the functional resin layer 15 is provided is set depending on the flow characteristics of the functional resin and the functionality required for the functional resin layer 15, but is preferably 0.2 to 3.0 mm. Since the gap between the cavities 21 is secured to such an extent that injection is easy, casting can be performed instantaneously, and the injected functional resin can be cured without flowing. This is because it is possible to suppress the occurrence of reason (parts having different refractive indexes). If the gap between the cavities 21 is less than 0.2 mm, injection may be difficult even if the resin has excellent fluidity. On the other hand, if it exceeds 3.0 mm, striae may occur due to uneven curing due to the flow of the functional resin. More preferably, the gap of the cavity 21 is 0.3 to 1.5 mm, and more preferably 0.4 to 1.0 mm.
  • FIG. 2 it is good also as a structure by which the protective resin layer 16 was provided in the surface side seeing from the organic glass base material of the functional resin layer 15.
  • FIG. 2 This is because when the hardness of the functional resin layer 15 is inferior, the functional resin layer 15 can be protected by providing the protective resin layer 16 having a high hardness.
  • a (meth) acrylate hard coat agent can be used, and a solvent-free (meth) acrylate hard coat agent commercially available from Hitachi Chemical Co., Ltd., Kyoeisha Chemical Co., Ltd. or the like can be used. it can.
  • a resin mainly composed of (poly) alkylene glycol di (meth) acrylate represented by the general formula (2) can be used, and in particular, in the general formula (2) R 2 is preferably a methyl group (methacrylic). This is because when R 2 is a methyl group (methacrylic), the hardness of the protective resin layer 16 can be increased.
  • n (the degree of polymerization of alkylene glycol) in the general formula (2) is preferably 4 or less. This is because the viscosity of the protective resin forming the protective resin layer 16 is low, the fluidity is high, and injection into the cavity 23 described later becomes easy. More preferably, n is 3 or less, and more preferably n is 2 or less.
  • the integration of the protective resin layer 16 into the functional resin layer 15 can be performed by a casting method as shown in FIG.
  • the casting molding method is performed by forming a mold cavity 23 in the functional resin layer 15 (organic glass substrate 11) and injecting a protective resin for forming the protective resin layer 16.
  • the integration of the protective resin layer 16 into the functional resin layer 15 can also be performed by a general method such as a dipping method or a spray method.
  • a cast molding method is preferable. Since the cavity 23 of the mold is a closed system closed by the first mold 13, the second mold 17, and the taping 19 made of the organic glass base material 11 in which the functional resin layer 15 is integrated, This is because oxygen can be blocked to prevent curing inhibition.
  • the gap between the cavities 23 in which the protective resin layer 16 is provided is sufficient as the gap between the gaps forming the thickness of the protective resin layer 16 sufficient to protect the functional resin layer 15 and is preferably thin, but is set according to the flow characteristics of the protective resin. Therefore, the thickness is preferably 0.1 to 0.5 mm. Since the gap between the cavities 23 is secured to such an extent that the protective resin for forming the protective resin layer 16 can be easily injected, cast molding can be performed instantaneously, and the spectacles material has striae (parts with different refractive indices). This is because the occurrence of occurrence can be suppressed. More preferably, it is 0.15 to 0.3 mm.
  • the organic glass substrate (light control optical element) on which the functional resin layer 15 (and the protective resin layer 16) is formed has a hard coating process, an antifogging process, an antireflection process, a repellent process generally performed.
  • General-purpose surface treatments such as water treatment and antistatic treatment can be appropriately performed.
  • the functional resin layer 15 may be provided with a UV absorber gradually decreasing portion.
  • the ultraviolet absorber gradually decreasing portion is configured to gradually decrease the ultraviolet absorbance on the surface due to the difference in the amount of penetration of the ultraviolet absorber on the surface side when viewed from the organic glass substrate of the functional resin layer 15.
  • the light control optical element By providing the ultraviolet absorber gradually decreasing portion in the functional resin layer 15, the light control optical element (glasses lens) exhibits a blurred color (gradation color) when irradiated with ultraviolet rays, and is functional and fashionable. It can be excellent.
  • the upper side (sky side) when using a spectacle lens reduces the amount of penetration of the UV absorber, making it easier for the photochromic agent to change to a dark color
  • the lower side (ground side) penetrates the UV absorber. Increase the amount to make it difficult for the photochromic agent to turn dark.
  • the upper side of the spectacle lens that is exposed to sunlight has a dark color and thus has an anti-glare effect
  • the lower side of the spectacle lens has a light color and thus ensures the user's field of view.
  • the ultraviolet absorber gradually decreasing portion can be formed by oscillating the light-modulating optical element in an immersion bath in which the ultraviolet absorber is dissolved, and gradually decreasing and infiltrating the ultraviolet absorber on the surface side of the functional resin layer 15.
  • a solution in which a UV absorber such as benzotriazole can be dissolved can be used.
  • the vibration immersion can be performed by, for example, vertical movement (vibration (reciprocating movement)) along the vibration immersion pattern shown in FIG.
  • the ultraviolet absorber gradually decreasing portion is a spectacle lens (photochromic member) having a gradually decreasing portion where the ultraviolet absorbance gradually decreases on the surface due to the difference in the amount of penetration of the ultraviolet absorber, and the details of the manufacturing method thereof are as follows. It is described in Japanese Patent Application Laid-Open No. 2016-212382 which is the applicant.
  • BPAc polyalkylene glycol-modified bisphenol A di (meth) acrylate
  • BPAc polyalkylene glycol-modified bisphenol A di (meth) acrylate
  • m + n 30, acrylic, polyethylene glycol
  • ROAc (poly) alkylene glycol di (meth) acrylates
  • n viscosities, (meth) acrylic types, and polyalkylene glycol types are described below.
  • ROAc1 1, 3 mPa ⁇ s (25 ° C.), methacryl, polyethylene glycol
  • 1,4-Butanediol diglycidyl ether acrylate was used for the alkylene diol diglycidyl ether acrylate represented by the general formula (3) (general formula (3) ROGAc). In Table 1, it was described as ROGAc1.
  • the photochromic agent was blended with a spiropyran photochromic agent and a spirooxazine photochromic agent (both manufactured by Yamada Chemical Co., Ltd.).
  • NeoContrast manufactured by Mitsui Chemicals, Inc., absorption peak wavelength: 580 nm was used as the specific wavelength absorber.
  • the functional resin is a mixture of general formula (1) BPAc, general formula (2) ROAc, and general formula (3) ROGAc, a photochromic agent, other additives, and, if necessary, a specific wavelength absorber, and nitrogen gas.
  • the mixture was stirred for 1 hour while adjusting the temperature to 15 ° C under an atmosphere.
  • a functional resin for forming the functional resin layer 15 was prepared by filtration through a 1 ⁇ m filter.
  • the organic glass base material 11 one obtained by molding a resin raw material prepared as described below and a cast product molded in advance were used.
  • Resin A thiourethane resin
  • Monoester of -5-[(2-benzotriazole) -3-t-butyl-4-hydroxyphenyl] propionic acid and polyethylene glycol 2.0 parts were sufficiently stirred for 1 hour in a nitrogen gas atmosphere at a liquid temperature of 15 ° C. .
  • ⁇ Resin B episulfide resin
  • Bis (2,3-epithiopropyl) disulfide 90 parts, 4,7-bis (mercaptomethyl) -3,6,9-trithia-1,11-undecanedithiol: 10 parts at 15 ° C.
  • NXT polyurea resin manufactured by Tribex Corporation (ICRX NXT)
  • the organic glass substrate 11 is molded by a cast molding method, and the mold is sealed with taping made of an adhesive tape so that the distance between the center of the lens is 1.0 mm between the convex mold and the concave mold.
  • a mold having a cavity for forming an organic glass substrate was prepared.
  • the organic glass substrate 11 is prepared by mixing the resin raw materials with the above composition and injecting them into a mold.
  • the thiourethane type and episulfide type are heated and cured at 120 ° C. for 2 hours, and the (meth) acrylate type is heated and cured at 80 ° C. for 1 hour. Was molded by.
  • cast molding of the functional resin layer 15 onto the organic glass substrate 11 is performed by forming a mold cavity 21 in the organic glass substrate 11 and molding the functional resin layer 15. Molded by injecting resin and curing.
  • the cavity 21 is a convex surface used when forming the organic glass substrate 11 as the second mold 17 so that the organic glass substrate 11 is the first mold 13 and a certain gap is formed outside the first mold 13.
  • a side mold was disposed, and a circumferential gap between the first mold 13 and the second mold 17 was formed by sealing with a taping 19.
  • casting molding of the protective resin layer 16 onto the organic glass substrate 11 (functional resin layer 15) is performed on the organic glass substrate 11 integrated with the functional resin layer 15.
  • 23 was formed, and a protective resin for forming the protective resin layer 16 was injected and cured.
  • the cavity 23 has an organic glass substrate 11 as the second mold 17 so that the organic glass substrate 11 integrated with the functional resin layer 15 is the first mold 13 and a certain gap is formed outside the first mold 13.
  • the convex side mold used in molding the material 11 (functional resin layer 15) was disposed, and the peripheral gap between the first mold 13 and the second mold 17 was sealed with a taping 19 to be formed.
  • the organic glass substrate 11 (resin lens) on which the functional resin layer 15 (and the protective resin layer 16) is molded has its concave surface and outer periphery cut and polished, and a 70 mm diameter SPH (spherical surface (D)) is -8. 0.00 light control optical element (glasses lens).
  • the UV absorber gradually decreasing portion is a vibration immersion pattern described in FIG. 3B in an immersion bath in which 5% by mass of a benzotriazole UV absorber (absorption peak wavelength: 350 nm) is dissolved in distilled water. It was performed by moving up and down (vibrating (reciprocating movement)).
  • a dimming optical element of a test example is created by a combination of the organic glass substrate 11 and the functional resin layer 15 (and the protective resin layer 16) described below, and for these, photochromic characteristics and appearance evaluation are measured, Adhesion was measured as an evaluation of strength.
  • the light control optical element was colored by irradiation with ultraviolet rays and decolored by blocking ultraviolet rays, and the spectral average transmittance according to the colored state was measured. UV irradiation is FL4.
  • BLB Toshiba Lighttech Co., Ltd., black light fluorescent lamp, UV output 0.25 W, UV radiation intensity 2.7 ⁇ W / cm 2 ) is irradiated from a position 20 cm away from the optical axis of the dimming optical element of the test piece and measured. Obtained the light control property, recoverability, and return amount from the spectral average transmittance.
  • the spectral average transmittance was determined according to the following apparatus and standard, and the average transmittance for light of 380 to 780 nm was determined.
  • the measurement position was the geometric center of the spectacle material.
  • ⁇ Device Spectrophotometer U-4100 (manufactured by Hitachi High-Tech Science Co., Ltd.) Standard: Specification and test method of transmittance of refraction correcting spectacle lens (JIS T 7333: 2005 (ISO / DIS 8980-3: 2002))
  • the light control property was evaluated as follows by measuring the spectral average transmittance immediately after the light control optical element was irradiated with ultraviolet rays for 15 minutes. A: 10% or less, O: 15% or less, less than 10%, ⁇ : 20% or less, less than 15%, x: More than 20%.
  • Recoverability was evaluated as follows by measuring the spectral average transmittance 15 minutes after UV irradiation and measuring the spectral average transmittance 2 minutes after the UV irradiation.
  • the amount of return was determined by obtaining a value (%) obtained by subtracting dimming property (%) from recoverability (%) and evaluated as follows.
  • ⁇ Lens appearance> The external appearance of the lens was confirmed by visual inspection. And the lens external appearance was evaluated as follows. A: No abnormality, ⁇ : Streaks are observed but there are no problems in use, ⁇ : Streaks and cracks are problematic in use.
  • a groove (Nyroll groove) on which a nylon thread is hung is provided on the outer peripheral surface (edge surface) of the lens corresponding to the interface between the functional substrate layer 15 and the organic glass substrate 11, and a minus driver is inserted into the Nyroll groove.
  • the adhesiveness was evaluated by forcibly peeling. And adhesiveness was evaluated as follows. ⁇ : No peeling (even if the functional base material layer 15 or the organic glass base material 11 has a defect, no peeling at the interface is seen), ⁇ : the functional base material layer 15 and the organic glass base Peeling is seen at the interface with the material 11 but no gap is confirmed. X: Peeling is seen at the interface between the functional base material layer 15 and the organic glass base material 11, and the occurrence of the gap can be confirmed.
  • Test Example 1-1 to Test Example 1-22 Test Example 2-1 to Test Example 2-22, Test Example 3-1 to Test Example 3-22, Test Example 4-1 to Test Example 4-22 are examples The best examples are Test Example 1-7 and Test Example 1-8.
  • Test Examples 1-23, 2-23, 3-23, and 4-23 are comparative examples.
  • Test Examples 1-1 to 1-23 are test examples in which resin A (thiourethane resin) is used for the organic glass substrate. Among these, in Test Example 1-1 to Test Example 1-14 and Test Example 1-21 to Test Example 1-23, the functional resin layer 15 is provided but the protective resin layer 16 is not provided, and Test Examples 1-15 to In Test Example 1-20, the protective resin layer 16 is provided in addition to the functional resin layer 15. In Test Examples 1-7 and 1-8, a UV absorber gradually decreasing portion is provided and NeoContrast is contained as a functional drug. The evaluation performance results are listed in Table 2.
  • Test Examples 1-1 to 1-6 are obtained by changing the content ratio of the polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the general formula (1) in the functional resin layer.
  • the content ratio of the general formula (1) BPAc is small from Test Example 1-1 to Test Example 1-6, the recoverability (luminous transmittance) increases, the return amount increases, and the decoloring time increases. I understand that.
  • Test Examples 1-6 to 1-8 were obtained by changing the thickness of the functional resin layer. It can be seen that the dimming property (luminous transmittance) can be adjusted by changing the thickness.
  • Test Example 1-7 and Test Example 1-8 were provided with a gradually decreasing portion of the ultraviolet absorber, and exhibited blurring coloring (gradation color) when irradiated with ultraviolet rays, and were excellent in functionality and fashionability. Further, Test Example 1-7 and Test Example 1-8 also contained NeoContrast as a functional drug, and the appearance of the optical element was improved.
  • Test Example 1-3 to Test Example 1-5, Test Example 1-9 to Test Example 1-11, Test Example 1-12 to Test Example 1-14 are represented by the general formula (1) in the functional resin layer. It compares by changing the value of m + n of the polyalkylene glycol modified bisphenol A di (meth) acrylate represented.
  • Test Example 1-4 to Test Example 1-5 and Test Example 1-15 to Test Example 1-16 are polyalkylene glycol-modified bisphenol A di (meth) represented by the general formula (1) in the functional resin layer.
  • This is a comparison of the acrylate group and the methacryl group of the acrylate polymerization group. From the comparison of the recoverability (luminous transmittance) and the return amount, it can be seen that the general formula (1) BPAc, which is a slight acrylic group, is superior (faster) to the decoloring time.
  • the test body using the general formula (1) BPAc of the acrylic group for the functional resin layer was not described in the table, the hardness as the strength of the functional resin layer tended to be slightly inferior, A protective resin layer was provided.
  • Test Examples 1-15 to 1-16 and Test Examples 1-17 to 1-18 are (poly) alkylene glycol di (meth) acrylates represented by the general formula (2) in the functional resin layer. The value (and viscosity) of n was changed and compared.
  • the smaller the n (viscosity) of the general formula (2) ROAc the better the compatibility with the photochromic agent, but it did not appear as a result in the photochromic properties.
  • Test Examples 1-15 to 1-16 and Test Examples 1-19 to 1-20 are (poly) alkylene glycol di (meth) acrylates represented by the general formula (2) in the functional resin layer.
  • the methacrylic group and the acrylic group of the polymerized group are compared. No effect on the photochromic properties was observed due to the difference in the polymerization group of the general formula (2) ROAc.
  • Test Example 1-21 was one in which the alkylene diol diglycidyl ether acrylate represented by the general formula (3) was not contained. Adhesion to the organic glass substrate was slightly inferior.
  • Test Example 1-22 did not contain (poly) alkylene glycol di (meth) acrylate represented by general formula (2) and alkylene diol diglycidyl ether acrylate represented by general formula (3) It is.
  • the dispersibility of the photochromic agent was slightly inferior, and the light control property and the lens appearance were slightly inferior. Further, the adhesion to the organic glass substrate was slightly inferior.
  • Test Example 1-23 does not contain the polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the general formula (1). There was no interaction with the general formula (1) BPAc, and the recoverability and return amount were not satisfied.
  • FIG. 4 is a graph comparing the performance of the example (Test Example 1-8) and the comparative example (Test Example 1-23). After the ultraviolet ray was irradiated for 15 minutes, it was blocked and irradiated (from 0 to 15 minutes). It is the figure which measured the visible light transmittance
  • Test Examples 2-1 to 2-23 are test examples in which resin B (episulfide resin) is used for the organic glass substrate. The evaluation performance results are listed in Table 3.
  • Test Examples 3-1 to 3-23 are test examples in which resin C ((meth) acrylic resin) is used for the organic glass substrate. The evaluation performance results are listed in Table 4.
  • Test Examples 4-1 to 4-23 are test examples in which resin D (polyurea resin) is used for the organic glass substrate. The evaluation performance results are listed in Table 5.
  • the functional resin layer of the embodiment is an organic glass. It was confirmed that the substrate can be used even if it is an episulfide resin, a (meth) acrylic resin, or a polyurea resin.
  • SYMBOLS 11 Organic glass base material, 13 ... 1st mold, 15 ... Functional resin layer, 16 ... Protective resin layer, 17 ... 2nd mold, 19 ... Taping, 21, 23 ... Cavity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Eyeglasses (AREA)

Abstract

Provided is a light-modulating optical element that enables shortening of decolorization time through an interaction with a synthetic resin. This light-modulating optical element is used as an eyeglass material in which a functional resin layer 15 is integrated in one or both sides of an organic glass substrate 11 made of a resin molding, wherein the functional resin layer 15 contains a photochromic agent and a polyalkylene glycol-modified bisphenol A di(meth)acrylate represented by general formula (1). Transition energy in the photochromic agent that has transitioned as a result of irradiation with light (ultraviolet) is easily converted into thermal energy and received by the polyalkylene glycol-modified bisphenol A di(meth)acrylate represented by general formula (1) after shutting off the irradiation, whereby it becomes possible to shorten decolorization time.

Description

調光光学要素Light control optical element
 本発明は、フォトクロミック剤を含有する調光光学要素に係る発明である。 The present invention relates to a light control optical element containing a photochromic agent.
 フォトクロミック剤は、光(紫外線)を吸収することによってフォトクロミック剤の色が変化し、光の吸収がなくなると変化した色から元に戻るという可逆的な色変化をする添加剤である。特許文献1には、フォトクロミック剤を使用した合成樹脂製調光レンズの製造方法が記載され、耐候性に優れ、レンズ全体において均一な調光作用を有する合成樹脂製調光レンズが記載されている。 The photochromic agent is an additive that undergoes a reversible color change in which the color of the photochromic agent changes by absorbing light (ultraviolet light) and returns to the original color when the light absorption stops. Patent Document 1 describes a method for producing a synthetic resin photochromic lens using a photochromic agent, and describes a synthetic resin photochromic lens that is excellent in weather resistance and has a uniform dimming effect over the entire lens. .
 フォトクロミック剤が光学要素に添加されることによって、例えば、眼鏡素材では、紫外線の強い屋外などで濃色に変化して使用者に防眩効果をもたらし、紫外線の弱い室内などで透明に近い色に変化することによって使用者にクリヤーな視界をもたらし、調光機能を発揮するものとなる。 By adding a photochromic agent to the optical element, for example, in the case of eyeglass materials, it changes to a dark color when outdoors with strong ultraviolet rays, etc., resulting in an anti-glare effect for the user, and close to transparent in indoors where UV rays are weak. By changing, a clear view is given to the user and the light control function is exhibited.
 調光機能を有する光学要素(調光光学要素)は、光の吸収がなくなるとその色が元に戻るという可逆的な色変化をするが、光の吸収がなくなってから色がほぼ元の色に戻るまでの時間(消色時間)に約15分程度要するものであった。特許文献2に記載のフォトクロミックレンズでは、フォトクロミック剤をテトラヒドロフランに溶解させることによって合成樹脂中に均一に分散させて、消色時間を低減可能なものにしている。 An optical element having a dimming function (a dimming optical element) undergoes a reversible color change in which the color returns to its original state when light absorption stops, but the color is almost the original color after the light absorption stops. It took about 15 minutes to return to the time (decoloration time). In the photochromic lens described in Patent Document 2, a photochromic agent is dissolved in tetrahydrofuran to be uniformly dispersed in a synthetic resin so that the decoloring time can be reduced.
 また、特許文献3に記載の樹脂レンズの製造方法では、基材レンズの片面又は両面に機能性樹脂層を成形するキャビティを構成し、基材レンズの機能性樹脂層の成形面に熱可塑性エラストマーの接着剤層を備えて、基材レンズと機能性樹脂層とを一体化する製造方法である。この製造方法で製造された樹脂レンズは、機能性樹脂層がフォトクロミック剤などを含有することによって、フォトクロミック機能を発揮可能なものとしている。 Further, in the resin lens manufacturing method described in Patent Document 3, a cavity for molding a functional resin layer is formed on one side or both sides of a base lens, and a thermoplastic elastomer is formed on the molding surface of the functional resin layer of the base lens. This is a manufacturing method in which a base lens and a functional resin layer are integrated. The resin lens manufactured by this manufacturing method can exhibit a photochromic function when the functional resin layer contains a photochromic agent or the like.
特開平8-216271号公報JP-A-8-216271 特開2014-32273号公報JP 2014-32273 A 特開2014-156067号公報Japanese Patent Laid-Open No. 2014-156067
 調光光学要素の消色時間が長いと、例えば、眼鏡素材の場合、使用者が屋外から屋内に移動した際に、調光光学要素は、消色時間まで濃色を呈し、使用者の視界を妨げると共に、室内において色付き眼鏡を着用することに対して外観上違和感が生じる。このため、調光光学要素は、消色時間が僅かでも短い方が好ましい。特許文献2に記載のフォトクロミックレンズでは、フォトクロミック剤を合成樹脂中に均一に分散させることによって、消色時間を低減可能なものであるものの、分散状態の改善により、フォトクロミック剤の本来の性能を引き出したものであり、合成樹脂との相互作用についてまで検討されたものではなかった。 If the decoloring time of the dimming optical element is long, for example, in the case of eyeglass materials, when the user moves from the outside to the indoor, the dimming optical element exhibits a dark color until the decoloring time. And the appearance is uncomfortable with wearing colored glasses indoors. For this reason, it is preferable that the light control optical element has a short decoloring time. The photochromic lens described in Patent Document 2 can reduce the decoloring time by uniformly dispersing the photochromic agent in the synthetic resin. However, by improving the dispersion state, the original performance of the photochromic agent is extracted. However, the interaction with the synthetic resin was not studied.
 本発明は、上記の点に鑑みてなされたもので、合成樹脂との相互作用によって、消色時間の短縮化が可能な調光光学要素を提供することを目的とする。 The present invention has been made in view of the above points, and an object thereof is to provide a light control optical element capable of shortening the decoloring time by interaction with a synthetic resin.
 本発明の調光光学要素は、樹脂成形体である有機ガラス基材の片面又は両面に、機能性樹脂層が一体化された調光光学要素において、該機能性樹脂層は、フォトクロミック剤と、下記一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレートと、を含有することを特徴とするものである。 The light control optical element of the present invention is a light control optical element in which a functional resin layer is integrated on one side or both sides of an organic glass base material that is a resin molded body, the functional resin layer includes a photochromic agent, It contains polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 本願発明者らは、フォトクロミック剤が上記一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレートを含有する樹脂に分散されることによって、フォトクロミック剤の光の吸収がなくなってから色がほぼ元に戻るまでの時間(消色時間)が短縮されることを発見した。本発明の調光光学要素によれば、合成樹脂との相互作用によって、消色時間の短縮化が可能な調光光学要素を提供することができる。 The inventors of the present application disperse the photochromic agent in the resin containing the polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the general formula (1), thereby eliminating the light absorption of the photochromic agent. It has been found that the time until the color almost returns to the original time (decoloration time) is shortened. According to the light control optical element of the present invention, it is possible to provide a light control optical element capable of shortening the decoloring time by interaction with the synthetic resin.
 ここで、上記調光光学要素において、前記機能性樹脂層は、下記一般式(2)で表される(ポリ)アルキレングリコールジ(メタ)アクリレートを含有するものとすることができる。 Here, in the light modulation optical element, the functional resin layer may contain (poly) alkylene glycol di (meth) acrylate represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 これによれば、上記一般式(2)で表される(ポリ)アルキレングリコールジ(メタ)アクリレートがフォトクロミック剤の分散性に優れるため、調光光学要素は、均一な調光機能を得ることができる。 According to this, since the (poly) alkylene glycol di (meth) acrylate represented by the general formula (2) is excellent in dispersibility of the photochromic agent, the light control optical element can obtain a uniform light control function. it can.
 また、上記調光光学要素において、前記有機ガラス基材は、チオウレタン系、エピスルフィド系又は(メタ)アクリレート系の熱硬化性樹脂原料で成形され、前記機能性樹脂層は、下記一般式(3)で表されるアルキレンジオールジグリシジルエーテルアクリレートを含有するものとすることができる。 In the light control optical element, the organic glass substrate is formed of a thiourethane-based, episulfide-based, or (meth) acrylate-based thermosetting resin material, and the functional resin layer has the following general formula (3 ) Represented by the formula (1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 これによれば、チオウレタン系、エピスルフィド系又は(メタ)アクリレート系の熱硬化性樹脂原料は、高屈折率材料であるため、調光光学要素の厚みを薄くすることができる。また、上記一般式(3)で表されるアルキレンジオールジグリシジルエーテルアクリレートは、チオウレタン系、エピスルフィド系又は(メタ)アクリレート系の熱硬化性樹脂原料への密着性に優れるため、機能性樹脂層が有機ガラス基材への密着性に優れたものとすることができる。 According to this, since the thiourethane-based, episulfide-based or (meth) acrylate-based thermosetting resin material is a high refractive index material, the thickness of the light control optical element can be reduced. In addition, the alkylene diol diglycidyl ether acrylate represented by the general formula (3) is excellent in adhesion to thiourethane, episulfide, or (meth) acrylate thermosetting resin raw materials, and therefore a functional resin layer. Can be excellent in adhesion to the organic glass substrate.
 また、上記調光光学要素において、前記機能性樹脂層の厚みが0.2~3.0mmであるものとすることができる。これによれば、機能性樹脂層を成形するキャビティの厚みが確保されているため注型成形を瞬時に行うことができ、かつ、注入された機能性樹脂層に硬化ムラが発生することなく硬化することができるため、調光光学要素は脈理(屈折率を異にした部分が生じること。)の発生を抑制することができる。 In the light control optical element, the functional resin layer may have a thickness of 0.2 to 3.0 mm. According to this, since the thickness of the cavity for molding the functional resin layer is secured, cast molding can be performed instantaneously, and the injected functional resin layer is cured without uneven curing. Therefore, the dimming optical element can suppress the occurrence of striae (parts having different refractive indexes are generated).
 本発明の調光光学要素によれば、フォトクロミック剤が上記一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレートを含有する樹脂に分散されることによって、消色時間の短縮化が可能な調光光学要素を提供することができる。 According to the light control optical element of the present invention, the photochromic agent is dispersed in the resin containing the polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the general formula (1), thereby reducing the decoloring time. A dimming optical element that can be shortened can be provided.
本発明の調光光学要素の製造工程を示す図である。It is a figure which shows the manufacturing process of the light control optical element of this invention. 保護樹脂層を設ける製造工程を示す図である。It is a figure which shows the manufacturing process which provides a protective resin layer. (a)は、紫外線吸収剤漸減部を設ける振動浸漬パターンのぼかし幅の小さい上下動を示す図、(b)は、紫外線吸収剤漸減部を設ける振動浸漬パターンのぼかし幅の大きい上下動を示す図である。(A) is a figure which shows the up-and-down movement with a small blur width of the vibration immersion pattern which provides an ultraviolet absorber taper part, (b) shows the up-and-down movement with a large blur width of the vibration soak pattern which provides an ultraviolet absorber taper part. FIG. 実施例と比較例の性能を対比した図である。It is the figure which contrasted the performance of the Example and the comparative example.
 以下、本発明の一実施形態について説明する。実施形態の調光光学要素は、樹脂成形体である有機ガラス基材11の片面又は両面に、機能性樹脂層15が一体化された調光光学要素において、機能性樹脂層15は、フォトクロミック剤と、下記一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレート(以下、一般式(1)BPAcと略すことがある。)と、を含有することを特徴とするものである。なお、(メタ)アクリレートとは、アクリレートとメタクリレートとの総称である。 Hereinafter, an embodiment of the present invention will be described. The light control optical element of the embodiment is a light control optical element in which a functional resin layer 15 is integrated on one or both sides of an organic glass substrate 11 that is a resin molded body. The functional resin layer 15 is a photochromic agent. And a polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the following general formula (1) (hereinafter sometimes abbreviated as general formula (1) BPAc). It is. In addition, (meth) acrylate is a general term for acrylate and methacrylate.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 実施形態の調光光学要素では、図1に示すように、眼鏡レンズとしての有機ガラス基材11の表面(凸面)に機能性樹脂層15が注型成形により一体化されたものを例に採り説明する。もちろん、本発明は、眼鏡レンズの用途に限定されるものではなく、望遠鏡レンズ、建築又は車両用途の窓ガラスなどのあらゆる光学要素に対して適用することが可能なものである。また、本発明の機能性樹脂層15は、有機ガラス基材11の表面(凸面)への用途に限定されるものではなく、有機ガラス基材11の裏面(凹面)又は両面(凸面及び凹面)に対しても適用することが可能なものである。 In the light control optical element of the embodiment, as shown in FIG. 1, an example in which a functional resin layer 15 is integrated by cast molding on the surface (convex surface) of an organic glass substrate 11 as a spectacle lens is taken. explain. Of course, the present invention is not limited to the use of spectacle lenses, but can be applied to any optical element such as telescope lenses, window glass for architectural or vehicle use. Moreover, the functional resin layer 15 of this invention is not limited to the use to the surface (convex surface) of the organic glass base material 11, The back surface (concave surface) or both surfaces (convex surface and concave surface) of the organic glass base material 11 It is possible to apply to.
 有機ガラス基材11とは、レンズや窓ガラスなどの光学要素の基材として使用されるものであり、実施形態の眼鏡素材では、無機ガラスより軽量であることから有機ガラス(プラスチック)製であるものとする。 The organic glass base material 11 is used as a base material for optical elements such as lenses and window glasses. The eyeglass material of the embodiment is made of organic glass (plastic) because it is lighter than inorganic glass. Shall.
 有機ガラス基材11としては、ポリカーボネート(PC)系、ポリウレタン系、ポリウレア系、脂肪族アリルカーボネート系、芳香族アリルカーボネート系、ポリチオウレタン系、エピスルフィド系、(メタ)アクリレート系、透明ポリアミド(透明ナイロン)系、ノルボルネン系、ポリイミド系、ポリオレフィン系などの合成樹脂を使用することができる。中でも、チオウレタン系、エピスルフィド系又は(メタ)アクリレート系の合成樹脂が、高屈折率であるため、より好んで使用することができる。 As the organic glass substrate 11, polycarbonate (PC), polyurethane, polyurea, aliphatic allyl carbonate, aromatic allyl carbonate, polythiourethane, episulfide, (meth) acrylate, transparent polyamide (transparent Nylon), norbornene, polyimide, polyolefin, and other synthetic resins can be used. Among them, a thiourethane, episulfide, or (meth) acrylate synthetic resin has a high refractive index and can be used more favorably.
 なお、チオウレタン系樹脂とは、ポリウレタン結合(-NHCOO-)の酸素原子の少なくとも1個が硫黄原子に入れ替わった結合(-NHCOS-、-NHCSO-、-NHCSS-)を有するポリマー(樹脂)を意味する。該樹脂材料としては、ポリイソシアネート、ポリイソチオシアネート、ポリイソチオシアネートチオイソシアネートより選ばれる1種または2種以上のイソシアネート成分と、ポリチオールおよび適宜ポリオールより選ばれる1種または2種以上の公知の活性水素化合物成分とを組み合わせた重合性成分を好適に使用できる。ここでポリイソシアネートとしては、脂肪族系、脂環式系、芳香族系及びそれらの誘導体さらにはそれらの炭素鎖の一部に硫黄を導入したスルフィド・ポリスルフィド・チオカルボニル(チオケトン)誘導体を母体化合物とするものを挙げることができる。これらのうちで、耐黄変性の見地から、脂肪族系又は脂環式系のポリイソシアネートが望ましい。また、ポリチオールとしては、同様に脂肪族系、脂環式系、芳香族系及びそれらの誘導体さらにはそれらの炭素鎖の一部に硫黄を導入したスルフィド・ポリスルフィド・ポリチオエーテルを母体化合物とするものを挙げることができる。これらのうちで、耐黄変性の見地から、脂肪族系又は脂環式系のポリチオールが望ましい。 The thiourethane resin is a polymer (resin) having a bond (-NHCOS-, -NHCSO-, -NHCSS-) in which at least one oxygen atom of a polyurethane bond (-NHCOO-) is replaced with a sulfur atom. means. Examples of the resin material include one or more isocyanate components selected from polyisocyanate, polyisothiocyanate, polyisothiocyanate thioisocyanate, and one or more known active hydrogens selected from polythiol and a suitable polyol. A polymerizable component in combination with a compound component can be preferably used. Here, as the polyisocyanate, aliphatic, alicyclic, aromatic, and derivatives thereof, as well as sulfide, polysulfide, and thiocarbonyl (thioketone) derivatives in which sulfur is introduced into a part of their carbon chains are parent compounds. Can be mentioned. Of these, aliphatic or alicyclic polyisocyanates are desirable from the standpoint of yellowing resistance. Similarly, polythiols include aliphatic, alicyclic, aromatic, and derivatives thereof, and sulfides, polysulfides, and polythioethers in which sulfur is introduced into a part of their carbon chains as a base compound. Can be mentioned. Of these, aliphatic or alicyclic polythiols are desirable from the standpoint of yellowing resistance.
 エピスルフィド系樹脂とは、ジチオエポキシ化合物と硬化剤と、さらには、その他の重合性化合物とを反応させて得られるポリマー(樹脂)を意味し、直鎖アルキルスルフィド型ジチオエポキシ化合物を硬化させて得られる公知のものを使用できる。硬化剤としては、通常のエポキシ樹脂用硬化剤であるアミン類、有機酸類、又は無機酸類を使用することができる。 The episulfide resin means a polymer (resin) obtained by reacting a dithioepoxy compound, a curing agent, and another polymerizable compound, and is obtained by curing a linear alkyl sulfide type dithioepoxy compound. The well-known thing used can be used. As the curing agent, amines, organic acids, or inorganic acids that are ordinary epoxy resin curing agents can be used.
 具体的な有機ガラス基材11としては、MR-6,MR-8,MR-20,MR-60,MR-95(三井化学株式会社製チオウレタン系樹脂、屈折率:1.60)、MR-7,MR-10(三井化学株式会社製チオウレタン系樹脂、屈折率:1.67)、MR-174(三井化学株式会社製エピスルフィド系樹脂、屈折率:1.74)、NK-11P,LS106S,LS420(日本清水産業株式会社製(メタ)アクリレート系樹脂、屈折率:1.56)、NXT(トライベックス社(ICRX NXT社)製ポリウレア系樹脂、屈折率:1.53)などを好適に使用することができる。 Specific examples of the organic glass substrate 11 include MR-6, MR-8, MR-20, MR-60, MR-95 (Mitsui Chemicals, thiourethane resin, refractive index: 1.60), MR -7, MR-10 (Mitsui Chemicals Co., Ltd. thiourethane resin, refractive index: 1.67), MR-174 (Mitsui Chemicals, Inc. episulfide resin, refractive index: 1.74), NK-11P, LS106S, LS420 (Nippon Shimizu Sangyo Co., Ltd. (meth) acrylate resin, refractive index: 1.56), NXT (Tribex Corporation (ICRX NXT Corporation) polyurea resin, refractive index: 1.53) and the like are suitable. Can be used for
 有機ガラス基材11には、詳しくは後で述べる、有機ガラスの樹脂劣化を防止する劣化防止剤、紫外線を吸収する紫外線吸収剤、レンズ形状を成形する型枠からの離型性を向上させる内部離型剤、有機ガラスを硬化させる硬化剤を、有機ガラスの種類に応じて適したものを添加することができる。 The organic glass substrate 11 has a deterioration preventing agent for preventing resin deterioration of the organic glass, an ultraviolet absorber that absorbs ultraviolet rays, and an interior that improves releasability from the mold for molding the lens shape, which will be described in detail later. A mold release agent or a curing agent for curing the organic glass can be added according to the type of the organic glass.
 有機ガラス基材11の成形は、研磨法、注型成形法などの一般的な成形方法を使用することができる。研磨法は、有機ガラス基材11を成形する合成樹脂を適した条件によりブロック状の樹脂に成形させた後に、ブロック状の樹脂を求めるレンズ設計に合わせて研磨する方法である。注型成形法は、凹凸レンズを例に採ると、凹面側モールドと凸面側モールドとを必要とする間隔をおいて、モールドの周面をテーピングやガスケットを用いてシールしキャビティを形成し、キャビティに有機ガラス基材11を成形する合成樹脂を注入・硬化させ、必要に応じて、有機ガラス基材11を研磨する方法である。 The organic glass substrate 11 can be formed using a general forming method such as a polishing method or a casting method. The polishing method is a method in which a synthetic resin for forming the organic glass substrate 11 is molded into a block-like resin under suitable conditions, and then polished according to the lens design for obtaining the block-like resin. In the casting molding method, taking an uneven lens as an example, a cavity is formed by sealing the peripheral surface of the mold with taping or a gasket at an interval that requires a concave mold and a convex mold. In this method, a synthetic resin for molding the organic glass substrate 11 is injected and cured, and the organic glass substrate 11 is polished as necessary.
 次に機能性樹脂層15について述べる。機能性樹脂層15は、有機ガラス基材11の片面又は両面に一体化される層であり、有機ガラス基材11と比して厚みが薄い層である。機能性樹脂層15は、フォトクロミック剤と、一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレートとを含有し、必要により、一般式(2)で表される(ポリ)アルキレングリコールジ(メタ)アクリレート、一般式(3)で表されるアルキレンジオールジグリシジルエーテルアクリレート、を含有するものである。機能性樹脂層15を成形する樹脂には、劣化防止剤、紫外線吸収剤、特定波長吸収剤、内部離型剤、硬化剤、分子量調整剤などを、樹脂の種類に応じて適したものを添加することができる。なお、フォトクロミック剤、紫外線吸収剤及び特定波長吸収剤は高価なものである。このため、有機ガラス基材11と比して厚みの薄い機能性樹脂層15に、フォトクロミック剤などが含有されることにより、フォトクロミック剤などの含有量を減らすことが可能となり、調光光学要素は製造コストを抑えることができる。 Next, the functional resin layer 15 will be described. The functional resin layer 15 is a layer that is integrated on one or both sides of the organic glass substrate 11, and is a layer that is thinner than the organic glass substrate 11. The functional resin layer 15 contains a photochromic agent and a polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the general formula (1) and, if necessary, represented by the general formula (2) (poly ) Alkylene glycol di (meth) acrylate, alkylene diol diglycidyl ether acrylate represented by the general formula (3). For the resin that forms the functional resin layer 15, a deterioration preventing agent, an ultraviolet absorber, a specific wavelength absorber, an internal mold release agent, a curing agent, a molecular weight adjusting agent, and the like are added depending on the type of resin. can do. Photochromic agents, ultraviolet absorbers and specific wavelength absorbers are expensive. For this reason, by containing a photochromic agent or the like in the functional resin layer 15 having a thickness smaller than that of the organic glass substrate 11, the content of the photochromic agent or the like can be reduced. Manufacturing cost can be reduced.
 フォトクロミック剤とは、フォトクロミズムを示す化合物のことであり、光(紫外線)を吸収することにより、分子量を変えることなく、構造変化(異性化)を起こし、色変化(異なる吸収スペクトルを示す)をする添加剤である。実施形態において、好ましいフォトクロミック剤は、光を吸収することによってフォトクロミック剤の色が無色(または淡色)から青、紫、赤紫、黒などの有色に変化し、光の吸収がなくなると変化した色から元の無色(または淡色)に戻るという可逆的な色変化をするもの(T型フォトクロミック剤)である。このようなフォトクロミック剤として、アゾベンゼン系フォトクロミック剤、スピロピラン系フォトクロミック剤、ナフトピラン系フォトクロミック剤、スピロオキサジン系フォトクロミック剤、クロメン系フォトクロミック剤、ヘキサアリールビスイミダゾール系フォトクロミック剤などを使用することができる。これらの中でも、スピロピラン系フォトクロミック剤、ナフトピラン系フォトクロミック剤、スピロオキサジン系フォトクロミック剤、クロメン系フォトクロミック剤が、光を吸収することによって有色に変化した際の色が濃色となるため、より好んで使用することができる。なお、フォトクロミック剤は、単一のフォトクロミック剤のみを機能性樹脂層15に含有させても、本発明の効果を奏することができるが、可視光域の光の透過率を均一に下げるために複数種のフォトクロミック剤を混合して使用することが好ましい。 A photochromic agent is a compound that exhibits photochromism. By absorbing light (ultraviolet rays), it undergoes a structural change (isomerization) and a color change (shows a different absorption spectrum) without changing the molecular weight. It is an additive. In an embodiment, a preferred photochromic agent is a color that changes its color from colorless (or light) to blue, purple, magenta, black, etc. by absorbing light, and changes its color when light absorption stops. It has a reversible color change (T-type photochromic agent) that returns to its original colorless (or light color). As such a photochromic agent, an azobenzene photochromic agent, a spiropyran photochromic agent, a naphthopyran photochromic agent, a spirooxazine photochromic agent, a chromene photochromic agent, a hexaarylbisimidazole photochromic agent, or the like can be used. Among these, spiropyran-based photochromic agents, naphthopyran-based photochromic agents, spirooxazine-based photochromic agents, and chromene-based photochromic agents are more preferred because they become darker when they change color by absorbing light. can do. In addition, even if it contains only a single photochromic agent in the functional resin layer 15, the effect of this invention can be show | played, but in order to reduce the transmittance | permeability of the light of a visible light region uniformly, a photochromic agent has two or more. It is preferable to use a mixture of seed photochromic agents.
 劣化防止剤とは、有機ガラスの樹脂が分解・劣化し易い280~320nmの光を吸収しつつ、有機ガラスの樹脂が光や熱によって分解・劣化する際に生じるアルキルラジカル(R・:Rはアルキル鎖)やパーオキシラジカル(ROO・)、過酸化物(ROOH)を捕捉または分解することで、樹脂の劣化が加速度的に進行するのを抑制するものである。劣化防止剤としては、ベンゾフェノン系、ジフェニルアクリレート系、立体障害アミン系、サリチル酸エステル系、ベンゾトリアゾール系、ヒドロキシベンゾエート系、シアノアクリレート系、ヒドロキシフェニルトリアジン系等を挙げることができる。劣化防止剤は、有機ガラスの種類に応じて適したものを添加することができる。 The deterioration preventing agent is an alkyl radical (R ·: R is generated when the organic glass resin is decomposed or deteriorated by light or heat while absorbing light of 280 to 320 nm, which is easily decomposed or deteriorated by the organic glass resin. By capturing or decomposing alkyl chains), peroxy radicals (ROO.), And peroxides (ROOH), the deterioration of the resin is prevented from proceeding at an accelerated rate. Examples of the deterioration inhibitor include benzophenone, diphenyl acrylate, sterically hindered amine, salicylic acid ester, benzotriazole, hydroxybenzoate, cyanoacrylate, hydroxyphenyl triazine, and the like. A suitable deterioration inhibitor can be added depending on the type of organic glass.
 紫外線吸収剤とは、紫外線を吸収する添加剤であり、眼球保護のために調光光学要素に添加される。紫外線は、眼に入ると白内障や黄斑変性症を引き起こすおそれがあるからである。なお、紫外線吸収剤の吸収波長域によっては劣化防止剤としても機能するものである。紫外線吸収剤としては、ベンゾフェノン系、ジフェニルアクリレート系、立体障害アミン系、サリチル酸エステル系、ベンゾトリアゾール系、ヒドロキシベンゾエート系、シアノアクリレート系、ヒドロキシフェニルトリアジン系等を挙げることができる。紫外線吸収剤は、有機ガラスの種類に応じて適したものを添加することができる。 The ultraviolet absorber is an additive that absorbs ultraviolet rays and is added to the light control optical element for protecting the eyeball. This is because ultraviolet rays may cause cataracts and macular degeneration when entering the eyes. Depending on the absorption wavelength range of the ultraviolet absorber, it also functions as a deterioration preventing agent. Examples of the ultraviolet absorber include benzophenone series, diphenyl acrylate series, sterically hindered amine series, salicylic acid ester series, benzotriazole series, hydroxybenzoate series, cyanoacrylate series, and hydroxyphenyl triazine series. A suitable ultraviolet absorber can be added according to the type of organic glass.
 特定波長吸収剤とは、特定の波長の光を吸収する添加剤であり、例えば、565~605nmの間(特に580nm)に主吸収ピークを有する特定波長吸収剤として、NeoContrast(三井化学株式会社製、吸収ピーク波長:580nm)がある。NeoContrastを使用することによって、光学要素は、選択的にまぶしい光をカットする機能を持ち、見え方を改善することができるものとなる。なお、NeoContrastの詳細は、日本国特許第5778109号及び米国特許第7506977号に記載されている。特定波長吸収剤としては、ベンゾフェノン系、ジフェニルアクリレート系、立体障害アミン系、サリチル酸エステル系、ベンゾトリアゾール系、ヒドロキシベンゾエート系、シアノアクリレート系、ヒドロキシフェニルトリアジン系、ポルフィリン系等を挙げることができる。 The specific wavelength absorber is an additive that absorbs light of a specific wavelength. For example, as a specific wavelength absorber having a main absorption peak between 565 and 605 nm (especially 580 nm), NeoContrast (manufactured by Mitsui Chemicals, Inc.). Absorption peak wavelength: 580 nm). By using NeoContrast, the optical element has a function of selectively cutting dazzling light and can improve the appearance. Details of NeoContrast are described in Japanese Patent No. 5778109 and US Pat. No. 7,506,777. Specific wavelength absorbers include benzophenone, diphenyl acrylate, sterically hindered amine, salicylic acid ester, benzotriazole, hydroxybenzoate, cyanoacrylate, hydroxyphenyl triazine, porphyrin, and the like.
 内部離型剤とは、成形型を用いて、有機ガラスから有機ガラス基材11を成形した後の脱型の際に、成形型からの抜けを良くするために加える添加剤であり、内部離型剤として有機ガラスの材料に適したものを使用することができる。 The internal mold release agent is an additive that is added to improve the release from the mold during mold removal after the organic glass substrate 11 is molded from the organic glass using the mold. A mold suitable for the organic glass material can be used.
 硬化剤とは、有機ガラス基材11を成形する有機ガラスを硬化(重合)させる添加剤であり、スズ系の触媒、アミン系の触媒、過酸化物系の重合開始剤など、有機ガラスの材料に適したものを使用することができる。 The curing agent is an additive that cures (polymerizes) the organic glass that forms the organic glass substrate 11, and includes organic glass materials such as a tin-based catalyst, an amine-based catalyst, and a peroxide-based polymerization initiator. The one suitable for can be used.
 下記一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレートは、フォトクロミック剤の消色時間の短縮化を可能とする合成樹脂である。 The polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the following general formula (1) is a synthetic resin that can shorten the decoloring time of the photochromic agent.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレートがフォトクロミック剤の消色時間を短縮可能とする理由は、断定できないが、光(紫外線)によって遷移したフォトクロミック剤の遷移エネルギーを、一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレートが、熱エネルギーに変換して受け取り易いためと推定される。 The reason why the polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the general formula (1) can shorten the decoloring time of the photochromic agent cannot be determined, but the transition of the photochromic agent transitioned by light (ultraviolet rays) It is estimated that the polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the general formula (1) is easily converted into heat energy and received.
 一般式(1)中のm+n(mはアルキレングリコールの重合度、nはアルキレングリコールの重合度)は、1以上50未満であるものが好ましい。この範囲にある一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレートは、フォトクロミック剤の消色時間を短縮可能とし、機能性樹脂層15の強度が保たれるからである。式中のm+nが、1未満の場合には、フォトクロミック剤の消色時間の短縮効果が不十分となるおそれがあり、一方、50を超えると、一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレートの親水部であるポリアルキレングリコールが長く、水を含みやすいため、機能性樹脂層15の強度を保つことができないおそれがある。より好ましくは、式中のm+nは10以上40未満であり、さらに好ましくは、式中のm+nは20以上35未満である。 In the general formula (1), m + n (m is the degree of polymerization of alkylene glycol and n is the degree of polymerization of alkylene glycol) is preferably 1 or more and less than 50. The polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the general formula (1) within this range can shorten the decoloring time of the photochromic agent, and the strength of the functional resin layer 15 is maintained. is there. If m + n in the formula is less than 1, the effect of shortening the decoloring time of the photochromic agent may be insufficient. On the other hand, if it exceeds 50, the polyalkylene glycol represented by the general formula (1) Since the polyalkylene glycol which is a hydrophilic part of the modified bisphenol A di (meth) acrylate is long and easily contains water, the strength of the functional resin layer 15 may not be maintained. More preferably, m + n in the formula is 10 or more and less than 40, and even more preferably, m + n in the formula is 20 or more and less than 35.
 なお、一般式(1)中のR1は、水素基又はメチル基である。一般式(1)中のR1が水素基(アクリル)である場合には、フォトクロミックの消色時間がやや早くなるが、機能性樹脂層15の強度として硬度がやや劣る傾向にある。他方、一般式(1)中のR1がメチル基(メタクリル)である場合には、フォトクロミックの消色時間がやや長くなるが、機能性樹脂層15の強度として硬度がやや硬くなる傾向にある。 In addition, R < 1 > in General formula (1) is a hydrogen group or a methyl group. When R 1 in the general formula (1) is a hydrogen group (acrylic), the photochromic decoloring time is slightly faster, but the hardness of the functional resin layer 15 tends to be slightly inferior. On the other hand, when R 1 in the general formula (1) is a methyl group (methacrylic), the photochromic decoloring time is slightly longer, but the hardness of the functional resin layer 15 tends to be slightly harder. .
 また、一般式(1)中のR3Oは、エチレングリコール及び/又はプロピレングリコールであることが好ましい。一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレートのモノマーでの粘度を低くすることができ、機能性樹脂層15を成形する樹脂の取扱性が優れるものとすることができるためである。より好ましくは、一般式(1)中のR3Oは、エチレングリコールである。 Moreover, it is preferable that R < 3 > O in General formula (1) is ethylene glycol and / or propylene glycol. The viscosity of the polyalkylene glycol-modified bisphenol A di (meth) acrylate monomer represented by the general formula (1) can be lowered, and the handling property of the resin for molding the functional resin layer 15 should be excellent. It is because it can do. More preferably, R 3 O in the general formula (1) is ethylene glycol.
 下記一般式(2)で表される(ポリ)アルキレングリコールジ(メタ)アクリレート(以下、一般式(2)ROAcと略すことがある。)とは、フォトクロミック剤の分散性に優れる合成樹脂である。 The (poly) alkylene glycol di (meth) acrylate represented by the following general formula (2) (hereinafter sometimes abbreviated as general formula (2) ROAc) is a synthetic resin excellent in dispersibility of the photochromic agent. .
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(2)で表される(ポリ)アルキレングリコールジ(メタ)アクリレートが、フォトクロミック剤の分散性に優れる理由は、断定できないが、一般式(2)で表される(ポリ)アルキレングリコールジ(メタ)アクリレートのモノマーでの粘度が低く、フォトクロミック剤との相溶性に優れるためと推定される。また、一般式(2)で表される(ポリ)アルキレングリコールジ(メタ)アクリレートは、揮発成分でなく他の合成樹脂と共重合する成分であるため、機能性樹脂層15の形成の際の揮発による“やせ”が生じることがなく、形成された機能性樹脂層15の物理的強度の低下を招くおそれがない。なお、一般式(2)中のR2は、水素基又はメチル基である。 The reason why the (poly) alkylene glycol di (meth) acrylate represented by the general formula (2) is excellent in the dispersibility of the photochromic agent cannot be determined, but the (poly) alkylene glycol di represented by the general formula (2) It is estimated that the viscosity of the (meth) acrylate monomer is low and the compatibility with the photochromic agent is excellent. In addition, since the (poly) alkylene glycol di (meth) acrylate represented by the general formula (2) is not a volatile component but a component that is copolymerized with another synthetic resin, the functional resin layer 15 is formed. There is no possibility of causing “loss” due to volatilization, and there is no possibility of causing a decrease in physical strength of the formed functional resin layer 15. In addition, R < 2 > in General formula (2) is a hydrogen group or a methyl group.
 一般式(2)で表される(ポリ)アルキレングリコールジ(メタ)アクリレートのモノマーでの粘度は、15mPa・s(25℃)以下であるものが好ましい。フォトクロミック剤との相溶性に優れるためである。より好ましくは、12mPa・s(25℃)以下であり、さらに好ましくは、8mPa・s(25℃)以下である。また、一般式(2)中のn(アルキレングリコールの重合度)は、4以下であるものが好ましい。粘度が低くなることによって、フォトクロミック剤との相溶性に優れるためである。より好ましくは、nは3以下であり、さらに好ましくは、nは2以下である。 The viscosity of the (poly) alkylene glycol di (meth) acrylate monomer represented by the general formula (2) is preferably 15 mPa · s (25 ° C.) or less. This is because the compatibility with the photochromic agent is excellent. More preferably, it is 12 mPa * s (25 degreeC) or less, More preferably, it is 8 mPa * s (25 degreeC) or less. Further, n (the degree of polymerization of alkylene glycol) in the general formula (2) is preferably 4 or less. This is because when the viscosity is lowered, the compatibility with the photochromic agent is excellent. More preferably, n is 3 or less, and more preferably n is 2 or less.
 なお、一般式(2)中のR2は、水素基又はメチル基である。一般式(2)中のR2が水素基(アクリル)である場合には、機能性樹脂層15の強度として硬度がやや劣る傾向にある。他方、一般式(2)中のR2がメチル基(メタクリル)である場合には、機能性樹脂層15の強度として硬度がやや硬くなる傾向にある。 In addition, R < 2 > in General formula (2) is a hydrogen group or a methyl group. When R 2 in the general formula (2) is a hydrogen group (acrylic), the strength of the functional resin layer 15 tends to be slightly inferior. On the other hand, when R 2 in the general formula (2) is a methyl group (methacrylic), the hardness of the functional resin layer 15 tends to be slightly hard.
 また、一般式(2)中のR4Oは、エチレングリコール及び/又はプロピレングリコールであることが好ましい。一般式(2)で表される(ポリ)アルキレングリコールジ(メタ)アクリレートのモノマーでの粘度を低くすることができ、フォトクロミック剤との相溶性をより優れるものとすることができるためである。より好ましくは、一般式(2)中のR4Oは、エチレングリコールである。 Further, R 4 O in the general formula (2) in is preferably ethylene glycol and / or propylene glycol. This is because the viscosity of the (poly) alkylene glycol di (meth) acrylate monomer represented by the general formula (2) can be reduced and the compatibility with the photochromic agent can be further improved. More preferably, R 4 O in the general formula (2) is ethylene glycol.
 下記一般式(3)で表されるアルキレンジオールジグリシジルエーテルアクリレート(以下、一般式(3)ROGAcと略すことがある。)とは、チオウレタン系、エピスルフィド系又は(メタ)アクリレート系の熱硬化性樹脂原料への密着性に優れる合成樹脂である。 The alkylene diol diglycidyl ether acrylate represented by the following general formula (3) (hereinafter sometimes abbreviated as general formula (3) ROGAc) is a thiourethane, episulfide, or (meth) acrylate-based thermosetting. It is a synthetic resin that is excellent in adhesion to an adhesive resin raw material.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(3)で表されるアルキレンジオールジグリシジルエーテルアクリレートが、チオウレタン系、エピスルフィド系又は(メタ)アクリレート系の熱硬化性樹脂原料への密着性に優れる理由は、断定できないが、一般式(3)ROGAcのOH基の極性がチオール基、エピスルフィド基、(メタ)アクリレートとの極性によって密着するためと推定される。 The reason why the alkylene diol diglycidyl ether acrylate represented by the general formula (3) is excellent in adhesion to a thiourethane-based, episulfide-based or (meth) acrylate-based thermosetting resin material cannot be determined, but the general formula (3) It is presumed that the OH group polarity of ROGAc is in close contact with the thiol group, episulfide group, and (meth) acrylate.
 機能性樹脂層15の有機ガラス基材11への一体化は、図1に示すように、注型成形法によって行うことができる。注型成形法は、有機ガラス基材11に成形型のキャビティ21を形成し、機能性樹脂を注入することによって成形する方法である。なお、機能性樹脂層15の有機ガラス基材11への一体化は、ディッピング法やスプレー法などの一般的な方法によっても行うことができる。なお、機能性樹脂が空気中の酸素と反応して硬化阻害を生じる材料である場合には、注型成形法が好ましい。成形型のキャビティ21が有機ガラス基材11からなる第1モールド13と第2モールド17とテーピング19とで閉鎖された密閉系であるため、空気中の酸素を遮断して硬化阻害を防ぐことができるからである。 Integration of the functional resin layer 15 into the organic glass substrate 11 can be performed by a cast molding method as shown in FIG. The casting molding method is a method in which a mold cavity 21 is formed in the organic glass substrate 11 and molding is performed by injecting a functional resin. The integration of the functional resin layer 15 into the organic glass substrate 11 can also be performed by a general method such as a dipping method or a spray method. In the case where the functional resin is a material that reacts with oxygen in the air to cause curing inhibition, a cast molding method is preferable. Since the mold cavity 21 is a closed system closed by the first mold 13, the second mold 17, and the taping 19 made of the organic glass substrate 11, the oxygen in the air can be blocked to prevent inhibition of curing. Because it can.
 機能性樹脂層15を設けるキャビティ21は、図1に示すように、有機ガラス基材11を第1モールド13とし、第1モールド13の外側に一定の隙間が形成されるように第2モールド17を配するとともに、第1モールド13と第2モールド17の周面隙間をテーピング19等でシールして形成する。第2モールド17は、有機ガラス基材11の成形に使用したものと同一のモールドを使用することによって、機能性樹脂層15は一定の厚みを有することができる。 As shown in FIG. 1, the cavity 21 in which the functional resin layer 15 is provided has the organic mold substrate 11 as the first mold 13 and the second mold 17 so that a certain gap is formed outside the first mold 13. In addition, the peripheral gap between the first mold 13 and the second mold 17 is sealed with a taping 19 or the like. By using the same mold as the mold used for molding the organic glass substrate 11, the functional resin layer 15 can have a certain thickness.
 機能性樹脂層15を設けるキャビティ21の隙間は、機能性樹脂の流動特性や機能性樹脂層15に要求される機能性によって設定されるが、0.2~3.0mmであることが好ましい。キャビティ21の隙間が注入容易な程度に確保されているため注型成形を瞬時に行うことができ、かつ、注入された機能性樹脂が流動することなく硬化することができるため、眼鏡素材は脈理(屈折率を異にした部分が生じること。)の発生を抑制することができるためである。キャビティ21の隙間が0.2mm未満であると、流動性に優れた樹脂であっても、注入が困難となるおそれがある。一方、3.0mmを超えると、機能性樹脂の流動による硬化ムラから脈理が発生するおそれがある。より好ましくは、キャビティ21の隙間は0.3~1.5mmであり、さらに好ましくは、0.4~1.0mmである。 The gap between the cavities 21 where the functional resin layer 15 is provided is set depending on the flow characteristics of the functional resin and the functionality required for the functional resin layer 15, but is preferably 0.2 to 3.0 mm. Since the gap between the cavities 21 is secured to such an extent that injection is easy, casting can be performed instantaneously, and the injected functional resin can be cured without flowing. This is because it is possible to suppress the occurrence of reason (parts having different refractive indexes). If the gap between the cavities 21 is less than 0.2 mm, injection may be difficult even if the resin has excellent fluidity. On the other hand, if it exceeds 3.0 mm, striae may occur due to uneven curing due to the flow of the functional resin. More preferably, the gap of the cavity 21 is 0.3 to 1.5 mm, and more preferably 0.4 to 1.0 mm.
 なお、図2に示すように、機能性樹脂層15の有機ガラス基材から見て表面側に、保護樹脂層16が設けられた構成としても良い。機能性樹脂層15の強度として硬度が劣る場合に、硬度の高い保護樹脂層16が設けられることによって、機能性樹脂層15を保護することができるためである。 In addition, as shown in FIG. 2, it is good also as a structure by which the protective resin layer 16 was provided in the surface side seeing from the organic glass base material of the functional resin layer 15. FIG. This is because when the hardness of the functional resin layer 15 is inferior, the functional resin layer 15 can be protected by providing the protective resin layer 16 having a high hardness.
 保護樹脂層16には、(メタ)アクリレート系ハードコート剤を使用することができ、日立化成株式会社、共栄社化学株式会社などが市販する無溶剤(メタ)アクリレート系ハードコート剤を使用することができる。また、保護樹脂層16には、上記一般式(2)で表される(ポリ)アルキレングリコールジ(メタ)アクリレートを主たる成分とする樹脂を使用することができ、とりわけ、一般式(2)中のR2がメチル基(メタクリル)であるものを好んで使用することができる。R2がメチル基(メタクリル)であることによって、保護樹脂層16の強度として硬度を硬くすることができるためである。また、一般式(2)中のn(アルキレングリコールの重合度)は、4以下であるものが好ましい。保護樹脂層16を形成する保護樹脂の粘度が低くなり流動性が高く、後に述べるキャビティ23への注入が容易になるからである。より好ましくは、nは3以下であり、さらに好ましくは、nは2以下である。なお、上記一般式(2)で表される(ポリ)アルキレングリコールジ(メタ)アクリレートの好ましい粘度としては、14mPa・s(25℃)(n=4)以下が好ましく、より好ましくは、9mPa・s(25℃)(n=3)以下であり、さらに好ましくは、6mPa・s(25℃)(n=2)以下である。 For the protective resin layer 16, a (meth) acrylate hard coat agent can be used, and a solvent-free (meth) acrylate hard coat agent commercially available from Hitachi Chemical Co., Ltd., Kyoeisha Chemical Co., Ltd. or the like can be used. it can. Further, for the protective resin layer 16, a resin mainly composed of (poly) alkylene glycol di (meth) acrylate represented by the general formula (2) can be used, and in particular, in the general formula (2) R 2 is preferably a methyl group (methacrylic). This is because when R 2 is a methyl group (methacrylic), the hardness of the protective resin layer 16 can be increased. Further, n (the degree of polymerization of alkylene glycol) in the general formula (2) is preferably 4 or less. This is because the viscosity of the protective resin forming the protective resin layer 16 is low, the fluidity is high, and injection into the cavity 23 described later becomes easy. More preferably, n is 3 or less, and more preferably n is 2 or less. The preferable viscosity of the (poly) alkylene glycol di (meth) acrylate represented by the general formula (2) is preferably 14 mPa · s (25 ° C.) (n = 4) or less, more preferably 9 mPa · It is s (25 degreeC) (n = 3) or less, More preferably, it is 6 mPa * s (25 degreeC) (n = 2) or less.
 保護樹脂層16の機能性樹脂層15への一体化は、図2に示すように、注型成形法によって行うことができる。注型成形法は、機能性樹脂層15(有機ガラス基材11)に成形型のキャビティ23を形成し、保護樹脂層16を形成する保護樹脂を注入することによって成形する。なお、保護樹脂層16の機能性樹脂層15への一体化は、ディッピング法やスプレー法などの一般的な方法によっても行うことができる。なお、保護樹脂層16を形成する保護樹脂が空気中の酸素と反応して硬化阻害を生じる材料である場合には、注型成形法が好ましい。成形型のキャビティ23が、機能性樹脂層15が一体化された有機ガラス基材11からなる第1モールド13と第2モールド17とテーピング19とで閉鎖された密閉系であるため、空気中の酸素を遮断して硬化阻害を防ぐことができるからである。 The integration of the protective resin layer 16 into the functional resin layer 15 can be performed by a casting method as shown in FIG. The casting molding method is performed by forming a mold cavity 23 in the functional resin layer 15 (organic glass substrate 11) and injecting a protective resin for forming the protective resin layer 16. The integration of the protective resin layer 16 into the functional resin layer 15 can also be performed by a general method such as a dipping method or a spray method. Note that, when the protective resin forming the protective resin layer 16 is a material that reacts with oxygen in the air to cause curing inhibition, a cast molding method is preferable. Since the cavity 23 of the mold is a closed system closed by the first mold 13, the second mold 17, and the taping 19 made of the organic glass base material 11 in which the functional resin layer 15 is integrated, This is because oxygen can be blocked to prevent curing inhibition.
 保護樹脂層16を設けるキャビティ23の隙間は、機能性樹脂層15を保護するに足りる保護樹脂層16の厚みを形成する隙間の間隔で足り、薄い方が好ましいが、保護樹脂の流動特性によって設定されるため、0.1~0.5mmであることが好ましい。キャビティ23の隙間が保護樹脂層16となる保護樹脂を注入容易な程度に確保されているため、注型成形を瞬時に行うことができ、眼鏡素材は脈理(屈折率を異にした部分が生じること。)の発生を抑制することができるためである。より好ましくは、0.15~0.3mmである。 The gap between the cavities 23 in which the protective resin layer 16 is provided is sufficient as the gap between the gaps forming the thickness of the protective resin layer 16 sufficient to protect the functional resin layer 15 and is preferably thin, but is set according to the flow characteristics of the protective resin. Therefore, the thickness is preferably 0.1 to 0.5 mm. Since the gap between the cavities 23 is secured to such an extent that the protective resin for forming the protective resin layer 16 can be easily injected, cast molding can be performed instantaneously, and the spectacles material has striae (parts with different refractive indices). This is because the occurrence of occurrence can be suppressed. More preferably, it is 0.15 to 0.3 mm.
 機能性樹脂層15(及び保護樹脂層16)が形成された有機ガラス基材(調光光学要素)には、一般的に行われているハードコート加工、防曇処理加工、反射防止加工、撥水処理加工、帯電防止加工などの汎用の表面処理を適宜施すことができる。 The organic glass substrate (light control optical element) on which the functional resin layer 15 (and the protective resin layer 16) is formed has a hard coating process, an antifogging process, an antireflection process, a repellent process generally performed. General-purpose surface treatments such as water treatment and antistatic treatment can be appropriately performed.
 また、機能性樹脂層15に紫外線吸収剤漸減部を設けても良い。紫外線吸収剤漸減部とは、機能性樹脂層15の有機ガラス基材から見て表面側に、紫外線吸収剤の浸透量の差によって、紫外線吸光度が表面上で漸減する構成とするものである。 Further, the functional resin layer 15 may be provided with a UV absorber gradually decreasing portion. The ultraviolet absorber gradually decreasing portion is configured to gradually decrease the ultraviolet absorbance on the surface due to the difference in the amount of penetration of the ultraviolet absorber on the surface side when viewed from the organic glass substrate of the functional resin layer 15.
 機能性樹脂層15に紫外線吸収剤漸減部が設けられることによって、調光光学要素(眼鏡レンズ)は、紫外線が照射された際に、ぼかし着色(グラデーションカラー)を呈し、機能性及びファッション性に優れたものとすることができる。詳しくは、眼鏡レンズの使用時の上側(空側)は、紫外線吸収剤の浸透量を少なくし、フォトクロミック剤が濃色に変化しやすくし、下側(地面側)は、紫外線吸収剤の浸透量を多くし、フォトクロミック剤が濃色に変化し難いようにする。これにより、太陽光の当たる眼鏡レンズの上側は、濃色となるため防眩効果を有し、眼鏡レンズの下側は、淡色となるため使用者の視界が確保されることとなる。 By providing the ultraviolet absorber gradually decreasing portion in the functional resin layer 15, the light control optical element (glasses lens) exhibits a blurred color (gradation color) when irradiated with ultraviolet rays, and is functional and fashionable. It can be excellent. Specifically, the upper side (sky side) when using a spectacle lens reduces the amount of penetration of the UV absorber, making it easier for the photochromic agent to change to a dark color, and the lower side (ground side) penetrates the UV absorber. Increase the amount to make it difficult for the photochromic agent to turn dark. As a result, the upper side of the spectacle lens that is exposed to sunlight has a dark color and thus has an anti-glare effect, and the lower side of the spectacle lens has a light color and thus ensures the user's field of view.
 紫外線吸収剤漸減部は、調光光学要素を紫外線吸収剤が溶解した浸漬浴に振動浸漬させ、紫外線吸収剤を機能性樹脂層15の表面側に漸減して浸透させて形成することができる。浸漬浴の溶液は、例えば、ベンゾトリアゾール系などの紫外線吸収剤が溶解可能な溶媒に溶解させたものを使用することができる。振動浸漬は、例えば、図3に記載する振動浸漬パターンに沿った上下動(振動(往復移動))によって行うことができる。 The ultraviolet absorber gradually decreasing portion can be formed by oscillating the light-modulating optical element in an immersion bath in which the ultraviolet absorber is dissolved, and gradually decreasing and infiltrating the ultraviolet absorber on the surface side of the functional resin layer 15. As the solution of the immersion bath, for example, a solution in which a UV absorber such as benzotriazole can be dissolved can be used. The vibration immersion can be performed by, for example, vertical movement (vibration (reciprocating movement)) along the vibration immersion pattern shown in FIG.
 なお、紫外線吸収剤漸減部は、紫外線吸収剤の浸透量の差によって、紫外線吸光度が表面上で漸減する漸減部を有する眼鏡レンズ(フォトクロミック部材)とその製造方法の詳細として、本願の出願人が出願人である日本国公開特許公報特開2016-212382号公報に記載されている。 The ultraviolet absorber gradually decreasing portion is a spectacle lens (photochromic member) having a gradually decreasing portion where the ultraviolet absorbance gradually decreases on the surface due to the difference in the amount of penetration of the ultraviolet absorber, and the details of the manufacturing method thereof are as follows. It is described in Japanese Patent Application Laid-Open No. 2016-212382 which is the applicant.
 以下、実施例により本発明をさらに詳細に説明する。機能性樹脂層15を形成する機能性樹脂は、表1に記載のA-1からA-23を使用した。また、保護樹脂層16を形成する保護樹脂は、表1に記載のA-24を使用した。 Hereinafter, the present invention will be described in more detail with reference to examples. As the functional resin for forming the functional resin layer 15, A-1 to A-23 shown in Table 1 were used. As the protective resin for forming the protective resin layer 16, A-24 shown in Table 1 was used.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1において、一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレート(一般式(1)BPAc)には略称を用いた。略称と、m+nと、(メタ)アクリルの種別と、ポリアルキレングリコールの種別を以下に記載する。BPAc1(m+n=30、アクリル、ポリエチレングリコール)、BPAc2(m+n=30、メタクリル、ポリエチレングリコール)、BPAc3(m+n=17、メタクリル、ポリエチレングリコール)、BPAc4(m+n=10、メタクリル、ポリエチレングリコール)。 In Table 1, abbreviations are used for polyalkylene glycol-modified bisphenol A di (meth) acrylate (general formula (1) BPAc) represented by general formula (1). Abbreviations, m + n, (meth) acrylic types, and polyalkylene glycol types are described below. BPAc1 (m + n = 30, acrylic, polyethylene glycol), BPAc2 (m + n = 30, methacryl, polyethylene glycol), BPAc3 (m + n = 17, methacryl, polyethylene glycol), BPAc4 (m + n = 10, methacryl, polyethylene glycol).
 一般式(2)で表される(ポリ)アルキレングリコールジ(メタ)アクリレート(一般式(2)ROAc)には略称を用いた。略称と、nと、粘度と、(メタ)アクリルの種別と、ポリアルキレングリコールの種別を以下に記載する。ROAc1(n=1、3mPa・s(25℃)、メタクリル、ポリエチレングリコール)、ROAc2(n=2、8mPa・s(25℃)、アクリル、ポリエチレングリコール)、ROAc3(n=2、6mPa・s(25℃)、メタクリル、ポリエチレングリコール)。 Abbreviations were used for (poly) alkylene glycol di (meth) acrylates (general formula (2) ROAc) represented by general formula (2). Abbreviations, n, viscosities, (meth) acrylic types, and polyalkylene glycol types are described below. ROAc1 (n = 1, 3 mPa · s (25 ° C.), methacryl, polyethylene glycol), ROAc2 (n = 2, 8 mPa · s (25 ° C.), acrylic, polyethylene glycol), ROAc3 (n = 2, 6 mPa · s ( 25 ° C.), methacryl, polyethylene glycol).
 一般式(3)で表されるアルキレンジオールジグリシジルエーテルアクリレート(一般式(3)ROGAc)には、1,4-ブタンジオールジグリシジルエーテルアクリレートを使用した。表1において、ROGAc1と記載した。 1,4-Butanediol diglycidyl ether acrylate was used for the alkylene diol diglycidyl ether acrylate represented by the general formula (3) (general formula (3) ROGAc). In Table 1, it was described as ROGAc1.
 フォトクロミック剤には、スピロピラン系フォトクロミック剤、スピロオキサジン系フォトクロミック剤(ともに山田化学工業株式会社製)をブレンドして使用した。特定波長吸収剤には、NeoContrast(三井化学株式会社製、吸収ピーク波長:580nm)を使用した。 The photochromic agent was blended with a spiropyran photochromic agent and a spirooxazine photochromic agent (both manufactured by Yamada Chemical Co., Ltd.). NeoContrast (manufactured by Mitsui Chemicals, Inc., absorption peak wavelength: 580 nm) was used as the specific wavelength absorber.
 機能性樹脂は、一般式(1)BPAcと一般式(2)ROAcと一般式(3)ROGAcとを混合し、フォトクロミック剤とその他添加剤と必要により特定波長吸収剤とを混合し、窒素ガス雰囲気下で15℃に温度調節しながら1時間混合撹拌した。続いて、真空ポンプを用いて液温度15℃、133Paで撹拌しながら1時間脱気後、1μmフィルターでろ過して機能性樹脂層15を形成する機能性樹脂を調製した。 The functional resin is a mixture of general formula (1) BPAc, general formula (2) ROAc, and general formula (3) ROGAc, a photochromic agent, other additives, and, if necessary, a specific wavelength absorber, and nitrogen gas. The mixture was stirred for 1 hour while adjusting the temperature to 15 ° C under an atmosphere. Subsequently, after deaeration for 1 hour with stirring at a liquid temperature of 15 ° C. and 133 Pa using a vacuum pump, a functional resin for forming the functional resin layer 15 was prepared by filtration through a 1 μm filter.
 有機ガラス基材11は、それぞれ下記のようにして調製した樹脂原料を成形したものと、予め成形された注型成形品を使用した。
<樹脂A(チオウレタン系樹脂)>
  2,5-ビシクロ[2,2,1]ヘプタンビス(メチルイソシアナト):100部に、硬化剤としてジブチルチンジクロライド:0.1部、内部離型剤としてアルキル燐酸エステル2部、更に紫外線吸収剤として3-5-[(2-ベンゾトリアゾール)-3-t-ブチル-4-ヒドロキシフェニル]プロピオン酸とポリエチレングリコールとのモノエステル:2.0部を液温15℃窒素ガス雰囲気下で1時間充分に撹拌した。その後、更にペンタエリスリトールテトラキス(3-メルカプトプロピオネート):50部と4,7-ビス(メルカプトメチル)-3,6,9-トリチア-1,11-ウンデカンジチオール:50部を添加し、更に窒素ガス雰囲気下で15℃に温度調節しながら1時間混合撹拌した。続いて、真空ポンプを用いて液温度15℃、133Paで撹拌しながら1時間脱気後、1μmフィルターでろ過して屈折率(ne)1.60のチオウレタン系のレンズ基材用の樹脂原料を調製した。
<樹脂B(エピスルフィド系樹脂)>
 ビス(2,3-エピチオプロピル)ジスルフィド:90部、4,7-ビス(メルカプトメチル)-3,6,9-トリチア-1,11-ウンデカンジチオール:10部を窒素ガス雰囲気下で15℃に温度調節しながら30分混合撹拌し、硬化剤としてN,N-ジメチルシクロヘキシルアミン:0.3部、香気性付与剤としてイソプレゴール:0.3部、更に紫外線吸収剤として3-5[-(2-ベンゾトリアゾール)-3-t-ブチル-4-ヒドロキシフェニル]プロピオン酸とポリエチレングリコールとのモノエステル:1.5部をそれぞれ添加し、  更に窒素ガス雰囲気下で15℃に温度調節しながら30分混合撹拌した。続いて、真空ポンプを用いて液温度15℃、133Paで撹拌しながら1時間脱気後、1μmフィルターでろ過して屈折率(ne)1.74のエピスルフィド系のレンズ基材用の樹脂原料を調製した。
<樹脂C((メタ)アクリル系樹脂)>
 NK11P(日本清水産業製、主成分ビスフェノール系MMA):96部、αメチルスチレンダイマー:4部、窒素ガス雰囲気下で15℃に温度調節しながら30分混合撹拌し、硬化剤としてパーブチルND:1.4部、紫外線吸収剤として3-5[-(2-ベンゾトリアゾール)-3-t-ブチル-4-ヒドロキシフェニル]プロピオン酸:1.0部をそれぞれ添加し、更に窒素ガス雰囲気下で15℃に温度調節しながら30分混合撹拌した。続いて、真空ポンプを用いて液温度15℃、133Paで撹拌しながら1時間脱気後、1μmフィルターでろ過して屈折率(ne)1.56の(メタ)アクリル系のレンズ基材用の樹脂原料を調製した。
As the organic glass base material 11, one obtained by molding a resin raw material prepared as described below and a cast product molded in advance were used.
<Resin A (thiourethane resin)>
2,5-bicyclo [2,2,1] heptanebis (methylisocyanato): 100 parts, dibutyltin dichloride: 0.1 part as a curing agent, alkyl phosphate ester 2 parts as an internal mold release agent, and 3 parts as an ultraviolet absorber Monoester of -5-[(2-benzotriazole) -3-t-butyl-4-hydroxyphenyl] propionic acid and polyethylene glycol: 2.0 parts were sufficiently stirred for 1 hour in a nitrogen gas atmosphere at a liquid temperature of 15 ° C. . Thereafter, 50 parts of pentaerythritol tetrakis (3-mercaptopropionate): 50 parts and 4,7-bis (mercaptomethyl) -3,6,9-trithia-1,11-undecanedithiol: 50 parts were further added. The mixture was stirred for 1 hour while adjusting the temperature to 15 ° C. in a nitrogen gas atmosphere. Subsequently, using a vacuum pump, degassing for 1 hour with stirring at a liquid temperature of 15 ° C and 133 Pa, and then filtering through a 1 µm filter to prepare a resin raw material for a thiourethane lens substrate with a refractive index (ne) of 1.60. did.
<Resin B (episulfide resin)>
Bis (2,3-epithiopropyl) disulfide: 90 parts, 4,7-bis (mercaptomethyl) -3,6,9-trithia-1,11-undecanedithiol: 10 parts at 15 ° C. under nitrogen gas atmosphere The mixture was stirred for 30 minutes while adjusting the temperature, N, N-dimethylcyclohexylamine: 0.3 parts as a curing agent, isopulegol: 0.3 parts as a fragrance imparting agent, and 3-5 [-(2-benzotriazole as an ultraviolet absorber) ) -3-T-Butyl-4-hydroxyphenyl] propionic acid and polyethylene glycol: 1.5 parts were added respectively, and the mixture was further stirred for 30 minutes while adjusting the temperature to 15 ° C. in a nitrogen gas atmosphere. Subsequently, the mixture was degassed for 1 hour with stirring at a liquid temperature of 15 ° C. and 133 Pa using a vacuum pump, and then filtered through a 1 μm filter to prepare a resin raw material for an episulfide-based lens substrate having a refractive index (ne) of 1.74. .
<Resin C ((meth) acrylic resin)>
NK11P (manufactured by Nippon Shimizu Sangyo Co., Ltd., main component bisphenol MMA): 96 parts, α-methylstyrene dimer: 4 parts, mixed and stirred for 30 minutes while adjusting the temperature to 15 ° C. in a nitrogen gas atmosphere, and perbutyl ND: 1 as a curing agent 4 parts, 3-5 [-(2-benzotriazole) -3-tert-butyl-4-hydroxyphenyl] propionic acid: 1.0 part each as an ultraviolet absorber, and further added to 15 ° C. under nitrogen gas atmosphere The mixture was stirred for 30 minutes while adjusting the temperature. Subsequently, degassing for 1 hour with stirring at a liquid temperature of 15 ° C and 133 Pa using a vacuum pump, and filtering through a 1 µm filter, a resin raw material for a (meth) acrylic lens substrate having a refractive index (ne) of 1.56 Was prepared.
 <樹脂D(ポリウレア系樹脂)>
 ポリウレア系樹脂には、NXT(トライベックス社(ICRX NXT社)製ポリウレア系樹脂)注型成形品を使用した。
<Resin D (polyurea resin)>
As the polyurea resin, NXT (polyurea resin manufactured by Tribex Corporation (ICRX NXT)) cast molding was used.
 有機ガラス基材11の成形は、注型成形法で行い、成形型は、凸面側モールドと凹面側モールドとをレンズの中心の間隔が1.0mmとなるように粘着テープからなるテーピングでシールをして、有機ガラス基材成形用のキャビティを有する成形型を作成した。 The organic glass substrate 11 is molded by a cast molding method, and the mold is sealed with taping made of an adhesive tape so that the distance between the center of the lens is 1.0 mm between the convex mold and the concave mold. Thus, a mold having a cavity for forming an organic glass substrate was prepared.
 有機ガラス基材11は、樹脂原料が上記の組成で混合され、成形型に注入され、チオウレタン系とエピスルフィド系は120℃で2時間、(メタ)アクリレート系は80℃で1時間加熱硬化させることによって成形した。 The organic glass substrate 11 is prepared by mixing the resin raw materials with the above composition and injecting them into a mold. The thiourethane type and episulfide type are heated and cured at 120 ° C. for 2 hours, and the (meth) acrylate type is heated and cured at 80 ° C. for 1 hour. Was molded by.
 機能性樹脂層15の有機ガラス基材11への注型成形は、図1に示すように、有機ガラス基材11に成形型のキャビティ21を形成し、機能性樹脂層15を成形する機能性樹脂を注入し、硬化させることによって成形した。キャビティ21は、有機ガラス基材11を第1モールド13とし、第1モールド13の外側に一定の隙間が形成されるように、第2モールド17として有機ガラス基材11成形の際に使用した凸面側モールドを配するとともに、第1モールド13と第2モールド17の周面隙間をテーピング19でシールして形成した。 As shown in FIG. 1, cast molding of the functional resin layer 15 onto the organic glass substrate 11 is performed by forming a mold cavity 21 in the organic glass substrate 11 and molding the functional resin layer 15. Molded by injecting resin and curing. The cavity 21 is a convex surface used when forming the organic glass substrate 11 as the second mold 17 so that the organic glass substrate 11 is the first mold 13 and a certain gap is formed outside the first mold 13. A side mold was disposed, and a circumferential gap between the first mold 13 and the second mold 17 was formed by sealing with a taping 19.
 保護樹脂層16の有機ガラス基材11(機能性樹脂層15)への注型成形は、図2に示すように、機能性樹脂層15を一体化した有機ガラス基材11に成形型のキャビティ23を形成し、保護樹脂層16を成形する保護樹脂を注入し、硬化させることによって成形した。キャビティ23は、機能性樹脂層15を一体化した有機ガラス基材11を第1モールド13とし、第1モールド13の外側に一定の隙間が形成されるように、第2モールド17として有機ガラス基材11(機能性樹脂層15)成形の際に使用した凸面側モールドを配するとともに、第1モールド13と第2モールド17の周面隙間をテーピング19でシールして形成した。 As shown in FIG. 2, casting molding of the protective resin layer 16 onto the organic glass substrate 11 (functional resin layer 15) is performed on the organic glass substrate 11 integrated with the functional resin layer 15. 23 was formed, and a protective resin for forming the protective resin layer 16 was injected and cured. The cavity 23 has an organic glass substrate 11 as the second mold 17 so that the organic glass substrate 11 integrated with the functional resin layer 15 is the first mold 13 and a certain gap is formed outside the first mold 13. The convex side mold used in molding the material 11 (functional resin layer 15) was disposed, and the peripheral gap between the first mold 13 and the second mold 17 was sealed with a taping 19 to be formed.
 機能性樹脂層15(及び保護樹脂層16)が成形された有機ガラス基材11(樹脂レンズ)は、凹面と外周とが切削・研磨され、直径70mmのSPH(球面(D))が-8.00の調光光学要素(眼鏡レンズ)とした。 The organic glass substrate 11 (resin lens) on which the functional resin layer 15 (and the protective resin layer 16) is molded has its concave surface and outer periphery cut and polished, and a 70 mm diameter SPH (spherical surface (D)) is -8. 0.00 light control optical element (glasses lens).
 紫外線吸収剤漸減部は、ベンゾトリアゾール系紫外線吸収剤(吸収ピーク波長:350nm)を蒸留水に5質量%溶解させた浸漬浴に、調光光学要素を図3(b)に記載の振動浸漬パターンに沿った上下動(振動(往復移動))させることによって行った。 The UV absorber gradually decreasing portion is a vibration immersion pattern described in FIG. 3B in an immersion bath in which 5% by mass of a benzotriazole UV absorber (absorption peak wavelength: 350 nm) is dissolved in distilled water. It was performed by moving up and down (vibrating (reciprocating movement)).
 以下に記載する有機ガラス基材11と機能性樹脂層15(及び保護樹脂層16)との組合せにより試験例の調光光学要素を作成し、これらについて、フォトクロミック特性、外観の評価を測定し、強度の評価として密着性を測定した。
<フォトクロミック特性>
 フォトクロミック特性は、調光光学要素に紫外線照射による着色と紫外線遮断による消色をさせて、着色状態による分光平均透過率などを測定した。紫外線照射は、FL4.BLB(東芝ライテック株式会社製ブラックライト蛍光ランプ、紫外線出力0.25W、紫外線放射強度2.7μW/cm2)を試験体の調光光学要素の光軸上の20cm離れた位置から照射し、測定は、分光平均透過率によって、調光性、回復性及び戻り量を求めた。分光平均透過率は、以下の装置及び規格に準拠して求め、380~780nmの光についての平均透過率を求めた。なお、測定位置は、眼鏡素材の幾何中心とした。
A dimming optical element of a test example is created by a combination of the organic glass substrate 11 and the functional resin layer 15 (and the protective resin layer 16) described below, and for these, photochromic characteristics and appearance evaluation are measured, Adhesion was measured as an evaluation of strength.
<Photochromic characteristics>
For photochromic properties, the light control optical element was colored by irradiation with ultraviolet rays and decolored by blocking ultraviolet rays, and the spectral average transmittance according to the colored state was measured. UV irradiation is FL4. BLB (Toshiba Lighttech Co., Ltd., black light fluorescent lamp, UV output 0.25 W, UV radiation intensity 2.7 μW / cm 2 ) is irradiated from a position 20 cm away from the optical axis of the dimming optical element of the test piece and measured. Obtained the light control property, recoverability, and return amount from the spectral average transmittance. The spectral average transmittance was determined according to the following apparatus and standard, and the average transmittance for light of 380 to 780 nm was determined. The measurement position was the geometric center of the spectacle material.
 ・装置:分光光度計U-4100(株式会社日立ハイテクサイエンス製)
 ・規格:屈折補正用眼鏡レンズの透過率の仕様及び試験方法(JIS T 7333:2005(ISO/DIS 8980-3:2002))
 そして、調光性は、調光光学要素に15分間紫外線照射した直後の分光平均透過率を測定し、以下のように評価した。◎:10%以下、○:15%以下10%未満、△:20%以下15%未満、×:20%を超える。
・ Device: Spectrophotometer U-4100 (manufactured by Hitachi High-Tech Science Co., Ltd.)
Standard: Specification and test method of transmittance of refraction correcting spectacle lens (JIS T 7333: 2005 (ISO / DIS 8980-3: 2002))
The light control property was evaluated as follows by measuring the spectral average transmittance immediately after the light control optical element was irradiated with ultraviolet rays for 15 minutes. A: 10% or less, O: 15% or less, less than 10%, Δ: 20% or less, less than 15%, x: More than 20%.
 回復性は、紫外線照射15分後に紫外線を遮断して遮断後2分後の分光平均透過率を測定し、以下のように評価した。◎:70%以上、○:50%以上70%未満、△:40%以上50%未満、×:40%未満。 Recoverability was evaluated as follows by measuring the spectral average transmittance 15 minutes after UV irradiation and measuring the spectral average transmittance 2 minutes after the UV irradiation. A: 70% or more, O: 50% or more and less than 70%, Δ: 40% or more and less than 50%, ×: less than 40%.
 戻り量は、回復性(%)から調光性(%)を引いた値(%)を求め、以下のように評価した。◎:50%以上、○:35%以上50%未満、△:20%以上35%未満、×:20%未満。
<レンズ外観>
 レンズ外観は、目視でその異常の有無を確認した。そして、レンズ外観は、以下のように評価した。◎:異常なし、△:脈理の発生が見られるものの使用するにあたり問題がないもの、×:脈理の発生やクラックの発生により使用において問題があるもの。
<密着性>
 密着性は、強制剥離試験を行って評価した。強制剥離試験は、機能性基材層15と有機ガラス基材11との界面にあたるレンズの外周面(コバ面)にナイロン糸を掛ける溝(ナイロール溝)を設け、ナイロール溝にマイナスドライバーを差し込んで強制的に剥離させるようにして、密着性を評価した。そして、密着性は、以下のように評価した。○:剥離なし(機能性基材層15又は有機ガラス基材11に欠損が見られる場合であっても、界面での剥離は見られない)、△:機能性基材層15と有機ガラス基材11との界面に剥離が見られるが隙間の発生は確認されない、×:機能性基材層15と有機ガラス基材11との界面に剥離が見られ隙間の発生が確認できる。
The amount of return was determined by obtaining a value (%) obtained by subtracting dimming property (%) from recoverability (%) and evaluated as follows. A: 50% or more, ○: 35% or more and less than 50%, Δ: 20% or more and less than 35%, ×: less than 20%.
<Lens appearance>
The external appearance of the lens was confirmed by visual inspection. And the lens external appearance was evaluated as follows. A: No abnormality, Δ: Streaks are observed but there are no problems in use, ×: Streaks and cracks are problematic in use.
<Adhesion>
The adhesion was evaluated by performing a forced peel test. In the forced peel test, a groove (Nyroll groove) on which a nylon thread is hung is provided on the outer peripheral surface (edge surface) of the lens corresponding to the interface between the functional substrate layer 15 and the organic glass substrate 11, and a minus driver is inserted into the Nyroll groove. The adhesiveness was evaluated by forcibly peeling. And adhesiveness was evaluated as follows. ○: No peeling (even if the functional base material layer 15 or the organic glass base material 11 has a defect, no peeling at the interface is seen), Δ: the functional base material layer 15 and the organic glass base Peeling is seen at the interface with the material 11 but no gap is confirmed. X: Peeling is seen at the interface between the functional base material layer 15 and the organic glass base material 11, and the occurrence of the gap can be confirmed.
 以下に、試験例を記載する。試験例1-1~試験例1-22,試験例2-1~試験例2-22,試験例3-1~試験例3-22,試験例4-1~試験例4-22が実施例であり、最良の実施例は、試験例1-7,試験例1-8である。試験例1-23,試験例2-23,試験例3-23,試験例4-23は比較例である。 The test example is described below. Test Example 1-1 to Test Example 1-22, Test Example 2-1 to Test Example 2-22, Test Example 3-1 to Test Example 3-22, Test Example 4-1 to Test Example 4-22 are examples The best examples are Test Example 1-7 and Test Example 1-8. Test Examples 1-23, 2-23, 3-23, and 4-23 are comparative examples.
 (試験例1-1~試験例1-23)
 試験例1-1~試験例1-23は、有機ガラス基材に樹脂A(チオウレタン系樹脂)を使用した試験例である。これらのうち、試験例1-1~試験例1-14及び試験例1-21~試験例1-23は、機能性樹脂層15を設け保護樹脂層16を設けず、試験例1-15~試験例1-20は、機能性樹脂層15に加え保護樹脂層16を設けたものである。また、試験例1-7と試験例1-8は、紫外線吸収剤漸減部を設け、機能性薬剤としてNeoContrastを含有させたものである。評価性能の結果を表2に記載する。
(Test Example 1-1 to Test Example 1-23)
Test Examples 1-1 to 1-23 are test examples in which resin A (thiourethane resin) is used for the organic glass substrate. Among these, in Test Example 1-1 to Test Example 1-14 and Test Example 1-21 to Test Example 1-23, the functional resin layer 15 is provided but the protective resin layer 16 is not provided, and Test Examples 1-15 to In Test Example 1-20, the protective resin layer 16 is provided in addition to the functional resin layer 15. In Test Examples 1-7 and 1-8, a UV absorber gradually decreasing portion is provided and NeoContrast is contained as a functional drug. The evaluation performance results are listed in Table 2.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 試験例1-1~試験例1-6は、機能性樹脂層における一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレートの含有割合を変更したものである。一般式(1)BPAcの含有割合が、少ない試験例1-1から多い試験例1-6につれて、回復性(視感透過率)が高くなり、戻り量が高くなり、消色時間が早くなることがわかる。 Test Examples 1-1 to 1-6 are obtained by changing the content ratio of the polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the general formula (1) in the functional resin layer. As the content ratio of the general formula (1) BPAc is small from Test Example 1-1 to Test Example 1-6, the recoverability (luminous transmittance) increases, the return amount increases, and the decoloring time increases. I understand that.
 試験例1-6~試験例1-8は、機能性樹脂層の厚みを変更したものである。厚みを変更することによって、調光性(視感透過率)を調節できることがわかる。試験例1-7と試験例1-8は、紫外線吸収剤漸減部を設けたものであり、紫外線照射時にぼかし着色(グラデーションカラー)を呈し、機能性とファッション性に優れるものであった。また、試験例1-7と試験例1-8は、機能性薬剤としてNeoContrastも含有しているものであり、光学要素の見え方が改善されたものであった。 Test Examples 1-6 to 1-8 were obtained by changing the thickness of the functional resin layer. It can be seen that the dimming property (luminous transmittance) can be adjusted by changing the thickness. Test Example 1-7 and Test Example 1-8 were provided with a gradually decreasing portion of the ultraviolet absorber, and exhibited blurring coloring (gradation color) when irradiated with ultraviolet rays, and were excellent in functionality and fashionability. Further, Test Example 1-7 and Test Example 1-8 also contained NeoContrast as a functional drug, and the appearance of the optical element was improved.
 試験例1-3~試験例1-5と、試験例1-9~試験例1-11と、試験例1-12~試験例1-14は、機能性樹脂層における一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレートのm+nの値を変更して比較したものである。試験例1-3~試験例1-5の一般式(1)BPAcはm+n=30であり、試験例1-9~試験例1-11の一般式(1)BPAcはm+n=17であり、試験例1-12~試験例1-14の一般式(1)BPAcはm+n=10である。一般式(1)BPAcのm+nが大きいほど、回復性(視感透過率)が高くなり、戻り量が高くなり、消色時間が早くなることがわかる。 Test Example 1-3 to Test Example 1-5, Test Example 1-9 to Test Example 1-11, Test Example 1-12 to Test Example 1-14 are represented by the general formula (1) in the functional resin layer. It compares by changing the value of m + n of the polyalkylene glycol modified bisphenol A di (meth) acrylate represented. The general formula (1) BPAc of Test Examples 1-3 to 1-5 is m + n = 30, the general formula (1) BPAc of Test Examples 1-9 to 1-11 is m + n = 17, The general formula (1) BPAc in Test Example 1-12 to Test Example 1-14 is m + n = 10. It can be seen that as m + n of the general formula (1) BPAc is larger, the recoverability (luminous transmittance) is higher, the return amount is higher, and the decoloring time is faster.
 試験例1-4~試験例1-5と、試験例1-15~試験例1-16は、機能性樹脂層における一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレートの重合基のメタクリル基とアクリル基とを比較したものである。回復性(視感透過率)と戻り量の比較から、僅かながらアクリル基である一般式(1)BPAcの方が消色時間に勝る(早い)ことがわかる。なお、機能性樹脂層にアクリル基の一般式(1)BPAcを使用した試験体は、表中には記載しなかったが、機能性樹脂層の強度としての硬度がやや劣る傾向にあったため、保護樹脂層を設けた。 Test Example 1-4 to Test Example 1-5 and Test Example 1-15 to Test Example 1-16 are polyalkylene glycol-modified bisphenol A di (meth) represented by the general formula (1) in the functional resin layer. This is a comparison of the acrylate group and the methacryl group of the acrylate polymerization group. From the comparison of the recoverability (luminous transmittance) and the return amount, it can be seen that the general formula (1) BPAc, which is a slight acrylic group, is superior (faster) to the decoloring time. In addition, although the test body using the general formula (1) BPAc of the acrylic group for the functional resin layer was not described in the table, the hardness as the strength of the functional resin layer tended to be slightly inferior, A protective resin layer was provided.
 試験例1-15~試験例1-16と、試験例1-17~試験例1-18は、機能性樹脂層における一般式(2)で表される(ポリ)アルキレングリコールジ(メタ)アクリレートのnの値(及び粘度)を変更して比較したものである。試験例1-15~試験例1-16の一般式(2)ROAcはn=2(6mPa・s)であり、試験例1-17~試験例1-18の一般式(2)ROAcはn=1(3mPa・s)である。一般式(2)ROAcのn(粘度)が小さいほど、フォトクロミック剤との相溶性に優れるものであったが、フォトクロミック特性に結果として現れるものではなかった。 Test Examples 1-15 to 1-16 and Test Examples 1-17 to 1-18 are (poly) alkylene glycol di (meth) acrylates represented by the general formula (2) in the functional resin layer. The value (and viscosity) of n was changed and compared. The general formula (2) ROAc in Test Examples 1-15 to 1-16 is n = 2 (6 mPa · s), and the general formula (2) ROAc in Test Examples 1-17 to 1-18 is n = 1 (3 mPa · s). The smaller the n (viscosity) of the general formula (2) ROAc, the better the compatibility with the photochromic agent, but it did not appear as a result in the photochromic properties.
 試験例1-15~試験例1-16と、試験例1-19~試験例1-20は、機能性樹脂層における一般式(2)で表される(ポリ)アルキレングリコールジ(メタ)アクリレートの重合基のメタクリル基とアクリル基とを比較したものである。一般式(2)ROAcの重合基の違いによって、フォトクロミック特性に影響は認められなかった。 Test Examples 1-15 to 1-16 and Test Examples 1-19 to 1-20 are (poly) alkylene glycol di (meth) acrylates represented by the general formula (2) in the functional resin layer. The methacrylic group and the acrylic group of the polymerized group are compared. No effect on the photochromic properties was observed due to the difference in the polymerization group of the general formula (2) ROAc.
 試験例1-21は、一般式(3)で表されるアルキレンジオールジグリシジルエーテルアクリレートを含有させなかったものである。有機ガラス基材への密着性がやや劣るものとなった。 Test Example 1-21 was one in which the alkylene diol diglycidyl ether acrylate represented by the general formula (3) was not contained. Adhesion to the organic glass substrate was slightly inferior.
 試験例1-22は、一般式(2)で表される(ポリ)アルキレングリコールジ(メタ)アクリレートと、一般式(3)で表されるアルキレンジオールジグリシジルエーテルアクリレートとを含有させなかったものである。フォトクロミック剤の分散性がやや劣り、調光性とレンズ外観がやや劣るものとなった。また、有機ガラス基材への密着性がやや劣るものとなった。 Test Example 1-22 did not contain (poly) alkylene glycol di (meth) acrylate represented by general formula (2) and alkylene diol diglycidyl ether acrylate represented by general formula (3) It is. The dispersibility of the photochromic agent was slightly inferior, and the light control property and the lens appearance were slightly inferior. Further, the adhesion to the organic glass substrate was slightly inferior.
 試験例1-23は、一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレートを含有させなかったものである。一般式(1)BPAcとの相互作用がなく、回復性と戻り量が満たされなかった。 Test Example 1-23 does not contain the polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the general formula (1). There was no interaction with the general formula (1) BPAc, and the recoverability and return amount were not satisfied.
 図4は、実施例(試験例1-8)と比較例(試験例1-23)の性能を対比した図であり、紫外線を15分間照射した後に遮断し、照射時(0分から15分)と遮断時(15分から20分)の可視光線透過率(Transmittance%)を経時的に測定して結果を表した図である。実施例(試験例1-8)は、比較例(試験例1-23)に比べ、紫外線遮断後の可視光線透過率の回復が著しく早い(消色時間が著しく早い)ことが分かる。 FIG. 4 is a graph comparing the performance of the example (Test Example 1-8) and the comparative example (Test Example 1-23). After the ultraviolet ray was irradiated for 15 minutes, it was blocked and irradiated (from 0 to 15 minutes). It is the figure which measured the visible light transmittance | permeability (Transmittance%) at the time of interruption | blocking (15 minutes to 20 minutes) with time, and represented the result. It can be seen that in Example (Test Example 1-8), the visible light transmittance after UV blocking is significantly recovered (discoloration time is significantly faster) than in Comparative Example (Test Example 1-23).
 (試験例2-1~試験例2-23、試験例3-1~試験例3-23、試験例4-1~試験例4-23)
 試験例2-1~試験例2-23は、有機ガラス基材に樹脂B(エピスルフィド系樹脂)を使用した試験例である。評価性能の結果を表3に記載する。また、試験例3-1~試験例3-23は、有機ガラス基材に樹脂C((メタ)アクリル系樹脂)を使用した試験例である。評価性能の結果を表4に記載する。試験例4-1~試験例4-23は、有機ガラス基材に樹脂D(ポリウレア系樹脂)を使用した試験例である。評価性能の結果を表5に記載する。
(Test Example 2-1 to Test Example 2-23, Test Example 3-1 to Test Example 3-23, Test Example 4-1 to Test Example 4-23)
Test Examples 2-1 to 2-23 are test examples in which resin B (episulfide resin) is used for the organic glass substrate. The evaluation performance results are listed in Table 3. Test Examples 3-1 to 3-23 are test examples in which resin C ((meth) acrylic resin) is used for the organic glass substrate. The evaluation performance results are listed in Table 4. Test Examples 4-1 to 4-23 are test examples in which resin D (polyurea resin) is used for the organic glass substrate. The evaluation performance results are listed in Table 5.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 試験例2-1~試験例2-23、試験例3-1~試験例3-23、試験例4-1~試験例4-23の結果から、実施形態の機能性樹脂層は、有機ガラス基材が、エピスルフィド系樹脂、(メタ)アクリル系樹脂及びポリウレア系樹脂であっても使用可能であることが確認できた。 From the results of Test Example 2-1 to Test Example 2-23, Test Example 3-1 to Test Example 3-23, and Test Example 4-1 to Test Example 4-23, the functional resin layer of the embodiment is an organic glass. It was confirmed that the substrate can be used even if it is an episulfide resin, a (meth) acrylic resin, or a polyurea resin.
 11…有機ガラス基材、13…第1モールド、15…機能性樹脂層、16…保護樹脂層、17…第2モールド、19…テーピング、21,23…キャビティ。 DESCRIPTION OF SYMBOLS 11 ... Organic glass base material, 13 ... 1st mold, 15 ... Functional resin layer, 16 ... Protective resin layer, 17 ... 2nd mold, 19 ... Taping, 21, 23 ... Cavity.

Claims (4)

  1.  樹脂成形体である有機ガラス基材の片面又は両面に、機能性樹脂層が一体化された調光光学要素において、
     該機能性樹脂層は、フォトクロミック剤と、下記一般式(1)で表されるポリアルキレングリコール変性ビスフェノールAジ(メタ)アクリレートと、を含有することを特徴とする調光光学要素。
    Figure JPOXMLDOC01-appb-C000001
    In the light control optical element in which the functional resin layer is integrated on one side or both sides of the organic glass substrate which is a resin molded body,
    The functional resin layer contains a photochromic agent and a polyalkylene glycol-modified bisphenol A di (meth) acrylate represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
  2.  前記機能性樹脂層は、下記一般式(2)で表される(ポリ)アルキレングリコールジ(メタ)アクリレートを含有することを特徴とする請求項1に記載の調光光学要素。
    Figure JPOXMLDOC01-appb-C000002
    The light control optical element according to claim 1, wherein the functional resin layer contains (poly) alkylene glycol di (meth) acrylate represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
  3.  前記有機ガラス基材は、チオウレタン系、エピスルフィド系又は(メタ)アクリレート系の熱硬化性樹脂原料で成形され、
     前記機能性樹脂層は、下記一般式(3)で表されるアルキレンジオールジグリシジルエーテルアクリレートを含有することを特徴とする請求項1に記載の調光光学要素。
    Figure JPOXMLDOC01-appb-C000003
    The organic glass substrate is molded from a thiourethane-based, episulfide-based or (meth) acrylate-based thermosetting resin raw material,
    The light control optical element according to claim 1, wherein the functional resin layer contains an alkylene diol diglycidyl ether acrylate represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000003
  4.  前記機能性樹脂層の厚みが0.2~3.0mmであることを特徴とする請求項1に記載の調光光学要素。 The light control optical element according to claim 1, wherein the thickness of the functional resin layer is 0.2 to 3.0 mm.
PCT/JP2017/016157 2016-08-23 2017-04-24 Light-modulating optical element WO2018037621A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-162954 2016-08-23
JP2016162954 2016-08-23

Publications (1)

Publication Number Publication Date
WO2018037621A1 true WO2018037621A1 (en) 2018-03-01

Family

ID=61246478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016157 WO2018037621A1 (en) 2016-08-23 2017-04-24 Light-modulating optical element

Country Status (1)

Country Link
WO (1) WO2018037621A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11511765A (en) * 1994-12-12 1999-10-12 コーニング インコーポレイテッド Photochromic products with temperature stability and sunlight resistance
JP2001188206A (en) * 1999-12-28 2001-07-10 Hoya Corp Photochromic lens
JP2011145513A (en) * 2010-01-15 2011-07-28 Ito Kogaku Kogyo Kk Polarizing element
WO2012141306A1 (en) * 2011-04-13 2012-10-18 Hoya株式会社 Photochromic lens for eye glasses
WO2013129531A1 (en) * 2012-02-29 2013-09-06 Hoya株式会社 Coating composition, method for producing same, plastic lens, and method for producing same
WO2014125738A1 (en) * 2013-02-15 2014-08-21 伊藤光学工業株式会社 Process for producing resin lens
WO2017029825A1 (en) * 2015-08-20 2017-02-23 伊藤光学工業株式会社 Material for spectacles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11511765A (en) * 1994-12-12 1999-10-12 コーニング インコーポレイテッド Photochromic products with temperature stability and sunlight resistance
JP2001188206A (en) * 1999-12-28 2001-07-10 Hoya Corp Photochromic lens
JP2011145513A (en) * 2010-01-15 2011-07-28 Ito Kogaku Kogyo Kk Polarizing element
WO2012141306A1 (en) * 2011-04-13 2012-10-18 Hoya株式会社 Photochromic lens for eye glasses
WO2013129531A1 (en) * 2012-02-29 2013-09-06 Hoya株式会社 Coating composition, method for producing same, plastic lens, and method for producing same
WO2014125738A1 (en) * 2013-02-15 2014-08-21 伊藤光学工業株式会社 Process for producing resin lens
WO2017029825A1 (en) * 2015-08-20 2017-02-23 伊藤光学工業株式会社 Material for spectacles

Similar Documents

Publication Publication Date Title
JP5824218B2 (en) Anti-glare optical element
KR101761828B1 (en) Optical resin compositions and optical lens prepared therefrom
US7035010B2 (en) Polarized lenses with variable transmission
JP5650963B2 (en) Shading lens for protective glasses
AU2008245205B2 (en) Infrared ray-absorbable eyeglass lens, and method for production thereof
EP1243621B1 (en) Plastic base material
WO2012165050A1 (en) Anti-glare optical element
US8084133B2 (en) Tintable film-forming compositions having high refractive indices and coated optical articles using same
WO2018123077A1 (en) Optical element
KR20170008679A (en) Optical compositions for blocking electromagnetic wave and method of preparing optical lens therefrom
CN108026277A (en) Polymerizable composition for optical material, optical material, the manufacture method of the manufacture method of polymerizable composition for optical material and optical material
KR20180040650A (en) METHOD FOR PRODUCING POLYMORIZABLE COMPOSITION FOR OPTICAL MATERIAL
US8474973B2 (en) Infrared absorbing polarized eyeglass lens
CN107573835B (en) Lens color-changing coating and color-changing lens
WO2018037621A1 (en) Light-modulating optical element
WO2018124063A1 (en) Optical element and production method therefor
WO2018008179A1 (en) Eyeglass material
JP2012173675A (en) Method for manufacturing lens
JP7254168B2 (en) Optical materials, polymerizable compositions for optical materials, plastic lenses, eyewear, infrared sensors and infrared cameras
CN113631993B (en) Coating composition for optical article, spectacle lens, method for producing spectacle lens, and method for producing optical article
KR20210139235A (en) Optical element comprising a mixture of near-infrared dyes for a wider near-infrared cut and better aesthetics
JP2018025647A (en) Spectacle base material
JP7540625B2 (en) Optical materials, polymerizable compositions for optical materials, plastic lenses, eyewear and optical sensors
KR20170008677A (en) Optical compositions for blocking electromagnetic wave and method of preparing optical lens therefrom
JP2019164898A (en) Light guide plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17843111

Country of ref document: EP

Kind code of ref document: A1